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1 Introduction

A network is a collection of vertices, connected in pairs by edges. Many objects of
interest can be thought of as networks. Examples include social networks, the Internet,
biological networks, the brain or communication networks. Most of these networks
are large, containing millions or even billions of vertices. For example, the network
of English Wikipedia pages and their hyperlinks contains several millions of vertices,
whereas some social networks contain more than a billion vertices. Even though these
large networks are very different in application, their connectivity patterns often
share several universal properties. For example, most networks contain communities:
groups of densely connected vertices. In social networks these communities may
correspond to groups of friends or groups of people with similar interests, but many
other types of networks also contain community structures. Another frequently
observed network property is that two neighbors of a vertex are more likely to be
connected as well. In a social network for example, this means that two of your
friends are likely to know each other.

Networks are typically modeled with random graphs: mathematical models
generating large networks that may serve as null models for real-world networks.
Whereas a real-world network often consists of just one network observation, random
graphs are able to generate many network samples, allowing for statistical analy-
ses. Furthermore, properties of these random graph models can often be analyzed
mathematically. For this reason, random graph models are used to study network
properties. In this thesis, we study several observed properties of real-world net-
works using random graph models, aiming to understand the similarities and the
differences between random graph models and real-world networks.

1.1 Scale-free network models

Many real-world networks contain hubs, vertices that are substantially more con-
nected than most other vertices in the network. Figure 1.1 illustrates this for the
Gowalla social network [137] and plots the fraction of vertices of degree at least k
against k on a log-log scale. Vertices in this network are members of the Gowalla
social network, and edges indicate the friendship between two members of the net-
work. The figure shows that indeed the network contains hubs: while most members
only have a few friends, some members have several thousands of friends. This
implies that the degree distribution of the network has a heavy right tail. One way of
modeling such heavy-tailed degree distributions is through a power-law distribution.

1
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Figure 1.1: A loglog plot of the degree distribution of the Gowalla social network [137].

That is, if pk denotes the fraction of vertices of degree k, then

pk ≈ Ck−τ , (1.1.1)

for some C > 0, where τ is also called the degree exponent. The probability that the
degree of a vertex is at least k then scales as k1−τ . Thus, if the fraction of vertices
of degree at least k is plotted against k for a power-law degree distribution, this
plot should follow a straight line on a log-log scale, as can indeed be observed in
Figure 1.1.

Many networks were found to have degree distributions that can be approximated
by a power law with degree exponent τ ∈ (2, 3) [6, 79, 122, 212]. These networks are
called scale-free networks, because the degree of a random vertex in the network does
not have a typical scale: the difference between the smallest and the largest degree
in a network may be several orders of magnitude. Among the real-world networks
that were found to be scale-free are the Internet [79], citation networks [188], e-mail
networks [212] and online social networks [59]. However, several other networks
were found to have different types of degree distributions [52, 66].

Over the course of several decades, various models for generating and studying
scale-free networks have been developed. Most of these models are probabilistic, and
fall in the class of random graph models. We now describe several popular scale-free
random graph models that will reappear later in this thesis.

1.1.1 Configuration model

Given a degree sequence of n positive integers d = (d1, d2, . . . , dn), the configuration
model (CM) [41] is a random graph model that generates a graph on n vertices where
vertex i has degree di. Given a degree sequence such that ∑n

i=1 di is even, the configu-
ration model equips each vertex j with dj free half-edges. The configuration model
is then constructed by successively pairing free half-edges into edges, uniformly at
random, until no free half-edges remain. When all half-edges have been paired, the
resulting graph has degree sequence d, as illustrated in Figure 1.2a and 1.2b. The ge-
nerated network may be a multigraph, so that it may contain self-loops and multiple
edges between a pair of vertices. Most real-world networks on the other hand are
simple, i.e., they do not contain self-loops and multiple edges. For a simple graph
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(a) A set of half-edges (b) A realization of the CM (c) The corresponding ECM

Figure 1.2: Illustration of the CM and ECM.

with degree sequence d, to exist, d needs to be graphical, see [104]. Conditionally
on the configuration model resulting in a simple graph, it is uniform over all simple
graphs with the prescribed degree sequence. Thus, every simple graph on degree
sequence d is then generated with equal probability. This is why the configuration
model is often used as a standard model for real-world networks with given degrees.

In this thesis, we usually take the degree sequence as an i.i.d. sample of a random
variable D. To model scale-free networks, we sample from the degree distribution

P(D = k) = Ck−τ , (1.1.2)

for τ ∈ (2, 3) and some constant C > 0, so that the configuration model indeed
constructs a scale-free network. For τ > 2, a degree sequence constructed in this
manner is graphical with probability tending to one, conditionally on the sum of the
degrees being even [10]. When the sum of the sampled degrees is odd, we add an
extra half-edge to the last vertex.

An important property of the configuration model is that it is locally tree-like, which
means that in the large network limit, any small neighborhood of a vertex will look
like a tree.

1.1.2 Uniform random graph

Given a graphical degree sequence, the uniform random graph samples each simple
graph with that degree sequence with equal probability. As stated before, the confi-
guration model creates a uniform random graph conditionally on the configuration
model resulting in a simple graph. When τ > 3, the configuration model constructs a
simple graph with positive probability [116]. One can then obtain a uniform random
graph with prescribed degree sequence by repeating the configuration model con-
struction until it results in a simple graph. However, when 2 < τ < 3, the probability
that the configuration model creates multiple-edges and self-loops tends to one [116],
so that the configuration model can no longer be used to sample simple uniform
random graphs. In this regime, sampling uniform random graphs is difficult. Several
algorithms start with an initial graph, and rewire some of the edges of the graph
at each time step, finally resulting in a uniform random graph sample [11, 97, 151].
However, the number of necessary time steps for these algorithms to result in a
uniform sample is unknown for 2 < τ < 3.
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1.1.3 Erased configuration model

Since the configuration model often creates multigraphs, and uniform random graphs
are difficult to construct for 2 < τ < 3, we often study the erased configuration model
(ECM) instead, which first constructs a configuration model, and then removes all
self-loops and multiple edges, as illustrated in Figure 1.2c. This erasing procedure
does not affect the degree distribution in the large-network limit [50], so that the
erased configuration model generates networks with a scale-free degree distribution
as long as the original degree sequence is scale free. Like the configuration model,
the erased configuration model is locally tree-like.

1.1.4 Rank-1 inhomogeneous random graph

Whereas the configuration model constructs a network with an exact given degree
sequence, the rank-1 inhomogeneous random graph (also called hidden-variable model)
constructs networks with soft constraints on the vertex degrees. The model starts
with n vertices, where each vertex i is equipped with a weight hi. Then, each pair
of vertices is connected independently with probability p(hi, hj). Several choices
for the function p(hi, hj) exist. For example, the Chung-Lu version of the rank-1
inhomogeneous random graph uses the connection probability [61]

p(hi, hj) = min
(hihj

µn
, 1
)

, (1.1.3)

where µ denotes the average weight. The connection probability p(h1, hj) = 1−
exp(−hihj/(µn)) has been introduced as the Norros-Reittu model [166] and the
connection probability p(hi, hj) = hihj/(µn + hihj) as the maximally random graph
or generalized random graph [174], but many other connection probabilities are
possible. It can be shown that the degree of a vertex is close to its weight for these
three connection probabilities [36, 50], which makes the original weight sequence a
soft constraint on the resulting degree sequence. Therefore, choosing the weights to
have a power-law distribution results in a random graph with a power-law degree
distribution with the same exponent.

The rank-1 inhomogeneous random graph is a locally tree-like model, as the
configuration model and the erased configuration model.

1.1.5 Preferential attachment model

Another important network model is the preferential attachment model, a dynamic
network model that can generate scale-free networks for appropriate parameter choi-
ces [4, 54]. In contrast to the random graph models described before, the preferential
attachment model is a dynamic random graph model, adding vertices step by step.
Many different versions of the preferential attachment model exist. In this thesis, we
consider a modification of [20, Model 3]. This model has parameters m and δ and
starts with two vertices, vertex 1 and 2, with m edges between them. Then, at each
step t > 2, vertex t is added with m new edges attached to it. These m edges are
paired to existing vertices one by one. The probability that the jth edge of vertex t
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attaches to vertex i < t is given by

P (jth edge of t connects to i) =


Di(t−1)+δ

2m(t−2)+(t−1)δ j = 1,
Di(t−1,j−1)+δ

2m(t−2)+(j−1)+(t−1)δ j = 2, . . . , m,
(1.1.4)

where Di(t− 1) denotes the degree of i before adding vertex t, while Di(t− 1, j− 1)
denotes the degree of vertex i after the first j− 1 edges of vertex t have been attached.

The first term in the denominator of (1.1.4) ensures that a new vertex has higher
probability of attaching to a vertex of high degree than to a vertex of low degree,
which creates power-law degrees. The parameter δ controls the degree exponent τ of
the power-law degree distribution as [107, Lemma 4.7]

τ = 3 + δ/m. (1.1.5)

Choosing δ ∈ (−m, 0) then results in a scale-free network.
The preferential attachment model may, like the configuration model, result in

a multigraph. However, whereas in the configuration model the number of edges
between two vertices may grow in n, the maximum number of edges between any pair
of vertices in the preferential attachment model is bounded by the parameter m. A
significant difference between the preferential attachment model and the previously
mentioned models is that the edges of the preferential attachment model can be
interpreted as directed edges, pointing from the younger vertex towards the older
vertex.

1.1.6 Hyperbolic random graph

The last scale-free random graph model that we describe is the hyperbolic random graph,
where vertices are connected based on their embedding in a geometric space [130].
The model samples n vertices in a disk of radius R. Each vertex i can then be described
by its angular coordinate φi ∈ [0, 2π] and its radial coordinate ri ∈ [0, R]. The density
of the radial coordinate of a vertex is given by

ρ(r) = α
sinh(αr)

cosh(αR)− 1
(1.1.6)

with α = (τ − 1)/2 > 1/2, so that τ > 2. The angular coordinate φ is sampled
uniformly from [0, 2π]. Then, two vertices are connected if their hyperbolic distance
is at most R. The hyperbolic distance between points u = (ru, φu) and v = (rv, φv) is
defined by

cosh(d(u, v)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θuv), (1.1.7)

where θuv denotes the relative angle between φu and φv. Asymptotically, this creates
a simple random graph with a power-law degree distribution with exponent τ [100].
The radius is chosen as R = 2 log(n/ν), where the parameter ν fixes the average
degree of the graph. Figure 1.3 shows an illustration of a hyperbolic random graph.

The hyperbolic random graph is able to generate simple, scale-free networks,
but in contrast to the erased configuration model and the rank-1 inhomogeneous
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Figure 1.3: An example of a hyperbolic random graph with n = 500 and τ = 2.5.
Vertices are embedded based on their radial and angular coordinates.

random graph, it is not locally tree-like. Instead, the geometric nature of the model
causes many triangles to be formed [56, 130]. Indeed, if two vertices are connected,
they must be geometrically close to one another. Therefore, two neighbors of a
vertex are also likely to be geometrically close to one another, and are likely to be
connected, creating many triangles. Furthermore, using hyperbolic geometry rather
than Euclidean geometry causes the network to be scale free. For this reason, the
hyperbolic random graph is widely used as a model for real-world networks [8, 38,
47, 89].

1.2 Network structures

In this thesis, we aim to understand several structural network properties of random
graph models described above as well as in real-world networks. We now describe
these properties in more detail.

1.2.1 Degree correlations

The most simple structure in a network is given by its edges and describes which
pairs of vertices connect to one another. Do high-degree vertices typically connect
to other high-degree vertices, or are they more likely to connect to lower-degree
vertices? One popular measure for such degree correlations is assortativity, Pearson’s
correlation coefficient of the degrees at the two ends of an edge [161]. To obtain more
detailed information about the degree correlations in a network, one can investigate
the average degree of neighbors of a vertex of degree k, denoted by a(k), and defined
as

a(k) =
1

knk
∑

i:di=k
∑

j∈Ni

dj, (1.2.1)

where nk denotes the number of vertices of degree k, and Ni denotes the set of
neighbors of vertex i. In networks without degree correlations, a(k) is independent
of k and k 7→ a(k) forms a flat curve. When a(k) decays in k, high-degree vertices
are typically connected to lower-degree vertices. On the other hand, when a(k)
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Figure 1.4: a(k) for the Youtube social network [137]

increases in k, this implies that high-degree vertices are likely to connect to other
high-degree vertices. Several real-world networks display a decaying a(k) [146, 176],
as is illustrated for the Youtube social network in Figure 1.4. This decaying curve is
often ascribed to the constraint that the network must be simple. In a simple scale-free
network, a high-degree vertex can only connect to a few other high-degree vertices,
because only few high-degree vertices exist. The remaining connections therefore
have to be to lower-degree vertices, reducing the average degree of a neighbor of a
high-degree vertex.

Degree correlations have been found to influence the behavior of various impor-
tant processes acting upon networks. For example, degree correlations influence the
behavior of an epidemic process on a network [36, 39, 222] or the robustness of a
network when a fraction of edges is removed [211].

1.2.2 Clustering

The second network property describes the relation between the neighbors of a vertex.
In many networks, two neighbors of a vertex are likely to be connected to one another
as well, so that a large number of triangles is present. The tendency for a network to
create triangles is often captured in terms of the clustering coefficient. The clustering
coefficient of a network is defined as

C =
64

∑n
i=1 di(di − 1)

, (1.2.2)

where4 denotes the number of triangles in the network. This clustering coefficient
can be interpreted as the number of pairs of neighbors that are connected themselves
divided by the total number of pairs of neighbors. However, when the degree expo-
nent satisfies τ < 3, this clustering coefficient tends to zero in the large graph limit
for any sequence of graphs, even when a large number of triangles is present [172].

Since this is an undesirable property, an alternative clustering coefficient is defined
as

Cavg =
1
n

n

∑
i=1

24i
di(di − 1)

, (1.2.3)

also called the average clustering coefficient. Here4i denotes the number of triangles
attached to vertex i. This clustering coefficient measures the average fraction of pairs
of neighbors of a vertex that connect to one another. Many random graphs with
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Figure 1.5: Clustering spectrum c(k) of three real-world networks.

τ ∈ (2, 3) exist that have a non-vanishing average clustering coefficient [49, 70, 101].
For the rank-1 inhomogeneous random graph and the erased configuration model on
the other hand, Cavg vanishes as n grows large due to the locally tree-like nature of
these models.

The average clustering coefficient gives a global picture of the presence of triangles
in a network. A more detailed picture of the triangle structures in a network can
be obtained in terms of the local clustering coefficient c(k): the probability that two
neighbors of a vertex of degree k are connected to one another. More precisely, c(k) is
defined as

c(k) =
1
nk

∑
i:di=k

24i
k(k− 1)

, (1.2.4)

where nk again denotes the number of vertices of degree k. In many real-world
networks c(k) has been observed to decay in k [131, 146, 212], as illustrated in Fig. 1.5.
This indicates for example that two random friends of a popular person are less likely
to know each other than two random friends of a less popular person. The clustering
spectrum of a network influences the spread of epidemic processes on a network,
and it contains information about its community structure, making it an essential
network property [198, 202].

1.2.3 Subgraphs

The clustering spectrum of a network describes the presence of triangles in the
networks. However, other subgraphs, such as squares or larger complete graphs
can also provide relevant structural information. Subgraphs that occur frequently
in a network are also called motifs, and are viewed as important building blocks [9,
152]. Whereas most real-world networks display high clustering, their larger building
blocks may be significantly different. For example, frequently occurring subgraphs in
the World Wide Web were found to be very different from those in food webs or gene
regulation networks [152]. Network motifs are believed to contain information about
the function of the network [152, 200]. In biological networks for example, several
motifs have been assigned a specific biological function they perform [200].

It is also possible to count induced subgraphs, where edges not present in the
subgraph are required not to be present in the network. For example, when we are
interested in counting all square induced subgraphs, we count all sets of four vertices
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that contain a square in the edges between them, but no more edges than that. On the
other hand, when we count all square subgraphs, we count all squares, but also all
complete graphs of size four, since they also contain a square. Frequently occurring
induced subgraphs in networks are sometimes called graphlets.

1.2.4 Community structures

The final network property we discuss describes larger network subgraphs. Many
real-world networks contain communities: groups of densely connected vertices [92].
These community structures have been observed in many different types of networks.
In social networks for example, communities can be thought of as groups of friends,
but in other types of networks, such as collaboration networks, biological networks
and technological networks, community structures have also been observed [80, 92].
The presence of communities is related to the presence of clustering and motifs. For
example, we may expect a group of friends to consist of many triangles or larger
complete graphs. Thus, many dense motifs are expected to be present in networks
with a community structure. The major difference between motifs and community
structures lies in the scale of the subgraphs that are considered. Motifs are usually
assumed to be of fixed size, while the graph is large. Thus, motifs describe the
presence of microscopic structures in the network. Communities on the other hand,
often occur on a mesoscopic scale: a network of n vertices may contain communities
of size nα for some α ∈ (0, 1) [80, 181] so that community sizes grow in the network
size n.

1.3 Bond percolation

One of the goals of studying structural network properties is to find out how they
influence processes acting upon these networks. For example, we would like to know
how the presence of non-trivial clustering influences the spread of a message on a
social network, or how the presence of hubs influences the spreading of computer
viruses on computer networks. Many models for processes taking place on networks
have been defined, for example aiming to model epidemic spreading, synchroniza-
tion phenomena, traffic congestion or searching on networks (see [18, 163] for an
overview).

In this thesis, we analyze the process of bond percolation, a simple model for a pro-
cess acting on a network, where every edge of the network is deleted independently
with probability 1− p. This models a situation where each edge of the network is
subject to a random failure with probability 1− p. By investigating the effect of this
edge-removal process on the structure of the network, we measure the robustness of
a network to random failures.

One of the simplest measures of robustness is the fraction of vertices in the largest
connected component of the network after the edge deletions. The configuration
model and the rank-1 inhomogeneous random graph undergo a phase transition
under bond percolation when τ > 3. When p is larger than some value pc > 0, the
largest component of the network remains a positive fraction of the total number
of vertices in the large-network limit. Thus, a large part of the network remains
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Figure 1.6: Illustration of the behavior of the fraction of vertices in the largest con-
nected component S under bond percolation with probability p in the configuration
model.

(a) subcritical (b) critical (c) supercritical

Figure 1.7: Illustration of the subcritical, critical and supercritical components of a
configuration model with τ > 3 under percolation.

connected after the random failures. This regime is also called the supercritical
regime. When p < pc on the other hand, the fraction of vertices in the largest
component tends to zero in the large-network limit, so that the network has broken
down into many small pieces. This regime is also called the subcritical regime.

For p ≈ pc, the behavior of the percolated network is often substantially different
from the behavior in the supercritical and the subcritical regimes. In the configuration
model and the rank-1 inhomogeneous random graph, the component sizes then scale
as nα for some α ∈ (0, 1) depending on τ in the critical regime [22, 23, 71, 72]. Thus,
the component sizes are of intermediate (or mesoscopic) size in the critical regime, as
illustrated in Figure 1.7, and grow as a function of the network size n.

On the other hand, for τ < 3 a component containing a positive fraction of vertices
exists in the configuration model and the rank-1 inhomogeneous random graph for
any p > 0 in the large-network limit [55, 117], as illustrated in Figure 1.6. Thus, in the
scale-free regime, the largest component of a configuration model never breaks down
under a random edge attack. This phenomenon has also been observed in real-world
networks with scale-free degree distributions [5, 51].
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1.4 Main results and outline

Network structures such as clustering, degree-correlations, motifs, graphlets and
community structures influence the behavior of various network processes. Therefore,
it is important to understand these network structures in random graph models, as
well as in real-world network data. This thesis addresses several questions regarding
these network structures, which we categorize below in three parts.

1.4.1 Part 1: Clustering and correlations

The first part of this thesis considers the presence of degree correlations and clustering
in real-world networks as well as in scale-free network models, and aims to answer
the following research questions:

What is the degree-correlation structure of scale-free random graph models? (Chapter 2)
We investigate the behavior of the average nearest-neighbor degree a(k) defined
in (1.2.1) in three simple (single-edge constrained) scale-free random graph models:
the erased configuration model, the rank-1 inhomogeneous random graph and the
hyperbolic random graph. We conclude that a(k) follows a universal curve across
these three random graph models. For small values of k, a(k) remains flat, so that the
degree-degree correlations are not visible yet for small degrees. For larger degrees,
a(k) starts to decay as a power of k. This power of k as well as the point where a(k)
starts to decay is universal for all three scale-free network models, even though these
models are very different in nature. The universally decaying curves theoretically
support the claim that simple scale-free networks contain negative degree-degree
correlations.

How does the clustering vanish in locally tree-like random graph models? (Chapter 3)
The rank-1 inhomogeneous random graph is known to be locally-tree like. Therefore,
its average clustering coefficient tends to zero in the large-network limit. We deter-
mine the rate at which the average clustering coefficient decays to zero as a function
of the network size for a wide class of rank-1 inhomogeneous random graphs. Inte-
restingly, for τ close to 2, the decay is extremely slow, so that the average clustering
coefficient only starts to vanish for extremely large networks.

Can we characterize clustering in scale-free networks? (Chapters 4, 5 and 6)
We first show in Chapter 4 that several real-world scale-free networks display similar
clustering spectra k 7→ c(k). We then show that the clustering spectrum of the rank-1
inhomogeneous random graph (in Chapter 4) as well as the erased configuration
model and the uniform random graph (in Chapter 5) are similar in shape to those
of the real-world network data, apart from the fact that c(k) vanishes for small k
which is often not the case for real-world networks. We then generalize our method
to analyze the clustering spectrum of several other scale-free random graph models
in Chapter 6, including the hyperbolic random graph and the preferential attachment
model. While the method to analyze clustering in these models is universal, the shape
of the clustering spectrum crucially depends on the specifics of the random graph
model.
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1.4.2 Part 2: Network subgraphs

The second part of this thesis studies the presence of larger network patterns in the
form of subgraphs (also called motifs and graphlets) in random graph models and
real-world networks. We consider the rank-1 inhomogeneous random graph and the
erased configuration model as well as real-world networks, and aim to answer the
following questions:

What is the subgraph structure of scale-free random graphs and real-world networks? (Chap-
ters 7-9)
We analyze the subgraph structure of the erased configuration model (Chapter 7), the
rank-1 inhomogeneous random graph (Chapter 8) and the preferential attachment mo-
del (Chapter 9). We obtain asymptotic (induced) subgraph counts for all subgraphs.
We further identify the degrees of the vertices where a specific (induced) subgraph
is most likely to be present, by introducing a variational principle. This variational
principle resolves the trade-off between the high connectivity of high-degree vertices
and their rareness. Interestingly, the variational principle shows that most subgraphs
in these random graph models are concentrated on vertices with degrees in very
specific ranges. We later show in Chapter 8 that the ordering from the most fre-
quently occurring subgraph to the least frequently occurring subgraph in the erased
configuration model and the rank-1 inhomogeneous random graph shows strong
resemblance with those in several real-world networks.

How do the fluctuations of subgraph counts behave? (Chapter 8)
We investigate the fluctuations in subgraph counts across different samples of rank-1
inhomogeneous random graphs. Interestingly, some subgraph counts turn out to
be self-averaging, i.e., the variance of the subgraph counts is small compared to its
second moment. This means that one large network sample suffices to investigate
the typical number of such subgraphs in random graph models. When considering
the random graph model as a null model for a real-world network, this also allows
one to compare subgraph counts in model and reality in a more effective way. Other
subgraphs are non-self-averaging, showing wild fluctuations of subgraph counts
between different samples of inhomogeneous random graphs.

Can we efficiently find an induced subgraph in a large scale-free network? (Chapter 10)
We first propose an algorithm that finds a small induced subgraph of a rank-1 in-
homogeneous random graph in linear time. The algorithm exploits the subgraph
structure of the rank-1 inhomogeneous random graph by only looking for subgraphs
on vertices of a specific degree-range. We then show that this algorithm may also find
subgraphs of real-world scale-free networks efficiently when the algorithm searches
for subgraphs on vertices of degrees within some network-dependent degree-range.

1.4.3 Part 3: Community structures

The third part of this thesis considers networks with a mesoscopic community struc-
ture, and aims to answer the following questions:
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(a) a network with 3 com-
munities

(b) the HCM with three
communities as input

(c) the corresponding con-
figuration model

Figure 1.8: Illustration of the HCM. The half-edges in (b) and (c) are connected
randomly.

How can we model networks with general community structures? (Chapter 11)
We introduce a random graph model that is able to incorporate a general community
structure, which we call the hierarchical configuration model (HCM), illustrated in
Figure 1.8. Where the configuration model is able to investigate the influence of the
degree sequence on network properties, the HCM enables us to study the influence of
community structures on network properties. The HCM behaves as a configuration
model on the community level, making the model mathematically tractable.

What do real-world communities look like? (Chapter 12)
We investigate real-world networks through the lens of the HCM model, which re-
veals several interesting previously unobserved insights in the community structure
of real-world networks. We find that there is a power-law relation between the com-
munity sizes and their densities. We observe a second power-law relation between
the community sizes and the number of edges leaving a community. We show that
for densely connected communities, a power-law shift is present. When the degree
distribution follows a power-law with exponent τ, the community sizes follow a
power-law with degree exponent τ − 1.

How do communities affect epidemic processes? (Chapters 11, 13 and 14)
We first focus on the behavior of the HCM under bond percolation. By comparing
HCM under bond percolation to the behavior of bond percolation on a configuration
model with the same degree sequence, we find how community structures affect
bond percolation. In Chapter 11 we show that the HCM undergoes a similar phase
transition under percolation as the configuration model. Furthermore, compared
to a configuration model with the same degrees, community structures may either
increase, or decrease the critical percolation probability pc, depending on the exact
community shapes. We then focus on the critical regime, where the network is at the
point of breaking down, in Chapter 14. We show that the community structure does
not significantly affect the component sizes at criticality as long as the communities
are smaller than n2/3. We then investigate numerically the behavior of several other
epidemic processes on the HCM in Chapter 13, using real-world community struc-
tures as input for the HCM model. Interestingly, some community structures speed
up the spread of an epidemic, but other community structures slow it down. This
illustrates the importance of using community structures in network models.
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Summary. In this thesis, we analyze degree correlations, local clustering and the
presence of subgraphs in several random graph models. We compare the behavior of
these properties with those on real-world network data. We further introduce a new
random graph model to include mesoscopic community sizes, and investigate the
effect of these community structures on several network properties.



Part I

Clustering and correlations
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2 Degree-degree correlations

Based on:
Degree-degree correlations in scale-free network models

C. Stegehuis, arXiv:1709.01085

In this chapter, we study the average nearest-neighbor degree a(k) of vertices
with degree k. In many real-world networks with power-law degree distribution a(k)
falls off in k, a property ascribed to the constraint that any two vertices are connected
by at most one edge. We show that a(k) indeed decays in k in three simple random
graph models with power-law degrees: the erased configuration model, the rank-1
inhomogeneous random graph and the hyperbolic random graph. We find that for all
three random graph models a(k) starts to decay beyond n(τ−2)/(τ−1) and then settles
on a power law a(k) ∼ kτ−3 in the large-network limit, with τ the degree exponent.

2.1 Introduction

There exists a vast array of papers, empirical, non-rigorous and rigorous, on the
function k 7→ a(k) [16, 17, 35, 36, 57, 148, 175, 176, 210, 226] which describes the
correlation between the degrees on the two sides of an edge. This classifies the
network into one of the following three categories [160]. When a(k) increases with
k, the network is said to be assortative: vertices with high degrees mostly connect to
other vertices with high degrees. When a(k) decreases in k, the network is said to
be disassortative. Then high-degree vertices typically connect to low-degree vertices.
When a(k) forms a flat curve in k, the network is said to be uncorrelated. In this case,
the degrees on the two different sides of an edge can be viewed as independent of each
other, a desirable property when studying the mathematical properties of networks.
But the fact is that the majority of real-world networks with power-law degrees and
unbounded degree fluctuations (τ ∈ (2, 3)) show a clear decay of a(k) as k grows
large [146, 176], as illustrated in Figure 1.4. Hence, scale-free networks are inherently
disassortative, and large-degree vertices (hubs) are predominantly connected to small-
degree vertices. In complex network theory, such a well-established empirical fact
then asks for a theoretical explanation. Typically, this explanation comes in the form
of a null model that matches the degree distribution and has the empirical observation
as a property, in this case disassortivity, or more specifically, the essential features of
the curve k 7→ a(k).

The configuration model generates random networks with any prescribed degree
distribution, but only results in uncorrelated networks when including self-loops and
multiple edges. Hence, the configuration model can never explain the a(k) fall-off.

17
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We therefore resort to different null models that, contrary to the configuration model,
generate random networks without self-loops and multiple edges. The resulting
simple random networks are therefore prone to the structural correlations that come
with the presence of hubs. We study a(k) for three widely used random graph
models: the erased configuration model, the rank-1 inhomogeneous random graph
(also called hidden-variable model) and the hyperbolic random graph. We show
that these models display universal a(k)-behavior: For k sufficiently small, a(k) is
independent of k. Thus, in simple scale-free networks, neighbors of small-degree
vertices are similar. We then identify the value of k for which a(k) starts decaying.
An intuitive explanation for the a(k) fall-off is that in simple networks, high-degree
vertices have so many neighbors that they must reach out to lower-degree vertices,
because networks typically only contain a small amount of high-degree vertices. This
causes the average degree of a neighbor of a high-degree vertex to be smaller. Thus,
single-edge constraints may cause the decay of a(k).

According to several studies the degree-degree correlation measure a(k) can
largely explain the fall-off of the clustering spectrum k 7→ c(k) [35, 57, 198]. In this
chapter, we provide support for this statement, by identifying an explicit relation
between a(k) and c(k) for large k. But the main goal of this chapter is to explain the
full spectrum k 7→ a(k) for all k, and to provide theoretical underpinning for the
widely observed a(k) fall-off.

2.2 Main results

We first define the average nearest-neighbor degree a(k, G) of a graph G in more
detail. Let (Di)i∈[n] be the degree sequence of the graph, where [n] = {1, . . . , n}.
Furthermore, let Nk denote the total number of degree k vertices in the graph, and Ni
denote the neighborhood of vertex i. The average nearest-neighbor degree of graph
G is then defined as

a(k, G) =
1

kNk
∑

i:Di=k
∑

j∈Ni

Dj. (2.2.1)

It is possible that no vertex of degree k exists in the graph. We therefore analyze

aε(k, G) =
1

k|Mε(k)| ∑
i∈Mε(k)

∑
j∈Ni

Dj, (2.2.2)

where Mε(k) = {i ∈ [n] : Di ∈ [k(1− ε), k(1 + ε)]}. When no vertex in Mε(k) exists,
we set aε(k, G) = 0. We will show that in the models we analyze, Mε(k) is non-empty
with high probability, so that aε(k, G) is well defined. Note that a(k, G) = a0(k, G).
We now analyze aε(k, G), first for the erased configuration model in Subsection 2.2.1
and then for the rank-1 inhomogeneous random graph and the hyperbolic random
graph in Sections 2.2.3 and 2.2.4.

2.2.1 The erased configuration model

We first investigate a(k, G) for the erased configuration model defined in Section 1.1.3.
In particular, we take the original degree sequence (D1, · · · , Dn) to be an i.i.d. sample
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from the distribution

P (D = k) = ck−τ , when k→ ∞, (2.2.3)

where τ ∈ (2, 3) so that E[D2] = ∞. We denote E [D] = µ. When this sample
constructs a degree sequence such that the sum of the degrees is odd, we add an extra
half-edge to the last vertex. This does not affect our computations. We denote the
actual degree sequence of the graph after merging the multiple edges and self-loops
by (D(er))i∈[n], and we call these the resulting degrees.

Stable random variables. The limit theorem of a(k, Gn) for the erased configuration
model contains stable random variables. Stable random variables can be parametrized
by four parameters, and are usually denoted by Sα(σ, β, µ) (see for example [217,
Chapter 4]). Throughout this chapter, we will only use stable distributions with
σ = 1, β = 1, µ = 0 and we denote Sα = Sα(1, 1, 0) to ease notation. The probability
density functions of general stable random variables cannot be written analytically in
general. The characteristic function of Sα can be written as [217, Chapter 4]

log
(

E
[
eitSα

])
=

{
|t|α(1− i sign θ) tan

(
πα
2
)

α 6= 1
|t|(1 + 2i

π sign θ) log (|θ|) α = 1.
(2.2.4)

We now state the main result for the erased configuration model:

Theorem 2.1 (aεn(k, Gn) in the erased configuration model). Let (Gn)n≥1 be a sequence
of erased configuration models on n vertices, where the degrees are an i.i.d. sample from (2.2.3).
Take εn such that limn→∞ εn = 0 and limn→∞ nk−(τ−1)εn = ∞ and let Γ denote the Gamma
function.

(i) For 1� k� n(τ−2)/(τ−1),

aεn(k, Gn)

n(3−τ)/(τ−1)
d−→ 1

µ

(
2cΓ( 5

2 − 1
2 τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2,

(2.2.5)
where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k� n1/(τ−1),

aεn(k, Gn)

n3−τkτ−3
P−→ −cµ2−τΓ(2− τ). (2.2.6)

Remark 2.1. The convergence in (2.2.5) also holds jointly in k and n, so that for fixed
m ≥ 1 and 1 ≤ k1 < k2 < · · · < km � n(τ−2)/(τ−1),

(aεn(ki, Gn))i∈[m]

n(3−τ)/(τ−1)
d−→ 1

µ

(
2cΓ( 5

2 − 1
2 τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/21,

(2.2.7)
where 1 ∈ Rm is a vector with m entries equal to 1.
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k

a(k)

n
τ−2
τ−1

I II

Figure 2.1: Illustration of the behavior of aεn(k, Gn) in the erased configuration model

Figure 2.1 illustrates the behavior of aεn(k, Gn). First, it stays flat and does not
depend on k. After that, aεn(k, Gn) starts decreasing in k, which shows that the
erased configuration model indeed is a disassortative random graph. Theorem 2.1
shows that n(τ−2)/(τ−1) serves as a threshold. Thus, the negative degree-degree
correlations due to the single-edge constraint only affect vertices of degrees at least
n(τ−2)/(τ−1). This can be understood as follows. In the erased configuration model
the maximum contribution to aεn(k, G) (see Propositions 2.1 and 2.2) comes from
vertices with degrees proportional to n/k. The maximal degree in an observation of
n i.i.d. power-law distributed samples is proportional to n1/(τ−1) w.h.p. Therefore, if
k � n(τ−2)/(τ−1), such vertices with degree proportional to n/k do not exist w.h.p.
This explains the two regimes.

For k small, aεn(k, Gn) converges to a stable random variable, as was also shown
in [226] for k fixed. Thus, for k small, different instances of the erased configuration
model show wild fluctuations. The joint convergence in k explained in Remark 2.1
shows that a(k, Gn) still forms a flat curve in k for one realization of an erased
configuration model when k is small. In contrast, aεn(k, Gn) converges to a constant
for large k-values, so that different realizations of erased configuration models result
in similar aεn(k, Gn)-values for k large.

2.2.2 Sketch of the proof

We now give a heuristic proof of Theorem 2.1. Conditionally on the degrees, the
probability that vertices with degrees Di and Dj are connected in the erased confi-
guration model can be approximated by [108] 1− exp(−DiDj/µn). Let v ∈ Mεn(k),
and let Xiv denote the indicator that vertex i is connected to v. The expected degree
of a neighbor of v can then be approximated by

aεn(k, Gn) ≈ k−1 ∑
i∈[n]

DiP (Xiv = 1) ≈ k−1 ∑
i∈[n]

Di(1− e−Dik/(µn)). (2.2.8)

The maximum degree in an i.i.d. sample from (2.2.3) scales as n1/(τ−1) w.h.p.. Thus,
as long as k� n(τ−2)/(τ−1), we can Taylor expand the exponential so that

aεn(k, Gn) ≈
1

µn ∑
i∈[n]

D2
i . (2.2.9)
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Because (Di)i∈[n] are samples from a power-law distribution with infinite second
moment, the Stable Law Central Limit Theorem gives Theorem 2.1(i).

When k� n(τ−2)/(τ−1), we approximate the sum in (2.2.8) by the integral

aεn(k, Gn) ≈ cnk−1
∫ ∞

1
x1−τ(1− e−xk/(µn))dx

= cµ2−τ
(n

k

)3−τ ∫ ∞

k/(µn)
y1−τ(1− e−y)dy, (2.2.10)

using the degree distribution (2.2.3) and the change of variables y = xk/(µn). When
k� n, we can approximate this by

aεn(k, Gn) ≈ cµ2−τ
(n

k

)3−τ ∫ ∞

0
y1−τ(1− e−y)dy = −cµ2−τ

(n
k

)3−τ
Γ(2− τ).

The proof of Theorem 2.1(ii) then consists of showing that the above approximations
are indeed valid. We prove Theorem 2.1 in detail in Sections 2.3.2 and 2.3.3.

2.2.3 Rank-1 inhomogeneous random graphs

We now turn to the rank-1 inhomogeneous random graph, defined in Section 1.1.4,
which constructs simple graphs with soft constraints on the degree sequence. We
take the weight sequence of the rank-1 inhomogeneous random graph to be an i.i.d.
sample from the power-law distribution (2.2.3). We denote the average value of the
weights by µ. For the probability that vertices with weights h and h′ connect, we take

p(h, h′) = min
(
hh′/(µn), 1

)
, (2.2.11)

which is the Chung-Lu version of the rank-1 inhomogeneous random graph [61].
This connection probability ensures that the degree of a vertex with weight h is close
to h [35]. We show the following result:

Theorem 2.2 (aεn(k, Gn) in the rank-1 inhomogeneous random graph). Let (Gn)n≥1
be a sequence of rank-1 inhomogeneous random graphs on n vertices, where the weights are an
i.i.d. sample from (2.2.3). Take εn such that limn→∞ εn = 0 and limn→∞ n−1/(τ−1)kεn = ∞
and let Γ denote the Gamma function.

(i) For 1� k� n(τ−2)/(τ−1),

aεn(k, Gn)

n(3−τ)/(τ−1)
d−→ 1

µ

(
2cΓ( 5

2 − 1
2 τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2,

(2.2.12)
where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k� n1/(τ−1),

aεn(k, Gn)

n3−τkτ−3
P−→ cµ2−τ

(3− τ)(τ − 2)
. (2.2.13)
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Theorem 2.2 is almost identical to Theorem 2.1. The proof of Theorem 2.2 exploits
the deep connection between both models, and essentially carries over the results for
the erased configuration model to the rank-1 inhomogeneous random graph. The
similarity can be understood by noticing that in the erased configuration model the
probability that vertices i and j with degrees Di and Dj are connected can be approxi-
mated by 1− exp(−DiDj/(µn)) which is close to min(1, DiDj/(µn)), the connection
probability in the rank-1 inhomogeneous random graph. Similar arguments that lead
to (2.2.8) show that aεn(k, Gn) can be approximated by

aεn(k, Gn) ≈ k−1 ∑
i∈[n]

hi min(hik/µn, 1). (2.2.14)

This sum behaves very similarly to the sum in (2.2.8), so that the only difference
between Theorems 2.1 and 2.2 hides in the limiting constants in (2.2.6) and (2.2.13).
The main difference between both models is that in the rank-1 inhomogeneous
random graph the presence of all edges is independent as soon as the weights are
sampled. This is not true in the erased configuration model, because we know that
a vertex with sampled degree Di cannot have more than Di neighbors, creating
dependence between the presence of edges incident to vertex i. We show that these
correlations between the presence of different edges in the erased configuration model
are small enough for aεn(k, Gn) to behave similarly in the erased configuration model
and the rank-1 inhomogeneous random graph.

2.2.4 Hyperbolic random graphs

The third random graph model we consider is the hyperbolic random graph, defined
in Section 1.1.6. The hyperbolic random graph creates simple sparse random graphs
with power-law degrees, but in contrast to the erased configuration model and the
rank-1 inhomogeneous random graph, creates many triangles at the same time due
to its geometric nature [56, 130]. In both the rank-1 inhomogeneous random graph
and the erased configuration model, the connection probabilities of different pairs
of vertices are (almost) independent. In the hyperbolic random graph, this is not
true. When u is connected to both v and w, then v and w should also be close to one
another by the triangle inequality. However, if we define the type of a vertex as

t(u) = e(R−ru)/2 (2.2.15)

then we show that we can approximate the probability that vertices u and v are
connected as

P (Xuv = 1 | t(u), t(v)) =

{
2
π sin−1(νt(u)t(v)/n) νt(u)t(v)/n < 1,
1 νt(u)t(v)/n ≥ 1,

(2.2.16)

which behaves similarly as the connection probability in the rank-1 inhomogeneous
random graph. Furthermore, by [33, Lemma 1.3], the density of 2 ln(t(u)) can be
written as

f2 ln(t(u))(x) = τ−1
2 e−(τ−1)x/2(1 + o(1)), (2.2.17)
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where the o(1) term is with respect to the network size n. Therefore,

P (t(u) > x) = P (2 ln(t(u)) > 2 ln(x)) = x−τ+1(1 + o(1)), (2.2.18)

so that on a high level the hyperbolic random graph can be interpreted as a rank-1
inhomogeneous random graph with (t(u))u∈[n] as weights (see [33, Section 1.1.1] for
a more elaborate discussion).

The next theorem shows that indeed the behavior of aεn(k, Gn) in the hyperbolic
random graph is similar as in the rank-1 inhomogeneous random graph:

Theorem 2.3 (aεn(k, Gn) in the hyperbolic random graph). Let (Gn)n≥1 be a sequence
of hyperbolic random graphs on n vertices with power-law degrees with exponent τ and
parameter ν. Take εn such that limn→∞ εn = 0 and limn→∞ nk−(τ−1)εn = ∞ and let Γ
denote the Gamma function.

(i) For 1� k� n(τ−2)/(τ−1),

aεn(k, Gn)

n(3−τ)/(τ−1)
d−→ 2ν

π

(
2

3− τ
Γ( 5

2 − 1
2 τ) cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2,

(2.2.19)
where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k� n1/(τ−1),

aεn(k, Gn)

n3−τkτ−3
P−→ (τ − 1)ν

√
πΓ( 3

2 − τ
2 )

2(τ − 2)Γ(2− τ
2 )

(
2(τ − 1)
π(τ − 2)

)3−τ

. (2.2.20)

2.2.5 Discussion

Universality. The behavior of aεn(k, Gn) is universal across the three null models
we consider. The erased configuration model and the rank-1 inhomogeneous random
graph are closely related. They are known to behave similarly for example under
critical percolation [24, 26], in terms of distances [78] when τ > 3, and in terms of
clustering when τ ∈ (2, 3) (see Chapters 4 and 5). The hyperbolic random graph
typically shows different behavior, for example in terms of clustering [56, 101], or
connectivity [33, 34]. Still, the behavior of aεn(k, Gn) is similar in the hyperbolic
random graph and the other two null models. In all three null models, the main
contribution for k� n(τ−2)/(τ−1) comes from vertices with degrees proportional to
n/k (see Propositions 2.1 and 2.2). In the hyperbolic random graph, we can relate
this maximum contribution to the geometry of the hyperbolic sphere. A vertex i of
degree k has radius ri ≈ R− 2 log(k). Similarly, a vertex j of degree n/(νk) has radius
rj ≈ R− 2 log(n/(kν)) = 2 log(k). Then, rj ≈ R− ri, so that the major contributing
vertices have radial coordinate proportional to R− ri.

Expected average nearest-neighbor degree. In Theorems 2.1-2.3 we show that
aεn(k, Gn) converges in probability to a stable random variable when k is small. Thus,
when we generate many samples of random graphs, for fixed k, the distribution of
the values of aεn(k, Gn) across the different samples will look like a stable random
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Figure 2.2: a(k, Gn) for different random graph models with n = 106. The solid line is
the median of a(k, Gn) over 104 realizations of the random graph, and the dashed line
is the average over these realizations. The dotted line is the asymptotic slope kτ−3.

variable. We can also study the expected value of a(k, Gn) across the different samples.
For the erased configuration model for example, we can show that (see Section 2.3.4)

lim
n→∞

E [a(k, Gn)]

(n/k)3−τ
= −cµ2−τΓ(2− τ). (2.2.21)

The difference between the scaling of the expected value of a(k, Gn) and the typical
behavior of a(k, Gn) in Theorem 2.1(i) is caused by high-degree vertices. In typical
degree sequences, the maximum degree is proportional to n1/(τ−1). It is unlikely that
vertices with higher degrees are present, but if they are, they have a high impact
on the average nearest-neighbor degree of low degree vertices, causing the diffe-
rence between the expected average nearest-neighbor degree and the typical average
nearest-neighbor degree. Thus, the expected value of a(k, Gn) is not very informative
when k is small, since Theorem 2.1 shows that a(k, Gn) will almost always be smaller
than its expected value when k is small.

Figure 2.2 illustrates this difference in terms of the mean and median value
of a(k, Gn) over many realizations of the erased configuration model, the rank-1
inhomogeneous random graph and the hyperbolic random graph. Here indeed we
see that the expected average neighbor degree scales as a power of k over the entire
range of k, where the median shows the straight part of the curve from Theorem 2.1.
Thus, it is important to distinguish between mean and median of a(k, Gn) when
simulating random graphs.

Vertices of degree k. Definition (2.2.1) assumes that a vertex of degree k is present.
For large values of k, this is a rare event, by (2.2.3). Indeed, vertices of degree at most
n1/τ are present with high probability in the erased configuration model, whereas
the probability that a vertex of degree k� n1/τ is present tends to zero in the large
network limit [226]. We avoid this problem by averaging a(k, Gn) over a small range
of degrees. Another option is to condition on the event that a vertex of degree k
is present. Our proofs for k � n(τ−2)/(τ−1) for the erased configuration model can
easily be adjusted to condition on this event. For k larger, we leave the behavior of
a(k, Gn) conditionally on a vertex of degree k being present open for further research.
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Fixed degrees. In the proof of Theorem 2.1 we show that for small k, the fluctuations
that come with the stable laws are not present when we condition on the degree se-
quence. Thus, the large fluctuations in aεn(k, Gn) for small k are caused by fluctuations
of the i.i.d. degrees, weights or radii. For a given real-world network, its degrees are
often preserved, and many erased configuration models or inhomogeneous random
graphs with the same observed degree sequence are created. In this fixed-degree
setting, the sample-to-sample fluctuations of aεn(k, Gn) are relatively small.

Relation with local clustering. The local clustering coefficient c(k) of vertices of
degree k measures the probability that two randomly chosen neighbors af a randomly
chosen vertex of degree k are connected. Chapters 4-6 show that in many real-
world networks as well as simple null models, c(k) decreases as a function of k.
The relation between the decay rate of c(k) and the decay rate of a(k) has been
investigated for the rank-1 inhomogeneous random graph, where it was shown that
c(k) < a(k)/k [198]. Using our results for c(k) on the erased configuration model and
the rank-1 inhomogeneous random graph that are presented in Chapters 4 and 5, we
can make the relation between c(k) and a(k) more precise. In Chapter 5 we show that
when k� √n, c(k) in the erased configuration model satisfies

c(k) = c2Γ(2− τ)2µ3−2τn5−2τk2τ−6(1 + oP(1)). (2.2.22)

Then, by Theorem 2.1, when k� √n,

c(k) =
a2(k)

µn
(1 + oP(1)). (2.2.23)

Intuitively, we can see this relationship in the following way. Pick two neighbors of a
vertex with degree k. By definition, these vertices have degree a(k) on average. Since
k� √n, by Theorem 2.2 a(k)� √n. Therefore, the probability of two vertices with
weight a(k) to be connected is approximately 1− exp(−a(k)2/µn) ≈ a(k)2/µn. Since
the clustering coefficient can be interpreted as the probability that two randomly
chosen neighbors are connected, the clustering coefficient should satisfy c(k) ≈
a(k)2/µn when k� √n. In particular, the decay of the clustering coefficient should
be twice as fast as the decay of the average neighbor degree. Analytical results on
c(k) on the rank-1 inhomogeneous random graph (see Chapter 4) show that (2.2.23)
is also the correct relation between clustering and degree correlations in the rank-1
inhomogeneous random graph. In Chapter 6 we show that the difference between
expectation and typical behavior that is present in a(k) also occurs for the local
clustering coefficient c(k).

Correlations in the hyperbolic random graph. The relation in (2.2.23) is based
on the fact that in the erased configuration model and the rank-1 inhomogeneous
random graph the connection probabilities of pairs of vertices (i, j), (i, k) and (j, k)
are (almost) independent. In the hyperbolic random graph, the geometry causes a
strong dependence between these connection probabilities. If vertices j and k are
neighbors of i, then they are likely to be geometrically close to one another due to
the triangle inequality. This makes the probability that j and k are connected larger
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k

a(k)a(k)

Figure 2.3: The neighbors of a vertex of degree k have average degree a(k)

than in the rank-1 inhomogeneous random graph or the erased configuration model.
These correlations do not play a role when computing a(k, Gn), since it only involves
the connection probability of two different vertices. When computing statistics of
the hyperbolic random graph that include three-point correlations, the equivalence
between the hyperbolic random graph and the rank-1 inhomogeneous random graph
may fail to hold, as in the example of c(k).

Interestingly, the number of large cliques was shown to be similar in the hy-
perbolic random graph, the rank-1 inhomogeneous random graph and the erased
configuration model [85], even though cliques clearly involve three-point correlations.
Large cliques in the hyperbolic random graph are typically formed between vertices
at radius proportional to R/2 [85], so that their degrees are proportional to

√
n [33].

These vertices form a dense core, which is very similar to what happens in the erased
configuration model and the rank-1 inhomogeneous random graph [118]. In the
erased configuration model, many other small subgraphs typically occur between
vertices of degrees proportional to

√
n (see Chapter 7). It would be interesting to see

whether the number of these small subgraphs behaves similarly in the hyperbolic
random graph.

2.3 Average nearest-neighbor degree in the ECM

In this section, we prove Theorem 2.1. For k� n(τ−2)/(τ−1), we couple the degrees of
neighbors of a uniformly chosen vertex of degree k to i.i.d. samples of the size-biased
degree distribution in Section 2.3.2. When k� n(τ−2)/(τ−1), this coupling is no longer
valid. We then show in Section 2.3.3 that a specific range of degrees contributes most
to aεn(k, Gn).

2.3.1 Preliminaries

We say that Xn = OP (bn) for a sequence of random variables (Xn)n≥1 if |Xn|/bn is a

tight sequence of random variables, and Xn = oP(bn) if Xn/bn
P−→ 0. Let Ln denote

the total number of half-edges, so that Ln = ∑i Di. We define the events

Jn = {|Ln − µn| ≤ n2/τ}, An = {|Mεn(k)| ≥ 1}. (2.3.1)

By [111, Lemma 2.3], P (Jn)→ 1 as n→ ∞. By [50, Theorem 2.1]

E [|Mεn(k)|] = cn
∫ k(1+εn)

k(1−εn)
x−τdx(1 + o(1)) = C̃n−1k1−τεn(1 + o(1)), (2.3.2)
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for some C̃ > 0, so that P (An) → 1 for k � n1/(τ−1) by the choice of εn in Theo-
rem 2.1.

We will often condition on the degree sequence. For some event E , we use the
notation Pn(E) = Pn(E | (Di)i∈[n]), and we define En and Varn similarly. We often
want to interchange the sampled degree of a vertex i, Di and its resulting degree D(er)

i .
The next lemma shows that Di and D(er)

i are close:

Lemma 2.1. Let G be an erased configuration model where the degrees are i.i.d. samples from
a power-law distribution with τ ∈ (2, 3). Then, for Di = o(n),

D(er)
i = Di(1 + oP(1)). (2.3.3)

Proof. By [108, Eq. (4.9)]

Pn
(
Xij = 0

)
≤

Di−1

∏
s=0

(
1− Di

Ln − 2Di − 1

)
+

D2
i Dj

(Ln − 2Di)2 ≤ e−Di Dj/Ln +
D2

i Dj

(Ln − 2Di)2 .

Let ψ(x) = x− 1 + e−x. The expected number of erased edges at vertex i satisfies

En

[
Di − D(er)

i

]
= Di − ∑

j∈[n]
(1−Pn

(
Xij = 0

)
)

≤ ∑
j∈[n]

(DiDj

Ln
− 1 + e−Di Dj/Ln − D2

i Dj

(Ln − 2Di)2

)

= ∑
j∈[n]

ψ

(DiDj

Ln

)
+ O

(
D2

i /Ln

)
= ∑

j∈[n]
ψ

(DiDj

µn

)
(1 + oP(1)) + OP

(
D2

i /n
)

. (2.3.4)

By [112, Theorem 3(ii)], for D distributed as in (2.2.3), E [ψ(D/t)] = O(t−(τ−1)) so
that

E
[
ψ(DiDj/(µn)) | Di

]
= O(Dτ−1

i n1−τ). (2.3.5)

This shows that ∑n
j=1 ψ(DiDj/Ln) = OP(Dτ−1

i n2−τ) and therefore.

En

[
Di − D(er)

i

]
= OP

(
n−τ+2Dτ−1

i

)
+ OP

(
D2

i /n
)

. (2.3.6)

Thus, we obtain using the Markov inequality

Pn

(
Di − D(er)

i > εDi

)
≤ OP

(
ε−1 (Di/n)τ−2

)
+ OP

(
ε−1Di/n

)
, (2.3.7)

so that for Di = o(n), D(er)
i = Di(1 + oP(1)).
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2.3.2 Small k: coupling to i.i.d. random variables

In this section we investigate the behavior of aεn(k, Gn) when k = o(n(τ−2)/(τ−1)).
We first pick a random vertex v ∈ Mεn(k). We couple the degrees of the neighbors of
v to i.i.d. copies of the size-biased degree distribution D∗n, where

Pn (D∗n = j) =
j

Ln
∑

i∈[n]
1{Di=j}. (2.3.8)

We then use this coupling to compute aεn(k, Gn).

Proof of Theorem 2.1(i). We first condition on the degree sequence (Di)i∈[n]. Further-
more, we condition on the event Jn and An defined in (2.3.1), since P (Jn ∩ An)→ 1.
Let v be a vertex of degree d. In the configuration model, neighbors of v are con-
structed by pairing the half-edges of v uniformly to other half-edges. The distribution
of the degree of a vertex attached to a uniformly chosen half-edge is given by D∗n.
However, the degrees of the neighbors of v in the erased configuration model are
not an i.i.d. sample of D∗n due to the fact that the half-edges should attach to distinct
vertices that are different from v. We now show that we can still approximate the
degrees of the neighbors of v by an i.i.d. sample of D∗n using a coupling argument.
Denote the neighbors of v by (vi)i∈[d] and their degrees by B1, . . . , Bd. Let Y1, . . . , Yd be
i.i.d. samples of D∗n. These samples can be obtained by sampling uniform half-edges
with replacement and setting Yi = Dv′i

, where v′i denotes the vertex incident to the
ith drawn half-edge. We use a similar coupling as in [21, Construction 4.2] to couple
Bi to Yi. Let (v′i)i∈[d] denote vertices attached to d uniformly chosen half-edges (with
replacement) and set Yi = Dv′i

for i ∈ [d] and V0 = v. Then for i ∈ [d] the coupling is
defined in the following way:

• If v′i /∈ Vi−1, then Bi = Yi and vi = v′i. Set Vi = Vi−1 ∪ v′i. We say that Bi and Yi
are successfully coupled.

• If v′i ∈ Vi−1, we redraw a uniformly chosen half-edge from the set of half-edges
not incident to Vi−1. Let vi denote the vertex incident to the chosen half-edge.
Set Bi = Dvi and Vi = Vi−1 ∪ vi. We then say that Bi and Yi are miscoupled.

Thus, informally, at every step we sample a uniformly chosen half-edge from all
half-edges, and select the vertex incident to it. If this vertex is different from all
previously selected vertices and unequal to v, we declare the vertex to be a neighbor
of v. In this case, we have successfully coupled this neighbor of v to an i.i.d. sample of
D∗n. If not, we need to redraw the selected half-edge to ensure that all neighbors of v
are distinct and unequal to v. In this case the neighbor of v and the i.i.d. sample of D∗n
are miscoupled. We now show that the coupling is successful with high probability.
By [21, Lemma 4.3], the probability of a miscoupling at step i can be bounded as

Pn (Bi 6= Yi | Fi−1) ≤ L−1
n

(
d +

i−1

∑
s=1

Bs

)
, (2.3.9)
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where Fi = σ(Bj, Yj)j∈[i] denotes the sigma-algebra containing all information about
the Yj and Bj variables encountered up to step i. Thus, the expected number of
miscouplings up to time t, Nmis(t), satisfies

En [Nmis(t)] ≤
dt
Ln

+
1

Ln

t

∑
i=1

i−1

∑
s=1

En [Bs] . (2.3.10)

When Bs is successfully coupled,

En [Bs | Bs succesfully coupled] = En [D∗n] = ∑
i

D2
i /Ln. (2.3.11)

When Bs is not successfully coupled, it is drawn in a size-biased manner from the
vertices that are not chosen yet. Then, because Di ≥ 0 for all i,

En [Bs | Fs−1, Bs miscoupled] =
∑i/∈Vs D2

i
∑i/∈Vs Di

≤ ∑i∈[n] D2
i

∑i∈[n] Di −∑i∈Vs Di

=
∑i∈[n] D2

i

∑i∈[n] Di

(
1 +

∑i∈Vs Di

∑i∈[n] Di −∑i∈Vs Di

)
. (2.3.12)

Since Dmax = OP(n1/(τ−1)), ∑i∈Vs Di ≤ sDmax = OP(sn1/(τ−1)) for all possible Vs, so
that for s� n(τ−2)/(τ−1)

En [Bs | Bs miscoupled] =
∑i∈[n] D2

i
Ln

(1 + oP(1)). (2.3.13)

For t large, we obtain from (2.2.3) that

P
(

D2 > t
)
= P

(
D >

√
t
)
=

c
τ − 1

t(1−τ)/2(1 + o(1)). (2.3.14)

Using (2.3.14) we can use the Stable Law Central Limit Theorem (see for example [217,
Theorem 4.5.2]) to conclude that

∑i∈[n] D2
i

n2/(τ−1)
(

2c
(τ−1)(3−τ)

Γ( 5
2 − 1

2 τ) cos
(

π(τ−1)
4

))2/(τ−1)
d−→ S(τ−1)/2, (2.3.15)

where S(τ−1)/2 is a stable random variable. Thus, as long as s = o(n(τ−2)/(τ−1)),

En [Bs] = L−1
n ∑

i∈[n]
D2

i (1 + oP(1)) = OP

(
n(3−τ)/(τ−1)

)
. (2.3.16)

By (2.3.10), for d = o(n(τ−2)/(τ−1))

En [Nmis(d)] =
d2

Ln
+

1
Ln

OP

(
n(3−τ)/(τ−1)

) d

∑
i=1

(i− 1) = OP

(
d2n2 2−τ

τ−1

)
. (2.3.17)
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Thus, as long as d = o(n(τ−2)/(τ−1)), En [Nmis(d)] = oP(1). Then, by the Markov
inequality

Pn (Nmis(d) = 0) = 1−Pn (Nmis(d) ≥ 1) ≥ 1−En [Nmis(d)] = 1− oP(1). (2.3.18)

Hence, when d = o(n(τ−2/(τ−1))), we can approximate the sum of the degrees of
the neighbors of a vertex with degree d by i.i.d. samples of the size-biased degree
distribution.

Let i ∈ Mεn(k) for k = o(n(τ−2)/(τ−1)). Then, D(er)
i = Di(1 + oP(1)) = k(1 +

oP(1)). Thus, conditionally on the degree sequence

aεn(k, Gn) =
1

k|Mεn(k)| ∑
i∈Mεn (k)

∑
j∈Ni

D(er)
j =

1
k

En

[
∑

j∈NVk

D(er)
j

]
= En

[
D(er)
NVk

(U)

]
= (1 + oP(1))En

[
DNVk

(U)

]
, (2.3.19)

where Vk denotes a uniformly chosen vertex in Mεn(k), and NVk (U) is a uniformly
chosen neighbor of vertex Vk. Here the second equality holds because the average
nearest-neighbor degree averages over all neighbors of vertex j. The third equality
holds because it also averages over all vertices in Mεn(k), together with the fact that
DVk = k(1 + o(1)) and D(er)

i = Di(1 + oP(1)) uniformly in i. With high probability,
we can couple the degrees of neighbors of a uniformly chosen vertex of degree in
[k(1− εn), k(1+ εn)] to i.i.d copies of D∗n. Then, conditionally on the degree sequence,

aεn(k, Gn) = (1 + oP(1))En [D∗n] = (1 + oP(1))L−1
n ∑

i∈[n]
D2

i . (2.3.20)

Combining this with (2.3.15) results in

aεn(k, Gn)

n(3−τ)/(τ−1)
d−→ 1

µ

(
2cΓ( 5

2 − 1
2 τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2. (2.3.21)

To prove the joint convergence of Remark 2.1, note that for fixed m, the probability
that Mεn(ki) is non-empty for all i ∈ [m] tends to 1, by a similar proof as the proof
that An defined in (2.3.1) satisfies P (An)→ 1. Thus, we may condition on the event
that Mεn(ki) is non-empty for all i ∈ [m]. Then, the fact that (2.3.20) is the same for
all ki � n(τ−2)/(τ−1) proves the joint convergence.

2.3.3 Large k

Now we study the value of aεn(k, Gn) when k � n(τ−2)/(τ−1). We show that there
exists a range of degrees Wk

n(δ) which gives the largest contribution to aεn(k, Gn). For
ease of notation, we write aεn(k) for aεn(k, Gn) in this section. We define

Wk
n(δ) = {u : Du ∈ [δµn/k, µn/(δk)]} , (2.3.22)

and we write

aεn(k) =
1

k |Mεn(k)| ∑
i:∈Mεn (k)

∑
j∈Wk

n(δ)

D(er)
j +

1
k |Mεn(k)| ∑

i:∈Mεn (k)
∑

j/∈Wk
n(δ)

D(er)
j

=: aεn(k, Wk
n(δ)) + aεn(k, W̄k

n(δ)), (2.3.23)
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where aεn(k, Wk
n(δ)) denotes the contribution to aεn(k) from vertices in Wk

n(δ), and
aεn(k, W̄n(ε)) the contribution from vertices not in Wk

n(δ). In the rest of this section,
we prove the following two propositions, which together show that the largest
contribution to aεn(k) indeed comes from vertices in Wk

n(δ).

Proposition 2.1 (Minor contributions). There exists κ > 0 such that for k� n1/(τ−1),

lim sup
n→∞

E
[

aεn(k, W̄k
n(δ))

]
(n/k)3−τ

= O (δκ) . (2.3.24)

Proposition 2.2 (Major contributions). For k� n(τ−2)/(τ−1),

aεn(k, Wk
n(δ))

(n/k)3−τ

P−→ cµ2−τ
∫ 1/δ

δ
x1−τ(1− e−x)dx. (2.3.25)

We now show how these propositions prove part (ii) of Theorem 2.1.

Proof of Theorem 2.1 (ii). By the Markov inequality and Proposition 2.1,

aεn(k, W̄k
n(δ))

(n/k)3−τ
= OP (δ

κ) . (2.3.26)

Combining this with Proposition 2.2 results in

aεn(k)
(n/k)3−τ

P−→ cµ2−τ
∫ 1/δ

δ
x1−τ(1− e−x)dx + OP (δ

κ) . (2.3.27)

Taking the limit of δ→ 0 then proves the theorem.

The rest of this section is devoted to proving Propositions 2.1 and 2.2.

Conditional expectation.

We first compute the expectation of aεn(k, Wk
n(δ)) conditionally on the degree se-

quence.

Lemma 2.2. When k� n(τ−2)/(τ−1),

En

[
aεn(k, Wk

n(δ))
]
=

1
k ∑

u∈Wk
n(δ)

Du(1− e−Duk/Ln)(1 + oP(1)). (2.3.28)

Proof. It suffices to prove the lemma under the event Jn from (2.3.1), since P (Jn)→ 1.
Thus we may assume that Ln = µn(1 + o(1)). Let Xij denote the indicator that i and
j are connected. By (2.3.23)

En

[
aεn(k, Wk

n(δ))
]
=

1
k |Mεn(k)| ∑

v∈Mεn (k)
∑

u∈Wk
n(δ)

D(er)
u Pn (Xuv = 1) . (2.3.29)
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By [108, Eq. (4.9)]

Pn (Xuv = 1) = 1− e−DuDv/Ln + O
(

D2
vDu + D2

uDv

L2
n

)
. (2.3.30)

Thus, when Du ∈ µn/k[δ, 1/δ] and v ∈ Mεn(k),

Pn (Xuv = 1) = (1− e−Duk/Ln)(1 + oP(1)). (2.3.31)

Using (2.3.6), we obtain

En

[
∑

u∈Wk
n(δ)

D(er)
v − Dv

]
= ∑

u∈Wk
n(δ)

OP

(
Dτ−1

v n2−τ
)
= |Wk

n(δ)|OP

(
nk1−τ

)
. (2.3.32)

Since ∑u∈Wk
n(δ)

Du = |Wk
n(δ)|O(n/k), also ∑u∈Wk

n(δ)
D(er)

u = (1 + oP(1))∑u∈Wk
n(δ)

Du

Because 1− e−Duk/Ln ∈ [1− e−δ, 1− eδ] when u ∈Wk
n(δ), this also shows that

∑
u∈Wk

n(δ)

D(er)
u (1− e−Duk/Ln) = (1 + oP(1)) ∑

u∈Wk
n(δ)

D(er)
u (1− e−Duk/Ln). (2.3.33)

Thus, we obtain

En

[
aεn(k, Wk

n(δ))
]
=

1
k ∑

u∈Wk
n(δ)

D(er)
u (1− e−Duk/Ln)(1 + oP(1))

=
1
k ∑

u∈Wk
n(δ)

Du(1− e−Duk/Ln)(1 + oP(1)). (2.3.34)

Convergence of conditional expectation.

We now show that En[aεn(k, Wk
n(δ))] of Lemma 2.2 converges to a constant.

Lemma 2.3. When k� n(τ−2)/(τ−1),

En

[
aεn(k, Wk

n(δ))
]

n3−τkτ−3
P−→ cµ2−τ

∫ 1/δ

δ
x1−τ(1− e−x)dx. (2.3.35)

Proof. Define the random measure

M(n)[a, b] =
1

µ1−τn2−τkτ−1 ∑
u∈[n]

1{Du∈[a,b]µn/k}. (2.3.36)

Since the degrees are i.i.d. samples from (2.2.3), the number of vertices with degrees
in the interval [a, b] is binomially distributed. Then,

M(n)[a, b] =
1

µ1−τn2−τkτ−1 |{u : Du ∈ [a, b]µn/k}| P−→ P (D ∈ [a, b]µn/k)
(µn)1−τkτ−1

=
1

(µn)1−τkτ−1

∫ bµn/k

aµn/k
cx−τdx =

∫ b

a
cy−τdy =: λ[a, b],

(2.3.37)
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where we have used the change of variables y = xk/(µn). By Lemma 2.2,

En

[
aεn(k, Wk

n(δ))
]
=

∑u∈Wk
n(δ)

Du(1− e−Duk/Ln)

k
(1 + oP(1))

=
µn
k

∑u∈Wk
n(δ)

Duk
µn (1− e−Duk/(µn))

k
(1 + oP(1))

=
µ2−τn3−τ

k3−τ

∫ 1/δ

δ
t(1− e−t)dM(n)(t)(1 + oP(1)). (2.3.38)

Fix η > 0. Since t(1− e−t) is bounded and continuous on [δ, 1/δ], we can find m < ∞,
disjoint intervals (Bi)i∈[m] and constants (bi)i∈[m] such that

⋃
Bi = [δ, 1/δ]∣∣∣t(1− e−t)−

m

∑
i=1

bi1{t∈Bi}
∣∣∣ < η/λ([δ, 1/δ]), (2.3.39)

for all t ∈ [δ, 1/δ]. Because M(n)(Bi)
P−→ λ(Bi) for all i,

lim
n→∞

P
(
|M(n)(Bi)− λ(Bi)| > η/(mbi)

)
= 0. (2.3.40)

Furthermore,∣∣∣ ∫ 1/δ

δ
t(1− e−t)dM(n)(t)−

∫ 1/δ

δ
t(1− e−t)dλ(t)

∣∣∣
≤
∣∣∣ ∫ 1/δ

δ
t(1− e−t)−

m

∑
i=1

bi1{t∈Bi}dM(n)(t)
∣∣∣

+
∣∣∣ ∫ 1/δ

δ
t(1− e−t)−

m

∑
i=1

bi1{t∈Bi}dλ(t)
∣∣∣

+
∣∣∣ ∫ 1/δ

δ

m

∑
i=1

bi1{t∈Bi}dM(n)(t)−
∫ 1/δ

δ

m

∑
i=1

bi1{t∈Bi}dλ(t)
∣∣∣. (2.3.41)

Using that
∫ 1/δ

δ 1{t∈Bi}dM(n)(t) = M(n)(Bi) yields∣∣∣ ∫ 1/δ

δ

m

∑
i=1

bi1{t∈Bi}dM(n)(t)−
∫ 1/δ

δ

m

∑
i=1

bi1{t∈Bi}dλ(t)
∣∣∣

=
∣∣∣ m

∑
i=1

bi(M(n)(Bi)− λ(Bi))
∣∣∣ = ∣∣∣ m

∑
i=1

oP(η/m)
∣∣∣ = oP(η). (2.3.42)

Thus, (2.3.41) results in∣∣∣ ∫ 1/δ

δ
t(1− e−t)dM(n)(t)−

∫ 1/δ

δ
t(1− e−t)dλ(t)

∣∣∣ ≤ η
M(n)([δ, 1/δ])

λ([δ, 1/δ])
+ η + oP(η).

Using that M(n)([δ, 1/δ]) = OP (λ([δ, 1/δ])) proves that∫ 1/δ

δ
t(1− e−t)dM(n)(t) P−→

∫ 1/δ

δ
t(1− e−t)dλ(t) = c

∫ 1/δ

δ
x1−τ(1− e−x)dx,

(2.3.43)
which together with (2.3.38) proves the lemma.
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Conditional variance of a(k).

We now show that the variance of aεn(k, Wk
n(δ)) is small when conditioning on the de-

gree sequence, so that aεn(k, Wk
n(δ)) concentrates around its expected value computed

in Lemma 2.2.

Lemma 2.4. When n(τ−2)/(τ−1) � k� n1/(τ−1),

Varn

(
aεn(k, Wk

n(δ))
)

En
[
aεn(k, Wk

n(δ))
]2 P−→ 0. (2.3.44)

Proof. Again, it suffices to prove the lemma under the event Jn and An from (2.3.1).
We write the variance of aεn(k, Wk

n(δ)) as

Varn

(
aεn(k, Wk

n(δ))
)
=

1
k2|Mεn(k)|2 ∑

i,j∈Mεn (k)
∑

u,v∈Wk
n(δ)

D(er)
u D(er)

w

× (Pn
(
Xiu = Xjv = 1

)
−Pn (Xiu = 1)Pn

(
Xjv = 1

)
)

=
(1 + oP(1))
k2|Mεn(k)|2 ∑

i,j∈Mεn (k)
∑

u,v∈Wk
n(δ)

DuDw

×
(
Pn
(
Xiu = Xjv = 1

)
−Pn (Xiu = 1)Pn

(
Xjv = 1

))
. (2.3.45)

Equation (2.3.45) splits into various cases, depending on the size of {i, j, u, v}. We
denote the contribution of |{i, j, u, v}| = r to the variance by V(r)(k). We first consider
V(4)(k). We can write

Pn
(
Xiu = Xjv = 0

)
= Pn (Xiu = 0)Pn

(
Xjv = 0 | Xiu = 0

)
. (2.3.46)

For the second term, we first pair all half-edges adjacent to vertex i, conditionally on
not pairing to vertex u. Then the second term can be interpreted as the probability
that vertex j does not pair to vertex v in a new configuration model with L̂n =

Ln − Di = Ln(1 + oP(n−(τ−2)/(τ−1))) half-edges, where the new degree of vertex
j is reduced by the amount of half-edges from vertex i that paired to j. Similarly,
the new degree of vertex v is reduced by the amount of half-edges from vertex
i that paired to v. Since the expected number of half-edges from i that pair to
vertex j is O(DiDj/Ln) = DjoP(n−(τ−1)/(τ−1)) [74], the new degree of vertex j is
D̂j = Dj(1 + oP(n−(τ−2)/(τ−1))), and a similar statement holds for vertex v. Thus,
by (2.3.30)

Pn
(
Xiu = Xjv = 0

)
= e−Di Du/Ln e−D̂jD̂v/L̂n + oP(n−(τ−2)/(τ−1))

= e−Di Du/Ln e−DjDv/Ln(1 + oP(n−(τ−2)/(τ−1))), (2.3.47)

using that DiDu, DjDv = O(n) and Di, Du, Dj, Dv � n1/(τ−1). This results in

Pn
(
Xiu = Xjv = 1

)
= 1−Pn (Xiu = 0)−Pn

(
Xjv = 0

)
+ Pn

(
Xiu = Xjv = 0

)
= 1 + (−e−

Duk
Ln − e−

Dvk
Ln + e−

Duk
Ln −

Dvk
Ln )(1 + oP(n−

τ−2
τ−1 ))
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= (1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1)), (2.3.48)

where the last equality holds because Duk = Θ(n) and Dvk = Θ(n) for u, v ∈Wk
n(δ).

Therefore

V(4)(k) =
1

|Mεn(k)|2k2 ∑
i,j∈Mεn (k)

∑
u,v∈Wk

n(δ)

DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1))

− DuDv(1− e−Duk/Ln)(1− e−Duk/Ln)(1 + oP(1))

= ∑
u,v∈Wk

n(δ)

oP

(
k−2DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)

)
= oP

(
En

[
aεn(k, Wk

n(δ))
]2 )

,

where the last equality follows from Lemma 2.2. Since there are no overlapping edges
when {i, j, u, v} = 3, V(3)(k) can be bounded similarly.

We then consider the contribution from V(2), which is the contribution where the
two edges are the same. By Lemma 2.3, we have to show that this contribution is
small compared to n6−2τk2τ−6. We bound the summand in (2.3.45) as

D2
u

(
Pn (Xiu = 1)−Pn (Xiu = 1)2

)
≤ D2

u. (2.3.49)

Thus, using that on An, |Mεn(k)| ≥ 1, V(2), can be bounded as

V(2) ≤ 1
k2|Mεn(k)|2 ∑

i∈Mεn (k)
∑

u∈Wk
n(δ)

D2
u =

1
k2|Mεn(k)| ∑

u∈Wk
n(δ)

D2
u

= O(n2k−4)|Wk
n(δ)|. (2.3.50)

Since the degrees are i.i.d. samples from (2.2.3), |Wk
n(δ)| is distributed as a bino-

mial with parameters (n, C(n/k)1−τ) for some constant C. Therefore, |Wk
n(δ)| =

OP(n (n/k)1−τ). This results in

V(2) = OP(n4−τkτ−5), (2.3.51)

which is smaller than n6−2τk2τ−6 when k� n(τ−2)/(τ−1), as required.

Proof of Proposition 2.2. Lemma 2.4 together with the Chebyshev inequality show that

aεn(k, Wk
n(δ))

En
[
aεn(k, Wk

n(δ))
] P−→ 1. (2.3.52)

Combining this with Lemmas 2.2 and 2.3 yields

aεn(k, Wk
n(δ))

n3−τkτ−3
P−→ cµ2−τ

∫ 1/δ

δ
x1−τ(1− e−x)dx. (2.3.53)
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Contributions outside Wk
n(δ).

In this section, we prove Proposition 2.1 and show that the contribution to aεn(k)
outside of the major contributing regimes as described in (2.3.22) is negligible.

Proof of Proposition 2.1. We use that Pn(Xij = 1) ≤ min(1, Di Dl
Ln

). This yields

E
[

aεn(k, W̄k
n(δ))

]
= E

[
En

[
aεn(k, W̄k

n(δ))
]]
≤ n

k
E

[
D min

(
1,

kD
Ln

)
1{D∈W̄k

n(δ)}
]

=
n
k

∫ δµn/k

0
x1−τ min

(
1,

kx
µn

)
dx +

n
k

∫ ∞

µn/(δk)
x1−τ min

(
1,

kx
µn

)
dx.

(2.3.54)
For ease of notation, we assume that µ = 1 in the rest of this section. We have to show
that the contribution to (2.3.54) from vertices u such that Du < δn/k or Du > n/(δk)
is small. First, we study the contribution to (2.3.54) for Du < δn/k. We can bound
this contribution by taking the second term of the minimum, which bounds the
contribution as ∫ δn/k

0
x2−τdx =

δ3−τ

τ − 3
(k/n)τ−3. (2.3.55)

Then, we study the contribution for Du > n/(kε). This contribution can be bounded
very similarly by taking 1 for the minimum in (2.3.54) as

n
k

∫ ∞

n/(δk)
x1−τdx =

δτ−2

τ − 2
(k/n)τ−3. (2.3.56)

Taking κ = min(τ − 2, 3− τ) > 0 then proves the proposition.

2.3.4 Expected average nearest-neighbor degree

Similarly as in (2.3.23), we can write

E [a(k, Gn)] = E
[

a(k, Wk
n(δ))

]
+ E

[
a(k, W̄k

n(δ))
]

. (2.3.57)

By Proposition 2.1, E[a(k, W̄k
n(δ))]/(n/k)τ−3 = O(δκ). We now focus on the first

term. The expected degree of a neighbor of a randomly chosen vertex of degree k can
be written as

E
[

a(k, Wk
n(δ))

]
= En

[
D(er)
NVk

(U)
1{DNVk

(U)∈[δ,1/δ]µn/k}
]

= En

[
DNVk

(U)1{DNVk
(U)∈[δ,1/δ]µn/k}

]
(1 + o(1)) (2.3.58)

whereNVk (U), denotes a uniformly chosen neighbor of a vertex of degree k. By (2.3.30),
we can write the connection probability between a vertex of degree k and a neighbor
of degree d ∈ [δ, 1/δ]µn/k as 1− e−kd/(µn)(1 + o(1)). Therefore
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E
[

a(k, Wk
n(δ))

]
= (1 + o(1))

∫ µn/(δk)

δµn/k
cx1−τ(1− e−xk/(µn))dx

= (1 + o(1))(n/k)3−τcµ2−τ
∫ 1/δ

δ
x1−τ(1− e−x)dx. (2.3.59)

Combining this with (2.3.57) and Proposition 2.1, and letting first n → ∞ and then
δ→ 0 proves (2.2.21).

2.4 Proofs of Theorem 2.2 and 2.3

We now briefly show how the proof of Theorem 2.1 can be adapted for the rank-1
inhomogeneous random graph and the hyperbolic random graph to prove Theo-
rems 2.2 and 2.3. We denote by Pn the probability conditioned on the weights in the
rank-1 inhomogeneous random graph or conditioned on the radial coordinates in the
hyperbolic model. Again, for ease of notation, we drop the dependence of a(k, G) on
the graph G.

2.4.1 Inhomogeneous random graph

First, we show how to prove Theorem 2.2(i). In the rank-1 inhomogeneous random
graph, the degree of vertex i with weight hi � 1 satisfies Di = hi(1 + oP(1)) (see
Section 4.C). Furthermore, the largest weight is of order n1/(τ−1) with high probability.
Thus, when h � n(τ−2)/(τ−1), w.h.p. p(h, h′) = hh′/(µn) for all vertices. When
u ∈ Mεn(k), hu = k(1 + oP(1)), so that conditionally on the weight sequence

aεn(k) =
1

k|Mεn(k)| ∑
u∈Mεn (k)

∑
i∈[n]

DiPn (Xiu = 1)

= (1 + oP(1))
1
k ∑

i∈[n]
hi

hik
µn

= (1 + oP(1)) ∑
i∈[n]

h2
i

µn
, (2.4.1)

which is equivalent to (2.3.20) because the weights are also sampled from (2.2.3). This
proves Theorem 2.2(i).

Similarly to (2.3.22), we define for the rank-1 inhomogeneous random graph

Wk,HVM
n (δ) = {u : hu ∈ [δµn/k, µn/(δk)]}. (2.4.2)

Then it is easy to show that Proposition 2.1 also holds for the rank-1 inhomogene-
ous random graph with (2.4.2) instead of Wk

n(δ). Because the weights are sampled
from (2.2.3) and Pn

(
Xij = 1

)
= min(hihj/(µn), 1), (2.3.54) also holds for the rank-1

inhomogeneous random graph, so that Proposition 2.1 indeed holds for the rank-1
inhomogeneous random graph.

We now sketch how to adjust the proof of Proposition 2.2 to prove an analogous
version for the rank-1 inhomogeneous random graph, which states that

aεn(k, WkHVM
n (δ))

(n/k)3−τ

P−→ cµ2−τ
∫ 1/δ

δ
x1−τ min(x, 1)dx. (2.4.3)
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Following the proofs of Lemmas 2.2-2.4, we see that these lemmas also hold for the
rank-1 inhomogeneous random graph if we replace the connection probability of
the erased configuration model of 1− e−Di Dj/Ln by min(hihj/µn, 1). For the rank-
1 inhomogeneous random graph the contribution to (2.3.45) from 3 or 4 different
vertices is 0, because the edge probabilities in the rank-1 inhomogeneous random
graph conditioned on the weights are independent. From these lemmas, (2.4.3)
follows. This then shows similarly to (2.3.27) that

aεn(k)
(n/k)3−τ

P−→ cµ2−τ
∫ ∞

0
x1−τ min(x, 1)dx =

cµ2−τ

(3− τ)(τ − 2)
. (2.4.4)

which proves Theorem 2.2(ii).

2.4.2 Hyperbolic random graph

We first provide a lemma that gives the connection probabilities conditioned on the
radial coordinates in the hyperbolic random graph. Denote

g(x) =

{
2
π sin−1(x) x < 1
1 x ≥ 1.

(2.4.5)

Lemma 2.5. The probability that u and v are connected in a hyperbolic random graph
conditionally on the radial coordinates can be written as

Pn (Xuv = 1) = g(νt(u)t(v)/n)(1 + oP(1)). (2.4.6)

Proof. Suppose νt(u)t(v)/n ≥ 1. Then,

1 ≤ νt(u)t(v)
n

=
νeRe−(ru+rv)/2

n
=

n
ν

e−(ru+rv)/2, (2.4.7)

so that ru + rv ≤ 2 log(n/ν) = R. Thus, by the definition of hyperbolic distance
in (1.1.7)

cosh(d(u, v)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θuv)

≤ cosh(ru + rv) ≤ cosh(R), (2.4.8)

so that the distance between u and v is less than R and u and v are connected.
Now suppose that νt(u)t(v)/n < 1, so that ru + rv > R. We calculate the maximal

value of θuv such that u and v are connected, which we denote by θ∗uv. When the angle
between u and v equals θ∗uv, the hyperbolic distance between u and v is precisely R.
Thus, we obtain, using the definition of the hyperbolic sine and cosine

eR − e−R

2
=

eru − e−ru

2
erv − e−rv

2
− eru + e−ru

2
erv + e−rv

2
cos(θ∗uv). (2.4.9)

Because t(u) is distributed as (2.2.18), the maximal type scales as OP(n1/(τ−1)). The-
refore, eru−rv = (t(v)/t(u))2 = OP(n2/(τ−1)). Similarly, erv−ru = OP(n2/(τ−1)) and
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e−ru−rv ≤ eru−rv = OP(n2/(τ−1)). Furthermore, e−R = O(n−2) so that (2.4.9) beco-
mes

1
2 eR + O(n−2) = 1

4 eru+rv(1− cos(θ∗uv)) + OP

(
n2/(τ−1)

)
. (2.4.10)

We then use that by the definitions of t(u), t(v) and R

eru+rv = eR
(

e(ru+rv−R)/2
)2

= eR
( n

νt(u)t(v)

)2
. (2.4.11)

This yields for (2.4.10) that

1− cos(θ∗uv) = 2
(νt(u)t(v)

n

)2
+ OP

(
n

2
τ−1−2 ν2t(u)2t(v)2

n2

)
= 2

(νt(u)t(v)
n

)2
+ OP

(
n−2(τ−2)/(τ−1)

)
, (2.4.12)

for νt(u)t(v)/n ≤ 1 so that

θ∗uv = cos−1(1− 2(νt(u)t(v)/n)2)(1 + oP(1))

= 2 sin−1(νt(u)t(v)/n)(1 + oP(1)). (2.4.13)

Because u and v are connected if their relative angle is at most θ∗uv and the angular
coordinates of u and v are sampled uniformly, we obtain that

Pn (Xuv = 1) =
2
π

sin−1(νt(u)t(v)/n)(1 + oP(1)). (2.4.14)

Using this lemma, we now prove Theorem 2.3:

Proof of Theorem 2.3. We first focus on k � n(τ−2)/(τ−1). By [101, Section 4.3], for
vertex u with radial coordinate ru

En [Du] = (n− 1)
2αe−ru/2

π(α− 1/2)
(1 + O(e−ru))

=
2ν(τ − 1)
π(τ − 2)

t(u)(1 + O((t(u)/n)2)), (2.4.15)

where we have used that α = (τ− 1)/2, t(u) = e−(R−ru)/2 and R = log(n/ν). By [49,
Theorem 2.7], for every τ and ν, we can interpret the hyperbolic random graph as a
variant of the geometric inhomogeneous random graph, defined in [49] where every
vertex u has weight wu = t(u). By [49, Lemma 3.5(ii)], Du = En [Du] (1 + oP(1)) in
geometric inhomogeneous random graphs when wu = t(u) � 1. Combining this
with (2.4.15) we obtain that in the hyperbolic random graph

Du =
2ν(τ − 1)
π(τ − 2)

t(u)(1 + oP(1)) (2.4.16)
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when 1� t(u)� n. When u ∈ Mεn(k), Du = k(1 + o(1)). Using (2.4.16) then shows
that

t(u) = π(τ−2)
2ν(τ−1) k(1 + oP(1)) (2.4.17)

when k � 1 and u ∈ Mεn(k). Since the types are distributed as (2.2.18), the largest
type is OP(n1/(τ−1)). Therefore, if u ∈ Mεn(k), then t(u)t(v)/n = oP(1) for all v.
Applying that sin−1(x) = x + O(x2) to (2.4.6) then shows that for u ∈ Mεn(k)

Pn (Xuv = 1) =
2νt(u)t(v)

πn
(1 + oP(1)) =

τ − 2
τ − 1

kt(v)
n

(1 + oP(1)). (2.4.18)

Thus, conditionally on the types,

aεn(k) =
1

k|Mεn(k)| ∑
u∈Mεn (k)

∑
v∈[n]

DvPn (Xuv = 1)

= (1 + oP(1))
2ν(τ − 1)
π(τ − 2)k ∑

v∈[n]
t(v)

t(v)k(τ − 2)
(τ − 1)n

= (1 + oP(1)) ∑
v∈[n]

2νt(v)2

πn
.

Combining this with the power-law distribution of the types (2.2.18) proves Theo-
rem 2.3(i) (which is the same as Theorem 2.2(i) where µ is replaced by π/(2ν) and
c/(τ − 1) by 1).

We now investigate the case k� n(τ−2)/(τ−1). Similarly to (2.3.22), we define for
the hyperbolic random graph

Wk,HRG
n (δ) = {u : t(u) ∈ [δζn/k, ζn/(δk)]} (2.4.19)

with ζ = 2(τ− 1)/(π(τ− 2)). Using that 2 sin−1(x)/π ≤ x combined with Lemma 2.5,
we obtain

Pn (Xuv = 1) ≤ min (2νt(u)t(v)/(πn), 1) . (2.4.20)

Combining this with the fact that the t(u)’s are sampled from a distribution similar
to (2.2.3) shows that (2.3.54) also holds for the hyperbolic random graph, apart from
a multiplicative constant. From there we can follow the same lines as the proof of
Proposition 2.1, so that Proposition 2.1 also holds for the hyperbolic random graph.

We follow the lines of the proof of Lemma 2.2, replacing 1 − e−DuDv/Ln by
g(νt(u)t(v)/n) and using (2.4.16) to show that

En

[
aεn(k, Wk

n(δ))
]
=

(1 + oP(1))
k |Mεn(k)| ∑

v:∈Mεn (k)
∑

u∈Wk
n(δ)

Dug(νt(u)t(v)/n)

=
2ν(τ − 1)
kπ(τ − 2) ∑

u∈Wk
n(δ)

t(u)g
(

t(u)kπ(τ − 2)
2n(τ − 1)

)
(1 + oP(1))

=
νζ

k ∑
u∈Wk

n(δ)

t(u)g
(

t(u)k
ζn

)
(1 + oP(1)). (2.4.21)

We analyze this expression following the lines of the proof of Lemma 2.3. We define

M(n)[a, b] =
1

ζ1−τn2−τkτ−1 ∑
u∈[n]

1{Du∈[a,b]ζn/k}, (2.4.22)
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similarly to (2.3.36). From there, we follow the lines of the proof of Lemma 2.3,
again replacing the connection probability 1− exp(−DiDj/(µn)) of the erased con-
figuration model by g(νt(u)t(v)/n) and replacing the constant c from (2.2.3) by
its equivalent constant for the hyperbolic model of τ − 1 (see (2.2.18)) and µ by ζ.
Then (2.4.21) results in

En

[
aεn(k, Wk,HRG

n (δ))
]
=

νnζ2

k2 ∑
u∈Wk

n(δ)

t(u)k
nζ

g
(

t(u)k
ζn

)
(1 + oP(1))

= ν

(
nζ

k

)3−τ ∫ 1/δ

δ
tg (t)dM(n)(t)(1 + oP(1)). (2.4.23)

Similar steps that prove (2.3.43) then show that

En

[
aεn(k, Wk,HRG

n (δ))
]

(n/k)3−τ

P−→ (τ − 1)νζ3−τ
∫ 1/δ

δ
x1−τ g(x)dx. (2.4.24)

Furthermore, because conditionally on the radial coordinates, the probabilities that
two distinct edges are present are independent, Lemma 2.4 also holds for the hyper-
bolic random graph. This proves an analogous proposition to Proposition 2.2 which
states that

aεn(k, Wk,HRG
n (δ))

(n/k)3−τ

P−→ (τ − 1)νζ3−τ
∫ 1/δ

δ
x1−τ g(x)dx. (2.4.25)

Similar steps that lead to (2.3.27) then show that

aεn(k)
(n/k)3−τ

P−→ (τ − 1)νζ3−τ
∫ ∞

0
x1−τ g(x)dx. (2.4.26)

Finally,∫ ∞

0
x1−τ g(x)dx =

2
π

∫ 1

0
x1−τ sin−1(x)dx +

∫ ∞

1
x1−τdx

=
2
π

[
x2−τ sin−1(x)

2− τ

]1

0

+
1

τ − 2

∫ 1

0

x2−τ

√
1− x2

dx +
1

τ − 2

=
1

τ − 2

∫ 1/(2π)

0
sin(t)2−τdt, (2.4.27)

where the last equation uses the substitution t = sin(x). By [96, Eq. 3.621.5]

1
τ − 2

∫ 1/(2π)

0
sin(t)2−τdt =

Γ( 3−τ
2 )Γ( 1

2 )

2(τ − 2)Γ( 4−τ
2 )

=

√
πΓ( 3−τ

2 )

2(τ − 2)Γ( 4−τ
2 )

, (2.4.28)

where Γ denotes the Gamma-function, which finishes the proof of Theorem 2.3(ii).
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Physical Review E 95 p. 022307 (2017)

In this chapter, we investigate the presence of triangles in a wide class of scale-free
rank-1 inhomogeneous random graphs. We first show that the clustering spectrum
k 7→ c(k) decreases in k. We then determine how the average clustering coefficient C
scales with the network size n. For scale-free networks with exponent 2 < τ < 3 this
gives C ∼ n2−τ ln n for the universality class at hand. We characterize the extremely
slow decay of C when τ ≈ 2 and show that for τ = 2.1, say, clustering only starts to
vanish for networks as large as n = 109.

3.1 Introduction

In rank-1 inhomogeneous random graphs, vertices are characterized by weights that
influence the creation of edges between pairs of vertices. All topological properties,
including correlations and clustering, then become functions of the distribution of
the weights and the probability of connecting vertices [35, 42]. The independence
between edges makes rank-1 inhomogeneous random graphs analytically tractable.
However, Chapter 2 showed that these rank-1 inhomogeneous random graphs intro-
duce disassortative degree-degree correlations when τ < 3: high-degree vertices tend
to be connected to low-degree vertices. This negative correlation can have a strong
influence on topological network properties, including clustering, which measures
the presence of triangles in the network [145, 174].

In [201] it was shown that rank-1 inhomogeneous random graphs with a non-
restrictive cutoff scheme can generate nearly size-independent levels of clustering,
and can thus generate networks with high levels of clustering, particularly for τ
close to 2. In the configuration model, without banning large-degree vertices by
installing a cutoff, the long tail of the power law makes it quite likely that pairs of
high-degree vertices share more than one edge. But rank-1 inhomogeneous random
graphs allow at most one edge between pairs of vertices, so that large-degree vertices
must inevitably connect to small-degree vertices due to lack of available large-degree
vertices. This phenomenon is related to the difference in scaling between the so-called
structural cutoff and natural cutoff. The structural cutoff is defined as the largest
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possible upper bound on the degrees required to avoid degree correlations, while
the natural cutoff characterizes the maximal degree in a sample of n vertices. For
scale-free networks with τ ∈ (2, 3] the structural cutoff scales as n1/2 while the natu-
ral cutoff scales as n1/(τ−1) (see Section 3.2), which gives rise to structural negative
correlations and possibly other finite-size effects.

Clustering can be measured in various ways, as explained in Section 1.2.2. The
local clustering coefficient of vertex i is given by ci = 2Ti/ki(ki − 1) with ki the
degree of vertex i and Ti the number of triangles that vertex i is part of. This can
be interpreted as the probability that two randomly chosen neighbors of a vertex
are neighbors themselves. The average clustering coefficient C is then defined as
the average (over vertices of degree ≥ 2) of the local clustering coefficient of single
vertices.

In the absence of high-degree vertices (for τ > 3), the average clustering coefficient
of rank-1 inhomogeneous random graphs is given by [162]

C =
1
n

n

∑
i=1

ci =
E [D(D− 1)]2

nE [D]3
(1 + o(1)), (3.1.1)

where D denotes the degree of a uniformly chosen vertex in the network. This shows
that clustering vanishes very fast in the large network limit n→ ∞ in support of the
tree-like approximations of complex networks. However, for scale-free distributions
with τ < 3, the natural cutoff that scales as n1/(τ−1) together with (3.1.1) gives
C ∼ n(7−3τ)/(τ−1). The diverging C for τ < 7/3 is caused by the fact that the
approximation in (3.1.1) allows many edges between high-degree vertices, and can
be judged as anomalous or nonphysical behavior if one wants C to be smaller than
1 and interpret it as a probability or proportion. If a structural cutoff of order n1/2

is imposed, hence banning the largest-degree vertices, formula (3.1.1) predicts the
correct (in the sense that it matches simulations) scaling n2−τ [57, 201].

In a power-law setting, infinite variance is essential for describing scale-free
network behavior, which makes the banning of large-degree vertices unnatural. In
this chapter we investigate average clustering for a class of scale-free random graphs
that allows for an interplay between structural correlations and large-degree vertices.
The clustering coefficient in this ensemble turns out to depend on the network size,
the structural cutoff that arises when conditioning on simplicity and the natural cutoff
that accounts for large degrees.

Outline. We first describe the wide class of inhomogeneous random graphs that we
study throughout this chapter in Section 3.2. We then show in Section 3.3 that the local
clustering coefficient is a decaying function of the vertex weight across the entire class
of rank-1 inhomogeneous random graphs and relate the decay of the local clustering
coefficient to the average clustering coefficient C. In Section 3.4 we then compute C
as a function of n and τ for one of the members of the class of rank-1 inhomogeneous
random graphs and show that it serves as a bound for the clustering coefficient of
all members of the class of inhomogeneous random graphs. After that, we show in
Section 3.5 that for τ close to 2, the clustering coefficient decays extremely slowly in
the network size n. Section 3.6 concludes the chapter. We present all mathematical
derivations of the main results in the appendix.
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3.2 Hidden variables and cutoffs

In this chapter, we focus on rank-1 inhomogeneous random graphs as defined in
Section 1.1.4. Given n vertices, each vertex is equipped with a weight h drawn from
a given probability distribution function ρ(h). Then each pair of vertices is joined
independently according to a given probability p(h, h′) with h and h′ the weights
associated to the two vertices. The probability p(h, h′) can be any function of the
weights, as long as p(h, h′) ∈ [0, 1]. Chung and Lu [61] introduced this model in the
form

p(h, h′) ∼ hh′

nE [h]
, (3.2.1)

so that the expected degree of a vertex equals its weight. For (3.2.1) to make sense the
product hh′ should never exceed nE [h]. This can be guaranteed by the assumption
that the weight h is smaller than the structural cutoff hs =

√
nE [h]. While this

restricts p(h, h′) within the interval [0, 1], the structural cutoff strongly violates the
reality of scale-free networks. Regarding the weights as the desired degrees, the
structural cutoff conflicts with the fact that the natural cutoff for the degree scales as
n1/(τ−1).

In [35, 42, 174] more general rank-1 inhomogeneous random graphs were intro-
duced, constructed to preserve the conditional independence between edges, while
making sure there is only one edge between every vertex pair and that the natural
extreme values of power-law degrees are not neglected. Within that large spectrum of
models, we focus on the subset of models for which the fraction of vertices of degree
k, P(k), satisfies

P(k) ∼ ρ(k), (3.2.2)

so that the degrees and the weights in the network are similar. The class of models
considered in this chapter starts from the ansatz p(h, h′) ≈ hh′/nE [h], but like [35,
42, 50, 166, 174] adapts this setting to incorporate extreme values.

3.2.1 Class of random graphs

Within the wide class of rank-1 inhomogeneous random graphs we consider probabi-
lities of the form

p(h, h′) = r(u) = u f (u) with u = hh′h−2
s (3.2.3)

with functions f : [0, ∞)→ (0, 1] that belong to the F-class spanned by the properties

F1 f (0) = 1, f (u) decreases to 0 as u→ ∞.

F2 r(u) = u f (u) increases to 1 as u→ ∞.

F3 f is continuous and there are 0 = u0 < u1 < . . . < uK < ∞ such that f is twice
differentiable on each of the intervals [uk−1, uk] and on [uK, ∞), where

f ′(uk) =
1
2 f ′(uk + 0) + 1

2 f ′(uk − 0) (3.2.4)

for k = 1, . . . , K and f ′(0) = f ′(+0).



46 Chapter 3. Global clustering in inhomogeneous random graphs

F4 −u f ′(u)/ f (u) is increasing in u ≥ 0.

The class of rank-1 inhomogeneous random graphs considered in this chapter is
completely specified by all functions f that satisfy F1-F4. Here are important classical
members of the F-class:

(i) (maximally dense graph) The Chung-Lu setting

r(u) = min{u, 1}. (3.2.5)

This is the default choice in [42] and leads within the F-class to the densest
random graphs.

(ii) (Poisson graph) A simple exponential form gives

r(u) = 1− e−u. (3.2.6)

Here we take u to define the intensities of Poisson processes of edges, and
ignore multiple edges, so that (3.2.6) gives the probability that there is an edge
between two vertices. Variants of this form are covered in e.g. [22, 23, 42, 166].

(iii) (maximally random graph) The next function was considered in [174, 201, 203]:

r(u) =
u

1 + u
. (3.2.7)

This connection probability ensures that the entropy of the ensemble is maximal
[201]. This random graph is also known in the literature as the generalized
random graph [50, 106].

The conditions F1-F4 will prove to be the minimally required conditions for the
results that we present for the clustering coefficient. The F-class is constructed so that
it remains amenable to analysis; the technique developed in [201] to characterize the
average clustering coefficient despite the presence of correlations can be applied to
our class. Notice that the technical condition F3 allows to consider piecewise smooth
functions with jumps in their derivatives, such as min(1, 1/u) that comes with (3.2.5).
It can be shown that F4 is slightly stronger than the condition of concavity of r(u). It
appears in Section 3.3 that F4 is necessary and sufficient for monotonicity in a general
sense of the local clustering coefficient c(h).

3.2.2 Cutoffs and correlation

The structural cutoff hs marks the point as of which correlations imposed by the
network structure arise. All pairs of vertices with weights smaller than this cutoff
are connected with probability close to u = hh′/h2

s and do not show degree-degree
correlations. Since the natural cutoff describing the maximal degree is of the order
hc ∼ n1/(τ−1), for τ ≥ 3, correlations are avoided. For τ < 3, however, the structural
cutoff is smaller than the natural cutoff, resulting in a network with a structure that
can only be analyzed by considering non-trivial degree-degree correlations. The
extent to which the network now shows correlation is determined by the gap between
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the natural cutoff hc and the structural cutoff hs. A fully uncorrelated network arises
when hc < hs, while correlation will be present when hc > hs. Let E [h] denote the
average value of the random variable h with density ρ(h) = Ch−τ on [hmin, n], so that

E [h] =

∫ n
hmin

h1−τdh∫ n
hmin

h−τdh
=

τ − 1
τ − 2

h2−τ
min − n2−τ

h1−τ
min − n1−τ

. (3.2.8)

With the default choices

hs =
√

nE [h], hc = (nE [h])1/(τ−1) (3.2.9)

in mind, the regime in terms of cutoffs we are interested in is, just as in [201],

hs ≤ hc � h2
s , (3.2.10)

where we regard these cutoffs as indexed by n and consider what happens as n→ ∞,
with emphasis on the asymptotic regime hs � hc for n large.

Choice of the natural cutoff. We now show that hc as given in (3.2.9) is an accurate
approximation of E[max(h1, . . . , hn)], where the hi are i.i.d. with ρ(h) as density. We
have

E[max
i

hi] = hminΓ
(

τ−2
τ−1
) Γ(n + 1)

Γ
(
n + τ−2

τ−1
) ≈ hminΓ

(
τ−2
τ−1
)

n
1

τ−1 . (3.2.11)

The first identity in (3.2.11) is exact, and follows from

E[max
i

hi] =
∫ ∞

hmin

hd [Pn(h ≤ h)] =
∫ ∞

hmin

hd [(1−P(h > h))n]

=
∫ ∞

hmin

hd
[(

1−
( h

hmin

)1−τ)n
]
= nhmin

∫ 1

0
t

1
1−τ (1− t)n−1dt, (3.2.12)

using the substitution t = (h/hmin)
1−τ ∈ (0, 1] and the expression of the Beta

function in terms of the Γ-function. The approximate identity in (3.2.11) follows
from Γ(n + a)/Γ(n + b) ≈ na−b, which is quite accurate when a, b ∈ [0, 1] and n large.

Furthermore, for 2 < τ < 3,(
τ−1
τ−2
) 1

τ−1 ≤ Γ
(

τ−2
τ−1
)
≤ 4

3
(

τ−1
τ−2
) 1

τ−1 . (3.2.13)

This inequality follows from

uu ≤ Γ(1 + u) = uΓ(u) ≤ 4
3 uu, (3.2.14)

using u = (τ − 2)/(τ − 1) ∈ (0, 1/2] that can be shown by considering the concave
function ln(Γ(1 + u))− u ln u which vanishes at u = 0, 1 and is positive at u = 1/2
(the upper bound in (3.2.14) follows from a numerical inspection of this function).
Then from (3.2.13) we get, using E [h] = hmin(τ − 1)/(τ − 2)(1 + o(1)),

h
τ−2
τ−1
min (nE [h])

1
τ−1 ≤ hminΓ

(
τ−2
τ−1
)
n

1
τ−1 ≤ 4

3 h
τ−2
τ−1
min (nE [h])

1
τ−1 , (3.2.15)

showing that the order of magnitude of E[maxi hi] is (nE [h])1/(τ−1). This motivates
our choice of hc in (3.2.9).
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3.3 Universal clustering properties

We now characterize the large-network asymptotics of the local clustering coefficient
c(h) and average clustering coefficient C for the class of rank-1 inhomogeneous
random graphs described in Section 3.2.1. For a class of uncorrelated random scale-
free networks with a cutoff of n1/2 [57] it was shown that C scales as n2−τ , a decreasing
function of the network size for τ > 2. In [201] the more general setup discussed in
Section 3.2 was used, with the specific choice of r(u) = u/(1 + u). After involved
calculations with Lerch’s transcendent, [201] revealed the scaling relation

C ∼ h−2(τ−2)
s ln(hc/hs). (3.3.1)

For the default choices in (3.2.9) this predicts C ∼ n2−τ ln n (ignoring the constant).
We adopt the weights formalism developed in [35] that leads, among other things,

to explicit expressions for the local clustering coefficient c(h) of a vertex with weight
h and for the average clustering coefficient C. The clustering coefficient of a vertex
with weight h can be interpreted as the probability that two randomly chosen edges
from h are neighbors. The clustering of a vertex of degree one or zero is defined as
zero. Then, if vertex h has degree at least two,

c(h) =
∫ hc

hmin

∫ hc

hmin

p(h′|h)p(h′, h′′)p(h′′|h)dh′dh′′, (3.3.2)

with p(h′|h) the conditional probability that a randomly chosen edge from an h vertex
is connected to an h′ vertex given by

p(h′|h) = ρ(h′)p(h, h′)∫
h′′ ρ(h

′′)p(h, h′′)dh′′
. (3.3.3)

The degree of a vertex conditioned on its weight h is asymptotically distributed as a
Poisson random variable with parameter h [35] and [106, Chapter 6]. Therefore, the
probability that a vertex with weight h has degree at least two is given by

P(k ≥ 2 | h) =
∞

∑
k=2

hke−k

k!
= 1− e−h − he−h. (3.3.4)

Therefore, for ρ(h) ∼ h−τ [35, Eq. (29)]

c(h) = (1− e−h − he−h)

∫ hc
hmin

∫ hc
hmin

ρ(h′)p(h, h′)ρ(h′′)p(h, h′′)p(h′, h′′)dh′dh′′[ ∫ hc
hmin

ρ(h′)p(h, h′)dh′
]2 ,

(3.3.5)

and hence

C =
∫ hc

hmin

ρ(h)c(h)dh. (3.3.6)

The Poisson distribution is sharply peaked around k = h, which for large k yields

P(k) ∼ ρ(k) and c̄(k) ∼ c(k), (3.3.7)
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where c̄(k) denotes the average clustering coefficient over all vertices of degree k, so
that the weights become soft constraints on the degrees.

We make the change of variables

a = 1/hs, b = hc/hs (3.3.8)

and assume henceforth, in line with (3.2.10), that

0 < ahmin ≤ ahminb ≤ 1 ≤ b < ∞, 2 < τ < 3. (3.3.9)

This gives c(h) = (1− e−h − he−h)cab(h) with

cab(h) =

∫ b
ahmin

∫ b
ahmin

(xy)−τr(ahx)r(ahy)r(xy)dxdy[ ∫ b
ahmin

x−τr(ahx)dx
]2 . (3.3.10)

Within the domain of integration [ahmin, b] in (3.3.10) the arguments ahx and ahy
do not exceed a maximum value O(ab) as long as h < h2

s /hc, which tends to zero
under assumption (3.2.10). Therefore, since r(u) ≈ u, cab(h) ≈ cab(0) for h < h2

s /hc.
When choosing hs as in (3.2.9), this means that cab(h) ≈ cab(0) for h ≤ nE [h] /hc.
In Proposition 3.1 below we prove that h 7→ cab(h) is a bounded monotonically
decreasing function for the class of models at hand. Furthermore, the density ρ(h) ∼
h−τ with τ ≥ 2, decays sufficiently rapidly for the integral in (3.3.6) for C to have
converged already before cab(h) starts to drop significantly below its value cab(0) at
h = 0. Thus, C can be approximated with

Cab(τ) = cab(0)
∫ n

hmin

ρ(h)(1− (1 + h)e−h)dh := cab(0)A(τ), (3.3.11)

where we have conveniently extended the integration range to the τ-independent
interval [hmin, n] at the expense of a negligible additional error.

We now state our results on the properties of the local clustering coefficient for
the class of rank-1 inhomogeneous random graphs described in Section 3.2.1:

Proposition 3.1. Assume that f satisfies F1 - F3. Then cab(h) is decreasing in h ≥ 0 for all
a, b with 0 < a < b if and only if f satisfies F4.

Proposition 3.1 shows that for large enough h local clustering decreases with
the weight. For the default choices (3.2.5), (3.2.9), local clustering c(h) is plotted in
Figure 3.1, which shows both exact formulas and extensive simulations. The proof of
Proposition 3.1 can be found in Appendix 3.B.

Proposition 3.2. Assume that f is positive, and satisfies F3. Then cab(0) is decreasing in
τ > 0 for all a, b with 0 < a ≤ b < ∞ if and only if f satisfies F2.

We prove Proposition 3.2 in Appendix 3.A. Proposition 3.2 gives evidence for the
fact that clustering increases as τ decreases, as confirmed in Figure 3.3. More precisely,
Proposition 3.2 shows the monotonicity of cab(0), which is one of the factors of Cab(τ)
in (3.3.11). The issue of monotonicity of Cab(τ) is more delicate, since a and b are
function of τ themselves. In Appendix 3.F we present several other monotonicity
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Figure 3.1: c(h) for τ = 2.1, 2.5, 2.9
and networks of size n = 106, using
hmin = 1. The markers indicate the
average of 105 simulations, and the solid
lines follow from (3.3.5).
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Figure 3.2: Cmax
ab (τ) as a function of τ,

with r as in (3.2.5), using hmin = 1.

properties of the remaining building blocks that together give Cab(τ). It follows that
for τ > 2, Cab(τ) is bounded from above by an envelope function of τ that is very
close to Cab(τ) and that is decreasing in τ. Figure 3.2 provides empirical evidence
for the monotonicity of Cab(τ) in τ. This monotonicity seems to conflict observations
in [201], where the clustering coefficient of a rank-1 inhomogeneous random graph
first increases in τ when τ is close to 2, and then starts decreasing. The difference is
caused by the choice of the structural cutoff. Where we take hs =

√
nE [h] with E [h]

as in (3.2.8), in [201] hs =
√

n(τ − 1)/(τ − 2) was used. Thus, in [201], the structural
cutoff includes the infinite system size limit of E [h], where we use the size-dependent
version of E [h].

Figure 3.3 suggests that C falls off with n according to a function nδ where δ
depends on τ. In Proposition 3.3 below, we show that for the F-class of rank-1
inhomogeneous random graphs and the standard cutoff levels, C decays as nτ−2 ln n.
On a log-scale, moreover, the clustering coefficient of different rank-1 inhomogeneous
random graphs in the F-class only differs by a constant, which is confirmed in
Figure 3.3 and substantiated in Proposition 3.4. Then, we focus in Section 3.5 on
τ ≈ 2, for which Figure 3.3 suggests that the clustering remains nearly constant as a
function of n, and characterize how large a network should be for C to start showing
decay. This again will depend on τ.

3.4 Universal bounds

We next compute the clustering coefficient Cmax
ab (τ) = Cab(τ) for the maximally dense

graph with f (u) = fmax(u) = min(1, 1/u), u ≥ 0 and a, b satisfying (3.3.9). In this
case we have cab(h) = cab(0) for h ≤ 1/(ab) = h2

s /hc = nE [h] /hc. It is easy to see
that fmax is the maximal element in the F-class in the sense that f (u) ≤ fmax(u) for
all u ≥ 0 and all f ∈ F. For a general f ∈ F we shall also bound C f

ab(τ) in terms of
Cmax

ab (τ). This yields a scaling relation similar to (3.3.1), but then for the whole F-class.
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Figure 3.3: Cab(τ) for τ = 2.1, 2.5, 2.9, choices (3.2.5) (solid line) and (3.2.7) (dashed
line) and networks of size n = 10k for k = 4, 5, 6, using hmin = 1. The markers indicate
the average of 105 simulations, and the solid lines follow from (3.4.1) and (3.4.5).

We start from an explicit representation for Cmax
ab (τ):

Proposition 3.3.

Cmax
ab (τ) =

A(τ)(τ − 2)2

((ahmin)2−τ − b2−τ)
2 × Imax

ab (τ), (3.4.1)

with A(τ) given in (3.3.11) and

Imax
ab (τ) =

ln(b2)

(τ − 2)(3− τ)
− 1− b2(2−τ)

(τ − 2)2 +
1− 2(ahminb)3−τ + (ahmin)

2(3−τ)

(3− τ)2 .

(3.4.2)

When τ is away from 2 and 3, b is large and a is small, we can ignore the b2−τ

in the front factor of (3.4.1) and the second term in (3.4.2). Furthermore, ab =
O(n(2−τ)/(τ−1)), so that we may also ignore this factor in the third term of (3.4.2). In
this case we get the approximation

Cmax
ab (τ) ≈ A(τ)

τ − 2
3− τ

(ahmin)
2(τ−2) ln(b2). (3.4.3)

Using the default choices for a and b from (3.2.9) and (3.3.8) then shows that Cmax
ab ∼

n2−τ ln(n) (ignoring the constant).

Maximally random graph. For the maximally random graph (3.2.7) the counterpart
of (3.4.1) has been derived in [201]. Define Lerch’s transcendent

Φ(z, s, v) =
∞

∑
k=0

zk

(k + v)s . (3.4.4)

In [201] it was shown that for the maximally random graph (3.2.7) with hmin = 1
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s π
sin(πs)

1
s(1−s)

π2 cos(πs)
(sin(πs))2

1
s2 − 1

(1−s)2

0.1 10.1664 11.1111 98.2972 98.7654
0.2 5.3448 6.2500 23.1111 23.4375
0.3 3.8832 4.7619 8.8635 9.0703
0.4 3.3033 4.1666 3.3719 3.4722
0.5 3.1416 4.0000 0.0000 0.0000

Table 3.1: Dominant terms in (3.4.5) and (3.4.1) for several values of s = τ − 2.

Cab(τ) =
A(τ)(τ − 2)2

(a2−τ − b2−τ)
2

{ π ln(b2)

sin(π(τ − 2))
− π2 cos(π(τ − 2))

(sin(π(τ − 2)))2

+ b−2(τ−2)Φ(−b−2, 2, τ − 2) + a2(3−τ)Φ(−a2, 2, 3− τ)

− 2(ab)3−τΦ (−ab, 2, 3− τ)
}

. (3.4.5)

(The expression is slightly simplified compared to [201, Eq. (5)].) Comparing (3.4.5)
and (3.4.1) shows that the front factor is identical, and that the terms in between
brackets differ. Table 3.1 compares the two dominant terms in (3.4.5) and (3.4.1) and
shows that these terms are of comparable magnitude for τ − 2 small.

Thus, on a log-scale the leading asymptotics of the maximally dense graph and
the maximally random graph differ only by a constant, so that the decay exponent
describing how the clustering decays with network size is the same. This can also be
seen in Figure 3.3. In fact, for all functions f in the F-class we show below that the
decay exponent is universal, and that the difference in constants can be bounded.

The entire F-class. Proposition 3.3 can be used to find upper and lower bounds for
C f

ab(τ) with general f ∈ F. Since f (u) ≤ fmax(u), u ≥ 0, it follows from (3.3.11) that

C f
ab(τ) ≤ Cmax

ab (τ). (3.4.6)

The following proposition shows that C f
ab(τ) can also be lower bounded by Cmax

ab (τ):

Proposition 3.4. For all u0 ≥ 1,

C f
ab(τ) ≥ u0 f (u0)Cmax

a0b0
(τ), (3.4.7)

with a0 = a/
√

u0 and b0 = b/
√

u0.

In particular, the choice u0 = 1 yields

C f
ab(τ) ≥ f (1)Cmax

ab (τ), (3.4.8)

which together with (3.4.3) and (3.4.6) gives the large-network behavior of C f
ab(τ),

when τ ∈ (2, 3) and away from 2 and 3, and a is small and b is large (up to a
multiplicative constant). In particular, this shows that C f

ab ∼ n2−τ ln(n) (again
ignoring the constant). The proofs of Propositions 3.3 and 3.4 can be found in
Appendix 3.C and 3.D, respectively.
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3.5 Persistent clustering

In [201] it was observed that for values of the exponent τ ≈ 2, clustering remains
nearly constant up to extremely large network sizes, which makes the convergence to
the thermodynamic limit extremely slow (as also observed in [37, 121] and Figure 3.2).
We now use the explicit results for the maximally dense graph to characterize this
rate of convergence as a function of the network size n. For convenience, we assume
in this section that hmin = 1.

In view of the lower and upper bounds obtained in Section 3.4 for C f
ab(τ) with

general f ∈ F in terms of Cmax
ab (τ) = Cab(τ), it suffices to consider Cmax

ab (τ) for τ close
to 2. In Appendix 3.E we show that when τ is close to 2 and

∣∣ln(ab)/ ln(b2)
∣∣ is small,

Cmax
ab (τ) can be approximated by

Cmax
ab (τ) ≈ A(τ)(1− 1

3 (τ − 2) ln(b2))

2(1− 1
2 (τ − 2) ln(ab) + 1

6 (τ − 2)2 ln2 b)2
. (3.5.1)

The term − 1
3 (τ − 2) ln(b2) in the numerator and the term 1

6 (τ − 2)2 ln2 b in the
denominator of the right-hand side of (3.5.1) are the main influencers on when
Cmax

ab (τ) starts to decay. The decay is certainly absent as long as the numerator
1− 1

3 (τ − 2) ln(b2) is away from zero.

We then apply this reasoning to the canonical choices hs =
√

nE [h] and hc =

(nE [h])1/(τ−1), for which

b = (nE [h])
3−τ

2(τ−1) , ab = (nE [h])−
τ−2
τ−1 , (3.5.2)

ensuring
∣∣ln(ab)/ ln(b2)

∣∣ = (τ − 2)/(τ − 3) to be small indeed. Then, choosing a
threshold t ∈ (0, 3) and solving n from

(τ − 2) ln(b2) = t, (3.5.3)

we get

nE [h] = exp
( τ − 1
(τ − 2)(3− τ)

t
)

. (3.5.4)

In Table 3.2 we consider the case t = 2 and use that E [h] can accurately be bounded
from above by ln n when hmin = 1 and τ is close to 2, and we let nτ,2 be such that
n ln n equals the right-hand side of (3.5.4). For τ = 2.1, the value of n where the
clustering starts to decay is much larger than the typical size of real-world network
data sets. This supports the observation that clustering is persistent for τ close to 2.
Figure 3.4 shows the decay of the clustering coefficient for τ ≈ 2, together with nτ,2,
the value where the clustering coefficient is expected to decay. We see that for τ very
close to 2, clustering indeed barely decays for n smaller than nτ,2. On the other hand,
we see that for τ = 2.2 and τ = 2.3 the decay already starts before nτ,2, so there the
approximation is less accurate.
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Figure 3.4: Cmax
ab (τ) as a function of n for τ close to 2, with r(u) as in (3.2.5) and

hmin = 1. The marks indicate the value of nτ,2 as calculated in Table 3.2.

τ nτ,2
2.3 2.37 · 104

2.2 2.62 · 105

2.1 1.93 · 109

2.05 3.92 · 1017

Table 3.2: Solution nτ,t to (τ − 2) ln(b2) = 2.

3.6 Conclusion

For rank-1 inhomogeneous random graphs with scale-free degree distributions and
connection probabilities in the F-class, we have shown that the local clustering coeffi-
cient c(h) decays with the weight h and that the average clustering coefficient C(τ)
roughly decreases with the tail exponent τ according to some function that depends
on the structural and natural cutoffs. For the typical cutoff choices

√
n and n1/(τ−1)

this showed that C decays as n2−τ ln n, confirming an earlier result in [201] and
suggesting universal behavior for the entire F-class introduced in this chapter. By
analyzing the special case of maximally dense graphs, a member of the F-class, we
estimated the constant C(τ)/n2−τ ln n and the extremely slow decay that occurs
when τ ↓ 2.

3.A Proof of Proposition 3.2

We consider

cab(0) = Dab(τ) =

∫ b
a

∫ b
a f (xy)(xy)2−τdxdy( ∫ b

a x1−τdx
)2 , (3.A.1)

where we have written the lower integration limit ahmin in (3.4.1) as a for notational
convenience. We fix n, and study the dependence of Dab(τ) on τ. We assume here
that a and b are fixed, and do not depend on τ. Assume that f is positive and satisfies
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F2 and F3. We have for D′ab(τ) =
d

dτ Dab(τ),

D′ab(τ) =
−
∫ b

a

∫ b
a f (xy) ln(xy)(xy)2−τdxdy( ∫ b

a x1−τdx
)2

+
2
∫ b

a

∫ b
a f (xy)(xy)2−τdxdy

∫ b
a x1−τ ln xdx( ∫ b

a x1−τdx
)3 . (3.A.2)

Observe that D′ab(τ) ≤ 0 if and only if∫ b
a

∫ b
a f (xy) ln(xy)(xy)2−τdxdy∫ b
a

∫ b
a f (xy)(xy)2−τdxdy

≥ 2

∫ b
a x1−τ ln x dx∫ b

a x1−τdx
. (3.A.3)

Symmetry of f (xy)/(xy)τ−2 and ln(xy) = ln x + ln y gives

∫ b

a

∫ b

a
f (xy) ln(xy)(xy)2−τdxdy = 2

∫ b

a
ln x

( ∫ b

a
f (xy)(xy)2−τdy

)
dx. (3.A.4)

Letting

W(x) =

∫ b
a f (xy)(xy)2−τdy∫ b

a

∫ b
a f (vy)(vy)2−τdvdy

, a ≤ x ≤ b, (3.A.5)

V(x) =
x1−τ∫ b

a v1−τdv
, a ≤ x ≤ b, (3.A.6)

we thus need to show that∫ b

a
ln x W(x)dx ≥

∫ b

a
ln x V(x)dx. (3.A.7)

Observe that for K =
∫ b

a v1−τdv/
∫ b

a

∫ b
a f (vy)(vy)2−τdvdy,

W(x)/V(x) = Kxτ−1
∫ b

a
f (xy)(xy)2−τdy = K

∫ b

a
(xy f (xy)) y1−τdy, (3.A.8)

which increases in x > 0 when f satisfies F2. Therefore, W(x)/V(x) increases in
x > 0 when f satisfies F2. Furthermore, ln x increases in x > 0, so the inequality in
(3.A.7) follows from the following lemma:

Lemma 3.1. Let 0 < a < b and assume that p(x) and q(x) are two positive, continuous
probability distribution functions (pdf’s) on [a, b] such that p(x)/q(x) is increasing in
x ∈ [a, b]. Let g(x) be an increasing function of x ∈ [a, b]. Then

gp =
∫ b

a
g(x)p(x)dx ≥

∫ b

a
g(x)q(x)dx = gq. (3.A.9)



56 Chapter 3. Global clustering in inhomogeneous random graphs

Proof. For any R ∈ R,

gp − gq =
∫ b

a
(g(x)− gq)(p(x)− Rq(x))dx, (3.A.10)

since p and q are pdf’s. Let xq be a point in [a, b] such that g(x) ≤ gq when x ≤ xq
and g(x) ≥ gq when x ≥ xq. Choose R = p(xq)/q(xq), so that by monotonicity of g
and p/q,

a ≤ x ≤ xq ⇒
(

g(x)− g(xq) ≤ 0∧ p(x)− Rq(x) ≤ 0
)

,

xq ≤ x ≤ b⇒
(

g(x)− g(xq) ≥ 0∧ p(x)− Rq(x) ≥ 0
)

.

Hence, the integrand in (3.A.10) is everywhere nonnegative, so that gp − gq ≥ 0 as
required.

Remark 3.1. The following observation will prove useful later: (i) The inequality in
(3.A.9) is strict when both g(x) and p(x)/q(x) are strictly increasing. (ii) When g(x)
is (strictly) decreasing and p(x)/q(x) is (strictly) increasing, there is≤ (<) rather than
≥ (>) in (3.A.9).

Now that we have shown F2 to be a sufficient condition for Dab(τ) to be increasing,
we next show that F2 is also a necessary condition. Suppose we have two points
u1 and u2 with 0 < u1 < u2 such that u1 f (u1) > u2 f (u2). Since f is continuous
and piecewise continuous differentiable, there is a u0 ∈ (u1, u2) and ε > 0 such that
u f (u) is strictly decreasing in u ∈ [u0 − ε, u0 + ε]. In (3.A.8), take a =

√
u0 − ε and

b =
√

u0 + ε so that xy ∈ [u0 − ε, u0 + ε] when xy ∈ [a, b]. Therefore, W(x)/V(x) is
strictly decreasing in x ∈ [a, b]. By the version of Lemma 3.1 with g(x) = ln x strictly
increasing and p(x)/q(x) = W(x)/V(x) strictly decreasing, we see that gp − gq < 0.
Therefore, we have (3.A.7) with < instead of ≥, and so D′ab(τ) is positive for all τ
with this particular choice of a and b. This completes the proof of Proposition 3.2(i).

3.B Proof of Proposition 3.1

We consider for a fixed a, b, τ and h > 0,

cab(h) =

∫ b
a

∫ b
a (xy)2−τ f (ahx) f (ahy) f (xy)dxdy( ∫ b

a x1−τ f (ahx)dx
)2 . (3.B.1)

Observe that d
dh cab(h) ≤ 0 if and only if

d
dh
[ ∫ b

a

∫ b
a (xy)2−τ f (ahx) f (ahy) f (xy)dxdy

]∫ b
a

∫ b
a (xy)2−τ f (ahx) f (ahy) f (xy)dxdy

≤ 2
d

dh
[ ∫ b

a f (ahx)x1−τdx
]∫ b

a f (ahx)x1−τdx
. (3.B.2)

Using

d
dh

[ f (ahx) f (ahy)] = ax f ′(ahx) f (ahy) + ay f (ahx) f ′(ahy) (3.B.3)



3.B. Proof of Proposition 3.1 57

and the symmetry of the function f (xy)/(xy)τ−2 gives

d
dh

[ ∫ b

a

∫ b

a
f (ahx) f (ahy) f (xy)(xy)2−τdxdy

]
= 2

∫ b

a

∫ b

a
ax f ′(ahx) f (ahy) f (xy)(xy)2−τdxdy. (3.B.4)

Also,

d
dh

[ ∫ b

a
f (ahx)x1−τdx

]
=
∫ b

a
ax f ′(ahx)x1−τdx. (3.B.5)

So we write the left-hand side of (3.B.2) as

2
∫ b

a

ax f ′(ahx)
f (ahx)

T(x)dx, (3.B.6)

and the right-hand side of (3.B.2) as

2
∫ b

a

ax f ′(ahx)
f (ahx)

U(x)dx, (3.B.7)

where the pdf’s T(x) and U(x) on [a, b] are defined as

T(x) =
f (ahx)

∫ b
a f (ahy) f (xy)(xy)2−τdy∫ b

a

∫ b
a f (ahv) f (ahy) f (vy)(vy)2−τdvdy

(3.B.8)

and

U(x) =
f (ahx)x1−τ∫ b

a f (ahv)v1−τdv
. (3.B.9)

The inequality in (3.B.2) thus becomes∫ b

a

−ahx f ′(ahx)
f (ahx)

T(x)dx ≥
∫ b

a

−ahx f ′(ahx)
f (ahx)

U(x)dx, (3.B.10)

where we have multiplied by h > 0. Assume that f satisfies F2. Then

xτ−1
∫ b

a
f (ahy) f (xy)(xy)2−τdy =

∫ b

a
xy f (ahy) f (xy)y1−τdy (3.B.11)

is increasing in x > 0. Therefore, see (3.B.8) and (3.B.9), T(x)/U(x) is increasing in
x > 0. Hence, from Lemma 3.1 we get (3.B.10) when g(x) = −ahx f ′(ahx)/ f (ahx) is
increasing in x > 0, i.e. when f satisfies F4.

We have now shown that when f satisfies F1-F3, the condition F4 is sufficient for
cab(h) to be decreasing in h > 0. For the result in the converse direction we argue
as follows. The function u f (u) is continuous, piecewise smooth, increasing and not
constant, and so there is a u0 > 0, ε > 0 such that u f (u) is strictly increasing in
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u ∈ [u0− ε, u0 + ε]. Let z(v) = −v f ′(v)/ f (v), and assume there are 0 < v1 < v2 such
that z(v1) > z(v2). We may assume that z is continuous at v = v1, v2. Indeed, when
z is discontinuous at v1 say, z(v1) =

1
2 (z(v1 + 0) + z(v2 − 0)) and so at least one of

z(v1 − 0) = limv↑v1 z(v) and z(v1 + 0) = limv↓v1 z(v) is larger than z(v2). Since z has
only finitely many discontinuities, it suffices to decrease or increase v1 somewhat,
to a point of continuity, while maintaining z(v1) > z(v2). We have to consider two
cases.

A. Assume that z(v) is continuous on [v1, v2]. We can then basically argue as in
the proof of the only-if part of Proposition 3.2. Thus, there is a v0 > 0, δ > 0 such
that z(v) is strictly decreasing in v ∈ [v0 − δ, v0 + δ]. We choose a, b such that xy ∈
[u0 − ε, u0 + ε] when x, y ∈ [a, b]. This is satisfied when

√
u0 − ε ≤ a < b ≤ √u0 + ε,

and it guarantees that T(x)/U(x) is strictly increasing in x ∈ [a, b]. Next, we choose
h such that ahx ∈ [v0 − δ, v0 + δ] when x ∈ [a, b], so that z(ahx) is strictly decreasing
in x ∈ [a, b]. For this, we need to take h such that a2h ≥ v0 − δ and abh ≤ v0 + δ.
This can be done indeed when a/b ≥ (v0 − δ)/(v0 + δ. Choosing a and b with a < b,
a, b ∈ [

√
u0 − ε,

√
u0 + ε] such that this latter condition is satisfied, we can apply the

version of Lemma 3.1 with strictly decreasing g(x) = z(ahx) and strictly increasing
p(x)/q(x) = T(x)/U(x). Thus we get in (3.B.10) strict inequality < for these a, b and
h, and this means that c′ab(h) < 0. This proves Proposition 3.1 for this case.

B. Assume that z(v) has discontinuities on [v1, v2], say at c1 < c2 < · · · < cj with
v1 < c1 and v2 > cj. In the case that there is an interval [v0 − δ, v0 + δ] contained in
one of (v1, c1), (c1, c2), . . . , (cj, v2) where z is strictly decreasing, we are in the position
of case A, and then we are done. Otherwise, we have by F3 that z′(v) ≥ 0 for all
v ∈ [v1, v2], v 6= c1, . . . , cj. Then we must have z(v0 − 0) > z(v0 + 0) for at least
one v0 = c1, . . . , cj, for else we would have z(v1) ≤ z(c1 − 0) ≤ z(c1 + 0) ≤ · · · ≤
z(cj − 0) ≤ z(cj + 0) ≤ z(v2).

We want to find a, b such that∫ b

a
z(ahx)T(x)dx <

∫ b

a
z(ahx)U(x)dx (3.B.12)

for the case that z(v) has a downward jump at v = v0 > 0 while being increasing to
the left and to the right of v0. Set

∆ = z(v0 − 0)− z(v0 + 0), M = 1
2 (z(v0 − 0) + z(v0 + 0)) , (3.B.13)

and observe that M ≥ 1
2 ∆ > 0 since z(v) ≥ 0 for all v. We can find δ > 0 such that

z(v0 − 0) ≥ z(v) ≥ z(v0 − 0)− 1
8 ∆, v0 − δ ≤ v < v0 (3.B.14)

z(v0 + 0) ≤ z(v) ≤ z(v0 + 0) + 1
8 ∆, v0 < v ≤ v0 + δ. (3.B.15)

Next, let
l(v) = f (v)v1−τ , v > 0, (3.B.16)

and observe that l(v) is positive and continuous at v = v0. Hence, we can choose
δ > 0 such that, in addition to (3.B.14) and (3.B.15),∣∣∣ l(v)

l(v0)
− 1
∣∣∣ ≤ λ, v ∈ [v0 − δ, v0 + δ], (3.B.17)
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where λ is any number between 0 and 5
16 ∆/(2M + 7

16 ∆). As in case A of the proof,
we choose a, b and h such that

xy ∈ [u0 − ε, u0 + ε], (3.B.18)

when x, y ∈ [a, b] and
ahx ∈ [v0 − δ, v0 + δ], (3.B.19)

when x ∈ [a, b]. Thus, we let
√

u0 − ε ≤ a < b ≤ √u0 + ε such that 1 > a/b ≥
(v0 − δ)/(v0 + δ). Below, we shall transform the two integrals by the substitution
v = ah0x for a special choice of h = h0 to an integral over an interval [w1, w2] having
v0 as midpoint. This h0 is given by

h0 =
2v0

a2 + ab
∈
[v0 − δ

a2 ,
v0 + δ

ab

]
. (3.B.20)

Indeed, this h0 satisfies (3.B.19) since

2v0

a2 + ab
≤ v0 + δ

ab
⇐⇒ 2bv0 ≤ (b + a)(v0 + δ)

⇐⇒ (1− a
b
)v0 ≤ (1 +

a
b
)δ

⇐⇒ a
b
≥ v0 − δ

v0 + δ
, (3.B.21)

and
2v0

a2 + ab
≥ v0 − δ

a2 ⇐⇒ 2av0 ≤ (b + a)(v0 − δ)

⇐⇒ (
a
b
− 1)v0 ≥ −(1 +

a
b
)δ

⇐⇒ a
b
≥ v0 − δ

v0 + δ
. (3.B.22)

In the integrals in the inequality in (3.B.12) with h = h0, we substitute ah0x = v, and
the inequality to be proved becomes

zt :=
∫ w2

w1

z(v)t(v)dv <
∫ w2

w1

z(v)u(v)dv =: zu. (3.B.23)

Here
w1 = a2h0, w2 = abh0 (3.B.24)

so that v0 = 1
2 (a2 + ab)h0 is the midpoint of the integration interval [w1, w2] ⊂

[v0 − δ, v0 + δ], and t(v) and u(v) are the pdf’s

t(v) =
1

ah0
T
( v

ah0

)
, u(v) =

1
ah0

U
( v

ah0

)
(3.B.25)

for which t(v)/u(v) is strictly increasing in v ∈ [w1, w2], since T(x)/U(x) is strictly
increasing for x ∈ [a, b] by (3.B.11). We shall show that zu ∈ (M− 3

8 ∆, M + 3
8 ∆), and

so, by (3.B.14) and (3.B.15),

z(v)− zu > 0, w1 ≤ v < v0; z(v)− zu < 0, v0 < v ≤ w2. (3.B.26)
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With R = t(v0)/u(v0), this implies that

zt − zu =
∫ w2

w1

(z(v)− zu)(t(v)− Ru(v))dv < 0, (3.B.27)

since the integrand is negative for all v 6= v0.
To show that zu ∈ (M− 3

8 ∆, M + 3
8 ∆), we note that the pdf u(v) is built from the

function l(v) in (3.B.16) via (3.B.9) and (3.B.25). In terms of this l(v) we can write zu
as

zu =

∫ w2
w1

z(v)l(v)dv∫ w2
w1

l(v)dv
. (3.B.28)

Now, by (3.B.17),

(w2 − w1)l(v0)(1− λ) ≤
∫ w2

w1

l(v)dv ≤ (w2 − w1)(1 + λ)l(v0). (3.B.29)

Also, by (3.B.14), (3.B.15) and (3.B.17) and the fact that v0 = 1
2 (w1 + w2),∫ w2

w1

z(v)l(v)dv =
∫ v0

w1

z(v)l(v)dv +
∫ w2

v0

z(v)l(v)dv

≤ z(v0 − 0)
∫ v0

w1

l(v)dv + z(v0 +
1
8 ∆)

∫ w2

v0

l(v)dv

≤ 1
2 (w2 − w1)(1 + λ)l(v0)[z(v0 − 0) + z(v0 + 0) + 1

8 ∆]

= (w2 − w1)(1 + λ)l(v0)[M + 1
16 ∆], (3.B.30)

and in a similar fashion∫ w2

w1

z(v)l(v)dv ≥ (w2 − w1)(1− λ)l(v0)[M− 1
16 ∆]. (3.B.31)

From (3.B.29), (3.B.30) and (3.B.31) we then get

1− λ

1 + λ
(M− 1

16 ∆) ≤ zu ≤
1 + λ

1− λ
(M + 1

16 ∆). (3.B.32)

Now

1 + λ

1− λ
(M + 1

16 ∆) < M + 3
8 ∆ ⇐⇒ λ <

5
16 ∆

2M + 7
16 ∆

,

1− λ

1 + λ
(M− 1

16 ∆) > M− 3
8 ∆ ⇐⇒ λ <

5
16 ∆

2M− 7
16 ∆

.

Then it follows from the choice of λ in (3.B.17) that zu ∈ (M− 3
8 ∆, M + 3

8 ∆) for such
λ.
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3.C Proof of Proposition 3.3

Taking the limit h ↓ 0 in (3.3.10), with r(u) = u min(1, 1/u), we have

cmax
ab (0) =

∫ b
a

∫ b
a (xy)2−τ min(1, (xy)−1)dxdy[ ∫ b

a x1−τdx
]2 , (3.C.1)

where we have written a instead of ahmin for ease of notation. The denominator in
(3.C.1) is evaluated as( ∫ b

a
x1−τdx

)2
=

1
(τ − 2)2

(
a2−τ − b2−τ

)2
. (3.C.2)

For the numerator in (3.C.1) we compute∫ b

a

∫ b

a
min(1, (xy)−1)(xy)2−τdxdy

=
∫ 1/b

a

∫ b

a
(xy)2−τdydx +

∫ b

1/b

(∫ 1/x

a
(xy)2−τdy +

∫ b

1/x
(xy)1−τdy

)
dx

=
∫ 1/b

a
x2−τdx

∫ b

a
y2−τdy +

∫ b

1/b
x2−τ

∫ 1/x

a
y2−τdydx

+
∫ b

1/b
x1−τ

∫ b

1/x
y1−τdydx

=
(bτ−3 − a3−τ)(b3−τ − a3−τ)

(3− τ)2 +
1

3− τ

∫ b

1/b
x2−τ(xτ−3 − a3−τ)dx

+
1

2− τ

∫ b

1/b
x1−τ(b2−τ − xτ−2)dx

=
(bτ−3 − a3−τ)(b3−τ − a3−τ)

(3− τ)2 +
1

3− τ

(
ln(b2)− a3−τ(b3−τ − bτ−3)

3− τ

)
+

1
2− τ

(
b2−τ(b2−τ − bτ−2)

2− τ
− ln(b2)

)
=

ln(b2)

(3− τ)(τ − 2)
− 1− b2(2−τ)

(2− τ)2 +
1− 2(ab)3−τ + a2(3−τ)

(3− τ)2 . (3.C.3)

The last member of (3.C.3) equals Imax
ab (τ) in (3.4.2), and the result follows from (3.3.11),

(3.C.1), (3.C.2) and (3.C.3).

3.D Proof of Proposition 3.4

Take u0 ≥ 1 and note that

f (u) ≥ u0 f (u0)min(u−1
0 , u−1), u ≥ 0, (3.D.1)

since, for f ∈ F,

f (u) ≥ f (u0), 0 ≤ u ≤ u0; u f (u) ≥ u0 f (u0), u ≥ u0. (3.D.2)
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Now for any c > 0,∫ b

a

∫ b

a
min(c, (xy)−1)(xy)2−τdxdy = cτ−2

∫ b
√

c

a
√

c

∫ b
√

c

a
√

c
min(1, (xy)−1)(xy)2−τdxdy

= cτ−2 Imax;a
√

c,b
√

c(τ). (3.D.3)

Also,

(τ − 2)2

(a2−τ − b2−τ)2 = cτ−2 (τ − 2)2

((a
√

c)2−τ − (b
√

c)2−τ)2 . (3.D.4)

The result then follows from combining (3.D.1), (3.D.3) and (3.D.4) into

C f
ab = A(τ)c f

ab(0)

≥ A(τ)u0 f (u0)

∫ b
a

∫ b
a (xy)2−τ min(u−1

0 , (xy)−1)dxdy[ ∫ b
a x1−τdx

]2
= A(τ)u0 f (u0)uτ−2

0 Imax;a
√

u0,b
√

u0
(τ)

(τ − 2)2

(a2−τ − b2−τ)2

= u0 f (uu)Cmax
a0b0

(τ),

(3.D.5)

which proves the proposition.

3.E Derivation of Equation (3.5.1)

We derive (3.5.1) assuming (3.3.9) and that
∣∣ln(ab)/ ln(b2)

∣∣ is small. In the present
case, where a and b are given by (3.2.9) and (3.3.8) with hmin = 1, this indeed holds
since

∣∣ln(ab)/ ln(b2)
∣∣ = (τ − 2)/(3− τ). With s = τ − 2 we consider

Cmax
ab (τ) =

s2

(a−s − b−s)2

[ ln(b2)

s(1− s)
− 1− b−2s

s2 +
1− 2(ab)1−s + a2(1−s)

(1− s)2

]
, (3.E.1)

where we have written a instead of ahmin for notational convenience. We Taylor
expand the term within brackets around s = 0, assuming s ln(b2) of order unity and
less,

ln(b2)

s(1− s)
− 1− b−2s

s2 +
1− 2(ab)1−s + a2(1−s)

(1− s)2

= 1
2 ln2 b2(1− 1

3 s ln(b2) + . . . + O((ln2 b2)−1)
)
. (3.E.2)

Also, Taylor expanding (a−s − b−s)/s around s = 0 yields

a−s − b−s

s
= ln(b/a)

[
1− 1

2 s ln(ab) + 1
6 s2(ln2 b + ln b ln a + ln2 a)− . . .

]
. (3.E.3)

Note that

ln(b/a) = ln(b2)− ln(ab) = ln(b2)
(

1− ln(ab)
ln(b2)

)
, (3.E.4)
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ln2 b + ln b ln a + ln2 a = ln2 b
(

1− ln(ab)
ln b

+
( ln(ab)

ln b

)2)
. (3.E.5)

Thus we get

a−s − b−s

s
= ln(b2)

(
1− ln(ab)

ln(b2)

)(
1− 1

2 s ln(ab) + 1
6 s2 ln2 b

(
1 + O

( ln(ab)
ln b

)))
≈ ln(b2)[1− 1

2 s ln(ab) + 1
6 s2 ln2 b], (3.E.6)

where we have used the assumption that | ln(ab)/ ln b| is small. When we insert
(3.E.2) and (3.E.6) into (3.E.1) and divide through ln2(b2), we arrive at (3.5.1).

3.F Monotonicity properties for Cab(τ)

In this appendix we show that Cab(τ) is bounded from above by a closely related
function that decreases in τ. Notice that Proposition 3.2 assumes a and b fixed. We
have from (3.3.10) and (3.2.9) that

a = a(τ) = (nE [h])−1/2 , b = b(τ) = (nE [h])
3−τ

2(τ−1) (3.F.1)

where E [h] is given in (3.2.8). Below we use that E [h] decreases in τ ∈ (2, 3]; this is
clear intuitively and can be proved rigorously by using Lemma 3.1. We have

Cab(τ) = A(τ)G(τ, a(τ), b(τ)), (3.F.2)

where
A(τ) =

∫ n

hmin

ρ(h)(1− (1 + h)e−h)dh, (3.F.3)

with density ρ(h) = Ch−τ on [hmin, n] and

G(τ, a, b) =

∫ b
ahmin

∫ b
ahmin

(xy)2−τ f (xy)dxdy( ∫ b
ahmin

x1−τdx
)2 . (3.F.4)

Proposition 3.2 says that

(i) G decreases in τ (when a and b are fixed).

With the method of the proof of Proposition 3.2 in Appendix 3.A, we will show that

(ii) A decreases in τ,

(iii) G increases in a and in b.

Showing that G(τ, a(τ), b(τ)) decreases in τ is complicated by the facts that a(τ)
increases in τ, see (iii), and that the dependence of a(τ) and b(τ) on τ is rather
involved. Let m and M be the minimum and maximum, respectively, of E [h] when
τ ∈ [2, 3] (m = E [h] |h=3≈ 2hmin, M = E [h] |τ↓2≈ hmin ln(n/hmin) from (3.2.8) and
the monotonicity of E [h]). Letting

ā := (nm)−1/2 , b̄(τ) = (nM)
3−τ

2(τ−1) , (3.F.5)
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we have a(τ) ≤ ā, b(τ) ≤ b̄(τ), and so by (iii)

G(τ, a(τ), b(τ)) ≤ G(τ, ā, b̄(τ)). (3.F.6)

The right-hand side of (3.F.6) decreases in τ by (i) and (iii) and the fact that b̄(τ)
decreases in τ. Therefore, Cab(τ) in (3.F.2) is bounded above by a closely related
function that does decrease in τ.

We have shown that G(τ, a, b) decreases in τ ∈ [2, 3]. We shall show now that

(ii) A decreases in τ and increases in l,

(iii) G increases in a and in b.

Proof that A decreases in τ. Since d
dτ h−τ = −h−τ ln h, we have

∂A
∂τ
≤ 0 ⇐⇒

∫ n

hmin

−h−τ(1− (1 + h)e−h) ln hdh
∫ n

hmin

h−τdh

−
∫ n

hmin

h−τ(1− (1 + h)e−h)dh
∫ n

hmin

−hh−τ ln hdh ≤ 0

⇐⇒
∫ n

hmin
h−τ(1− (1 + h)e−h) ln hdh∫ n

hmin
h−τ(1− (1 + h)e−h)dh

≥
∫ n

hmin
h−τ ln hdh∫ n

hmin
h−τdh

. (3.F.7)

Consider on [hmin, n] the pdf’s

p(h) =
h−τ(1− (1 + h)e−h)∫ n

hmin
h−τ

1 (1− (1 + h1)e−h1)dh1
, (3.F.8)

q(h) =
h−τ∫ n

hmin
h−τ

1 dh1
= ρ(h). (3.F.9)

Clearly p(h)/q(h) = C(1− (1 + h)e−h) with C independent of h ∈ [hmin, n]. Hence,
p(h)/q(h) is increasing in [hmin, n]. Also, ln(h) = g(h) is increasing in [hmin, n].
Hence, by Lemma 3.1, ∫ n

hmin

g(h)p(h)dh ≥
∫ n

hmin

g(h)q(h)dh, (3.F.10)

and this is the last inequality in (3.F.7).

Proof that G increases in b. Again, for notational simplicity, we write a and b instead
of ahmin and bhmin respectively. Let τ and a be fixed, and set

p(x, y) = (xy)2−τ f (xy), P(b, y) =
∫ b

a
p(x, y)dx. (3.F.11)

We have

d
db

[ ∫ b

a

∫ b

a
(xy)2−τ f (xy)dxdy

]
=

d
db

[ ∫ b

a
P(b, y)dy

]
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= P(b, b) +
∫ b

a

∂P
∂b

(b, y)dy =
∫ b

a
p(x, b)dx +

∫ b

a
p(b, y)dy

= 2
∫ b

a
p(x, b)dx = 2

∫ b

a
(xb)2−τ f (xb)dx (3.F.12)

because of symmetry of p(x, y). Also,

d
db

( ∫ b

a
x1−τdx

)2
= 2b1−τ

∫ b

a
x1−τdx. (3.F.13)

Therefore,

∂G
∂b
≥ 0 ⇐⇒ 2

∫ b

a
(xb)2−τ f (xb)dx

( ∫ b

a
x1−τdx

)2

− 2
∫ b

a

∫ b

a
(xy)2−τ f (xy)dxdyb1−τb1−τ

∫ b

a
x1−τdx ≥ 0

⇐⇒
∫ b

a (xb)2−τ f (xb)dx∫ b
a

∫ b
a (xy)2−τ f (xy)dxdy

≥ b1−τ∫ b
a x1−τdx

⇐⇒ W(b) ≥ V(b), (3.F.14)

where W(x) and V(x) are the pdf’s as defined in (3.A.5) and (3.A.6). Since W(x)/V(x)
increases in x ∈ [a, b], we get

1 =
∫ b

a
W(x)dx =

∫ b

a

W(x)
V(x)

V(x)dx ≤ W(b)
V(b)

∫ b

a
V(x)dx =

W(b)
V(b)

, (3.F.15)

and this gives the last inequality in (3.F.14).

Proof that G increases in a. This proof is very similar to the proof that G increases in b.
Let τ and b be fixed. We now have

d
da

[ ∫ b

a

∫ b

a
(xy)2−τ f (xy)dxdy

]
= −2

∫ b

a
(xa)2−τ f (xa)dx, (3.F.16)

and
d
da

( ∫ b

a
x1−τdx

)2
= −2a1−τ

∫ b

a
x1−τdx. (3.F.17)

Then, as in (3.F.14),

∂G
∂a
≥ 0 ⇐⇒

∫ b
a (xa)2−τ f (xa)dx∫ b

a

∫ b
a (xy)2−τ f (xy)dxdy

≤ a1−τ∫ b
a x1−τdx

⇐⇒ W(a) ≤ V(a), (3.F.18)

and the inequality follows again from increasingness of W(x)/V(x).
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In this chapter, we again study clustering in the rank-1 inhomogeneous random
graph, as in Chapter 3. Whereas Chapter 3 focused on the global clustering coefficient
by taking the average over all vertices in the network, we now study local clustering to
obtain a more detailed understanding of triangle formation in rank-1 inhomogeneous
random graphs. That is, we study c(k), the probability that two neighbors of a degree-
k vertex are neighbors themselves. We investigate how the clustering spectrum
k 7→ c(k) scales with k and show that c(k) follows a universal curve that consists of
three k-ranges where c(k) first remains flat, then starts declining, and eventually
settles on a power law c(k) ∼ k−α with α depending on the power law of the degree
distribution. We test these results against ten contemporary real-world networks and
explain analytically why the universal curve properties only reveal themselves in
large networks.

4.1 Introduction

In uncorrelated networks the clustering spectrum k 7→ c(k) defined in (1.2.4) remains
constant and independent of k. However, the majority of real-world networks have
spectra that decay in k, as first observed in technological networks including the
Internet [176, 187]. Figure 4.1 shows the same phenomenon for a social network:
YouTube users as vertices, and edges indicating friendships between them [137].

Close inspection suggests the following properties, not only in Figure 4.1, but also
in the nine further networks in Figure 4.2. The right end of the spectrum appears
to be of the power-law form k−α; approximate values of α give rise to the dashed
lines; (ii) The power law is only approximate and kicks in for rather large values of
k. In fact, the slope of c(k) decreases with k; (iii) There exists a transition point: the
minimal degree as of which the slope starts to decline faster and settles on its limiting
(large k) value.

For scale-free networks a decaying c(k) is taken as an indicator for the presence
of modularity and hierarchy [187], collections of subgraphs with dense connections
within themselves and sparser ones between them. The existence of clusters of dense

67
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Figure 4.1: c(k) for the YouTube social network

interaction signals hierarchical or nearly decomposable structures. When the function
c(k) falls off with k, low-degree vertices have relatively high clustering coefficients,
creating small modules that are connected through triangles. In contrast, high-degree
vertices have very low clustering coefficients, and therefore act as bridges between
the different local modules. This also explains why c(k) is not just a local property,
and when viewed as a function of k, measures crucial mesoscopic network properties
such as modularity, clusters and communities. The behavior of c(k) also turns out to
be a good predictor for the macroscopic behavior of the network. Randomizing real-
world networks while preserving the shape of the c(k) curve produces networks with
very similar component sizes as well as similar hierarchical structures as the original
network [202]. Furthermore, the shape of c(k) strongly influences the behavior of
networks under percolation [198]. This places the c(k)-curve among the most relevant
indicators for structural correlations in network infrastructures.

In this chapter, we obtain a precise characterization of clustering in the rank-1
inhomogeneous random graph. We start from an explicit form of the c(k) curve [35, 74,
199], and obtain a detailed description of the c(k)-curve in the large-network limit that
provides rigorous underpinning of the empirical observations (i)-(iii). We find that
the decay rate in the rank-1 inhomogeneous random graph is significantly different
from the exponent c(k) ∼ k−1 that has been found in a hierarchical graph model [187]
as well as in preferential attachment models with enhanced clustering [132, 204].
Furthermore, we show that before the power-law decay of c(k) kicks in, c(k) first has
a constant regime for small k, and a logarithmic decay phase. This characterizes the
entire clustering spectrum of the rank-1 inhomogeneous random graph.

This chapter is structured as follows. Section 4.2 introduces the random graph
model and its local clustering coefficient. Section 4.3 presents the main results for
the clustering spectrum. Section 4.4 explains the shape of the clustering spectrum in
terms of an energy minimization argument, and Section 4.5 quantifies how fast the
limiting clustering spectrum arises as a function of the network size. We conclude
with a discussion in Section 4.6 and present all mathematical derivations of the main
results in the appendix.

4.2 Rank-1 inhomogeneous random graph

As null model we employ the rank-1 inhomogeneous random graph, described
in Section 1.1.4. We assume that the vertex weights (hi)i∈[n] are drawn from the
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Figure 4.2: c(k) for several information (red), technological (purple) and social (blue)
real-world networks. (a) Hudong encyclopedia [165], (b) Baidu encyclopedia [165], (c)
WordNet [150], (d) TREC-WT10g web graph [12], (e) Google web graph [137], (f) Inter-
net on the Autonomous Systems level [137], (g) Catster/Dogster social networks [133],
(h) Gowalla social network [137], (i) Wikipedia communication network [137]. The
different shadings indicate the theoretical boundaries of the regimes as in Figure 4.3,
with n and τ as in Table 4.1.

probability density

ρ(h) = Ch−τ (4.2.1)

for h ≥ hmin and some constant C. Each pair of vertices is joined independently with
probability p(h, h′) with h and h′ the weights associated to the two vertices.

The structural and natural cutoff, also described in Section 3.2.2, both play a
crucial role in the description of the clustering spectrum. The structural cutoff hs is
defined as the largest possible upper bound on the degrees required to avoid degree
correlations, while the natural cutoff hc characterizes the maximal degree in a sample
of n vertices. We again use the default choices for the structural and natural cutoffs



70 Chapter 4. Local clustering in inhomogeneous random graphs

described in Section 1.1.4:

hs =
√

nE [h], hc = (nE [h])1/(τ−1). (4.2.2)

The fact that hs < hc for scale-free networks with exponent τ ∈ (2, 3] gives rise to
structural negative degree correlations. Throughout this chapter we use the con-
nection probability (although many asymptotically equivalent choices are possible;
see Chapter 3 and Section 4.3)

p(h, h′) = min
(

1,
hh′

h2
s

)
= min

(
1,

hh′

nE [h]

)
. (4.2.3)

In this chapter, we work with c̄(h), the local clustering coefficient of a randomly
chosen vertex with weight h. However, when studying local clustering in real-world
data sets, we only observe c(k), the local clustering coefficient of a vertex of degree k.
In Appendix 4.C we show that the approximation c̄(h) ≈ c(h) is highly accurate. We
start from the explicit expression for c̄(h) [35], which measures the probability that
two randomly chosen edges from h are neighbors, i.e.,

c̄(h) =
∫

h′

∫
h′′

p(h′|h)p(h′, h′′)p(h′′|h)dh′′dh′, (4.2.4)

with p(h′|h) the conditional probability that a randomly chosen edge from an h-vertex
is connected to an h′-vertex and p(h, h′) as in (4.2.3). The goal is now to characterize
the c̄(h)-curve (and hence the c(k)-curve).

4.3 Universal clustering spectrum

The asymptotic evaluation of the double integral (4.2.4) in the large-n regime reveals
three different ranges, defined in terms of the scaling relation between the weight h
and the network size n. The three ranges together span the entire clustering spectrum
as shown in Figure 4.3. We present the behavior of c̄(h) in these ranges below, the
detailed calculations are deferred to Appendix 4.A.

The first range pertains to the smallest-degree vertices, i.e., vertices with a weight
that does not exceed nβ(τ) with β(τ) = (τ − 2)/(τ − 1). In this case we show that

c̄(h) ≈ τ − 2
3− τ

h4−2τ
s ln

(
h2

c /h2
s
)

∝ n2−τ ln n h ≤ nβ(τ), (4.3.1)

In particular, here the local clustering does not depend on the vertex weight and in fact
corresponds with the large-n behavior of the global clustering coefficient of Chapter 3.
The interval [0, β(τ)] diminishes when τ is close to 2, a possible explanation for why
the flat range associated with Range I is hard to recognize in some of the real-world
data sets.

Range II considers vertices with weights (degrees) above the threshold nβ(τ),
but below the structural cutoff

√
n. These vertices start experiencing structural

correlations, and close inspection of the integral (4.2.4) yields

c̄(h) ≈ h4−2τ
s

ln
(
h2

s /h2)
(τ − 2)(3− τ)

∝ n2−τ ln
(

n/h2
)

, nβ(τ) ≤ h ≤
√

n. (4.3.2)



4.4. Energy minimization 71

h

c̄(h)

nβ(τ)
n

1
2 n

1
τ−1

I II III

Figure 4.3: Clustering spectrum h 7→
c̄(h) with three different ranges for h:
the flat range, logarithmic decay, and
the power-law decay.
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Figure 4.4: c̄(h) for r(u) = min(u, 1)
(line), r(u) = u/(1 + u) (dashed) and
r(u) = 1− e−u (dotted), obtained by
calculating (4.A.6) numerically.

This range shows relatively slow, logarithmic decay in the clustering spectrum, and
is clearly visible in the ten data sets.

Range III considers weights above the structural cutoff, when the restrictive effect
of degree-degree correlations becomes more evident. In this range we find that

c̄(h) ≈ 1
(3− τ)2 (hs/h)6−2τh4−2τ

s ∝ n5−2τh2τ−6, h ≥
√

n, (4.3.3)

hence power-law decay with exponent α = 2(3− τ). Such power-law decay has
been observed in many real-world networks [58, 131, 140, 187, 196, 212], where most
networks were found to have power-law exponent close to one. The asymptotic
relation (4.3.3) shows that the exponent α decreases with τ and takes values in the
entire range (0, 2). Table 4.1 contains estimated values of α for the ten data sets.

Other connection probabilities. In Chapter 3 we have presented a class of functions
r(u) = u f (u), u ≥ 0, so that

p(h, h′) = r(u) with u = hh′/h2
s (4.3.4)

has appropriate monotonicity properties. The maximal member r(u) = min(u, 1)
of this class yields p(h, h′) in (4.2.3) and is representative of the whole class, while
allowing explicit computation and asymptotic analysis of c̄(h) as in Chapter 3 and
this chapter. Figure 4.4 shows that other asymptotically equivalent choices such as
r(u) = u/(1 + u) and r(u) = 1− e−u have comparable clustering spectra. A minor
difference is that the choice r(u) = min(1, u) forces c̄(h) to be constant on the range
h ≤ nβ(τ), while the other two choices show a gentle decrease.

4.4 Energy minimization

We now explain why the clustering spectrum splits into three ranges, using an
argument that minimizes the energy needed to create triangles among vertices with
specific weights.
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Figure 4.5: Orders of magnitude of the major contributions in the different h-ranges.
The highlighted edges are present with asymptotically positive probability.

In all three ranges for h, there is one type of ‘most likely’ triangle, as shown in
Figure 4.5. This means that most triangles containing a vertex v with weight h are
triangles with two other vertices v′ and v′′ with weights h′ and h′′ of specific sizes,
depending on h. The probability that a triangle is present between v, v′ and v′′ can be
written as

min
(

1,
hh′

nE [h]

)
min

(
1,

hh′′

nE [h]

)
min

(
1,

h′h′′

nE [h]

)
. (4.4.1)

While the probability that such a triangle exists among the three vertices thus increases
with h′ and h′′, the number of such vertices decreases with h′ and h′′ because vertices
with higher weights are rarer. Therefore, the maximum contribution to c̄(h) results
from a trade-off between large enough h′, h′′ for the occurrence of the triangle to be
likely, and h′, h′′ small enough to have enough copies. Thus, having h′ > nE [h] /h is
not optimal, since then the probability that an edge exists between v and v′ no longer
increases with h′. This results in the bound

h′, h′′ ≤ nE [h]/h. (4.4.2)

Similarly, h′h′′ > nE [h] is also suboptimal, since then further increasing h′ and h′′

does not increase the probability of an edge between v′ and v′′. This gives as a second
bound

h′h′′ ≤ nE [h] . (4.4.3)

In Ranges I and II, h <
√

nE [h], so that nE [h] /h >
√

nE [h]. In this situation
we reach bound (4.4.3) before we reach bound (4.4.2). Therefore, the maximum
contribution to c̄(h) comes from h′h′′ ≈ n, where also h′, h′′ < nE [h] /h because
of the bound (4.4.2). Here the probability that the edge between v′ and v′′ exists is
large, while the other two edges have a small probability to be present, as shown in
Figure 4.5a. For h in Range I, the bound (4.4.2) is superfluous, since in this regime
nE [h] /h > hc, while the network does not contain vertices with weights larger than
hc. This bound indicates the minimal value of h′ such that an h-vertex is guaranteed
to be connected to an h′-vertex. Thus, vertices in Range I are not even guaranteed to
have connections to the highest-degree vertices, hence they are not affected by the
single-edge constraints. Therefore, the value of c̄(h) in Range I is independent of h.

In Range III, h >
√

nE [h], so that nE [h] /h <
√

nE [h]. Therefore, we reach
bound (4.4.2) before we reach bound (4.4.3). Thus, we maximize the contribution to
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n τ g.o.f. α
Hudong 1.984.484 2,30 0.00 0,85
Baidu 2.141.300 2,29 0.00 0,80
Wordnet 146.005 2,47 0.00 1,01
Google web 875.713 2,73 0.00 1,03
AS-Skitter 1.696.415 2,35 0.06 1,12
TREC-WT10g 1.601.787 2,23 0.00 0,99
Wiki-talk 2.394.385 2,46 0.00 1,54
Catster/Dogster 623.766 2,13 0.00 1,20
Gowalla 196.591 2,65 0.80 1,24
Youtube 1.134.890 2,22 0.00 1,05

Table 4.1: Data sets. n denotes the number of vertices, τ the exponent of the tail of
the degree distribution estimated by the method proposed in [66] together with the
goodness-of-fit criterion proposed in [66] (when the goodness of fit is at least 0.10, a
power-law tail cannot be rejected), and α denotes the exponent of c(k).

the number of triangles by choosing h′, h′′ ≈ nE [h] /h. Then the probability that the
edge from v to v′ and from v to v′′ is present is large, while the probability that the
edge between v′ and v′′ exists is small, as illustrated in Figure 4.5b. We make this
energy minimization argument more precise in Chapter 5.

4.5 Convergence rate

We next ask how large networks should be, or become, before they reveal the features
of the universal clustering spectrum. In other words, while the results in this chapter
are shown for the large-n limit, for what finite n-values can we expect to see the
different ranges and clustering decay? To bring networks of different sizes n on a
comparable footing, we consider

σn(t) =
ln (c̄(h)/c̄(hc))

ln(nE [h])
, h = (nE [h])t, (4.5.1)

for 0 ≤ t ≤ 1
τ−1 . The slope of σn(t) can be interpreted as a measure of the decay of c̄(h)

at h = (nE [h])t, and all curves share the same right end of the spectrum. Figure 4.6
shows this rescaled clustering spectrum for synthetic networks generated with the
rank-1 inhomogeneous random graph with τ = 2.25. Already 104 vertices reveal the
essential features of the spectrum: the decay and the three ranges. Increasing the
network size further to 105 and 106 vertices shows that the spectrum settles on the
limiting curve. Here we note that the real-world networks reported in Figures 4.1
and 4.2 are also of order 105-106 vertices, see Table 4.1.

Limiting form of σn(t) and finite-size effects. Consider σn(t) of (4.5.1). It follows
from the detailed form of (4.3.1) and (4.3.3) that

σn(0) =
ln(c̄(0)/c̄(hc))

ln(nE [h])
= γ +

ln(βy)
y

, (4.5.2)
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Figure 4.6: σn(t) for n = 104, 106 and 108 together with the limiting function, using
τ = 2.25, for which 1

τ−1 = 0.8.
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Figure 4.7: σ′n(t) plotted against n for two values of t. The dashed line gives the
limiting value of σ′n(t) as n→ ∞.

where

γ =
(3− τ)2

τ − 1
, β = (τ − 2)γ, y = ln(nE [h]). (4.5.3)

We have that σn(0) → γ as n → ∞. The right-hand side of (4.5.2) exceeds this
limit γ for y > 1/β with a maximum excess β/e for y = e/β, or equivalently.
ey = nE [h] = exp(e/β). Therefore, n needs to be much larger than exp(e/β) for
σn(0) to be close to its limiting value. This explains why the excess of σn(0) over its
limit value in Figure 4.6 with ee/β = 3× 1010 when τ = 9/4 persists even for large
values of n.

Using (4.3.1), (4.3.2) and (4.3.3), we obtain

lim
n→∞

σn(t) =

{
γ, 0 ≤ t ≤ 1

2 ,
γ + (3− τ)(1− 2t), 1

2 ≤ t ≤ 1
τ−1 .

(4.5.4)

Hence, some of the detailed information that is present in (4.3.1), (4.3.2) and (4.3.3),
disappears when taking the limit as in (4.5.4). This is in particular so for the ln n-factor
in (4.3.1) and the logarithmically decaying factor ln(n2/h) in Region II.
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Behavior of σ′n(t). By (4.5.1),

c̄(h) = c̄(hc)(nE [h])σn(t), h = (nE [h])t. (4.5.5)

When we fix a t0 and linearize σn(t) around t0, we get

c̄(h) ≈ c̄(hc)(nE [h])σn(t0)+(t−t0)σ
′
n(t0) = c̄(h0) (h/h0)

σ′n(t0) (4.5.6)

so that σ′n(t) =
d
dt σn(t) is a measure for the decay rate of c̄(h) at h = h0 = (nE [h])t0 .

In Appendix 4.B we again use the integral expression (4.2.4) to characterize the rate
of convergence of σ′n(t) as a function of n.

Figure 4.7 shows the values of σ′n(1/2) and σ′n(1/(τ − 1)) for finite-size networks
together with its limiting value. Indeed, extreme n-values are required for statistically
reliable slope estimates for e.g. t-values of 1

2 and 1
τ−1 . For example, when τ = 2.25,

Figure 4.7a shows that n needs to be of the order 1016 for the slope to be ‘close’
to its limiting value -1.5. When for example n = 106, the slope is much smaller:
approximately -1.1. This makes statistical estimation of the true underling power-
law exponent α of c̄(h) extremely challenging, especially for the relevant regime τ
close to 2, because enormous amounts of data should be available to get sufficient
statistical accuracy. Most data sets, even the largest available networks used in this
chapter, are simply not large enough to have sufficiently many samples from the
large-degree region to get a statistically accurate estimate of the power-law part. This
also explains why based on smaller data sets it is common to assume that α is roughly
one [58, 131, 140, 187, 196, 212]. Comparing Figure 4.7a and Figure 4.7b shows that
the convergence to the limiting value is significantly faster at the point t = 1/2 than
at the point t = 1/(τ − 1).

The extremely slow convergence to the limiting curve for n = ∞ is a well do-
cumented property of certain clustering measures [37, 121, 201], such as the global
clustering coefficient studied in Chapter 3. The behavior of σn(t) and σ′n(t) show that
the local clustering curve c(k) also converges extremely slowly to its limiting value.
Therefore, the estimates in Table 4.1 only serve as indicative values of α. Finally,
observe that Range II disappears in the limiting curve, due to the rescaling in (4.5.1),
but again only for extreme n-values. Because this chapter is about structure rather
than statistical estimation, the slow convergence in fact provides additional support
for the persistence of Range II in Figures 4.1 and 4.2.

Table 4.1 also shows that the relation α = −2(3− τ) is inaccurate for the real-world
data sets. One explanation for this inaccuracy is that the real-world networks might
not follow pure power-law distributions, as measured by the goodness of fit criterion
in Table 4.1, and visualized in Appendix 4.D. Furthermore, real-world networks
are usually highly clustered and contain community structures, whereas the rank-1
inhomogeneous random graph is locally tree-like. These modular structures may
explain, for example, why the power-law decay of the rank-1 inhomogeneous random
graph is less pronounced in the three social networks of Figure 4.2. It is remarkable
that despite these differences between rank-1 inhomogeneous random graphs and
real-world networks, the global shape of the c(k) curve of the rank-1 inhomogeneous
random graph is still visible in these heavy-tailed real-world networks.
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4.6 Discussion

The decaying clustering spectrum has often been contributed to the restriction that
no two vertices have more than one edge connecting them [146, 160, 161, 175, 176].
The physical intuition is that the single-edge constraint leads to fewer connections
between high-degree vertices than anticipated based on randomly assigned edges. We
have indeed confirmed this intuition for the rank-1 inhomogeneous random graph,
not only through analytically revealing the universal clustering curve, but also by
providing an alternative derivation of the three ranges based on energy minimization
and structural correlations.

In Chapter 5 we will show that the clustering spectrum revealed using the rank-1
inhomogeneous random graph also appears for a second widely studied null model.
This second model cannot be the configuration model (CM), which preserves the
degree distribution by making connections between vertices in the most random
way possible [41, 164]. Indeed, because of the random edge assignment, the CM
has no degree correlations, leading in the case of scale-free networks with diverging
second moment to uncorrelated networks with non-negligible fractions of self-loops
and multiple edges. This picture changes dramatically when self-loops and multiple
edges are avoided, a restriction mostly felt by the high-degree vertices, who can no
longer establish multiple edges among each other.

We therefore consider the erased configuration model (ECM) instead. While the
ECM removes some of the edges in the graph, only a small proportion of the edges
is removed, so that the degree of vertex j in ECM is still close to Dj [106, Chapter
7]. In the ECM, the probability that a vertex with degree Di is connected to a vertex
with degree Dj can be approximated by 1− e−Di Dj/E[D]n [108, Eq.(4.9)]. Therefore,
we expect the ECM and the rank-1 inhomogeneous random graph to have similar
properties (see e.g. Chapter 5) when we choose

p(h, h′) = 1− e−hh′/nE[h] ≈ hh′

nE [h]
. (4.6.1)

Figure 4.8 illustrates how both null models generate highly similar spectra, which
provides additional support for the claim that the clustering spectrum is a universal
property of these simple scale-free network models, similarly to the average nearest-
neighbor degree a(k) studied in Chapter 2. The ECM is more difficult to deal with
compared to rank-1 inhomogeneous random graphs, since edges in ECM are not
independent. In Chapter 5, we show that these dependencies vanish for the k 7→
c(k) curve, so that the ECM indeed has a similar clustering spectrum as the rank-1
inhomogeneous random graph.

The ECM and the rank-1 inhomogeneous random graph are both null models
with soft constraints on the degrees. Putting hard constraints on the degrees with
uniform random graphs has the nice property that simple graphs generated using this
null model are uniform samples of all simple graphs with the same degree sequence.
Constructing such uniform random graphs is notoriously hard when the second
moment of the degrees is diverging, since the CM will yield many multiple edges [91,
151, 213], but in Chapter 5 we show that our theoretical results for the k 7→ c(k) curve
for soft-constraint models carry over to these uniform simple graphs.
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Figure 4.8: c(k) for a rank-1 inhomogeneous random graph with connection probabili-
ties (4.6.1) (solid line) and an erased configuration model (dashed line). The presented
values of c(k) are averages over 104 realizations of networks of size n = 105.

In this chapter we have investigated the presence of triangles in the rank-1 in-
homogeneous random graph. We have shown that by first conditioning on the
vertex degree, there is a unique ‘most likely’ triangle with two other vertices of
specific degrees. We have not only explained this insight heuristically, but it is also
reflected in the elaborate analysis of the double integral for c̄(h) in Appendix 4.A.
As such, we have introduced an intuitive and tractable mathematical method for
asymptotic triangle counting. In Chapter 7 we show that this method carries over to
counting other subgraphs, such as squares, or complete graphs of larger sizes. For
any given subgraph, first conditioning on the vertex degree, we again find specific
configurations that are most likely.

4.A Derivation for the three ranges

In this appendix, we compute c̄(h) in (4.2.4), and we show that c̄(h) can be approx-
imated by (4.3.1), (4.3.2), or (4.3.3), depending on the value of h. Throughout the
appendix, we assume that p(h, h′) = min(1, hh′/h2

s ) and ρ(h) = Ch−τ . Then, the
derivation of c̄(h) in [202] yields

c(h) =

∫ hc
1

∫ hc
1 ρ(h′)p(h, h′)ρ(h′′)p(h, h′′)p(h′, h′′)dh′′dh′[ ∫ hc

1 ρ(h′)p(h, h′)dh′
]2

=

∫ hc
1

∫ hc
1 (h′h′′)−τ min( hh′

h2
s

, 1)min( hh′′
h2

s
, 1)min( h′h′′

h2
s

, 1)dh′′dh′[ ∫ hc
1 (h′)−τ min( hh′

h2
s

, 1)dh′
]2 . (4.A.1)

Adopting the standard choices as in Chapter 3

hs =
√

nE [h], hc = (nE [h])1/(τ−1), (4.A.2)

and setting hmin = 1 gives

E [h] =
τ − 1
τ − 2

1− n2−τ

1− n1−τ
. (4.A.3)
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For ease of notation in the proofs below, we will use

a = h−1
s = (nE [h])−1/2, b = hc/hs = (nE [h])

3−τ
2(τ−1) , (4.A.4)

and
r(u) = min(u, 1). (4.A.5)

In this notation, (4.A.1) can be succinctly written as

c̄(h) =

∫ b
a

∫ b
a (xy)−τr(ahx)r(ahy)r(xy)dxdy[ ∫ b

a x−τr(ahx)dx
]2 . (4.A.6)

Because of the four min operators in the expression (4.A.1), we have to consider
various h-ranges. We compute the value of c̄(h) in these three ranges one by one.

Range I: h < h2
s /hc. We now show that in this range

c̄(h) ≈ τ − 2
3− τ

h4−2τ
s ln

(
h2

c /h2
s
)

∝ n2−τ ln n, (4.A.7)

which proves (4.3.1).
This range corresponds to h < 1/(ab) with a and b as in (4.A.4). In this range,

r(ahx) = ahx and r(ahy) = ahy for all x ∈ [a, b]. This yields for c(h)

c(h) =

∫ b
a

∫ b
a (xy)1−τr(xy)dxdy[ ∫ b

a x1−τdx
]2 . (4.A.8)

For the denominator we compute∫ b

a
x1−τdx =

a2−τ − b2−τ

τ − 2
. (4.A.9)

Since a� b, this can be approximated as

a2−τ − b2−τ

τ − 2
≈ a2−τ

τ − 2
. (4.A.10)

We can compute the numerator of (4.A.8) as∫ b

a

∫ b

a
(xy)1−τr(xy)dxdy

=
∫ 1/b

a

∫ b

a
(xy)2−τdxdy +

∫ b

1/b

∫ 1/x

a
(xy)2−τdxdy +

∫ b

1/b

∫ b

1/x
(xy)1−τdxdy

=

(
bτ−3 − a3−τ

) (
b3−τ − a3−τ

)
(3− τ)2 +

1
3− τ

(
ln
(

b2
)
− a3−τ

(
b3−τ − bτ−3)
3− τ

)
+

1
2− τ

(
b2−τ(b2−τ − bτ−2)

2− τ
− ln

(
b2
))

=
ln
(
b2)

(3− τ)(τ − 2)
− 1− b4−2τ

(τ − 2)2 +
1− 2(ab)3−τ + a6−2τ

(3− τ)2 .

(4.A.11)
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The first of these three terms dominates when

3− τ

τ − 1
ln(nE [h])

(3− τ)(τ − 2)
� 1

(τ − 2)2 (4.A.12)

and
3− τ

τ − 1
ln(nE [h])

(3− τ)(τ − 2)
� 1

(3− τ)2 , (4.A.13)

where we have used that b2 = (nE [h])(3−τ)/(τ−1). Thus, when ln(nE [h]) is large
compared to (τ − 1)/(τ − 2) and (τ − 1)(τ − 2)/(τ − 3)2, we obtain

c̄(h) ≈ τ − 2
3− τ

a2τ−4 ln
(

b2
)

∝ n2−τ ln(n), (4.A.14)

which proves (4.A.7).

Range II: h2
s /hc < h < hs In this range, we show that

c̄(h) ≈ h4−2τ
s

ln
(
h2

s /h2)+ M
(τ − 2)(3− τ)

∝ n2−τ
(

ln
(

n/h2
)
+ M

)
, (4.A.15)

for some positive constant M, which proves (4.3.2).
This range corresponds to (ab)−1 < h < a−1. For these values of h, we have

ahx, ahy = 1 for x, y = (ah)−1 ∈ (1, b) and xy = 1 for y = 1/x ∈ [a, b] when
b−1 < x < b. Then for the denominator of (4.A.6) we compute

∫ 1/(ah)

a
ahx1−τdx +

∫ b

1/(ah)
x−τdx

=
1

τ − 2
(a3−τh− (ah)τ−1) +

1
τ − 1

((ah)τ−1 − b1−τ)

= ah
(

a2−τ

τ − 2
− (ah)τ−2

(τ − 1)(τ − 2)
− b1−τ/(ah)

τ − 1

)
. (4.A.16)

Splitting up the integral in the numerator results in

Num(h) =
∫ b

a

∫ b

a
(xy)−τr(ahx)r(ahy)r(xy)dxdy

=
∫ b

1/(ah)

∫ b

1/(ah)
(xy)−τdydx + 2ah

∫ b

1/(ah)

∫ 1/(ah)

1/x
(xy)−τydydx

+ 2ah
∫ b

1/(ah)

∫ 1/x

a
(xy)1−τydydx + a2h2

∫ 1/(ah)

ah

∫ 1/x

a
(xy)2−τdydx

+ a2h2
∫ 1/(ah)

ah

∫ 1/(ah)

1/x
(xy)1−τdydx + a2h2

∫ ah

a

∫ 1/(ah)

a
(xy)2−τdydx

=: I1 + I2 + I3 + I4 + I5 + I6,
(4.A.17)



80 Chapter 4. Local clustering in inhomogeneous random graphs

where the factors 2 arise by symmetry of the integrand in x and y. Computing these
integrals yields

I1 = a2h2
(
(ah)τ−2 − a−1b1−τh−1

τ − 1

)2

, (4.A.18)

I2 = 2a2h2
(1− 1/(abh)

τ − 2
− (ah)2τ−4

(τ − 1)(τ − 2)

(
1− (abh)1−τ

) )
, (4.A.19)

I3 = 2a2h2
(1− 1/(abh)

3− τ
− hτ−3 (1− (abh)2−τ

)
(3− τ)(τ − 2)

)
, (4.A.20)

I4 = a2h2
(

ln((ah)−2)

3− τ
+

(a2h)3−τ − hτ−3

(3− τ)2

)
, (4.A.21)

I5 = a2h2
(

ln((ah)−2)

τ − 2
− 1− (ah)2τ−4

(τ − 2)2

)
, (4.A.22)

I6 = a2h2
(

1− hτ−3 + a6−2τ − (a2h)3−τ

(3− τ)2

)
. (4.A.23)

Since ah < 1 < ahb, the leading behavior of Num(h) is determined by the terms
involving ln((ah)−2) in I3 and I4, all other terms being bounded. Retaining only these
dominant terms, we get

Num(h) = a2h2 ln((ah)−2)

(τ − 2)(3− τ)
(1 + o(1)), (4.A.24)

provided that ah→ 0 as n→ ∞. In terms of the variable t in h = (nE [h])t, see (4.5.1),
this condition holds when we restrict to t ∈ [(τ − 2)/(τ − 1), 1

2 − ε] for any ε > 0.
Furthermore, from (4.A.16),(∫ b

a
x−τr(ahx)dx

)2

= a2h2
(

a2−τ

τ − 2

)2

(1 + o(1)). (4.A.25)

Hence, when ah→ 0, we have

c̄(h) =
τ − 2
3− τ

a2τ−4 ln
(
(ah)−2

)
(1 + o(1)) ∝ n2−τ ln

(
N/h2

)
. (4.A.26)

We compute c̄(h = 1/a) asymptotically by retaining only all constant terms
between brackets in (4.A.18)-(4.A.23) since all other terms vanish or tend to 0 as
n→ ∞. This gives

Num(h = 1/a)

= a2h2
( 1
(τ − 1)2 +

2
τ − 2

− 2
(τ − 1)(τ − 2)

+
2

3− τ
+

1
(3− τ)2

)
(1 + o(1))

= Pa2h2(1 + o(1)),
(4.A.27)

where P = 1
(τ−1)2 +

1
(3−τ)2 +

2
τ−1 + 2

3−τ . Together with (4.A.25), we find

c̄(h = 1/a) = P(τ − 2)2a2τ−4(1 + o(1)) ∝ n2−τ . (4.A.28)
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In Proposition 3.1, it has been shown that c̄(h) decreases in h, and then (4.A.15)
follows from (4.A.26) and (4.A.28).

Range III: hs < h < hc. We now show that when hs < h < hc, then

c̄(h) ≈ 1
(3− τ)2 (hs/h)6−2τh4−2τ

s ∝ n5−2τh2τ−6, (4.A.29)

which proves (4.3.3).
This range corresponds to 1/a < h < b/a. The denominator of (4.A.6) remains

the same as in the previous range and is given by (4.A.16). Splitting up the integral
in the numerator of (4.A.6) now results in

Num(h) =
∫ b

a

∫ b

a
(xy)−τr(ahx)r(ahy)r(xy)dxdy

=
∫ ah

1/(ah)

∫ b

1/x
(xy)−τdydx +

∫ b

ah

∫ b

1/(ah)
(xy)−τdydx

+
∫ ah

1/(ah)

∫ 1/x

1/(ah)
(xy)1−τdydx + 2ah

∫ b

ah

∫ 1/(ah)

1/x
(xy)−τydydx

+ 2ah
∫ ah

1/(ah)

∫ 1/(ah)

a
(xy)1−τydydx + 2ah

∫ b

ah

∫ 1/x

a
(xy)1−τydydx

+ a2h2
∫ 1/(ah)

a

∫ 1/(ah)

a
(xy)2−τdydx

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.
(4.A.30)

Computing these integrals yields

I1 = a2h2
(
(ah)−2 ln(a2h2)

τ − 1
+

b1−τ
(
(ah)−τ−1 − (ah)τ−3)

(τ − 1)2

)
, (4.A.31)

I2 = a2h2
(
(ah)−2 + b2−2τ(ah)−2

(τ − 1)2 − b1−τ
(
(ah)τ−3 + (ah)−τ−1)

(τ − 1)2

)
, (4.A.32)

I3 = a2h2
(
−(ah)−2 ln(a2h2)

τ − 2
+

(ah)2τ−6 − (ah)−2

(τ − 2)2

)
, (4.A.33)

I4 = 2a2h−2
(
− (abh)−1

τ − 2
+

(ah)−2

τ − 1
+

b1−τ(ah)τ−3

(τ − 1)(τ − 2)

)
, (4.A.34)

I5 = 2a2h2
(
(ah)2τ−6 + h1−τa4−2τ − hτ−3 − (ah)−2

(3− τ)(τ − 2)

)
, (4.A.35)

I6 = 2a2h2
( (ab)2−τh−1 − h1−τa4−2τ

(3− τ)(τ − 2)
− (abh)−1 − (ah)−2

3− τ

)
, (4.A.36)

I7 = a2h2
(

a6−2τ − 2hτ−3 + (ah)2τ−6

τ − 3

)
. (4.A.37)

A careful inspection of the terms between brackets in (4.A.31) and (4.A.37) shows
that the terms involving (ah)2τ−6 are dominant when ah → ∞. In terms of the
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variable t in h = (nE [h])t, see (4.5.1), we have that ah → ∞ when we restrict to
t ∈ [ 1

2 + ε, 1/(τ − 1)] for any ε > 0. When we retain only these dominant terms, we
have, when ah→ ∞,

Num(h) = a2h2(ah)2τ−6
(

1
(τ − 2)2 +

2
(3− τ)(τ − 2)

+
1

(3− τ)2

)
(1 + o(1))

= a2h2 (ah)2τ−6

(τ − 2)2(3− τ)2 (1 + o(1)).

(4.A.38)
Using (4.A.25) again, we get, when ah→ ∞,

c̄(h) =
1

(3− τ)2 (ah)2τ−6a2τ−4(1 + o(1)) ∝ n5−2τh2τ−6. (4.A.39)

Furthermore, c(1/a) is given by (4.A.28), while c̄(h) decreases in h. This gives (4.A.29).

4.B Exact and asymptotic decay rate of c̄(h) at h = hc and h = hs

In this appendix, we compute an exact expression for σ′n(t) at t = 1
τ−1 and t = 1

2 . We
then compute its limit as n → ∞ and we show that this limit is a lower bound for
σ′n(t). More precisely, we show the following result:

Proposition 4.1. Let a and b be as in (4.A.4). Then,

σ′n

(
1

τ − 1

)
= −2

(A + 3−τ
τ−2 C

A + 4−τ
τ−2 C

− D
E + D

)
, (4.B.1)

where

A =
1
b2

( − ln(b2)

(τ − 1)(τ − 2)
− 1− b2(1−τ)

(τ − 1)2 +
b2(τ−2) − 1
(τ − 2)2

)
, (4.B.2)

C =
( bτ−3 − a3−τ

3− τ

)2
, (4.B.3)

D =
1
b

bτ−1 − b1−τ

τ − 1
, (4.B.4)

E =
a2−τ − bτ−2

τ − 2
. (4.B.5)

Furthermore, for all n,

σ′n(
1

τ−1 ) > lim
M→∞

σ′M
(

1
τ−1

)
= −2(3− τ). (4.B.6)

The limit in (4.B.6) is consistent with the limiting value of σn(t) of (4.5.4).
We let hc = (nE [h])1/(τ−1), where we assume that n is so large that hc ≤ n.

This requires n to be of the order (1/ε)1/ε, where ε = τ − 2. To start the proof of
Proposition 4.1, note that in the a, b notation of (4.A.4),

c̄(h) =
K(h)
J(h)

, 0 ≤ h ≤ hc, (4.B.7)
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where

K(h) =
∫ b

a

∫ b

a
(xy)2−τ f (ahx) f (ahy) f (xy)dxdy, (4.B.8)

J(h) =
( ∫ b

a
x1−τ f (ahx)dx

)2
, (4.B.9)

with f (u) = min(1, u−1). Note that r(u) = u f (u), see (4.A.5). We compute

σ′n(t) =
d
dt

(
ln
(
c((nE [h])t)/c̄(hc)

)
ln(nE [h])

)
= (nE [h])t ln(nE [h])

c′((nE [h])t)

c((nE [h])t) ln(nE [h])

= h
c′(h)
c̄(h)

, h = (nE [h])t, (4.B.10)

where the prime on c indicates differentiation with respect to h. With (4.B.7) we get

c′(h)
c̄(h)

=
K′(h)
K(h)

− J′(h)
J(h)

, (4.B.11)

and we have to evaluate K(h), K′(h), J(h) and J′(h) at

h = hc = b/a. (4.B.12)

Lemma 4.1.

K(hc) = A +
4− τ

2− τ
C, K′(hc) =

−2a
b

(
A +

3− τ

τ − 2
C
)

, (4.B.13)

J(hc) = (D + E)2, J′(hc) = − 2a
b (D + E)D, (4.B.14)

with A, C, D, E as in (4.B.2)–(4.B.5).

From Lemma 4.1, (4.B.10) and (4.B.12) we get (4.B.1) in Proposition 4.1.

Proof of Lemma 4.1. Since hc = b/a,

K(hc) =
∫ b

a

∫ b

a
(xy)2−τ f (bx) f (by) f (xy)dxdy. (4.B.15)

With f (u) = min(1, u−1) we split up the integration range [a, b]× [a, b] into the four
regions [a, 1/b]× [a, 1/b], [1/b, b]× [1/b, b], [1/b, b]× [a, 1/b] and [a, 1/b]× [1/b, b],
where we observe that a ≤ 1/b ≤ 1 ≤ b. We first get∫ 1/b

a

∫ 1/b

a
(xy)2−τ f (bx) f (by) f (xy)dxdy =

∫ 1/b

a

∫ 1/b

a
(xy)2−τdxdy

=
( bτ−3 − a3−τ

3− τ

)2
= C. (4.B.16)
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Next,∫ b

1/b

∫ b

1/b
(xy)2−τ f (bx) f (by) f (xy)dxdy =

∫ b

1/b

∫ b

1/b
(xy)2−τ 1

bx
1
by

f (xy)dxdy

=
1
b2

∫ b

1/b

∫ b

1/b
(xy)1−τ f (xy)dxdy.

(4.B.17)
The remaining double integral with τ + 1 instead of τ has been evaluated in (3.C.3) as

− ln(b2)

(τ − 1)(τ − 2)
− 1− b2(1−τ)

(τ − 1)2 +
b2(τ−2)−1

(τ − 2)2 = b2 A. (4.B.18)

Finally, the two double integrals over [1/b, b]× [a, 1/b] and [a, 1/b]× [1/b, b] are by
symmetry both equal to∫ b

1/b

∫ 1/b

a
(xy)2−τ f (bx) f (by) f (xy)dxdy =

∫ b

1/b

∫ 1/b

a
(xy)2−τ 1

bx
· 1 · 1dxdy

=
1
b

bτ−2 − b2−τ

τ − 2
bτ−3 − a3−τ

3− τ

=
(bτ−3 − a3−τ)2

(τ − 2)(3− τ)
=

3− τ

τ − 2
C. (4.B.19)

Here we have used that, see (4.A.4),

b1−τ = a3−τ . (4.B.20)

Now the expression in (4.B.13) for K(hc) follows.
To evaluate K′(hc), we observe by symmetry that

K′(h) = 2
∫ b

a

∫ b

a
(xy)2−τax f ′(ahx) f (ahy) f (xy)dxdy. (4.B.21)

At h = hc, we have ah = b, and so

K′(hc) = 2
a
b

∫ b

a

∫ b

a
(xy)2−τbx f ′(bx) f (by) f (xy)dxdy. (4.B.22)

Now u f ′(u) = 0 for 0 ≤ u ≤ 1 and u f ′(u) = − f (u) for u ≥ 1. Hence, splitting
up the integration range into the four regions as earlier, we see that those over
[a, 1/b] × [a, 1/b] and [a, 1/b] × [1/b, b] vanish while those over [1/b, b] × [1/b, b]
and [1/b, b]× [a, 1/b] give rise to the same double integrals as in (4.B.17) and (4.B.19)
respectively. This yields the expression in (4.B.13) for K′(hc).

The evaluation of J(hc) and J′(hc) is straightforward from (4.B.9) with ah = b and
a splitting of the integration range [a, b] into [a, 1/b] and [1/b, b]. This yields (4.B.14),
and the proof of Lemma 4.1 is complete.

Proof of (4.B.6). We now turn to the limiting behavior of σ′n(
1

τ−1 ). We write

0 <
D

D + E
=

1− b2(1−τ)

τ−1
τ−2 (ab)2−τ − 1

τ−2 − 1
τ−1 b2(1−τ)

, (4.B.23)
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in which

b2(1−τ) = (nE [h])τ−3 → 0, (4.B.24)

(ab)2−τ = (nE [h])
(τ−2)2

τ−1 → ∞, (4.B.25)

as n→ ∞. Hence, D/(D + E)→ 0 as n→ ∞. Furthermore, we write

C =
b2(τ−3)

(τ − 3)2

(
1− (ab)3−τ

)2
, (4.B.26)

and

A =
b2(τ−3)

(τ − 2)2 (1− F), (4.B.27)

where

F = b−2(τ−2)
[τ − 2

τ − 1
ln(b2) +

(
τ − 2
τ − 1

)2
(1− b2(1−τ)) + 1

]
=

1
τ − 1

b−2(τ−2) ln(b2(τ−2))
(

1 + O(ln(b)−1)
)

. (4.B.28)

Now, using (4.B.20), we have

(ab)3−τ = b−2(τ−2) = (nE [h])
(τ−2)(3−τ)

τ−1 → 0 (4.B.29)

as n→ ∞. Thus, we get

lim
n→∞

A + 3−τ
2−τ C

A + 4−τ
2−τ C

=

1
(τ−2)2 +

3−τ
τ−2

1
(3−τ)2

1
(τ−2)2 +

4−τ
τ−2

1
(3−τ)2

= 3− τ, (4.B.30)

and this yields the equality in (4.B.6).
We finally turn to the inequality in (4.B.6) in Proposition 4.1. Obviously, we have

σ′n
(

1
τ−1

)
> −2

A + 3−τ
τ−2 C

A + 4−τ
τ−2 C

. (4.B.31)

We shall show that

A + 3−τ
τ−2 C

A + 4−τ
τ−2 C

≤ Aas +
3−τ
τ−2 Cas

Aas +
4−τ
τ−2 Cas

= 3− τ, (4.B.32)

where

Aas =
b2(τ−3)

(τ − 2)2 , Cas =
b2(τ−3)

(3− τ)2 , (4.B.33)

the asymptotic form of A and C as n → ∞ obtained from (4.B.27) and (4.B.26) by
deleting F and (ab)3−τ , respectively. The function

x ∈ [0, ∞) 7→ 1 + 3−τ
τ−2 x

1 + 4−τ
τ−2 x

(4.B.34)
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is decreasing in x ≥ 0, and so it suffices to show that

Cas

Aas
≤ C

A
, i.e., that

Cas

C
≤ Aas

A
. (4.B.35)

We have from (4.B.26) that

Cas

C
=

1

(1− (ab)3−τ)
2 , (4.B.36)

and from (4.B.27) and (4.B.28) that

A
Aas

= 1− F

= 1− b−2(τ−2) − b−2(τ−2)
[

τ − 2
τ − 1

ln(b2) +
(τ − 2

τ − 1

)2
(1− b2(1−τ))

]
. (4.B.37)

Using that (ab)3−τ = b−2(τ−2), see (4.B.29), we see that the inequality Cas/C ≤
Aas/A in (4.B.35) is equivalent to

(1− b−2(τ−2))2 ≥ 1− b−2(τ−2) − b−2(τ−2)

×
[

τ − 2
τ − 1

ln(b2) +
(τ − 2

τ − 1

)2
(1− b2(1−τ))

]
. (4.B.38)

Using that (1− u)2 − (1− u) = −u(1− u) and dividing through by u = b−2(τ−2),
we see that (4.B.38) is equivalent to

τ − 2
τ − 1

ln(b2) +
(τ − 2

τ − 1

)2
(1− b2(1−τ)) ≥ 1− b−2(τ−2). (4.B.39)

With y = ln(b2) ≥ 0, we write (4.B.39) as

K(y) :=
(τ − 2

τ − 1

)2
(1− e(1−τ)y) +

τ − 2
τ − 1

y− (1− e(2−τ)y) ≥ 0. (4.B.40)

Taylor development of K(y) at y = 0 yields

K(y) = 0 · y0 + 0 · y1 + 0 · y2 +
1
6
(τ − 2)2y3 + . . . . (4.B.41)

Furthermore,
K′′(y) = (τ − 2)2e(1−τ)y(ey − 1) > 0, y > 0. (4.B.42)

Therefore, K(0) = K′(0) = 0, while K′′(y) > 0 for y > 0. This gives K(y) > 0 when
y > 0, as required.

Similar to Proposition 4.1, we can derive the following result for σ′n(
1
2 ):
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Proposition 4.2.

σ′n(
1
2 ) = −2

(
G + H(

1 +
(

τ−1
3−τ

)2)G + 2H
− I

I + J

)
, (4.B.43)

where

G =

(
1− b1−τ

τ − 1

)2

, (4.B.44)

I =
1− b1−τ

τ − 1
, (4.B.45)

J =
b(τ−2)(τ−1)/(3−τ) − 1

τ − 2
, (4.B.46)

H =
1− 1/b− b1−τ(1− b2−τ)

(τ − 2)(3− τ)
− 1− b1−τ

(τ − 1)(τ − 2)
. (4.B.47)

Furthermore, for all n,

σ′n(
1
2 ) > lim

M→∞
σ′M( 1

2 ) = −1 +
2(τ − 2)

3− (τ − 2)2 . (4.B.48)

4.C From weights to degrees

In this chapter, we focus on computing c̄(h), the local clustering coefficient of a
randomly chosen vertex with weight h. However, when studying local clustering
in real-world data sets, we can only observe c(k), the local clustering coefficient of
a vertex of degree k. In this appendix, we show that for the rank-1 inhomogeneous
random graph, the difference between these two methods of computing the clustering
coefficient is small and asymptotically negligible. We consider

c̄(h) =

∫ hc
1

∫ hc
1 (h′h′′)2−τ p(h, h′)p(h, h′′)p(h′, h′′)dh′dh′′(∫ hc

1 x1−τ p(h, h′)dh′
)2 . (4.C.1)

We define c(k) as the average clustering coefficient over all vertices of degree k.
By [201], the probability that a vertex with weight h has degree k equals

g(k | h) =
e−hhk

k!
. (4.C.2)

Then, by [201],

c(k) =

{
1

P(k)

∫ hc
1 ρ(h)c̄(h)g(k | h)dh, k ≥ 2,

0, k < 2,
(4.C.3)

where c(k) = 0 for k < 2 because a vertex with degree less than 2 cannot be part of a
triangle. Here

P(k) =
∫ hc

1
g(k | h)ρ(h)dh (4.C.4)
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is the probability that a randomly chosen vertex has degree k.
First we consider the case h > n

τ−2
τ−1 . The Chernoff bound gives for the tails of the

Poisson distribution that

P (Poi(λ) > x) ≤ e−λ

(
eλ

x

)x
, x > λ, (4.C.5)

P (Poi(λ) < x) ≤ e−λ

(
eλ

x

)x
, x < λ. (4.C.6)

Let k(h) be the degree of a vertex with weight h. Then, for any M > 1

∞

∑
k=Mh

g(k | h) ≤
(

eM−1

MM

)h

, (4.C.7)

and for any δ ∈ (0, 1),
δh

∑
k=1

g(k | h) ≤
(

eδ−1

δδ

)h

. (4.C.8)

Because ex−1/xx < 1 for x 6= 1, (4.C.7) and (4.C.8) tend to zero as h→ ∞. Therefore,
for h large,

k(h) = h(1 + o(1)) (4.C.9)

with high probability. Therefore, when k is large, c(k) ≈ c̄(k).
On the other hand, for h� h2

s /hc,

∞

∑
h2

s /hc

g(k | h) ≤ e−h
(

eh
h2

s /hc

)h2
s /hc

, (4.C.10)

which is small by the assumption on h. Thus,

P(k) ≈
∫ h2

s /hc

1
g(k | h)ρ(h)dh. (4.C.11)

Furthermore, c̄(h) = c̄(0) in this regime of h. This results in

c̄(k) ≈ c̄(0)
∫ h2

s /hc
1 ρ(h)g(k | h)dh∫ h2

s /hc
1 ρ(h)g(k | h)dh

= c̄(0). (4.C.12)

Therefore, c(h) ≈ c̄(h) also when h is small.
Figure 4.9 shows that indeed the difference between c(k) and c(k) is small. When

τ approaches 2, the difference becomes larger. We see that for small values of k, c(k)
and c(k) are not very close. This is because (4.C.1) does not take into account that a
vertex with weight h may have less than 2 neighbors, so that its local clustering is
zero. In Chapter 3 we have shown how to adjust (4.A.6) to account for this.

4.D Degree distributions

Figure 4.10 shows the degree distributions of all ten networks of Table 4.1.



4.D. Degree distributions 89

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

k

c(k)/c̄(h)

τ =2.2
τ =2.5
τ =2.8

Figure 4.9: c(k) (dashed) and c̄(h) (line) for n = 105, averaged over 104 realizations.
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(a) The 5 largest networks of Table 4.1
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Figure 4.10: The probability that the degree of a vertex exceeds x in the networks of
Table 4.1.





5 Local clustering in erased configuration
models and uniform random graphs

Based on:
Triadic closure in simple scale-free networks with unbounded degree fluctuations

R. van der Hofstad, J.S.H. van Leeuwaarden, C. Stegehuis
Journal of Statistical Physics (2018)

and
Triangle counts in power-law unform random graphs

J. Gao, R. van der Hofstad, A. Southwell, C. Stegehuis
arXiv:1812.04289

We again study the local clustering coefficient c(k), but now for the erased configu-
ration model and the uniform random graph, where the degrees follow a power-law
distribution with exponent τ ∈ (2, 3). We show that c(k) falls off with k as well
as with the graph size n and eventually for k = Ω(

√
n) settles on a power law

c(k) ∼ n5−2τk−2(3−τ). We show that, apart from constants, the results for c(k) are
similar to those in the rank-1 inhomogeneous random graph of Chapter 4. We show
that only triangles consisting of triplets with uniquely specified degrees contribute to
the local clustering coefficient. Furthermore, apart from constants, c(k) behaves the
same in the uniform random graph and the erased configuration model. Interestingly,
despite the fact that the erased configuration model erases edges and the uniform
random graph does not, c(k) is higher in the erased configuration model than in the
uniform random graph.

5.1 Introduction

Chapter 4 showed that in many real-world networks, as well as in the popular rank-1
inhomogeneous random graph model, the local clustering coefficient c(k) of vertices
of degree k decays when k becomes large. In this chapter we again analyze c(k) for
networks with a power-law degree distribution with degree exponent τ ∈ (2, 3). To
analyze c(k), we now consider the configuration model in the large-network limit,
and count the number of triangles where at least one of the vertices has degree k.
When the degree exponent τ > 3, the total number of triangles in the configuration
model converges to a Poisson random variable [106, Chapter 7]. When τ ∈ (2, 3), the
configuration model contains many self-loops and multiple edges [106]. This creates
multiple ways of counting the number of triangles, as we will show below. In this
chapter, we count the number of triangles from a vertex perspective, which is the
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same as counting the number of triangles in the erased configuration model, where
all self-loops have been removed and multiple edges have been merged.

Another option to avoid multiple triangles between one set of three vertices, is
to analyze uniform random graphs instead: graphs sampled uniformly from the
ensemble of all simple graphs with a given degree sequence. Such graphs can be
generated by switching algorithms, that start with an initial graph, and rewire some
of the edges at each time step [11, 97, 151]. However, the number of necessary steps
for these algorithms to result in a uniform sample is unknown for τ ∈ (2, 3). We
analyze c(k) for uniform random graphs , and show that c(k) behaves similarly as
in the erased configuration model, apart from constants. Since erased configuration
models are easier to generate than uniform random graphs, this also justifies the
approximation of uniform random graphs by erasing edges in the configuration
model for τ ∈ (2, 3) if one is only interested in the scaling of the clustering coefficient.
Taking the precise asymptotics of c(k) into account, our results show that c(k) is
higher for erased configuration models than for uniform random graphs.

We show that the local clustering coefficient remains a constant times n2−τ log(n)
as long as k = o(

√
n). After that, c(k) starts to decay as c(k) ∼ k−γn5−2τ . We show

that this exponent γ depends on τ and can be larger than one. In particular, when
the power-law degree exponent τ is close to two, the exponent γ approaches two, a
considerable difference with other random graph models that predict c(k) ∼ k−1 [75,
132, 187]. Related to this result on the c(k) fall-off, we also show that for every vertex
with fixed degree k only pairs of vertices with specific degrees contribute to the
triangle count and hence local clustering.

The chapter is structured as follows. Section 5.2 describes the multiple ways
of triangle counting in the configuration model. We present our main results in
Section 5.3, including Theorems 5.1 and 5.5 that describe the three ranges of c(k) in
uniform random graphs. The next sections prove our main results for the erased
configuration model, and in particular focus on establishing Propositions 5.1 and 5.2
that are crucial for the proof of Theorem 5.1. Finally, Section 5.7 shows how to adjust
these proofs for uniform random graphs.

5.2 Basic notions

In this chapter, we focus on the configuration model, defined in Section 1.1.1 and the
uniform random graph, defined in Section 1.1.2. We take the degree sequence as an
i.i.d. sample of a random variable D such that

P(D = k) = Ck−τ , (5.2.1)

when k → ∞, where τ ∈ (2, 3) so that E[D2] = ∞. When this sample constructs
a sequence such that the sum of the variables is odd, we add an extra half-edge
to the last vertex. This does not affect our computations. In this setting, Dmax =

OP(n1/(τ−1)), where Dmax = maxv∈[n] Dv denotes the maximal degree of the degree
sequence.

Counting triangles. Let G = (V, E) denote a configuration model with vertex set
V = [n] := {1, . . . , n} and edge set E. We are interested in the number of triangles
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in G. There are two ways to count triangles in the configuration model. The first
approach is from an edge perspective, as illustrated in Figure 5.1. This approach counts
the number of triples of edges that together create a triangle. This approach may
count multiple triangles between one fixed triple of vertices. Let Xij denote the
number of edges between vertex i and j. Then, from an edge perspective, the number
of triangles in the configuration model is

∑
1≤i<j<k≤n

XijXjkXik. (5.2.2)

A different approach is to count the number of triangles from a vertex perspective. This
approach counts the number of triples of vertices that are connected. Counting the
number of triangles in this way results in

∑
1≤i<j<k≤n

1{Xij≥1}1{Xjk ≥ 1}1{Xik ≥ 1}. (5.2.3)

When the configuration model results in a simple graph, these two approaches give
the same result. When the configuration model results in a multigraph, these two
approaches may give substantially different numbers of triangles. In particular,
when the degree distribution follows a power-law with τ ∈ (2, 3), the number of
triangles is dominated by the number of triangles between the vertices of the highest
degrees, even though only few such vertices are present in the graph [162]. When
the exponent τ of the degree distribution approaches 2, then the number of triangles
between the vertices of the highest degrees will be as high as Θ(n3), which is much
higher than the number of triangles we would expect in any real-world network of
that size. When we count triangles from a vertex perspective, we count only one
triangle between these three vertices. Thus, the number of triangles from a vertex
perspective will be significantly lower. In this chapter, we focus on the vertex-based
approach for counting triangles. This approach is the same as counting triangles in
the erased configuration model defined in Section 1.1.3, where all multiple edges have
been merged, and the self-loops have been removed.

Let4k denote the number of triangles attached to vertices of degree k. When a
triangle consists of two vertices of degree k, it is counted twice in4k. Let Nk denote
the number of vertices of degree k. Then, the clustering coefficient of vertices with
degree k equals

c(k) =
1

Nk

24k
k(k− 1)

. (5.2.4)

When we count 4k from the vertex perspective, this clustering coefficient can be
interpreted as the probability that two random connections of a vertex with degree
k are connected. This version of c(k) is the local clustering coefficient of the erased
configuration model. It is possible that no vertex of degree k is present in the graph.
We therefore analyze

cε(k) =
1

|Mε(k)|
24Mε(k)

k(k− 1)
. (5.2.5)

where Mε(k) = {i ∈ [n] : Di ∈ [k(1 − ε), k(1 + ε)]}, and 4Mε(k) the number of
triangles attached to vertices in Mε(k). When no vertex in Mε(k) exists, we set
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(a) CM (b) ECM

Figure 5.1: From the edge perspective in the configuration model, these are two
triangles. From the vertex perspective, there is only one triangle.

cε(k) = 0. We will show that in the models we analyze, Mε(k) is non-empty with
high probability, so that cε(k) is well defined.

5.3 Main results

We first present our results for the erased configuration model, and then we present
our results for uniform random graphs.

5.3.1 Erased configuration model

The next theorem presents our main result on the behavior of the local clustering
coefficient in the erased configuration model:

Theorem 5.1. Let G be an erased configuration model, where the degrees are an i.i.d. sample
from a power-law distribution with exponent τ ∈ (2, 3) as in (5.2.1) with τ ∈ (2, 3). Take εn
such that limn→∞ εn = 0 and limn→∞ nk−(τ−1)εn = ∞. Define A = −Γ(2− τ) > 0 for
τ ∈ (2, 3), let µ = E [D] and C be the constant in (5.2.1). Then, as n→ ∞,

(Range I) for 1 < k = o(n(τ−2)/(τ−1)),

cεn(k)
n2−τ log(n)

P−→ 3− τ

τ − 1
µ−τC2 A, (5.3.1)

(Range II) for k = Ω(n(τ−2)/(τ−1)) and k = o(
√

n),

cεn(k)
n2−τ log(n/k2)

P−→ µ−τC2 A, (5.3.2)

(Range III) for k = Ω(
√

n) and k� n1/(τ−1),

cεn(k)
n5−2τk2τ−6

P−→ µ3−2τC2 A2. (5.3.3)

Theorem 5.1 shows three different ranges for the local clustering coefficient, and is
illustrated in Figure 5.2. Let us explain why these three ranges occur. Range I contains
small-degree vertices with k = o(n(τ−2)/(τ−1)). In Section 5.4.2 we show that these
vertices are hardly involved in self-loops and multiple edges in the configuration
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Figure 5.2: The three ranges of cεn(k)
defined in Theorem 5.1 on a log-log
scale.
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Figure 5.3: The normalized version of
cεn(k) for k = B
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n obtained from The-

orem 5.1 and Theorem 5.2.

model, and hence there is little difference between counting from an edge perspective
or from a vertex perspective. It turns out that these vertices barely form triadic
closures with hubs, which makes cεn(k) independent of k in Theorem 5.1. Range II
contains degrees that are neither small nor large with degrees k = Ω(n(τ−2)/(τ−1))
and k = o(

√
n). We can approximate the connection probability between vertices i

and j with 1− e−Di Dj/µn, where µ = E[D]. Therefore, a vertex of degree k connects to
vertices of degree at least n/k with positive probability. The vertices in Range II are
quite likely to have multiple connections with vertices of degrees at least n/k. Thus,
in this degree range, the single-edge constraint of the erased configuration model
starts to play a role and causes the slow logarithmic decay of cεn(k) in Theorem 5.1.
Range III contains the large-degree vertices with k = Ω(

√
n). Again we approximate

the probability that vertices i and j are connected by 1− e−Di Dj/µn. This shows that
vertices in Range III are likely to be connected to one another, possibly through
multiple edges. The single-edge constraint on all connections between these core
vertices causes the power-law decay of cεn(k) in Theorem 5.1.

Theorem 5.1 shows that the local clustering not only decays in k, it also decays
in the graph size n for all values of k. This decay in n is caused by the locally tree-
like nature of the configuration model. Chapter 4 showed that in large real-world
networks, cεn(k) is typically high for small values of k, which is unlike the behavior
in the erased configuration model. The behavior of cεn(k) for more realistic network
models is therefore an interesting question for further research. We believe that
including small communities to the configuration model such as in Chapter 11 would
only change the k 7→ cεn(k) curve for small values of k with respect to the erased
configuration model. Low-degree vertices will then typically be in highly clustered
communities and therefore have high local clustering coefficients. Most connections
from high-degree vertices will be between different communities, which results in a
similar k 7→ cεn(k) curve for large values of k as in the erased configuration model.

Observe that in Theorem 5.1 the behavior of cεn(k) on the boundary between
two different ranges may be different than the behavior inside the ranges. Since
k 7→ cεn(k) is a function on a discrete domain, it is always continuous. However, we
can extend the scaling limit of k 7→ cεn(k) to a continuous domain. Theorem 5.1 then
shows that the scaling limit of k 7→ cεn(k) is a smooth function inside the different
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ranges. Furthermore, filling in k = an(τ−1)/(τ−2) in Range II of Theorem 5.1 suggests
that k 7→ cεn(k) is also a smooth function on the boundary between Ranges I and II.
However, the behavior of k 7→ cεn(k) on the boundary between Ranges II and III is
not clear from Theorem 5.1. We therefore prove the following result in Section 5.6.1:

Theorem 5.2. For k = B
√

n,

cεn(k)
n2−τ

P−→ C2µ2−2τ B−2
∫ ∞

0

∫ ∞

0
(t1t2)

−τ(1− e−Bt1)(1− e−Bt2)(1− e−t1t2µ)dt1dt2.

(5.3.4)

Figure 5.3 compares cεn(k)/n2−τ for k = B
√

n using Theorem 5.2 and Theorem 5.1.
The line associated with Theorem 5.1 uses the result for Range II when B < 1, and
the result for Range III when B > 1. We see that there seems to be a discontinuity
between these two ranges. Figure 5.3 suggests that the scaling limit of k 7→ cεn(k) is
smooth around k ≈ √n, because the lines are close for both small and large B-values.
Theorem 5.3 shows that indeed the scaling limit of k 7→ cεn(k) is smooth for k of the
order

√
n:

Theorem 5.3. The scaling limit of k 7→ cεn(k) is a smooth function.

Most likely configurations. The three different ranges in Theorem 5.1 result from a
canonical trade-off caused by the power-law degree distribution. On the one hand,
high-degree vertices participate in many triangles. In Section 5.5.1 we show that the
probability that a triangle is present between vertices with degrees k, Du and Dv can
be approximated by(

1− e−kDu/µn
) (

1− e−kDv/µn
) (

1− e−DuDv/µn
)

. (5.3.5)

The probability of this triangle thus increases with Du and Dv. On the other hand, in
power-law distribution high degrees are rare. This creates a trade-off between the
occurrence of triangles between {k, Du, Dv}-triplets and the number of them. Surely,
large degrees Du and Dv make a triangle more likely, but larger degrees are less
likely to occur. Since (5.3.5) increases only slowly in Du and Dv as soon as Du, Dv =
Ω(µn/k) or when DuDv = Ω(µn), intuitively, triangles with Du, Dv = Ω(µn/k) or
with DuDv = Ω(µn) only marginally increase the number of triangles. In fact, we will
show that most triangles with a vertex of degree k contain two other vertices of very
specific degrees, those degrees that are aligned with the trade-off. The typical degrees
of Du and Dv in a triangle with a vertex of degree k are given by Du, Dv ≈ µn/k or
by DuDv ≈ µn.

Let us now formalize this reasoning. Introduce

Wk
n(δ) =


(u, v) : DuDv ∈ [δ, 1/δ]µn for k in Range I,
(u, v) : DuDv ∈ [δ, 1/δ]µn, Du, Dv < µn/(kδ) for k in Range II,
(u, v) : Du, Dv ∈ [δ, 1/δ]µn/k for k in Range III,

(5.3.6)
where the ranges are as in Theorem 5.1. Denote the number of triangles between one
vertex of degree k and two other vertices i, j with (i, j) ∈Wk

n(δ) by4k(Wk
n(δ)). The
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√

n

k

c1n/kc2n/k

(b) k >
√

n

Figure 5.4: The major contributions in the different ranges for k. The highlighted
edges are present with asymptotically positive probability.

next theorem shows that these types of triangles dominate all other triangles where
one vertex has degree k and formalizes the energy minimization argument for the
rank-1 inhomogeneous random graph of Section 4.4:

Theorem 5.4. Let G be an erased configuration model where the degrees are an i.i.d. sample
from a power-law distribution with exponent τ ∈ (2, 3). Then, for δn → 0 sufficiently slowly,

4k(Wk
n(δn))

4k

P−→ 1. (5.3.7)

For example, when k = Ω(
√

n), 4k(Wk
n(δn)) denotes all triangles between a

vertex of degree k and two other vertices with degrees in [δn, 1/δn]n/k. Theorem 5.4
then shows that the number of these triangles dominates the number of all other
types of triangles where one vertex has degree k. This holds when δn → 0, so that the
degrees of the other two vertices cover the entire Θ(n/k) range. The convergence of
δn → 0 should be sufficiently slowly, e.g., δn = 1/ log(n), for several combined error
terms of δn and n to go to zero.

Figure 5.4 illustrates the typical triangles containing a vertex of degree k as given
by Theorem 5.4. When k is small (k in Range I or II), a typical triangle containing
a vertex of degree k is a triangle with vertices u and v such that DuDv = Θ(n) as
shown in in Figure 5.4a. Then, the probability that an edge between u and v exists
is asymptotically positive and non-trivial. Since k is small, the probability that an
edge exists between a vertex of degree k and u or v is small. On the other hand, when
k is larger (in Range III), a typical triangle containing a vertex of degree k is with
vertices u and v such that Du = Θ(n/k) and Dv = Θ(n/k). Then, the probability that
an edge exists between k and Du or k and Dv is asymptotically positive whereas the
probability that an edge exists between vertices u and v vanishes. Figure 5.4b shows
this typical triangle.

Figure 5.5 shows the typical size of the degrees of other vertices in a triangle with
a vertex of degree k = nβ. When β < (τ − 2)/(τ − 1) (so that k is in Range I), the
typical other degrees are independent of the exact value of k. This shows why cεn(k)
is independent of k in Range I in Theorem 5.1. When (τ − 2)/(τ − 1) < β < 1

2 , the
range of possible degrees for vertices u and v decreases when k gets larger. Still,
the range of possible degrees for Du and Dv is quite wide. This explains the mild
dependence of cεn(k) on k in Theorem 5.1 in Range II. When β > 1

2 , k is in Range III.
Then the typical values of Du and Dv are considerably different from those in the
previous regime. The values that Du and Dv can take depend heavily on the value of
k. This explains the dependence of cεn(k) on k in Range III.
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Figure 5.5: Visualization of the contributing degrees when k = nβ and Du = nα. The
colored area shows the values of α that contribute to c(nβ).

Global and local clustering. The global clustering coefficient divides the total num-
ber of triangles by the total number of pairs of neighbors of all vertices. In Chapter 7
we show that the total number of triangles in the configuration model from a vertex
perspective is determined by vertices of degree proportional to

√
n. Thus, only tri-

angles between vertices on the border between Ranges II and III contribute to the
global clustering coefficient. The local clustering coefficient counts all triangles where
one vertex has degree k and provides a more complete picture of clustering from a
vertex perspective, since it covers more types of triangles.

Rank-1 inhomogeneous random graph. Our results for clustering in the erased
configuration model are very similar to the results on local clustering in rank-1
inhomogeneous random graphs of Chapter 4. Remember that in the inhomogeneous
random graph, every vertex is equipped with a weight hi, where the weights are
sampled from a power-law distribution. Then, vertices i and j are connected with
probability min(hihj/(µn), 1) [35, 61]. In the erased configuration model, we use that
the probability that a vertex with degree Di is connected to a vertex with degree Dj
can be approximated by

1− e−Di Dj/µn, (5.3.8)

which behaves similarly as min(DiDj/(µn), 1). Thus, the connection probabilities
in the erased configuration model can be interpreted as the connection probabilities
in the rank-1 inhomogeneous random graph, where the sampled degrees can be
interpreted as the weights. The major difference is that connections in the rank-1
inhomogeneous random graph are independent once the weights are sampled, whereas
connections in the erased configuration model are correlated once the degrees are
sampled. Indeed, in the erased configuration model we know that a vertex with
degree Di has at most Di other vertices as a neighbor, so that the connections from
vertex i to other vertices are correlated. Still, our results show that these correlations
are small enough for the results for local clustering to be similar as in the rank-1
inhomogeneous random graph.



5.3. Main results 99

5.3.2 Uniform random graphs

Since all degrees in uniform random graphs are sampled independently, we may
condition on a vertex of degree k being present, and analyze c(k) instead of cε(k). We
now present our result on c(k) in the uniform random graph:

Theorem 5.5 (Local clustering.). Let G be a uniform random graph, where the degrees are
an i.i.d. sample from a power-law distribution with exponent τ ∈ (2, 3) as in (5.2.1). Define
AURG = π/ sin(πτ) > 0 for τ ∈ (2, 3), let µ = E [D] and C be the constant in (5.2.1).
Then, as n→ ∞,

(Range I) for 1� k = o(n(τ−2)/(τ−1)), conditionally on Nk ≥ 1,

c(k)
n2−τ log(n)

P−→ 3− τ

τ − 1
µ−τC2 AURG, (5.3.9)

(Range II) for k = Ω(n(τ−2)/(τ−1)) and k = o(
√

n), conditionally on Nk ≥ 1,

c(k)
n2−τ log(n/k2)

P−→ µ−τC2 AURG, (5.3.10)

(Range III) for k = Ω(
√

n) and k� n1/(τ−1), conditionally on Nk ≥ 1,

c(k)
n5−2τk2τ−6

P−→ µ3−2τC2 A2
URG. (5.3.11)

Comparison with the erased configuration model. Theorems 5.1 and 5.5 show
that c(k) behaves very similarly in the erased configuration model and the uniform
random graph. In fact, the only difference is that the constant A = −Γ(2− τ) in
the erased configuration model, is replaced by AURG = π/ sin(πτ). Figure 5.6
shows that A > AURG for τ ∈ (2, 3). Thus, the local clustering coefficient of the
erased configuration model is higher than the local clustering coefficient of a uniform
random graph of the same degree sequence. Interestingly, this implies that the erased
configuration model contains more triangles with a degree k vertex than a uniform
random graph on the same degree sequence, even though edges are removed in the
erased configuration model. For the total triangle count, this was also empirically
observed in [15]. One possible explanation for this phenomenon is that most hubs
in uniform random graphs are forced to connect to many low-degree vertices to
still satisfy the simplicity constraint. These low-degree vertices barely participate in
triangles. In the erased configuration model, it may be more likely for higher-degree
vertices to connect to one another, creating more triangles.

5.3.3 Overview of the proof for the erased configuration model

We now show the outline of the proof of Theorem 5.1 for the erased configuration
model. The proof for c(k) in the uniform random graph has a similar structure,
and is given later in Section 5.7. To prove Theorem 5.1, we show that there is a
major contributing regime for cεn(k), which characterizes the degrees of the other
two vertices in a typical triangle with a vertex of degree k. We write this major
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Figure 5.6: The constant A of Theorem 5.1 is bigger than the constant AURG of
Theorem 5.5.

contributing regime as Wk
n(δ) defined in (5.3.6). The number of triangles adjacent to a

vertex of degree k is dominated by triangles between the vertex of degree k and other
vertices with degrees in a specific regime, depending on k. All three ranges of k have
a different spectrum of degrees that contribute to the number of triangles. We write

cεn(k) = cεn(W
k
n(δ)) + cεn(W̄

k
n(δ)), (5.3.12)

where cεn(W
k
n(δ)) denotes the contribution to cεn(k) from triangles where the other

two vertices (u, v) ∈ Wk
n(δ) and cεn(W̄

k
n(δ)) denotes the contribution to cεn(k) from

triangles where the other two vertices (u, v) /∈ Wk
n(δ). Furthermore, we write the

order of magnitude of the value of cεn(k) as f (k, n). Theorem 5.1 states that this order
should be

f (k, n) =


n2−τ log(n) for k = o(n(τ−2)/(τ−1)),
n2−τ log(n/k2) for k = Ω(n(τ−2)/(τ−1)), k = o(

√
n),

n5−2τk2τ−6 for k = Ω(
√

n).
(5.3.13)

We let Pn denote the conditional probability given (Di)i∈[n], and En the correspon-
ding expectation. The proof of Theorem 5.1 is largely built on the following two
propositions:

Proposition 5.1 (Main contribution).

cεn(W
k
n(δ))

f (n, k)
P−→

C2
∫ 1/δ

δ t1−τ(1− e−t)dt k = o(
√

n),

C2
(∫ 1/δ

δ t1−τ(1− e−t)dt
)2

k = Ω(
√

n).
(5.3.14)

Proposition 5.2 (Minor contributions). There exists κ > 0 such that for all ranges

lim sup
n→∞

En

[
cεn(W̄

k
n(δ))

]
f (n, k)

P−→ OP (δ
κ) . (5.3.15)

We now show how these propositions prove Theorem 5.1. Applying Proposi-
tion 5.2 together with the Markov inequality yields

P
(

cεn(W̄
k
n(δ)) > K f (k, n)δκ

)
= O(K−1). (5.3.16)
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Therefore,
cεn(k) = cεn(W

k
n(δ)) + OP ( f (k, n)δκ) . (5.3.17)

Replacing δ by δn, and letting δn → 0 slowly enough for all combined error terms of
δn and o( f (n, k)) in the expectation in (5.3.15) to converge to 0 then already proves
Theorem 5.4. To prove Theorems 5.1 and 5.2 we use Proposition 5.1, which shows
that

cεn(k)
f (k, n)

P−→

C2
∫ 1/δ

δ t1−τ(1− e−t)dt + O(δκ) k = o(
√

n),

C2
(∫ 1/δ

δ t1−τ(1− e−t)dt
)2

+ O(δκ) k = Ω(
√

n).
(5.3.18)

We take the limit of δ→ 0 and use that∫ ∞

0
x1−τ(1− e−x)dx =

∫ ∞

0

∫ x

0
x1−τe−ydydx =

∫ ∞

0

∫ ∞

y
x1−τe−ydxdy

= − 1
2− τ

∫ ∞

0
y2−τe−ydy = −Γ(3− τ)

2− τ
= −Γ(2− τ) =: A,

(5.3.19)
which proves Theorem 5.1.

The rest of the chapter is devoted to proving Propositions 5.1 and 5.2. We prove
Proposition 5.1 using a second moment method. We compute the expected value of
cεn(k) conditioned on the degrees as

En [cεn(k)] =
2 ∑w∈Mεn (k) En [4(w)]

|Mεn(k)|k(k− 1)
, (5.3.20)

where 4(w) denotes the number of triangles containing vertex w. Let Xij denote
the number of edges between vertex i and j in the configuration model, and X̂ij the
number of edges between i and j in the corresponding erased configuration model,
so that X̂ij ∈ {0, 1}. Now,

En

[
4(w) | D(er)

w = k
]
= 1

2 ∑
u,v 6=w

Pn(X̂wu = X̂wv = X̂uv = 1 | D(er)
w = k). (5.3.21)

Thus, to find the expected number of triangles, we need to compute the probability
that a triangle between vertices u, v and w exists, which we will do in Section 5.5.1.
After that, we show that this expectation converges to a constant when taking the
randomness of the degrees into account, and that the variance conditioned on the
degrees is small in Section 5.5.3. Then, we prove Proposition 5.2 in Section 5.6 using a
first moment method. We start in Section 5.4 to state some preliminaries.

5.4 Preliminaries

We now introduce some lemmas that we will use frequently while proving Propositi-
ons 5.1 and 5.2. Let Du denote a uniformly chosen vertex from the degree sequence
(Di)i∈[n] and let Ln = ∑i∈[n] Di denote the sum of the degrees.
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5.4.1 Conditioning on the degrees

In the proof of Proposition 5.1 we first condition on the degree sequence. We compute
the clustering coefficient conditional on the degree sequence, and after that we show
that this converges to the correct value when taking the random degrees into account.
We will use the following lemma several times:

Lemma 5.1. Let (Gn)n≥1 be a sequence of erased configuration models on n vertices where
the degrees are an i.i.d. sample from a random variable D. Then,

Pn (Du ∈ [a, b]) = OP (P (D ∈ [a, b])) (5.4.1)
En [ f (Du)] = OP (E [ f (D)]) . (5.4.2)

Proof. By using the Markov inequality, we obtain for M > 0

P (Pn (Du ∈ [a, b]) ≥ MP (D ∈ [a, b])) ≤ E [Pn (Du ∈ [a, b])]
MP (D ∈ [a, b])

=
1
M

, (5.4.3)

and the second claim can be proven in a similar way.

In the proof of Theorem 5.1 we often estimate moments of D, conditional on the
degrees. The following lemma shows how to bound these moments, and is a direct
consequence of the Stable Law Central Limit Theorem:

Lemma 5.2. Let Du be a uniformly chosen vertex from the degree sequence, where the
degrees are an i.i.d. sample from a power-law distribution with exponent τ ∈ (2, 3). Then, for
α > τ − 1,

En [Dα
u] = OP

(
nα/(τ−1)−1

)
. (5.4.4)

Proof. We have

En [Dα
u] =

1
n

n

∑
i=1

Dα
i . (5.4.5)

Since the Di are an i.i.d. sample from a power-law distribution with exponent τ,

P (Dα
i > t) = P(Di > t1/α) = Ct−

τ−1
α , (5.4.6)

so that Dα
i are distributed as i.i.d. samples from a power-law with exponent (τ −

1)/α + 1 < 2. Then, by the Stable law Central Limit Theorem (see for example [217,
Theorem 4.5.1]),

n

∑
i=1

Dα
i = OP

(
n

α
τ−1

)
, (5.4.7)

which proves the lemma.

We also need to relate Ln and its expected value µn. Define the events

Jn =
{
|Ln − µn| ≤ n2/τ

}
, An = {|Mεn(k)| ≥ 1} (5.4.8)

By [111], P (Jn) → 1 as n → ∞, and by (2.3.2), P (An) → 1. When we condition on
the degree sequence, we will assume that the events Jn and An take place.
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5.4.2 Erased and non-erased degrees

The degree sequence of the erased configuration model may differ from the original
degree sequence of the original configuration model. By Lemma 2.1

D(er)
i = Di(1− oP(1)). (5.4.9)

Thus, in many proofs, we will exchange Di and D(er)
i when needed.

5.5 Second moment method on main contribution Wk
n(δ)

We now focus on the triangles that give the main contribution. First, we condition
on the degree sequence and compute the expected number of triangles in the main
contributing regime. Then, we show that this expectation converges to a constant
when taking the i.i.d. degrees into account. After that, we show that the variance
of the number of triangles in the main contributing regime is small, and we prove
Proposition 5.1.

5.5.1 Conditional expectation inside Wk
n(δ)

In this section, we compute the expected number of triangles in the major contributing
ranges of 5.3.6 when we condition on the degree sequence. We define

gn(Du, Dv, Dw) := (1− e−DuDv/Ln)(1− e−DuDw/Ln)(1− e−DvDw/Ln). (5.5.1)

Then, the following lemma shows that the expectation of cεn(k) conditioned on
the degrees is the sum of gn(Du, Dv, Dw) over all degrees in the major contributing
regime:

Lemma 5.3. On the event Jn defined in (5.4.8),

En

[
cεn(W

k
n(δ))

]
=

∑(u,v)∈Wk
n(δ)

gn(k, Du, Dv)

k(k− 1)
(1 + oP(1)). (5.5.2)

Proof. By (5.3.20) and (5.3.21)

En

[
cεn(W

k
n(δ))

]
=

1
2|Mεn (k)| ∑w∈Mεn(k)

∑(u,v)∈Wk
n(δ)

Pn (4u,v,w = 1)

k(k− 1)/2
, (5.5.3)

where4u,v,w denotes the event that a triangle is present on vertices u, v and w. We
write the probability that a specific triangle on vertices u, v and w exists as

Pn (4u,v,w = 1) = 1−Pn (Xuw = 0)−Pn (Xvw = 0)−Pn (Xuv = 0)
+ Pn (Xuw = Xvw = 0) + Pn (Xuv = Xvw = 0)
+ Pn (Xuv = Xuw = 0)−Pn (Xuv = Xuw = Xvw = 0) . (5.5.4)

In the major contributing ranges, Du, Dv, Dw = OP(n1/(τ−1)), and the product of the
degrees is O(n). By Lemma 7.1

Pn (Xuv = Xvw = 0) = e−DuDv/Ln e−DvDw/Ln(1 + oP(n−(τ−2)/(τ−1))) (5.5.5)
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and

Pn (Xuv = Xvw = Xuw = 0)

= e−DuDv/Ln e−DvDw/Ln e−DuDw/Ln(1 + oP(n−(τ−2)/(τ−1))). (5.5.6)

Therefore,

Pn (4u,v,w = 1) = (1 + oP(1))(1− e−DuDv/Ln)(1− e−DuDw/Ln)(1− e−DvDw/Ln)

= (1 + oP(1))gn(Du, Dv, Dw),
(5.5.7)

where we have used that for DuDv = O(n)

1− e−DuDv/Ln(1 + oP(n−(τ−2)/(τ−1))) = (1− e−DuDv/Ln)(1 + oP(1)). (5.5.8)

Lemma 5.1 shows that, given D(er)
w = k,

gn(Dw, Du, Dv) = gn(k, Du, Dv)(1 + oP(1)). (5.5.9)

Thus, we obtain

En

[
cεn(W

k
n(δ))

]
=

∑w∈Mεn (k) ∑(u,v)∈Wk
n(δ)

gn(Dw, Du, Dv)

|Mεn(k)|k(k− 1)
(1 + oP(1))

=
∑(u,v)∈Wk

n(δ)
gn(k, Du, Dv)

k(k− 1)
(1 + oP(1)), (5.5.10)

which proves the lemma.

5.5.2 Analysis of asymptotic formula

In the previous section, we have shown that the expected value of cεn(k) in the major
contributing regime is the sum of a function gn(k, Du, Dv) over all vertices u and v
with degrees in the major contributing regime if we condition on the degrees. That is

En

[
cεn(W

k
n(δ))

]
=

1 + oP(1)
k(k− 1) ∑

(u,v)∈Wk
n(δ)

(1− e−kDv/Ln)(1− e−kDu/Ln)(1− e−DuDv/Ln).

(5.5.11)
This expected value does not yet take into account that the degrees are sampled i.i.d.
from a power-law distribution. In this section, we prove that this expected value
converges to a constant when we take the randomness of the degrees into account.
We will make use of the following lemmas:

Lemma 5.4. Let A ⊂ R2 be a bounded set and f (t1, t2) be a bounded, continuous function

on A. Let M(n) be a random measure such that for all S ⊆ A, M(n)(S) P−→ λ(S) =∫
S dλ(t1, t2) for some deterministic measure λ. Then,∫

A
f (t1, t2)dM(n)(t1, t2)

P−→
∫

A
f (t1, t2)dλ(t1, t2). (5.5.12)
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Proof. Fix η > 0. Since f is bounded and continuous on A, for any δ > 0, we can find
m < ∞, disjoint sets (Bi)i∈[m] and constants (bi)i∈[m] such that ∪Bi = A and

∣∣∣ f (t1, t2)−
m

∑
i=1

bi1{(t1,t2)∈Bi}
∣∣∣ < δ, (5.5.13)

for all (t1, t2) ∈ A. Because M(n)(Bi)
P−→ λ(Bi) for all i,

lim
n→∞

P
(∣∣M(n)(Bi)− λ(Bi)

∣∣ > η/(mbi)
)
= 0. (5.5.14)

Then, ∣∣∣∣∫A
f (t1, t2)dM(n)(t1, t2)−

∫
A

f (t1, t2)dλ(t1, t2)

∣∣∣∣
≤
∣∣∣∣∣
∫

A
f (t1, t2)−

m

∑
i=1

bi1{(t1,t2)∈Bi}dM(n)(t1, t2)

∣∣∣∣∣
+

∣∣∣∣∣
∫

A
f (t1, t2)−

m

∑
i=1

bi1{(t1,t2)∈Bi}dλ(t1, t2)

∣∣∣∣∣
+

∣∣∣∣∣ m

∑
i=1

bi(M(n)(Bi)− λ(Bi))

∣∣∣∣∣
≤ δM(n)(A) + δλ(A) + oP(η). (5.5.15)

Now choosing δ < η/λ(A) proves the lemma.

The following lemma is a straightforward one-dimensional version of Lemma 5.4.

Lemma 5.5. Let M(n)[a, b] be a random measure such that for all 0 < a < b, M(n)[a, b] P−→
λ[a, b] =

∫ b
a dλ(t) for some deterministic measure λ. Let f (t) be a bounded, continuous

function on [δ, 1/δ]. Then,

∫ 1/δ

δ
f (t)dM(n)(t) P−→

∫ 1/δ

δ
f (t)dλ(t). (5.5.16)

Proof. This proof follows the same lines as the proof of Lemma 5.4.

Using these lemmas we investigate the convergence of the expectation of cεn(k)
conditioned on the degrees. We treat the three ranges separately, but the proofs
follow the same structure. First, we define a random measure M(n) that counts the
normalized number of vertices with degrees in the major contributing regime. We
then show that this measure converges to a deterministic measure λ, using that the
degrees are i.i.d. samples of a power-law distribution. We then write the conditional
expectation of the previous section as an integral over M(n). Then, we use Lemmas 5.4
or 5.5 to show that this converges to a deterministic integral.

First, we consider the case where k is in Range I.
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Lemma 5.6. (Range I) For 1 < k = o(n(τ−2)/(τ−1)),

En[cεn(W
k
n(δ))]

n2−τ log(n)
P−→ µ−τC2 3− τ

τ − 1

∫ 1/δ

δ
t1−τ(1− e−t)dt. (5.5.17)

Proof. Since the degrees are i.i.d. samples from a power-law distribution, Du =

OP(n1/(τ−1)) uniformly in u ∈ [n]. Thus, when k = o(n(τ−2)/(τ−1)), kDu = oP(n)
uniformly in u ∈ [n]. Therefore, we can Taylor expand the first two exponentials
in (5.5.11), using that 1− e−x = x + O(x2). By Lemma 5.3, this leads to

En

[
cεn(W

k
n(δ))

]
= (1 + oP(1))

k2

k(k− 1) ∑
(u,v)∈Wk

n(δ)

DuDv(1− e−DuDv/Ln)

L2
n

. (5.5.18)

Furthermore, since Du = OP(n1/(τ−1)) while also DuDv = Θ(n) when (u, v) ∈
Wk

n()δ, we can add the indicator that K1n(τ−2)/(τ−1) < Du < K2n1/(τ−1) for 0 <
K1, K2 < ∞. We then define the random measure

M(n)[a, b] =
(µn)τ−1

log(n)n2 ∑
u 6=v∈[n]

1{DuDv∈nµ[a,b],K1n(τ−2)/(τ−1)<Du<K2n1/(τ−1)}. (5.5.19)

We write the expected value of this measure as

E
[
M(n)[a, b]

]
=

(µn)τ−1

log(n)n2 E
[∣∣∣{u 6= v : DuDv ∈ [a, b]µn, Du ∈ [K1n

τ−2
τ−1 , K2n

1
τ−1 ]

}∣∣∣]
=

(µn)τ−1(n− 1)
log(n)n

P
(

D1D2 ∈ [a, b]µn, D1 ∈ [K1n
τ−2
τ−1 , K2n

1
τ−1 ]

)
=

(µn)τ−1

log(n)

∫ K2n
1

τ−1

K1n(τ−2)/(τ−1)

∫ bµn/x

aµn/x
C2(xy)−τdydx

= C2 (µn)τ−1(n− 1)
log(n)n

∫ K2n
1

τ−1

K1n(τ−2)/(τ−1)

1
x

dx
∫ bµn

aµn
u−τdu

= C2 n− 1
n

∫ b

a
t−τdt

(
3− τ

τ − 1
+

log(K2/K1)

log(n)

)
, (5.5.20)

where we used the change of variables u = xy and t = u/(µn). Thus,

lim
n→∞

E
[
M(n)[a, b]

]
= C2 3− τ

τ − 1

∫ b

a
t−τdt =: λ[a, b]. (5.5.21)

Furthermore, the variance of this measure can be written as

Var
(

M(n)[a, b]
)

=
(µn)2τ−6µ2

log2(n)
∑

u,v,w,z

(
P
(

DuDv, DwDz ∈ µn[a, b], Du, Dw ∈ [K1n
τ−2
τ−1 , K2n

1
τ−1 ]

)
−P

(
DuDv ∈ µn[a, b], Du ∈ [K1n

τ−2
τ−1 , K2n

1
τ−1 ]

)
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×P
(

DwDz ∈ µn[a, b], Dw ∈ [K1n
τ−2
τ−1 , K2n

1
τ−1 ]

) )
. (5.5.22)

Since the degrees are an i.i.d. sample from a power-law distribution, the contribution
to the variance for |{u, v, w, z}| = 4 is zero. The contribution from |{u, v, w, z}| = 3
can be bounded as

(µn)2τ−6µ2

log2(n)
∑

u,v,w
P (DuDv, DuDw ∈ µn[a, b])

=
µ2τ−4n2τ−3

log2(n)
P (D1D2, D1D3 ∈ µn[a, b])

=
µ2τ−4n2τ−3

log2(n)

∫ ∞

1
Cx−τ

(∫ bn/x

an/x
Cy−τdy

)2

dx

≤ K
n−1

log2(n)
, (5.5.23)

for some constant K. Similarly, the contribution for u = z, v = w can be bounded as

(µn)2τ−6µ2

log2(n)
∑
u,v

P (DuDv ∈ µn[a, b]) =
µ2τ−6n2τ−4

log2(n)
P (D1D2 ∈ µn[a, b])

≤ K
n2τ−4

log2(n)
n1−τ log(n) = K

nτ−3

log(n)
, (5.5.24)

for some constant K. Thus, Var
(

M(n)[a, b]
)
= o(1). Therefore, a second moment

method yields that for every a, b > 0,

M(n)[a, b] P−→ λ[a, b]. (5.5.25)

Using the definition of M(n) in (5.5.19) and that L−1
n = (µn)−1(1 + oP(1)),

∑
(u,v)∈Wk

n(δ)

DuDv(1− e−DuDv/Ln)

L2
n

= µ1−τn3−τ log(n)
∫ 1/δ

δ

t
Ln

(1− e−t)dM(n)(t)

= µ−τn2−τ log(n)
∫ 1/δ

δ
t(1− e−t)dM(n)(t)(1 + oP(1)). (5.5.26)

By Lemma 5.5 and (5.5.25),∫ 1/δ

δ
t(1− e−t)dM(n)(t) P−→

∫ 1/δ

δ
t(1− e−t)dλ(t)

= C2 3− τ

τ − 1

∫ 1/δ

δ
t1−τ(1− e−t)dt. (5.5.27)

If we first let n→ ∞, and then K1 → 0 and K2 → ∞, we obtain from (5.5.18), (5.5.26)
and (5.5.27) that

En[cεn(k), Wk
n(δ)]

n2−τ log(n)
P−→ C2µ−τ 3− τ

τ − 1

∫ 1/δ

δ
t1−τ(1− e−t)dt. (5.5.28)



108 Chapter 5. Local clustering in the ECM and the URG

k k
ε2

n
k ε

n
kε

n
k ε

n
kε

DuDv = n/ε
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Figure 5.7: Contributing regime for n(τ−2)/(τ−1) < k <
√

n.

Lemma 5.7. (Range II) When k = Ω(n(τ−2)/(τ−1)) and k = o(
√

n),

En[cεn(W
k
n(δ))]

n2−τ log(n/k2)
P−→ C2µ−τ

∫ 1/δ

δ
t1−τ(1− e−t)dt. (5.5.29)

Proof. We split the major contributing regime into three parts, depending on the
values of Du and Dv, as visualized in Figure 5.7. We denote the contribution to the
clustering coefficient where Du ∈ [k/δ2, δn/k] (area A of Figure 5.7) by c(1)εn (W

k
n(δ)),

the contribution from Du or Dv ∈ [δn/k, n/(δk)] (area B of Figure 5.7) by c(2)εn (W
k
n(δ))

and the contribution from Du ∈ [k, k/δ2] and Dv ∈ [δ3n/k, δn/k] (area C of Figure 5.7)
by c(3)εn (W

k
n(δ)). We first study the contribution of area A. In this situation, Du, Dv <

δn/k, so that we can Taylor expand the exponentials e−kDu/Ln and e−kDv/Ln in (5.5.11).
This results in

En[c
(1)
εn (W

k
n(δ))] =

1
k2 ∑
(u,v)∈Wk

n(δ),
Du∈[k/δ2,δn/k]

(1− e−kDu/Ln)(1− e−kDv/Ln)(1− e−DuDv/Ln)

= (1 + oP(1)) ∑
(u,v)∈Wk

n(δ),
Du∈[k/δ2,δn/k]

DuDv

L2
n

(1− e−DuDv/Ln). (5.5.30)

Now we define the random measure

M(n)
1 [a, b] =

(µn)τ−1

log(δ3n/k2)n2 ∑
u,v∈[n]

1{DuDv∈µn[a,b],Du∈[k/δ2,δn/k]}. (5.5.31)

As similar reasoning as in (5.5.25) shows that

M(n)
1 [a, b] P−→ C2

∫ b

a
t−τdt := λ2[a, b]. (5.5.32)
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By (5.5.30), we can write the the expected value of c(1)εn (W
k
n(δ)) as

En[c
(1)
εn (W

k
n(δ))] = (1 + oP(1)) ∑

(u,v)∈Wk
n(δ),

Du∈[k/δ3,δn/k]

DuDv

L2
n

(1− e−DuDv/Ln)

= (1 + oP(1))µ−τn2−τ log(δ3n/k2)
∫ 1/δ

δ
t(1− e−t)dM(n)

1 (t).

(5.5.33)
Thus, by Lemma 5.5

En[c
(1)
εn (W

k
n(δ))] = (1+ oP(1))2µ−τn2−τ log(δ3n/k2)

∫ 1/δ

δ
t(1− e−t)dλ2(t). (5.5.34)

Then we study the contribution of area B in Figure 5.7. This area consists of two
parts, the part where Du ∈ [δn/k, n/(kδ)], and the part where Dv ∈ [δn/k, n/(kδ)].
By symmetry, these two contributions are the same and therefore we only consider
the case where Du ∈ [δn/k, n/(kδ)]. Then, we can Taylor expand e−Dvk/Ln in (5.5.11),
which yields

En

[
c(2)εn (W

k
n(δ))

]
=

2
k2 ∑

(u,v)∈Wk
n(δ),

Du>δn/k

(1− e−kDu/Ln)
Dvk
Ln

(1− e−DuDv/Ln). (5.5.35)

Define the random measure

M(n)
2 ([a, b], [c, d]) :=

(µn)τ−1

n2 ∑
u,v∈[n]

1{DuDv∈µn[a,b],Du∈(µn/k)[c,d]}. (5.5.36)

Then we obtain

En

[
c(2)εn (W

k
n(δ))

]
=

2
kLn

∑
(u,v)∈Wk

n(δ),
Du>δn/k

Ln

Duk
(1− e−kDu/Ln)

DuDvk
Ln

(1− e−DuDv/Ln)

= 2µ−τn2−τ
∫ 1/δ

δ

∫ 1/δ

δ

t1

t2
(1− e−t1)(1− e−t2)dM(n)

2 (t1, t2)(1 + oP(1)). (5.5.37)

Again, using a first moment method and a second moment method, we can show that

M(n)
2 ([a, b], [c, d]) P−→ C2

∫ b

a
t−τdt

∫ d

c

1
v

dv =: λ[a, b]ν[c, d]. (5.5.38)

Very similarly to the proof of Lemma 5.4 we can show that∫ 1/δ

δ

∫ 1/δ

δ

t1

t2
(1− e−t1)(1− e−t2)dM(n)

2 (t1, t2)

P−→
∫ 1/δ

δ

∫ 1/δ

δ

t1

t2
(1− e−t1)(1− e−t2)dλ(t1)dν(t2). (5.5.39)
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The latter integral can be written as∫ 1/δ

δ

∫ 1/δ

δ

t1

t2
(1− e−t1)(1− e−t2)dλ(t1)dν(t2)

= C2
∫ 1/δ

δ

∫ 1/δ

δ
t−2
2 t1−τ

1 (1− e−t2)(1− e−t1)dt1dt2

= C2
∫ 1/δ

δ

1
t2
2
(1− e−t2)dt2

∫ 1/δ

δ
t1−τ
1 (1− e−t1)dt1. (5.5.40)

The left integral results in

∫ 1/δ

δ

1
t2
2
(1− e−t2)dt2 =

[
e−t2 − 1

t2
+ Ei(t2)

]t2=1/δ

t2=δ

= δ(e−1/δ − 1)− e−δ − 1
δ

+
∫ ∞

1/δ

1
u

e−udu− log(δ)−
∞

∑
j=1

δk

k!k

= log
(

1
δ

)
+
∫ ∞

1/δ

1
u

e−udu + δ(e−1/δ − 1)− e−δ − 1
δ

−
∞

∑
j=1

δk

k!k

= log
(

1
δ

)
+ f (δ), (5.5.41)

where Ei denotes the exponential integral and we have used the Taylor series for
the exponential integral. We can show that f (δ) < ∞ for fixed δ ∈ (0, ∞). In fact,
f (δ)→ 1 as δ→ 0.

Finally, we study the contribution of area C in Figure 5.7, where Du ∈ [k, k/δ2]
and Dv ∈ [n/kδ3, n/kδ]. In this regime, Duk = o(n) and Dvk = o(n) so that we can
Taylor expand the first two exponentials in (5.5.11). This results in

En

[
c(3)εn (W

k
n(δ))

]
= (1 + o(1)) ∑

u,v:Dv∈[δ3n/k,δn/k],
DuDv>δn,Du∈[k,k/δ2]

(1− e−DuDv/Ln)
DuDv

Ln
. (5.5.42)

We define the random measure

M(n)
3 ([a, b], [c, d]) :=

(µn)τ−1

n2 ∑
u,v

1{Du∈√µk[a,b],Dv∈(√µn/k)[c,d]}. (5.5.43)

Then,

En

[
c(3)εn (W

k
n(δ))

]
= (1 + oP(1))n2−τµ−τ

∫ 1/δ2

1

∫ δ

δ/t1

(t1t2)(1− e−t1t2)dM(n)
3 (t1, t2).

(5.5.44)
Again using a first moment method and a second moment method we can show that

M(n)
3 ([a, b], [c, d]) P−→ C2

∫ b

a
u−τdu

∫ d

c
v−τdv. (5.5.45)
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In a similar way, we can show that for B ⊆ [1, 1/δ2]× [δ3, δ],

M(n)
3 (B) P−→ C2

∫ ∫
B
(uv)−τdudv. (5.5.46)

Thus, by Lemma 5.4,

∫ 1/δ2

1

∫ δ

δ/t1

(t1t2)(1− e−t1t2)dM(n)
3 (t1, t2)

P−→ C2
∫ 1/δ2

1

∫ δ

δ/x
(xy)1−τ(1− e−xy)dydx.

(5.5.47)
We evaluate the latter integral as

∫ 1/δ2

1

∫ δ

δ/x
(xy)1−τ(1− e−xy)dydx =

∫ 1/δ2

1

∫ δv

δ

1
v

u1−τ(1− e−u)dudv

=
∫ 1/δ

δ

∫ 1/δ2

u/δ

1
v

u1−τ(1− e−u)dvdu

= log
(

1
δ

) ∫ 1/δ

δ
u1−τ(1− e−u)du

+
∫ 1/δ

δ
log
(

1
u

)
u1−τ(1− e−u)du, (5.5.48)

where we used the change of variables u = xy and v = x. Summing all three
contributions to the expectation under En of the clustering coefficient yields

En[cεn(W
k
n(δ))]

= En[c
(1)
εn (W

k
n(δ))] + En[c

(2)
εn (W

k
n(δ))] + En[c

(3)
εn (W

k
n(δ))]

= C2µ−τn2−τ(1 + oP(1))
[ ∫ 1/δ

δ
t1−τ
1 (1− e−t1)dt1

×
(

log
(

nδ2

k2

)
+ 3 log

(
1
δ

)
+ 2 f (δ)

)
+
∫ 1/δ

δ
log
(

1
u

)
u1−τ(1− e−u)du

]
= C2(1 + oP(1))µ−τn2−τ

[ ∫ 1/δ

δ
t1−τ
1 (1− e−t1)dt1

(
log
( n

k2

)
+ 2 f (δ)

)
+
∫ 1/δ

δ
log
(

1
u

)
u1−τ(1− e−u)du

]
.

(5.5.49)
Dividing by n2−τ log(n/k2) and taking the limit of n→ ∞ then shows that

En[cεn(W
k
n(δ))]

n2−τ log(n/k2)
P−→ C2µ−τ

∫ 1/δ

δ
x1−τ(1− e−x)dx. (5.5.50)

Lemma 5.8. (Range III) For k = Ω(
√

n),

En[cεn(W
k
n(δ))]

n5−2τk2τ−6
P−→ C2µ3−2τ

( ∫ 1/δ

δ
t1−τ(1− e−t)dt

)2
. (5.5.51)
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Proof. When k = Ω(
√

n), the major contribution is from u, v with Du, Dv = Θ(n/k),
so that DuDv = o(n). Therefore, we can Taylor expand the exponential e−DuDv/Ln

in (5.5.11). Thus, we write the expected value of cεn(k) as

En

[
cεn(W

k
n(δ))

]
=

1
k2 ∑

(u,v)∈Wk
n(δ)

(1− e−kDu/Ln)(1− e−kDv/Ln)(1− e−DuDv/Ln)

=
1
k2 ∑

(u,v)∈Wk
n(δ)

(1− e−kDu/Ln)(1− e−kDv/Ln)
DuDv

Ln
(1 + oP(1)).

(5.5.52)
Define the random measure

N(n)
1 [a, b] =

(µn)τ−1

n
k1−τ ∑

u∈[n]
1{Du∈(µn/k)[a,b]}, (5.5.53)

and let N(n) be the product measure N(n)
1 × N(n)

1 . Since all degrees are i.i.d. samples
from a power-law distribution, the number of vertices with degrees in interval [q1, q2]

is distributed as a Bin(n, C(q1−τ
1 − q1−τ

2 )) random variable. Therefore,

N(n)
1 ([a, b]) =

(µn)τ−1k1−τ

n
|{i : Di ∈ (µn/k)[a, b]}|

P−→ lim
n→∞

(µn)τ−1k1−τP (Di ∈ (µn/k)[a, b])

= (µn)τ−1k1−τ
∫ bµn/k

aµn/k
Cx−τdx = C

∫ b

a
t−τdt := λ([a, b]), (5.5.54)

where we have used the substitution t = xk/(µn). Then,

∑
(u,v)∈Wk

n(δ)

(1− e−kDu/Ln)(1− e−kDv/Ln)
DuDv

Ln

=
Ln

k2 ∑
(u,v)∈Wk

n(δ)

(1− e−kDu/Ln)(1− e−kDv/Ln)
Duk
Ln

Dvk
Ln

= (1 + oP(1))µ3−2τn5−2τk2τ−4
∫ 1/δ

δ

∫ 1/δ

δ
t1t2(1− e−t1)(1− e−t2)dN(n)(t1, t2).

(5.5.55)
Combining this with (5.5.52) yields

En[cεn(W
k
n(δ))]

n5−2τk2τ−4 = (1 + oP(1))µ2τ−3
∫ 1/δ

δ

∫ 1/δ

δ
t1t2(1− e−t1)(1− e−t2)dN(n)(t1, t2)

= (1 + oP(1))µ2τ−3
( ∫ 1/δ

δ
t1(1− e−t1)dN(n)

1 (t1)
)2

. (5.5.56)

We then use Lemma 5.5, which shows that∫ 1/δ

δ
t1−τ
1 (1− e−t1)dN(n)

1 (t1)
P−→ C

∫ 1/δ

δ
t1(1− e−t1)dλ(t1)

= C
∫ 1/δ

δ
t1−τ
1 (1− e−t1)dt1. (5.5.57)
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Then, we can conclude from (5.5.56) and (5.5.57) that

En[cεn(W
k
n(δ))]

n5−2τk2τ−6
P−→ C2µ3−2τ

( ∫ 1/δ

δ
t1−τ
1 (1− e−t1)dt1

)2
. (5.5.58)

5.5.3 Variance of the local clustering coefficient

In the following lemma, we give a bound on the variance of cεn(W
k
n(δ)):

Lemma 5.9. For all ranges, under Jn ∩An,

Varn

(
cεn(W

k
n(δ))

)
En[cεn(Wk

n(δ))]
2

P−→ 0. (5.5.59)

Proof. We analyze the variance in a similar way as we have analyzed the expected
value of cεn(k) conditioned on the degrees in Section 5.5.1. We can write the variance
of cεn(W

k
n(δ)) as

Varn

(
cεn(W

k
n(δ))

)
=

1
k2(k− 1)2|Mεn(k)|2

× ∑
i,j∈Mεn (k)

∑
(u,v)∈Wk

n(δ),
(w,z)∈Wk

n(δ)

Pn
(
4i,u,v4j,w,z

)
−Pn (4i,u,v)Pn

(
4j,w,z

)
, (5.5.60)

where 4i,u,v again denotes the event that vertices i, u and v form a triangle. Equa-
tion (5.5.60) splits into various cases, depending on the size of {i, j, u, v, w, z}. We
denote the contribution of |{i, j, u, v, w, z}| = r to the variance by V(r)(k). We first
consider V(6)(k). By a similar reasoning as (5.5.7)

Varn

(
cεn(W

k
n(δ))

)
=

1
|Mεn(k)|2k2(k− 1)2 ∑

i,j∈Mεn (k)
∑

(u,v)∈Wk
n(δ),

(w,z)∈Wk
n(δ)

(
gn(k, Du, Dv)gn(k, Dw, Dz)(1 + oP(1))

− gn(k, Du, Dv)gn(k, Dw, Dz)(1 + oP(1))
)

= ∑
(u,v),(w,z)∈Wk

n(δ)

oP

(
gn(k, Du, Dv)gn(k, Dw, Dz)

k2(k− 1)2

)
= oP

(
En[cεn(W

k
n(δ))]

2
)

, (5.5.61)

where we have again replaced gn(Di, Du, Dv) by gn(k, Du, Dv) because of (5.5.9).
Since there are no overlapping edges when |{i, j, u, v, w, z}| = 5, V(5)(k) can be
bounded similarly. This already shows that the contribution to the variance from 5 or
6 different vertices involved is small in all three ranges of k.

We then consider V(4), which is the contribution from two triangles where one
edge overlaps. We show that these types of overlapping triangles are rare, so that
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their contribution to the variance is small. If for example i = j and u = z, then
one edge from the vertex of degree k overlaps with another triangle. To bound this
contribution, we use that Pn

(
X̂ij = 1

)
≤ min(1, DiDj/Ln). Then we can bound the

summand in (5.5.60) as

Pn (4i,u,v4i,w,u)−Pn (4i,u,v)Pn (4i,w,u)

≤ Pn (4i,u,v4i,w,u)

≤ min
(

1,
kDu

Ln

)
min

(
1,

kDv

Ln − 2

)
min

(
1,

DuDv

Ln − 4

)
×min

(
1,

kDw

Ln − 6

)
min

(
1,

DwDu

Ln − 8

)
= (1 + O(n−1))min

(
1,

kDu

Ln

)
min

(
1,

kDv

Ln

)
×min

(
1,

DuDv

Ln

)
min

(
1,

kDw

Ln

)
min

(
1,

DwDu

Ln

)
. (5.5.62)

We first consider k in Ranges I or II, where k = o(
√

n). We bound the terms in-
volving k in (5.5.62) by taking the second term of the minimum, while we bound
min(DuDv/Ln, 1) ≤ 1, which results in

Pn (4i,u,v4i,w,u)−Pn (4i,u,v)Pn (4i,w,u) ≤ (1 + O(n−1))
k3DuDvDw

L3
n

≤ O(1)δ−1 k3Dw

L2
n

, (5.5.63)

where we used that DuDv < n/δ when (u, v) ∈ Wk
n(δ). Therefore, the contribution

to the variance in this situation can be bounded by

k3

k4|Mεn(k)|2 ∑
i∈Mεn (k)

∑
(u,v),(w,u)∈Wk

n(δ)

δ−1Dw

L2
n

=
1

k|Mεn(k)| ∑
(u,v),(w,u)∈Wk

n(δ)

δ−1Dw

L2
n

≤ δ−1O
(
n−1)

k|Mεn(k)| ∑
u∈[n]

1
δDu

(
∑

w∈[n]
1{Dw>δn/Du}

)2
, (5.5.64)

where we used that Dw = O(n/Du) in Wk
n(δ). We then use Lemma 5.1 to further

bound this as

k3

k4|Mεn(k)|2 ∑
i∈Mεn (k)

∑
(u,v),(w,u)∈Wk

n(δ)

δ−1Dw

L2
n
≤ K(δ)OP

(
1

nk1−τ ∑
u

(
n

Du

)3−2τ
)

≤ K(δ)OP

(
n3−2τkτ−1n(2−τ)/(τ−1)

)
.

(5.5.65)
Here K(δ) is a constant only depending on δ. Since n(2−τ)/(τ−1)kτ−1 = o(n) when
k = o(

√
n) and τ ∈ (2, 3), we have proven that this contribution is smaller than

n4−2τ log2(n) and smaller than n4−2τ log2(n/k2), as required by Lemmas 5.6 and 5.7
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respectively. Now we consider the contribution from triangles that share the edge
between vertices u and v. Using a similar reasoning as in (5.5.62), the contribution
from the case i 6= j and u = z and v = w can be bounded as

1
k4|Mεn(k)|2 ∑

i,j∈Mεn (k)
∑

(u,v)∈Wk
n(δ)

Pn
(
4i,u,v4j,v,w

)
−Pn (4i,u,v)Pn

(
4j,v,w

)
≤ ∑

(u,v)∈Wk
n(δ)

k4D2
uD2

v
k4L4

n
≤ δ−2Pn

(
(Du,Dv) ∈Wk

n(δ)
)

= δ−2OP

(
n1−τ log(n)

)
, (5.5.66)

where we used Lemma 5.1 and that DuDv = O(n) when (u, v) ∈ Wk
n(δ). Since

n1−τ log(n) = o(n4−2τ log2(n)) for τ ∈ (2, 3), this shows that this contribution is
small enough.

When k is in Range III, we use similar bounds for V(4), now using that Du, Dv, Dw <
δ−1n/k. Under An, |Mεn(k)| ≥ 1. Again, we start by considering the case i = j and
u = z. We use (5.5.62), where we use that DuDv < n2/(kδ)2 and DuDw < n2/(kδ)2,
and we take 1 for the other minima. This yields

Pn (4i,u,v4i,w,u)−Pn (4i,u,v)Pn (4i,w,u) ≤ O(n2)k−4δ−4. (5.5.67)

Thus, the contribution to the variance from this case can be bounded as

1
k4|Mεn(k)| ∑

(u,v),(u,w)∈Wk
n(δ)

O(n2)k−4δ−4 ≤ 1
k4 OP

(
n5k−8δ−4P (D > n/(δk))3

)
≤ OP

(
n5k−8δ−4

( n
kδ

)3−3τ
)

= OP

(
k3τ−11n8−3τ

)
δ3τ−7, (5.5.68)

where we used Lemma 5.1. When k = Ω(
√

n) and τ ∈ (2, 3), this contribution is
smaller that n10−4τk4τ−12, as required by Lemma 5.8. In the case where i 6= j, u = z
and v = w, we use a similar reasoning as in (5.5.62) to show that

Pn (4i,u,v4i,w,u)−Pn (4i,u,v)Pn (4i,w,u) ≤ O(n)k−2δ−2. (5.5.69)

Then the contribution of this situation to the variance can be bounded as
1
k4 ∑

(u,v)∈Wk
n(δ)

O(n)k−2δ−2 ≤ O
(

δ−2n3k−6
( n

δk

)2−2τ
)
= O

(
n5−2τk2τ−8

)
. (5.5.70)

Again, this is smaller than n10−4τk4τ−12, as required. Thus, the contribution of V(4) is
small enough in all three ranges.

Finally, V(3), can be bounded as

1
k4|Mεn(k)|2 ∑

i∈Mεn (k)
∑

(u,v)∈Wk
n(δ)

Pn (4i,u,v) =
1

k4|Mεn(k)|
En

[
cεn(W

k
n(δ))

]
=

1
k4|Mεn(k)|

OP ( f (k, n)) . (5.5.71)
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In Ranges I and II, we use that |Mεn(k)| = OP (nk−τ). Thus, this gives a contribution
of

V(3)(k) = OP

(
n2−τ log(n)

k4−τn

)
= OP

(
n1−τ log(n)kτ−4

)
, (5.5.72)

which is small enough since n1−τkτ−4 < n4−2τ for τ ∈ (2, 3) and k = o(
√

n). In
Range III, again we assume that |Mεn(k)| ≥ 1, since otherwise the variance of cεn(k)
would be zero, and therefore small enough. Then (5.5.71) gives the bound

V(3)(k) = OP

(
n5−2τk2τ−10

)
, (5.5.73)

which is again smaller than n10−4τk4τ−12 for τ ∈ (2, 3) and k = Ω(
√

n). Thus, all
contributions to the variance are small enough, which proves the claim.

Proof of Proposition 5.1. Combining Lemma 5.9 and the fact that P (Jn) = 1−O(n−1/τ)
shows that

cεn(W
k
n(δ))

En
[
cεn(Wk

n(δ))
] P−→ 1. (5.5.74)

Then, Lemmas, 5.7 and 5.8 show that

cεn(W
k
n(δ))

f (k, n)
P−→

C2
∫ 1/δ

δ t1−τe−tdt + O(δκ) k = o(
√

n)

C2
(∫ 1/δ

δ t1−τe−tdt
)2

+ O(δκ) k = Ω(
√

n),
(5.5.75)

which proves the proposition.

5.6 Contributions outside Wk
n(δ)

In this section, we show that the contribution of triangles with degrees outside of the
major contributing ranges as described in (5.3.6) is negligible. The following lemma
bounds the contribution from triangles with vertices with degrees outside of Wk

n(δ):

Lemma 5.10. There exists κ > 0 such that

lim sup
n→∞

En[cεn(W̄
k
n(δ))]

f (n, k)
= OP (δ

κ) . (5.6.1)

Proof. To compute the expected value of cεn(k), we use that Pn
(
X̂ij = 1

)
≤ min(1,

Di Dj
Ln

).
This yields

En [cεn(k)] ≤
n2En

[
min(1, kDu

Ln
)min(1, kDv

Ln
)min(1, DuDv

Ln
)
]

k(k− 1)
. (5.6.2)

Using Lemma 5.1, we obtain

En [cεn(k)] = n2k−2OP

(
E

[
min

(
1,

kDu

µn

)
min

(
1,

kDv

µn

)
min

(
1,

DuDv

µn

)])
,

(5.6.3)
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where Du and Dv are two independent copies of D. Similarly,

En[cεn(W̄
k
n(δ))]

= n2k−2OP

(
E

[
min

(
1,

kDu

µn

)
min

(
1,

kDv

µn

)
min

(
1,

DuDv

µn

)
1{(Du ,Dv)∈W̄k

n(δ)}
])

,

(5.6.4)
where

E

[
min

(
1,

kDu

µn

)
min

(
1,

kDv

µn

)
min

(
1,

DuDv

µn

)
1{(Du ,Dv)∈W̄k

n(δ)}
]

=
∫ ∫

(x,y)∈W̄k
n(δ)

(xy)−τ min
(

1,
kx
µn

)
min

(
1,

ky
µn

)
min

(
1,

xy
µn

)
dydx. (5.6.5)

We analyze this expression separately for all three ranges of k. For ease of notation,
we assume that µ = 1 in the rest of this section.

We first consider Range I, where k = o(n(τ−2)/(τ−1)). Then we have to show that
the contribution from vertices u and v such that DuDv < δn or DuDv > n/δ is small.
First, we study the contribution to (5.6.5) for DuDv < δn. We bound this contribution
by taking the second term of the minimum in all three cases, which gives

k2

n3

∫ n

1

∫ δn/x

1
(xy)2−τdydx =

k2

n3

∫ n

1

1
x

∫ δn

x
u2−τdudx =

k2δ3−τ

3− τ
O
(
n−τ log(n)

)
.

(5.6.6)
Then, we study the contribution for DuDv > n/δ. This contribution can be bounded
very similarly by taking kDu/Ln and kDuv/Ln and 1 for the minima in (5.6.5) as

nk2

n2

∫ n

1

∫ n

n/(δx)
(xy)1−τdydx =

k2

n2

∫ n

1

1
x

∫ nx

n/δ
u1−τdudx =

k2δτ−2

τ − 2
O
(
n−τ log(n)

)
.

(5.6.7)
Thus, by (5.6.4),

En

[
cεn(W̄

k
n(δ))

]
= OP

(
n2−τ log(n)δκ

)
. (5.6.8)

Dividing by n2−τ log(n) and letting n→ ∞ then proves the lemma in Range I.
Now we consider Range II, where k = Ω(n(τ−2)/(τ−1)) and k = o(

√
n). We show

that the contribution from vertices u and v such that DuDv < δn or DuDv > n/δ
or Du, Dv > n/(kδ) is small. We first show that the contribution to (5.6.5) for Du >
n/(kδ) is small. In this setting, Duk > n, so that the first minimum in (5.6.5) is
attained by 1. The contribution can be computed as∫ ∞

n/(kδ)

∫ ∞

1
(xy)−τ min

(
1,

ky
n

)
min

(
1,

xy
n

)
dydx

=
k

n2

∫ ∞

n/(δk)

∫ n/x

1
x1−τy2−τdydx +

k
n

∫ ∞

n/(kδ)

∫ n/k

n/x
x−τy1−τdydx

+
∫ ∞

n/(kδ)

∫ ∞

n/k
x−τy−τdydx

= k2O
(
n−τ

)
+ k2O

(
n−τ

)
+ δτ−1O(n2−2τk2τ−2). (5.6.9)
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By (5.6.4), multiplying by n2k−2 and then dividing by f (n, k) = n2−τ log(n/k2) and
letting n → ∞ shows that this contribution is small. Thus, we may assume that
Du, Dv < n/(kδ). Now we show that the contribution from DuDv < δn is negligible.
Then, DuDv < n, so that the third minimum in (5.6.5) is attained for DuDv/n. The
contribution then splits into various cases, depending on Du.

1
n

∫ ∫
xy<δn

(xy)1−τ min
(

1,
kx
n

)
min

(
1,

ky
n

)
dydx

=
∫ k

1

∫ δn/x

1
(xy)−τ kx2y

L2
n

dydx +
∫ n/k

k

∫ δn/x

1
(xy)−τ k2x2y2

L3
n

dydx

+
∫ ∞

n/k

∫ δn/x

1
(xy)−τ kxy2

L3
n

dydx

= k2O
(
n−τ

)
δ2−τ + k2δn−τO(log(n/k2)) + k2O

(
n−τ

)
δ3−τ . (5.6.10)

The contribution of DuDv > n/δ can be bounded similarly as∫ ∫
xy>n/δ

(xy)−τ min
(

1,
kx
n

)
min

(
1,

ky
n

)
dydx

=
∫ k

1

∫ ∞

n/(δx)
(xy)−τ kx

Ln
dydx +

∫ n/k

k

∫ ∞

n/(δx)
(xy)−τ k2xy

L2
n

dydx

+
∫ ∞

n/k

∫ ∞

n/(δx)
(xy)−τ ky

Ln
dydx

= k2δτ−1O
(
n−τ

)
+ k2δτ−2O(n−τ log(n/k2)) + k2O

(
n−τ

)
δτ−2. (5.6.11)

By (5.6.4), multiplying by k−2n2 and then dividing by f (n, k) = n2−τ log(n/k2)
proves the lemma in Range II.

Finally, we prove the lemma in Range III, where k = Ω(
√

n). Here we have to
show that the contribution from Du, Dv < δn/k or Du, Dv > n/(δk) is small. We
again bound this using (5.6.5). The contribution to (5.6.5) for Du > n/(kδ) can be
computed as∫ ∞

n/(kδ)

∫ ∞

1
(xy)−τ min

(
1,

ky
n

)
min

(
1,

xy
n

)
dydx

=
∫ k

n
kδ

∫ ∞

n/x
x−τy−τdydx +

∫ k

n
kδ

∫ n/x

n/k

1
n

x−τ+1y−τ+1dydx

+
∫ k

n
kδ

∫ n/k

0

k
n2 x−τ+1y−τ+2dydx +

∫ ∞

k

∫ ∞

n/k
x−τy−τdydx

+
∫ ∞

k

∫ n/k

n/x

k
n

x−τy−τ+1dydx +
∫ ∞

k

∫ n/x

0

k
n2 x−τ+1y−τ+2dydx

= O
(

log
( k2δ

n

)
n1−τ

)
+ O

(
δτ−2k2τ−4n3−2τ

)
+ O

(
n1−τ

)
+ O

(
δτ−2n3−2τk2τ−4

)
+ O

(
n1−τ

)
+ O

(
n1−τ

)
+ O

(
n1−τ

)
= O

(
δτ−2k2τ−4n3−2τ

)
. (5.6.12)
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Multiplying this by n2k−2 and then dividing by f (n, k) = n5−2τk2τ−6 shows that this
contribution is sufficiently small.

Then we study the contribution to (5.6.5) for Du < δn/k. This can be computed as

1
n

∫ δn/k

1

∫ ∞

1
(xy)1−τ min

(
1,

ky
n

)
min

(
1,

xy
n

)
dydx

=
∫ nδ

k

0

∫ n/k

0

k2

n3 x−τ+2y−τ+2dydx +
∫ nδ

k

0

∫ n/x

n/k

k
n2 x−τ+2y−τ+1dydx

+
∫ nδ

k

0

∫ ∞

n/x

k
n

x−τ+1y−τdydx

= O
(

δ3−τk2τ−4n3−2τ
)
+ O

(
δ3−τk2τ−4n3−2τ

)
+ O

(
δn1−τ

)
= O

(
δτ−2k2τ−4n3−2τ

)
. (5.6.13)

Again, multiplying by n2k−2 and dividing these estimates by f (n, k) = n5−2τk2τ−6

completes the proof in Range III.

5.6.1 Proof of Theorem 5.2

We now show how we adjust the proof of Theorem 5.1 to prove Theorem 5.2. We
use the same major contributing triangles as the ones in Range III in (5.3.6). Then,
in fact Lemmas 5.3, 5.9 and Proposition 5.2 still hold. It is easy to derive a similar
lemma as Lemma 5.8 for the situation k = Θ(

√
n). The only difference with the proof

of Lemma 5.8 is that we do not Taylor expand the exponentials in (5.5.52). This then
proves Theorem 5.2.

5.6.2 Proof of Theorem 5.3

We now prove that the scaling limit of k 7→ cεn(k) is continuous around k =
√

n.
When B is large, we rewrite (5.3.4) as

cεn(k)
n2−τ

P−→ C2µ2−2τ B2τ−4
∫ ∞

0

∫ ∞

0
(xy)−τ(1− e−x)(1− e−y)(1− e−xyµ/B2

)dxdy.

(5.6.14)
Taylor expanding the last exponential then yields

cεn(k)
n2−τ

= (1 + o(1))C2µ3−2τ B2τ−6
∫ ∞

0

∫ ∞

0
(xy)1−τ(1− e−x)(1− e−y)dxdy

= (1 + o(1))C2µ3−2τ B2τ−6 A2. (5.6.15)

Substituting k = B
√

n in Range III of Theorem 5.1 gives

cεn(k)
n2−τ

= (1 + o(1))C2µ3−2τ B2τ−6 A2, (5.6.16)

which is the same as the result obtained from Theorem 5.2. Therefore, the scaling
limit of k 7→ cεn(k) is smooth for k >

√
n.
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For B small, we can Taylor expand the first two exponentials in (5.3.4) as long
as x and y are much smaller than 1/B. The contribution where x, y < 1/B and
B < µxy < 1/B can be written as

C2µ2−2τ

( ∫ 1

B2

∫ 1/B

B/(µx)
(xy)1−τ(1− e−µxy)dydx

+
∫ 1/B

1

∫ 1/(Bx)

B/(µx)
(xy)1−τ(1− e−µxy)dydx

)
= C2µ−τ

(∫ 1

B2

∫ v/B

B

1
v

u1−τ(1− e−u)dudv +
∫ 1/B

1

∫ 1/B

B

1
v

u1−τ(1− e−u)dudv
)

= C2µ−τ

(
log(B−2)

∫ 1/B

B
u1−τ(1− e−u)du +

∫ 1/B

B
log(1/u)u1−τ(1− e−u)du

)
,

(5.6.17)
where we used the change of variables u = µxy and v = x. The contribution of the
second integral becomes small compared to the first part as B gets small, as the second
integral is finite for B > 0. We can show that the contributions from x, y > 1/B, or
from xy > 1/B can also be neglected by using that 1− e−x ≤ min(1, x). Thus, as B
becomes very small, Theorem 5.2 shows that cεn(k) for k = B

√
n can be approximated

by
cεn(k)
n2−τ

≈ C2 log(B−2)
∫ ∞

0
u1−τ(1− e−u)du, (5.6.18)

which agrees with the value for k = B
√

n in Range II of Theorem 5.1.
To prove the continuity around k = n(τ−2)/(τ−1), we note that the proofs of

Lemmas 5.7,5.9 and 5.10 for Range II still hold if we assume that k ≥ an(τ−2)/(τ−1)

for some a > 0 instead of k = Ω(n(τ−2)/(τ−1)). Thus, we can also apply the result of
Range II in Theorem 5.1 to k = an(τ−2)/(τ−1), which yields

cεn(k) = n2−τµ−τC2 A
(3− τ

τ − 1
log(n) + log(a−2)

)
(1 + oP(1)). (5.6.19)

This agrees with the k 7→ cεn(k) curve in Range I when n grows large.

5.7 Clustering in uniform random graphs

In this section, we estimate the connection probability in a uniform random graph,
which is the key ingredient for proving Theorem 5.1. We say that a sequence of degree
sequences (Di)i∈[n] satisfies the pseudo-power law with parameter τ > 1, if there
exists a constant K > 0 such that for every n ≥ 1, and every i ≥ 1, |{v : Dv ≥ i}| ≤
Kni1−τ . If (Di)i∈[n] is an i.i.d. sample of (5.2.1), then with high probability (Di)i∈[n]
satisfies the pseudo-power law with parameter τ′ provided τ′ < τ [88]. Our key
lemma is as follows, where the probability space refers to the uniformly random
simple graphs with degree sequence (Di)i∈[n]:

Lemma 5.11. Assume that 2 < τ < 3 is fixed and (Di)i∈[n] satisfies the pseudo-power law
with parameter 2 < τ < 3. Let C denote a set of unordered pairs of vertices and let EC denote
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the event that xy is an edge for every {x, y} ∈ C. Then, on the event Jn defined in (5.4.8) and
assuming that |C| = O(1) and {u, v} /∈ C,

Pn (Xuv = 1 | EC) = (1 + o(1))
(Du − |Cu|)(Dv − |Cv|)

Ln + (Du − |Cu|)(Dv − |Cv|)
,

where Cx denote the set of pairs in C that contain x.

To prove Theorem 5.5, we use the following corollary of Lemma 5.11:

Corollary 5.1. Let C denote a set of unordered pairs of vertices, such that |C| ≤ 5 and
{u, v} /∈ C. Let EC denote the event that xy is an edge for every {x, y} ∈ C. Then, on the
event Jn, the connection probability of vertices u and v in a uniform random graph on degree
sequence (Di)i∈[n] satisfying the pseudo-power law with 2 < τ < 3 satisfies

(i) For all u, v,

Pn (Xuv = 1 | EC) = O
(

DuDv

Ln

)
. (5.7.1)

(ii) For all u, v such that Du, Dv � 1 and DuDv = O(n)

Pn (Xuv = 1 | EC) = (1 + o(1))
DuDv

Ln + DuDv
. (5.7.2)

We now proceed to prove Lemma 5.11. As a preparation, we first prove a lemma
about the number of 2-paths starting from a specified vertex.

Lemma 5.12. Assume that 2 < τ < 3 is fixed and (Di)i∈[n] satisfies the pseudo-power law
with parameter 2 < τ < 3. For any graph G whose degree sequence is (Di)i∈[n], the number
of 2-paths starting from any specified vertex is o(n).

Proof. W.l.o.g. we assume that D1 ≥ D2 ≥ · · · ≥ Dn. For every 1 ≤ i ≤ n, the number
of vertices with degree at least Di is at least i. By the definition of the pseudo-power
law, KnD1−τ

i ≥ i for every 1 ≤ i ≤ n. It then follows that Di ≤ (Kn/i)1/(τ−1). Then
the number of 2-paths from any specified vertex is bounded by ∑D1

i=1 Di, which is at
most

D1

∑
i=1

(Kn
i

) 1
τ−1

= (Kn)
1

τ−1

D1

∑
i=1

i−
1

τ−1 = O
(
n

1
τ−1
)

D
τ−2
τ−1
1 = O

(
n

2τ−3
(τ−1)2

)
,

since D1 ≤ (Kn)1(τ−1). Since 2 < τ < 3 the above is o(n).

Proof of Lemma 5.11. To estimate Pn (Xuv = 1| EC), we will switch between two clas-
ses of graphs: S and S̄. S consists of graphs with degree sequence (Di)i∈[n] where all
edges in {u, v} ∪C are present, whereas S̄ consists of all graphs with degree sequence
(Di)i∈[n] where all edges in C are present, whereas {u, v} is not an edge. Since we
sample uniformly from all graphs with degree sequence (Di)i∈[n]:

Pn (Xuv = 1| EC) =
|S|

|S|+ |S̄| =
1

1 + |S̄|/|S| . (5.7.3)
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Figure 5.8: The right arrow illustrates a forward switching and the left arrow a
backward switching.

In order to estimate the ratio |S̄|/|S|, we will define an operation called a forward
switching which converts a graph in G ∈ S to a graph G′ ∈ S̄. The reverse operation
converting G′ to G is called a backward switching. Then we estimate |S̄|/|S| by counting
the number of forward switchings that can be applied to a graph G ∈ S, and the
number of backward switchings that can be applied to a graph G′ ∈ S̄.

The forward switching is defined by choosing two edges and specifying their
ends as {x, a} and {y, b}. The choice must satisfy the following constraints:

1. None of {u, x}, {v, y}, or {a, b} is an edge;

2. {x, a}, {y, b} /∈ C;

3. All of u, v, x, y, a, and b must be distinct except that x = y is permitted.

Given a valid choice, the forward switching replaces the three edges {u, v}, {x, a},
and {y, b} by {u, x}, {v, y}, and {a, b}. The forward switching preserves the degree
sequence, and converts a graph in S to a graph in S̄. The inverse operation of a
forward switching is called a backward switching. See Figure 5.8 for an illustration.

Next, we estimate the number of ways to perform a forward switching to a graph
G in S, denoted by f (G), and the number of ways to perform a backward switching to
a graph G′ in S̄, denoted by b(G). Now, the number of total switchings between S and
S̄ is equal to |S|E [ f (G)] = |S̄|E [b(G′)], where the expectation is over a uniformly
random G ∈ S and G′ ∈ S̄ respectively. Consequently,

|S̄|
|S| =

E [ f (G)]

E [b(G′)]
. (5.7.4)

Given an arbitrary graph G ∈ S, the number of ways of carrying out a forward
switching is at most L2

n, since there are at most Ln ways to choose {x, a}, and at most
Ln ways to choose {y, b}. To find a lower bound on the number of ways of performing
a forward switching, we subtract from L2

n an upper bound on the number of invalid
choices for {x, a} and {y, b}. These can be summarized as follows:

(a) at least one of {u, x}, {a, b}, {v, y} is an edge,

(b) {x, a} ∈ C or {y, b} ∈ C,
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(c) any vertex overlap other than x = y (i.e. if one of a or b is equal to one of x or y,
or if a = b, or if one of u or v are one of {a, b, x, y}).

To find an upper bound for (a), note that any choice in case (a) must involve a single
edge, and a 2-path starting from a specified vertex. By Lemma 5.12, the number
of choices for (a) then is upper bounded by 3 · o(Ln) · Ln = o(L2

n). The number of
choices for case (b) is O(Ln) as |C| = O(1), and there are at most Ln ways to choose
the other edge which is not restricted to be in C. To bound the number of choices for
(c), we investigate each case:

(C1) a or b is equal to x or y; or a = b. In this case, x, y, a, b forms a 2-path. Thus,
there are at most 5 · n · o(Ln) = o(L2

n) choices (noting that n = O(Ln) on the
event Jn), where n is the number of ways to choose a vertex, and o(Ln) bounds
the number of 2-paths starting from this specified vertex;

(C2) one of u and v is one of {a, b, x, y}. In this case, there is one 2-path starting from
u or v, and a single edge. Thus, there are at most 8 · LnDmax = o(L2

n) choices,
where Dmax bounds the number of ways to choose a vertex adjacent to u or v
and Ln bounds the number of ways to choose a single edge.

Thus, the number of invalid choices for {x, a} and {y, b} is o(L2
n), so that the number

of forward switchings which can be applied to any G ∈ S is (1 + o(1))L2
n. Thus,

E [ f (G)] = L2
n(1 + o(1)). (5.7.5)

Given a graph G′ ∈ S̄, consider the backward switchings that can be applied to
G′. There are at most Ln(Du − |Cu|)(Dv − |Cv|) ways to do the backward switching,
since we are choosing an edge which is adjacent to u but not in C, an edge which is
adjacent to v but not in C, and another “oriented” edge {a, b} (oriented in the sense
that each edge has two ways to specify its end vertices as a and b). For a lower bound,
we consider the following forbidden choices:

(a′) at least one of {x, a} or {y, b} is an edge,

(b′) {a, b} ∈ C,

(c′) any vertices overlap other than x = y (i.e. if {a, b} ∩ {u, v, x, y} 6= ∅).

For (a′), suppose that {x, a} is present. There are at most (Du − |Cu|)(Dv − |Cv|)
ways to choose x and y. Given any choice for x and y, there are at most o(Ln) ways to
choose a 2-path starting from x, and hence o(Ln) ways to choose a, b. Thus, the total
number of choices is at most o((Du − |Cu|)(Dv − |Cv|)Ln). The case that {y, b} is an
edge is symmetric.

For (b′), there are O(1) choices for choosing {a, b} since |C| = O(1), and at most
(Du − |Cu|)(Dv − |Cv|) choices x and y. Thus, the number of choices for case (b′) is
O((Du − |Cu|)(Dv − |Cv|)) = o((Du − |Cu|)(Dv − |Cv|)Ln).

For (c′), the case that a or b is equal to x or y corresponds to a 2-path starting
from u or v together with a single edge from u or v. Since o(Ln) bounds the number
of 2-paths starting from u or v and Du − |Cu| + Dv − |Cv| bounds the number of
ways to choose the single edge, there are o(Ln(Dv − |Cv|)) + o(Ln(Du − |Cu|)) total
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choices. If a or b is equal to u or v, there are (Du − |Cu|)(Dv − |Cv|) ways to choose
x and y, and at most Du + Dv ways to choose the last vertex as a neighbor of u or v.
Thus, there are O((Du − |Cu|)(Dv − |Cv|)Dmax) = o((Du − |Cu|)(Dv − |Cv|)Ln) total
choices, since Dmax = O(n1/(τ−1)) = o(n) = o(Ln). This concludes that the number
of backward switchings that can be applied to any graph G′ ∈ S′ is (Du − |Cu|)(Dv −
|Cv|)Ln(1 + o(1)), so that also

E
[
b(G′)

]
= (Du − |Cu|)(Dv − |Cv|)Ln(1 + o(1)). (5.7.6)

Combining (5.7.4), (5.7.5) and (5.7.6) results in

|S̄|/|S| = (1 + o(1))
L2

n
(Du − |Cu|)(Dv − |Cv|)Ln

,

and thus (5.7.3) yields

Pn (Xuv = 1 | EC) =
1

1 + |S̄|/|S| = (1 + o(1))
(Du − |Cu|)(Dv − |Cv|)

Ln + (Du − |Cu|)(Dv − |Cv|)
.

We now show how we use Corollary 5.1 to adjust the proof of Theorem 5.1 to
prove Theorem 5.5.

Proof of Theorem 5.5. Since by [88] the degree sequence satisfies the pseudo-power
law with high probability, we assume that the sampled degree sequence satisfies the
pseudo-power law assumption. Define

hn(Du, Dv, Dw) :=
DuDv

DuDv + Ln

DuDw

DuDw + Ln

DvDw

DvDw + Ln
. (5.7.7)

When (u, v) ∈ Wk
n(δ), Du, Dv � 1 as well as DuDv = O(n), Duk = O(n) and

Dvk = O(n) (see (5.3.6)). Thus, when (u, v) ∈ Wk
n(δ), we may use Corollary 5.1(ii)

on the probabilities that the edges in a triangle between vertex u, v and a vertex of
degree k are present. Then, similarly to the proof of Lemma 5.3, of the event

En

[
cεn(W

k
n(δ))

]
=

∑(u,v)∈Wk
n(δ)

hn(k, Du, Dv)

k(k− 1)
(1 + o(1)). (5.7.8)

In Range I, when (u, v) ∈Wk
n(δ), Duk/Ln = o(1) so that Duk/(Duk + Ln) = Duk(1 +

o(1)) and similarly Dvk/(Dvk + Ln) = Dvk/Ln(1 + o(1)). Thus, in Range I,

En

[
cεn(W

k
n(δ))

]
= ∑

(u,v)∈Wk
n(δ)

1
L2

n

D2
uD2

v
DuDv + Ln

(1 + o(1)). (5.7.9)

A similar convergence of measure argument as in Lemma 5.6 then shows that in
Range I

En

[
cεn(W

k
n(δ))

]
n2−τ log(n)

P−→ C2µ−τ 3− τ

τ − 1

∫ 1/δ

δ

t2−τ

1 + t
dt. (5.7.10)
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Similarly, in Range II we analyze (5.7.8) using Lemma 5.7, again replacing the function
1− e−xy/Ln by xy/(Ln + xy), resulting in

En

[
cεn(W

k
n(δ))

]
n2−τ log(n/k2)

P−→ C2µ−τ
∫ 1/δ

δ

t2−τ

1 + t
dt. (5.7.11)

Finally, in Range III, when (u, v) ∈ Wk
n(δ), DuDv = o(n) so that DuDv/(DuDv +

Ln) = L−1
n (1 + o(1)). Thus, (5.7.8) becomes

En

[
cεn(W

k
n(δ))

]
=

1
k2Ln

∑
(u,v)∈Wk

n(δ)

Duk
Duk + Ln

Dvk
Dvk + Ln

(1 + o(1)). (5.7.12)

Now applying Lemma 5.8, replacing the function 1− e−xy/Ln by xy/(Ln + xy) shows
that for Range III

En

[
cεn(W

k
n(δ))

]
n5−2τk2τ−6

P−→ C2µ3−2τ
( ∫ 1/δ

δ

t2−τ

1 + t
dt
)2

. (5.7.13)

Furthermore, Lemma 5.9 also holds for the uniform random graph, again replacing
the edge probability 1− e−DuDv/Ln by DuDv/(Ln + DuDv) ≤ min(DuDv/Ln, 1).

Finally, Lemma 5.10 also holds for the uniform random graph. The proof fol-
lows the exact same lines as the proof of Lemma 5.10, only instead of using that
Pn
(
Xij = 1

)
≤ min(DiDj/Ln, 1), we now use that by Corollary 5.1 Pn

(
Xij = 1

)
=

O(min(DiDj/Ln, 1)), which does not change the scaling of the terms involved in
Lemma 5.10. Combining these lemmas in the same way as in the proof of Theorem 5.1
then proves Theorem 5.5.





6 Local clustering in dynamic and spatial
models

Based on:
Variational principle for random graphs explaining scale-free clustering

C. Stegehuis, R. van der Hofstad, J.S.H. van Leeuwaarden, arXiv:1812.03002

In this chapter, we introduce a variational principle to explain how vertices tend
to cluster as a function of their degrees, generalizing the analysis of c(k) for the rank-1
inhomogeneous random graph, the erased configuration model and the uniform
random graph of Chapters 4 and 5. The variational principle reveals the triplets of
vertices that dominate the triangle count. We show that this variational principle
applies to a wide class of random graph models including the preferential attachment
model, the inhomogeneous random graph, the random intersection graph and the
hyperbolic random graph, enabling us to find the scaling of c(k) for all these models.

6.1 Introduction

Chapters 4 and 5 show that the rank-1 inhomogeneous random graph, the erased
configuration model and the uniform random graph have vanishing clustering levels
when the network size grows to infinity, making these models unfit for modeling
group formation in the large-network limit, which is often observed in real-world
networks. We therefore study the hyperbolic model in this chapter, introduced in
Section 1.1.6, which creates a random graph by positioning each vertex at a uniformly
chosen location in the hyperbolic space, and then connecting pairs of vertices as
a function of their locations. The hyperbolic model is mathematically tractable
and capable of matching simultaneously the three key characteristics of real-world
networks: sparseness, power-law degrees and clustering.

We again measure clustering in terms of the local clustering coefficient c(k) intro-
duced in Section 1.2.2. It is possible that no vertex of degree k is present, which can be
resolved by averaging over degrees close to k, as in Chapter 5, which does not affect
the scaling. In this chapter, we therefore analyze c(k) assuming that at least 2 vertices
of degree k are present for ease of notation. As Figure 4.2 shows, the c(k)-curves
of several observed real-world networks share several similarities. First of all, c(k)
decays in k. Furthermore, for small values of k, c(k) is high, indicating the presence
of non-trivial clustering. In this paper, we aim to design a mathematical method that,
together with a mathematical network model, is able to describe such curves. Taking
the hyperbolic model as the network model, we obtain a precise characterization of

127
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clustering in the hyperbolic model by describing how the clustering curve k 7→ c(k)
scales with k and n. We also obtain the scaling behavior for C from the results for
c(k).

Studying the local clustering coefficient c(k) is equivalent to studying the number
of triangles where at least one of the vertices has degree k. We develop a variational
principle that finds the dominant such triangle in terms of the degrees of the other
two vertices. This variational principle exploits the trade-off present in power-law
networks: on the one hand, high-degree vertices are well connected and therefore
participate in many triangles. On the other hand, these vertices are rare because of
the power-law degree distribution. Lower-degree vertices typically participate in
fewer triangles, but occur more frequently. The variational principle finds the degrees
that optimize this trade-off and reveals the structure of the three-point correlations
that dictate the degree of clustering.

The variational principle can be applied to a wide range of random graph models.
While the focus lies with the hyperbolic model, we also apply the variational principle
to the rank-1 inhomogeneous random graph, the preferential attachment model and
the random intersection graph. As it turns out, each random graph models comes
with a model-specific clustering curve k 7→ c(k). Our analysis confirms that the
preferential attachment model and rank-1 inhomogeneous random graph lead to
degenerate clustering curves that vanish in the large-network limit, while the random
intersection graph displays a clustering curve that is more similar to the curve of the
hyperbolic random graph.

6.2 Variational principle

We now discuss the variational principle in more detail, apply it to characterize
clustering in the hyperbolic model, and then apply it to other random graph models.

The variational principle deals with the probability of creating a triangle between
a vertex of degree k and two other uniformly chosen vertices, which can be written as

P (4k) = ∑
(d1,d2)

P (4 on degrees k, d1, d2)P (d1, d2) , (6.2.1)

where the sum is over all possible pairs of degrees (d1, d2), and P (d1, d2) denotes the
probability that two uniformly chosen vertices have degrees d1 and d2. We then let
the degrees d1 and d2 scale as nα1 and nα2 and find which degrees give the largest
contribution to (6.2.1). Due to the power-law degree distribution, the probability that
a vertex has degree proportional to nα scales as n−(τ−1)α. The maximal summand
of (6.2.1) can then be written as

max
α1,α2

P (4 on degrees k, nα1 , nα2) n2+(α1+α2)(1−τ). (6.2.2)

We now study the optimal structure of a triangle using (6.2.2) for several random
graph null models. If the optimizer over α1 and α2 is unique, and attained by α∗1 and
α∗2 , then we can write the probability that a triangle is present between a vertex of
degree k and two randomly chosen vertices as

P (4k) ∝ P
(
4 on degrees k, nα∗1 , nα∗2

)
n(α∗1+α∗2)(1−τ). (6.2.3)



6.2. Variational principle 129

The local clustering coefficient c(k) is defined as the expected number of triangles
containing a uniformly chosen vertex of degree k divided by (k

2). Therefore,

c(k) ∝ n2k−2P
(
4 on degrees k, nα∗1 , nα∗2

)
n(α∗1+α∗2)(1−τ). (6.2.4)

Thus, if we know the probability that a triangle is present between vertices of degrees
k, nα1 and nα2 for some random graph null model, the variational principle is able to
find the scaling of c(k) in k as well as the graph size n.

Suppose a model assigns to each vertex some parameters that determine the
connection probabilities (for example radial and angular coordinates in case of the
hyperbolic random graph). The variational principle can then be applied as long as
the vertex degree can be expressed as some function of the vertex parameters, so
that the probability of triangle formation between three vertices can be viewed as
a function of the vertex degrees, and one can search for the optimal contribution
to (6.2.2). We show that this is possible for a wide class of random graph models,
making the variational principle an important tool to investigate clustering.

6.2.1 Clustering in the hyperbolic random graph

We now use the variational principle to compute c(k) in the hyperbolic random graph,
defined in Section 1.1.6, where each vertex is described by a radial coordinate r and
an angular coordinate φ. As explained in Section 1.1.6, vertices with small radial
coordinates are often hubs, whereas vertices with larger radial coordinates usually
have small degrees. We will use this relation between radial coordinate and degree to
find the most likely triangle in the hyperbolic model in terms of degrees as well as
radial coordinates. For a point i with radial coordinate ri, we define its type ti as

ti = e(R−ri)/2. (6.2.5)

Then, if Di denotes the degree of vertex i, by (2.4.16)

ti = Θ(Di). (6.2.6)

Furthermore, ti are distributed as a power law with exponent τ [33], so that the
degrees have a power-law distribution as well. The ti’s can be interpreted as the
weights in a rank-1 inhomogeneous random graph [33].

We now study c(k) for the hyperbolic random graph, using the constrained
variational principle (6.2.2). Thus, we calculate the probability that a triangle is
present between vertices of degrees k, nα1 and nα2 . Because the degrees and the types
of vertices have the same scaling, we investigate the probability that two neighbors
of a vertex of type k connect. We compute the probability that a triangle is formed
between a vertex of degree k, a vertex i with ti ∝ nα1 and a vertex j with tj ∝ nα2 with
α1 ≤ α2. We can write this probability as

P (4 on types k, nα1 , nα2) = P (k↔ nα1)P (k↔ nα2)

×P (nα1 and nα2 neighbor connect) . (6.2.7)

The probability that two vertices with types ti and tj connect satisfies by Lemma 2.5

P
(
i↔ j | ti, tj

)
= g(νtitj/n)(1 + oP(1)) ∝ min

(
2νtitj/(πn), 1

)
, (6.2.8)
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with g as in Lemma 2.5. Therefore, the probability that a vertex of type k connects
with a randomly chosen vertex of type nα1 can be approximated by

P (k↔ nα1) ∝ min(knα1−1, 1). (6.2.9)

The third term in (6.2.7) equals the probability that the two neighbors of a vertex of
degree k connect to one another, which is more involved. Two neighbors of a vertex
are likely to be close to one another, which increases the probability that they connect.

We now compute the order of magnitude of the third term in (6.2.7). Let i and j
be neighbors of a vertex with degree k, with ti ∝ nα1 and tj ∝ nα2 . Two vertices with
types ti and tj and angular coordinates φi and φj connect if the relative angle between
φi and φj, ∆θ, satisfies by (2.4.13)

∆θ ≤ Θ
(
2νtitj/n

)
. (6.2.10)

W.l.o.g., let the angular coordinate of the vertex with degree k be 0. For i and j to be
connected to a vertex with angular coordinate zero, by (6.2.10) φi and φj must satisfy

−Θ(min(knα1−1, 1)) ≤ φi ≤ Θ(min(knα1−1, 1)),

−Θ(min(knα2−1, 1)) ≤ φj ≤ Θ(min(knα2−1, 1)). (6.2.11)

Because the angular coordinates in the hyperbolic random graph are uniformly
distributed, φi and φj are uniformly distributed in the above ranges. By (6.2.10),
vertices i and j are connected if their relative angle is at most

2νnα1+α2−1. (6.2.12)

Thus, the probability that i and j connect is the probability that two randomly chosen
points in the intervals (6.2.11) differ in their angles by at most (6.2.12). Assume that
α2 ≥ α1. Then, the probability that i and j are connected is proportional to

P (nα1 and nα2 neighbor connect) ∝ min
(

nα1+α2−1

min(knα2−1, 1)
, 1
)

= min(nα1 max(nα2−1, k−1), 1). (6.2.13)

Thus, (6.2.2) reduces to

max
α1,α2

n(α1+α2)(1−τ) min(knα1−1, 1)min(knα2−1, 1)min(nα1 max(nα2−1, k−1), 1).

(6.2.14)
Because of the min(knα2−1, 1) term, it is never optimal to let the max term be attained
by nα2−1. Thus, the equation reduces further to

max
α1,α2

n(α1+α2)(1−τ) min(knα1−1, 1)min(knα2−1, 1)min(nα1 k−1, 1). (6.2.15)

The maximizers over α1 ≤ α2 are given by

(nα1 , nα2) ∝


(n0, n0), τ > 5

2 ,
(k, k) τ < 5

2 , k� √n,
(n/k, n/k) τ < 5

2 , k� √n.
(6.2.16)
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(a) τ < 5/2: For k� √n the two other verti-
ces have degree proportional to n/k, whereas
for k � √n the other two vertices have de-
gree proportional to k.

(b) τ > 5/2: The other two vertices have
constant degree across the entire range of k.

Figure 6.1: Typical triangles containing a vertex of degree k (dark red) in hyperbolic
random graphs. A vertex of degree nα has radial coordinate close to R− α, so that the
optimal triangle degrees can be translated back to their radial coordinates in the disk.

Then (6.2.4) shows that for each 1� k� n1/(τ−1), with high probability

c(k) ∝


k−1 τ > 5

2 ,
k4−2τ τ < 5

2 , k� √n,
k2τ−6n5−2τ τ < 5

2 , k� √n.
(6.2.17)

This result is more detailed than the result in [130], where the scaling c(k) ∼ k−1

was predicted for fixed k. We find that this scaling only holds for the larger values
of τ, while for τ < 5/2 the decay of the curve is significantly different, which was
also found in [82]. For τ > 5/2, the c(k) curve does not depend on n. For τ < 5/2
the dependence on n is only present for large values of k. Interestingly, the exponent
τ = 5/2 is also the point where the maximal contribution to a bidirectional shortest
path in the hyperbolic random graph changes from high-degree to lower-degree
vertices [28]. The optimal triangle structures also contain higher vertex degrees for
τ < 2.5 than for τ > 2.5 (see Figure 6.1). Figure 6.2a shows simulations of c(k) in the
hyperbolic random graph together with the asymptotic slope from (6.2.17).

6.2.2 Locally tree-like random graph models.

We next apply the variational principle to several random graph models that are
known to be locally tree-like, so that triangles and clustering disappear in the large-
network limit. The rank-1 inhomogeneous random graph is one such model. We
analyzed c(k) for the rank-1 inhomogeneous random graph in detail in Chapter 4,
but we now show how the variational principle gives another method to obtain the
scaling of c(k) in the rank-1 inhomogeneous random graph. We take the connection
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(a) Hyperbolic random graph
with ν = 1.
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(b) Rank-1 inhomogeneous
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Figure 6.2: Simulations of c(k) for three different models with n = 106. The solid lines
correspond to averages over 104 network realizations and the dashed lines indicate
the asymptotic slopes of (6.2.17), (6.2.22) and (6.2.28).

probability of vertices i and j with weights hi and hj to be given by

p(hi, hj) = min(hihj/(µn), 1), (6.2.18)

where µ denotes the average weight. Thus, the probability that a vertex of degree k
forms a triangle together with vertices i and j of degrees nα1 and nα2 , respectively, can
be written as

P(4i,j,k) = Θ
(

min(knα1−1, 1)min(knα2−1, 1)min(nα1+α2−1, 1)
)
. (6.2.19)

Therefore (6.2.2) reduces to

max
α1,α2

n(α1+α2)(1−τ) min(knα1−1, 1)min(knα2−1, 1)min(nα1+α2−1, 1). (6.2.20)

Calculating the optimum of (6.2.20) over α1, α2 ∈ [0, 1/(τ − 1)] shows that the maxi-
mal contribution to the typical number of constrained triangles is given by

α1 + α2 = 1, k� n(τ−2)/(τ−1),

α1 + α2 = 1, nα1 , nα2 < n/k, n(τ−2)/(τ−1) � k�
√

n,

nα1 = n/k, nα2 = n/k, k�
√

n.

(6.2.21)

Thus, for every value of k there exists an optimal constrained triangle, visualized in
Figure 6.3. These three ranges of optimal triangle structures result in three ranges in k
for c(k) in the rank-1 inhomogeneous random graph. Using these typical constrained
subgraphs, for each 1� k� n1/(τ−1), with high probability,

c(k) ∝


n2−τ log(n) k� n(τ−2)/(τ−1),
n2−τ log(n/k2) n(τ−2)/(τ−1) � k� √n,
k2τ−6n5−2τ k� √n.

(6.2.22)

Thus, the scaling of c(k) found by the variational principle is indeed the same as
found in Chapter 4. Figure 6.3 shows that the three ranges for c(k) in the rank-1
inhomogeneous random graph are also visible in simulations.
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Figure 6.3: Typical triangles where one vertex has degree k in the rank-1 inhomogene-
ous random graph. When k <

√
n a typical triangle is with two vertices such that the

product of their degrees is proportional to n. When k >
√

n, the other two degrees in
a typical triangle are proportional to n/k.

The extended variational principle in Section 6.3 shows that c(k) in the rank-1
inhomogeneous random graph fails to be self-averaging for k� n(τ−2)/(τ−1), so that
c(k)-values for k� n(τ−2)/(τ−1) heavily fluctuate across various network samples.

Erased configuration models and uniform random graphs. The analysis of the
optimal triangle structure in the rank-1 inhomogeneous random graph easily extends
to the erased configuration model, described in Section 1.1.3, and the uniform random
graph, described in Section 1.1.2. Both models can be approximated by a rank-1
inhomogeneous random graph with specific connection probabilities (see Chapter 5).
Therefore, the variational principle shows that the optimal triangle structure as well as
the behavior of the local clustering coefficient is the same as in (6.2.22) and Figure 6.3,
which is consistent with the results of Chapter 5. The non-self-averaging behavior for
k� n(τ−2)/(τ−1) also extends from the rank-1 inhomogeneous random graph to the
erased configuration model and uniform random graphs.

Preferential attachment. Another important network null model is the preferential
attachment model described in Section 1.1.5, a dynamic network model that generates
scale-free networks when choosing the number of edges attached to each new vertex
m and the parameter δ in the connection probability (1.1.4) as δ ∈ (−m, 0).

In the preferential attachment model, it is convenient to apply the variational
principle to vertices with index of a specific order of magnitude instead of degrees.
The vertex with index 1 is the oldest vertex, and the vertex with index n is the
youngest vertex in the graph of size n. The probability that vertices with indices
i = nα1 and j = nα2 such that α1 < α2 are connected is proportional to [73]

P (j→ i) ∝ j−χi1−χ ∝ nα1(χ−1)−α2χ, (6.2.23)

where χ = (τ − 2)/(τ − 1). Thus, the probability that a vertex with index nαk creates
a triangle with vertices of indices proportional to nα1 and nα2 can be approximated by

P (4 on indices nαk , nα1 , nα2) ∝


n2α1(χ−1)−α2−2αkχ if α1 ≤ α2 ≤ αk,
n2α1(χ−1)−αk−2α2χ if α1 ≤ αk ≤ α2,
n2αk(χ−1)−α1−2α2χ if αk ≤ α1 ≤ α2.

(6.2.24)
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k

1n1/(τ−1)

Figure 6.4: The most likely triangle containing a vertex of degree k in the preferential
attachment model.

The probability that a randomly chosen vertex has age proportional to nα is proporti-
onal to nα−1. Thus, the equivalent optimization problem to (6.2.2) becomes

max
α1≤α2


n−2+α1(2χ−1)−2αkχ if α1 ≤ α2 ≤ αk,
n−2+(α1−α2)(2χ−1)−αk if α1 ≤ αk ≤ α2,
n−2+2αk(χ−1)−α2(2χ−1) if αk ≤ α1 ≤ α2.

(6.2.25)

Using that χ ∈ (0, 1
2 ) when τ ∈ (2, 3), we find that for all 0 < αk < 1 the unique

optimizer is obtained by α∗1 = 0 and α∗2 = 1. Furthermore, the degree of a vertex of
index i ∝ nαi at time n, di(n) satisfies with high probability [106, Chapter 8]

di(n) ∝ (n/i)1/(τ−1) ∝ n
1−αi
τ−1 . (6.2.26)

Thus, vertices with age proportional to nα∗1 have degrees proportional to n1/(τ−1),
whereas vertices with age proportional to nα∗2 have degrees proportional to a constant.
We conclude that for all 1 � k � n1/(τ−1), in the most likely triangle containing a
vertex of degree k one of the other vertices has constant degree and the other has
degree proportional to n1/(τ−1).

Similarly to (6.2.26), a vertex of degree proportional to nγ has index proportional
to n1−γ(τ−1). Thus, when k ∝ nγ

c(nγ) ∝ n2γn2n−2−2χ+1−1+γ(τ−1) = nγ(τ−3)−2χ. (6.2.27)

Thus, for each 1� k� n1/(τ−1), with high probability,

c(k) ∝ kτ−3n−2χ. (6.2.28)

Figure 6.2c shows that this asymptotic slope in k is a good fit in simulations.
Figure 6.4 shows the most likely triangle containing a vertex of degree k in the

preferential attachment model. Interestingly, this dominant triangle remains the same
over the entire range of k, which is very different from the three regimes that are
present in the rank-1 inhomogeneous random graph.

6.2.3 Random intersection graph

We next consider the random intersection graph [124], a random graph model with
overlapping community structures that, like the hyperbolic random graph, generates
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non-vanishing clustering levels. The random intersection graph contains n vertices,
and m vertex attributes. Every vertex i chooses a random number of Xi vertex
attributes, where (Xi)i∈[n] is an i.i.d. sample. These vertex attributes are sampled
uniformly without replacement from all m attributes. Two vertices share an edge if
they share at least s ≥ 1 vertex attributes. One can think of the random intersection
graph as a model for a social network, vertex attributes model the interests, or
the group memberships of a person in the network. Then two vertices connect
if their interests or group memberships are sufficiently similar. The overlapping
community structures of the random intersection graph make the model highly
clustered [30, 31], so that the typical triangles in the random intersection graph
should behave considerably different than the typical triangles in the locally tree-like
models described above.

To obtain random intersection graphs where vertices have asymptotically constant
average degree, we need that ms ∝ n [30], which we assume from now on. We further
assume that s is of constant order of magnitude. Then the degree of vertex i with
Xi vertex attributes is proportional to Xs

i [30]. Therefore, a vertex of degree k has
approximately k1/s vertex attributes. To obtain a power-law degree distribution with
exponent τ, the probability of vertex i having Xi vertex attributes scales as

P (Xi = u) ∝ u−τs. (6.2.29)

To apply the variational principle, we calculate the number of triangles between
a vertex of degree k, and two vertices of degrees proportional to nα1 and nα2 . These
vertices have proportionally to nα1/s, respectively nα2/s, vertex attributes. There are
several ways for three vertices to form a triangle. If three vertices share the same set
of at least s attributes, then they form a triangle. But if vertex i shares a set of at least
s attributes with vertex j, vertex j shares another set of s attributes with vertex k and
vertex k shares yet another set of s attributes with vertex i, these vertices also form a
triangle. The most likely way for three vertices to form a triangle however, is for all

three vertices to share the same set of s attributes [30]. There are (k1/s

s ) ways to choose
s attributes from the k1/s attributes of the degree-k vertex. Then, a triangle is formed
if the two other vertices also contain these s attributes. Since these vertices have nα1/s

and nα2/s attributes chosen uniformly without replacement from all m attributes, the
probability that the first vertex shares these s attributes is ( m−s

nα1/s−s)/(
m

nα1/s). We can
then calculate the probability of a triangle being present as

P (4 on degrees k, nα1 , nα2) ∝
(

k1/s

s

)
( m−s

nα1/s−s)(
m−s

nα2/s−s)

( m
nα1/s)(

m
nα2/s)

∝ knα1+α2 m−2s ∝ knα1+α2−2. (6.2.30)

Combining this with (6.2.4) yields

c(k) ∝ n2k−2 max
α1,α2

kn(α1+α2)(2−τ)−2 ∝ k−1, (6.2.31)

where the maximizer is α1 = α2 = 0. Thus, a most likely triangle in the random
intersection graph is a triangle containing one vertex of degree k, where the two
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Figure 6.5: The self-averaging behavior of the clustering coefficient in the hyperbolic
random graph. The plots show density estimates of the rescaled global clustering
coefficient based on 104 samples of hyperbolic random graphs with ν = 1.

other vertices have degrees proportional to a constant. The result that c(k) ∝ k−1 is
in agreement with the results obtained in [30]. Moreover, the most likely triangle is
a triangle where one vertex has degree k, and the other two vertices have constant
degree. Thus, in terms of clustering, the random intersection graph behaves the same
as the hyperbolic random graph with τ > 5/2.

6.2.4 Clustering coefficient

The average clustering coefficient of a network is defined as

C =
1
n

n

∑
i=1

N4i
di(di − 1)

= ∑
k

pkc(k), (6.2.32)

where N4i denotes the number of triangles attached to vertex i and pk denotes the
fraction of vertices of degree k. Because the power-law degree-distribution decays
rapidly in k, C ∝ c(k) for constant k, since we know that c(k) is approximately
constant for constant k (which was shown rigorously for the rank-1 inhomogeneous
random graph in Chapter 3). Thus, the self-averaging properties of the average
clustering coefficient are determined by the self-averaging properties of c(k) for small
values of k. This implies that in the rank-1 inhomogeneous random graph, C is indeed
non-self-averaging (see Section 6.3) which supports numerical results in [201]. In the
hyperbolic random graph on the other hand, the self-averaging c(k) curve shows that
also C is self-averaging. Figure 6.5 shows that indeed the fluctuations in C decrease
as n grows. Figure 6.6 shows that in the rank-1 inhomogeneous random graph C is
indeed non-self-averaging, since the fluctuations in C persist for large values of n.
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Figure 6.6: The non-self-averaging behavior of the clustering coefficient in the rank-
1 inhomogeneous random graph. The plots show density estimates based on 104

samples of rank-1 inhomogeneous random graphs.

6.3 Fluctuations

Due to their stochastic nature, whenever a random graph model is employed for
modeling real-world networks, one needs to consider the fluctuations, typically
expressed in term of the self-averaging property. We say that c(k) is self-averaging
when Var (c(k)) /E [c(k)]2 → 0 as n → ∞, so that the fluctuations of c(k) vanish
in the large-network limit. When c(k) fails to be self-averaging, the fluctuations
persist even in the large-network limit, so that the average of c(k) over many network
realizations cannot be viewed as a reliable descriptor of the local clustering. We now
show how to apply the variational principle (6.2.4) to constrained subgraphs larger
than triangles, which leads to a complete characterization of Var (c(k)) /E [c(k)]2 in
the large-network limit. The variational principle can hence determine for any value
of k whether c(k) is self-averaging or not. In this way we are able to show that for
the hyperbolic random graph, c(k) is self-averaging for all values of τ ∈ (2, 3) and all k.
This implies that for large enough n, one sample of the hyperbolic random graph is
sufficient to obtain the characteristic behavior of c(k). With the extended variational
principle we also show that the rank-1 inhomogeneous random graph on the other
hand is not always self-averaging in terms of c(k).

6.3.1 Fluctuations in the rank-1 inhomogeneous random graph

We first investigate whether c(k) is self-averaging for k small in the rank-1 inhomo-
geneous random graph. We first study the expected value of c(k). In the variational
principle, we obtained the typical number of triangles where one vertex has degree
k by putting the hard constraint α1, α2 ≤ 1/(τ − 1) on the degrees of the other two
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vertices in the triangle. If we relax this constraint, we can compute E [c(k)]. This
quantity can be interpreted as the value of c(k) obtained after simulating many
rank-1 inhomogeneous random graphs, and taking the average value of c(k) over all
these rank-1 inhomogeneous random graphs. As long as k � n(τ−2)/(τ−1), we see
from (6.2.21) that the largest contribution to c(k) is from vertices with degrees strictly
smaller than n1/(τ−1). Thus, removing the constraint on the maximal degree does not
influence the major contribution for c(k). When k� n(τ−2)/(τ−1) however, the major
contribution includes vertices of degree n1/(τ−1). Removing the hard constraint then
results in an optimal contribution which is slightly different from (6.2.21):

α1 + α2 = 1, nα1 , nα2 < n/k k�
√

n,

nα1 = n/k, nα2 = n/k k�
√

n.
(6.3.1)

Similarly to the computation that leads to (6.2.21), this gives for E [c(k)] that

E [c(k)] ∝

{
n2−τ log(n/k2) k� √n,
k2τ−6n5−2τ k� √n.

(6.3.2)

Thus, the typical behavior of c(k) is the same as its average behavior for k �
n(τ−2)/(τ−1). For small values of k however, the flat regime disappears and is re-
placed by a regime that depends on the logarithm of k. The difference between the
expected and the typical value of c(k) is important to take into account for the accu-
racy of numerical experiments, where the median value of c(k) over many network
realizations behaves like (6.2.22), but the average value behaves as (6.3.2).

We now proceed to compute the variance of c(k). The variance of c(k) equals

Var (c(k)) = k−4 ∑′

u,v∈[n]
∑′

w,z∈[n]
P
(
4i,u,v4j,w,z

)
−P (4i,u,v)P

(
4j,w,z

)
, (6.3.3)

where i and j denote two randomly chosen vertices of degree k, so that the weig-
hts of i and j satisfy wi, wj = k(1 + oP(1)). When i, u, v and j, w, z do not overlap,
their weights are independent, so that the event that i, u and v form a triangle and
the event that j, w and z form a triangle are independent. Thus, when i, j, u, v, w, z
are distinct, P

(
4i,u,v4j,w,z

)
= P (4i,u,v)P

(
4j,w,z

)
, so that the contribution from

6 distinct indices to (6.3.3) is zero. Since wi = k(1 + oP(1)), P (4i,u,v4i,w,z) =
P (4i,u,v)P (4i,w,z) (1 + oP(1)) when u, v, w, z are distinct. Thus, the contribution to
the variance from i = j and u, v, w, z distinct can be bounded as o(E [c(k)]2). When
u = w for example, the first term in (6.3.3) denotes the probability that a bow-tie is
present with u as middle vertex. Furthermore, since the degrees are i.i.d., for any
i 6= u 6= v, such that di = k,

P (4i,u,v) =
E [4k]

2(n
2)

, (6.3.4)

where4k denotes the number of triangles attached to a randomly chosen vertex of
degree k. Let r = P (i = j). Then,

Var (c(k)) = k−4
(

r
(

4E
[ ]

+ 4E
[ ]

+ 2E
[ ]

+ 4E
[ ]

+ 8E
[ ]
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+ 4E
[ ])

+ (1− r)
(

E
[ ]

+ 4E
[ ]

+ 2E [4k]
)
+ E [4k]

2 O(n−1)
)

(6.3.5)

where denotes the number of bow-ties attached to two randomly chosen (white)

vertices of degree k, and denotes the number of bow-ties attached to one rand-
omly chosen (white) vertex of degree k. The combinatorial factor 4 arises in the
first term because there are 4 ways to construct a bow-tie where two vertices have
degree k by letting two triangles containing a degree k vertex overlap. The other com-
binatorial factors arise similarly. Because wi, wj = k(1 + oP(1)), P (4i,u,v4i,u,z) =

P
(
4i,u,v4j,u,z

)
(1+ oP(1)), so that E

[ ]
= (1+ oP(1))E

[ ]
and similarly E [4k] =

(1 + oP(1))E
[ ]

. Thus, with high probability

Var (c(k)) ∝ k−4
(

E
[ ]

+ E
[ ]

+ E
[ ]

+ E
[ ]

+ E
[ ]

+ E
[ ]

+ E [4k]
2 O(n−1)

)
+ o(E [c(k)]2) (6.3.6)

We write the first expectation as

E
[ ]

= n3P
( )

, (6.3.7)

where P
( )

denotes the probability that two randomly chosen vertices of degree k
form the constrained bow-tie together with three randomly chosen other vertices. We
can compute this probability with a constrained variational principle. By symmetry
of the bow-tie subgraph, the optimal degree range of the bottom right vertex and
the upper right vertex is the same. Let the degree of the middle vertex scale as nα1 ,
and the degrees of the other two vertices as nα2 . Then, we write the constrained
variational principle, similarly to (6.2.20), as

max
α1,α2

n(α1+2α2)(1−τ) min(knα1−1, 1)2 min(knα2−1, 1)2 min(nα1+α2−1, 1)2 (6.3.8)

For k� √n, the unique optimal contribution is from nα1 = n/k and nα2 = k, as
shown in Figure 6.7a. Thus, the expected number of such bow-ties scales as

E
[ ]

∝ n3(n/k)1−τk2(1−τ)k4n−2 = n2−τk5−τ . (6.3.9)

Thus,

Var (c(k)) > k−4E
[ ]

∝ n2−τk1−τ , (6.3.10)

so that (6.3.2) yields that for k small

Var (c(k))

E [c(k)]2
>

n2−τk1−τ

n4−2τ log2(n/k2)
, (6.3.11)

which tends to infinity as long as k � n(τ−2)/(τ−1). Therefore c(k) is non self-
averaging as long as k� n(τ−2)/(τ−1).
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For n(τ−2)/(τ−1) � k� √n, we can similarly compute the optimum contributions
of all other constrained motifs to the variance as in Figure 6.7. Since all contributions
have smaller magnitude than E [c(k)]2 (obtained from (6.3.2)), c(k) is self-averaging.
For k� √n, a constrained variational principle again provides the contribution of all
constrained motifs to the variance of c(k), visualized in Figure 6.8. Comparing this
with (6.3.2) shows that c(k) is also self-averaging for k� √n.

k

k
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k
k
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n4−2τkτ−3 log( n
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(e) n3−2τk2τ−4

n/kk non-unique

Figure 6.7: Contribution to the variance of c(k) in the rank-1 inhomogeneous random
graph (Eq. 6.3.6) from merging two triangles where one vertex has degree k� √n.
The vertex color indicates the optimal vertex degree.
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Figure 6.8: Contribution to the variance of c(k) in the rank-1 inhomogeneous random
graph (Eq. 6.3.6) from merging two triangles where one vertex has degree k� √n.
The vertex color indicates the optimal vertex degree as in Figure 6.7.

6.3.2 Fluctuations in the hyperbolic random graph

We now analyze the fluctuations in the hyperbolic random graph. Again, we first
investigate E [c(k)]. As for the rank-1 inhomogeneous random graph, E [c(k)] can
be obtained by removing the constraint that the maximal degree scales as n1/(τ−1),
which means that we optimize (6.2.15) over α1, α2 ∈ [0, 1] instead of [0, 1/(τ − 1)].
Extending the allowed range of α1 and α2 does not change the optimizer, so that,
similarly to (6.2.17),

E [c(k)] ∝


k−1 τ > 5

2 ,
k4−2τ τ < 5

2 , k� √n,
k2τ−6n5−2τ τ < 5

2 , k� √n.
(6.3.12)

We then proceed to analyze the variance of c(k). We again use (6.3.5) to analyze
the fluctuations of c(k), and we write

Var (c(k)) = k−4O
(

E
[ ]

+ E
[ ]

+ E
[ ]

+ E
[ ]

+ E
[ ]
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+ E
[ ]

+ E
[ ]

+ E
[ ]

+ E [4k]
)
+ E [4k]

2 O(n−1) (6.3.13)

Thus, as in the rank-1 inhomogeneous random graph, we need to obtain the expected
number of merged constrained triangles attached to randomly chosen vertices of
degree k. Figures 6.9 and 6.10 show the contribution of all types of merged triangles
to the variance of c(k). These contributions are all smaller than E [c(k)]2 (see (6.3.12)),
so that c(k) is self-averaging over its entire spectrum.

For example, the expected number of subgraphs of type attached to two
randomly chosen (white) vertices of degree k, where the top and bottom right vertices
have degree proportional to nα1 and the middle vertex has degree proportional to nα2

as

n3n(2α1+α2)(1−τ) min(knα1−1, 1)2 min(knα2−1, 1)2 min(nα1 max(nα2−1, k−1), 1)2.
(6.3.14)

Optimizing this over α1 and α2 yields that for k� √n the number of subgraphs
is dominated by the type displayed in Figure 6.9a, where nα1 ∝ k and nα2 ∝ n/k.
Computing this contribution results in

E

[ ]
∝ n3k2(1−τ)

(n
k

)1−τ ( k2

n

)2
= n2−τk5−τ . (6.3.15)

Thus, using (6.3.13) shows that the contribution to the variance is n2−τk1−τ , as shown
in Figure 6.9a. We obtain using (6.3.12) that for k� √n,

n2−τk1−τ

E [c(k)]2
∝

{
n2−τk3−τ � n(7−3τ)/2 τ > 5

2 ,
n2−τk3τ−7 � max(n(τ−3)/2, n2−τ) τ < 5

2 ,
(6.3.16)

which tends to zero as n → ∞. Thus, the contribution to the variance from the
subgraphs tends to zero in the large network limit for k� √n.

The optimizer of (6.3.14) for k � √n is for nα1 ∝ n/k and nα2 ∝ n/k. Thus,
similarly to (6.3.15)

E

[ ]
∝ n3

(n
k

)3(1−τ) ( n
k2

)2
= n8−3τk3τ−7. (6.3.17)

The contribution to 6.3.13 then is n8−3τk3τ−11, as Figure 6.10a shows. Thus, for
k� √n,

n8−3τk3τ−11

E [c(k)]2
∝

{
n8−3τk3(τ−3) � n(7−3τ)/2 τ > 5

2 ,
nτ−2k1−τ � n(τ−3)/2 τ < 5

2 ,
(6.3.18)

which tends to zero as n → ∞, showing that indeed the contribution from the
subgraph to the variance is small when k� √n. The contributions of other subgraphs
can be computed similarly.
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Figure 6.9: Contribution to the variance of c(k) in the hyperbolic model from
merging two triangles where one vertex has degree k� √n (see (6.3.13)). The vertex
color indicates the optimal vertex degree.
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Figure 6.10: Contribution to the variance of c(k) in the hyperbolic model from merging
two triangles where one vertex has degree k � √n (see (6.3.13)). The vertex color
indicates the optimal vertex degree as in Figure 6.9.

6.4 Discussion

Universality of the variational principle. We have introduced a constrained varia-
tional principle that finds the optimal triangle structure containing a vertex of degree
k, settling the trade-off between the connectedness of high-degree vertices and their
rareness. This variational principle can be applied to many random graph null mo-
dels generating scale-free networks. We have applied the variational principle to find
optimal triangle structures in rank-1 inhomogeneous random graphs, the preferential
attachment model, random intersection graphs and the hyperbolic random graph,
but we believe that the variational principle can easily be applied to other types of
random graph null models such as the geometric inhomogeneous random graph [49]
or the spatial preferential attachment model [3, 114].

Our method also extend to other types of constrained motifs, which allows for
example to investigate higher order clustering [19, 227]. Furthermore, these higher
order constrained motifs allow to investigate the self-averaging properties of c(k).
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Differences between the models. While the applicability of the variational prin-
ciple across the different null models is universal, the resulting clustering spectra
are significantly different across the various random graph models. For τ ∈ (2, 3),
in the rank-1 inhomogeneous random graph, the erased configuration model, uni-
form random graphs (see (6.2.22)) as well as in the preferential attachment model
(see (6.2.28)) c(k) decreases with the network size, because of the locally-tree like
nature of these networks. This fall-off in n can be explained by the optimal triangle
structures. In all optimal triangle structures of Figures 6.3 and 6.4, a vertex whose
degree grows in n is present. These vertices are rare, so that the fact that the most
likely triangle contains such high-degree vertices is caused by the network being
locally tree-like.

In the hyperbolic model and the random intersection graph on the other hand, the
optimal triangle structures of Figure 6.1 contain low-degree vertices for small values
of k. In models without geometric correlations, the probability of connecting two
vertices usually increases in the degree of the vertices involved. Therefore, models
without correlations mostly contain triangles with high-degree vertices, causing these
networks to be locally tree-like. The geometric correlations in the hyperbolic model
on the other hand make it more likely for two low-degree neighbors to connect,
causing the most likely triangle to contain lower-degree vertices. These lower-degree
vertices are abundant, which explains why, for small k, c(k) does not vanish as n
grows large in the hyperbolic model, which is more alike the behavior of c(k) in
real-world networks.

Another advantage of the hyperbolic random graph over the locally tree-like
networks is that c(k) in the hyperbolic model is self-averaging over the entire range
of k. In the rank-1 inhomogeneous random graph, the erased configuration model
as well as the uniform random graph, c(k) is non-self-averaging for k small. Thus, it
suffices to generate one large hyperbolic random graph to investigate the behavior
of c(k). In the other models, the non-self-averaging nature of c(k) makes statistical
investigation of the c(k) curve more difficult.

1/k fall-off. The clustering coefficient in the hyperbolic random graph as well as
the random intersection graph satisfies c(k) ∼ k−1 for τ > 5/2. This fall-off has been
observed in many other scale-free random graph null models containing non-trivial
clustering, such as preferential attachment models with extra triangles [128, 132, 204],
and fractal-like random graph models [187]. We now explain heuristically why the
k−1 fall-off occurs so frequently in network models containing non-trivial clustering.
The clustering coefficient can be interpreted as the probability that two randomly
chosen neighbors of a vertex of degree k connect. Thus, the clustering coefficient of
a vertex of degree k equals the number of triangles containing that vertex divided
by k(k− 1)/2 ≈ k2. Suppose that all neighbors of a vertex of degree k participate in
exactly one triangle together with the degree-k vertex. Then, the number of triangles
containing the vertex of degree k equals k/2, so that c(k) ∝ k−1. Similarly, when a
vertex of degree k typically does not participate in cliques that are larger than some
bound M, then the clustering coefficient will scale at most as k−1 for k large enough.
Therefore, the frequently observed k−1 fall-off in real-world networks indicates that
in most real-world networks, the number of triangles a degree-k vertex participates
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in grows linearly in k, and they do not form growing cliques.
A network can only have c(k) ∝ kγ for some γ > −1 when a typical vertex

of degree k participates in a clique of size growing in k, which was also explained
in [196–198]. These growing cliques require the presence of high-degree vertices.
However, by the power-law degree distribution only few high-degree vertices are
present. Thus, it is not possible for these growing cliques to persist over the entire
range of k.

Growing cliques in the hyperbolic model. In the hyperbolic model, for τ < 5/2
and k� √n, the optimal triangle structure of a vertex of degree k contains two other
vertices of degree proportional to k and c(k) ∝ k4−2τ . Since 4− 2τ > −1 for τ < 5/2,
by the discussion above, a typical vertex of degree k must participate in a clique
of size growing in k. Furthermore, since the typical triangle containing a vertex of
degree k for τ < 5/2 contains two other degree-k vertices, these growing cliques
consist of vertices with degree proportional to k.

In the hyperbolic random graph, a positive fraction of vertices of degree proporti-
onal to

√
n forms a clique [85]. This explains the different regime in c(k) for k� √n

when τ < 5/2. Indeed, for k� √n, there are fewer vertices of degree proportional
to k than vertices of degree proportional to

√
n. Most vertices of degree proportional

to
√

n already form a clique. Therefore, from k ∝
√

n onwards the typical clique
that a vertex of degree k participates in does not grow in k anymore, so that, by
the 1/k explanation for k � √n and for τ < 5/2, the fall-off in k scales as kγ with
γ ≤ −1 (see (6.2.17), where the exponent of k equals 2τ − 6 < −1 when k� √n and
τ < 5/2.).

Local clustering in real-world networks. Figure 4.2 plots the behavior of c(k) in
nine large real-world networks. All networks show non-trivial clustering: their c(k)
values are high for small values of k, while most networks consist of several millions
of vertices. This shows that the locally tree-like models where c(k) vanishes as n
grows large are not suitable to model real-world networks. Several clustering curves
are approximately described by c(k) ∝ k−1 for large values of k (see Supplementary
Table 1). Thus, these networks behave similarly in terms of clustering as the hyperbo-
lic model and the random intersection graph. The networks where c(k) ∝ kγ with
γ < −1 (such as the three social networks), display similar behavior as the curve of
the hyperbolic model in Figure 6.2a for τ < 5/2. First, c(k) decays very slowly in k.
Then, when k becomes larger, c(k) suddenly drops faster in k.
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7 Subgraphs in erased configuration models

Based on:
Optimal subgraph structures in scale-free configuration models

R. van der Hofstad, J.S.H. van Leeuwaarden and C. Stegehuis
arXiv:1709.03466

Subgraphs reveal information about the geometry and functionalities of complex
networks. In this chapter, we count the number of times a small connected graph
occurs as a subgraph (motif counting) or as an induced subgraph (graphlet counting)
of the erased configuration model with degree exponent τ ∈ (2, 3). We introduce
a novel class of optimization problems, where for any given subgraph, the unique
optimizer describes the most likely degrees of the vertices that together span the
subgraph. We find that every subgraph occurs typically between vertices with specific
degree ranges. In this way, we can count and characterize all subgraphs.

7.1 Introduction

In Part I we have investigated the presence of triangles in scale-free networks. The
triangle is the most studied network subgraph, because it not only describes the clus-
tering coefficient, but also signals hierarchy and community structure [187]. However,
other subgraphs such as larger cliques are equally important for understanding net-
work organization [19, 208]. Indeed, subgraph counts might vary considerably across
different networks [152, 153, 223] and any given network will have a set of statisti-
cally significant subgraphs. Statistical relevance can be expressed by comparing the
real networks to some mathematically tractable null model. This comparison filters
out the effect of network properties such as the degree sequence and the network
size on the motif count. A popular statistic takes the subgraph count, subtracts the
expected number of subgraphs in a null model, and divides by the variance in the
null model [87, 153, 169]. Such a standardized test statistic sheds light on whether
a subgraph is overrepresented in comparison to the null model that serves as the
baseline. The raises the question of what null model to use. To filter out the effect of
the network degrees, a natural candidate is the uniform simple graph with the same
degrees as the original network.

For τ > 3, when the degree distribution has finite second moment, it is easy
to generate such graphs using the configuration model. For τ < 3, however, the
configuration model fails to create simple graphs with high probability [116], and
null models usually involve rewiring edges of the original graph. Consequently, the
counting of subgraphs remains mathematically intractable, and one needs to resort to
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Figure 7.1: Graphlets. Order of magnitude of N(ind)(H) for all connected graphs on
4 vertices (constants ignored). The vertex colors correspond to the typical vertex
degrees.
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Figure 7.2: Motifs. Order of magnitude of N(sub)(H) for all connected graphs on 4
vertices (constants ignored). The vertex color indicates the optimal vertex degree, as
in Figure 7.1.

algorithms for exhaustive counting of motifs [144, 216], or estimations of the number
of motifs by sampling [127], which is computationally expensive.

In this chapter, we address this problem by counting subgraphs in the erased
configuration model instead of the configuration model. We count the number of
times a small connected graph H occurs as a subgraph (motif counting) or as an
induced subgraph, where edges not present in H are also not allowed to be present
in the subgraph (graphlet counting), in an erased configuration model G with degree
exponent τ ∈ (2, 3). Let G = (V, E) be a graph, and H = (VH , EH) be a small,
connected graph. When we count graphlets H, we are interested in N(ind)(H), the
number of induced subgraphs of G that are isomorphic to H. We also study motifs,
where we count N(sub)(H), the number of occurrences of H as a subgraph of G. When
H is a complete graph, N(ind)(H) = N(sub)(H), otherwise N(ind)(H) ≤ N(sub)(H). There
is thus a subtle difference between graphlets and motifs.

We find that every small graph H, whether it is a graphlet or motif, occurs typically
between vertices in G with degrees in specific ranges. An example of these typical
degree ranges for subgraphs on 4 vertices is shown in Figures 7.1 and 7.2 (which
will be discussed in more detail in Section 7.2.4). We show that many subgraphs
consist exclusively of

√
n-degree vertices, including cliques of all sizes. Hence, in

such subgraphs, hubs (of degree close to the maximal value n1/(τ−1)) are unlikely to
participate in a typical subgraph. However, hubs can be part of other subgraphs such
as stars. We define optimization problems that find these optimal degree ranges for
every motif and graphlet.

By studying the erased configuration model, we deal with multiple edges and
self-loops of the configuration model by excluding double counting.
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The erased configuration model. In this chapter, we study erased configuration
models (see Section 1.1.3) where the degree distribution has infinite variance. In
particular, we take the degrees to be an i.i.d. sample from a random variable D such
that

P(D = k) = ck−τ(1 + o(1)), as k→ ∞, (7.1.1)

where τ ∈ (2, 3) so that E
[
D2] = ∞ and

E [D] = µ < ∞. (7.1.2)

When this sample constructs a degree sequence such that the sum of the degrees is
odd, we add an extra half-edge to the last vertex. This does not affect our compu-
tations. In this setting, Dmax is of order n1/(τ−1), where Dmax denotes the maximal
degree of the degree sequence.

Throughout this chapter, we will denote the sampled degree of a vertex in the
erased configuration model by Di. This may not be the same as the actual degree of
a vertex in the erased configuration model, since self-loops and multiple edges are
removed. Since we study subgraphs H, we sometimes also need to use the degree
of a vertex in H inside the subgraph. We will denote the degree of a vertex i of a
subgraph H by di.

Outline. We present our main results in Section 7.2, including the theorems that
characterize all optimal subgraph structures in terms of solutions to optimization
problems. We apply these theorems to describe the optimal configurations of all
subgraphs with 4 and 5 vertices, and present an outlook for further use of our results.
We then prove the first part of the main theorems for motifs in Section 7.3 and for√

n-optimal subgraphs in Section 7.4. The proofs of some lemmas introduced along
the way are deferred to Section 7.5. Then, the proof of the second part of the main
theorem can be found in Section 7.6. We finally show how the proofs for motifs can
be adjusted to prove the theorems on graphlets in Section 7.7.

7.2 Main results

The key insight obtained in this chapter is that the creation of subgraphs is crucially
affected by the following trade-off, inherently present in power-law networks. On
the one hand, hubs contribute substantially to the number of subgraphs, because they
are very well connected, and therefore potentially contribute to many graphlets or
motifs. On the other hand, hubs are by definition rare. This should be contrasted
with lower-degree vertices that occur more frequently, but typically take part in fewer
connections and hence fewer subgraphs. Therefore, one may expect every subgraph
to consist of a selection of vertices with specific degrees that ‘optimize’ this trade-off
and hence maximize the probability that the subgraph occurs.

Write the probability that a motif H of k vertices is created between k uniformly
chosen vertices as

P (H present) = ∑
D

P (H motif on degrees D1, . . . , Dk)P (D1, . . . , Dk) , (7.2.1)
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where the sum is over all possible degrees on k verticesD = (Di)i∈k, and P (D1, . . . , Dk)
denotes the probability that a randomly chosen set of k vertices has degrees D1, . . . , Dk.
Because of the power-law degree distribution, the last term decreases as a power
of D1, . . . , Dk. The first term in the sum, however, increases with D1, . . . , Dk, since
higher-degree vertices are part of more subgraphs. We show that for every subgraph,
whether it is a motif or a graphlet there is a specific range of D1, . . . , Dk that gives the
maximal contribution to (7.2.1), sufficiently large to ignore all other degree ranges.

We show that there are only four possible ranges of degrees that maximize the term
inside the sum in (7.2.1). These ranges are constant degrees, degrees proportional to
n(τ−2)/(τ−1), degrees proportional to

√
n or degrees proportional to n1/(τ−1). Observe

that at this stage, these four ranges are merely an ansatz; rigorous underpinning for
these choices comes later. For degrees proportional to n1/(τ−1), the trade-off between
the abundance of low-degree vertices and the connectedness of high-degree vertices
is won by the high-degree vertices. Thus, intuitively, vertices in subgraphs that have
the largest contribution from degrees proportional to n1/(τ−1) should have more
connections inside the subgraph than other vertices in subgraph. On the other hand,
for vertices that have constant degree or degree proportional to n(τ−2)/(τ−1) in the
optimal structure, the trade-off is ‘won’ by the lower-degree vertices. Intuitively,
we therefore expect that these vertices are less well-connected inside the subgraph.
Vertices with degrees proportional to

√
n form the middle ground, and are typically

connected to vertices with similar degrees. There, the crucial observation is that
pairs of vertices of degree of order

√
n are likely, though not certain, to have an edge

between them in the erased configuration model.

7.2.1 An optimization problem

We now present the optimization problems that maximizes the term inside the sum
in (7.2.1), first for motifs and later for graphlets. Let H = (VH , EH) be a small, con-
nected graph on k > 2 vertices. Denote the set of vertices of H that have degree one
inside H by V1. Let P be all partitions of VH \ V1 into three disjoint sets S1, S2, S3.
This partition into S1, S2 and S3 corresponds to these orders of magnitude: S1 deno-
tes the vertices with degree proportional to n(τ−2)/(τ−1), S2 the ones with degrees
proportional to n1/(τ−1), and S3 the vertices with degrees proportional to

√
n. The

optimization problem finds the partition of the vertices into these three orders of
magnitude such that the contribution to the number of motifs or graphlets is the
largest. When a vertex in H has degree 1, its degree in the large graph G is typically
small, it does not grow with n. Interestingly, vertices with degrees in these orders of
magnitude are the only vertices that contribute to the number of motifs or graphlets,
as we will prove later.

Given a partition P , let ESi denote the number of edges in H between vertices in
Si, ESi ,Sj the number of edges between vertices in Si and Sj and ESi ,V1 the number of
edges between vertices in V1 and Si. We now define the optimization problem for
motifs that is equivalent to optimizing the term inside the sum in (7.2.1) as

B(sub)(H) = max
P

[
|S1| − |S2| −

2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
. (7.2.2)
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The first two terms in the optimization problem give a positive contribution for all
vertices in S1, vertices with relatively low degree, and a negative contribution for
vertices in S2 having high degrees. Therefore, the first two terms in the optimiza-
tion problem capture that high-degree vertices are rare, and lower-degree vertices
abundant. The last term gives a negative contribution for all edges between vertices
with relatively low degrees in the motif. This captures the other part of the trade-off:
high-degree vertices are much more likely to form edges with other vertices than low
degree vertices. Since putting all vertices in S3 yields zero, B(sub)(H) ≥ 0.

For graphlets, we can define a similar optimization problem

B(ind)(H) = max
P (ind)

[
|S1| − |S2| −

2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
,

s.t. (u, v) ∈ EH ∀u ∈ S2, v ∈ S2 ∪ S3, (7.2.3)

where again P (ind) is a partition of VH \V1 into three sets. The difference with (7.2.2)
for motifs is the extra constraint in (7.2.3) which puts a restriction on the partitions
into the three sets that are allowed. The extra constraint arises by the constraint
in graphlets that H should be present as an induced subgraph, and ensures that
edges that are not present in H are indeed not present in the subgraph. Since high-
degree vertices are very likely to be connected, the constraint ensures that two
vertices that are not connected in the graphlets cannot both have high degrees. Again,
B(ind)(H) ≥ 0 because putting all vertices in S3 is a valid solution.

We now solve the two above optimization problems, to find the largest contributor
to the number of motifs and graphlets. We first show that indeed the optimization
problems in (7.2.2) and (7.2.3) find the typical degrees of vertices for any motif and any
graphlet, and we show what the relation is between the optimization problems and
the scaling of the number of motifs and graphlets. We then present a more detailed
result for a special class of subgraphs, where the optimal contribution to (7.2.2)
or (7.2.3) comes from S3 = VH , hence motifs and graphlets where all typical vertices
have degrees proportional to

√
n. For this class, which contains for instance cliques

of all sizes, we present sharp asymptotics.

7.2.2 General subgraphs

Let S(sub)
1 , S(sub)

2 , S(sub)
3 be a maximizer of (7.2.2). Furthermore, for any α = (α1, · · · , αk)

such that αi ∈ [0, 1/(τ − 1)], we define

M(α)
n (ε) = {(u1, · · · , uk) ∈ [n]k : Dui ∈ [ε, 1/ε](µn)αi ∀i ∈ [k]}. (7.2.4)

These are the sets of degrees such that D1 is proportional to nα1 and D2 proportional
to nα2 and so on. Then, we denote the number of motifs with vertices in M(α)

n (ε) by
N(sub)(H, M(α)

n (ε)). Define the vector α(sub) as

α(sub)
i =


(τ − 2)/(τ − 1) i ∈ S(sub)

1 ,
1/(τ − 1) i ∈ S(sub)

2 ,
1
2 i ∈ S(sub)

3 ,
0 i ∈ V1.

(7.2.5)
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For graphlets, we let S(ind)
1 , S(ind)

2 , S(ind)
3 be a maximizer of (7.2.3), and define α(ind)

as in (7.2.5), replacing S(sub)
i by S(ind)

i . By the interpretation of S1, S2 and S3 in the

optimization problem (7.2.2) and (7.2.3), sets of vertices in Mα(sub)
n (ε) or Mα(ind)

n
intuitively contain a large number of subgraphs. The next theorem shows that this is
correct, and computes the scaling of the number of motifs and graphlets:

Theorem 7.1 (General motifs and graphlets). Let H be a motif on k vertices such that the
solution to (7.2.2) is unique. Then, the following holds:

(i) For any εn such that limn→∞ εn = 0,

N(sub)
(

H, M(α(sub))
n (εn)

)
N(sub)(H)

P−→ 1. (7.2.6)

(ii) Furthermore, for any fixed 0 < ε < 1,

N(sub)(H, M(α(sub))
n (ε))

n
3−τ

2 (k2++B(sub)(H))+ 1
2 k1

= f (ε)ΘP (1) (7.2.7)

for some function f (ε) not depending on n. Here k2+ denotes the number of vertices in
H of degree at least 2, and k1 the number of degree one vertices in H.

For graphlets the same statements hold, replacing (sub) by (ind).

Thus, part (i) shows that indeed almost all motifs and graphlets are formed
between vertices with the optimal degree structure that follows from (7.2.2), and part
(ii) gives the scaling of the number of such subgraphs.

7.2.3 Sharp asymptotics for
√

n subgraphs

Now we study the special class of motifs for which the unique maximum of (7.2.2)
is S3 = VH . By the above interpretation of S1, S2 and S3, we study motifs where the
maximum contribution to the number of such motifs comes from vertices that have
degrees proportional to

√
n in G. Examples of motifs that fall into this category are

all complete graphs. Bipartite graphs on the other hand, do not fall into the
√

n-class
motifs, since we can use the two parts of the bipartite graph as S1 and S2 in such a way
that (7.2.2) results in a non-negative solution. The next theorem gives asymptotics for
the number of such motifs:

Theorem 7.2 (Motifs with
√

n degrees). Let H be a connected graph on k vertices with
minimal degree 2 such that the solution to (7.2.2) is unique, and B(sub)(H) = 0. Then,

N(sub)(H)

n
k
2 (3−τ)

P−→ A(sub)(H) < ∞, (7.2.8)

with

A(sub)(H) = ckµ−
k
2 (τ−1)

∫ ∞

0
· · ·

∫ ∞

0
(x1 · · · xk)

−τ ∏
(u,v)∈EH

(1− e−xuxv)dx1 · · ·dxk. (7.2.9)
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We now state a similar theorem for graphlets where the unique optimal solution
to (7.2.3) is S3 = VH . The optimization problem (7.2.3) is the same as (7.2.2) with an
extra constraint, which is satisfied when S3 = VH . Therefore, if for a small graph
H, (7.2.2) is optimized for S3 = VH , then (7.2.3) is also optimized for S3 = VH . Thus,
the graphs H for which Theorem 7.2 can be applied are a subset of the graphs for
which Theorem 7.3 can be applied. Therefore, complete graphs fall into the

√
n class

graphlets as well. Section 7.2.4 shows which motifs on 4 and 5 vertices belong to the√
n class. If the maximum contribution for H comes from

√
n vertices for counting

motifs as well as graphlets, then N(ind)(H) is of the same order of magnitude as
N(sub)(H), as the following theorem shows:

Theorem 7.3 (Graphlets with
√

n degrees). Let H be a connected graph on k vertices with
minimal degree 2 such that the solution to (7.2.3) is unique, and B(ind)(H) = 0. Then,

N(ind)(H)

n
k
2 (3−τ)

P−→ A(ind)(H) < ∞, (7.2.10)

with

A(ind)(H) = ckµ−
k
2 (τ−1)

∫ ∞

0
· · ·

∫ ∞

0
(x1 · · · xk)

−τ ∏
(u,v)∈EH

(1− e−xuxv)

×∏
(u,v)/∈EH

e−xuxv dx1 · · ·dxk. (7.2.11)

The difference between counting motifs and counting graphlets is visible in (7.2.9)
and (7.2.11). In the erased configuration model, the probability that a vertex with de-
gree Di connects to a vertex with degree Dj can be approximated by 1− exp(−DiDj/Ln),
where Ln denotes the sum of all degrees. When rescaling, this results in the factors
1− e−xuxv in (7.2.9) for all edges in motif H. When counting graphlets, we count
induced subgraphs. Then, we also have to take into account that no other edges than
the edges in H are allowed to be present. This gives the extra terms e−xuxv in (7.2.11).

7.2.4 Subgraphs on 4 and 5 vertices

We now apply Theorem 7.1 to characterize the optimal subgraph configurations of
motifs and graphlets that consist of 4 or 5 vertices. For every partition of the vertices
of H into S1, S2, S3, we compute the contribution to (7.2.2) and (7.2.3). In this way,
we can find the partitions that maximize (7.2.2) and (7.2.3), and check whether this
maximum is unique. If the maximum is indeed unique, then we can use Theorem 7.1
to calculate the scaling of the number of such motifs or graphlets. Figures 7.1 and 7.3
show the order of magnitude of the number of graphlets on 4 and 5 vertices obtained
in this way, together with the optimizing sets of (7.2.3). Figure 7.2 shows the order of
magnitude of the number of motifs on 4 vertices together with the optimizing sets
of (7.2.2). For example, the optimal values of S1, S2 and S3 for the motif in Figure 7.1d
show that

B(ind)(H) = 2− 1 +
2 + 0 + 0− 1

τ − 1
= 1 +

1
τ − 1

. (7.2.12)
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Figure 7.3: Graphlets. Order of magnitude of N(ind)(H) for all connected graphs on 5
vertices (constants ignored). The vertex color indicates the optimal vertex degree.

Theorem 7.1 then shows that the correct scaling of the motif in Figure 7.1d is

n(3−τ)/2(4−1/(τ−1))+1/2 = n7−2τ− 1
τ−1 . (7.2.13)

The scaling of the other motifs and graphlets are computed similarly.
Figures 7.1 and 7.2 show the difference between counting motifs or counting

graphlets. For example, Figure 7.1c shows that a square occurs Θ(n6−2τ) times
as a graphlet, whereas it occurs Θ(n6−2τ log(n)) times as a motif by Figure 7.2c.
When we count the number of times the square occurs as a motif, we have to add
the contributions from the graphlets in Figures 7.1a, 7.1b and 7.1c, that all contain a
square, which also shows that the square occurs Θ(n6−2τ log(n)) times as a motif. The
major contribution to the number of square motifs is from the graphlet in Figure 7.1b.
This graphlet indeed contains a square, and occurs more frequently than the square
occurs as a graphlet. In this manner we can infer the order of magnitude of the
number of motifs from the number of graphlets. For this reason, Figure 7.3 is not
shown for motifs. Using only Figure 7.3, we can argue that the graph in Figure 7.3m
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occurs Θ(n
5
2 (3−τ)) times as a graphlet, but Θ(n9−3τ) times as a motif. Indeed, the

graph in Figure 7.3h contains Figure 7.3m as a subgraph, and occurs more frequently.
Most motifs and graphlets in Figures 7.1, 7.2 and 7.3 satisfy the constraint in

Theorem 7.1 that the solution to the optimization problem (7.2.2) or (7.2.3) should
be unique. However, the gray vertices in Figure 7.1 and 7.2 do not have unique
optimizers. Still these motifs and graphlets have ranges of degrees that give the major
contribution to the number of such graphlets or motifs. The only difference is that
these ranges are wider than for the vertices with unique maximizers. For example,
for the square motif in Figure 7.2c the major contribution is from vertices where the
degrees of vertices at each side of an edge {i, j} in the square satisfy DiDj = Θ(n).
Having all degrees proportional to

√
n therefore is one of the main contributors to the

square motif. However, contributions where the bottom left vertex and the top right
vertex have degrees proportional to nα and the other two vertices have degrees n1−α

give an equal contribution for other values of α. Using that DiDj follows a power-law
distribution with exponent τ with an extra factor log(n) [110] then gives the extra
factor log(n) in Figure 7.2b.

Another motif with gray vertices is the bow tie in Figure 7.3i. Unlike the square
motif, this graphlet does satisfy the constraint of Theorem 7.1 that the optimal solution
to (7.2.3) should be unique. However, the optimal solution depends on τ. For τ small,
the maximum of (7.2.3) is uniquely attained at 0, so that for τ small, the major
contribution is when all vertices are of degree Θ(

√
n). On the other hand, when

τ > 7/3, (7.2.3) is minimized when S1 contains all degree 2 vertices, and the middle
vertex is in S1. This partition gives a contribution to (7.2.3) of

4− 1− 2 · 2
τ − 1

=
3τ − 7
τ − 1

, (7.2.14)

which is larger than zero if τ > 7/3. Thus, for τ larger than 7/3, the major contri-
bution is when the middle vertex has degree n1/(τ−1), and the other vertices have
degrees n(τ−2)/(τ−1). When τ < 7/3, the major contribution is from all vertices of
degrees

√
n, so that Theorem 7.3 can be applied. The graphlet of Figure 7.3n also has

an optimal structure that depends on τ.
When the maximal contribution to a graphlet comes from vertices with degrees

proportional to
√

n, the number of such graphlets converges to a constant when
properly rescaled by Theorem 7.3. When the maximal contribution contains vertices
in S2 and S1, this may not be true anymore. For example, counting the claw graphlet
of Figure 7.1e is very similar to counting the number of ways to choose three neighbors
for every vertex. The only pairs of neighbors that we do not count, are neighbors
that are connected themselves. This is only a small fraction of the pairs of neighbors,
since Chapter 5 shows that the probability that two randomly chosen neighbors
are connected tends to zero in the large-graph limit. Thus the number of claws is
approximately equal to

∑
i∈[n]

1
6 Di(Di − 1)(Di − 2) ≈ ∑

i∈[n]
D3

i . (7.2.15)

Since the degrees are an i.i.d. sample from a power-law distribution, the sum of
D3

i converges to a stable law when normalized properly. Thus, whereas in the
√

n-
degree case, the leading order of the number of motifs or graphlets is constant (see
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Theorems 7.2 and 7.2), when vertices of degrees proportional to n1/(τ−1) contribute,
the leading order may contain stable random variables. Therefore, the number of
graphlets where the optimal solution to (7.2.3) comes from

√
n-degree vertices may

be less volatile than when the optimal contribution also contains vertices with degrees
proportional to n1/(τ−1). We further investigate the fluctuations in subgraph counts
in Chapter 8.

7.2.5 Discussion and outlook

Sampled and resulting degrees. Theorem 7.1 shows that most subgraphs occur
between vertices of specific sampled degrees. The actual degree of a vertex i with
sampled degree Di may be lower than Di, because multiple edges and self-loops
incident to vertex i are removed in the erased configuration model. However, by
Lemma 2.1, the sampled degree and the actual degree of vertex i are close, so that
Theorem 7.1 also predicts that in the erased configuration model most subgraphs
occur between vertices of degrees of the same order of magnitude as the sampled
degrees.

Inhomogeneous random graph. All results in this chapter are proven for the erased
configuration model. An interesting question is whether the results on the number of
motifs and graphlets of Theorems 7.1-7.3 only hold for the erased configuration model,
or whether they also apply to other models that create simple power-law random
graphs, such as the rank-1 inhomogeneous random graph, defined in Section 1.1.4. In
the rank-1 inhomogeneous random graph, conditionally on the weight sequence, the
edge presences are independent. In the erased configuration model however, the edge
presences are not independent, even when conditioning on the degree sequence. In
this chapter, we show that these dependencies are sufficiently small to be neglected in
the motif counts. We prove Theorems 7.1-7.3 for the erased configuration model using
the approximation Pn(Xij = 1) ≈ 1− exp(−DiDj/Ln). Therefore, these theorems
remain valid when we study the rank-1 inhomogeneous random graph where the
connection probability of vertices with weight wi and wj is given by 1− e−wiwj/(µn).

Hyperbolic random graph. Another random graph model that creates simple
power-law random graphs, is the hyperbolic random graph defined in Section 1.1.6.
These graphs are very different from the erased configuration model and the rank-1
inhomogeneous random graph, because they contain geometry which creates more
clustering. As mentioned before, all complete graphs satisfy the conditions of Theo-
rems 7.2 and 7.3. Thus, a complete graph on k vertices occurs Θ(nk(3−τ)/2) times as a
motif or graphlet in erased configuration models. Interestingly, this is also true for
hyperbolic random graphs when k is sufficiently large [27]. From the construction of
the proof in [27], we can argue that the largest contribution to the number of cliques
in hyperbolic random graphs then comes from vertices at radius R/2. These vertices
have degrees proportional to

√
n, which is the same as the largest contribution for

erased configuration model. It would be interesting to investigate the presence of
other types of motifs in hyperbolic random graphs, and see whether these results
are similar to the results for the erased configuration model, or if the geometric
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structure in these graphs makes the largest contribution to the number of motifs or
graphlets different. In particular, it would be interesting to see whether all other
motifs that satisfy the conditions of Theorem 7.2 have the same order of magnitude
in the hyperbolic random graph as in the erased configuration model.

Uniqueness of the optimum. Theorem 7.1 only holds when the optimum of (7.2.2),
respectively (7.2.3), is unique. Figures 7.2 and 7.3 show that for most graphlets on 4
or 5 vertices, this is indeed the case. In Section 7.3, we show that (7.2.2) and (7.2.3)
can both be interpreted as a piecewise linear optimization problem over the optimal
degrees of the vertices that together form the subgraph. Thus, if the optimum is not
unique, then it is attained by an entire range of degrees. In Section 7.3 we show that in
this situation the optimum is attained for degrees such that DiDj = Θ(n) across some
edges {i, j}. One such example is the diamond graphlet of Figure 7.1b discussed in
Section 7.2.4, where the product of the degrees of the top left and the bottom right
vertices scales as n. We believe that the number of motifs where the optimum is not
unique scales as in Theorem 7.1 with some additional multiplicative factors of log(n).
Proving this remains open for further research.

Graphlets on
√

n degrees. For motifs and graphlets where the most likely degrees
are
√

n, we show in Theorems 7.2 and 7.3 that the rescaled number of motifs or
graphlets converges to a constant, A(sub)(H) and A(ind)(H), respectively. Using the
optimization problem (7.2.3) we can show that for example all cliques and all cycles
are
√

n graphlets. The constants A(sub)(H) and A(ind)(H) are in general difficult
to compute. It would be useful to have good estimates of these constants to be
able to see which types of motifs occur more frequently. Furthermore, it would be
interesting to investigate the convergence of motifs that do not satisfy the assumptions
of Theorems 7.2 or 7.3. In Section 7.2.4, we saw that the normalized number of motifs
may converge to a stable distribution for some motifs.

Automorphisms of H. An automorphism of a graph H is a map VH 7→ VH such
that the resulting graph is an isomorphism of H. In Theorems 7.1, 7.2 and 7.3 we
count automorphisms of H as separate copies of H, so that we may count multiple
copies of H on one set of vertices. Since the number of vertices of H is fixed, and
Theorem 7.1 only considers the scaling of the number of subgraphs, this does not
change Theorems 7.1. Because Theorems 7.2 and 7.3 study the exact scaling of the
number of subgraphs, to count the number of subgraphs without automorphisms, one
should divide the results of Theorems 7.2 and 7.3 by the number of automorphisms
of H.

Self-averaging. Another interesting question relates to the fluctuations of subgraph
counts. When the degree distribution follows a power-law with exponent τ ∈ (2, 3),
the number of motifs may not be self-averaging [171], that is

lim sup
n→∞

Var
(

N(sub)(H)
)

E [N(sub)(H)]2
6= 0. (7.2.16)
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One such example is the triangle. In Chapter 8 we show that the number of triangles
in a rank-1 inhomogeneous random graph is not self-averaging when τ is close
to 3. Still, the triangle motif satisfies the conditions of Theorem 7.2, so that the
number of triangles converges in probability to a constant. This indicates that when
we generate configuration models with i.i.d. degrees, most realizations will have a
number of triangles that is close to the value that is predicted in Theorem 7.2. Some
realizations however, will have a number of triangles that is much larger or smaller
than the value predicted in Theorem 7.2, which results in a large variance, making
the number of triangles non self-averaging. However, when we first fix the degree
sequence, Lemma 7.6 shows that the variance of the motif count is small. Therefore,
the fluctuation in the number of motifs arises from the i.i.d. degree sequence, which
was also observed in [171]. In particular, when we use the degrees of a real-world
model as input in the erased configuration model, the number of motifs is self-
averaging. This illustrates the importance of choosing the right null model. A null
model with the same degree sequence as the original graph has less variability than
a null model where we sample degrees i.i.d. from a power-law distribution with
the same exponent as the original degree distribution. We further investigate the
self-averaging properties of network motifs in Chapter 8.

Spectral moments. The number of loops of length k in a graph is related to the
k-th spectral moment of the graph. For example, ∑i∈[n] λ3

i = 4/6, where4 denotes
the number of triangles in the network, and λi the eigenvalues of the network [207].
Therefore, Theorem 7.1 could be translated to results on the spectral moments of the
erased configuration model. The spectral moments as well as the largest eigenvalue
have been investigated for power-law random graphs with a cutoff on the degrees at√

n [62, 64, 182], where the largest eigenvalue was found to scale as λ1 ∝ n(3−τ)/2 for
2 < τ < 5/2. Note that Theorem 7.1 predicts that the number of triangles scales as
n3(3−τ)/2, which scales as λ3

1. This suggests that the largest eigenvalue for power-law
random graphs without cutoff scales similarly as when a cutoff on the degrees is
imposed for 2 < τ < 5/2.

7.3 Maximum contribution: proof of Theorem 7.1

For every motif, there is a specific range of degrees that gives a major contribution to
the number of motifs. We define an optimization problem that identifies these ranges
of degrees. In Lemma 7.2 we show that the optimal solutions to these optimization
problems have a highly particular structure. We then use these lemmas to prove
Theorem 7.1 for motifs. We first investigate the dependence of the presence of the
edges in the erased configuration model.

7.3.1 The probability of avoiding a subgraph

We relate Ln = ∑i Di, the total number of half-edges, to its expected value µn by
defining the event

Jn =
{
|Ln − µn| ≤ n2/τ

}
. (7.3.1)
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By [112], P (Jn) → 1 as n → ∞. When we condition on the degree sequence, we
will condition on the event Jn, so that we can write Ln = µn(1 + o(1)). Furthermore,
we denote by Xu,v the indicator that an edge is present between vertices u and v.
We let Pn denote the conditional probability given the degree sequence, and En
the corresponding expectation. The presence of the edges that form a motif is not
independent. Therefore, we use the following lemma which computes the probability
of an edge not being present conditional on other edges not being present:

Lemma 7.1. Fix m ∈ N and ε > 0. Let (ui, vi)i∈[m+1] such that ui, vi ∈ [n] for all
i ∈ [m + 1] and (um+1, vm+1) 6= (ui, vi) for all i ∈ [m]. Let

E = {Xui ,vi = 0, ∀i ∈ [m]}. (7.3.2)

If Dui , Dvi ≤ n1/(τ−1)/ε for i ∈ [m + 1], then on the event Jn,

Pn
(
Xum+1,vm+1 = 0 | E

)
= OP

(
e−Dum+1 Dvm+1 /2Ln

)
. (7.3.3)

Furthermore, when Dum+1 Dvm+1 ≤ n/ε,

Pn
(
Xum+1,vm+1 = 0 | E

)
= e−Dum+1 Dvm+1 /Ln

(
1 + oP

(
Dum+1 Dvm+1

Ln
n−

τ−2
τ−1

))
.

(7.3.4)

Proof. For m = 0 the claim is proven in [108, Eq (4.6) and (4.9)], which states that for
two vertices i and j with Di > Dj,

Pn
(
Xi,j = 0

)
= e−Di Dj/Ln + O(D2

i Dj/L2
n), (7.3.5)

and that by using [108, Eq. (4.5)]

Pn
(
Xi,j = 0

)
≤

Di/2

∏
i=1

(
1− Dj

Ln − 2i− 1

)
≤ e−Di Dj/2Ln(1 + o(1)). (7.3.6)

Thus we may assume that m > 0. Ω := {ui, vi}i∈[m] may contain the same vertices
multiple times. Let the number of distinct vertices in {ui, vi}i∈[m] be denoted by r,
and let these distinct vertices be denoted by w1, . . . , wr. W.l.o.g. we assume that
um+1, vm+1 correspond to wr and wr−1 (if they are present in w1, . . . , wr at all). We
now construct the erased configuration model G conditionally on the edges Ω not
being present. We first pair the half-edges of the erased configuration model attached
to w1, . . . , wr. First we pair all half-edges adjacent to w1. Since we condition on the
edges Ω not being present, no half-edge from w1 is allowed to pair to any of its
neighbors in Ω. After that, we pair all remaining half-edges from w2, conditionally
on these half-edges not connecting to one of the neighbors of w2 in Ω, and so on.
We continue until all edges in Ω have at least one incident vertex that has already
been paired. Then, if we pair the rest of the half-edges, we know that none of the
edges in Ω are present. Let B denote the number of vertices we have to pair before
this happens. We never have to pair half-edges adjacent to um+1 or to vm+1 (if they
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are present in {ui, vi}i∈[m]), since they are last in the ordering, and (um+1, vm+1) is
not present in {ui, vi}i∈[m]. Therefore, all neighbors of um+1 and vm+1 in Ω have
already been paired before arriving at um+1 or vm+1. Let X̂ij denote the number of
half-edges between i and j in the configuration model, so that the edge indicator of
the erased configuration model can be written as Xij = 1{X̂ij > 0}. Furthermore,
let F≤s = σ((X̂wi ,j)i≤s,j∈[n]) be the information about the pairings that have been
constructed up to time s.

After B pairings, we denote

L̃n = Ln − 2 ∑
i∈[B]

(Dwi − X̂wi ,wi ) (7.3.7)

and Dũm+1 = Dum+1 −∑i∈[B] X̂i,um+1 , and we define Dṽm+1 similarly. These quantities
are all measurable on F≤B. Then, the probability that um+1 does not pair to vm+1 is
the probability that ũm+1 does not connect to ṽm+1 in a configuration model with L̃n
half-edges. Thus,

Pn
(
Xum+1,vm+1 = 0 | F≤B

)
= e−Dũm+1 Dṽm+1 /L̃n + O

(
D2

ũm+1
Dṽm+1 /L̃2

n

)
, (7.3.8)

where we have assumed w.l.o.g. that Dũm+1 ≥ Dṽm+1 . Since we are under the
event Jn from (7.3.1), L̃n = Ln(1 + o(1)). Now, we show that Dũm+1 = Dum+1(1 +

oP(n−(τ−2)/(τ−1))). When we pair the half-edges adjacent to wi, the probability that
the jth half-edge pairs to um+1 can be bounded as

Pn (jth half-edge pairs to um+1) ≤
Dum+1

Ln − 2j− 3− 2 ∑s∈[i−1] Dws

≤ K
Dum+1

Ln
, (7.3.9)

for some K > 0. We have to pair at most Dwi half-edges, since some of the half-edges
incident to wi may have been used already in previous pairings. Therefore, we can
stochastically dominate X̂wi ,um+1 by Yi, where Yi ∼ Bin(Dwi , KDum+1 /Ln). Then,

X̂um+1,wi = OP

(
Dwi Dum+1 /Ln

)
. (7.3.10)

We conclude that

Dũm+1 = Dum+1

(
1− ∑

i∈[B]
OP (Dwi /Ln)

)
= Dum+1(1 + oP(n−β)), (7.3.11)

where we let β = (τ − 2)/(τ − 1). Similarly, Dṽm+1 = Dvm+1(1 + oP(n−β)). Then,
when Dum+1 Dvm+1 = O(n), (7.3.8) becomes

Pn
(
Xum+1,vm+1 = 0 | FB+1

)
= e−Dum+1 Dvm+1 (1+oP(n−β))/Ln + O

(D2
um+1

Dvm+1

L2
n

)
= e−Dum+1 Dvm+1 /Ln

(
1 + oP

(
Dum+1 Dvm+1

Ln
n−β

))
,

(7.3.12)
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where we used that Dum+1 = O(n1/(τ−1)). By (7.3.6)

Pn
(
Xum+1,vm+1 = 0 | FB+1

)
≤ e−Dũm+1 Dṽm+1 /2L̃n = OP

(
e−

Dum+1 Dvm+1
2Ln

)
. (7.3.13)

which proves the lemma.

7.3.2 An optimization problem

Assume that Di = Θ(nαi ) for some αi ∈ [0, 1/(τ− 1)] for all i. Then, when αi + αj ≤ 1,
by (7.3.5)

Pn
(
Xij = 1

)
=
(

1− e−Θ(nαi+αj−1
)
)
(1 + o(1)) = Θ

(
nαi+αj−1

)
. (7.3.14)

When αi + αj > 1, by (7.3.6)

Pn
(
Xij = 1

)
= 1−O

(
e−nαi+αj−1

/2
)

. (7.3.15)

For vertices i and j denote wij = min(nαi+αj−1−(τ−2)/(τ−1), 1). By Lemma 7.1, for any
set of m edges,

Pn (Xu1,v1 = · · · = Xum ,vm = 0) = ∏
αui+αvi<1

(1 + oP(wu1,v1))Θ
(
1− nαui+αvi−1)

× ∏
αui+αvi>1

OP

(
e−n(αvi +αui−1)/2)

. (7.3.16)

Let H be a motif on k vertices labeled as 1, . . . , k and edges EH = {u1, v1}, . . . , {um, vm}.
Furthermore, let G|i be the induced subgraph of the erased configuration model G
on vertices i = (i1, . . . , ik). Then, we can write the probability that motif H is present
on a specified subset of vertices i = (i1, . . . , ik) as

Pn (G|i ⊇ EH) = 1−
m

∑
l=1

Pn(Xiul ,ivl
= 0) + ∑

l 6=j
Pn(Xiul ,ivl

= Xiuj ,ivj
= 0)

−∑
l 6=j 6=w

Pn(Xiul ,ivl
= Xiuj ,ivj

= Xiuw ,ivw
= 0) + · · ·

+ (−1)mPn(Xiu1 ,iv1
= · · · = Xium ,ivm

= 0)

= ΘP

(
∏

(i,j)∈EH :αi+αj<1
nαi+αj−1

)
, (7.3.17)

where we used that for αi + αj < 1

1− (1− nαi+αj−1)(1 + oP(wij)) = ΘP(nαi+αj−1), (7.3.18)

and that for αi + αj > 1

1−OP

(
e−n(αi+αj−1)/2)

= 1 + oP(1). (7.3.19)
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The degrees are an i.i.d. sample from a power-law distribution. Therefore,

P (D1 ∈ [ε, 1/ε](µn)α) =
∫ 1/ε(µn)α

ε(µn)α
cx−τdx = K(ε)(µn)α(1−τ) (7.3.20)

for some constant K(ε) not depending on n. The number of vertices with degrees
in [ε, 1/ε](µn)α is Binomial(n, K(ε)(µn)α(1−τ)), so that the number of vertices with
degrees in [ε, 1/ε](µn)α is ΘP(n(1−τ)α+1). Let M(α)

n be as in (7.2.4). Then,

# sets of vertices with degrees in M(α)
n = ΘP(nk+(1−τ)∑i αi ). (7.3.21)

Combining (7.3.17) and (7.3.21) yields that

N(sub)(H, M(α)
n (ε)) = ΘP

(
nk+(1−τ)∑i αi ∏

(i,j)∈EH :αi+αj<1
nα1+αj−1

)
. (7.3.22)

The maximum contribution is obtained for αi that maximize

max(1− τ)∑
i

αi + ∑
(i,j)∈EH :αi+αj<1

αi + αj − 1

s.t. αi ∈ [0, 1
τ−1 ] ∀i. (7.3.23)

The following lemma shows that this optimization problem attains its maximum for
specific values of α:

Lemma 7.2 (Maximum contribution to motifs). Let H be a connected graph on k vertices.
If the solution to (7.3.23) is unique, then the optimal solution satisfies αi ∈ {0, τ−2

τ−1 , 1
2 , 1

τ−1}
for all i. If it is not unique, then there exist at least 2 optimal solutions with αi ∈
{0, τ−2

τ−1 , 1
2 , 1

τ−1} for all i. In any optimal solution αi = 0 if and only if vertex i has de-
gree one in H.

Proof. Defining βi = αi − 1
2 yields for (7.3.23)

max
1− τ

2
k + (1− τ)∑

i
βi + ∑

(i,j)∈EH :βi+β j<0
βi + β j, (7.3.24)

over all possible values of βi ∈ [− 1
2 , 3−τ

2(τ−1) ]. Then, we have to prove that βi ∈
{− 1

2 , τ−3
2(τ−1) , 0, 3−τ

2(τ−1)} for all i in the optimal solution. Since (7.3.24) is a piecewise
linear function in β, if (7.3.24) has a unique maximum, it must be attained at the
boundary for βi or at a border of one of the linear sections. Thus, any unique optimal
value of βi satisfies βi = − 1

2 , βi =
τ−3

2(τ−1) or βi + β j = 0 for some j. We ignore the

constant factor of (1− τ) k
2 in (7.3.24), since it does not influence the optimal β values.

Rewriting (7.3.24) without the constant factor yields

max ∑
i

βi
(
1− τ + # edges to j with β j < −βi

)
. (7.3.25)
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The proof of the lemma then consists of three steps.
Step 1. Show that βi = − 1

2 if and only if vertex i has degree 1 in H in any optimal
solution.
Step 2. Show that any unique solution does not have vertices i with |βi| ∈ (0, 3−τ

2(τ−1) ).
Step 3. Show that any optimal solution that is not unique can be transformed into two
different optimal solutions with βi ∈ {− 1

2 , τ−3
2(τ−1) , 0, 3−τ

2(τ−1)} for all i.

Step 1. Let i be a vertex of degree 1 in H, and j be the neighbor of i. Let Nj denote
the number of edges in H from j to other vertices v not equal to i with βv < −β j. The
contribution from vertices i and j to (7.3.25) is

β j(1− τ + Nj) + βi(1− τ + 1{βi>−β j}) + β j1{βi<−β j}. (7.3.26)

For any value of β j ∈ [− 1
2 , 3−τ

2(τ−1) ], this contribution is maximized when choosing

βi = − 1
2 . Thus, βi = − 1

2 in the optimal solution if the degree of vertex i is one.
Let i be a vertex with di ≥ 2 in H, and suppose βi = − 1

2 . Because the maximal
value of β = 3−τ

2(τ−1) , the contribution to (7.3.25) is

− 1
2 (1− τ + di) < 0. (7.3.27)

Increasing βi to τ−3
2(τ−1) then gives a higher contribution. Thus, any vertex i with

degree at least 2 in H must have βi =
3−τ

2(τ−1) or βi + β j = 0 for some neighbor j in an

optimal solution. Since β j ≤ 3−τ
2(τ−1) for all j this means that βi ≥ τ−3

2(τ−1) when di ≥ 2.
Step 2. Now we show that when the solution to (7.3.25) is unique, it is never

optimal to have |β| ∈ (0, 3−τ
2(τ−1) ). Let

β̃ = min
i:|βi |>0

|βi| . (7.3.28)

Let Nβ̃− denote the number of vertices with their β value equal to −β̃, and Nβ̃+ the
number of vertices with value β̃, where Nβ̃+ + Nβ̃− ≥ 1. Furthermore, let Eβ̃− denote
the number of edges from vertices with value −β̃ to other vertices j such that β j < β̃,
and Eβ̃+ the number of edges from vertices with value β̃ to other vertices j such that
β j < −β̃. Then, the contribution from these vertices to (7.3.25) is

β̃
(
(1− τ)

(
Nβ̃+ − Nβ̃−

)
+ Eβ̃+ − Eβ̃−

)
. (7.3.29)

Because we assume β̃ to be optimal, and the optimum to be unique, the value inside
the brackets cannot equal zero. The contribution is linear in β̃ and it is the optimal
contribution, and therefore β̃ ∈ {0, 3−τ

2(τ−1)}. This shows that βi ∈ { τ−3
2(τ−1) , 0, 3−τ

2(τ−1)}
for all i such that di ≥ 2.

Step 3. If the solution to (7.3.25) is not unique, then by the same argument that
leads to (7.3.29), there exist β̂1, . . . , β̂s > 0 for some s ≥ 1 such that

β̂ j

(
(1− τ)

(
Nβ̂+j
− Nβ̂−j

)
+ Eβ̂+j

− Eβ̂−j

)
= 0 ∀j ∈ [s]. (7.3.30)
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Here we use the same notation as in (7.3.29). Setting all β̂ j = 0 and setting all
β̂ j =

3−τ
2(τ−1) are both optimal solutions. Thus, if the solution to (7.3.25) is not unique,

at least 2 solutions exist with βi ∈ { τ−3
2(τ−1) , 0, 3−τ

2(τ−1)} for all i.

Proof of Theorem 7.1(ii) for motifs. Let α(sub) be the unique optimizer of (7.3.23). By
Lemma 7.2, the maximal value of (7.3.23) is attained by partitioning VH \V1 into the
sets S1, S2, S3 such that vertices in S1 have α(sub)

i = τ−2
τ−1 , vertices in S2 have α(sub)

i = 1
τ−1 ,

vertices in S3 have α(sub)
i = 1

2 and vertices in V1 have α(sub)
i = 0. Then, the edges with

α(sub)
i + α(sub)

j < 1 are edges inside S1, edges between S1 and S3 and edges from degree
1 vertices. If we denote the number of edges inside S1 by ES1 , the number of edges
between S1 and S3 by ES1,S3 and the number of edges between V1 and Si by ES1,V1 ,
then we can rewrite (7.3.23) as

max
P

[
(1− τ)

(
τ − 2
τ − 1

|S1|+
1

τ − 1
|S2|+ 1

2 |S3|
)
+

τ − 3
τ − 1

ES1

+
τ − 3

2(τ − 1)
ES1,S3 −

ES1,V1

τ − 1
− τ − 2

τ − 1
ES2,V1 −

1
2

ES3,V1

]
, (7.3.31)

over all partitions P of the vertices of H into S1, S2, S3. Using that |S3| = k− |S1| −
|S2| − k1, ES3,1 = k1 − ES1,1 − ES2,1, where k1 = |V1| and extracting a factor (3− τ)/2
shows that this is equivalent to

1− τ

2
k + max

P
(3− τ)

2

(
|S1| − |S2|+

τ − 2
3− τ

k1 −
2ES1 + ES1,S3

τ − 1
− ES1,V1 − ES2,V1

τ − 1

)
,

(7.3.32)
Since k and k1 are fixed and 3− τ > 0, we need to maximize

B(sub)(H) = max
P

[
|S1| − |S2| −

2ES1 + ES1,S3 + ES1,V1 − ES2,V1

τ − 1

]
. (7.3.33)

By (7.3.22), the contribution of the maximum is then given by

n
3−τ

2 (k+B(sub)(H))+ τ−2
2 k1 = n

3−τ
2 (k2++B(sub)(H))+ 1

2 k1 , (7.3.34)

which proves Theorem 7.1(ii) for motifs.

7.4 The number of motifs on
√

n-degrees

We prove Theorem 7.2 using the following lemma. We define

Wk
n(ε) = {(u1, · · · , uk) : Dui ∈ [ε, 1/ε]

√
µn ∀i ∈ [k]}. (7.4.1)

Note that Wk
n(ε) is the special case of M(α)

n (ε) defined in (7.2.4) where all values of
α equal 1/2. Then, we denote the number of motifs H with all degrees in Wk

n(ε) by
N(sub)(H, Wk

n(ε)).

Lemma 7.3 (Convergence of major contribution to motifs). Let H be a connected graph
on k > 2 vertices such that (7.2.2) is uniquely optimized at 0. Then,
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(i) The number of motifs with vertices in Wk
n(ε) satisfies

N(sub)(H, Wk
n(ε))

n
k
2 (3−τ)

P−→ckµ−
k
2 (τ−1)

∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · · xk)

−τ

× ∏
(i,j)∈EH

(1− e−xixj)dx1 · · ·dxk. (7.4.2)

(ii) A(sub)(H) defined in (7.2.9) satisfies A(sub)(H) < ∞.

The proof of Lemma 7.3 can be found in Section 7.5. We now prove Theorem 7.2
using this lemma.

Proof of Theorem 7.2. We first study the expected number of motifs with vertices out-
side Wk

n(ε). First, we investigate the expected number of motifs where vertex 1 has
degree smaller than ε

√
µn. Because Pn

(
Xij = 1

)
≤ min(DiDj/Ln, 1), this contribu-

tion can be bounded as

E
[

N(H)1{D1<ε
√

µn}
]

≤ nk
∫ ε
√

µn

1

∫ ∞

1
· · ·

∫ ∞

1
(x1 · · · xk)

−τ ∏
(i,j)∈EH

min
( xixj

µn
, 1
)

dx1 · · ·dxk

= nk(µn)
k
2 (1−τ)

∫ ε

0

∫ ∞

0
· · ·

∫ ∞

0
(t1 · · · tk)

−τ ∏
(i,j)∈EH

min
(
titj, 1

)
dt1 · · ·dtk

≤ K|EH |n
k
2 (3−τ)µ

k
2 (1−τ)

∫ ε

0

∫ ∞

0
· · ·

∫ ∞

0
(t1 · · · tk)

−τ ∏
(i,j)∈EH

(1− e−titj)dt1 · · ·dtk

= O(n
k
2 (3−τ))h1(ε), (7.4.3)

where we used that min(1, x) ≤ K(1− e−x) for some K > 0, and h1(ε) is a function
of ε. By Lemma 7.3(ii), h(ε)→ 0 as ε tends to zero. We can bound the situation where
one of the other vertices has degree smaller than ε

√
n, or where one of the vertices

has degree larger than
√

n/ε similarly. This results in

E[N(H, W̄k
n(ε))] = O(n

k
2 (3−τ))h(ε), (7.4.4)

for some function h(ε) not depending on n such that h(ε)→ 0 when ε→ 0. Then, by
the Markov inequality,

N(H, W̄k
n(ε)) = h(ε)OP

(
n

k
2 (3−τ)

)
. (7.4.5)

Combining this with Lemma 7.3(i) gives

N(H)

n
k
2 (3−τ)

P−→ckµ−
k
2 (τ−1)

∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1, · · · xk)

−τ ∏
(u,v)∈EH

(1− e−xuxv)dx1 · · ·dxk

+ OP (h(ε)) . (7.4.6)

Then letting ε→ 0 proves the theorem.
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7.5 Major contribution to
√

n motifs

We first prove Lemma 7.3(i). We condition on the degree sequence, and compute the
expected value and the variance of the number of motifs conditioned on the degrees
in Lemmas 7.4 and 7.6. Then we take the i.i.d. degrees into account in Lemma 7.5.
Together, these lemmas prove Lemma 7.3(i).

7.5.1 Conditional expectation

In this section, we study the expectation of the number of motifs, conditioned on the
degrees. Let H be a motif on k vertices, labeled as 1, · · · , k, and m edges. We denote
the edges bu e1 = {u1, v1}, · · · , em = {um, vm}.

Lemma 7.4 (Conditional expectation of motifs). Let H be a motif such that (7.2.2) has a
unique maximum, attained at 0. Then, under the event Jn as defined in (7.3.1)

En

[
N(sub)(H, Wk

n(ε))
]
= ∑

(i1,··· ,ik)∈Wk
n(ε)

∏
(j,k)∈EH

(1− e
−Dij

Dik
/Ln

)(1 + oP(1)). (7.5.1)

Proof. Let i = (i1, . . . , ik), and let G|i again denote the induced subgraph of G on
vertices i. We can use (7.3.17) to show that

En

[
N(sub)(H, Wk

n(ε))
]
= ∑
i∈Wk

n(ε)

Pn (G|i ⊇ EH)

= (1 + oP(1)) ∑
i∈Wk

n(ε)

m

∏
l=1

(
1−Pn

(
Xiul ,ivl

= 0
))

. (7.5.2)

Because DiDj = O(n) and Ln = µn(1 + o(1)) under Jn, by (7.3.5)

Pn
(
Xij = 1

)
= 1− e−Di Dj/Ln + O

(
D2

i Dj

L2
n

)
= (1 + o(1))

(
1− e−Di Dj/Ln

)
. (7.5.3)

This results in

En

[
N(sub)(H, Wk

n(ε))
]
= (1 + oP(1)) ∑

i∈Wk
n(ε)

∏
(j,k)∈EH

(1− e
−Dij

Dik
/Ln

). (7.5.4)

7.5.2 Convergence of conditional expectation

We now consider the convergence of the expectation of the number of subgraphs
conditioned on the degrees when we take the randomness of the i.d.d. degrees into
account.
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Lemma 7.5 (Convergence of conditional expectation of
√

n motifs). Let H be a motif
such that (7.2.2) has a unique maximizer, and the maximum is attained at 0. Then,

En[N(sub)(H, Wk
n(ε))]

n
k
2 (3−τ)

P−→ckµ−
k
2 (τ−1)

∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · · xk)

−τ

× ∏
(u,v)∈EH

(1− e−xuxv)dx1 · · ·dxk. (7.5.5)

Proof. Let |EH | = m and denote the edges of H by (u1, v1), · · · , (um, vm). Define

g(t1, · · · , tk) := ∏
(u,v)∈EH

(1− e−tutv). (7.5.6)

Taylor expanding 1− e−xy on [ε, 1/ε] yields

1− e−xy =
s

∑
i=1

(xy)i

i!
(−1)i + O

(
ε−s

(s + 1)!

)
. (7.5.7)

Since g is a bounded function on F = [ε, 1/ε]m, for any η > 0, we can find s1, · · · , sm
such that

g(t1, · · · , tk) =
s1

∑
i1=1
· · ·

sm

∑
im=1

(
(−1)i1

ti1
u1 ti1

v1

i1!
· · · (−1)im tim

um tim
vm

im!

)
+ O(η)

=
s1

∑
i1=1
· · ·

sm

∑
im=1

(
(−1)i1+···+im

i1! · · · im!
tγ1
1 tγ2

2 · · · t
γk
k

)
+ O(η), (7.5.8)

where
γj := γj(i1, · · · , ik) = ∑

l
il1{ul=j or vl=j}. (7.5.9)

Let M(n) denote the random measure

M(n)([a, b]) =
(µn)

1
2 (τ−1)

n

n

∑
i=1

1{Di∈
√

µn[a,b]}. (7.5.10)

Because the number of vertices with degrees in [a, b] is binomially distributed,

M(n)([a, b]) P−→ (µn)
1
2 (τ−1)

∫ b
√

µn

a
√

µn
cx−τdx = c

∫ b

a
x−τdx := λ([a, b]). (7.5.11)

Let N(n) denote the product measure M(n) ×M(n) × · · · ×M(n) (k times). Then, choo-
sing η = εk+1 in (7.5.8) together with Lemma 7.4 yields

En[N(sub)(H, Wk
n(ε))]

n
k
2 (3−τ)µ

k
2 (1−τ)

=
∫

F
g(t1, · · · , tk)dN(n)(t1, · · · , tk)

=
∫

F

s1

∑
i1=1
· · ·

sm

∑
im=1

(
(−1)i1+···+im

i1! · · · im!
tγ1
1 tγ2

2 · · · t
γk
k

)
+ O(εk+1)dN(n)(t1, · · · , tk)

=
s1

∑
i1=1
· · ·

sm

∑
im=1

(−1)i1+···+im

i1! · · · im!

∫ 1/ε

ε
tγ1
1 dM(n)(t1) · · ·

∫ 1/ε

ε
tγk
k dM(n)(tk) + O (ε) .

(7.5.12)



168 Chapter 7. Subgraphs in erased configuration models

By Lemma 5.5 for any γ∫ 1/ε

ε
xγdM(n)(x) P−→

∫ 1/ε

ε
xγdλ(x). (7.5.13)

Combining this with (7.5.12) results in

En[N(sub)(H, Wk
n(ε))]

f (sub)(n, H)µ
k
2 (1−τ)

P−→
s1

∑
i1=1
· · ·

sm

∑
im=1

(−1)i1+···+im

i1! · · · im!

∫ 1/ε

ε
tα1
1 dλ(t1) · · ·

∫ 1/ε

ε
tαk
k dλ(tk) + O (ε)

=
∫

F

s1

∑
i1=1
· · ·

sm

∑
im=1

(−1)i1+···+im

i1! · · · im!
tα1
1 · · · t

αk
k dλ(t1) · · ·dλ(tk) + O (ε)

=
∫

F
g(t1, · · · , tk)dλ(t1) · · ·dλ(tk) + O (ε) . (7.5.14)

Then, by (7.5.11)

En[N(sub)(H, Wk
n(ε))]

f (sub)(n, H)

P−→ ckµ−
k
2 (τ−1)

∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(t1 · · · tk)

−τ g(t1, · · · , tk)dt1 · · ·dtk, (7.5.15)

which proves the claim.

7.5.3 Conditional variance

In this section, we again condition on the degrees. The following lemma shows that
the variance of the number of motifs is small compared to the expected value:

Lemma 7.6 (Conditional variance for motifs). Let H be a motif such that (7.2.2) has a
unique maximum attained at 0. Then, under the event Jn defined in (7.3.1)

Varn

(
N(sub)(H, Wk

n(ε))
)

En
[
N(sub)(H, Wk

n(ε))
]2 P−→ 0. (7.5.16)

Proof. By Lemma 7.5,

En[N(sub)(H, Wk
n(ε))]

2 = Θ(n(3−τ)k). (7.5.17)

Thus, we need to prove that the variance is small compared to n(3−τ)k. Denote
i = (i1, · · · , ik) and j = (j1, · · · , jk). We write the variance as

Varn

(
N(sub)(H, Wk

n(ε))
)
= ∑
i∈Wk

n(ε)

∑
j∈Wk

n(ε)

(
Pn
(
G|i, G|j ⊇ EH

)
−Pn (G|i ⊇ EH)Pn

(
G|j ⊇ EH

) )
.

(7.5.18)
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This splits into various cases, depending on the overlap of i and j. When i and j do
not overlap, by (7.3.17)

∑
i∈Wk

n(ε)

∑
j∈Wk

n(ε)

Pn
(
G|i, G|j ⊇ EH

)
−Pn (G|i ⊇ EH)Pn

(
G|j ⊇ EH

)
= ∑
i∈Wk

n(ε)

∑
j∈Wk

n(ε)

(1 + oP(1))
m

∏
l=1

(
1−Pn

(
Xiul ,ivl

= 0
)) m

∏
l=1

(
1−Pn

(
Xjul ,jvl

= 0
))

− (1 + oP(1))
m

∏
l=1

(
1−Pn

(
Xiul ,ivl

= 0
)) m

∏
l=1

(
1−Pn

(
Xjul ,jvl

= 0)
)

= En[N(sub)(H, Wk
n(ε))]

2oP(1).
(7.5.19)

The other contributions are when i and j overlap. In this situation, we use the bound
Pn
(
Xij = 1

)
≤ 1. When i and j overlap on s ≥ 1 vertices, we bound the contribution

to (7.5.18) as

∑
i,j∈Wk

n(ε):|{i,j}|=2k−s

Pn
(
G|i, G|j ⊇ EH

)
≤ |{i : Di ∈

√
µn[ε, 1/ε]}|2k−s

= OP

(
n

(3−τ)(2k−s)
2

)
, (7.5.20)

which is smaller than n(3−τ)k, as required.

Proof of Lemma 7.3. We start by proving part (i). By Lemma 7.6 and Chebyshev’s
inequality, conditionally on the degrees

N(sub)(H, Wk
n(ε)) = En[N(sub)(H, Wk

n(ε))](1 + oP(1)). (7.5.21)

Combining this with Lemma 7.5 proves Lemma 7.3(i). Lemma 7.3(ii) is a direct
consequence of Lemma 7.8 where |S∗3 | = k.

7.6 Major contribution to general motifs

In this section we prove Theorem 7.1(i) for motifs. We start by introducing some
notation. For any W ⊆ VH , we denote by di,W the number of edges from vertex i to
vertices in W. Let H be a connected subgraph, such that the optimum of (7.2.2) is
unique, and let S∗1 , S∗2 and S∗3 be the optimal partition. Then, we define

ζi =


1 if di = 1,
di,V1 + di,S∗1

+ di,S∗3 if i ∈ S∗1 ,
di,V1 + di,S∗1

if i ∈ S∗3 ,
di,V1 if i ∈ S∗2 .

(7.6.1)

The following lemma states several properties of the number of edges between
vertices in the different optimizing sets:
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Lemma 7.7. Let H be a connected subgraph, such that the optimum of (7.2.2) is unique, and
let S∗1 , S∗2 and S∗3 be the optimal partition. Then the following holds:

(i) ζi ≤ 1 for i ∈ S∗1 .

(ii) di,S∗1
+ ζi ≥ 2 for i ∈ S∗2 .

(iii) ζi ≤ 1 and di,S∗3 + ζi ≥ 2 for i ∈ S∗3 .

Proof. Suppose i ∈ S∗1 . Now consider the partition Ŝ1 = S∗1 \ i, Ŝ2 = S∗2 , S3 = S∗3 ∪ i.
Then, EŜ1

= ES∗1
− di,S∗1

and EŜ1,Ŝ3
= ES∗1 ,S∗3 + di,S∗1

− di,S∗3 . Furthermore, EŜ1,1 =

ES∗1 ,1 − di,1 and EŜ2,1 = ES∗2 ,1. Because the partition into S∗1 , S∗2 and S∗3 achieves the
unique optimum of (7.2.2)

|S∗1 | − |S∗2 | −
2ES∗1

− ES∗1 ,S∗3 + ES∗2 ,1 − ES∗1 ,1

τ − 1

> |S∗1 | − 1− |S∗2 | −
2ES∗1

− ES∗1 ,S∗3 − di,S∗1
− di,S∗3 + ES∗2 ,1 − ES∗1 ,1 + di,V1

τ − 1
, (7.6.2)

which reduces to
di,S∗3 + di,S∗1

+ di,V1 = ζi < τ − 1. (7.6.3)

Using that τ ∈ (2, 3) then yields di,S∗3 + di,S∗1
+ di,V1 ≤ 1.

Similar arguments give the other inequalities. For example, for i ∈ S∗3 , considering
the partition where i is moved to S∗1 gives the inequality di,S∗3 + di,S∗1

+ di,V1 ≥ 2, and
considering the partition where i is moved to S∗2 results in the inequality di,S∗1

+ di,V1 ≤
1, so that ζi ≤ 1.

We now show that two integrals related to the solution of the optimization pro-
blem (7.2.2) are finite, using Lemma 7.7. These integrals are the key ingredient in
proving Theorem 7.1(i) for motifs.

Lemma 7.8. Suppose that the maximum in (7.2.2) is uniquely attained with |S∗3 | = s > 0,
and say S∗3 = {1, . . . , s}. Then∫ ∞

0
· · ·

∫ ∞

0
∏
i∈[s]

x−τ+ζi
i ∏

(u,v)∈ES∗3

min(xuxv, 1)dxs . . . dx1 < ∞. (7.6.4)

Proof. The integral (7.6.4) consists of multiple regions. One region is x1, . . . , xs ≥ 1.
Then, since −τ + ζi < −1 by Lemma 7.7, this integral results in∫ ∞

1
· · ·

∫ ∞

1
∏
j∈[s]

x
−τ+ζ j
j dx1 · · ·dxs < ∞. (7.6.5)

Another region is x1, . . . , xs ∈ [0, 1]. Since by Lemma 7.7, any vertex in S∗3 has
ζi + di,S∗3 ≥ 2, this integral can be bounded as∫ 1

0
· · ·

∫ 1

0
∏
j∈[s]

x
−τ+ζ j
j ∏

(u,v)∈ES∗3

xuxvdx1 · · ·dxs

≤
∫ 1

0
· · ·

∫ 1

0
(x1 · · · xs)

2−τdx1 · · ·dxs < ∞. (7.6.6)
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The other regions can be described by the union of all sets U ⊂ S∗3 such that the
integral runs from 1 to ∞ for all i ∈ U, and from 0 to 1 for all i ∈ Ū = S∗3 \U. In
such a region, min(xixj, 1) = xixj when i, j /∈ U, and min(xi, xj) = 1 when i, j ∈ U.
W.l.o.g. assume U = {1, . . . , t} for some t ≥ 1. Then, the contribution to (7.6.4) from
the region described by U can be written as∫ ∞

1
· · ·

∫ ∞

1
∏
i∈[t]

x
−τ+ζ j
i

s

∏
j=t+1

h(j,x)dxt · · ·dx1, (7.6.7)

where x = (xi)i∈[t] and

h(j,x) =
∫ 1

0
x
−τ+ζi+dj,Ū
i ∏

i∈U:(i,j)∈EH

min(xixj, 1)dxj (7.6.8)

for j ∈ {t, t + 1, . . . k}. The integral in h(j,x) consists of multiple regions, depending
on whether xixj < 1 or not. Suppose vertex i ∈ Ū is connected to vertices 1, 2, . . . , l ∈
U, and assume that x1 < x2 < · · · < xl . Then,

h(j,x) =
∫ 1

0
x
−τ+ζi+dj,Ū
j min(xjx1, 1)min(xjx2, 1) · · ·min(xjxl , 1)dxj

=
∫ 1/xl

0
x
−τ+ζ j+l+dj,Ū
j x1 · · · xldxj +

∫ 1/xl−1

1/xl

x
−τ+ζ j+l−1+dj,Ū
j x1 · · · xl−1dxj

+ · · ·+
∫ 1

1/x1

x
−τ+ζ j+dj,Ū
j dxi

= C1x1x2 · · · x
τ−ζ j−l−dj,Ū
l + C2(x1 · · · x

τ−ζ j−l−dj,Ū+1
l−1 − x1x2 · · · x

τ−ζ j−l−dj,Ū
l )

+ · · ·+ Cl(1− x
τ−ζi−dj,Ū+1
1 ) (7.6.9)

for some constants C1 > C2 · · · > Cl . Since ζ j + dj,Ū + l − τ = ζ j + di,S∗3 − τ > −1 by
Lemma 7.7, the first integral is finite. Because 1 < x1 < x2 < · · · < xl , this results in

h(j,x) ≤ K
∫ 1/xl

0
x
−τ+ζ j+dj,S∗3
j x1 · · · xldxj, ∀j, (7.6.10)

for some constant K > 0. Assume that x1 < x2 < · · · < xt. We let

uj = max{i | i ∈ U, (i, j) ∈ EH} (7.6.11)

for all j ∈ Ū such that dj,U ≥ 1. Furthermore, let

f (j) =

{
1/xuj if dj,U ≥ 1,
1 else,

(7.6.12)

for all j ∈ Ū. Then (7.6.10) results in∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t

∏
i=1

x
−τ+ζ j
i

s

∏
j=t+1

h(j,x)dxt · · ·dx1
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1 2 3 4
U

Ū

W4W2W1

Figure 7.4: Illustration of the sets Wi. For clarity of the picture, edges in U and in Ū
are not displayed.

≤ K̃
∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t

∏
i=1

x
−τ+ζi+di,Ū
i

s

∏
j=t+1

( ∫ f (j)

0
x
−τ+ζ j+dj,S∗3
j dxj

)
dxt · · ·dx1

= K̃
∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t

∏
i=1

x
−τ+ζi+di,Ū
i

s

∏
j=t+1

f (j)
−τ+1+ζ j+dj,S∗3 dxt · · ·dx1, (7.6.13)

for some constant K̃ > 0. Let Wi = {j ∈ Ū : uj = i} for i ∈ [t] (for an illustration,
see Figure 7.4) and let Ŵi = V1 ∪ S∗1 ∪ S∗3 \Wi. Then, ∑j∈Wi

ζ j + dj,S∗3 = ∑j∈Wi
dj,V1 +

dj,S∗1
+ dj,S∗3 = 2EWi + EWi ,Ŵi

, where EWi denotes the number of edges inside Wi and
EWi ,Ŵi

denotes the number of edges between Wi and Ŵi. Thus, (7.6.13) results in

K̃
∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t

∏
i=1

x
−τ+ζi+di,Ū+(τ−1)|Wi |−2EWi

−EWi ,Ŵi
i dxt · · ·dx1. (7.6.14)

We now show that

− τ + ζt + dt,Ū + (τ − 1) |Wt| − 2EWt − EWt ,Ŵt
< −1, (7.6.15)

so that the integral in (7.6.14) over xt is finite. By definition of (7.6.11) and Wt (see also
Figure 7.4) dt,Ū = dt,Wt . Setting Ŝ2 = Ŝ∗2 ∪ {t}, Ŝ1 = Ŝ∗1 ∪Wt and Ŝ3 = S∗3 \ (Wt ∪ {t}),
gives

EŜ1
− ES∗1

= EWt + EW1,S∗1
(7.6.16)

EŜ1,Ŝ3
− ES∗1 ,S∗3 = EWt ,Ŵt

− dt,Wt = EWt ,S∗3 − EWt − EWt ,S∗1
− dt,Ū − dt,V1 (7.6.17)

EŜ1,V1
− ES∗1 ,V1 = EWt ,V1 (7.6.18)

EŜ2,V1
− ES∗2 ,V1 = dt,V1 . (7.6.19)

Because (7.2.2) is uniquely optimized for S∗1 , S∗2 and S∗3 ,

|Ŝ1| − |Ŝ2| −
2EŜ1

+ EŜ1,Ŝ3
+ EŜ1,V1

− EŜ2,V1

τ − 1

< |S∗1 | − |S∗2 | −
2ES∗1

+ ES∗1 ,S∗3 + ES∗1 ,V1 − ES∗2 ,V1

τ − 1
. (7.6.20)
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Using (7.6.16)-(7.6.19) this reduces to

|Wt| − 1−
2EWt − EWt ,Ŵt

− dt,Ū − dt,S∗1
− dt,V1

τ − 1
< 0, (7.6.21)

or
− τ + (τ − 1) |Wt|+ dt,Ū + dt,S∗1

+ dt,V1 − 2EWt − EWt ,Ŵt
< −1. (7.6.22)

Using that ζt = dt,V1 + dt,S∗1
shows that the inner integral of (7.6.14) is finite, and

equal to

Kx
1−2τ+dt−1,Ū+(τ−1)|Wt∪Wt−1|−2EWt∪Wt−1

−EWt∪Wt−1, ¯Wt∪Wt−1
t−1 , (7.6.23)

for some K > 0. Then, choosing Ŝ2 = S∗2 ∪ {t, t− 1}, Ŝ1 = S∗1 ∪Wt ∪Wt−1 and Ŝ3 =

Ŝ∗3 \ (Wt ∪Wt−1 ∪{t, t− 1}), we can again prove using (7.6.20) that integrating (7.6.23)
over xt−1 from xt−2 to ∞ as in (7.6.14) results in a finite function of xt−2. We can
continue this process until we arrive at the integral over x1 and show that this final
integral is finite, so that (7.6.14) and therefore also (7.6.13) is finite. Since the ordering
x1 < x2 < · · · < xt was arbitrary, the integral over any ordering of x1, . . . , xt is finite,
so that (7.6.4) is finite as well.

Lemma 7.9. Suppose the optimal solution to (7.2.2) is unique, and attained by S∗1 , S∗2 and
S∗3 . Say that S∗2 = {1, . . . , t2} and S∗1 = {t2 + 1, . . . , t2 + t1}. Then,∫ 1

0
· · ·

∫ 1

0

∫ ∞

0
· · ·

∫ ∞

0
∏

j∈[t1+t2]

x
−τ+ζ j
j ∏

(u,v)∈ES∗1 ,S∗2

min(xuxv, 1)dxt1+t2 . . . dx1 < ∞. (7.6.24)

Proof. This proof has a similar structure as the proof of Lemma 7.8. We first rewrite
the integral as ∫ 1

0
· · ·

∫ 1

0
∏

j∈[t2]

x
−τ+ζ j
j

t1+t2

∏
i=t2+1

h̃(i,x)dxt2 · · ·dx1, (7.6.25)

where x = (xj)j∈[t2]
and

h̃(i,x) =
∫ ∞

0
x−τ+ζi

i ∏
j∈S∗2 :(i,j)∈EH

min(xixj, 1)dxi. (7.6.26)

Similarly to (7.6.9) and (7.6.10), we assume that vertex j has vertices 1, 2, . . . , l as
neighbors in S∗2 , but now we assume that x1 > x2 > · · · > xl . Then, using that
ζi + l = di ≥ 2 and that ζi ≤ 1 by Lemma 7.7, we obtain

h̃(i,x) =
∫ ∞

0
x−τ+ζi

i min(xix1, 1)min(xix2, 1) · · ·min(xixl , 1)dxi

=
∫ 1/x1

0
x−τ+ζi+l

i x1 · · · xldxi +
∫ 1/x3

1/x2

x−τ+ζi+l−1
i x2 · · · xldxi

+ · · ·+
∫ ∞

1/xl

x−τ+ζi
i dxi

≤ K
∫ 1/x1

0
x−τ+di

i x1 · · · xldxi (7.6.27)
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for some K > 0. For j ∈ S∗1 define

wj = min{i | i ∈ S∗2 , (i, j) ∈ EH}. (7.6.28)

By Lemma 7.7, wj is well defined for all j ∈ S∗1 . Then, using (7.6.27) results in

∫ 1

0

∫ x1

0
· · ·

∫ xt2−1

0
∏

j∈[t2]

x
−τ+ζ j+dj,S∗1
j

t1+t2

∏
i=t2+1

h̃(i,x)dxt2 · · ·dx1

≤ K̃
∫ 1

0

∫ x1

0
· · ·

∫ xt2−1

0
∏

j∈[t2]

x
−τ+ζ j+dj,S∗1
j

t1+t2

∏
i=t2+1

(1/xwj)
−τ+1+di dxt2 · · ·dx1, (7.6.29)

for some K̃ > 0. Define Wi = {j ∈ S∗1 | wj = i} for i ∈ S∗2 and let W̄i = VH \Wi.
Then, (7.6.29) reduces to

K̃
∫ 1

0

∫ x1

0
· · ·

∫ xt2−1

0
∏

i∈[t2]

x
−τ+ζi+di,S∗1

+(τ−1)|Wi |−2EWi
−EWi ,W̄i

i dxt2 · · ·dx1. (7.6.30)

We set Ŝ1 = S∗1 \Wt, Ŝ2 = S∗2 \ {t} and Ŝ3 = S∗3 ∪Wt ∪ {t}. Notice that ES∗1
− EŜ1

=
EWt + EWt ,S∗1\Wt

, ES∗1 ,S∗3 − EŜ1,Ŝ3
= EWt ,S∗3 − Et,S∗1\Wt

− EWt ,S∗1\Wt
, ES∗1 ,V1 − EŜ1,V1

=

EWt ,V1 and ES∗2 ,V1 − EŜ2,V1
= Et,V1 . Because the optimal solution to (7.2.2) is unique,

we obtain using (7.6.20) that

− τ + (τ − 1)|Wt| − 2EWt + EWt ,S∗1\Wt
+ EWt ,S∗3 + EW1,V1 − dt,S∗1\Wt

− dt,V1 > −1.
(7.6.31)

Using that EWt ,W̄t
= EWt ,S∗1\Wt

+ EWt ,S∗3 + EWt ,S∗2 + EWt ,V1 and that ζt = dt,V1 then
shows that

− τ + (τ − 1)|Wt| − 2EWt + EWt ,W̄t
− EWt ,S∗2 − dt,S∗1\Wt

− ζt > −1. (7.6.32)

By definition of Wt, EWt ,S∗2 = dt,Wt . Then using that dt,S∗1\Wt
+ dt,Wt = dt,S∗1

results in

− τ + (τ − 1)|Wt| − 2EWt + EWt ,W̄t
− dt,S∗1

− ζt > −1, (7.6.33)

which shows that the inner integral in (7.6.30) is finite. A similar argument, setting
Ŝ1 = S∗1 \ (Wt ∪Wt−1) and Ŝ2 = S∗2 \ {t, t − 1} shows that the second integral is
also finite, and we can proceed to show that the outer integral of (7.6.30) is finite.
Because the ordering x1 > x2 > · · · > xt was arbitrary, the integral is finite over any
reordering, so that (7.6.24) is finite.

Proof of Theorem 7.1(i). Because Dmax = OP(n1/(τ−1)), the contribution from vertices
with Di > n1/(τ−1)/εn to the number of motifs converges to zero. Since we are only
interested in the order of magnitude of the number of motifs, we assume for ease of
notation that Dmax = n1/(τ−1). We define

γu
i (n) =

{
n1/(τ−1) if i ∈ S∗2
nα∗i /εn else,

(7.6.34)
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and

γl
i(n) =

{
1 if i ∈ V1

εnnα∗i else.
(7.6.35)

We then show that the expected number of motifs where the degree of at least one
vertex i satisfies Di /∈ [γl

i(n), γu
i (n)] is small, similarly to the proof of Theorem 7.2. We

first study the expected number of copies of H where vertex 1 has degree in [1, γ1(n)]
and all other vertices satisfy Di ∈ [γl

i(n), γu
i (n)]. We bound the expected number of

such copies of H by

E
[

N(H)1{D1<γl
1(n),Di∈[γl

i (n),γ
u
i (n)] ∀i>1}

]
≤ ck

∫ γl
1(n)

1

∫ γu
2 (n)

γl
2(n)

· · ·
∫ γu

k (n)

γl
k(n)

(x1 · · · xk)
−τ ∏
(i,j)∈EH

min
( xixj

µn
, 1
)

dxk . . . dx1. (7.6.36)

This integral equals zero when vertex 1 is in V1. Suppose vertex 1 is in S∗2 . W.l.o.g.
assume that S∗2 = {1, . . . , t2}, S∗1 = {t2 + 1, . . . , t1 + t2} and S∗3 = {t1 + t2 + 1, . . . , t1 +
t2 + t3}. We bound the minimum in (7.6.36) by xixj/(µn) for i, j ∈ S∗1 , for i or j in
V1 and for i ∈ S∗1 , j ∈ S∗3 or vice versa. We bound the minima by 1 for i, j ∈ S∗2 and
i ∈ S∗2 , j ∈ S∗3 or vice versa. Applying the change of variables ui = xi/nα∗i results
similarly as in (7.3.22) and (7.3.34) in the bound

E
[

N(H)1{D1<γl
1(n),Di∈[γl

i (n),γ
u
i (n)] ∀i>1}

]
= O(n

3−τ
2 (k2++B(sub)(H))+k1)

×
∫ εn

0

∫ 1

0
· · ·

∫ 1

0

∫ ∞

0
· · ·

∫ ∞

0
∏

i∈VH\V1

x−τ+ζi
i

×∏
(u,v)∈ES∗3

∪ES∗1 ,S∗2

min(xuxv, 1)dxt1+t2+t3 . . . dx1 ∏
j∈V1

∫ ∞

1
x1−τ

j dxj, (7.6.37)

where the integrals from 0 to 1 correspond to vertices in S∗2 and the integrals from 0
to ∞ to vertices in S∗1 and S∗3 . The last integrals corresponding to vertices in V1 are
finite, because τ ∈ (2, 3). The first integral can be split into∫ εn

0

∫ 1

0
· · ·

∫ 1

0

∫ ∞

0
· · ·

∫ ∞

0
∏

i∈S∗1∪S∗2

x−τ+ζi
i ∏

(u,v)∈ES∗1 ,S∗2

min(xuxv, 1)dxt1+t2 . . . dx1

×
∫ ∞

0
· · ·

∫ ∞

0
∏
i∈S∗3

x−τ+ζi
i ∏

(u,v)∈ES∗3

min(xuxv, 1)dxt1+t2+t3 . . . dxt1+t2+1

(7.6.38)

By Lemma 7.8 the second integral of (7.6.37)is finite. Using Lemma 7.9 shows that
the first integral is o(1). Therefore,

E
[

N(H)1{D1<γl
1(n),Di∈[γl

i (n),γ
u
i (n)] ∀i>1}

]
= o

(
n

3−τ
2 (k2++B(sub)(H))+k1

)
, (7.6.39)

when vertex 1 ∈ S∗2 . Similarly, we can show that the expected contribution from D1 <

γl
1(n) satisfies the same bound when vertex 1 is in S∗1 or S∗3 . The expected number of
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motifs where D1 > γu
1 (n) if vertex 1 is in S∗1 , S∗3 or V1 can be bounded similarly, as

well as the expected contribution where multiple vertices have Di /∈ [γl
i(n), γu

i (n)].
Therefore, by the Markov inequality

N
(

H, M̄(α(sub))
n (εn)

)
= oP

(
n

3−τ
2 (k2++B(sub)(H))+k1

)
, (7.6.40)

where N
(

H, M̄(α(sub)))
n (εn)

)
denotes the number of copies of H on vertices not in

M(α(sub))
n (εn). Combining this with the fact that for fixed ε

N(H) ≥ N(H, M(α(sub))
n (ε)) = OP(n

3−τ
2 (k2++B(sub)(H))+k1) (7.6.41)

by Theorem 7.1(ii) shows that

N
(

H, M(α(sub))
n (εn)

)
N(H)

P−→ 1. (7.6.42)

7.7 Graphlets

We now describe how to adapt the analysis of motif counts to graphlet counts. For
graphlets we can define a similar optimization problem as (7.3.24). When αi + αj ≤
1, (7.3.5) results in

Pn
(
Xij = 0

)
= e−Θ(nαi+αj−1

)(1 + o(1)) = 1 + o(1), (7.7.1)

whereas for αi + αj > 1, (7.3.15) yields

Pn
(
Xij = 0

)
= o(1). (7.7.2)

Similar to (7.3.17), we can write the probability that H occurs as an induced subgraph
on v = (v1, · · · , vk) as

Pn (G|v = EH) = ΘP

(
∏

(vi ,vj)∈EH :αi+αj<1
nαi+αj−1 ∏

(i,j)/∈EH :αi+αj>1
o(e−nαi+αj−1

/2)

)
. (7.7.3)

Thus, the probability that H is an induced subgraph on (v1, · · · , vk) is stretched
exponentially small in n when two vertices i and j with αi + αj > 1 are not connected
in H. Then the corresponding optimization problem to (7.3.23) for graphlets becomes

max(1− τ)∑
i

αi + ∑
(i,j)∈EH :αi+αj<1

αi + αj − 1,

s.t. αi + αj ≤ 1 ∀(i, j) /∈ EH . (7.7.4)

The following lemma shows that this optimization problem attains its optimum
for very specific values of α (similarly to Lemma 7.2 for motifs):
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Lemma 7.10 (Maximum contribution to graphlets). Let H be a connected graph on
k vertices. If the solution to (7.7.5) is unique, then the optimal solution satisfies αi ∈
{0, τ−2

τ−1 , 1
2 , 1

τ−1} for all i. If it is not unique, then there exist at least 2 optimal solutions with
αi ∈ {0, τ−2

τ−1 , 1
2 , 1

τ−1} for all i. In any optimal solution, αi = 0 if and only if vertex i has
degree one in H.

Proof. This proof is similar to the proof of Lemma 7.2. First, we again define βi =

αi − 1
2 , so that (7.7.4) becomes

max
1− τ

2
k + (1− τ)∑

i
βi + ∑

(i,j)∈EH :βi+β j<0
βi + β j,

s.t. βi + β j ≤ 0 ∀(i, j) /∈ EH . (7.7.5)

The proof of Step 1 from Lemma 7.2 then also holds for graphlets. Now we prove
that if the optimal solution to (7.7.5) is unique, it satisfies βi ∈ {− 1

2 , τ−3
2(τ−1) , 0, 3−τ

2(τ−1)}
for all i. We take β̃ as in (7.3.28), and assume that β̃ < 3−τ

2(τ−1) . The contribution of

the vertices with |βi| = β̃ is as in (7.3.29). By increasing β̃ or by decreasing it to
zero, the constraints on βi + β j are still satisfied for all (i, j). Thus, we can use the
same argument as in Lemma 7.2 to conclude that βi ∈ { τ−3

2(τ−1) , 0, 3−τ
2(τ−1)} for all i

with di ≥ 2. A similar argument as in Step 3 of Lemma 7.2 shows that if the solution
to (7.7.5) is not unique, it can be transformed into two optimal solutions that satisfy
βi ∈ {− 1

2 , τ−3
2(τ−1) , 0, 3−τ

2(τ−1)} for all i with degree at least 2.

Following the same lines as the proof of Theorem 7.1(ii) for motifs, Theorem 7.1(ii)
for graphlets follows, where we now use Lemma 7.10 instead of 7.2. We now state an
equivalent lemma to Lemma 7.3 for graphlets:

Lemma 7.11 (Convergence of major contribution to graphlets). Let H be a connected
graph on k > 2 vertices such that (7.2.3) is uniquely optimized at 0. Then,

(i) the number of graphlets with vertices in Wk
n(ε) satisfies

N(ind)(H, Wk
n(ε))

n
k
2 (3−τ)

P−→ckµ−
k
2 (τ−1)

∫ 1/ε

ε
· · ·

∫ 1/ε

ε
(x1 · · · xk)

−τ

×∏
(i,j)∈EH

(1− e−xixj)∏
(i,j)/∈EH

e−xixj dx1 · · ·dxk. (7.7.6)

(ii) A(ind)(H) defined in (7.2.11) satisfies A(ind)(H) < ∞.

The proof of Theorem 7.3 is similar to the proof of Theorem 7.2, and uses Lemma 7.11
instead of Lemma 7.3 for motifs. The proof of Lemma 7.11(i) in its turn follows from
straightforward extensions of Lemmas 7.4 7.6 and 7.5 for graphlets, now also using
that the probability that an edge {i, j} not present in H is not present in the subgraph
can be approximated by exp(−DiDj/Ln). Lemma 7.11(ii) is an application of the
following equivalent lemma to Lemma 7.8 for S∗3 = VH :
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Lemma 7.12. Suppose that the maximum in (7.2.3) is uniquely attained for |S∗3 | = s > 0,
and say S∗3 = {1, . . . , s}. Then∫ ∞

0
· · ·

∫ ∞

0
∏
i∈[s]

x−τ+ζi
i ∏

(u,v)∈ES∗3

min(xuxv, 1) ∏
(u,v)/∈ES∗3

e−xuxv dxs . . . dx1 < ∞. (7.7.7)

Proof. This integral is finite if∫ ∞

0
· · ·

∫ ∞

0
∏
i∈[s]

x−τ+ζi
i ∏

(u,v)∈ES∗3

min(xuxv, 1)∏
(u,v)/∈ES∗3

1{xuxv<1}dxs . . . dx1 < ∞, (7.7.8)

since if ∫ b

a

∫ 1/x1

0
xγ1

1 xγ2
2 e−x1x2dx2dx1 < ∞, (7.7.9)

then also ∫ b

a

∫ ∞

1/x1

xγ1
1 xγ2

2 e−x1x2 dx2dx1 < ∞. (7.7.10)

We can show similarly to (7.6.5) and (7.6.6) that the integral is finite when all in-
tegrands are larger than one, or when all are smaller than one. We compute the
contribution to (7.7.8) where the integrand runs from 1 to ∞ for vertices in some
nonempty set U, and from 0 to 1 for vertices in Ū = S∗3 \ U. W.l.o.g., assume
U = {1, · · · , t} for some t ≥ 1. Define for i ∈ Ū

ĥ(i,x) =
∫ 1

0
x
−τ+ζi+di,Ū
i ∏

j∈U:(i,j)∈EH

min(xixj, 1) ∏
v∈U:(i,v)/∈EH

1{xixv<1}dxi. (7.7.11)

Then (7.7.7) results in∫ ∞

1
· · ·

∫ ∞

1
∏
j∈[t]

x
−τ+ζ j
j ∏

u,v∈U:(u,v)/∈EH

1{xuxv<1}
k

∏
i=t+1

ĥ(i,x)dxt · · ·dx1. (7.7.12)

When U does not induce a complete graph on H, this integral equals zero. Thus, we
assume that U induces a complete graph on H so that {(u, v) ∈ U | (u, v) /∈ EH} = ∅.
Assume that 1 < x2 < . . . < xt. Then, similarly to (7.6.10),

ĥ(i,x) ≤ K
∫ 1/xt

0
x
−τ+ζi+di,S∗3
i ∏

j∈[t]:(i,j)∈EH

xjdxi, (7.7.13)

for some K > 0. By a similar argument as in Lemma 7.7, ζi + di,S∗3 ≥ 2 for i ∈ S∗3 so
that this integral is finite. Thus,∫ ∞

1
· · ·

∫ ∞

xt−1
∏
j∈[t]

x
−τ+ζ j
j ∏

u,v∈U:(u,v)/∈EH

1{xuxv<1}
k

∏
i=t+1

ĥ(i,x)dxt · · ·dx1

≤ K̃
∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t−1

∏
j=1

x
−τ+ζ j+dj,Ū
j x

−τ+ζt+dt,Ū+(τ−1)|Ū|−∑s∈Ū ζs+ds,S∗3
t dxt · · ·dx1

≤ K̃
∫ ∞

1

∫ ∞

x1

· · ·
∫ ∞

xt−1

t−1

∏
j=1

x
−τ+ζ j+dj,Ū
j x

−τ+ζt+dt,Ū+(τ−1)|Ū|−2EŪ−EŪ,Û
t dxt · · ·dx1,

(7.7.14)



7.7. Graphlets 179

for some K̃ > 0, where Û = V1 ∪ S∗1 ∪ S∗3 \ Ū. We can now show that the integral over
xt is finite in a similar manner as in Lemma 7.8. Define Ŝ1 = S∗1 ∪ Ū, Ŝ2 = S∗2 ∪ {t}
and Ŝ3 = U \ {t}. Because U induces a complete graph in H, and t ∈ U, vertex
t is connected to all vertices in Ŝ3, so that these newly defined sets still satisfy the
constraint in (7.2.3), and we may proceed as in Lemma 7.8 using (7.6.20) to show that
the integral over xt finite. Iterating this proves Lemma 7.12.

The following lemma is the counterpart of Lemma 7.9 for graphlets:

Lemma 7.13. Suppose that the optimal solution to (7.2.3) is unique, and attained by S∗1 , S∗2
and S∗3 . Say that S∗2 = {1, . . . , t2} and S∗1 = {t2 + 1, . . . , t2 + t1}. Then,∫ 1

0
· · ·

∫ 1

0

∫ ∞

0
· · ·

∫ ∞

0
∏

j∈[t1+t2]

x
−τ+ζ j
j ∏

(u,v)∈ES∗1 ,S∗2

min(xuxv, 1)

×∏
(u,v)/∈ES∗1 ,S∗2

e−xuxv dxt1+t2 . . . dx1 < ∞. (7.7.15)

Proof. This lemma can be proven along similar lines as Lemma 7.9, with similar ad-
justments as the adjustments to prove Lemma 7.12 for graphlets from its counterpart
for motifs, Lemma 7.8.

From these lemmas, the proof of Theorem 7.1(i) for graphlets follows along the
same lines as the proof of Theorem 7.1(i) for motifs.





8 Subgraph fluctuations in inhomogeneous
random graphs

Based on:
Variational principle for scale-free network motifs

C. Stegehuis, R. van der Hofstad, J.S.H. van Leeuwaarden

In this chapter, we again focus on subgraph counts. In Chapter 7 we have inves-
tigated the number of subgraphs in a typical network observation. We now study
the expected number of subgraphs instead of the typical number of subgraphs by
presenting a variational principle that identifies the dominant structure of any given
subgraph as the solution of an optimization problem. The unique optimizer describes
the vertex degrees that contribute most to the expected motif count, resulting in
explicit asymptotic formulas for the expected motif count and its fluctuations. Inte-
restingly, the structures that optimize the contribution to the expected motif count
may be different than the most likely motif structure of Chapter 7. We then classify
all motifs into two categories: self-averaging motifs with relatively small fluctuations
signaling stable network structures, and motifs that are inherently non-self-averaging.
We further divide the non-self-averaging motifs into two classes with substantially dif-
ferent concentration properties. We compare these theoretical findings with empirical
network data.

8.1 Introduction

In this chapter, we again study the presence of network motifs. With the goal to
explain the occurrence of motifs beyond counting, we develop a variational principle
designed to identify, for any given motif, the composition that dominates the expected
motif count as the solution of an optimization problem. The unique optimizer
describes the degrees of the vertices that form the largest contribution to the expected
motif count, as well as predicts the leading asymptotic order for the motif count in
the large-network limit. The variational principle extends the analysis of constrained
triangle counts of Chapter 6 to general subgraphs.

The variational principle can potentially be applied to various random network
models, as we show in Chapter 9 but here we focus on the rank-1 inhomogeneous
random graph described in Section 1.1.4. We focus on the Chung-Lu version of the
rank-1 inhomogeneous random graph, with scale-free vertex weights. Thus, each
vertex has a weight h drawn from the probability density

ρ(h) = Ch−τ (8.1.1)
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for some constant C and h ≥ hmin. Each pair of vertices is joined independently with
probability

p(h, h′) = min(hh′/(µn), 1). (8.1.2)

with h and h′ the weights associated with the two vertices, and µ the mean of the
weights. The variational principle now seeks for the dominant structure of any given
motif. The probability P(H) of creating motif H on k uniformly chosen vertices can
be written as

P(H) =
∫
h

P (H on h1, . . . , hk)P (h1, . . . , hk)dh, (8.1.3)

where the integral is over all possible hidden-variable sequences on k vertices, with
h = (h1, . . . , hk) and P (h1, . . . , hk) the density that a randomly chosen set of k weights
is proportional to h1, . . . , hk. Degrees and weights are provably close (see Section 4.C),
so (8.1.3) can be interpreted as a sum over all possible degree sequences. Therefore,
the variational principle then needs to settle the following trade-off, inherently present
in power-law networks, also described in Chapter 7: On the one hand, large-degree
vertices like hubs contribute substantially to the number of motifs, because they are
highly connected, and therefore participate in many motifs. On the other hand, large-
degree vertices are by definition rare. This should be contrasted with lower-degree
vertices that occur more frequently, but take part in fewer connections and hence
fewer motifs. Therefore, our variational principle is designed to find the selection
of vertices with specific degrees that together ‘optimize’ this trade-off and hence
maximize the expected number of such motifs.

We leverage the variational principle in three ways. First, we derive sharp asymp-
totic expressions for the expected motif counts in the large-network limit in terms
of the network size and the power-law exponent. Second, we use the variational
principle to identify the fluctuations of motif counts. In this way we can determine for
any given motif whether it is self-averaging or not. Third, we compare the optimal
motifs composition with real-world network data, and find empirical confirmation of
typical motif degrees.

We present two versions of the variational principle arising from analyzing (8.1.3)
in Sections 8.2 and 8.3, related to different ways of restricting the variation (free and
typical). Free variation corresponds to computing the average number of motifs over
many samples of the random network model. Typical variation corresponds to the
number of motifs in one single instance of the random graph null model, and yields
the same optimization problems as in Chapter 7. Remarkably, for τ ∈ (2, 3) these
can be highly different. We then apply the variational principle to study motif count
fluctuations in Section 8.4 and classify all motifs into self-averaging and non-self-
averaging motifs. We further show that non-self-averaging motifs can be further
divided into two classes, with considerably different concentration properties. Finally,
in Section 8.5 we compare the results of the variational principle to real-world data.

8.2 Free variation

We first show that only hidden-variable sequences hwith weights of specific orders
give the largest contribution to (8.1.3), using a similar approach as in Chapter 7. Write
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(a) n
3
2 (3−2τ) (b) n4−τ (c) n6−2τ (d) n6−2τ log(n)

(e) n6−2τ log(n) (f) n4−τ (g) n4−τ (h) n4−τ log(n)

n√
n

1
non-unique

Figure 8.1: Order of magnitude of the expected number of motifs on 3 and 4 verti-
ces, where the vertex color indicates the optimal vertex degree. Vertices where the
optimizer is not unique are gray.

the weights as hi ∝ nαi for some αi ≥ 0 for all i. Then, using (8.1.2), the probability
that motif H exists on vertices with weights h = (nα1 , . . . , nαk ) satisfies

P (H on h) ∝ ∏
(i,j)∈EH :αi+αj<1

nαi+αj−1. (8.2.1)

The weights are an i.i.d. sample from a power-law distribution, so that the pro-
bability that k uniformly chosen weights satisfy (h1, . . . , hk) ∝ (nα1 , . . . , nαk ) is of the
order n(1−τ)∑i αi (see (7.3.21)). Taking the product of this with (8.2.1) shows that the
maximum contribution to the summand in (8.1.3) is obtained for those αi ≥ 0 that
maximize the exponent

(1− τ)∑
i

αi + ∑
(i,j)∈EH :αi+αj<1

(
αi + αj − 1

)
, (8.2.2)

which is a piecewise-linear function in α. In Appendix 8.B, we show that the maximi-
zer of this optimization problem satisfies αi ∈ {0, 1

2 , 1} for all i. Thus, the maximal
value of (8.2.2) is attained by partitioning the vertices of H into the sets S1, S2, S3 such
that vertices in S1 have αi = 0, vertices in S2 have αi = 1 and vertices in S3 have
αi =

1
2 . Then, the edges with αi + αj < 1 are edges inside S1 and edges between S1

and S3. If we denote the number of edges inside S1 by ES1 and the number of edges
between S1 and S3 by ES1,S3 , then maximizing (8.2.2) is equivalent to maximizing

B f (H) = max
P

[
|S1| − |S2| −

2ES1 + ES1,S3

τ − 1

]
(8.2.3)

over all partitions P of the vertices of H into S1, S2, S3. This gives the following
theorem (a more elaborate version is proven in Appendix 8.B):

Theorem 8.1 (Expected motif count). Let H be a motif on k vertices such that the solution
to (8.2.3) is unique. As n→ ∞, the expected number of motifs H grows as

E [N(H)] = nkP(H) ∝ n
3−τ

2 k+ τ−1
2 B f (H), (8.2.4)

and is thus fully determined by the partition P∗ that optimizes (8.2.3).
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Figure 8.2: Order of magnitude of the expected number of motifs on 5 vertices, where
the vertex color indicates the optimal vertex degree, as in Figure 8.1.

Theorem 8.1 implies that the expected number of motifs is dominated by motifs
on vertices with weights (and thus degrees) of specific orders of magnitude: constant
degrees, degrees proportional to

√
n or degrees proportional to n. Figure 8.1 and 8.2

show the partitions P∗ that form the optimal motif structures and dominate the
expected number of motifs on three, four and five vertices.

Graphlets. It is also possible to only count the number of times H appears as an
induced subgraph, also called graphlet counting. This means that an edge that
is not present in graphlet H, should also be absent in the network subgraph. In
Appendix 8.D we classify the expected number of graphlets with a similar variational
principle as for motifs. Figure 8.7 shows the expected number of graphlets on 4
vertices. This figure also shows that graphlet counting is more detailed than motif
counting. For example, counting all square motifs is equivalent to counting all
graphlets that contain the square as an induced subgraph: the square, the diamond
and K4. Indeed, the expected number of square motifs scales as n6−2τ log(n) by
adding the number of square, diamond and K4 graphlets from Figure 8.7. This shows
that the main contribution to the expected number of square motifs is actually from
the diamond graphlets of Figure 8.7d. Thus, graphlet counting gives more detailed
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information than motif counting.

8.3 Typical variation

The largest degrees (hubs) in typical samples of the rank-1 inhomogeneous random
graph scale as n1/(τ−1) with high probability. The expected number of motifs, howe-
ver, may be dominated by network samples where the largest degree is proportional
to n (see Theorem 8.1). These samples contain many motifs because of the high
degrees, and therefore contribute significantly to the expectation. Nevertheless, the
probability of observing such a network tends to zero as n grows large. In Chapter 7
we investigated the typical number of motifs in erased configuration models, using
a similar variational principle. There we have also assumed the degrees to be pro-
portional to nαi , but limit to degree sequences where the maximal degree is of order
n1/(τ−1), the natural cutoff in view of the typical hub degrees. Vertices with degrees
above the natural cutoff are rare, so do not contribute to the typical motif count, but
our variational principle shows that they may still contribute to the average motif
count. In the proof of Theorem 7.1, the variational principle for the erased configura-
tion model, the connection probability is estimated by min(DiDj/(µn), 1), which is
the same as the connection probability in the rank-1 inhomogeneous random graph.
Therefore, the optimal typical motif structures in the rank-1 inhomogeneous random
graph are the same as in Figure 7.2 and the optimal typical graphlet structures are
given by Figures 7.1 and 7.3.

Observe that the optimal motif structures for the expected number of motifs of
Figure 8.1 and for the typical number of motifs of Figure 7.2 may differ. For example,
the scaling of the expected number of claws (Figure 8.1g) and the typical number
of claws (Figure 7.1e) is different. This is caused by the left upper vertex that has
degree proportional to n in the free optimal structure, whereas its typical degree
is proportional to n1/(τ−1). Only when the solution to (8.2.3) does not involve hub
vertices, the two scalings coincide. When the optimal structure contains hub vertices,
this is not the case. While typical hub degrees scale as n1/(τ−1), expected hub degrees
may be much larger, causing the number of such motifs with hubs to scale faster in
the free variation setting than in the typical variation setting. This indicates that the
average and median motif count can differ dramatically.

8.4 Fluctuations

Self-averaging network properties have relative fluctuations that tend to zero as the
network size n tends to infinity. Several physical quantities in for example Ising
models, fluid models and properties of the galaxy display non-self-averaging beha-
vior [2, 69, 134, 171, 179, 219, 220]. We consider motif counts N(H) and call N(H)

self-averaging when Var (N(H)) /E [N(H)]2 → 0 as n → ∞. Essential understan-
ding of N(H) can then be obtained by taking a large network sample, since the
sample-to-sample fluctuations vanish in the thermodynamic limit. In contrast, if
Var (N(H)) /E [N(H)]2 approaches a constant or tends to infinity as n → ∞, the
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motif count is called non-self-averaging, in which case N(H) shows strong sample-
to-sample fluctuations that cannot be mitigated by taking more network samples.

Our variational principle facilitates a systematic study of such fluctuations, and
leads to a classification into self-averaging and non-self-averaging motifs. It turns
out that whether N(H) is self-averaging or not depends on the power-law exponent
τ and the optimal structure of H. We also show that non-self-averaging behavior of
motif counts may not have the intuitive explanation described above. In some cases,
motif counts in two instances are similar with high probability, but rare network
samples behave differently, causing the variance of the motif count to be large, leading
to non-self-averaging behavior. Thus, the classification of network motifs into self-
averaging and non-self-averaging motifs does not give a complete picture of the motif
count fluctuations. We therefore further divide the non-self-averaging motifs into
two classes based on the type of fluctuations in the motif counts.

8.4.1 Triangle fluctuations

We first illustrate how we can apply the variational principle to obtain the variance of
the number of subgraphs by computing the variance of the number of triangles in the
rank-1 inhomogeneous random graph. Let4 denote the number of triangles, and let
4i,j,k denote the event that vertices i, j and k form a triangle. Then, we can write the
number of triangles as

4 = 1
6 ∑′

i,j,k∈[n]
14i,j,k

, (8.4.1)

where ∑
′

denotes the sum over distinct indices. Thus, the variance of the number of
triangles can be written as

Var (4) = ∑′

i,j,k∈[n]
∑′

s,t,u∈[n]
P(4i,j,k,4s,t,u)−P(4i,j,k)P(4s,t,u). (8.4.2)

When i, j, k and s, t, u do not overlap, the weights of i, j, k and s, t, u are independent,
so that the event that i, j and k form a triangle and the event that s, t and u form a
triangle are independent. Thus, when i, j, k, s, t, u are all distinct, P(4i,j,k,4s,t,u) =
P(4i,j,k)P(4s,t,u), so that the contribution from 6 distinct indices to (8.4.2) is zero. On
the other hand, when i = u for example, the first term in (8.4.2) denotes the probability
that a bow tie (see Figure 8.2(i)) is present with i as middle vertex. Furthermore, since
the degrees are i.i.d. and the edge statuses are independent as well, P(4i,j,k) is the
same for any i 6= j 6= k, so that

P
(
4i,j,k

)
=

E [4]

6(n
3)

=
E [4]

6n3 (1 + o(1)). (8.4.3)

This results in

Var (4) = 9E [# bow-ties]− 9n−1E [4]2 + 18E [# diamonds]

− 18n−2E [4]2 + 6E [4]− 6n−3E [4]2

= 9E [# bow-ties] + 18E [# diamonds] + 6E [4] + E [4]2 O(n−1), (8.4.4)
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where the diamond motif is as in Figure 8.1d. The combinatorial factors 9,18 and 6
arise because there are 9 ways to construct a bow tie (18 for a diamond, and 6 for a
triangle) by letting two triangles overlap. The diamond motif does not satisfy the
assumption in Theorem 8.1 that the optimal solution to (8.2.3) is unique. However,
we can show the following result:

Lemma 8.1. E [number of diamonds] = Θ(n6−2τ) log(n).

Proof. The function (8.2.3) is optimized for αi = β, αj = 1− β, αk = β and αs = 1− β
for all values of β ∈ [1/2, 1]. All these optimizers together give the major contribution
to the number of diamonds. Thus, we need to find the number of sets of four vertices,
satisfying

hihj = Θ(n), hi > hj, hk = Θ(hi), hs = Θ(hj). (8.4.5)

Given hi and hj, the number of sets of two vertices k, s with hk = Θ(hi) and hs = Θ(hj)

is given by n2h1−τ
i h1−τ

j = Θ(n3−τ), where we used that hihj = Θ(n). The number
of sets of vertices i, j such that hihj = Θ(n) can be found using that the product
of two independent power-law random variables is again distributed as a power
law, with an additional logarithmic term [110]. Thus, the number of sets of vertices
with hihj = Θ(n) scales as n2n1−τ log(n). Then, the expected number of sets of four
vertices satisfying all constraints on the degrees scales as n6−2τ log(n). By (8.2.1),
the probability that a diamond exists on degrees satisfying (8.4.5) is asymptotically
constant, so that the expected number of diamonds also scales as n6−2τ log(n).

Theorem 8.3 gives for the number of bow ties that

E [# bow ties] =

{
Θ(n

5
2 (3−τ)) τ < 7

3 ,
Θ(n4−τ) τ ≥ 7

3 ,
(8.4.6)

and that E [4] = Θ(n3(3−τ)/2). Combining this with (8.4.4) results in

Var (4) =

{
Θ(n

5
2 (3−τ)) τ < 7

3 ,
Θ(n4−τ) τ ≥ 7

3 .
(8.4.7)

To investigate whether the triangle motif is self-averaging, we need to compare the
variance to the second moment of the number of triangles, which results in

Var (4)

E [4]2
=

{
Θ(n

1
2 (τ−3)), τ < 7

3 ,
Θ(n2τ−5), τ ≥ 7

3 .
(8.4.8)

Therefore,

lim
n→∞

Var (4)

E [4]2
=

{
0 τ < 5

2 ,
∞ τ > 5

2 ,
(8.4.9)

which proves the following proposition:

Proposition 8.1. The number of triangles in rank-1 inhomogeneous random graphs is
self-averaging as long as τ < 5

2 . When τ ≥ 5
2 the number of triangles is not self-averaging.
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8.4.2 General motif fluctuations

We now compute the variance of general motifs, similar to the triangle example (see
also [84, 147, 171, 180]).

Lemma 8.2. Let H1, . . . , Hl denote all motifs that can be constructed by merging two copies
of H at at least one vertex. We can then write the variance of the motif count as

Var (N(H)) = C1E [N(H1)] + · · ·+ ClE [N(Hl)] + E [N(H)]2 O(n−1). (8.4.10)

for constants C1, . . . , Cl .

Proof. Let i = (i1, . . . , ik) be such that ip 6= iq when p 6= q. We write the variance as

Var (N(H)) = ∑
i∈[n]k

∑
j∈[n]k

(
P
(

Hi, Hj present
)
−P (Hi present)P

(
Hj present

) )
,

(8.4.11)
where Hi present denotes the event that motif H is present on vertices i. The sum
splits into several cases, depending on the overlap of i and j. The term where i and
j do not overlap equals zero, since edge presences of non-overlapping vertices are
independent.

Now suppose i and j overlap at it1 , . . . itr and js1 , . . . , jsr for some r > 0. Then
P
(

Hi, Hj present
)

equals the probability that motif H̃ is present on vertices {i1, . . . , ik, j1, . . . , jk} \
{js1 , . . . , jsr}, where H̃ denotes the motif that is constructed by merging two copies of
H at it1 with js1 , at it2 with js2 and so on. Thus, this term can be written as

∑′

t∈[n]2k−r

P
(

H̃t present
)
= E

[
N(H̃)

]
, (8.4.12)

where ∑′ denotes a sum over distinct indices. Furthermore, since the degrees are
i.i.d., P (Hi present) = E [N(H)] /(n

k), similarly to (8.4.3). Thus,

∑′

i,j∈[n]k :|i∩j|=r

P (Hi present)P
(

Hj present
)
= n−rE [N(H)]2 O(1). (8.4.13)

Thus, when H1, . . . , Hl denote all motifs that can be constructed by merging two
copies of H at at least one vertex, we can write the variance of the motif count as

Var (N(H)) = C1E [N(H1)] + · · ·+ ClE [N(Hl)] + E [N(H)]2 O(n−1). (8.4.14)

where Ci is a combinatorial constant that denotes the number of distinct ways to
merge two copies of H into Hi. These constants satisfy [84]

l

∑
i=1

Ci =
k−1

∑
s=0

(
k
s

)2
(k− s)!. (8.4.15)
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self-averaging for subfigures of Figure 8.1 subfigures of Figure 8.2

(2,3) c a,b,c,d
(2,5/2) a f,g,l,o
(2,7/3) i
- b,d,e,f,g,h e,h,j,k,m,n,p,q,r,s,t,u

Table 8.1: The values of τ ∈ (2, 3) where the motifs of Figures 8.1 and 8.2 are self-
averaging.

Using (8.4.10), we can determine for any motif H whether it is self-averaging or
not. First, we find all motifs that are created by merging two copies of H. For the
triangle motif for example, these motifs are the bow-tie, where two triangles are mer-
ged at one single vertex, the diamond of Figure 8.1d, and the triangle itself. We find
the order of magnitude of the expected number of these motifs using Theorem 8.1 to
obtain the variance of N(H). We divide by E [N(H)]2, also obtained by Theorem 8.1,
and check whether this fraction is diverging or not. Table 8.1 shows for which values
of τ ∈ (2, 3) the motifs on 3, 4 and 5 vertices are self-averaging. For example, the
triangle turns out to be self-averaging only for τ ∈ (2, 5/2).

The following observation shows the importance of the optimal motif structure:

Theorem 8.2. All self-averaging motifs for any τ ∈ (2, 3) have optimal free variation
structures with vertices of weights Θ(

√
n) only.

We prove this theorem in Appendix 8.E. The condition on the optimal motif
structure is a necessary condition for being self-averaging, but it is not a sufficient
one, as the triangle example shows. Combining the classification of the motifs into
self-averaging and non-self-averaging with the classification based on the value of
B f (H) from (8.2.3) as well as the difference between the expected and typical number
of motifs yields a classification into the following three types of motifs:

Type I: Motifs with small variance. Var (N(H)) /E [N(H)]2 → 0 and B f (H) = 0.
These motifs only contain vertices of degrees Θ(

√
n). The number of such rescaled

motifs converges to a constant by Theorem 7.2. Furthermore, the variance of the
number of motifs is small compared to the second moment, so that the fluctuations
of these types of motifs are quite small and vanish in the large network limit. The
triangle for τ < 5/2 is an example of such a motif, illustrated in Figures 8.3b and 8.3e.

Type II: Concentrated, non-self-averaging motifs. Var (N(H)) /E [N(H)]2 9 0 and
B f (H) = 0. These motifs also only contain vertices of degrees

√
n. Again, the rescaled

number of such motifs converges to a constant in probability by Theorem 7.2. Thus,
most network samples contain a similar amount of motifs as n grows large, even
though these motifs are non-self-averaging. Still, in rare network samples the number
of motifs significantly deviates from its typical number, causing the variance of the
number of motifs to be large. Figures 8.3a and 8.3d illustrate this for triangle counts
for τ ≥ 5/2. The fluctuations are larger than for the concentrated motifs, but most of
the samples have motif counts close to the expected value.

Type III: Non-concentrated motifs. B f (H) > 0. These motifs contain hub vertices.
The expected and typical number of such motifs therefore scale differently in n. By



190 Chapter 8. Subgraph fluctuations in inhomogeneous random graphs

small variance
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Figure 8.3: Density approximation of the normalized triangle and wedge counts for
various values of τ and n, obtained over 104 network samples.

n m τ

Gowalla 196591 950327 2.65
Oregon 11174 23409 2.08
Enron 36692 183831 1.97
PGP 10680 24316 2.24
Hep 9877 25998 3.50

Table 8.2: Statistics of the five data sets, where n is the number of vertices, m the
number of edges, and τ the power-law exponent fitted by the procedure of [66].

Theorem 8.2, these motifs are non-self-averaging. The rescaled number of such motifs
may not converge to a constant, so that two network samples contain significantly
different motif counts. Figures 8.3c and 8.3f show that the fluctuations of these motifs
are indeed of a different nature, since most network samples have motif counts that
are far from the expected value.

8.5 Data

We now compare our results to five real-world networks with heavy-tailed degree
distributions, the Gowalla social network [137], the Oregon autonomous systems
network [137], the Enron email network [129, 137], the PGP web of trust [40] and the
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Figure 8.4: Order of magnitude of the typical number of graphlets on 4 vertices. The
vertex color indicates the typical vertex degree. The vertex labels indicate the vertex
types used in Figure 8.6

Gowalla Oregon Enron PGP Hep

claw

path

paw

diamond

square

K4

Figure 8.5: Number of graphlets on four vertices in five data sets on logarithmic scale:
log(N(H))/ log(n). The darker the color, the larger the graphlet count. The ordering
of the six different graphlets is from the most occurring in the rank-1 inhomogeneous
random graph to the least.

High Energy Physics collaboration network (HEP) [137]. Table 8.2 provides detailed
statistics of these data sets. Because the number of motifs can be obtained from
the number of graphlets, we focus on graphlet counts. Furthermore, since network
data sets contain one single observation of graphlet counts, we compare the data
sets to the results on the typical number of graphlets instead of the average number
of graphlets, as presented in Figure 8.4. Figure 8.5 shows the graphlet counts in
the data sets on a logarithmic scale. The order of the graphlets is from the most
occurring graphlet (the claw), to the least occurring graphlet (the complete graph
and K4) in the rank-1 inhomogeneous random graph, see Figure 8.4. The colors
indicate that in most data sets the ordering of the motifs follows that of the rank-1
inhomogeneous random graph. It also sheds some light on real-world graphlet
formation. Indeed, when deviations arise, these can be often directly linked to the
specific nature of the real-world network. In the HEP collaboration network, for
example, K4 occurs more frequently than the square. While this is not predicted by
the rank-1 inhomogeneous random graph, it naturally arises due to the frequently
occurring collaboration between four authors, which creates K4 instead of the square.

Figure 8.4 enumerates all possible vertex types in graphlets on 4 vertices. By
our theorems, vertex types t7 and t9 have typical degrees proportional to n1/(τ−1)
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Figure 8.6: Typical degrees of the vertex types displayed in Figure 8.4 in 5 data sets
on logarithmic scale. The darker the color, the larger the degree. The curly brackets
indicate the typical degree exponent of the vertex type in the rank-1 inhomogeneous
random graph.

in the rank-1 inhomogeneous random graph, vertex types t1 and t4 typically have
degrees proportional to

√
n, vertex type t6 typically has degree proportional to

n(τ−2)/(τ−1) and vertex types t5, t8, t10, t11 typically have constant degree in the rank-
1 inhomogeneous random graph. Vertex types t2, t3 and t11 do not have a unique
optimizer. The degrees of these vertex types are pair-constrained (see the proof
of Lemma 8.1). Figure 8.6 shows the typical degree of all 11 vertex types in real-
world data. We see that vertices that have typical degree n1/(τ−1) in the rank-1
inhomogeneous random graph also have the highest degree in the data sets (the
darkest colors). Vertices with typical degree 1 in the rank-1 inhomogeneous random
graph have the lowest degree in the five data sets. Vertices of typical degrees

√
n

and n(τ−2)/(τ−1) in the rank-1 inhomogeneous random graph have moderate degrees
in the five data sets. Thus, even though real-world networks are not formed by the
rank-1 inhomogeneous random graph, the typical degrees of vertices in a graphlet
roughly follow the same orders of magnitude.

Furthermore, the HEP collaboration network does not have a large distinction
between the degrees of the different vertex types. This may be related to the fact that
this network has less heavy-tailed degrees than the other networks (see Table 8.2). In
general, the typical degrees of graphlets in these data sets roughly follow the same
orders of magnitude as the typical degrees predicted by the variational principle in
the rank-1 inhomogeneous random graph.

8.6 Conclusion

By developing a variational principle for the optimal degree composition of motifs in
the rank-1 inhomogeneous random graph, we have identified the asymptotic growth
of expected motif counts and their fluctuations for all motifs. This has allowed us to
determine for which values of the degree exponent τ ∈ (2, 3) the number of motifs
is self-averaging. We have further divided the non-self-averaging motifs into two
classes with substantially different concentration properties.
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Figure 8.7: Order of magnitude of the expected number of graphlets on 3 and 4
vertices, where the vertex color indicates the optimal vertex degree. Vertices where
the optimizer is not unique are gray.

Hub vertices in optimal motif structures cause wild degree fluctuations and non-
self-averaging behavior, so that large differences between the average motif count and
the motif count in one sample of the random network model arise. Non-self-averaging
motifs without a hub vertex show milder fluctuations.

We expect that the variational principle can be extended to different random
graph models, such as the hyperbolic random graph and random intersection graphs.
For example, for the hyperbolic random graph, the optimal structure of complete
graphs is known to be

√
n degrees [85] like in the rank-1 inhomogeneous random

graph, but the optimal structures of other motifs are yet unknown. In Chapter 9 we
show how to apply the variational principle to the preferential attachment model.

8.A Optimal graphlet structures

8.B Proof of Theorem 8.1

We now investigate the relation between the expected number of motifs and the
optimization problem (8.2.3). Let N(H,α, ε) denote the number of times motif H
occurs on vertices with degrees [ε, 1/ε](nαi )i∈[k] and let α∗ be defined as

α∗i =


0 if i ∈ S1,
1 if i ∈ S2,
1
2 if i ∈ S3.

(8.B.1)

Then, the following theorem provides a more detailed version of Theorem 8.1:

Theorem 8.3 (General motifs, expectation). Let H be a motif on k vertices such that the
solution to (8.B.13) is unique. Then, for any α 6= α∗ and 0 < ε < 1,

E [N(H,α, ε)]

E [N(H,α∗, ε)]
→ 0. (8.B.2)
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Figure 8.8: Order of magnitude of the expected number of graphlets on 5 vertices,
where the vertex color indicates the optimal vertex degree, as in Figure 8.7.

Furthermore, for some function f (ε) not depending on n,

E [N(H,α∗, ε)]

n
3−τ

2 k+ τ−2
2 B(H)

= f (ε)Θ(1). (8.B.3)

We now prove Theorem 8.3. In the rank-1 inhomogeneous random graph, the
connection probability of vertices with weights hi and hj equals

p(hi, hj) = min(hihj/(µn), 1). (8.B.4)

Assume that hi = Θ(nαi ) for some αi ≥ 0 for all i. Then, the probability that motif H
exists on vertices with weights h = (nαi )i∈[k] satisfies

P (H present on weights h) = Θ
(

∏
(i,j)∈EH :αi+αj<1

nαi+αj−1
)

. (8.B.5)

The weights are an i.i.d. sample from a power-law distribution. Therefore,

P (hi ∈ [ε, 1/ε](µn)α) =
∫ 1/ε(µn)α

ε(µn)α
cx−τdx = K(ε)(µn)α(1−τ) (8.B.6)
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for some constant K(ε) not depending on n. The expected number of vertices with
degrees in [ε, 1/ε](µn)α scales as Θ(n(1−τ)α+1). Then, the expected number of sets of
vertices with degrees in [ε, 1/ε](nαi )i∈[k] scales as

Θ
(

nk+(1−τ)∑i αi
)

. (8.B.7)

Combining (8.B.5) and (8.B.7) yields that the contribution from vertices with degrees
nα = (nαi )i∈[k] to the expected number of motifs, E [N(H,α), ε] is

E [N(H,α, ε)] = Θ
(

nk+(1−τ)∑i αi ∏
(i,j)∈EH :αi+αj<1

nα1+αj−1
)

. (8.B.8)

The maximum contribution is obtained for αi that maximize

max(1− τ)∑
i

αi + ∑
(i,j)∈EH :αi+αj<1

αi + αj − 1 (8.B.9)

for αi ≥ 0. The following lemma shows that this optimization problem attains its
maximum for highly specific values of α:

Lemma 8.3 (Maximum contribution to expected number of motifs). Let H be a con-
nected graph on k vertices. If the solution to (8.B.9) is unique, then the optimal solution
satisfies αi ∈ {0, 1

2 , 1} for all i. If it is not unique, then there exist at least 2 optimal solutions
with αi ∈ {0, 1

2 , 1} for all i.

Proof. Defining βi = αi − 1
2 yields for (8.B.9)

max
1− τ

2
k + (1− τ)∑

i
βi + ∑

(i,j)∈EH :βi+β j<0
βi + β j, (8.B.10)

over all possible values of βi ≥ − 1
2 . Then, we have to prove that βi ∈ {− 1

2 , 0, 1
2} for

all i in the optimal solution. Since (8.B.10) is a piecewise linear function in β, if (8.B.10)
has a unique maximum, it must be attained at the boundary for βi or at a border of
one of the linear sections. Thus, any unique optimal value of βi satisfies βi = − 1

2 or
βi + β j = 0 for some j. This implies that βi ≤ 1

2 .
From there, we can follow the lines of Step 2 and 3 of the proof of Lemma 7.2,

which analyzes the same equation. This shows that any unique solution does not
have vertices with |βi| ∈ (0, 1

2 ), and that any non-unique optimal solution can be
transformed into two different optimal solutions with βi ∈ {− 1

2 , 0 1
2}.

Proof of Theorem 8.3. We first rewrite (8.B.9) using Lemma 8.3. By Lemma 8.3, the
maximal value of (8.B.9) is attained by partitioning VH into the sets S1, S2, S3 such
that vertices in S1 have αi = 0, vertices in S2 have αi = 1 and vertices in S3 have
αi =

1
2 . Then, the edges with αi + αj < 1 are edges inside S1 and edges between S1

and S3. If we denote the number of edges inside S1 by ES1 and the number of edges
between S1 and S3 by ES1,S3 , then we can rewrite (8.B.9) as

max
P

(1− τ)(|S2|+ 1
2 |S3|)− ES1 − 1

2 ES1,S3 (8.B.11)
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over all partitions P of the vertices of H into S1, S2, S3. Using that |S3| = k− |S1| −
|S2| yields

max
P

1− τ

2
k +

τ − 1
2

(
|S1| − |S2| −

2ES1 + ES1,S3

τ − 1

)
, (8.B.12)

Since k is fixed and τ − 1 > 0, maximizing (8.B.9) is equivalent to maximizing

B f (H) = max
P

[
|S1| − |S2| −

2ES1 + ES1,S3

τ − 1

]
. (8.B.13)

Furthermore, by Lemma 8.3, the optimal value of (8.B.13) is unique if and only if the
solution to (8.B.9) is unique.

Let α∗ be the unique optimizer of (8.B.9). Then, by (8.B.8), for any α 6= α∗

E [N(H,α, ε)]

E [N(H,α∗, ε)]
= Θ

(
n−η

)
(8.B.14)

for some η > 0. Combining this with (8.B.13) proves the first part of the theorem.
By (8.B.8), the contribution of the maximum is then given by

E [N(H,α∗, ε)] = nkn
1−τ

2 (k+B f (H)) = n
3−τ

2 k+ τ−1
2 B f (H), (8.B.15)

which proves the second part of the theorem.

8.C Typical motif counts

We now present an equivalent version of Theorem 8.3 for typical motif counts, which
is similar to Theorem 7.1. Define

Bt(H) = max
P
|S1| − |S2| −

2ES1 + ES1,S3 + ES1,1 − ES2,1

τ − 1
, (8.C.1)

where the maximum is over all partitions P of VH \ V1 into three sets, where V1
denotes the set of vertices in H of degree 1. Vertices in S1 correspond to vertices that
have degree proportional to n(τ−2)/(τ−1) in the graph, vertices in S2 correspond to the
maximal degree vertices with degrees proportional to n1/(τ−1), and S3 corresponds to
the vertices of

√
n degrees. Let S∗1 , S∗2 , S∗3 denote the optimal sets of (8.C.1) and define

α∗i =


(τ − 2)/(τ − 1) i ∈ S∗1 ,
1/(τ − 1) i ∈ S∗2 ,
1
2 i ∈ S∗3 ,
0 i ∈ V1.

(8.C.2)

The following theorem gives the scaling of the typical number of motifs in rank-1
inhomogeneous random graphs:

Theorem 8.4 (Typical graphlets). Let H be a motif on k vertices such that the solution
to (8.C.1) is unique. Then,
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(i) For any εn such that limn→∞ εn = 0,

N(H,α∗, εn)

N(H)
P−→ 1. (8.C.3)

(ii) Furthermore, for any fixed 0 < ε < 1,

N(H,α∗, ε)

n
3−τ

2 (k2++Bt(H))+ 1
2 k1

= f (ε)ΘP (1) (8.C.4)

for some function f (ε) not depending on n. Here k2+ denotes the number of vertices in
H of degree at least 2, and k1 the number of degree one vertices in H.

Proof. The proof of Theorem 8.4 follows the same lines as the proof of Theorem 7.1
for the erased configuration model instead of the rank-1 inhomogeneous random
graph. That proof relies on the fact that the connection probability between vertices
with degrees Di and Dj in the erased configuration model has the same order of
magnitude as min(DiDj/(µn), 1), which is the same as the connection probability in
the rank-1 inhomogeneous random graph. Thus, the proof of 7.1 also holds for the
rank-1 inhomogeneous random graph.

8.D Graphlets

We now focus on graphlet counting, or induced subgraph counting. Therefore, edges
that are not present in H are also required not to be present in the graph. Because the
probability that two edges between vertices of high degree are present equals one
(see (8.B.4)), this puts a constraint on the number of vertices that typically have high
degree. When we again let the degrees in the graphlet scale as nαi , we see that the
probability that an edge (i, j) is present equals one as soon as α1 + αj > 1. Thus, for
the expected number of graphlets, the optimization problem corresponding to (8.B.9)
becomes

max(1− τ)∑
i

αi + ∑
(i,j)∈EH :αi+αj<1

αi + αj − 1

s.t. αi + αj ≤ 1 ∀(i, j) /∈ EH , (8.D.1)

where EH denotes the edge set of H. Again, this optimization problem is maximized
for αi ∈ 0, 1

2 , 1, so that similarly, the optimization problem corresponding to (8.B.13)
including the extra constraint then becomes

Bg, f (H) =max
P

[
|S1| − |S2| −

2ES1 + ES1,S3

τ − 1

]
,

s.t. (u, v) ∈ EH ∀u ∈ S2, v ∈ S2 ∪ S3. (8.D.2)

This optimization problem again finds the most likely degrees of vertices that together
form the graphlet H. Vertices in S1 have degrees proportional to a constant, vertices
in S2 have degrees proportional to n and vertices in S3 have degrees proportional
to
√

n. Using this optimization problem, we are also able to find the scaling of the
number of graphlets, by replacing the optimum B f and Bt in Theorems 8.3 and 8.4 by
their counterparts for graphlets, Bg, f and Bg,t respectively.
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v1

H H̃

Figure 8.9: Construction of H̃ when H is a path of length 3. H̃ is constructed by
merging two copies of H at vertex v1 with most likely degree n.

Graphlet fluctuations

Fluctuations of the number of graphlets can be studied similarly as motif fluctua-
tions. Again, (8.4.10) holds, but now it only includes graphlets H1, . . . , Hl that can
be constructed by merging two copies of H at one or more vertices, with the addi-
tional constraint that after merging the copies of H, both copies still form induced
subgraphs of H. As an example, consider 2-path fluctuations. The subgraphs that
can be constructed from merging two 2-paths are the subgraphs in Figure 8.8s, 8.8t,
8.8u, 8.7a, 8.7b, 8.7e, 8.7f, Figure 8.7g and 8.7h. However, the merged subgraphs
of Figure 8.7a and Figure 8.7f do not contain two induced copies of graphlets, and
therefore these subgraphs are excluded from equation (8.4.10). Other than that, the
procedure to determine for any graphlet whether it is self-averaging or not is the
same as the procedure for motifs, using the variational principle for graphlets (8.D.2)
to find the expected order of magnitude of the number of merged graphlets.

8.E Proof of Theorem 8.2

Let H be a motif on k vertices such that the optimal contribution of Theorem 8.1
contains vertices that do not have optimal contribution from

√
n vertices. A similar

analysis as the triangle example shows that the only motif on 2 vertices (the 2-path) is
non-self-averaging. Thus, we may assume that k ≥ 3. Let the expected number of
motifs of type H as predicted in Theorem 8.1 be denoted by n f (H), and the optimal
contribution from vertices 1, . . . , k in H by (nαi )i∈[k]. By Theorem 8.1,

E [N(H)] ∝ E
[
# vertices of weights (nαi )i∈[k]

]
P(H present on weights (nαi )i∈[k])

(8.E.1)
Suppose vertex v1 ∈ H has optimal contribution of weight n vertices, that is α1 = 1.
Then, we study the contribution to the variance in (8.4.10) from the motif H̃ which
is the motif on 2k− 1 vertices where two copies of H are merged at their vertex v1
(see Figure 8.9 for an example). We now investigate the expected number of H̃ motifs.
In particular, we study the contribution to the expected number of H̃ motifs from
vertices with weights of the order of magnitude (nβi )i∈[2k−1] with

βi = αt(i), (8.E.2)

where t(i) is the vertex in H corresponding to vertex i in H̃. Figure 8.9 gives an
example of this contribution when H is a path with 3 vertices. Because H̃ is formed
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by two copies of H without overlapping edges

P
(

H̃ present on weights (nβi )i∈[2k−1]

)
= P

(
H present on weights (nαi )i∈[k]

)2
.

(8.E.3)
Furthermore, the only difference between the vertices in H̃ and two separate versions
of H, is that H̃ contains one less vertex of weight proportional to n. The expected
number of vertices with weight proportional to n is given by n2−τ Therefore,

E
[
# vertices of weights (nβi )i∈[2k−1]

]
∝

E
[
# vertices of weights (nαi )i∈[k]

]2
n2−τ

.
(8.E.4)

Thus,
E[N(H̃)] ≥ P(H present on weights (nαi )i∈[k])

2

×E
[
# vertices of weights (nαi )i∈[k]

]2
nτ−2

∝ E [N(H)]2 nτ−2, (8.E.5)

where the last step uses Theorem 8.3. Combining this with (8.4.10) results in

Var (N(H))

E [N(H)]2
≥ E[N(H̃)]

E [N(H)]2
≥ nτ−2, (8.E.6)

which diverges, because τ ∈ (2, 3). Thus, if the optimal contribution to H satisfies
S2 6= ∅, H cannot be self-averaging for τ ∈ (2, 3).

Now we study the case where H has optimal contribution with S1 6= ∅, but no
vertices of weights proportional to n so that S2 = ∅. Let v ∈ S1. The contribution
from v to (8.2.3) is

1− 2dv,S1 + dv,S3

τ − 1
, (8.E.7)

where dv,Si denotes the number of edges from v to Si. Moving v to S3 would change
the contribution to −dv,S1 /(τ − 1). Because v ∈ S1 is the optimal contribution,

− dv,S1

τ − 1
< 1− 2dv,S1 + dv,S3

τ − 1
, (8.E.8)

or dv,S1 + dv,S3 ≤ τ − 1, so that dv,S1 + dv,S3 ∈ {0, 1}. Thus, every vertex in S1 has
at most 1 edge to other vertices in S1 or vertices in S3. Since we have assumed that
S2 = ∅, and k > 2, this means that all vertices in S1 have degree 1 inside the motif,
and are connected to a vertex in S3. W.l.o.g. assume that v1 is a vertex such that
v1 ∈ S3 and v1 has at least one connection to a vertex in S1. As in the previous
proof, we consider H̃ constructed by merging two copies of H at v1, as illustrated in
Figure 8.10. Define (αi)i∈[k] as the maximal contribution to H. We define

βi =

{
αt(i) t(i) 6= v1,
1 t(i) = v1.

(8.E.9)
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v1

H H̃

Figure 8.10: Example of the construction of H̃. H̃ is constructed by merging two
copies of H at vertex v1: a vertex with most likely degree

√
n that is connected to a

vertex of degree 1.

That is, we study the contribution where all vertices in H̃ except v1 have the same
weight as in their counterpart in H. The weight of v1 is proportional to n, whereas
the counterpart of v1 in H had weight proportional to

√
n, illustrated in Figure 8.10.

We study the contribution to E
[
N(H̃)

]
from vertices of weights (nβi )i∈[2k−1]. We

now compare the probability that H̃ exists on vertices of weights (nβi )i∈[2k−1] to the
probability that two copies of H exist on weights (nαi )i∈[k]. The difference between
these two probabilities is that vertex v1 in H̃ has weight n instead of

√
n in H. In H,

v1 is connected to at least one vertex of weight proportional to 1. The probability of
this connection to be present is proportional ro n−1/2. In H̃, v1 has weight n, so that
the probability that the corresponding connections occur in H̃ is proportional to 1.
The connection probabilities of vertices not connected to v1 do not change, so that

P
(

H̃ present on weights (nβi )i∈[2k−1]

)
≥

P(H present on weights (nαi )i∈[k])2

n−1 .

(8.E.10)
Since the difference between the vertices of two copies of H and H̃ is that we remove
two vertices of weight

√
n and add one vertex of weight proportional to n, we obtain

E
[
# vertices of weights (nβi )i∈[2k−1]

]
∝

E
[
# vertices of weights (nαi )i∈[k]

]2
n2−τ

n3−τ
,

(8.E.11)
using that the number of vertices of weight proportional to

√
n is n(3−τ)/2 by (8.B.7)

and the number of vertices of weight proportional to n scales as n2−τ . This results in

E[N(H̃)] ≥ P(H present on weights (nαi )i∈[k])
2E
[
# vertices of weights (nαi )i∈[k]

]2

∝ E [N(H)]2 (8.E.12)

so that by (8.4.10)
Var (N(H))

E [N(H)]2
≥ E[N(H̃)]

E [N(H)]2
∝ 1, (8.E.13)

which does not converge to zero, so that the motif is not self-averaging.
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Based on:
Subgraphs in preferential attachment models

A. Garavaglia and C. Stegehuis, arXiv:1806.10406

In Chapters 7 and 8, we have investigated the typical and the expected number
of subgraphs in erased configuration models and rank-1 inhomogeneous random
graphs. In this chapter, we consider expected subgraph counts in scale-free preferen-
tial attachment models. We find the scaling of the expected number of times that a
specific subgraph occurs as a power of the number of vertices. Similarly to Chapters 7
and 8 we define an optimization problem that finds the optimal subgraph structure
and enables us to find the expected number of such subgraphs. This optimization
problem optimizes the indices of the vertices that together span the subgraph and
uses the representation of the preferential attachment model as a Pólya urn model.

9.1 Introduction

In this chapter, we analyze subgraph counts for the preferential attachment model
(PAM) with parameters m and δ, described in Section 1.1.5. We focus on the case
where m ≥ 2 is fixed, and δ > −m. Taking δ ∈ (−m, 0) results in a power-law degree
distribution with exponent τ ∈ (2, 3), as observed in many real-world networks.
An important difference between the preferential attachment model and most other
random graph models is that edges can be interpreted as directed. Thus, analyzing
subgraph counts in PAMs allows us to study directed subgraphs. This is a major
advantage of the PAM over other random graph models, since most real-world
network subgraphs in for example biological networks are directed as well [153, 200].

Most existing work on counting subgraphs in PAMs focuses on counting triangles.
Bollobás and Riordan [44] prove that for any integer-valued function T(t) there exists
a PAM with T(t) triangles, where t denotes the number of vertices in PAM. They
further show that the clustering coefficient in the Albert-Barabási model (where δ = 0)
is of order (log t)2/t, while the expected number of triangles is of order (log t)3 and
more generally, the expected number of cycles of length l scales as (log t)l .

Eggmann and Noble [77] consider δ > 0, so that τ > 3 and investigate the number
of subgraphs for m = 1 (so subtrees). For m ≥ 2 they study the number of triangles
and the clustering coefficient, proving that the expected number of triangles is of
order log t while the clustering coefficient is of order log t/t, which is different than

201
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the results in [44]. Our result on general subgraphs for any value of δ in Theorem 9.1
explains this difference (in particular, we refer to (9.2.1)).

In a series of papers [183–185], Prokhorenkova et al. proved results on the clus-
tering coefficient and the number of triangles for a broad class of PAMs, assuming
general properties on the attachment probabilities. These attachment probabilities are
in a form that increases the probability of creating a triangle. They prove that in this
setting the number of triangles is of order t, while the clustering coefficients behaves
differently depending on the exact attachment probabilities.

9.1.1 Our contribution

For every directed subgraph, we obtain the scaling of the expected number of such
subgraphs in the PAM, generalizing the above results on triangles, cycles and subtrees.
Furthermore, we identify the most likely degrees of vertices participating in a specific
subgraph, which shows that subgraphs in the PAM are typically formed between
vertices with degrees of a specific order of magnitude. The order of magnitude of
these degrees can be found using an optimization problem. For general subgraphs,
our results provide the scaling of the expected number of subgraphs in the network
size t. For the triangle subgraph, we obtain precise asymptotic results on the subgraph
count, which allows us to study clustering in the PAM.

We use the interpretation of the PAM as a Pólya urn graph as in [20]. This
interpretation allows to view the edges as being present independently, so that we are
able to obtain the probability that a subgraph H is present on a specific set of vertices.

9.1.2 Organization of the chapter

We first describe the specific PAM we study in Section 9.1.3. After that, we present
our result on the scaling on the number of subgraphs in the PAM and the exact
asymptotics of the number of triangles in Section 9.2. Section 9.3 provides an impor-
tant ingredient for the proof of the scaling of the expected number of subgraphs: a
lemma that describes the probability that a specific subgraph is present on a subset of
vertices. After that, we prove our main results in Sections 9.4-9.6. Finally, Section 9.7
gives the conclusions and the discussion of our results.

9.1.3 Model

As mentioned in Section 9.1, different versions of PAMs exist. In this chapter, we
again consider a modification of [20, Model 3]:

Definition 9.1 (Sequential PAM). Fix m ≥ 1, δ > −m. Then (PAt(m, δ))t∈N is a
sequence of random graphs defined as follows:

• for t = 1, PA1(m, δ) consists of a single vertex with no edges;

• for t = 2, PA2(m, δ) consists of two vertices with m edges between them;

• for t ≥ 3, PAt(m, δ) is constructed recursively as follows: conditioning on the graph at
time t− 1, we add a vertex t to the graph, with m new edges. Edges start from vertex t
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Figure 9.1: Two labeled triangles.

and, for j = 1, . . . , m, they are attached sequentially to vertices Et,1, . . . , Et,m chosen
with the following probability:

P
(
Et,j = i | PAt−1,j−1(m, δ)

)
=


Di(t−1)+δ

2m(t−2)+(t−1)δ j = 1,
Di(t−1,j−1)+δ

2m(t−2)+(j−1)+(t−1)δ j = 2, . . . , m.
(9.1.1)

In (9.1.1), Di(t− 1) denotes the degree of i in PAt−1(m, δ), while Di(t− 1, j− 1) denotes
the degree of vertex i after the first j− 1 edges of vertex t have been attached. Here we assume
that PAt−1,0 = PAt−1.

To keep notation light, we write PAt instead of PAt(m, δ) throughout the rest of
the chapter. The first term in the denominator of (9.1.1) describes the total degree
of the first t− 1 vertices in PAt−1,j−1 when t− 1 vertices are present and j− 1 edges
have been attached. The term (t− 1)δ in the denominator comes from the fact that
there are t− 1 vertices to which an edge can attach. We do not allow for self-loops,
but we do allow for multiple edges.

The PAM of Definition 9.1 generates a random graph where the asymptotic degree
sequence is close to a power law [107, Lemma 4.7], where the degree exponent τ
satisfies

τ = 3 + δ/m. (9.1.2)

Labeled subgraphs. As mentioned before, the PAM in Definition 9.1 is a multigraph,
i.e., any pair of vertices may be connected by m different edges. One could erase
multiple edges in order to obtain a simple graph, similarly to [50] for the configuration
model. In the PAM in Definition 9.1 there are at most m edges between any pair of
vertices, so that the effect of erasing multiple edges is small, unlike the in configuration
model. We do not erase edges, so that we may count a subgraph on the same set of
vertices multiple times. Not erasing edges has the advantage that we do not modify
the law of the graph, therefore we can directly use known results on PAM.

More precisely, to count the number of subgraphs, we analyze labeled subgraphs,
i.e., subgraphs where the edges are specified. In Figure 9.1 we give the example of two
labeled triangles on three vertices u, v, w, one consisting of edges {jv,1, jw,1, jw,3} and
the other one of edges {jv,1, jw,2, jw,3}. As it turns out, the probability of two labeled
subgraphs on the same vertices and different edges being present is independent of the
choice of the edges. For a more precise explanation, we refer to Section 9.3.1.
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9.2 Main results

In this section, we present our results on the number of directed subgraphs in the
preferential attachment model. We first define subgraphs in more detail. Let H =
(VH , EH) be a connected, directed graph. Let π : VH 7→ 1, . . . , |VH | be a one-to-one
mapping of the vertices of H to 1, . . . , |VH |. In the PAM, vertices arrive one by one.
We let π correspond to the order in which the vertices in H have appeared in the
PAM, that is π(i) < π(j) if vertex i was created before vertex j. Thus, the pair (H, π)
is a directed graph, together with a prescription of the order in which the vertices of
H have arrived. We call the pair (H, π) an ordered subgraph.

In the PAM, it is only possible for an older vertex to connect to a newer vertex but
not the other way around. This puts constraints on the types of subgraphs that can
be formed. We call the ordered subgraphs that can be formed in the PAM attainable.
The following definition describes all attainable subgraphs:

Definition 9.2 (Attainable subgraphs). Let (H, π) be an ordered subgraph with adjacency
matrix Aπ(H), where the rows and columns of the adjacency matrix are permuted by π.
We say that (H, π) is attainable if Aπ(H) defines a directed acyclic graph, where all
out-degrees are less or equal than m.

We now investigate how many of these subgraphs are typically present in the
PAM. We introduce the optimization problem

B(H, π) = max
s=0,1,...,k

−s +
k

∑
i=s+1

[
τ − 2
τ − 1

(d(in)
H (π−1(i))− d(out)

H (π−1(i)))− d(in)
H (π−1(i))

]

:= max
s=0,1,...,k

−s +
k

∑
i=s+1

β(π−1(i)), (9.2.1)

where d(out)
H and d(in)

H denote respectively the in- and the out-degree in the subgraph
H. Let Nt(H, π) denote the number of times the connected graph H with ordering π
occurs as a subgraph of a PAM of size t. The following theorem studies the scaling
of the expected number of directed subgraphs in the PAM, and relates it to the
optimization problem (9.2.1):

Theorem 9.1. Let H be a directed subgraph on k vertices with ordering π such that (H, π) is
attainable and there are r different optimizers to (9.2.1). Then, there exist 0 < C1 ≤ C2 < ∞
such that

C1 ≤ lim
t→∞

E [Nt(H, π)]

tk+B(H,π) logr−1(t)
≤ C2. (9.2.2)

Theorem 9.1 gives the asymptotic scaling of the number of subgraphs where the
order in which the vertices appeared in the PAM is known. The total number of
copies of H for any ordering, Nt(H), can then easily be obtained from Theorem 9.1:

Corollary 9.1. Let H be a directed subgraph on k vertices with Π 6= ∅ the set of orderings
π such that (H, π) is attainable. Let

B(H) = max
π∈Π

B(H, π), (9.2.3)
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Figure 9.2: Order of magnitude of Nt(H) for all attainable connected directed graphs
on 3 vertices and for 2 < τ < 3. The vertex color indicates the optimal vertex degree.

and let r∗ be the largest number of different optimizers to (9.2.1) among all π ∈ Π that
maximize (9.2.3). Then, there exist 0 < C1 ≤ C2 < ∞ such that

C1 ≤ lim
t→∞

E [Nt(H)]

tk+B(H) logr∗−1(t)
≤ C2. (9.2.4)

From Corollary 9.1 it is also possible to obtain the undirected number of subgraphs
in a PAM, by summing the number of all possible directed subgraphs that create
some undirected subgraph when the directions of the edges are removed.

Interpretation of the optimization problem. The optimization problem (9.2.1) has
an intuitive explanation. Assume that π is the identity mapping, so that vertex 1 is
the oldest vertex of H, vertex 2 the second oldest and so on. We show in Section 9.3.2
that the probability that an attainable subgraph is present on vertices with indices
u1 < u2 < · · · < uk scales as

∏
i∈[k]

uβ(i)
i , (9.2.5)

with β(i) as in (9.2.1). Thus, if for all i, ui ∝ tαi for some αi, then the probability
that the subgraph is present scales as t∑i∈[k] αi β(i). The number of vertices with index
proportional to tαi scales as tαi . Therefore, heuristically, the number of times subgraph
H occurs on vertices with indices proportional to (tαi )i∈[k] such that α1 ≤ α2 ≤ · · · ≤
αk scales as

t∑i∈[k](β(i)+1)αi . (9.2.6)

Because the exponent is linear in αi, the exponent is maximized for αi ∈ {0, 1} for all i.
Because of the extra constraint α1 ≤ α2 ≤ · · · ≤ αk which arises from the ordering of
the vertices in the PAM, the maximal value of the exponent is k + B(H). This suggests
that the number of subgraphs scales as tk+B(H).

Thus, the optimization problem B(H) finds the most likely configuration of a
subgraph in terms of the indices of the vertices involved. If the optimum is unique,
the number of subgraphs is maximized by subgraphs occurring on one set of very
specific vertex indices. For example, when the maximum contribution is αi = 0,
this means that vertices with constant index, i.e., the oldest vertices of the PAM, are
most likely to be a member of subgraph H at position i. When αi = 1 is the optimal
contribution, vertices with index proportional to t, the newest vertices, are most likely
to be a member of subgraph H at position i. When the optimum is not unique, several
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Figure 9.3: Order of magnitude of Nt(H) for all attainable connected directed graphs
on 4 vertices and for 2 < τ < 3. The vertex color indicates the optimal vertex degree.

maximizers contribute equally to the number of subgraphs, which introduces the
extra logarithmic factors in (9.2.2).

Most likely degrees. As mentioned above, the optimization problem (9.2.1) finds
the most likely orders of magnitude of the indices of the vertices. When the optimum
is unique, the optimum is attained by some vertices of constant index, and some
vertices with index proportional to t. The vertices of constant index have degrees
proportional to t1/(τ−1) with high probability [106], whereas the vertices with index
proportional to t have degrees proportional to a constant. When the optimum is
not unique, the indices of the vertices may have any range, so that the degrees of
these vertices in the optimal subgraph structures have degrees ranging between 1
and t1/(τ−1). Thus, the optimization problem (9.2.1) also finds the optimal subgraph
structure in terms of its degrees. The most likely degrees of all directed connected
subgraphs on 3 and 4 vertices resulting from Corollary 9.1 and the asymptotic number
of such subgraphs for 2 < τ < 3 are visualized in Figures 9.2 and 9.3. For some
subgraphs, the optimum of (9.2.1) is attained by the same s and therefore the same
most likely degrees for all 2 < τ < 3, while for other subgraphs the optimum may
change with τ.
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One such example is the complete graph of size 4. For the directed complete graph,
there is only one attainable ordering satisfying Definition 9.2 (as long as m ≥ 3), so
we take the vertices of H to be labeled with this ordering. For τ < 5/2, the optimizer
of (9.2.1) is given by s = 3 with optimal value −3− 3 τ−2

τ−1 , whereas for τ > 5/2 it is
given by s = 4 and optimal value -4. Thus, for τ < 5/2 a complete graph of size
four typically contains three hub vertices of degree proportional to t1/(τ−1) and one
vertex of constant degree, and the number of such subgraphs scales as t1−(τ−2)/(τ−1)

whereas for τ > 5/2 the optimal structure contains four hub vertices instead and the
number of such subgraphs scales as a constant.

Fluctuations of the number of subgraphs. In Theorem 9.1 we investigate the ex-
pected number of subgraphs, which explains the average number of subgraphs over
many PAM realizations. Another interesting question is what the distribution of the
number of subgraphs in a PAM realization behaves like. In this chapter, we mainly
focus on the expected value of the number of subgraphs, but here we argue that the
limiting distribution of the rescaled number of subgraphs may be quite different for
different subgraphs.

In Section 9.3.2 we show that by viewing the PAM as a Pólya urn graph, we
can associate a sequence of random independent random variables (ψv)v∈[t] to the
vertices of the PAM , where ψv has a Beta distribution with parameters depending
on m, δ and v. Once we condition on ψ1, . . . , ψt, the edge statuses of the graph are
independent of each other. Furthermore, the degree of a vertex v depends on the
index v and ψv. The higher ψv is, the higher Dv(t) is. Thus, we can interpret ψv as a
hidden weight associated to the vertex v.

Using this representation of the PAM we can view the PAM as a random graph
model with two sources of randomness: the randomness of the ψ-variables, and then
the randomness of the independent edge statuses determined by the ψ-variables. The-
refore, we can define two levels of concentration for the number of ordered subgraphs
Nt(H, π). Denote by Eψt [Nt(H, π)] := E[Nt(H, π) | ψ1, . . . , ψt]. Furthermore, let
Nt,ψ(H, π) denote the number of ordered subgraphs conditionally on ψ. Then, the
ordered subgraph (H, π) can be in the following three classes of subgraphs:

. Concentrated: Nt,ψ(H, π) is concentrated around its conditional expectation
Eψt [Nt(H, π)], i.e., as t→ ∞,

Nt,ψ(H, π)

Eψt [Nt(H, π)]
P−→ 1, (9.2.7)

and as t→ ∞,
Nt(H, π)

E[Nt(H, π)]
P−→ 1. (9.2.8)

. Only conditionally concentrated: condition (9.2.7) holds, and as t→ ∞

Nt(H, π)

E[Nt(H, π)]
d−→ X, (9.2.9)

for some random variable X.
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Figure 9.4: The order of magnitude of this subgraph containing two merged copies

of the subgraph of Figure 9.3q is t
4

τ−1 , so that the condition in Proposition 9.1 is not
satisfied for the subgraph in Figure 9.3q.

. Non-concentrated: condition (9.2.7) does not hold.

For example, it is easy to see that the number of subgraphs as shown in Figure 9.2d

satisfies N(H)/t P−→ m(m− 1)/2, so that it is a subgraph that belongs to the class of
concentrated subgraphs. Below we argue that the triangle belongs to the class of only
conditionally concentrated subgraphs. We now give a criterion for the conditional
convergence of (9.2.7) in the following proposition:

Proposition 9.1 (Criterion for conditional convergence). Consider an attainable subgraph
(H, π) such that E[Nt(H, π)]→ ∞ as t→ ∞. Denote by Ĥ the set of all possible subgraphs
composed by two distinct copies of (H, π) with at least one edge in common. Then, as t→ ∞,

∑
Ĥ∈Ĥ

E[Nt(Ĥ)] = o
(

E[Nt(H, π)]2
)

=⇒ Nt,ψ(H, π)

Eψt [Nt(H, π)]
P−→ 1. (9.2.10)

Proposition 9.1 gives a simple criterion for conditional convergence for a subgraph
(H, π), and it is proved in Section 9.6. The condition in (9.2.10) is simple to evaluate
in practice. We denote the subgraphs consisting of two overlapping copies of (H, π)
sharing at least one edge by Ĥ1, . . . , Ĥr. To identify the order of magnitude of E[Ĥi],
we apply Corollary 9.1 to Ĥi or, in other words, we apply Theorem 9.1 to all possible
orderings π̂ of Ĥi. Once we have all orders of magnitude of (Ĥi, π̂) for all orderings
π̂, and for all Ĥi, it is immediate to see if hypothesis of Proposition 9.1 is satisfied.

There are subgraphs where the condition in Proposition 9.1 does not hold. For
example, merging two copies of the subgraph of Figure 9.3q as in Figure 9.4 violates
the condition in Proposition 9.1. We show in Section 9.6 that this subgraph is in the
class of non-concentrated subgraphs with probability close to one.

9.2.1 Exact constants: triangles

Theorem 9.1 allows to identify the order of magnitude of the expected number of
subgraphs in PAM. In particular, for a subgraph H with ordering π, it assures the
existence of two constants 0 < C1 ≤ C2 < ∞ as in (9.2.2). A more detailed analysis is
necessary to prove a stronger result than Theorem 9.1 of the type

lim
t→∞

E [Nt(H, π)]

tk+B(H,π) logr−1(t)
= C,

for some constant 0 < C < ∞. In other words, given an ordered subgraph (H, π), we
want to identify the constant C > 0 such that

E [Nt(H, π)] = Ctk+B(H,π) logr−1(t)(1 + o(1)). (9.2.11)
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We prove (9.2.11) for triangles to show the difficulties in the evaluation of the precise
constant C for general subgraphs. The following theorem provides the detailed
scaling of the expected number of triangles:

Theorem 9.2 (Phase transition for the number of triangles). Let m ≥ 2 and δ > −m
be parameters for (PAt)t≥1. Denote the number of labeled triangles in PAt by4t. Then, as
t→ ∞,

(i) if τ > 3, then

E[4t] =
m2(m− 1)(m + δ)(m + δ + 1)

δ2(2m + δ)
log(t)(1 + o(1));

(ii) if τ = 3, then

E[4t] =
m(m− 1)(m + 1)

48
log3(t)(1 + o(1));

(iii) if τ ∈ (2, 3), then

E[4t] =
m2(m− 1)(m + δ)(m + δ + 1)

δ2(2m + δ)
t(3−τ)/(τ−1) log(t)(1 + o(1)).

Theorem 9.2 in the case δ = 0 coincides with [44, Theorem 14]. For δ > 0 we
retrieve the result in [77, Proposition 4.3], noticing that the additive constant β in the
attachment probabilities in the Móri model considered in [77] coincides with (9.1) for
β = δ/m.

The proof of Theorem 9.2 in Section 9.5 shows that to identify the constant
in (9.2.11) we need to evaluate the precise expectations involving the attachment
probabilities of edges. The equivalent formulation of PAM given in Section 9.3.1
simplifies the calculations, but it is still necessary to evaluate rather complicated
expectations involving products of several terms as in (9.3.10). For a more detailed
discussion, we refer to Remark 9.1.

The distribution of the number of triangles. Theorem 9.2 shows the behavior of
the expected number of triangles. The distribution of the number of triangles across
various PAM realizations is another object of interest. We prove the following result
for the number of triangles4t:

Corollary 9.2 (Conditional concentration of triangles). For τ ∈ (2, 3), the number of
triangles4t is conditionally concentrated in the sense of (9.2.7).

Corollary 9.2 is a direct consequence of Proposition 9.1, and the atlas of the
order of magnitudes of all possible realizations of the subgraphs consisting of two
triangles sharing one or two edges, presented in Figure 9.5. Figure 9.6 shows a density
approximation of the number of triangles obtained by simulations. These figures
suggest that the rescaled number of triangles converges to a random limit, since the
width of the density plots does not decrease in t. Thus, while the number of triangles
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(a) τ < 5/2:
t

5−2τ
τ−1 log2(t)

(b) τ > 5/2:
constant

(c) τ < 5/2:
t

5−2τ
τ−1 log(t)

(d) τ > 5/2:
constant

(e) τ < 5/2:
t

5−2τ
τ−1

(f) τ > 5/2:
constant

(g) t
3−τ
τ−1 (h) t

3−τ
τ−1 (i) t
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τ−1 (j) τ > 5/2:

constant
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τ−1 log(t)

(l) τ > 5/2:
constant
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Figure 9.5: Order of magnitude of Nt(H) for all merged triangles on 4 vertices and
for 2 < τ < 3. The vertex color indicates the optimal vertex degree as in Figure 9.3.
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(c) t = 5 · 106

Figure 9.6: Density approximation of the number of triangles in 104 realizations of
the preferential attachment model with τ = 2.5 and various values of t.

concentrates conditionally, it does not seem to converge to a constant when taking
the random ψ-variables into account. This would put the triangle subgraph in the
class of only conditionally concentrated subgraphs. Proving this and identifying the
limiting random variable of the number of triangles is an interesting open question.

9.3 The probability of a subgraph being present

In this section, we prove the main ingredient for the proof of Theorem 9.1, the
probability of a subgraph being present on a given set of vertices. The most difficult
part of evaluating the probability of a subgraph H being present in PAt is that the
PAM is constructed recursively. We consider triangles as an example. We write the

event of a labeled triangle being present by {u j1← v, u
j2← w, v

j3← w}, where {u j← v}
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denotes the event that the j-th edge of vertex v is attached to vertex u. Notice that in
this way we express precisely which edges we consider in the triangle construction.
Then,

P
(
u

j1← v, u
j2← w, v

j3← w
)

= E
[
P
(
u

j1← v, u
j2← w, v

j3← w | PAt−1,j3−1
)]

= E

[
1{u j1← v, u

j2← w} Dv(w− 1, j3 − 1) + δ

2m(w− 2) + (j3 − 1) + (w− 1)δ

]
.

(9.3.1)

In (9.3.1), the indicator function 1{u j1← v, u
j2← w} and Dv(w − 1, j3 − 1) are not

independent, therefore evaluating the expectation on the right-hand side of (9.3.1)
is not easy. A possible solution for the evaluation of the expectation in (9.3.1) is to
rescale Dv(w− 1, j3 − 1) with an appropriate constant to obtain a martingale, and
then recursively use the conditional expectation. For a detailed explanation of this,
we refer to [45, 205] and [106, Section 8.3]. This method is hardly tractable due
to the complexity of the constants appearing (see Remark 9.1 for a more detailed
explanation).

We use a different approach to evaluate of the expectation in (9.3.1) using the
interpretation of the PAM as a Pólya urn graph, focusing mainly on the the age (the
indices) of the vertices, and not on precise constants. We give a lower and upper
bound of the probability of having a finite number of edges present in the graph, as
formulated in the following lemma:

Lemma 9.1 (Probability of finite set of labeled edges). Fix ` ∈ N. For vertices u` =
(u1, . . . , u`) ∈ [t]` and v` = (v1, . . . , v`) ∈ [t]` and edge labels j` = (j1, . . . , j`) ∈ [m]`,
consider the corresponding finite set of ` distinct labeled edges M`(u`,v`, j`). Assume that
the subgraph defined by set M`(u`,v`, j`) is attainable in the sense of Definition 9.2. Define
χ = (m + δ)/(2m + δ). Then:

(i) There exist two constants c1 = c1(m, δ, `), c2 = c2(m, δ, `) > 0 such that

c1

`

∏
l=1

uχ−1
l v−χ

l ≤ P (M`(u`,v`, j`) ⊆ E(PAt)) ≤ c2

`

∏
l=1

uχ−1
l v−χ

l . (9.3.2)

(ii) Define the set

J(u`,v`) =
{
j` ∈ [m]` : M`(u`,v`, j`) ⊆ E(PAt)

}
. (9.3.3)

Then, there exist two constants ĉ1(m, δ, `), ĉ2(m, δ, `) > 0 such that

ĉ1(m, δ, `)
`

∏
l=1

uχ−1
l v−χ

l ≤ E[|J(u`,v`)|] ≤ ĉ2(m, δ, `)
`

∏
l=1

uχ−1
l v−χ

l . (9.3.4)

Formula (9.3.2) in the above lemma bounds the probability that a subgraph is
present on vertices u` and v` such that the ji-th edge from ui connects to vi. Notice
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that (9.3.2) is independent of the precise edge labels (j1, . . . , j`). To be able to count all
subgraphs, and not only subgraphs where the edge labels have been specified, (9.3.4)
bounds the expected number of times a specific subgraph is present on vertices u`

and v`. This number is given exactly by the elements in set J(u`,v`) as in (9.3.3).
The expectation in (9.3.4) may be larger than one, due to the fact that the PAM is a
multigraph.

Lemma 9.1 gives a bound on the probability of presence of ` ∈N distinct edges
in the graph as function of the indices (u1, v1), . . . , (u`, v`) of the endpoints of the `
edges. Due to the properties of PAM, the index of a vertex is an indicator of its degree,
due to the old-get-richer effect. Lemma 9.1 is a stronger result than [73, Corollary 2.3],
which gives an upper bound of the form in (9.3.2) only for self-avoiding paths.

The proof of Lemma 9.1 is based on the interpretation of the PAM in Definition 9.1
as a urn experiment as proposed in [20]. We now introduce urn schemes and state
the preliminary results we need for the proof of Lemma 9.1, which is given in
Section 9.3.2.

9.3.1 Pólya urn graph

An urn scheme consists of an urn, with blue balls and red balls. At every time step,
we draw a ball from the urn and we replace it by two balls of the same color. We start
with B0 = b0 blue balls and R0 = r0 red balls. We consider two weight functions

Wb(k) = ab + k, and Wr(k) = ar + k. (9.3.5)

Conditionally on the number of blue balls Bn and red balls Rn, at time n + 1 the
probability of drawing a blue ball is equal to

Wb(Bn)

Wb(Bn) + Wr(Rn)
.

The evolution of the number of balls ((Bn, Rn))n∈N obeys [107, Theorem 4.2]

P (Bn = B0 + k) = E [P (Bin(n, ψ) = k|ψ)] , (9.3.6)

where ψ has a Beta distribution with parameters B0 + ab and R0 + ar. In other words,
the number of blue balls (equivalently, of red balls) is given by a Binomial distribution
with a random probability of success ψ (equivalently, 1− ψ). Sometimes we call the
random variable ψ the intensity or strength of the blue balls in the urn. We can also
see the urn process as two different urns, one containing only blue balls and the other
only red balls, and we choose a urn proportionally to the number of balls in the urns.
In this case, the result is the same, but we can say that ψ is the strength of the blue
balls urn and 1− ψ is the strength of the red balls urn.

The sequential model PAt can be interpreted as experiment with t urns, where the
number of balls in each urn represent the degree of a vertex in the graph. First, we
introduce a random graph model:

Definition 9.3 (Pólya urn graph). Fix m ≥ 1 and δ > −m. Let t ∈ N be the size of the
graph. Let ψ1 = 1, and consider ψ2, . . . , ψt independent random variables, where

ψk
d
= Beta (m + δ, m(2k− 3) + (k− 1)δ) . (9.3.7)
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Define

ϕj = ψj

t

∏
i=j+1

(1− ψi), Sk =
k

∑
j=1

ϕj, Ik = [Sk−1, Sk). (9.3.8)

Conditioning on ψ1, . . . , ψt, let {Uk,j}j=1,...,m
k=2,...,t be independent random variables, with Uk,j

uniformly distributed on [0, Sk−1]. Then, the corresponding Pólya urn graph PUt is the graph
of size t where, for u < v, the number of edges between u and v is equal to the number of
variables Uv,j in Iu, for j = 1, . . . , m (multiple edges are allowed).

The two sequences of graphs (PAt)t∈N and (PUt)t∈N have the same distribu-
tion [20, Theorem 2.1], [107, Chapter 4]. The Beta distributions in Definition 9.3 come
from the Pólya urn interpretation of the sequential model, using urns with affine
weight functions.

The formulation in Definition 9.3 in terms of urn experiments allows us to investi-
gate the presence of subgraphs in an easier way than with the formulation given in
Definition 9.1 since the dependent random variables in (9.3.1), are replaced by the
product of independent random variables. We now state two lemmas that are the
main ingredients for proving Lemma 9.1:

Lemma 9.2 (Attachment probabilities). Consider PUt as in Definition 9.3. Then,

(i) for k ∈ [t],

Sk =
t

∏
h=k+1

(1− ψh); (9.3.9)

(ii) conditioning on ψ1, . . . , ψt, the probability that the j-th edge of k is attached to v is
equal to

P
(

Uk,j ∈ Iv | ψ1, . . . , ψt

)
= ψv

Sv

Sh−1
= ψv

k−1

∏
h=v+1

(1− ψh). (9.3.10)

The proof of Lemma 9.2 follows from Definition 9.3, and the fact that (Sk)k∈[t] as
in (9.3.8) can be written as in (9.3.9) (see the proof of [20, Theorem 2.1]).

Before proving Lemma 9.1, we state a second result on the concentration of the
positions {Sk}k∈[t] in the urn graph (PUt)t∈N. In particular, it shows that these
positions concentrate around deterministic values:

Lemma 9.3 (Position concentration in PUt). Consider a Pólya urn graph as in Defini-
tion 9.3. Let χ = (m+ δ)/(2m+ δ). Then, for every ω, ε > 0 there exists N0 = N0(ω, ε) ∈
N such that, for every t ≥ N0,

P

( t⋂
i=N0

{ ∣∣∣∣Si −
(

i
t

)χ∣∣∣∣ ≤ ω

(
i
t

)χ })
≥ 1− ε (9.3.11)

and, for t large enough,

P

(
max
i∈[t]

∣∣∣∣Si −
(

i
t

)χ∣∣∣∣ ≥ ω

)
≤ ε (9.3.12)
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As a consequence, as t→ ∞,

max
i∈[t]

∣∣∣∣Si −
(

i
t

)χ∣∣∣∣ P−→ 0. (9.3.13)

The proof of Lemma 9.3 is given in [20, Lemma 3.1].

9.3.2 Proof of Lemma 9.1

We now prove Lemma 9.1, starting with the proof of (9.3.2). Fix u`,v`, j`. In the
proof, we denote M`(u`,v`, j`) simply by M` to keep notation light. We use the
fact that the Pólya urn graph PUt and PAt have the same distribution and evaluate
P (M` ⊆ E(PUt)). We consider ` distinct labeled edges, so we can use (9.3.10) to
write

P (M` ⊆ E(PUt) | ψ1, . . . , ψt) =
`

∏
l=1

ψul

Sul

Svl−1
. (9.3.14)

Now fix ε > 0. Define Eε := {maxi∈[t]
∣∣∣Si −

(
i
t

)χ∣∣∣ ≤ ε}. By (9.3.13), and the fact that
the product of the random variables in (9.3.14) is bounded by 1,

E

[ `

∏
l=1

ψul

Sul

Svl−1

]
= E

[
1Eε

`

∏
l=1

ψul

Sul

Svl−1

]
+ o(1). (9.3.15)

On the event Eε, we have, for every l ∈ [`],

(1− ε)

(
ul
vl

)χ

≤ Sul

Svl−1
≤ (1 + ε)

(
ul
vl

)χ

, (9.3.16)

where in (9.3.16) we have replaced vl − 1 with vl with a negligible error. Notice that
since vl is always the source of the edge, this implies vl ≥ 2, therefore this is allowed.
Using (9.3.16) in (9.3.15) we obtain

(1− ε)`
`

∏
l=1

(
ul
vl

)χ

E

[
1Eε

`

∏
l=1

ψul

]
≤ P (M` ⊆ E(PUt))

≤ (1 + ε)`
`

∏
l=1

(
ul
vl

)χ

E

[
1Eε

`

∏
l=1

ψul

]
.

(9.3.17)

Even though ψ1 . . . , ψt depend on Eε, it is easy to show that we can ignore 1Eε
in

(9.3.17) and obtain a similar bound. Therefore

(1− ε)`
`

∏
l=1

(
ul
vl

)χ

E

[ `

∏
l=1

ψul

]
≤ P (M` ⊆ E(PUt)) ≤ (1 + ε)`

`

∏
l=1

(
ul
vl

)χ

E

[ `

∏
l=1

ψul

]
(9.3.18)

What remains is to evaluate the expectation in (9.3.18). We assumed to have ` dis-
tinct edges, that does not imply that the vertices u1, v1, . . . , u`, v` are distinct. The
expectation in (9.3.18) depends only on the receiving vertices of the ` edges, namely
u1, . . . , u`.



9.3. The probability of a subgraph being present 215

Let ū1, . . . , ūk denote the k ≤ ` distinct elements that appear among u1, . . . , u`. For
h ∈ [k], the vertex ūh appears in the product inside the expectation in (9.3.18) with
multiplicity d(in)

h , which is the degree of vertex ūk in the subgraph defined by M`. As
a consequence, we can write

E

[ `

∏
l=1

ψul

]
= E

[ k

∏
h=1

ψ
d(in)h
ūh

]
=

k

∏
h=1

E

[
ψ

d(in)h
ūh

]
, (9.3.19)

where in (9.3.19) we have used the fact that ψ1, . . . , ψt are all independent. Notice that
E[ψd

1 ] = 1 for all d ≥ 0, since ψ1 ≡ 1. Therefore, if ūh = 1 for some h ∈ [k], E[ψd
ūh
] = 1

and the terms depending on the first vertex contribute to the expectation in (9.3.19)
by a constant.

For the terms where ūh ≥ 2, recall that, if X(α, β) is a Beta random variable, then,
for any integer d ∈N,

E[X(α, β)d] =
α(α + 1) · · · (α + d− 1)

(α + β)(α + β + 1) · · · (α + β + d− 1)
.

Since ψūh is Beta distributed with parameters m + δ and 2(ūh − 3) + (ūh − 1)δ,

E

[
ψ

d(in)h
ūh

]
=

(m + δ) · · · (m + δ + d(in)
h − 1)

[m(2ūh − 2) + ūhδ] · · · [m(2ūh − 2) + ūhδ + d(in)
h − 1]

= ū
−d(in)h
h

(m + δ) · · · (m + δ + d(in)
h − 1)

[2m + δ− (2m)/ūh] · · · [2m + δ + (d(in)
h − 1− 2m)/ūh]

.

(9.3.20)

Notice that if ūh ≥ 2, uniformly in t and the precise choice of the ` edges,

(m+ δ)−` ≤
(
[2m+ δ− (2m)/ū] · · · [2m+ δ+(d(in)

h − 1− 2m)/ū]
)−1
≤ (2m+ δ+ `)−`.

As a consequence, we can find two constants c1(m, δ, `), c2(m, δ, `) such that

c1(m, δ, `)
k

∏
h=1

ū
−d(in)h
h ≤

k

∏
h=1

E

[
ψ

d(in)h
ūh

]
≤ c2(m, δ, `)

k

∏
h=1

ū
−d(in)h
h . (9.3.21)

We now use (9.3.21) in (9.3.18) to obtain

c1(m, δ, `)(1− ε)`
`

∏
l=1

(
ul
vl

)χ k

∏
h=1

ū
−d(in)h
h ≤ P (M` ⊆ E(PUt))

≤ c2(m, δ, `)(1 + ε)`
`

∏
l=1

(
ul
vl

)χ k

∏
h=1

ū
−d(in)h
h .

(9.3.22)

In (9.3.22) we can just rename the constants c1(m, δ, `) = c1(m, δ, `)(1 − ε)` and
c2(m, δ, `) = c2(m, δ, `)(1 + ε)`. Since d(in)

h is the multiplicity of vertex ūh as receiving
vertex, we can write

k

∏
h=1

ū
−d(in)h
h =

`

∏
l=1

u−1
l .
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Combining this with (9.3.22) completes the proof of (9.3.2).
The proof of (9.3.4) follows immediately from (9.3.2) and the definition of the set

J(u`,v`) in (9.3.3). In fact, we can write

E[|J(u`,v`)|] = ∑
j`∈[m]`

P (M`(u`,v`, j`) ⊆ E(PAt)) .

Recall that P (M`(u`,v`, j`) ⊆ E(PAt)) is independent of the labels j`. For a fixed set of
source and target vertices u` and v`, there is only a finite combination of labels j` such
that the subgraph defined by M`(u`,v`, j`) is attainable in the sense of Definition
9.2. In fact, the number of such labels j` is larger than one (since the corresponding
subgraph is attainable), and less than m` (the total number of elements of [m]`). As a
consequence, taking ĉ1 = c1 and ĉ2 = c2m` proves (9.3.4).

9.4 The expected number of subgraphs

To prove Theorem 9.1, we write the expected number of subgraphs as multiple inte-
grals. W.l.o.g. we assume throughout this section that π is the identity permutation,
so that the vertices of H are labeled as 1, . . . , k, and therefore drop the dependence of
the quantities on π. We first prove a lemma that states that two integrals that will be
important in proving Theorem 9.1 are finite:

Lemma 9.4. Let H be a subgraph such that the optimum of (9.2.1) is attained by s1, . . . , sr.
Then,

A1(H) :=
∫ ∞

1
uβ(1)

1

∫ ∞

u1

uβ(2)
2 · · ·

∫ ∞

us−1

uβ(s1)
s1 dus1 · · ·du1 < ∞, (9.4.1)

A2(H) :=
∫ 1

0
uβ(k)

k

∫ uk

0
uβ(k−1)

k−1 · · ·
∫ usr+1

0
uβ(sr+1)

sr+1 dusr+1 · · ·duk < ∞. (9.4.2)

Proof. The first integral is finite as long as

z +
s1

∑
i=s1−z

β(i) < 0 (9.4.3)

for all z ∈ [s1]. Suppose that (9.4.3) does not hold for some z∗ ∈ [s1]. Then, the
difference between the contribution to (9.2.1) for s̃ = s1 − z∗ and s1 is

− (s1 − z∗) +
k

∑
i=s1−z∗

β(i) + s1 −
k

∑
i=s1

β(i) = z∗ +
s1

∑
i=s1−z∗

β(i) ≥ 0, (9.4.4)

which would imply that s1− z∗ is also an optimizer of (9.2.1), which is in contradiction
with s1 being the smallest optimum. Thus, (9.4.3) holds for all r ∈ [s] and A1(H) < ∞.

The second integral is finite as long as

z− sr +
z

∑
i=sr+1

β(i) > 0 (9.4.5)
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for all z ∈ {sr + 1, . . . , k}. Suppose that this does not hold for some z∗ ∈ {sr +
1, . . . , k}. Set s̃ = z∗ > sr. Then, the difference between the contribution to (9.2.1) for
s̃ = z∗ and sr is

− z∗ + sr −
z∗

∑
i=sr+1

β(i) ≥ 0, (9.4.6)

which is a contradiction with sr being the largest optimizer. Therefore, A2(H) <
∞.

We now use this lemma to prove Theorem 9.1:

Proof of Theorem 9.1. Again, we assume that π is the identity mapping, so that we
may drop all dependencies on π. Suppose the optimal solution to (9.2.1) is attained
by s1, s2, . . . , sr for some r ≥ 1. Let the ` edges of H be denoted by (ul , vl) for l ∈ [`].
Let Nt(H, i1, . . . , ik) denote the number of times subgraph H is present on vertices
i1, . . . , ik. We then use Lemma 9.1, which proves that, for some 0 < C < ∞,

E [Nt(H)] = ∑
i1<···<ik∈[t]

E [Nt(H, i1, . . . , ik)]

≤ C ∑
i1<···<ik∈[t]

`

∏
l=1

iχ−1
ul i−χ

vl = C ∑
i1<···<ik∈[t]

k

∏
q=1

iβ(q)
q . (9.4.7)

We then bound the sums by integrals as

E [Nt(H)] ≤ C̃
∫ t

1
uβ(1)

1 · · ·
∫ t

uk−1

uβ(k)
k duk · · ·du1

≤ C̃
∫ ∞

1
uβ(1)

1 · · ·
∫ ∞

us−1
uβ(s1)

s1 dus1 . . . du1

×
∫ t

1
uβ(s1+1)

s1+1

∫ ∞

us1+1

uβ(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

×
∫ t

1
uβ(s2+1)

s2+1

∫ ∞

us2+1

uβ(s2+2)
s2+2 · · ·

∫ t

us3−1

uβ(s3)
s3 dus3 . . . dus2+1 × · · ·

×
∫ t

1
uβ(sr−1+1)

sr−1+1

∫ ∞

usr−1+1

uβ(sr−1+2)
sr−1+2 · · ·

∫ t

usr−1

uβ(sr)
sr dusr . . . dusr−1+1

×
∫ t

0
uβ(sr+1)

sr+1

∫ t

sr+1
uβ(sr+2)

sr+2 · · ·
∫ t

uk−1

uβ(k)
k duk · · ·dusr+1, (9.4.8)

for some 0 < C̃ < ∞. The first set of integrals is finite by Lemma 9.4 and independent
of t. For the last set of integrals, we obtain∫ t

0
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(s+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk · · ·dusr+1

= tk−sr+∑k
i=sr+1 β(i)

∫ 1

0
wβ(sr+1)

sr+1

∫ 1

wsr+1

wβ(sr+2)
sr+2 · · ·

∫ 1

wk−1

wβ(k)
k dwk · · ·dwsr+1

= Ktk+B(H), (9.4.9)
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for some 0 < K < ∞, where we have used the change of variables w = u/t and
Lemma 9.4. For r = 1, this finishes the proof, because then the middle integrals
in (9.4.8) are empty. We now investigate the behavior of the middle sets of integrals
for r > 1. Because the optimum to (9.2.1) is attained for s1 as well as s2,

− s1 +
k

∑
i=s1+1

β(i) + s2 −
k

∑
i=s2+1

β(i) = s2 − s1 +
s2

∑
i=s1+1

β(i) = 0. (9.4.10)

Therefore, when s2 = s1 + 1, the second set of integrals in (9.4.8) equals∫ t

1
u−1

s1
dus1 = log(t). (9.4.11)

Now suppose that s1 < s2 + 1. Then, any s̃ ∈ [s1 + 1, s2 − 1] is a non-optimal solution
to (9.2.1), and therefore

− s2 +
k

∑
i=s2+1

β(i) + s̃−
k

∑
i=s̃+1

β(i) = s̃− s2 −
s2

∑
i=s̃+1

β(i) > 0, (9.4.12)

or
s2

∑
i=s̃+1

β(i) < s2 − s̃. (9.4.13)

This implies that∫ t

1
uβ(s1+1)

s1+1

∫ ∞

us1+1

uβ(s1+2)
s1+2 · · ·

∫ t

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

= K̃
∫ t

1
u

∑
s2
i=s1+1 β(i)+s2−s1−1

s1+1 dus1+1

= K̃
∫ t

1
u−1

s1+1dus1+1 = K̃ log(t), (9.4.14)

for some 0 < C < ∞. A similar reasoning holds for the other integrals, so that
combining (9.4.8), (9.4.9) and (9.4.14) yields

lim
t→∞

E [Nt(H)]

tk+B(H) logr−1(t)
≤ C2, (9.4.15)

for some 0 < C2 < ∞.
We now proceed to prove a lower bound on the expected number of subgraphs.

Again, by Lemma 9.1 and lower bounding the sums by integrals as in (9.4.7), we
obtain that, for some 0 < C < ∞

E [Nt(H)] ≥ C
∫ t

1
uβ(1)

1 · · ·
∫ t

uk−1

uβ(k)
k duk · · ·du1. (9.4.16)

Fix ε > 0. We investigate the contribution where vertices 1, . . . , s1 have index in
[1, 1/ε], vertices s1 + 1, . . . , s2 have index in [1/ε, εt1/r], vertices s2 + 1, . . . , s3 have
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index in [t1/r, εt2/r] and so on, and vertices sr + 1, . . . , sk have index in [εt, t]. Thus,
we bound

E [Nt(H)] ≥ C
∫ 1/ε

1
uβ(1)

1

∫ 1/ε

u1

uβ(2)
2 · · ·

∫ 1/ε

us1−1

uβ(s)
s1 dus1 . . . du1

×
∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

×
∫ εt2/r

t1/r
uβ(s2+1)

s2+1

∫ us2+1/ε

us2+1

uβ(s2+2)
s2+2 · · ·

∫ us3−1/ε

us3−1

uβ(s3)
s3 dus3 . . . dus2+1 × · · ·

×
∫ εt(r−1)/r

t(r−2)/r
uβ(sr−1+1)

sr−1+1

∫ usr−1+1/ε

usr−1+1

uβ(sr−1+2)
sr−1+2 · · ·

∫ usr−1/ε

usr−1

uβ(sr)
sr dusr . . . dusr−1+1

×
∫ t

εt
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(sr+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk . . . dusr+1 (9.4.17)

The first set of integrals equals A1(H) plus terms that vanishes as ε becomes small by
Lemma 9.4. For the last set of integrals, we use the change of variables w = u/t to
obtain

∫ t

εt
uβ(sr+1)

sr+1

∫ t

usr+1

uβ(sr+2)
sr+2 · · ·

∫ t

uk−1

uβ(k)
k duk . . . dusr+1

= tk−sr+∑k
i=sr+1 β(i)

∫ 1

ε
wβ(sr+1)

sr+1

∫ 1

wsr+1

wβ(sr+2)
sr+2 · · ·

∫ 1

wk−1

wβ(k)
k dwk . . . dwsr+1

= tk+B(H)(A2(H)− h1(ε)), (9.4.18)

for some function h1(ε). By Lemma 9.4 h1(ε) satisfies limε→0 h1(ε) = 0. Again, if
r = 1, the middle sets of integrals in (9.4.17) are empty, so we are done.

We now investigate the second set of integrals in (9.4.17) for r > 1. Using the
substitution ws1+1 = us1+1 and wi = ui/ui−1 for i > s1 + 1, we obtain

∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

=
∫ εt1/r

1/ε
w

s2−s1−1+∑
s2
i=s1+1 β(i)

s1+1 dws1+1

∫ 1/ε

1
w

s2−s1−2+∑
s2
i=s1+2 β(i)

s1+2 dws2+1 · · ·
∫ 1/ε

1
wβ(s2)

s2 dws2 .

(9.4.19)
The first integral equals by (9.4.10)

∫ εt1/r

1/ε
w−1

s1+1dws1+1 =
1
r

log(t) + log(ε2). (9.4.20)

The integrand in all other integrals in (9.4.19) equals wγi
i for some γi < −1 by (9.4.13).

Therefore, these integrals equal a constant plus a function of ε that vanishes as ε
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becomes small so that∫ εt1/r

1/ε
uβ(s1+1)

s1+1

∫ us1+1/ε

us1+1

uβ(s1+2)
s1+2 · · ·

∫ us2−1/ε

us2−1

uβ(s2)
s2 dus2 . . . dus1+1

=

(
1
r

log(t) + log(ε2)

)
(K + h2(ε)) , (9.4.21)

for some 0 < K < ∞ and some h2(ε) such that limε→0 h2(ε) = 0. The other integrals
in (9.4.17) can be estimated similarly.

Combining (9.4.17), (9.4.18) and (9.4.21) we obtain

lim
t→∞

E [Nt(H)]

tk+B(H) logr−1(t)
≥ C1 + h(ε), (9.4.22)

for some constant 0 < C1 < ∞ and some function h(ε) such that limε→0 h(ε) = 0.
Taking the limit for ε→ 0 then proves the theorem.

9.5 The expected number of triangles

Fix m ≥ 2 and δ > −m. The first step of the proof consists of showing that

E[4t] =
τ − 2
τ − 1

m2(m− 1)(m + δ)(m + δ + 1)
(2m + δ)2

×
t−2

∑
u=1

[(u− (2m)/(2m + δ))(u− (2m− 1)/(2m + δ))]−1

× Γ(u + 2− (2m)/(2m + δ)

Γ(u + 2− (3m + δ)/(2m + δ))

Γ(u + 2− (2m− 1)/(2m + δ))

Γ(u + 2− (3m + δ− 1)/(2m + δ))

×
t−1

∑
v=u+1

(v− (3m + δ− 1)/(2m + δ))−1

×
t

∑
w=v+1

Γ(w− (3m + δ)/(2m + δ))

Γ(w− (2m)/(2m + δ))

Γ(w− (3m + δ− 1)/(2m + δ))

Γ(w− (2m− 1)/(2m + δ))
.

(9.5.1)

We can write

4t :=
t−2

∑
u=1

t−1

∑
v=u+1

t

∑
w=v+1

∑
j1∈[m]

∑
j2,j3∈[m]

1{u j1← v, u
j2← w, v

j3← w}. (9.5.2)

Since there are m2(m− 1) possible choices for the edges j1, j2, j3,

E[4t] = m2(m− 1)
t−2

∑
u=1

t−1

∑
v=u+1

t

∑
w=v+1

E

[
ψu

Su

Sv−1
ψu

Su

Sw−1
ψv

Sv

Sw−1

]
. (9.5.3)

Recalling (9.3.10), we can write every term in the sum in (9.5.3) as

E

[(
ψu

v−1

∏
h=u+1

(1− ψh)

)(
ψu

w−1

∏
k=u+1

(1− ψk)

)(
ψv

w−1

∏
l=v+1

(1− ψl)

)]
. (9.5.4)



9.5. The expected number of triangles 221

Since the random variables ψ1, . . . , ψt are independent, we can factorize the expecta-
tion to obtain

E[ψ2
u]E[ψv(1−ψv)]

w−1

∏
k=u+1,k 6=v

E[(1−ψk)
2] = E[ψ2

u]
E[ψv(1− ψv)]

E[(1− ψv)2]

w−1

∏
k=u+1

E[(1−ψk)
2].

(9.5.5)
Recall that, for a Beta random variable X(α, β), we have

E[X] =
α

α + β
, E[X(1− X)] =

αβ

(α + β)(α + β + 1)
,

E[X2] =
α(α + 1)

(α + β)(α + β + 1)
,

(9.5.6)

and 1 − X(α, β) is distributed as X(β, α). Using (9.5.6), we can rewrite (9.5.5) in
terms of the parameters of ψ1, . . . , ψt. Since ψk has parameters α = m + δ and
β = βk = m(2k− 3) + (k− 1)δ, the first term in (9.5.5) can be written as

E[ψ2
u]

(m + δ)(m + δ + 1)
(m(2u− 2) + uδ)(m(2u− 2) + uδ + 1)

=
(m + δ)(m + δ + 1)

(2m + δ)2

[
(u− 2m/2m + δ)(u− (2m− 1)/(2m + δ))

]−1

.

(9.5.7)

The second term can be written as

E[ψv(1− ψv)]

E[(1− ψv)2]
=

m + δ

m(2v− 3) + (v− 1)δ
=

τ − 2
τ − 1

(v− (3m + δ− 1)/(2m + δ))−1.

(9.5.8)
The last product in (9.5.5), for k = u + 1, . . . , w− 1 results in

E[(1− ψk)
2] =

(m(2k− 3) + (k− 1)δ)(m(2k− 3) + (k− 1)δ + 1)
(m(2k− 2) + kδ)(m(2k− 2) + kδ + 1)

=
k− (3m + δ)/(2m + δ)

k− 2m/(2m + δ)

k− (3m + δ− 1)/(2m + δ)

k− (2m− 1)/(2m + δ)
.

(9.5.9)

Using the recursive property Γ(a + 1) = aΓ(a) of the Gamma function,

w−1

∏
k=u+1

E[(1− ψk)
2] =

Γ(u + 2− (2m)/(2m + δ)

Γ(u + 2− (3m + δ)/(2m + δ))

Γ(u + 2− (2m− 1)/(2m + δ))

Γ(u + 2− (3m + δ− 1)/(2m + δ))

× Γ(w− (3m + δ)/(2m + δ))

Γ(w− (2m)/(2m + δ))

Γ(w− (3m + δ− 1)/(2m + δ))

Γ(w− (2m− 1)/(2m + δ))
.

(9.5.10)

Equation (9.5.3) follows by combining (9.5.5), (9.5.7), (9.5.8), (9.5.9) and (9.5.10).
The last step of the proof is to evaluate the sum in (9.5.3), and combining the result

with the multiplicative constant in front in (9.5.3). By Stirling’s formula

Γ(x + a)
Γ(x + b)

= xa−b(1 + O(1/x)).
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As a consequence, recalling that χ = (m + δ)/(2m + δ), the sum in (9.5.3) can be
written as

t−2

∑
u=1

u2χ−2(1 + O(1/u))
t−1

∑
v=u+1

v−1(1 + O(1/v))
t

∑
w=v+1

w−2χ(1 + O(1/w)). (9.5.11)

We can approximate the sum in (9.5.11) with the corresponding integral using Euler-
Maclaurin formula, thus obtaining∫ t

1
u2χ−2du

∫ t

u
v−1dv

∫ t

v
w−2χdw. (9.5.12)

As t → ∞, the order of magnitude of the integral in (9.5.12) is predicted by Theo-
rem 9.1. If we evaluate the integral, then we obtain that the coefficient of the dominant
term in (9.5.12) is (2m + δ)2/δ2 for τ > 2, τ 6= 3, and 1/6 for τ = 3.

Putting together these coefficients with the constant in front of the sum in (9.5.1)
completes the proof of Theorem 9.2.
Remark 9.1 (Constant for general subgraphs). In the proof of Theorem 9.2, the hardest
step is to prove (9.5.2), i.e., to find the expectation of the indicator functions in (9.5.1).
This is the reason why for a general ordered subgraph (H, π) on k vertices it is hard to
find the explicit constant as in (9.2.11). In fact, as we have done to move from (9.5.3)
to (9.5.4), it is necessary to identify precisely, for every v ∈ [t], how many times the
terms ψv and (1− ψv) appear in the product inside the expectations in (9.5.3). This
makes the evaluation of such terms complicated.

Typically, as it shown in (9.5.5), (9.5.7), (9.5.8), (9.5.9) and (9.5.10), the product of
the constants obtained by evaluating the probability of an ordered subgraph (H, π)
being present can be written as ratios of Gamma functions. The same constants can
be found using the martingale approach as in [45, 205] and [106, Section 8.3], even
though in this case constants are obtained through a recursive use of conditional
expectation.

We remark that our method and the martingale method are equivalent. We
focused on the Pólya urn interpretation of the graph since it highlights the dependence
of the presence of edges on the age of vertices, that is directly related to the order of
magnitude of degrees.

9.6 Conditional concentration: proof of Proposition 9.1

In the previous sections, we have considered the order of magnitude of the expectation
of the number of occurrences of ordered subgraphs in PAM. In other words, for an
ordered subgraph (H, ψ) we are able to identify the order of magnitude f (t) of
the expected number of occurrences Nt(H, π), so that E[Nt(H, π)] = O ( f (t)). We
now show how these orders of magnitude of the expected number of subgraphs
determines the conditional convergence given in (9.2.7).

9.6.1 Bound with overlapping subgraphs

The Pólya urn graph in Definition 9.3 consists of a function of uniform random
variables (Uv,j)

j∈[m]
v∈[t] and an independent sequence of Beta random variables (ψv)v∈[t].
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We can interpret the sequence (ψv)v∈[t] as a sequence of intensities associated to the
vertices, where a higher intensity corresponds to a higher probability of receiving
a connection. The sequence (Uv,j)

j∈[m]
v∈[t] determines the attachment of edges. In

particular, conditionally on the sequence (ψv)v∈[t], every edge is present independently
(but with different probabilities).

For t ∈N, denote Pψt(·) = P( · |ψ1, . . . , ψt), and similarly Eψt [·] = E[ · |ψ1, . . . , ψt].
Furthermore, let Nt,ψ(H, π) denote the number of times subgraph (H, π) appears
conditionally on the ψ-variables. We now apply a conditional second moment method
to Nt,ψ(H, π). We use the notation introduced in Section 9.3, so that every possible
realization of H in PAM corresponds to a finite set of edges M`(u`,v`, j`), where ` is

the number of edges in H such that vh
jh→ uh, i.e., uh is the receiving vertex, and jh is

the label of the edge. For simplicity, we denote the set M`(u`,v`, j`) by M. For ease
of notation, we assume that π is the identity map and drop the dependence on π. We
prove the following results:

Lemma 9.5 (Bound on conditional variance). Consider subgraph H. Then, P-a.s.,

Varψt(Nt(H)) ≤ Eψt [Nt(H)] + ∑
Ĥ∈Ĥ

Eψt [Nt(Ĥ)],

where Ĥ denotes the set of all possible attainable subgraphs Ĥ that are obtained by merging
two copies of H such that they share at least one edge.

Lemma 9.5 gives a bound on the conditional variance in terms of the conditional
probabilities of observing two overlapping of the subgraph H at the same time. Notice
that we require these copies to overlap at at least one edge, which is different than
requiring that they are disjoint (the can share one or more vertices but no edges).

Proof of Lemma 9.5. We prove the bound in Lemma 9.5 by evaluating the conditional
second moment of Nt(H) as

Eψt [Nt(H)2] = Eψt

[
∑

M,M′
1{M⊆E(PAt)}1{M′⊆E(PAt)}

]
= ∑

M,M′
Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
,

where M and M′ are two sets of edges corresponding to two possible realizations of
the subgraph H. Notice that M and M′ are not necessarily distinct. We then have to
evaluate the conditional probability of having both the sets M and M′ simultaneously
present in the graph. As a consequence, we conditional variance in Lemma 9.5 can be
written as

∑
M 6=M′

Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
−Pψt(M ⊆ E(PAt))Pψt(M′ ⊆ E(PAt)).

(9.6.1)
We define

M :=
{
(M, M′) : ∃ (u, v, j) : (u, v, j) ∈ M, (u, v, j) ∈ M′,
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M 6= M′, (M ∪M′) defines an attainable subgraph
}

. (9.6.2)

We then consider two different cases, i.e., whether (M, M′) is in M or not. If
(M, M′) 6∈ M, then one of the three following situations occurs:

B M∪M′ defines a subgraph that is not attainable (for instance, M and M′ require
that the same edge is attached to different vertices);

B M ∪ M′ defines a subgraph that is attainable, M and M′ are disjoint sets of
labeled edges (they are allowed to share vertices);

B M and M′ define the same attainable subgraph (so M = M′, thus labels of
edges coincide).

When M = M′ we have that

Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
= Pψt(M ⊆ E(PAt)),

so that the corresponding contribution in the sum in (9.6.1) is

Pψt(M ⊆ E(PAt))−Pψt(M ⊆ E(PAt))
2 ≤ Pψt(M ⊆ E(PAt)),

and the sum over M gives the term Eψt [Nt(H)] in the statement of Lemma 9.5. When
M 6= M′ and M ∪ M′ is attainable and their sets of edges are disjoint it follows
directly from the independence of (Uv,j)

j∈[m]
v∈[t] and (ψv)v∈[t] that

Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
= Pψt(M ⊆ E(PAt))Pψt(M′ ⊆ E(PAt)).

Thus, in this situation the corresponding contribution is zero. When (M, M′) is
not attainable the corresponding contribution is negative. When (M, M′) ∈ M we

bound the corresponding terms in (9.6.1) by Pψt

(
M ⊆ E(PAt), M′ ⊆ E(PAt)

)
, thus

obtaining

Varψt(Nt(H)) ≤ Eψt [Nt(H)] + ∑
(M,M′)∈M

Pψt

(
M ∪M′ ⊆ E(PAt)

)
, (9.6.3)

We then rewrite this as

Varψt(Nt(H, π)) ≤ Eψt [Nt(H)] + ∑
Ĥ∈Ĥ

Eψt [Nt(Ĥ)], (9.6.4)

which proves the lemma.

9.6.2 Criterion for conditional convergence

We now prove Proposition 9.1 using Lemma 9.5 and Lemma 9.7:
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Proof of Proposition 9.1. It sufficient to show that for every fixed ε > 0,

P
(
|Nt,ψ(H, π)−Et[Nt(H, π)] > εE[Nt(H, π)]

)
= o(1).

We now apply Lemma 9.5, which yields

P
(
|Nt,ψ(H, π)−Eψt [Nt(H, π)] > εE[Nt(H, π)]

)
≤ 1

ε2E[Nt(H, π)]2
E
[
Varψt(Nt(H, π))

]
≤

E
[
Eψt [Nt(H, π)] + ∑Ĥ∈Ĥ Eψt [Nt(Ĥ)]

]
ε2E[Nt(H, π)]2

=
E[Nt(H, π)] + E[Nt(Ĥ)]

ε2E[Nt(H, π)]2
= o(1).

As an example, we consider triangles. Theorem 9.2 identifies the expected number
of triangles, and by Theorem 9.1 we can show that E[42

t ] = Θ(E[4t]2), so we are not
able to apply the second moment method to4t. Figure 9.6 suggests that4t/E[4t]
converges to a limit that is not deterministic, i.e., in (9.2.9) the limiting X is a random
variable.

However, we can prove that4t is conditionally concentrated, as stated in Corol-
lary 9.2. The proof of Corollary 9.2 follows directly from Proposition 9.1, the fact
that E[4t] = Θ(t(3−τ)/(τ−1) log(t)) as given by Theorem 9.2, and Figure 9.5, that
contains the information on the subgraphs consisting of two triangles sharing one or
two edges.

9.6.3 Non-concentrated subgraphs

We now show that for most ψ-sequences, the other direction in Proposition 9.1 also
holds. That is, if there exists a subgraph composed of two merged copies of H such
that the condition in Proposition 9.1 does not hold, then for most ψ-sequences, H is
not conditionally concentrated.

Proposition 9.2. Consider a subgraph (H, π) such that E [Nt(H, π)] → ∞ as t → ∞.
Suppose that there exists a subgraph Ĥ, composed of two distinct copies of (H, π) with at
least one edge in common such that E

[
Nt(Ĥ)

]
/E [Nt(H, π)] 9 0 as t → ∞. Then, for

any ε > 0, there exists η > 0 such that

P

(
Varψt (Nt(H, π))

E [Nt(H, π)]2
> η

)
≥ 1− ε. (9.6.5)

To prove Proposition 9.2 we need a preliminary result on the maximum intensity
of the Pólya urn graph:
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Lemma 9.6. For every ε > 0 there exists K = K(ε) ∈N such that

P

( ⋂
k≥K

{
ψk ≤

(log k)2

(2m + δ)k

})
≥ 1− ε.

Lemma 9.6 is a part of a more general coupling result between (ψk)k∈N and
a sequence of i.i.d. Gamma random variables. We refer to [20, Lemma 3.2] and
[107, Lemma 4.10] for more detail. We now state the lemma we need to prove
Proposition 9.2:

Lemma 9.7 (Maximum intensity). For every ε > 0 there exists ω = ω(ε) ∈ (0, 1) such
that, for every t ∈N,

P
(

max
i∈2,...,t

ψi < ω
)
≥ 1− ε.

Proof. Fix ε > 0, and consider K(ε/2) as given by Lemma 9.6. For every ω ∈ (0, 1)
we can write

P
(

max
i∈2,...,t

ψi < ω
)
= P

(
max

i∈2,...,K
ψi < ω

)
P
(

max
i∈[t]\[K]

ψi < ω
)

, (9.6.6)

where we used the independence of ψ2, . . . , ψt. If t > K the second term in the
right-hand side of (9.6.6) is well defined, otherwise we only have the first term.
Define,

ω1 =

{
(log K)2

(2m+δ)K if t > K,

0 if t ≤ K.

Notice that, since the function k 7→ (log k)2

(2m+δ)k is decreasing, it follows that

P
(

max
i∈[t]\[K]

ψi < ω1

)
≥ 1− ε/2. (9.6.7)

Define the random variable XK = maxi∈2,...,K ψi, denote its distribution function by
FK and the inverse of its distribution function by F−1

K . Consider ω2 = F−1
K (1− ε/2),

that implies

P
(

max
i∈[K]

ψi < ω2

)
= 1− ε/2. (9.6.8)

Consider then ω = max{ω1, ω2}. Using a(9.6.7) and (9.6.8) with ω in (9.6.6), it
follows that

P
(

max
i∈2,...,K

ψi < ω
)

P
(

max
i∈[t]\[K]

ψi < ω
)
≥ (1− ε/2)2 ≥ 1− ε,

which completes the proof.

Proof of Proposition 9.2. We use the expression of the conditional variance of (9.6.1).
We first study the term in the conditional variance corresponding to Ĥ. Let M̃ denote
the set of labeled edges M, M′ that together form subgraph Ĥ. Let the edges that M
and M′ share be denoted by Ms. Furthermore, let M̃1 denote the set of labeled edges
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M, M′ that together form subgraph Ĥ that do not use vertex 1. We can then write this
term as

∑
M,M′∈M̃

Pψt

(
M ∪M′ ⊆ E(PAt)

)
(1−Pψt (Ms ⊆ E(PAt)))

≥ ∑
M,M′∈M̃1

Pψt

(
M ∪M′ ⊆ E(PAt)

)
(1− ψmax)

= (1− ψmax)Eψt

[
Nt(Ĥ)

]
(9.6.9)

where the inequality uses (9.3.10), and ψmax = maxi∈2,...,t ψi. Here we excluded vertex
1 from the number of subgraphs with negligible error. By Lemma 9.7 there exists ω
such that with probability at least 1− ε, ψmax < ω < 1.

By the assumption on Ĥ, E
[
Nt(Ĥ)

]
≥ C̃E [Nt(H, π)]2 for some C̃ > 0. We

the use that Eψt

[
Nt(Ĥ)

]
= OP(E

[
Nt(Ĥ)

]
). Thus, for t sufficiently large, we can

bound the contribution from subgraph Ĥ to the conditional variance from below
with probability at least 1− ε by

∑
M,M′∈M̃

Pψt

(
M ∪M′ ⊆ E(PAt)

)
(1−Pψt (Ms ⊆ E(PAt))) ≥ CEψt [Nt(H, π)]2 ,

(9.6.10)
for some C > 0.

The only terms that have a negative contribution to (9.6.1) are the terms where

M ∪ M′ is a non-attainable subgraph. In that situation, Pψt

(
M ⊆ E(PAt), M′ ⊆

E(PAt)
)
= 0. Furthermore, the sum over Pψt(M ⊆ E(PAt))Pψt(M′ ⊆ E(PAt) ≤

Eψt [Nt(H, π)]2 /n2, since the two subgraphs share at least two vertices. Therefore,
the negative terms in the conditional variance scale as most as Eψt [Nt(H, π)] /n2.
We therefore obtain that with probability at least 1− ε,

Varψt (Nt(H, π)) ≥ ηEψt [Nt(H, π)]2 , (9.6.11)

for some η > 0, which proves the proposition.

9.7 Discussion

In this chapter, we have investigated the expected number of times a graph H appears
as a subgraph of a PAM for any degree exponent τ. We find the scaling of the expected
number of such subgraphs in terms of the graph size t and the degree exponent τ by
defining an optimization problem that finds the optimal structure of the subgraph in
terms of the ages of the vertices that form subgraph H and by using the interpretation
of the PAM as a Pólya urn graph.

We derive the asymptotic scaling of the number of subgraphs. For the triangle
subgraph, we obtain more precise asymptotics. It would be interesting to obtain
precise asymptotics of the expected number of other types of subgraphs as well. In
particular, this is necessary to compute the variance of the number of subgraphs,
which may allow us to derive laws of large numbers for the number of subgraphs.
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We show that different subgraphs may have significantly different concentration pro-
perties. Therefore, identifying the distribution of the number of rescaled subgraphs
for any type of subgraph remains a challenging open problem.

Another interesting extension would be to investigate other types of PAMs, for
example models that allow for self-loops, or models that include extra triangles.

We further prove results for the number of subgraphs of fixed size k, while the
graph size tends to infinity. It would also be interesting to let the subgraph size grow
with the graph size, for example by counting the number of cycles of a certain length
that grows in the graph size.

Finally, we investigate the number of times H appears as a subgraph of a PAM.
It is also possible to count the number of times H appears as an induced subgraph
instead, forbidding edges that are not present in H to be present in the larger graph.
It would be interesting to see whether the optimal subgraph structure is different
from the optimal induced subgraph structure.
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In Chapters 7 and 8 we have shown that induced subgraphs in rank-1 inhomo-
geneous random graphs typically occur on vertices with specific degree ranges. A
wide class of induced subgraphs appears most frequently on vertices with degrees
scaling as

√
n. In this chapter, we show how we can use this knowledge to find a set

of vertices that induce some connected graph H in a rank-1 inhomogeneous random
graphs with infinite-variance power-law degrees. We provide a fast algorithm that
determines, for any connected graph H on k vertices, whether it exists as induced
subgraph in a random graph with n vertices and returns an instance of H if it does.
By exploiting the scale-free graph structure, the algorithm runs in nk time with high
probability for small values of k. We test our algorithm on several real-world data
sets.

10.1 Introduction

The induced subgraph isomorphism problem asks whether a large graph G contains
a connected graph H as an induced subgraph. When k is allowed to grow with the
graph size n, this problem is NP-hard in general. For example, k-clique and k-induced
cycle, which are special cases of H, are known to be NP-hard [90, 125]. For fixed
k, they can be solved in polynomial time O(nk) by searching for H on all possible
combinations of k vertices. Several randomized and non-randomized algorithms
exist to improve upon this trivial way of finding H [98, 167, 195, 218].

On real-world networks, many algorithms were observed to run much faster
than predicted by the worst-case running time of algorithms. This may be ascri-
bed to some of the properties that many real-world networks share [48], such as
the power-law degree distribution found in many networks [6, 79, 122, 212]. One
way of exploiting these power-law degree distributions is to design algorithms that
work well on random graphs with power-law degree distributions. For example,
finding the largest clique in a network is NP-complete for general networks [125].
However, in random graph models such as the Erdős-Rényi random graph and the
inhomogeneous random graph, their specific structures can be exploited to design

229
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fixed parameter tractable (FPT) algorithms that efficiently find a clique of size k [83,
86] or the largest independent set [105].

In this chapter, we study algorithms that are designed to perform well for the
rank-1 inhomogeneous random graph. The inhomogeneous random graph has a
densely connected core containing many cliques, consisting of vertices with degrees√

n log(n) and larger. In this densely connected core, the probability of an edge
being present is close to one, so that it contains many complete graphs [119]. This
observation was exploited in [85] to efficiently determine whether a clique of size
k occurs as a subgraph in an inhomogeneous random graph. When searching for
induced subgraphs however, some edges are required not to be present. Therefore,
searching for induced subgraphs in the entire core is not efficient. We show that
a connected subgraph H can be found as an induced subgraph by scanning only
vertices that are on the boundary of the core: vertices with degrees proportional to√

n.
We present an algorithm that first selects the set of vertices with degrees pro-

portional to
√

n, and then randomly searches for H as an induced subgraph on a
subset of k of those vertices. The first algorithm we present does not depend on the
specific structure of H. For general sparse graphs, the best known algorithms to solve
subgraph isomorphism on 3 or 4 vertices run in O(n1.41) or O(n1.51) time with high
probability [218]. For small values of k, our algorithm solves subgraph isomorphism
on k nodes in linear time with high probability on rank-1 inhomogeneous random
graphs. However, the graph size needs to be very large for our algorithm to perform
well. We therefore present a second algorithm that again selects the vertices with
degrees proportional to

√
n, and then searches for induced subgraph H in a more effi-

cient way. This algorithm has the same performance guarantee as our first algorithm,
but performs much better in simulations.

We test our algorithm on large inhomogeneous random graphs, where it indeed
efficiently finds induced subgraphs. We also test our algorithm on real-world network
data with power-law degrees. There our algorithm does not perform well, probably
due to the fact that the densely connected core of some real-world networks may not
be the vertices of degrees at least proportional to

√
n. We then show that a slight

modification of our algorithm that looks for induced subgraphs on vertices of degrees
proportional to nγ for some other value of γ performs better on real-world networks,
where the value of γ depends on the specific network.

10.1.1 Model

As a random graph null model, we use the rank-1 inhomogeneous random graph,
described in Section 1.1.4. We assume that the weights are an i.i.d. sample from the
power-law distribution

P (wi > k) = Ck1−τ (10.1.1)

for some constant C and for τ ∈ (2, 3). In this chapter, we focus on the Chung-Lu
setting of the rank-1 inhomogeneous random graph, so that two vertices with weights
w and w′ are connected with probability

p(w, w′) = min
(

ww′

µn
, 1
)

, (10.1.2)
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Algorithm 1: Finding induced subgraph H (random search)

Input : H, G = (V, E), µ, f1 = f1(n), f2 = f2(n).
Output : Location of H in G or fail.

1 Define n = |V|, In = [
√

f1µn,
√

f2µn] and set V′ = ∅.
2 for i ∈ V do
3 if Di ∈ In then V′ = V′ ∪ i;
4 end
5 Divide the vertices in V′ randomly into b|V′| /kc sets S1, . . . , Sb|V′ |/kc.
6 for j = 1, . . . , b|V′| /kc do
7 if H is an induced subgraph on Sj then return location of H;
8 end

where µ denotes the mean value of the power-law distribution (10.1.1). Choosing the
connection probability in this way ensures that the expected degree of a vertex with
weight w is w.

10.1.2 Algorithms

We now describe two randomized algorithms that determine whether a connected
graph H is an induced subgraph in an inhomogeneous random graph and finds the
location of such a subgraph if it exists. Algorithm 1 first selects the vertices that are
on the boundary of the core of the graph: vertices with degrees scaling as

√
n. Then,

the algorithm randomly divides these vertices into sets of k vertices. If one of these
sets contains H as an induced subgraph, the algorithm terminates and returns the
location of H. If this is not the case, then the algorithm fails. In the next section, we
show that for k small enough, the probability that the algorithm fails is asymptotically
small. This means that H is present as an induced subgraph on vertices that are on
the boundary of the core with high probability.

Algorithm 1 is similar to the algorithm in [86] designed to find cliques in random
graphs. The major difference is that the algorithm to find cliques selects all vertices
with degrees larger than

√
f1µn for some function f1. This algorithm is not efficient

for detecting other induced subgraphs than cliques, since vertices with high degrees
will be connected with probability close to one. For this reason, the algorithm also
removes vertices with degrees larger than

√
f2µn.

The following theorem gives a bound for the performance of Algorithm 1 for
small values of k and a wide range of functions f1 and f2:

Theorem 10.1. Let k = o(
√

log(n)/ log(log(n))), and choose f1 = f1(n) ≥ 1/ log(n)
and f1 < f2 < 1. Then, with high probability, Algorithm 1 detects induced subgraph H on
k vertices in an inhomogeneous random graph with n vertices and weights distributed as
in (10.1.1) in time nk.

Thus, for small values of k, Algorithm 1 finds an instance of H in linear time.
A problem with parameter k is called fixed parameter tractable (FPT) if it can be

solved in f (k)nO(1) time for some function f (k), and it is called typical FPT (typFPT) if
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it can be solved in f (k)ng(n) for some function g(n) = O(1) with high probability [83].
As a corollary of Theorem 10.1 we obtain that the k-induced subgraph problem on
the inhomogeneous random graph is in typFPT for any subgraph H, similarly to the
k-clique problem [86].

Corollary 10.1. The induced subgraph problem on the rank-1 inhomogeneous random graph
is in typFPT.

In theory Algorithm 1 detects any motif on k vertices in linear time for small k.
However, this only holds for large values of n, which can be understood as follows.
In Lemma 10.2, we show that |V′| = Θ(n(3−τ)/2), thus tending to infinity as n grows
large. However, when n = 107 and τ = 2.5, this means that the size of the set V′ is
only proportional to 101.75 = 56 vertices. Therefore, the number of sets Sj constructed
in Algorithm 1 is also small. Even though the probability of finding motif H in any
such set is proportional to a constant, this constant may be small, so that for finite n
the algorithm almost always fails. Thus, for Algorithm 1 to work, n needs to be large
enough so that n(3−τ)/2 is large as well.

The algorithm can be significantly improved by changing the search for H on
vertices in the set V′. In Algorithm 2 we propose a search for motif H similar to the
Kashtan motif sampling algorithm [127]. Rather than sampling k vertices randomly,
it samples one vertex randomly, and then randomly increases the set S by adding
vertices in its neighborhood. This already guarantees the vertices in list Sj to be
connected, making it more likely for them to form a specific connected motif together.
In particular, we expand the list Sj in such a way that the vertices in Sj are guaranteed
to form a spanning tree of H as a subgraph. This is ensured by choosing the list TH

that specifies at which vertex in Sj we expand Sj by adding a new vertex. For example,
if k = 4 and we set TH = [1, 2, 3] we first add a random neighbor of the first vertex,
then we look for a random neighbor of the previously added vertex, and then we
add a random neighbor of the third added vertex. Thus, setting TH = [1, 2, 3] ensures
that the set Sj contains a path of length three, whereas setting TH = [1, 1, 1] ensures
that the set Sj contains a star-shaped subgraph. Depending on which subgraph H we
are looking for, we can define TH so that it ensures that the set Sj at least contains a
spanning tree of motif H in Step 6 of the algorithm.

The selection on the degrees ensures that the degrees are sufficiently high so that
the probability of finding such a connected set on k vertices is high, as well as that
the degrees are sufficiently low to ensure that we do not only find complete graphs
because of the densely connected core of the inhomogeneous random graph. The
probability that Algorithm 2 indeed finds the desired motif H in any check is of
constant order of magnitude, similar to Algorithm 1. Therefore, the performance
guarantee of both algorithms is similar. However, Section 10.3 shows that in practice
Algorithm 2 performs much better, since for finite n, k connected vertices are more
likely to form a motif than k randomly chosen vertices.

The following theorem shows that indeed Algorithm 2 has similar performance
guarantees as Algorithm 1:

Theorem 10.2. Choose f1 = f1(n) ≥ 1/ log(n) and f1 < f2 < 1. Choose s = Ω(nα) for
some 0 < α < 1, such that s ≤ n/k. Then, Algorithm 2 detects induced subgraph H on
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Algorithm 2: Finding induced subgraph H (neighborhood search)

Input : H, G = (V, E), µ, f1 = f1(n), f2 = f2(n), s.
Output : Location of H in G or fail.

1 Define n = |V|, In = [
√

f1µn,
√

f2µn] and set V′ = ∅.
2 for i ∈ V do
3 if Di ∈ In then V′ = V′ ∪ i;
4 end
5 Let G′ be the induced subgraph of G on vertices V′.
6 Set TH consistently with motif H .
7 for j=1,. . . ,s do
8 Pick a random vertex v ∈ V′ and set Sj = v.
9 while

∣∣Sj
∣∣ 6= k do

10 Pick a random v′ ∈ NG′(Sj[TH [j]]) : v′ /∈ Sj
11 Add v′ to Sj.
12 end
13 if H is an induced subgraph on Sj then return location of H;
14 end

k = o(
√

log(n)/ log(log(n))) vertices on an inhomogeneous random graph with n vertices
and weights distributed as in (10.1.1) in time nk with high probability.

The proofs of Theorem 10.1 and 10.2 rely on the fact that for small k, any subgraph
on k vertices is present in G′ with high probability. This means that after the degree
selection step of Algorithms 1 and 2, for small k, any motif finding algorithm can
be used to find motif H on the remaining graph G′, such as the Grochow-Kellis
algorithm [98], the MAvisto algorithm [195] or the MODA algorithm [167]. In the
proofs of Theorem 10.1 and 10.2, we show that G′ has Θ(n(3−τ)/2) vertices with high
probability. Thus, the degree selection step reduces the problem of finding a motif
H on n vertices to finding a motif on a graph with Θ(n(3−τ)/2) vertices, significantly
reducing the running time of these algorithms.

10.2 Analysis of Algorithms 1 and 2

We prove Theorem 10.1 using two lemmas. The first lemma relates the degrees of the
vertices to their weights. The connection probabilities in the inhomogeneous random
graph depend on the weights of the vertices. In Algorithm 1, we select vertices based
on their degrees instead of their unknown weights. The following lemma shows that
the weights of the vertices in V′ are close to their degrees. In particular, we show
that when we select vertices with degrees in [

√
f1µn,

√
f2µn], their weights lie in the

interval [(1− ε)
√

f1µn, (1 + ε)
√

f2µn] with high probability:

Lemma 10.1 (Degrees and weights.). Fix ε > 0, and define Jn = [(1− ε)
√

f1µn, (1 +
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ε)
√

f2µn]. Then, for some K > 0,

P
(
∃i ∈ V′ : wi /∈ Jn

)
≤ Kn exp

(
− ε2√µn min

( √ f1

1− ε
,

√
f2

1 + ε

)
/2
)

. (10.2.1)

Proof. Fix i ∈ V. Then,

P
(

wi < (1− ε)
√

f1µn, Di ∈ In

)
=

P
(

Di ∈ In | wi < (1− ε)
√

f1µn
)

P
(
wi < (1− ε)

√
f1µn

)
≤ P

(
Di >

√
f1µn | wi = (1− ε)

√
f1µn

)
1− C((1− ε)

√
f1µn)1−τ

≤ K1P
(

Di >
√

f1µn | wi = (1− ε)
√

f1µn
)

,
(10.2.2)

for some K1 > 0. Here the first inequality follows because the probability that a
vertex with weight w1 has degree at least

√
f1µn is larger than the probability that a

vertex of weight w2 has degree at least
√

f1µn when w1 > w2. Conditionally on the
weights, Di is the sum of n− 1 independent indicators indicating the presence of an
edge between vertex i and the other vertices and that E [Di] = wi. Therefore, by the
Chernoff bound

P (Di > wi(1 + δ)) ≤ exp
(
− δ2wi/2

)
. (10.2.3)

Therefore, choosing δ = ε/(1− ε) yields

P
(

Di >
√

f1µn | wi = (1− ε)
√

f1µn
)
≤ exp

(
− ε2

√
f1µn

2(1− ε)

)
(1 + o(1)).

(10.2.4)
Combining this with (10.2.2) and taking the union bound over all vertices then results
in

P
(
∃i : Di ∈ In, wi < (1− ε)

√
f1µn

)
≤ K2n exp

(
− ε2

2(1− ε)

√
f1µn

)
, (10.2.5)

for some K2 > 0. Similarly,

P
(
∃i : Di ∈ In, wi > (1 + ε)

√
f2µn

)
≤ K3n exp

(
− ε2

2(1 + ε)

√
f2µn

)
, (10.2.6)

for some K3 > 0, which proves the lemma.

The second lemma shows that after deleting all vertices with degrees outside of In
defined in Step 1 of Algorithm 1, still polynomially many vertices remain with high
probability.

Lemma 10.2 (Polynomially many nodes remain.). There exists γ > 0 such that

P
(
|V′| < γn(3−τ)/2) ≤ 2 exp

(
−Θ(n(3−τ)/2)

)
. (10.2.7)
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Proof. Let E denote the event that all vertices i ∈ V′ satisfy wi ∈ Jn for some ε > 0,
with Jn as in Lemma 10.1. Let W ′ be the set of vertices with weights in Jn. Under the
event E , |V′| ≤ |W ′|. Then, by Lemma 10.1,

P
(
|V′| < γn(3−τ)/2

)
≤ P

(
|V′| < γn(3−τ)/2 | E

)
+ P(E c)

≤ P
(
|W ′| < γn(3−τ)/2

)
+ Kn exp

(
− ε2(1− ε)

2(1 + ε)

√
f1µn

)
.

(10.2.8)
Furthermore,

P (wi ∈ Jn) = C((1− ε)
√

f1µn)1−τ − C((1 + ε)
√

f2µn)1−τ ≥ α1(
√

µn)1−τ

(10.2.9)
for some constant α1 > 0 because f1 < f2. Thus, each of the n vertices is in the set W ′

independently with probability at least α1(
√

µn)1−τ . Choose 0 < γ < α1. Applying
the Chernoff bound then shows that

P
(
|W ′| < γn(3−τ)/2

)
≤ exp

(
− (α1 − γ)2

2α1
n(3−τ)/2

)
, (10.2.10)

which together with (10.2.8) and the fact that
√

f1µn = Ω(n(3−τ)/2) for τ ∈ (2, 3)
proves the lemma.

We now use these lemmas to prove Theorem 10.1:

Proof of Theorem 10.1. We condition on the event that V′ is of polynomial size (Lemma
10.2) and that the weights are within the constructed lower and upper bounds (Lemma
10.1), since both events occur with high probability. This bounds the edge probability
between any pair of nodes i and j in V′ as

pij < min
(
(1 + ε)

√
f2µn(1 + ε)

√
f2µn

µn
, 1
)
= f2(1 + ε)2, (10.2.11)

so that pij ≤ p+ = f2(1 + ε)2 < 1 if we choose ε sufficiently small. Similarly,

pij > min
(
(1− ε)2

√
f1µn2

µn

)
≥ c2

log(n)
, (10.2.12)

for some c2 > 0 by our choice of f1. Let E := |EH | be the number of edges in H. We
upper bound the probability of not finding H in one of the partitions of size k of
V′ as 1− pE

−(1− p+)(
k
2)−E. Since all partitions are disjoint we can upper bound the

probability of not finding H in any of the partitions as

P (H not in the partitions) ≤
(

1− pE
−(1− p+)(

k
2)−E

)⌈ |V′ |
k

⌉
. (10.2.13)

Using that E ≤ k2, (k
2)− E ≤ k2 and that 1− x ≤ e−x results in

P (H not in the partitions) ≤ exp
(
−pk2

− (1− p+)k2
⌈ |V′|

k

⌉)
. (10.2.14)
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Since |V′| = Θ
(

n
3−τ

2

)
, d|V′|/ke ≥ dn

3−τ
2 /k for some constant d > 0. We fill in the

expressions for p− and p+, with c3 > 0 a constant

P (H not in the partitions) ≤ exp

(
−dn

3−τ
2

k

(
c3

log n

)k2)
. (10.2.15)

Applying that k = o(
√

log(n)/ log(log(n))) yields

P (H not in the partitions) ≤ exp
(
− dn

3−τ
2√

log(n)/log(log(n))

(
c3

log n

)o
(

log(n)
log(log(n))

) )
≤ exp

(
−dn

3−τ
2 −o(1)

)
. (10.2.16)

Hence, the inner expression grows polynomially so that the probability of not finding
H in one of the partitions is negligibly small. The running time of the partial search is
given by

|V′|
k

(
k
2

)
≤ n

k

(
k
2

)
≤ nk (10.2.17)

which concludes the proof.

Proof of Corollary 10.1. If k > log
1
3 (n), we can determine whether H is an induced

subgraph by an exhaustive search in time(
n
k

)(
k
2

)
≤ nk

k
k(k− 1)

2
≤ knk ≤ kek4 ≤ nek4

, (10.2.18)

since for all sets of k vertices the presence or absence of (k
2) edges needs to be checked.

For k ≤ log
1
3 (n), Theorem 10.1 shows that the induced subgraph isomorphism

problem can be solved in time nk ≤ nek4
. Thus, with high probability, the induced

subgraph isomorphism problem can be solved in nek4
time, which proves that it is in

typFPT.

Proof of Theorem 10.2. The proof of Theorem 10.2 is similar to the proof of Theo-
rem 10.1. The only way that Algorithm 2 differs from Algorithm 1 is in the se-
lection of the sets Sj. As in the previous theorem, we condition on the event that
|V′| = Θ(n(3−τ)/2) (Lemma 10.2) and that the weights of the vertices in G′ are
bounded as in Lemma 10.1.

The graph G′ constructed in Step 5 of Algorithm 2 then consists of Θ(n(3−τ)/2) ver-
tices. Furthermore, by the bound (10.2.12) on the connection probabilities of all verti-
ces in G′, the expected degree of a vertex i in G′ satisfies E[Di,G′ ] ≥ c1n(3−τ)/2/ log(n)
for some c1 > 0. We can use similar arguments as in Lemma 10.1 to show that
Di,G′ ≥ c2n(3−τ)/2/ log(n) for some c2 > 0 with high probability for all vertices in G′.
Therefore, from now on we assume that

Di,G′ ≥ c2n(3−τ)/2/ log(n) ∀ ∈ V′. (10.2.19)
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Since G′ consists of Θ(n(3−τ)/2) vertices, Di,G′ = O(n(3−τ)/2) as well. This means
that for k = o(

√
log(n)/ log(log(n)), Steps 8-11 are able to find a connected subgraph

on k vertices with high probability.
Algorithm 2 then constructs s sets (Sj)j∈[s] on which it checks whether H is an

induced subgraph. However, these sets may overlap, creating dependencies between
the edge presences of the overlapping sets. We now show that the probability that
these sets overlap is small. We compute the probability that Sj is disjoint with the j− 1
previously constructed sets. The probability that the first vertex does not overlap with
the previous sets is bounded by 1− jk/ |V′|, since that vertex is chosen uniformly at
random. The second vertex is chosen in a size-biased manner, since it is chosen by
following a random edge. Conditionally on the degrees, the probability that vertex i
is added can therefore be written as

P (vertex i is added) =
Di,G′

∑s∈[|V′ |] Ds,G′
. (10.2.20)

Using (10.2.19) and the fact that Di,G′ = O(n(3−τ)/2) for all i ∈ V′ then results in

P (vertex i is added) ≤ M log(n)/
∣∣V′∣∣ (10.2.21)

for some constant M > 0. Therefore, the probability that Sj does not overlap with
(Sl)l∈[j−1] can be bounded from below by

P
(

Sj does not overlap with (Sl)l∈[j−1]

)
≥
(

1− kj
|V′|

)(
1− Mkj log(n)

|V′|

)k−1

,

(10.2.22)
where we used that (Sl)l∈[j−1] contains at most k(j− 1) ≤ kj distinct vertices. Thus,
the probability that all j sets do not overlap can be bounded as

P
(
Sj ∩ Sj−1 ∩ · · · ∩ S1 = ∅

)
≥
(

1− Mkj log(n)
|V′|

)jk
, (10.2.23)

which tends to one when jk = o(n(3−τ)/4).
Let sdis denote the number of disjoint sets out of the s sets constructed in Algo-

rithm 2. Then, by the previous argument, when s = Ω(nα) for some α > 0, sdis > nβ

for some β > 0 with high probability, because k = o(
√

log(n)/ log(log(n))).
The probability that H is present as an induced subgraph is bounded similarly

as in Theorem 10.1. We already know that k − 1 edges are present. For all other
E− (k− 1) edges of H, and all (k

2)− E edges that are not present in H, we can again
use (10.2.11) and (10.2.12) to bound the probability of edges being present or not
being present between vertices in V′. Therefore, we can bound the probability that H
is not found similarly to (10.2.14) as

P (H not in the partitions) ≤ P (H not in the disjoint partitions)

≤ exp
(
−pk2

− (1− p+)k2
sdis

)
.
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Because sdis > nβ for some β > 0, this term tends to zero exponentially. The running
time of the partial search can be bounded similarly to (10.2.17) as

s
(

k
2

)
≤ sk2 ≤ nk, (10.2.24)

where we have used that s ≤ n/k.

10.3 Experimental results

Figure 10.1 shows the fraction of times Algorithm 1 successfully finds a cycle of size
k in a rank-1 inhomogeneous random graph on 107 vertices. Even though for large
n Algorithm 1 should find an instance of a cycle of size k in Step 7 of the algorithm
with high probability, we see that Algorithm 1 never succeeds in finding one. This is
because of the finite-size effects discussed in Section 10.1.2.

Figure 10.2a also plots the fraction of times Algorithm 2 succeeds to find a cycle.
We set the parameter s = 10000 so that the algorithm fails if the algorithm does
not succeed to detect motif H after executing step 13 of Algorithm 2 10000 times.
Because s gives the number of attempts to find H, increasing s may increase the
success probability of Algorithm 2 at the cost of a higher running time. However,
in Figure 10.2b for small values of k, the mean number of times Step 13 is executed
when the algorithm succeeds is much lower than 10000, so that increasing s in this
experiment probably only has a small effect on the success probability. Algorithm 2
clearly outperforms Algorithm 1 in terms of its success probability. Figure 10.2b also
shows that the number of attempts needed to detect a cycle of length k is small for
k ≤ 6. For larger values of k the number of attempts increases. This can again be
ascribed to the finite-size effects that cause the set V′ to be small, so that large motifs
may not be present on vertices in set V′. We also plot the success probability when
using different values of the functions f1 and f2. When only the lower bound f1 on the
vertex degrees is used, as in [85], the success probability of the algorithm decreases.
This is because the set V′ now contains many high-degree vertices that are much more
likely to form cliques than cycles or other connected subgraphs on k vertices. This
makes f2 = ∞ a very efficient bound for detecting cliques [85]. However, Figure 10.2b
shows that more checks are needed before a cycle is detected, and in some cases the
cycle is not detected at all. Thus, f2 = ∞ is not efficient for detecting other induced
subgraphs than cliques.

Setting f1 = 0 and f2 = ∞ is also less efficient, as Figure 10.2a shows. In this
situation, the number of attempts needed to find a cycle of length k is larger than for
Algorithm 2 for k ≤ 6.

10.3.1 Real network data

We now check Algorithm 2 on four real-world networks with power-law degrees: a
Wikipedia communication network [137], the Gowalla social network [137], the Baidu
online encyclopedia [165] and the Internet on the autonomous systems level [137].
Table 10.1 presents several statistics of these scale-free data sets. Figure 10.3 shows
the fraction of runs where Algorithm 2 finds a cycle as an induced subgraph. For the
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Figure 10.1: The fraction of times Algorithm 1 succeeds to find a cycle of length k on
an inhomogeneous random graph with n = 107, τ = 5/2, averaged over 500 network
samples with f1 = 1/ log(n) and f2 = 0.9.

3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

k

fr
ac

ti
on

of
cy

cl
es

fo
un

d

Algorithm 2
f2 =∞
f1 = 0, f2 =∞

(a) Success probability

3 4 5 6 7
0

2,000

4,000

6,000

k

m
ea

n
nu

m
be

r
of

ch
ec

ks
Algorithm 2
f2 =∞
f1 = 0, f2 =∞

(b) Mean number of checks

Figure 10.2: Results of Algorithm 2 on an inhomogeneous random graph with n = 107,
τ = 5/2 for detecting cycles of length k. The parameters are chosen as s = 10000,
f1 = 1/ log(n), f2 = 0.9. The values are averaged over 500 generated networks.

Wikipedia social network in Figure 10.3a, Algorithm 2 is more efficient than looking
for cycles among all vertices in the network. For the Baidu online encyclopedia in
Figure 10.3c however, Algorithm 2 performs much worse than looking for cycles
among all possible vertices. In the other two network data sets in Figures 10.3b
and 10.3d the performance on the reduced vertex set and the original vertex set is
almost the same. Figure 10.4 shows that in general, Algorithm 2 indeed seems to
finish in fewer steps than when using the full vertex set. However, as Figure 10.4c
shows, for larger values of k the algorithm fails almost always.

These results show that while Algorithm 2 is efficient on rank-1 inhomogeneous
random graphs, it may not always be efficient on real-world data sets. This is not
surprising, because there is no reason why the vertices of degrees proportional to√

n should behave like an Erdős-Rényi random graph in real-world networks, like
in the inhomogeneous random graph. We therefore investigate whether selecting
vertices with degrees in In = [(µn)γ/ log(n), (µn)γ] for some other value of γ in
Algorithm 2 leads to a better performance. Figure 10.3 and 10.4 show for every
data set one particular value of γ that works well. For the Gowalla, Wikipedia and
Autonomous systems network, this leads to a faster algorithm to detect cycles. Only
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n E τ

Wikipedia 2,394,385 5,021,410 2.46
Gowalla 196,591 950,327 2.65
Baidu 2,141,300 17,794,839 2.29
AS-Skitter 1,696,415 11,095,298 2.35

Table 10.1: Statistics of the data sets: the number of vertices n, the number of edges E,
and the power-law exponent τ fitted by the method of [66].

for the Baidu network other values of γ do not improve upon randomly selecting
from all vertices. This indicates that for most networks, cycles do appear mostly on
vertices with degrees of specific orders of magnitude, making it possible to sample
these cycles faster. Unfortunately, these orders of magnitude may be different for
different networks. Across all four networks, the best value of γ seems to be smaller
than the value of 1/2 that is optimal for the rank-1 inhomogeneous random graph.

10.4 Conclusion

We have presented an algorithm which solves the induced subgraph problem on
inhomogeneous random graphs with infinite variance power-law degrees in time nk
with high probability as n grows large. This algorithm is based on the observation
that for fixed k, any subgraph is present on k vertices with degrees slightly smaller
than

√
µn with positive probability. Therefore, the algorithm first selects vertices

with those degrees, and then uses a random search method to look for the induced
subgraph on those vertices.

We show that this algorithm performs well on simulations of rank-1 inhomogene-
ous random graphs. Its performance on real-world data sets varies for different data
sets. This indicates that the degrees that contain the most induced subgraphs of size
k in real-world networks may not be close to

√
n. We then show that on these data

sets, it may be more efficient to find induced subgraphs on degrees proportional to
nγ for some other value of γ. The value of γ may be different for different networks.

Our algorithm exploits that induced subgraphs are likely formed among
√

µn-
degree vertices. However, we have shown in Chapters 7 and 8 that certain subgraphs
may occur more frequently on vertices of other degrees. For example, star-shaped
subgraphs on k vertices appear more often on one vertex with degree much higher
than

√
µn corresponding to the middle vertex of the star, and k − 1 lower-degree

vertices corresponding to the leafs of the star. An interesting open question is whether
there exist better degree-selection steps for specific subgraphs than the one used in
Algorithms 1 and 2.
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Figure 10.3: The fraction of times Algorithm 2 succeeds to find a cycle of length k
on four network data sets, using s = 10000, f1 = 1/ log(n), f2 = 0.9. The black line
uses Algorithm 2 on vertices of degrees in In = [(µn)γ/ log(n), (µn)γ]. The values
are averaged over 500 runs.

3 4 5 6 7
0

1,000

2,000

3,000

4,000

5,000

k

m
ea

n
nu

m
be

r
of

ch
ec

ks

Algorithm 2
f2 =∞
f1 = 0, f2 =∞
γ = 0.4

(a) Wikipedia

3 4 5 6 7
0

1,000

2,000

3,000

4,000

k

m
ea

n
nu

m
be

r
of

ch
ec

ks

Algorithm 2
f2 =∞
f1 = 0, f2 =∞
γ = 0.3

(b) Gowalla

3 4 5 6 7
0

1,000

2,000

3,000

k

m
ea

n
nu

m
be

r
of

ch
ec

ks

Algorithm 2
f2 =∞
f1 = 0, f2 =∞
γ = 0.2

(c) Baidu

3 4 5 6 7
0

500

1,000

1,500

2,000

2,500

k

m
ea

n
nu

m
be

r
of

ch
ec

ks

Algorithm 2
f2 =∞
f1 = 0, f2 =∞
γ = 0.4

(d) AS-Skitter

Figure 10.4: The number of times Step 12 of Algorithm 2 is invoked when the
algorithm does not fail on four network data sets for detecting cycles of length
k, using s = 10000, f1 = 1/ log(n), f2 = 0.9. The black line uses Algorithm 2 on
vertices of degrees in [(µn)γ/ log(n), (µn)γ]. The values are averaged over 500 runs.
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11 Hierarchical configuration models

Based on:
Hierarchical configuration model

R. van der Hofstad, J.S.H. van Leeuwaarden and C. Stegehuis
Internet Mathematics, (2017)

In this chapter, we introduce a class of random graphs with a community struc-
ture, which we call the hierarchical configuration model (HCM). On the inter-community
level, the graph is a configuration model, and on the intra-community level, every
vertex in the configuration model is replaced by a community: i.e., a small graph.
These communities may have any shape, as long as they are connected. For these
hierarchical graphs, we find the size of the largest component, the degree distribu-
tion, the assortativity and the clustering coefficient. Furthermore, we determine the
conditions under which a giant percolation cluster exists, and find its size.

11.1 Introduction and model

A characteristic feature of many real-world complex networks is that the degree
distribution obeys a power law. A popular model for such power-law networks is the
configuration model described in Section 1.1.1. A major shortcoming of this model,
however, is that it is locally tree-like – it contains only a few short cycles and the
graph next to most vertices is a tree – while a prominent feature of complex networks
is that they often have a community structure [159].

Communities are relatively densely connected and contain relatively many short
cycles. Since the configuration model contains only few short cycles, it cannot accura-
tely model networks with community structure. One possibility to add community
structure to random graphs is by adding so-called households [13, 14, 68, 206]. In this
line of work, on the macroscopic level, the graph is initially a configuration model
in which each vertex of the graph can be replaced by a complete graph (referred
to as household). Vertices in a household have links to all other household mem-
bers, which creates a community structure. These household models allow to study
networks with a prescribed degree distribution and a tunable clustering coefficient,
because the clustering coefficient can be manipulated by the household structure.
Hence, the focus in [13, 14, 68, 206] is on locally incorporating short cycles to explain
clustering at the global network level. In a similar spirit, a class of random graphs
was introduced in [157] in the form of a random network that only contains random
edges and triangles. Each vertex is assigned the number of triangles it is in. The
triangles are formed by pairing the nodes at random, and regular edges are formed

245



246 Chapter 11. Hierarchical configuration models

according to the statistical rules of the configuration model. The model in [157] was
extended in [126] to networks with arbitrary distributions of subgraphs.

In this chapter, we introduce the hierarchical configuration model (HCM), a
random graph model that can describe networks with an arbitrary community struc-
ture. Like in these previous works, our goal is to develop a more realistic yet tractable
random network model, by creating conditions under which the tree-like structure is
violated within the communities, but remains to hold at a higher network level – the
network of communities in our case. There are, however, considerable differences
with these earlier works. The model in [126, 157] departs from a specification of all
possible subgraphs or motifs, which is the triangle in [157] and all possible subgraphs
in [126]. The network is then created by specifying the number of subgraphs attached
to each vertex and then sampling randomly from the set of compatible networks. A
community can thus exist of many subgraphs, think of a large cluster of triangles,
which makes the framework in [126, 157] harder to fit on real-world networks. In
fact, in [126] the appropriate selection of subgraphs and their frequencies for practical
purposes is mentioned as a challenging open problem. The approaches in [13, 14,
68, 157, 206] are geared towards increasing clustering and fitting a global clustering
coefficient, but are less suitable to directly describe community structure. Like [68,
206] we construct a random graph model that at the higher level is a tree-like configu-
ration model, and at the lower level contains subgraphs, but these subgraphs do not
need to be complete graphs. Large real-world communities are relatively dense, but
not necessarily completely connected. We thus generalize the setting of [14, 68, 206]
to arbitrary community structures, to account for heterogeneity in size and internal
connectivity.

This generalization makes it possible to apply the HCM to real-world data sets.
When the community structure of a real-world network is detected by an algorithm,
the HCM is able to produce random graphs that have a similar community structure.
Furthermore, due to the general community structure of the HCM, several existing
random graph models turn out to be special cases. The advantage of the HCM is
that it is quite flexible in its local structure, yet it is still analytically tractable due to
its mesoscopic locally tree-like structure. In Chapters 12 and 13 we study how this
model fits real-world networks, the conclusion being that our model fits surprisingly
well. This is an important step to come to more realistic random graph models for
real-world networks.

This chapter is organized as follows. In Section 11.1.1 we define the HCM.
Section 11.2 presents several analytical results for the HCM, including the condi-
tion for a giant component to emerge, the degree distribution and the clustering
coefficient. In Section 11.3 we study bond percolation on the HCM. Section 11.4
describes examples of graph models in the literature that fit into our general frame-
work. Then we show in Section 11.5 how some stylized community structures affect
percolation. Finally, we present some conclusions in Section 11.6.

11.1.1 Hierarchical configuration model

We now describe the HCM in more detail. Consider a random graph G with n
communities (Hi)i∈[n]. A community H is represented by H = (F,d), where F =
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(a) Three communities (b) Possible result of HCM

Figure 11.1: Illustration of HCM

(VF, EF) is a simple, connected graph and d = (d(b)
v )v∈VF , where d(b)

v is the number
of edges from v ∈ VF to other communities. Thus d describes the degrees between
the communities. We call d(b)

v the inter-community degree of a vertex v in community
F. A vertex inside a community also has an intra-community degree d(c)

v : the number
of edges from that vertex to other vertices in the same community. The sum of
the intra-community and the inter-community degrees of a vertex is the degree of
the vertex, i.e., dv = d(b)

v + d(c)
v . Let dH = ∑v∈VF

d(b)
v be the total inter-community

degree of community H. Then the (HCM) is formed in the following way. We start
with n communities. Every vertex v has d(b)

v half-edges attached to it, as shown in
Figure 11.1a. These inter-community half-edges are paired uniformly at random. This
results in a random graph G with a community structure, as shown in Figure 11.1b.
On the macroscopic level, G is a configuration model with degrees (dHi )i∈[n].

We will need to use some assumptions on the parameters of our model. For this,
we start by introducing some notation. LetHn denote a uniformly chosen community
in [n] = {1, 2, . . . , n}. Furthermore, denote the number of communities of type H
in a graph with n communities by n(n)

H . Then n(n)
H /n is the fraction of communities

that are of type H. Let Dn be the inter-community degree of a uniformly chosen
community, i.e., Dn = dHn . Let the size of community i be denoted by si, and the size
of a uniformly chosen community in [n] by Sn. Then the total number of vertices in
the graph is

N =
n

∑
i=1

si = nE[Sn]. (11.1.1)

Let S and D be the limits in distribution of Sn and Dn respectively, as n → ∞. We
assume that the following conditions hold:

Condition 11.1 (Community regularity).

(i) Pn(H) = n(n)
H /n P−→ P(H), where P(H) is a probability distribution,

(ii) limn→∞ E[Sn] = E[S],

for some random variable S with E[S] < ∞.

Condition 11.2 (Intercommunity connectivity).

(i) limn→∞ E[Dn] = E[D],
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(ii) P(D = 2) < 1,

for some random variable D with E[D] < ∞.

Condition 11.1(i) implies that Dn
d−→ D and Sn

d−→ S, so that S and D are the
asymptotic community size distribution and community inter-community degree
distribution, respectively. Define

p(n)
k,s = ∑

H=(F,d):|F|=s,dH=k
Pn(H), (11.1.2)

pk,s = ∑
H=(F,d):|F|=s,dH=k

P(H), (11.1.3)

as the probabilities that a uniformly chosen community has size s and inter-community
degree k, for finite n and n → ∞, respectively. Then Condition 11.1 implies that
p(n)

k,s → pk,s for every (k, s).
We can think of Pn(H) as the probability that a uniformly chosen community

has a certain shape. In a data set we can approximate Pn(H) and use the HCM in
the following way. Suppose a community detection algorithm gives the empirical
distribution of the community shapes Pn(H). Now we construct a random graph in
the way that was described above. The probability that a certain community is of
shape H is Pn(H). We condition on the total inter-community degree to be even so
that edges between communities can be formed as in a configuration model. This
results in a graph with roughly the same degree sequence as the original graph.
Additionally, the community structure in the random graph is the same as in the
original graph. This construction preserves more of the microscopic features of the
original graph than a standard configuration model with the same degree sequence as
the original graph. It also shows the necessity of extending the work of [68, 206] to go
beyond the assumption that communities are complete graphs, because communities
in real-world networks can be non-complete. Using this construction, the HCM can
match the community structure in many complex networks. We will study HCM
with real-world communities as inputs in Chapters 12 and 13.

11.2 Model properties

For a connected component of G, we can either count the number of communities in
the component, or the number of vertices in it. We denote the number of communities
in a connected component C by v(H)(C ), and the number of communities with
inter-community degree k in the component by v(H)

k (C ). The number of vertices in
component C is denoted by v(C ). Let C(1) and C(2) be the largest and second largest
components of G, respectively, so that

v(C(1)) = max
u∈[N]

v(C (u)), (11.2.1)

where C (u) denotes the component of vertex u. Furthermore, define νD as

νD =
E[D(D− 1)]

E[D]
, (11.2.2)
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where D is the asymptotic community degree of Condition 11.2. Let pk = P(D = k)
and let g(x) = ∑k pkxk be the probability generating function of D, and g′(x) =
∑k kpkxk−1 its derivative.

11.2.1 Giant component

In the standard configuration model, a giant component exists w.h.p. if νD > 1 [117,
154, 155]. In the HCM a similar statement holds:

Theorem 11.1. Let G be a HCM satisfying Conditions 11.1 and 11.2. Then,

(i) If νD > 1,
v(C(1))

N
P−→ ∑k,s spk,s(1− ξk)

E[S]
> 0, (11.2.3)

where ξ is the unique solution in [0, 1) of g′(ξ) = ξE[D]. Furthermore, v(C(2))/N P−→
0.

(ii) If νD ≤ 1, then v(C(1))/N P−→ 0.

Proof. Suppose νD > 1. By [107, Theorem 4.1], if Condition 11.2 holds, Dn
P−→ D and

νD > 1 in a standard configuration model, then w.h.p. there will be one component
with a positive fraction of the vertices as n→ ∞. Furthermore, the number of vertices
in the largest component in a standard configuration model v(C CM

(1) ) and the number
of vertices of degree k in its largest connected component, vk(C

CM
(1) ) satisfy

v(C CM
(1) )/n P−→ 1− g(ξ) > 0, (11.2.4)

vk(C
CM
(1) )/n P−→ pk(1− ξk). (11.2.5)

If νD ≤ 1, then v(C CM
(1) )/n P−→ 0. Therefore, if Conditions 11.1 and 11.2 hold and

νD > 1 in the HCM, then there is a component with a positive fraction of the
communities as n → ∞. Hence, we need to prove that the largest hierarchical
component is indeed a large component with size given by (11.2.3) if νD > 1, and
that a small hierarchical component is also a small component of G.

Let C (CM)
(1) denote the largest hierarchical component of G: the component with the

largest number of communities. We denote the number of communities in the largest
hierarchical component with inter-community degree k and size s by v(H)

k,s (C
(CM)
(1) ).

Since G is a configuration model on the community level, (11.2.4) and (11.2.5) apply
on the community level. Furthermore, given a community in the largest hierarchical
component of inter-community degree k, its size is independent of being in the largest
hierarchical component. Moreover, ∑k sv(H)

k,s (C
(CM)
(1) )/n ≤ ∑k sp(n)

k,s. Therefore, by
Condition 11.1, the fraction of vertices in the largest hierarchical component satisfies

v(C(1))

N
=

∑i∈C H
(1)

si

∑i si
=

∑k,s n−1sv(H)

k,s (C
(CM)
(1) )

n−1 ∑i si

P−→ ∑k,s spk,s(1− ξk)

E[S]
> 0. (11.2.6)
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The last inequality follows from Condition 11.1(ii) and the fact that ξ ∈ [0, 1) and
s ≥ 1. Now we need to prove that the largest hierarchical component indeed is the
largest component of G. We show that a hierarchical component of size o(n) is a
component of size oP(N). Take a hierarchical component C which is not the largest
hierarchical component, so that it is of size o(n). Then,

v(C )

N
=

n−1 ∑k,s sv(H)

k,s (C )

E[Sn]
=

n−1 ∑K
s=1 ∑k sv(H)

k,s (C )

E[Sn]
+

n−1 ∑s>K ∑k sv(H)

k,s (C )

E[Sn]

≤ K
n−1 ∑K

s=1 ∑k v(H)

k,s (C )

E[Sn]
+

E[Sn1{Sn>K}]
E[Sn]

≤ K
n−1v(H)(C )

E[Sn]
+

E[Sn1{Sn>K}]
E[Sn]

.

(11.2.7)
First we take the limit for n→ ∞, and then we let K → ∞. By [117], v(H)(C )/n P−→
0, hence the first term tends to zero as n → ∞. Furthermore, E[Sn1{Sn>K}] →
E[S1{S>K}] as n → ∞ by Condition 11.1. By Condition 11.1(ii), this tends to zero

as K → ∞. Thus, v(C )/N P−→ 0. Since (11.2.7) is uniform in C , this proves that
the largest hierarchical component is indeed the largest component of G. This also
proves part (ii), since by [107, Theorem 4.1], if νD ≤ 1, v(H)(C (CM)

(1) ) = oP(n), so that
v(C(1)) = oP(N). Similarly, for νD > 1, v(H)(C (CM)

(2) ) = oP(n) by [107, Theorem 4.1].

Thus we may conclude that v(C(2))/N P−→ 0.

We conclude that if Conditions 11.1 and 11.2 hold and νD > 1, then a giant
component exists in the HCM. Equation (11.2.3) gives the fraction of vertices in the
largest component. The fraction of vertices in the giant component may be different
from the fraction of communities in the giant hierarchical component. If the sizes and
the inter-community degrees of the communities are independent, then the fraction
of vertices in the largest component is equal to the fraction of communities in the
largest hierarchical component.

Corollary 11.1. Suppose that in the HCM G satisfying Conditions 11.1 and 11.2, the size of
the communities and the inter-community degrees of the communities are independent. Then,
if νD > 1,

v(C(1))

N
P−→ 1− g(ξ), (11.2.8)

v(H)(C(1))

n
P−→ 1− g(ξ), (11.2.9)

where ξ is the unique solution in [0, 1) of g′(ξ) = ξE[D]. Hence the fraction of vertices
in the largest component is equal to the fraction of communities in the largest hierarchical
component. If the size and the inter-community degrees are dependent, then this does not
have to be true.

Proof. The equality in (11.2.9) is given by [107, Theorem 4.1]. The equality in (11.2.8)
follows by substituting pk,s = pk ps in (11.2.3), so that

v(C(1))

N
P−→ ∑s sps ∑k pk(1− ξk)

E[S]
=

E[S](1−∑k pkξk)

E[S]
= 1− g(ξ). (11.2.10)
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To show that (11.2.8) may not hold when the inter-community degrees and the sizes
are dependent, consider the HCM with

pk,s =

{
1
3 if (k, s) = (3, 10),
2
3 if (k, s) = (1, 1).

(11.2.11)

Since νD = 6
5 > 1, a giant component exists w.h.p. Furthermore, ξ solves

2
3 + ξ2 = 5

3 ξ, (11.2.12)

which has 2
3 as its only solution in [0, 1). Therefore, the fraction of communities in the

largest component is given by 1− g( 2
3 ) =

37
81 . To find the fraction of vertices in the

largest component, we use (11.2.3), which gives

1
4 (

2
3 (1− 1

2 ) + 10 1
3 (1− ( 1

2 )
3)) = 13

16 > 37
81 . (11.2.13)

Thus, the fraction of vertices in the largest component is larger than the fraction of
communities in the largest component.

If there is a difference between the fraction of communities and the fraction of
vertices in the largest component, then this difference is caused by the dependence
of the sizes and the inter-community degrees of the communities. A community
with a large inter-community degree has a higher probability of being in the largest
hierarchical component than a community with a small inter-community degree.
In the example in the proof of Corollary 11.1, the communities with large inter-
community degrees are large communities. This causes the fraction of vertices in
the largest component to be larger than the fraction of communities in the largest
hierarchical component.

11.2.2 Degree distribution

In the HCM, the macroscopic configuration model has a fixed degree sequence. The
degree distribution of G depends on the sizes and shapes of the communities. Let n(H)

k
denote the number of vertices in community H with the sum of their intra-community
degree and inter-community degree equal to k. Then the degree distribution of the
total graph G is described in Proposition 11.1:

Proposition 11.1. Let G be a HCM such that Conditions 11.1 and 11.2 hold. The asymptotic
probability p̂k that a randomly chosen vertex inside G has degree k satisfies

p̂k =
∑H P(H)n(H)

k
E[S]

, (11.2.14)

as n→ ∞.

Proof. Consider a HCM G on n communities. Let n(n)
H be the number of commu-

nities in G of type H. The total number of vertices of degree k is the sum of the
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number of degree k vertices inside all communities, hence it equals ∑H n(n)
H n(H)

k . Furt-
hermore, Pn(H)n(H)

k ≤ Pn(H)sH , so that limn→∞ ∑H Pn(N)n(H)

k = ∑H P(H)n(H)

k by
Condition 11.1. This gives

p̂(n)
k =

n−1 ∑H nHn(H)

k
n−1N

=
∑H Pn(H)n(H)

k
E[Sn]

P−→ p̂k, (11.2.15)

as n→ ∞.

11.2.3 The probability of obtaining a simple graph

In the standard configuration model, the probability of obtaining a simple graph
converges to e−ν/2−ν2/4 under the condition that E[D2] < ∞ [106]. In the HCM, the
probability of obtaining a simple graph is largely dependent on the shapes of the
communities. Since we have assumed that the communities are simple, only the
inter-community edges can create self-loops and multiple edges.

Suppose that each vertex in a community has at most one half-edge to other
communities, i.e., d(b)

v ∈ {0, 1}. A double edge in the macroscopic configuration
model corresponds to a community where two vertices have an edge to the same
other community. Since d(b)

v ∈ {0, 1}, a double edge in the macroscopic configuration
model cannot correspond to a double edge in the HCM. A self-loop in the macroscopic
configuration model corresponds to an edge from one vertex v inside a community
to another vertex w inside the same community. This self-loop in the macroscopic
configuration model corresponds to a double edge in the HCM if an edge from v to w
was already present in the community. Thus, when d(b)

v ∈ {0, 1} the probability that
the macroscopic configuration model is simple is lower bounded by the probability
that no self-loops exist in the macroscopic configuration model,

lim inf
n→∞

P (Gn simple) ≥ e−νD/2, (11.2.16)

which is larger than the corresponding probability for the configuration model. In the
case of complete graph communities, every self-loop of the macroscopic configuration
model corresponds to a double edge in the HCM. Therefore, equality holds when all
communities are complete graphs.

11.2.4 Assortativity

The assortativity of a graph G = (V, E) can be interpreted as the correlation between
the degrees at the end of a randomly chosen edge [158] and is given by

r(G) =
2 ∑{i,j}∈E didj − 1

2L
(
∑i d2

i
)2

∑i d3
i − 1

2L
(
∑i d2

i
)2 . (11.2.17)

Positive assortativity indicates that vertices of high degree are connected to other
vertices of high degree, and negative assortativity indicates that high degree vertices
are typically connected to vertices of low degree. Assortativity is a frequently used
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network statistic, despite its dependence on the network size [141], and can also be
interpreted in terms of the number of short walks on the network [149].

The assortativity of the HCM can be computed analytically using (11.2.17). We
denote the degree (inter- plus extra-community degree) of a randomly chosen vertex
among the N vertices of the graph by D̂N . Furthermore, we denote by D(b)

N the inter-
community degree of a randomly chosen vertex. For a given community H, let Q(H)
denote

Q(H) = ∑
{i,j}∈EH

didj, (11.2.18)

and let Qn be the value of Q(H) for a randomly chosen community. Then we can
prove the following result for the expected assortativity:

Proposition 11.2. Let G be a HCM such that Conditions 11.1 and 11.2 hold. Then the
expected assortativity of G satisfies

E [r(G)] =
2E[D̂N D(b)

N ]2E [Sn](E[Dn]− 1
n )
−1

+ 2E[Qn]E[Sn]
−1 −E[D̂2

N ]
2E[D̂N ]

−1

E[D̂3
N ]−E[D̂2

N ]
2E[D̂N ]

−1 .

(11.2.19)

Proof. We rewrite (11.2.17) as

r(G) =
2 ∑{i,j}∈E didj − 1

2L
(
∑i d2

i
)2

∑i d3
i − 1

2L
(
∑i d2

i
)2 =

2
N ∑{i,j}∈E didj − ( 1

N ∑i d2
i )

2

1
N ∑i di

1
N ∑i d3

i −
( 1

N ∑i d2
i )

2

1
N ∑i di

=

2
N ∑{i,j}∈E didj − E[D̂2

N ]2

E[D̂N ]

E[D̂3
N ]−

E[D̂2
N ]2

E[D̂N ]

. (11.2.20)

Therefore, the only term of assortativity that depends on the community structure
is the first term in the numerator. The edges of a HCM can be split into two sets:
the edges that are entirely inside a community, and the edges that are between
two different communities, denoted by Ec and Eb respectively. The edges inside
communities are fixed given the community shape. Therefore the contribution of the
intra-community edges to the first term in the numerator can be written as

1
N ∑
{i,j}∈Ec

didj =
1
N

n

∑
k=1

∑
{i,j}∈EHk

didj =
1

nE[Sn]

n

∑
k=1

Q(Hk) =
E[Qn]

E[Sn]
. (11.2.21)

Let D(b)
N denote the inter-community degree of a randomly chosen vertex inside a

community. The HCM consists of nE [Dn] half-edges. The probability that a specific
half-edge will be paired with another specific half-edge equals 1/(nE [Dn] − 1),
since the half-edges are paired at random. Then the expected contribution of the
inter-community edges can be written as

E
[ 1

N ∑
{i,j}∈Eb

didj

]
=

1
N

N

∑
i=1

N

∑
j=1

d(b)i

∑
k=1

d(b)j

∑
l=1

didj

nE [Dn]− 1
=

1
N

N

∑
i=1

N

∑
j=1

did
(b)
i djd

(b)
j

nE [Dn]− 1
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=
1

N(nE [Dn]− 1)

( N

∑
i=1

did
(b)
i

)2

=
E [Sn]

E [Dn]− 1
n

(
1
N

N

∑
i=1

did
(b)
i

)2

=
E [Sn]E[D̂N D(b)

N ]2

E[Dn]− 1
n

. (11.2.22)

Combining (11.2.20), (11.2.21) and (11.2.22) proves the proposition.

11.2.5 Clustering coefficient

We now investigate the global clustering coefficient defined as

C =
3× number of triangles

number of connected triples
. (11.2.23)

A connected triple is a vertex with edges to two different other vertices. In the
standard configuration model, the clustering coefficient tends to zero when E[D2] <
∞ [161]. Thus, in the HCM, we expect that the clustering is entirely caused by
triangles inside communities.

Another measure of clustering is the local clustering coefficient for vertices of
degree k. This coefficient can be interpreted as the fraction of neighbors of degree k
vertices that are directly connected and is defined as

c(k) =
number of pairs of connected neighbors of degree k vertices

k(k− 1)/2× number of degree k vertices
. (11.2.24)

As in Section 11.2.2, let n(H)

k denote the number of vertices in community H with
degree equal to k. Furthermore, let P(H)

v denote the number of pairs of neighbors of a
vertex v ∈ VH within community H that are also neighbors of each other. We denote
the clustering coefficient of community H by c̃(H). Every vertex v in community H
has d(c)

v (d(c)
v − 1)/2 pairs of neighbors inside H. Hence, the total number of connected

triples inside the community is given by ∑v∈VH
d(c)

v (d(c)
v − 1)/2. Then, by (11.2.23),

c̃(H) =
2 ∑v∈VH

P(H)
v

∑v∈VH
d(c)

v (d(c)
v − 1)

. (11.2.25)

Proposition 11.3 states that the clustering coefficient of the HCM can be written as
a combination of the clustering coefficients inside communities. Let D̂ denote the
asymptotic degree as in Proposition 11.1.

Proposition 11.3. Let G be a HCM satisfying Conditions 11.1 and 11.2, limn→∞ E[D2
n] =

E[D2] < ∞ and limN→∞ E[D̂2
N ] = E[D̂2] < ∞. Then the clustering coefficient C(n) and

average clustering coefficient for vertices of degree k, c(n)(k), satisfy

C(n) P−→ C :=
2 ∑H ∑v∈VH

P(H)c(H)d(c)
v (d(c)

v − 1)

∑H ∑v∈VH
P(H)dv(dv − 1)

, (11.2.26)

c(n)(k) P−→ c(k) :=
2 ∑H ∑v∈VH :dv=k P(H)P(H)

v

k(k− 1)
. (11.2.27)
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(a) self-loop (b) double edge (c) triangle

Figure 11.2: Possibilities to form triangles in the HCM that are not entirely inside
communities. Edges between communities (dashed) that add clustering correspond
to either a self-loop, a double edge or a triangle in the macroscopic configuration
model.

(a) self-loop (b) double edge (c) triangle

Figure 11.3: Figure 11.2 on macroscopic level. The inter-community edges that
add clustering correspond to either a self-loop, a double edge or a triangle of the
macroscopic configuration model.

Proof. In the HCM, the number of triples is deterministic. A vertex v with degree
dv has dv(dv − 1)/2 pairs of neighbors. Thus, the total number of connected triples
in G is given by ∑H n(n)

H ∑v∈VH
dv(dv − 1)/2, where n(n)

H is the number of type H
communities.

Triangles in G can be formed in several ways. First of all, a triangle can be formed
by three edges inside the same community. In this case the triangle in G is formed
by a triangle in one of its communities H. Another possibility to create a triangle
is shown in Figure 11.2a. The black edges show intra-community edges, and the
dashed edges are formed by edges of the macroscopic configuration model. Thus,
this triangle is formed by two intra-community edges, and one edge of the macrosco-
pic configuration model. Figure 11.3a shows that this inter-community edge is a
self-loop of the macroscopic configuration model. One self-loop of the macroscopic
configuration model can create multiple triangles; at most si − 2. Figure 11.2b shows
the case where only one edge of the triangle is an intra-community edge. Figure 11.3b
shows that the two inter-community edges must form a double edge in the macrosco-
pic configuration model. The last possibility is that all three edges of the triangle
are inter-community edges as in Figure 11.2c. This corresponds to a triangle in the
macroscopic configuration model (Figure 11.3c).

Hence, either the triangle was present in H already, or it corresponds to a double
edge, self-loop or triangle in φ(G), where φ(G) denotes the macroscopic configuration
model. Let the number of self-loops, double edges and triangles in φ(G) be denoted
by W(n), M(n) and T(n) respectively. Denote the number of triangles entirely formed
by intra-community edges of G by T(n)

com. The number of triangles in G is bounded
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from below by T(n)
com. Using (11.2.25), we obtain that

3T(n)
com = ∑

H
∑

v∈VH

n(n)
H P(H)

v = ∑
H

∑
v∈VH

nH c̃(H)d(c)
v (d(c)

v − 1). (11.2.28)

Since c(H) ≤ 1, and limN→∞ E[D̂2
N ] = E[D̂2],

C(n) =
3× number of triangles in G

number of connected triples in G
≥ 3T(n)

com/n

∑H n(n)
H ∑v∈VH

dv(dv − 1)/(2n)

P−→ 2 ∑H ∑v∈VH
P(H)c̃(H)d(c)

v (d(c)
v − 1)

∑H ∑v∈VH
P(H)dv(dv − 1)

. (11.2.29)

The sums in (11.2.29) are finite due to the assumptions E[D2] < ∞ and E[D̂2] < ∞.
For the upper bound, we use that every self-loop on the community level adds at

most si − 2 triangles, and every triangle or double edge on the community level add
at most one triangle. This yields the inequality

number of triangles G ≤ T(n)
com + M(n) + S(n) +

W(n)

∑
i=1

(sIi − 2). (11.2.30)

Here the sum is over all communities where a self-loop is present, written as (Ii)
W(n)

i=1 .
If a community has multiple self-loops, then the community is counted multiple
times in the sum. By [13, Theorem 5](

M(n) + T(n)
)

/n P−→ 0. (11.2.31)

in a configuration model with E[D2] < ∞.
The last term in (11.2.30) satisfies

∑W(n)

i=1 (sIi − 2)
n

=
W(n)E[Sn − 2 | self-loop]

n

≤
W(n) maxi∈[n] si

n
=

W(n)o(n)
n

P−→ 0. (11.2.32)

The last equality follows because E[Sn]→ E[S] < ∞, which implies that

lim
k→∞

lim
n→∞

1
n ∑

j∈[n]
sj1{sj > k} = 0, (11.2.33)

so that maxi si = o(n). The convergence follows since the number of self-loops
in a configuration model converges to a Poisson distribution with mean νD [106,
Proposition 7.11], combined with E[D2] < ∞.

Combining (11.2.31) and (11.2.32) yields

C(n) ≤ 3T(n)
com + 3(M(n) + T(n)) + 3 ∑W(n)

i=1 (sIi − 2)

∑H n(n)
H ∑v∈VH

dv(dv − 1)/2
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P−→ 2 ∑H P(H)∑v∈VH
c(H)d(c)

v (d(c)
v − 1)

∑H P(H)∑v∈VH
dv(dv − 1)

. (11.2.34)

Together with (11.2.29) this proves (11.2.26).
To prove (11.2.27), a similar argument can be used. The number of connected

neighbors of vertices of degree k is bounded from below by ∑H n(n)
H ∑v∈VH :dv=k P(H)

v ,
and from above by

∑
H

n(n)
H ∑

v∈VH :dv=k
P(H)

v + M(n) + S(n) +
W(n)

∑
i=1

(sIi − 2). (11.2.35)

Then, dividing by k(k− 1)np̂(n)
k , where p̂(n)

k is the probability of having a vertex of
degree k, and taking the limit yields (11.2.27). The assumption that E[D̂2] < ∞ is
not necessary for this clustering coefficient, since Pv/k(k− 1) ≤ 1 for all vertices of
degree k.

11.3 Percolation

We now consider bond percolation on G, where each edge of G is removed indepen-
dently with probability 1− π. We are interested in the critical percolation value and
the size of the largest percolating cluster. Percolation on the configuration model was
studied in [81, 115]. Here we extend these results to the HCM.

Percolating G is the same as first percolating only the intra-community edges, and
then percolating the inter-community edges. For percolation inside a community,
only the intra-community edges are removed with probability 1− π. The half-edges
attached to a community are not percolated. Let Hπ denote the subgraph of H,
where each edge of H has been deleted with probability 1− π. When percolating
a community, it may split into different connected components, as illustrated in
Figure 11.4b. Let g(H, v, l, π) denote the probability that the connected component
of Hπ containing v has inter-community degree l. If Hπ is still connected, then
the component containing v still has dH outgoing edges for all v ∈ VH . If Hπ

is disconnected, then this does not hold. If one of the components of Hπ has an
inter-community edge, each vertex in another component of Hπ cannot reach that
edge. Therefore, a vertex in this other component is connected to less than dH inter-
community edges.

To compute the size of the largest percolating cluster, we need the following
definitions:

p′k :=
∑H ∑v∈VH

d(b)
v P(H)g(H, v, k, π)/k

∑H ∑v∈VH ∑l d(b)
v P(H)g(H, v, l, π)/l

, (11.3.1)

h(z) :=
∞

∑
k=1

kp′kzk−1, (11.3.2)

λ :=
∞

∑
k=0

kp′k. (11.3.3)
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(a) A set of communities (b) Percolation of intra-
community edges

(c) Connected components of
communities form new com-
munities

Figure 11.4: Percolating only intra-community edges first results in a HCM with
different communities.

The probabilities (p′k)k≥0 can be interpreted as the asymptotic probability distribution
of the inter-community degrees of the connected parts of communities after percola-
tion inside communities (the communities of Figure 11.4c). Then h(z) and λ are the
derivative of the probability generating function and the mean of the inter-community
degrees of the components of communities after percolation respectively.

Define D∗π as the number of inter-community edges after entering a percolated
community from a randomly chosen edge. The probability of entering at vertex v
in community H, equals P(H)d(b)

v /E[D]. After entering H at vertex v, there are in
expectation ∑DH−1

k=1 kg(H, v, k + 1, π) edges to other communities (since one edge was
used to enter H). Hence,

E[D∗π ] =
1

E[D] ∑
H

P(H) ∑
v∈VH

d(b)
v

DH−1

∑
k=1

kg(H, v, k + 1, π). (11.3.4)

After percolating the inter-community edges, a fraction of π of these edges remain.
Thus, after percolating all edges, when entering a community, the expected number of
outgoing edges excluding the traversed edge is πE[D∗π ]. We expect the critical value
of π to satisfy πE[D∗π ] = 1, i.e., the expected number of edges to other communities
is one, after entering a community from a randomly chosen edge. The next theorem
states that this is indeed the critical percolation value:

Theorem 11.2. Assume G is a HCM satisfying Conditions 11.1 and 11.2. The critical value
of the percolation parameter πc of G is the unique solution of

πc =
1

E[D∗πc ]
. (11.3.5)

Furthermore:

1. For π > πc, the size of the largest component of the percolated graph satisfies

v(C(1))

N
P−→ 1

E[S]

∞

∑
k=1

∑
H

∑
v∈VH

P(H)g(H, v, k, π)
(

1− (1−
√

π +
√

πξ)k
)
> 0,

(11.3.6)
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where ξ is the unique solution in (0, 1) of
√

πh(1−
√

π +
√

πξ) + (1−
√

π)λ = λξ. (11.3.7)

2. For π ≤ πc, v(C(1))/N P−→ 0.

For the standard configuration model, a special case of HCM with all communities
of size one, (11.3.5) simplifies to πc = E[D]/E[D(D − 1)], since in that case, for a
vertex of degree d, g(v, v, k, π) = 1{k=d}. Furthermore, πc = 0 when for any π > 0,
the expected number of edges to other communities is infinite when entering a
community via a uniformly chosen edge.

The proof of Theorem 11.2 has a similar structure as the proof of [68, Theorem 1].
The proof consists of three key steps:

(a) First, each intra-community edge is removed with probability 1 − π. This
may split the community into several connected components. We find the
distribution of the inter-community degrees of the connected components of
the percolated communities, which is given by p′k, as in (11.3.1). We identify
vertices that are in the same connected component of a community. Lemma 11.1
shows that this results in a graph φ(Gπ) that is distributed as a configuration
model with asymptotic degree probabilities p′k (recall (11.3.1)).

(b) We then remove each intra-community edge with probability 1− π. Results
of [115] can now be applied to the configuration model with distribution p′k to
find the critical percolation value and the size of the giant hierarchical compo-
nent.

(c) Next, we translate the number of communities in the largest percolated hierar-
chical component to the number of vertices. Then we show that this is indeed
the largest component of the percolated graph.

We now present the details in these steps.

Auxiliary graph. We introduce the auxiliary graph φ(Ḡ), defined for every subgraph
Ḡ ⊂ G, and obtained by identifying the vertices that belonged to the same community
in G, and are connected in Ḡ [68]. Hence, in φ(Ḡ) every vertex represents a connected
part of a community. Figure 11.5 illustrates φ(Ḡ). For a HCM G, the graph φ(G) is a
configuration model where communities of G are collapsed into single vertices.

Lemma 11.1. Let G be a HCM satisfying Conditions 11.1 and 11.2. Let Gπ denote the
subgraph of G where each intra-community edge is removed with probability 1− π. Then
the graph φ(Gπ) is distributed as a configuration model with degree probabilities p′k given
in (11.3.1).

Proof. We independently delete each intra-community edge with probability 1− π.
We want to find the degree distribution of φ(Gπ). Let M(n)(H, v, k, π) denote the num-
ber of connected components of the percolated versions of community H containing
vertex v and having inter-community degree k. Each community of shape H has an
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Figure 11.5: Left, a subgraph H̄ of a community H, dashed lines are not in H̄, but are
present in H, solid lines are present in H̄. The graph φ(H̄) is shown on the right.

equal probability that the component containing v has inter-community degree k gi-
ven by g(H, v, k, π). Furthermore, the probability that a randomly chosen community
has shape H is independent of the probability that the inter-community degree is k
after intra-community percolation in community H. Therefore, given the number
of type H communities n(n)

H , we can write M(n)(H, v, k, π) ∼ Bin(n(n)
H , g(H, v, k, π)).

Thus, by the weak law of large numbers,

M(n)(H, v, k, π)

n
=

M(n)(H, v, k, π)

n(n)
H

n(n)
H
n

P−→ P(H)g(H, v, k, π). (11.3.8)

Let N(n)(H, k, π) denote the total number of connected components of the percolated
versions of H having inter-community degree k. This number can be obtained
by counting the number of half-edges of all connected components of percolated
graphs with inter-community degree k, and then dividing by k. Each vertex v in
such a percolated community contributes d(b)

v to the inter-community degree of the
percolated community. Thus,

N(n)(H, k, π) = ∑
v∈VH

d(b)
v M(n)(H, v, k, π)/k. (11.3.9)

Let ñ denote the number of vertices in φ(Gπ), so that ñ = ∑H ∑k N(n)(H, k, π). Simi-
larly, the number vertices of degree k in φ(Gπ) is denoted by ñk = ∑H N(n)(H, k, π).
Furthermore, ∑k N(n)(H, k, π)/n ≤ Pn(H)sH , and therefore by the Dominated Con-
vergence Theorem, Condition 11.1, (11.3.8) and (11.3.9),

ñ/n P−→∑
H

DH

∑
k=1

∑
v∈VH

d(b)
v P(H)g(H, v, k, π)/k. (11.3.10)

This also implies that

N(n)(H, k, π)

ñ
=

N(n)(H, k, π)/n
ñ/n

P−→ ∑v∈VH
d(b)

v P(H)g(H, v, k, π)/k

∑H ∑v∈VH ∑l d(b)
v P(H)g(H, v, l, π)/l

.

(11.3.11)
Hence, the proportion of vertices in φ(Gπ) with degree k tends to

ñk
ñ

= ∑
H

N(n)(H, k, π)

ñ
P−→ p′k. (11.3.12)
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Since the edges between communities in G were paired at random, this means that
the graph φ(Gπ) is distributed as a configuration model with degree probabilities
p′k.

Using Lemma 11.1, we now prove Theorem 11.2:

Proof of Theorem 11.2. Step (a). Lemma 11.1 proves that φ(Gπ) is distributed as a
configuration model with degree probabilities p′k.

Step (b). φ(Gπ) and φ(G) have ∑k kñk and ∑k knk half-edges, respectively. Since only
intra-community edges have been deleted, ∑k knk = ∑k kñk. By Condition 11.2(i),
∑k knk/n → E[D]. Furthermore, by (11.3.10) ñ/n converges, hence ∑k kñk/ñ con-
verges. Therefore we can apply Theorem 3.9 from [115], which states that after
percolation, a configuration model with degree probabilities p′k has a giant compo-
nent if

π ∑
k

k(k− 1)p′k > ∑
k

kp′k. (11.3.13)

From Theorem 11.1 we know that a giant hierarchical component is also a giant
component in G, and a hierarchical component of size oP(n) is a component of size
oP(N). Hence, the giant component emerges precisely when the giant hierarchical
component emerges. Substituting (11.3.12) gives for the critical percolation value πc
that

πc =
∑k kp′k

∑k k(k− 1)p′k
=

∑H ∑v∈VH
d(b)

v ∑DH
k=1 P(H)g(H, v, k, πc)k/k

∑H ∑v∈VH
d(b)

v ∑DH
k=1 P(H)g(H, v, k, πc)k(k− 1)/k

=
∑H ∑v∈VH

d(b)
v P(H)

∑H ∑v∈VH
d(b)

v ∑DH
k=1 P(H)g(H, v, k, πc)(k− 1)

=
E[D]

∑H ∑v∈VH ∑DH−1
k=1 d(b)

v P(H)g(H, v, k + 1, πc)k

=
1

E[D∗πc ]
. (11.3.14)

Since E[D∗π ] is increasing in π, so that there is only one solution to the above equa-
tion. Step (c). Now assume that π > πc. Let C (CM)

(1) denote the largest hierarchical
component after percolation. The number of degree r vertices in the largest com-

ponent of φ(Gπ) satisfies v(H)
r (C (CM)

(1) )/ñ P−→ ∑l≥r blr(
√

π)p′l(1 − ξr) [115], where

blr(
√

π) = (l
r)
√

π
r
(1−√π)l−r is the probability that a binomial with parameters l

and
√

π takes value r, and ξ is as in (11.3.7). To translate the number of percolated
communities in the largest component into the number of vertices in the largest com-
ponent, we need to know the expected number of vertices in the largest component
that are in a percolated community with inter-community degree k. The size of a
percolated community is independent of being in the largest hierarchical component,
but does depend on the inter-community degree of the percolated community. The
total number of vertices in connected percolated components with inter-community
degree k is given by ∑H ∑v∈VH

M(n)(H, v, k, π), and the total number of percolated
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communities of inter-community degree k is given by ∑H N(n)(H, k, π). Furthermore,
∑v∈VH

M(n)(H, v, k, π)/n ≤ Pn(H)sH . Hence, by Condition 11.2, the expected size of
a percolated community, given that it has inter-community degree k, satisfies

E[Sπ | inter-community degree k] =
∑H ∑v∈VH

M(n)(H, v, k, π)

∑H N(n)(H, k, π)

=
∑H ∑v∈VH

M(n)(H, v, k, π)/n
∑H N(n)(H, k, π)/n

P−→ ∑H ∑v∈VH
P(H)g(H, v, k, π)

∑H ∑v∈VH
d(b)

v P(H)g(H, v, k, π)/k
.

(11.3.15)
Since ∑∞

r=0 vr(C
(CM)
(1) )/N ≤ 1, we use the Dominated Convergence Theorem to com-

pute the asymptotic number of vertices in the largest component of φ(Gπ) as

v(C (CM)
(1) )

N
=

∞

∑
r=0

vr(C(1))/ñ
N/n · n/ñ

P−→
∞

∑
r=0

∑l≥r blr(
√

π)p′l(1− ξr)E[Sπ | inter-community degree l]

E[S]/ ∑H ∑v∈VH ∑k d(b)
v P(H)g(H, v, k, π)/k

=
∑∞

r=0 ∑l≥r blr(
√

π)(1− ξr)p′l
E[S]/ ∑H ∑v∈VH ∑k d(b)

v P(H)g(H, v, k, π)/k

× ∑H ∑v∈VH
P(H)g(H, v, l, π)

∑H ∑v∈VH
d(b)

v P(H)g(H, v, l, π)/l

=
∑∞

l=0 ∑l
r=0 blr(

√
π)(1− ξr)

p′l
p′l

∑H ∑v∈VH
P(H)g(H, v, l, π)

E[S]

=
∑∞

l=0(1− (1−√π +
√

πξ)l)∑H ∑v∈VH
P(H)g(H, v, l, π)

E[S]
. (11.3.16)

Any other component of φ(Gπ) has size oP(ñ) by [115, Theorem 3.9]. As shown in
the proof of Theorem 11.1, any component of size oP(ñ) in φ(Gπ) is a component of
size oP(N) in the total graph. Hence, w.h.p. C (CM)

(1) is the largest component of the
percolated graph Gπ .

When π < πc, the largest component of φ(Gπ) satisfies v(H)(C (CM)
(1) )/ñ P−→ 0 [115].

Again, by the analysis of Theorem 11.1, this component is of size oP(N) in the original
graph.

Equation (11.3.7) also has an intuitive explanation. Let Q be the distribution of
the inter-community degrees after percolation when following a randomly chosen
half-edge. Then we can interpret ξ as the extinction probability of a branching process
with offspring distribution Q. Percolating the inter-community edges with probability
1− π is the same as deleting each half-edge with probability 1−√π. Then, with
probability 1−√π the randomly chosen half-edge is paired to a deleted half-edge,
in which case the branching process goes extinct. With probability

√
π, the half-edge
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leads to a half-edge which still exists after percolation, and leads to a community.
The probability generating function of the number of half-edges pointing out of this
community before percolating the half-edges is 1

λ h(ξ). Since the number of half-edges
after percolation is binomial given the number of half-edges that were present before
percolation, the probability generating function of the number of half-edges attached
to a community entered by a randomly chosen half-edge is 1

λ h(1 − √π +
√

πξ).
Combining this yields (11.3.7).

The case E[D2] = ∞. In the standard configuration model πc = 0 precisely when
E[D2] = ∞. In the HCM, this may not be true, since it is possible to construct
communities with large inter-community degrees, while all individual vertices have
low degree. An example of such a community structure is the HCM where each
community is a line graph HL of L vertices with probability p̄L, where each vertex has
inter-community degree one. Figure 11.6a illustrates HL for L = 5. We assume that
p̄L obeys the power law p̄L = cL−α, with α ∈ (2, 3). Then E[D] < ∞, but E[D2] = ∞.
Hence, communities may have large inter-community degrees. However, G is a
3-regular graph, so no individual vertex has high degree. From this fact, we can
already conclude that πc 6= 0. Suppose πc <

1
2 . Then, after percolation every vertex

has less than two expected neighbors. Hence, there is no giant component w.h.p.
We can also use Theorem 11.2 to show that πc 6= 0. We compute the denominator
of (11.3.5), and show that it is finite. We have

∑
v∈VH

d(b)
v g(HL, v, k, πc) =

{
2kπk−1

c (1− πc) + kπk−1
c (1− πc)2(L− k− 1) if k < L,

kπk−1
c if k = L.

(11.3.17)
This gives

L−1

∑
k=1

k ∑
v∈VH

d(b)
v g(HL, v, k + 1, πc) =

2πc(πL
c + L(1− πc))− 1
(1− πc)2 . (11.3.18)

Using that p̄l = cl−α gives for (11.3.4)

E[D∗πc ] =
1

E[D] ∑
H

P(H) ∑
v∈VH

d(b)
v

DH−1

∑
k=1

kg(H, v, k + 1, πc)

=
1

E[D]

∞

∑
L=1

cL−α 2πc(πL
c + L(1− πc))− 1
(1− πc)2

=
1

E[D]

2πc

(1− πc)2

(
−1 + (1− πc)E[D] +

∞

∑
L=1

cπL
c L−α

)
. (11.3.19)

From (11.3.19) we see that πc = 0 is not a solution of (11.3.5). Hence, πc > 0, even
though E[D2] = ∞.

Infinite second moment of degree. When the second moment of the degree distri-
bution as defined in Proposition 11.1 is infinite, πc also does not have to be zero. It
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(a) (b) (c)

Figure 11.6: Communities with L = 5.

is possible to ‘hide’ all vertices of high degree inside communities that have small
inter-community degrees. The small inter-community degrees make it difficult to
leave the community in percolation. One example of such a community structure
is the case in which each community is a star-shaped graph with L endpoints with
probability pL. One vertex in the graph has inter-community degree one, and all
the other vertices have inter-community degree zero. Figure 11.6b illustrates the
star-shaped graph for L = 5. Since each community has only one outgoing edge,
there cannot be a giant component in G. We can also see this from Theorem 11.1,
since E[D] = E[D2] = 1. By Proposition 11.1, the degree distribution equals

p̂k =


(∑∞

L=1(L− 1)pL + p1) /E[S] if k = 1,
(1 + p2)E[S] if k = 2,
pk/E[S] if k > 2.

(11.3.20)

When pl is a probability distribution with infinite second moment, the second moment
of p̂l is also infinite. Hence, the degree distribution of the HCM G has infinite second
moment, while there is no giant component, so that certainly πc 6= 0.

A sufficient condition for πc = 0.
By (11.3.5),

πc =
E[D]

∑G P(H)∑v∈VH
d(b)

v ∑DH−1
k=1 kg(H, v, k + 1, πc)

≤ E[D]

∑G P(H)∑v∈VH
(d(b)

v )2
(11.3.21)

Hence, ∑H ∑v∈VH
P(H)(d(b)

v )2 = ∞ is a sufficient condition for πc = 0. This condition
can be interpreted as an infinite second moment of the inter-community degrees
of individual vertices. However, it is not a necessary condition. It is possible to
construct a community where all individual vertices have a small inter-community
degree, but are connected to a vertex with high degree. Consider for example the star
community of Figure 11.6c, with one vertex in the middle, linked to L other vertices.
The L other vertices have inter-community degree one, and the middle vertex has
inter-community degree zero, hence all vertices have small inter-community degree.
However, the middle vertex can be of high degree. Let each community be a star-
shaped community with L outgoing edges with probability p̄L. We can calculate that
πc = ∑L p̄LL(L− 1)π2

c . Hence, if we choose p̄L with finite first moment and infinite

second moment, πc = 0. However, ∑H ∑v∈VH
(d(b)

v )
2
= ∑L Lp̄L = E[D] < ∞.
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11.4 Existing graph models with a community structure

In this section, we show how three existing random graph models with community
structure fit within the HCM.

11.4.1 Trapman’s household model

Trapman [206] replaces vertices in a configuration model by households in the form
of complete graphs, such that the degree distribution of the resulting graph is pk. To
achieve this, each community is a single vertex of degree k with probability (1− γ)pk,
or a complete graph of size k with probability γ p̄k. Here p̄k, the probability that a
certain clique has degree k, is given by

p̄k = k−1 pkE[W−1]−1, (11.4.1)

where W is a random variable satisfying P(W = k) = pk. Each vertex of the complete
graph has one edge to another community. Figure 11.7 illustrates a household of size
5. This model is a special case of the HCM with

Hi =

{
(Kk, (1, . . . , 1)) w.p. γ p̄k,
(v, (k)) w.p. (1− γ)pk,

(11.4.2)

where Kk is a complete graph on k vertices.
We now check when (11.4.2) satisfies Conditions 11.1 and 11.2. The assumption

P(D = 2) < 1 is satisfied if and only if p2 < 1. The expected inter-community degree
of a community is given by

E[D] = (1− γ)∑
k

kpk + γ ∑
k

kp̄k = (1− γ)E[W] +
γ

E[W−1]
. (11.4.3)

Hence, E[D] < ∞ if E[W] < ∞ and E[W−1] 6= 0. By Jensen’s inequality, E[W−1] ≥
E[W]−1 > 0, hence E[D] < ∞ if and only if E[W] < ∞. For every community in
this model, its size is smaller than or equal to its inter-community degree, so that
also E[S] < ∞ if E[D] < ∞. Thus, Conditions 11.1 and 11.2 hold if E[W] < ∞ and
p2 < 1. Under these conditions we can apply the results for the HCM as derived in
Sections 11.2 and 11.3.

Suppose that pk follows a power law with exponent α. Then p̄k follows a power
law with exponent α− 1, and the distribution of the inter-community degrees D is
a mixture of a power law with exponent α and a power law with exponent α− 1
by (11.4.1).

11.4.2 Lelarge and Coupechoux’ household model

Another model that takes complete graphs as communities is the model of Coupe-
choux and Lelarge [68]. This model is very similar to Trapman’s model. Again, each
community is either a complete graph or a single vertex. In contrast to [206], the
probability that a certain community is a clique depends on the degree of the clique.
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Figure 11.7: A household of size 5

Each vertex of degree k in the macroscopic configuration model is replaced by a
complete graph with probability γk. This graph can be modeled as a HCM with

Hi =

{
(Kk, (1, . . . , 1)) w.p. γk p̄k

(v, (k)) w.p. (1− γk) p̄k,
(11.4.4)

where ( p̄k)k≥1 is a probability distribution. Since the inter-community degrees of all
communities have distribution P(D = k) = p̄k, Condition 11.2 holds if the probability
distribution p̄k has finite mean and p̄2 < 1. The size of a community is always smaller
than or equal to its inter-community degree, so that also E[S] < ∞ if p̄k has finite
mean. Thus, Conditions 11.1 and 11.2 hold if p̄k has finite mean and p̄2 < 1.

If these conditions on p̄k hold, then the degree distribution pk of the resulting
graph can be obtained from Proposition 11.1 as

pk =
(kγk + (1− γk)) p̄k

∑i≥0(iγi + (1− γi)) p̄i
. (11.4.5)

Suppose that γk ≥ γ > 0. Then, in contrast to Trapman’s household model in
Section 11.4.1, the degree distribution of the edges between communities, p̄k, follows
a power law with exponent α + 1 if the degree distribution pk follows a power law
with exponent α.

As an example of such a household model, consider a graph with p3 = a and
p6 = 1− a and a tunable clustering coefficient. We take γ6 = 0, but increase γ3,
while the degree distribution remains the same. Thus, the graph consists of only
single vertices of degree 6, single vertices of degree 3 and triangle communities.
Since we increase γ3, the number of triangles increases, so that also the clustering
coefficient increases. Figures 11.8a and 11.8b show the size of the giant component
under percolation for different values of the clustering coefficient using a = 0.75 and
a = 0.95 respectively. In the case where a = 0.75, clustering decreases the value of
πc, whereas if a = 0.95, clustering increases the value of πc. This illustrates that the
influence of clustering on bond percolation of a random graph is non-trivial. In two
similar random graph models, introducing clustering has a different effect.

11.4.3 Configuration model with triangles

A third random graph model with clustering is the model by Newman [157]. In this
model, each vertex v has an edge-degree d(1)

v and a triangle degree d(2)
v , denoting the

number of triangles that the vertex is part of. Then a random graph is formed by
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Figure 11.8: The size of the giant component after bond percolation with probability
π in a household model with p3 = a and p6 = 1− a for various clustering coefficients
C. If a = 0.75, adding clustering decreases the critical percolation value, whereas if
a = 0.95, adding clustering increases the critical percolation value.

pairing edges at random and pairing triangles at random. Even though this model
does not explicitly replace vertices in a configuration model by communities, it is
also a special case of the HCM if some conditions on the degrees are satisfied. The
communities in this model are the connected components consisting only of triangles.
Figure 11.9 shows two possible realizations of such communities.

From results derived in [157], we can find the probability generating function hr(z)
of the number of vertices in triangles that can be reached from a uniformly chosen
triangle, and the probability generating function hS∗(z) of the size of the triangle
component of a randomly chosen vertex, that together satisfy

hr(z) = zgq(h2
r (z)), hS∗(z) = zgp(h2

r (z)), (11.4.6)

where gq is the probability generating function of the size-biased distribution of the
triangle degrees, and gp the probability generating function of the triangle degree
distribution. In the HCM, hS∗(z) can be interpreted as the probability generating
function of the size-biased community sizes. Thus, the mean size-biased community
size is given by

E[S∗] = 1 +
2E[D(2)]

3− 2E[D(2)∗]
, (11.4.7)

where D(2)∗ is the size-biased distribution of the triangle degrees. Since E[S∗] ≥ E[S],
Condition 11.1(ii) is satisfied if E[D(2)∗] < 3

2 .
The mean inter-community degree of a community is given by

E[D] = lim
n→∞

∑n
i=1 ∑v∈Gi

d(1)
v

n
= lim

n→∞

∑N
i=1 d(1)

i /N
n/N

= E[S]E[D(1)]. (11.4.8)

Hence, Conditions 11.1 and 11.2 are satisfied if E[D(2)∗] < 3
2 and E[D(1)] < ∞. When

these conditions are satisfied, the condition for emergence of a giant component is

E[D(1)2]E[S]−E[D(1)]E[S]
E[D(1)]E[S]

=
E[D(1)2]−E[D(1)]

E[D(1)]
> 1. (11.4.9)
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Figure 11.9: Two possible communities
with 4 triangles. In the left community, 6
other nodes can be reached from the white
node within 2 steps, in the right commu-
nity 8 nodes.
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Figure 11.10: The size of the giant per-
colating cluster calculated by (11.3.6)
(HCM) and from results in [157] (New-
man) agree.

Therefore, as long as E[D(2)∗] < 3
2 , the emergence of the giant component only

depends on the edge degree distribution.
To apply the results of the HCM, we need the probability P(H) that a randomly

chosen community is of type H. This probability is not easy to obtain, but it can be
approximated using a branching process. The branching process starts at a vertex, and
explores the component of triangles. The first generation of the branching process has
Z0 = 1. The first offspring, Z1 is distributed as 2D(2). All other offspring, Zi for i > 1
is distributed as ∑

Zi−1
j=1 2(D(2)∗

j − 1). Here D(2)∗
j are independent copies, distributed

as D(2)∗. In this branching process approximation, cycles of triangles are ignored.
The size-biased probability of having a specific community H can be obtained by
summing the probabilities of the possible realizations of the branching process when
exploring graph H. This probability is size-biased, since when starting at an arbitrary
vertex, the probability of starting in a larger community is higher. This probability
then needs to be transformed to the probability of obtaining graph H.

To compute the size of the giant component after percolation from (11.3.6), g(H, v, k, π)
is needed for every community shape H. This is difficult to obtain, since it largely
depends on the shape of the community, and there are infinitely many possible com-
munity shapes. Figure 11.9 shows an example of why the shape of a community
matters. When percolating the left community, the probability that the red vertex is
connected to k other vertices is smaller than for the graph on the right. For this reason,
we approximate (11.3.6) numerically using the branching process described above.
In [157], Newman gives expressions for the size of the largest percolating cluster.
Figure 11.10 compares the size of the giant component computed in that way with
a numerical approximation of (11.3.6). We see that indeed the equations from [157]
give the same results for the largest percolating cluster as (11.3.6).

11.5 Stylized networks

In this section, we study two stylized examples of community structures. The first
example gives a community type that decreases the critical percolation value compa-
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Figure 11.11: A line community with L = 5

red to a configuration model with the same degree distribution. The second example
increases the critical percolation value when compared to a configuration model.

11.5.1 A community structure that decreases πc

As an example of a community structure that decreases πc, we consider a HCM
where with probability φ a community is given by H1: a path of L vertices, with a
half-edge at each end of the path as illustrated in Figure 11.11. With probability 1− φ
the community is H2: a vertex with three half-edges. The degree distribution of this
HCM can be found using Proposition 11.1 and is given by

pk =


Lφ

Lφ+1−φ if k = 2,
1−φ

Lφ+1−φ if k = 3,

0 otherwise.

(11.5.1)

In this example E[D] = 2φ + 3(1− φ). Furthermore, g(H1, v, 2, π) = πL−1 for all
v ∈ H1. In H2 there is no percolation inside the community, hence g(H2, v, 3, π) = 1.
Equation (11.3.5) now gives

πc =
3− φ

2φπL−1
c + 6(1− φ)

, (11.5.2)

hence 2φπL
c + 6(1− φ)πc − 3 + φ = 0.

Now we let the degree distribution as defined in (11.5.1) remain the same, while
changing the length of the path communities L. If in the total graph, we want to have
a fraction of a vertices of degree 3, then a = p3 = 1−φ

1−φ+Lφ . Hence, φ = 1−a
1−a+La . In this

way, we obtain HCMs with the same degree distribution, but with different values of
L. Figure 11.12 shows the size of the largest component as calculated by (11.3.6) for
a = 1/3. As L increases, πc decreases. Hence, adding this community structure ‘helps’
the diffusion process. This can be explained by the fact that increasing L decreases the
number of line communities. Therefore, more vertex communities will be connected
to one another, which decreases the value of πc. Another interesting observation is
that the size of the giant component is non-convex in π. These non-convex shapes
can be explained intuitively. As the lines get longer, there are fewer and fewer of
them, since the degree distribution remains the same. Hence, if L is large, there will
only be a few long lines. These lines have πc ≈ 1. Since there are only a few lines,
almost all vertices of degree 3 will be paired to one another. The critical value for
percolation on a configuration model with only vertices of degree 3 is 0.5. Hence,
for this HCM with L large we will see the vertices of degree 3 appearing in the giant
component as π = 0.5, and the vertices in the lines as π = 1.
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11.5.2 A community structure that increases πc

As an example of a community structure that inhibits the diffusion process, consider a
configuration model with intermediate vertices as introduced in [110]: a configuration
model where every edge is replaced by two edges with a vertex in between them.
This is equal to a HCM with star-shaped communities as in Figure 11.6c: one vertex
that is connected to L other vertices. Each of the L other vertices has inter-community
degree one. The vertex in the middle is not connected to other communities. We
consider a HCM where all communities are stars of the same size. Therefore all
star-shaped communities have the same number of outgoing edges, and E[D] = L.

The degree distribution of this HCM is given by

pk =


L

L+1 if k = 2,
1

L+1 if k = L,
0 otherwise.

(11.5.3)

Under percolation, the connected component of a vertex v at the end point of a star
can link to other half-edges only if the edge to the middle vertex is present. Then
the number of half-edges to which v is connected is binomially distributed, so that
g(H, v, k, π) = π(L−1

k−1)π
k−1(1− π)L−k for k ≥ 2. Then (11.3.4) gives

E[D∗π ] =
1

E[D] ∑
H

∑
k

∑
v∈VH

P(H)d(b)
v kg(H, v, k + 1, π)

= π ∑
k≥1

kπk(1− π)L−k−1
(

L− 1
k

)
= (L− 1)π2. (11.5.4)

Then (11.3.5) yields πc = (L− 1)−1/3.
Now we consider a configuration model with the same degree distribution (11.5.3).

For this configuration model, πc =
3L

4L+L2−3L = 3
L+1 . Figure 11.13 shows the size of

the giant component of the HCM compared with a configuration model with the
same degree distribution for different values of L. This hierarchical configuration
has a higher critical percolation value than its corresponding configuration model.
Intuitively, this can be explained from the fact that all vertices with a high degree are
‘hidden’ behind vertices of degree 2, whereas in the configuration model, vertices of
degree L may be connected to one another.

Combined with the previous example, we see that adding communities may lead
to a higher critical percolation value or a lower one. Furthermore, the size of the giant
component may be smaller or larger after adding communities.

11.6 Conclusions and discussion

In this chapter, we have introduced the HCM, where the macroscopic graph is a con-
figuration model, and on the microscopic level vertices are replaced by communities.
We have analytically studied several properties of this random graph model, which
led to several interesting insights. For example, the condition for a giant component
to emerge in the HCM is completely determined by properties of the macroscopic
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Figure 11.12: Size of giant component
against π for line communities with
different values of L.
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Figure 11.13: Size of giant component
against π for star communities with
different values of L.

configuration model. However, the size of the giant component also depends on the
community sizes. In contrast, the asymptotic clustering coefficient is entirely defined
by the clustering inside the communities. For bond percolation on the HCM, the
critical percolation value depends on both the inter-community degree distribution
as well as the shape of the communities.

Finally, we have shown that several existing models incorporating a community
structure can be interpreted as a special case of the HCM, which underlines its
generality. Worthwhile extensions of the HCM for future research include directed or
weighted counterparts and a version that allows for overlapping communities.

The analysis of percolation on the HCM has shown that the size of the largest
percolating cluster and the critical percolation value do not necessarily increase
or decrease when adding clustering. It would be interesting to investigate how
other characteristics of the graph like degree-degree correlations influence the critical
percolation value.
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In this chapter, we again study the HCM model introduced in Chapter 11. We view
several real-world networks as realizations of HCM. By doing this, we observe two
previously undiscovered power-law relations: between the number of edges inside a
community and the community sizes, and between the number of edges going out
of a community and the community sizes. We also relate the power-law exponent
τ of the degree distribution with the power-law exponent of the community-size
distribution γ. In the case of extremely dense communities (e.g., complete graphs),
this relation takes the simple form τ = γ− 1.

12.1 Introduction

In Chapter 11 we studied the mathematical properties of the HCM. In this chapter,
we look at several data sets through the lens of the HCM. A crucial property of the
HCM is that it can use any proposed community structure as input. That is, the
HCM viewed as an algorithm first models the community structure, and then creates
the random network model. To be more specific, the community structure can be
uncovered by some detection algorithm that, when applied to a real-world network,
leads to a collection of plausible communities and their frequencies. By sampling
from this collection of communities, the HCM can generate resampled networks with
similar structure as the original network.

Analyzing several real-world networks through the lens of the HCM reveals
an interesting property of real-world networks: the joint distribution (pk,s)k,s≥1 of
the community size s and the number of connections k a community has to other
communities. The size of the giant component delicately depends on this joint
distribution, which can be determined from network data once the community
structure is determined. In fact, after studying pk,s for several real-world networks,
we observe a power-law relation between the size of a community and the number of edges
out of a community in many real-world networks.

In Chapter 11 we have shown that except for this joint distribution, the size of
the giant component does not depend on detailed information about the structure

273
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of the communities, but when we perform percolation on the network, more precise
structural information does matter. Inspired by this need to include detailed commu-
nity structure, and thus extend the model description beyond (pk,s)k,s≥1, we observe
a second power-law relation between the denseness of a community and its size in several
real-world networks.

For the present chapter, the most important application of the HCM is to inves-
tigate power-law networks. Statistical analyses of network data shows that many
networks possess a power-law degree distribution [66, 158, 162, 212]. Traditionally,
this is captured by using the CM and assuming that the probability pk that a node
has k neighbors then scales with k as pk ∼ Ck−τ for some constant C and power-law
exponent τ > 0. Many scale-free networks have an exponent τ between 2 and 3 [6,
79], so that the second moment of the degree distribution diverges in the infinite-size
network limit. The exponent τ is an important characteristic of the network and
determines for example the mean distances in the network [108, 109, 164], or the
behavior of various processes on the graph like bond percolation [55], first passage
percolation [23] and an intentional attack [67]. Using the HCM instead of the CM, it
no longer suffices to describe the degree distribution (pk)k≥1, but instead assumptions
need to made about the joint distribution (pk,s)k,s≥1. In the special case of extremely
dense communities, this joint perspective gives rise to the following phenomenon
(that we formalize in Section 12.2): If the total degree distribution of a network with
extremely dense communities follows a power law with exponent τ, then the power law of
the community sizes has exponent γ = τ + 1. In the household model, where each com-
munity is a complete graph, we observe that indeed γ = τ + 1. However, real-world
network data show that communities are not always extremely dense, in which case
we find that γ 6= τ + 1. This is due to the fact that the edge density of communities
turns out to decay with community size.

The outline of this chapter is as follows. In Section 12.2 we consider the special
case of the HCM in which the degree distribution as well as the community-size dis-
tribution follows a power law. It is here that we discover the power-law shift caused
by community structure when the communities are extremely dense. In Section 12.3 we
apply the HCM to several real-world networks, and we observe two more power-law
relations in graphs with communities. In Section 12.4 we present conclusions and
future research directions.

12.2 Power-law community sizes

In several real-world networks, the community-size distribution appears to be of
power-law form over some significant range [36, 65, 102, 186]. The analysis in this
section assumes that both the degree and the community-size distributions obey
power laws with exponents τ and γ, respectively. Typical values reported in the
literature are 2 ≤ τ ≤ 3 and 1 ≤ γ ≤ 3 [80]. We then investigate the behavior of
(pk,s)k,s≥1 defined in (11.1.3): the probability that a randomly chosen community has
size s and inter-community degree k. We start by investigating a simple community
structure where all communities are complete graphs, and then proceed to investigate
more general dense community shapes.
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Figure 12.1: A household
community with s = 5
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Figure 12.2: The degree distribution of
a household model follows a power
law with a smaller exponent than the
community-size distribution and out-
side degree distribution

Household communities. An extreme community structure is that of household
communities [206], in which all communities are complete graphs. Each vertex inside
the community has outside degree one. Figure 12.1 shows an example of a household
community with s = 5.

In a household community, k = s, hence pk,s = 0 if k 6= s. Suppose the distribution
of the community sizes follows a power law with exponent γ, pk,k = Ck−γ. Then
the outside degrees also follow a power-law distribution with exponent γ. Now we
derive ( p̂k)k≥0, the degree distribution of the HCM with this household structure.
For a vertex in the household model to have degree k, it must be in a community of
size k. Furthermore, there are k of such vertices inside each community, so that

p̂k =
kpk,k

∑∞
i=1 ipi,i

=
kCk−γ

E [S]
= C2k−γ+1, (12.2.1)

where E [S] denotes the average community size. Thus, the degree distribution of
the graph with household communities again obeys a power law but with exponent
τ = γ− 1, as observed in [206]. We call this phenomenon a power-law shift, because
the edges out of a community have a smaller degree distribution than the individual
edges (see Figure 12.2).

Extremely dense communities. We will now show that a power-law shift still
occurs in in communities that are not complete graphs, but still extremely dense.
We should, however, remark upfront that the data sets that we will investigate in
Section 12.3 do not display this extremely dense community structure. In an extre-
mely dense community, many edges are contained in communities. Let ein denote the
number of edges inside a community. We assume that there exists ε > 0 independent
of the number of communities n such that for each community H of size s,

ein ≥ εs(s− 1). (12.2.2)

In this case, every community of size s contains a positive fraction of the edges that
are present in a complete graph of the same size. The household model gives ε = 1

2 .
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Since the power-law shift states that the outside degrees of the communities are
‘small’, we need the outside degrees of individual vertices to be small as well. Thus,
we assume that there exists a K < ∞ such that for all vertices

d(b)
v ≤ Ksv, (12.2.3)

where sv denotes the community size of the community containing vertex v. This
implies that k ≤ Ks2 for every community. Using assumptions (12.2.2) and (12.2.3)
we show that a power-law shift occurs.

Suppose that the community-size distribution follows a power law with exponent
γ. Denote the cumulative degree distribution by Pi = ∑j≤i p̂j. Since the maximal
inside degree of a vertex in a community of size s is s− 1, and by (12.2.2) the average
inside degree of a vertex is greater than or equal to ε(s− 1), at least a fraction of ε
vertices in any community have inside degree at least ε(s− 1). Thus, a vertex inside
a community of size i/ε + 1 has probability of at least ε to have inside degree at least
ε(i/ε + 1− 1) = i. Hence, 1− Pi is bounded from below by ε times the probability
of choosing a vertex in a community of size at least i/ε + 1. The probability that a
randomly chosen vertex is in a community of size j is given by ∑k rk,j. This yields

1− Pj ≥∑
i≥j

∑
k

rk,i/ε+1ε = ∑
i≥j

(
i
ε
+ 1
)

∑
k

pk,i/ε+1
1

E [S]
ε

≈ Cj−γ+2. (12.2.4)

Furthermore, given the distribution of the community sizes, 1− Pj is maximal when
all communities are complete graphs, and every vertex has Ks half-edges attached to
it. Then each vertex in a community of size s has degree s− 1 + Ks. Hence, to choose
a vertex with degree at least j, we have to choose a vertex inside a community of size
at least (j + 1)/(K + 1). Then

1− Pj ≤ ∑
i≥ j+1

K+1

∑
k

rk,i

= ∑
i≥ j+1

K+1

i ∑
k

pk,i
1

E [S]
=

c
E [S]

(
j + 1
K + 1

)−γ+2
. (12.2.5)

Combining (12.2.4) and (12.2.5) shows that the degree distribution follows a power
law with exponent τ = γ− 1. In other words, when the community-size distribution
of a network with extremely dense communities follows a power law with exponent
γ, the power law of the degrees has exponent τ = γ− 1. A similar analysis shows
that for power-law distributions with cutoffs the exponents of the degree distribution
and the community-size distribution are also related as τ = γ− 1.

Under a more strict assumption on the inter-community degrees

d(b)
v ≤ K, (12.2.6)

we can also relate the power-law exponent of the intra-community degrees to the de-
gree distribution. Assumption (12.2.6) implies k ≤ sK, and therefore if the community-
size distribution follows a power law with exponent γ = τ + 1, then the distribution
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of the community outside degrees cannot have a power-law distribution with ex-
ponent smaller than γ. Suppose we want to construct a graph where the degree
distribution follows a power law with exponent τ ∈ (2, 3). One possibility to con-
struct such a graph is to use the CM. However, the CM with τ ∈ (2, 3) has vanishing
probability to create a simple graph. Another way to construct a graph with this
degree distribution is to use the HCM with extremely dense communities of power-
law size with exponent τ + 1. The outside degrees of the communities then follow
a power law with exponent at least τ + 1 > 3. Since the outside degrees are paired
according to the CM, the probability that the resulting graph is simple, will be larger
than zero in the limit of infinite graph size. Thus, the HCM is able to construct a
simple graph with degree power-law exponent τ ∈ (2, 3).

Another interesting application of this power-law shift is in the critical percolation
value. It is well known that the critical percolation value πc = 0 for a CM with
τ ∈ (2, 3) [154]. When we use Theorem 11.2 on highly connected communities, close
to the critical value πc, these communities will still be connected after percolation, and
g(H, v, l, φ) ≈ 1 for l = k. Then Theorem 11.2 reduces to πc = E [D] /(E [D(D− 1)]),
as in the standard CM. Thus, if communities are highly connected compared to the
inter-community edges, the critical percolation value is entirely determined by the
inter-community edges. Since the inter-community degrees have exponent larger
than 3, the HCM is able to construct random graphs with τ ∈ (2, 3) and πc > 0. This
shows that the HCM with extremely dense communities is in another universality
class than the CM.

The role of hubs. A power-law degree distribution implies the existence of hubs:
nodes with a very high degree. We now show that under assumptions (12.2.2)
and (12.2.3) this only occurs in networks that are not very realistic. Since every
vertex is inside a community in the HCM, the hubs also need to be assigned to some
community. In these communities, hubs can have several roles, as observed in [103].
There are two possibilities, as shown in Figure 12.3. When most neighbors of the
hub are also inside the community as in Figure 12.3a, then the hub is in a very large
community. Assumption (12.2.2) states that most neighbors of the hub should also
be connected to one another, and thus also have a high degree. However, in real-
world networks this might not be realistic. For example, when one person in a social
network has many friends, this does not mean that most of these friends are friends
with one another. Hence, putting most neighbors of a hub inside the same community
can create communities that are not dense. The other possibility (see Figure 12.3a) is
to have only a small fraction of the neighbors inside a community. However, now the
outside degree of the hub is large, which may contradict assumption (12.2.3) when the
hub is in a small community. Therefore, it is not realistic to assume that networks have
both hubs and extremely dense communities. Although it is theoretically possible
to have networks with a dense community structure and power-law degrees, this
only happens if the nodes with very high degrees are in big communities with one
another, and have only a few links to nodes of lower degrees.
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(a) A hub with all its neig-
hbors completely inside a
community (shaded area).

(b) A hub with only a few
neighbors inside the same
community

Figure 12.3: Illustration of the role of hubs.

AMAZON GOWALLA WordNet GOOGLE

S (data) 1,000 1,000 0,994 0,977
S (HCM) 1,000 1,000 0,994 0,978
S (CM) 0,999 0,993 0,999 0,997
γ 2,89 - 3,23 2,44
τ 3,31 2,48 2,46 -
α 0,15 0,31 0,21 0,21
β 1,14 1,18 1,28 1,24
Cmacro 0,084 0,044 0,124 0,088
density 1, 6 · 10−5 4, 9 · 10−5 6, 2 · 10−5 1, 1 · 10−5

Table 12.1: Several characteristics of four different data sets

12.3 Real-world networks

In this section, we apply the HCM to four different data sets: an AMAZON co-
purchasing network [225], the GOWALLA social network [60], a network of relations
between English words [150] and a GOOGLE web graph [139]. To extract the commu-
nity structure of the networks, we use the Infomap community detection method [190],
a community detection method that performs well on several benchmarks [135]. Ta-
ble 12.1 shows that Theorem 11.1 identifies the size of the giant component almost
perfectly, in contrast to the value calculated by the CM. Furthermore, we see that
the clustering coefficient of the macroscopic CM Cmacro is quite low in three out of
the four data sets; only the clustering coefficient of WordNet is higher. This implies
that our assumption that the connections between communities are tree-like, even
though it is not completely satisfied in real-world networks, still often is a reasonable
approximation. In particular, HCM still allows for more deviation from the locally
tree-like structure than the classical CM model.

Figure 12.4 illustrates the distributions of the degrees, the community sizes, and
the community outside degrees for these data sets. While the outside degree distri-
bution in Figures 12.4a and 12.4c clearly do not follow power laws, the degrees and
the community sizes seem to follow power-law distributions, possibly with cutoffs.
Tables 12.2 and 12.3 of Appendix 12.A show the goodness-of-fits of the power-law
distributions for the degree distribution and the community-size distribution. In
Appendix B we also test alternative distributions, using the methods of Clauset et
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Figure 12.4: Tail probabilities of the degrees, community sizes s and the inter-
community degrees k in real-world networks.

al. [66]. We see that most of the data sets can be approximated by either power laws,
or power laws with an exponential cutoff. Table 12.1 presents the estimated power-
law exponents of the degrees, τ, and the community sizes, γ. In the cases where
the power law with exponential cutoff seems the more appropriate distribution, the
exponent of this power-law distribution is shown. The degree distribution of the
Google data set and the community-size distribution of the Gowalla data set do not
show statistical evidence for a power-law distribution or a power-law distribution
with an exponential cutoff. Therefore, Table 12.1 does not show exponents for these
data sets. We see that a power-law shift is less pronounced than in the stylized house-
hold model, if existing at all. This indicates that the communities in the data sets do
not have the intuitive extremely dense structure. Thus, we test assumption (12.2.2).
The maximum number of edges inside a community is obtained if the community
is a complete graph, in which case ein = 1

2 s(s− 1). Dividing (12.2.2) by s(s− 1)/2
gives ein

s(s−1)/2 ≥ 2ε. This fraction measures how dense a community is. Figure 12.5

plots the community size s against the average value of 2ein/(s2 − s), and the last
row of Table 12.1 presents this measure of denseness for the entire network. For all
networks,the density of a community is not independent of its size s. Larger com-
munities are less dense than smaller communities. Therefore, the large communities
do not satisfy the intuitive picture of an extremely densely connected subset. Still,
Table 12.1 shows that the density within communities is much higher than the density
of the entire network. This is a similar observation as in [139], where the authors
discover that most real-world networks have a strongly connected core, which con-
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Figure 12.5: The relation between the denseness of a community 2ein/(s2 − s) and
the community size s can be approximated by a power law.

sists of several interconnected communities that are hard to distinguish. The core
is connected to the periphery, some isolated, densely connected small communities.
This structure could explain the dependence of the density of the communities on s.
The large communities that are not very dense are part of the core, whereas the small
communities are the more isolated parts of the network. Another interesting property
of the community structures in Figure 12.5 is the power-law relation between the
community sizes and their densities, ein ≈ csα+1. The AMAZON, GOWALLA and
WordNet network have a clear power-law relation, whereas the GOOGLE network
deviates more from its power-law approximation. Table 12.1 shows the values of α for
these networks, using a least squares regression. In assumption (12.2.2), we assume
that α = 1. However, Table 12.1 shows that the example data sets have α < 1. For
this reason, we replace (12.2.2) by

ein ≥ εs(s− 1)α. (12.3.1)

Now (12.2.5) still holds, but (12.2.4) needs to be modified. The average inside degree
of a vertex now is ε(s− 1)α. Since the maximum inside degree is s− 1, there are at
least ε(s− 1)α−1 vertices of degree at least ε(s− 1)α. A similar analysis as (12.2.4)
yields

1− Pj ≥∑
i≥j

∑
k

rk,(i/ε)(1/α)+1ε (i/ε)(α−1)/α
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Figure 12.6: The outside degree of a community k follows a power-law relation with
the community size s.

=
ε

E [S] ∑
i≥j

(( i
ε

)(1/α)
+ 1
)−γ+1

(i/ε)(α−1)/α

≈ Cj−γ/α+2. (12.3.2)

Together with (12.2.5), this shows that the exponent τ of the degree distribution
satisfies τ ∈ [γ− 1, γ

α − 1]. Table 12.1 shows several values of τ, γ and γ/α− 1. We
see that indeed τ ∈ [γ− 1, γ

α − 1] in the example data sets. However, the interval
may be quite wide when α is small.

We next test assumption (12.2.3). Interestingly, Figure 12.6 shows a power-law
relationship between k and s, of the form k ≈ sβ. If k ≤ Ks2 would hold, then
β ≤ 2, whereas the more strict assumption (12.2.6) would imply β ≤ 1. Table 12.1
shows that the example data sets all have 1 < β < 2. Therefore, the more strict
assumption (12.2.6) does not hold, but (12.2.3) does hold. Thus, large communities
have very large outside degrees.

12.4 Conclusions and outlook

In this chapter, we have analyzed the hierarchical configuration model (HCM) in-
troduced in Chapter 11 for networks with a power-law degree distribution. For the
caricature case of extremely dense communities, we show that a power-law degree
distribution with exponent τ implies a power-law distribution for the community
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sizes with exponent γ = τ + 1. Real-world networks, however, rarely posses an
extremely dense community structure [139].

Studying the HCM allows us to observe two previously unobserved power-law
relations in several real-world networks. The relation between the number of edges
inside a community ein and the community sizes s follows a power law of the form
ein ∝ s1+α. The second power-law relation is between the number of edges going out
of a community k and the community sizes: k ∝ sβ. The data sets that were studied
in this chapter satisfy 1 < β < 2 and α < 1. Combined, the two power-law relations
improve our understanding of the community structure in the data sets. Large
communities are not extremely densely connected, and have a large number of edges
going out of the community per vertex. Smaller communities are dense, and vertices
in the community only have a few edges going out of the community. Although
the communities are still denser than the entire network, our intuitive picture of
extremely densely connected communities only holds for the small communities in
a network, the larger communities do not fit into this picture. The observation that
large communities are not extremely dense may be a consequence of not allowing for
overlapping communities. In case of several overlapping communities, community
detection algorithms may merge these communities into one large community. As
a consequence, this large community will be far from extremely dense. In the case
of overlapping communities, many networks still display a power-law community-
size distribution [173]. It would be interesting to investigate the relation between
the exponent of the degree distribution and the community-size distribution when
communities are allowed to overlap. Further research could also study how the
denseness of the communities and the number of edges out of the communities are
related to the community sizes in the case of overlapping communities.

Both power-law relations are observational, and therefore depend on the Infomap
community detection algorithm. It is also possible to use other community detection
algorithms to investigate these power-law relations. We found that when using the
Louvain community detection algorithm [29], the power-law relations still hold. The
estimates for the exponents α and β however did change. This can be explained by
the fact that the Louvain method finds larger communities in general, which are
therefore less dense.

The power-law exponent of the degree distribution τ is known to influence the
behavior of various processes on random graphs, for example percolation or epidemic
models. Furthermore, mean distances in random graphs are different for τ ∈ (2, 3),
or τ > 3 [108, 109, 164]. Our results do not shed light on whether for networks with
a community structure, the behavior of these processes is explained by τ, or rather
by the community degrees. This remains open for further research. The results on
the power-law shift suggest that this may depend on the density of the communities,
which is characterized by the exponent α.

12.A Comparing the power-law fit to other distributions

Tables 12.2 and 12.3 show the goodness of fit criterion (g.o.f.) developed in [66] for
the power laws of the degree distribution and the community-size distribution. If the
goodness of fit is larger than 0.10, then the power-law assumption seems plausible.
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We compare the fit of the power laws with the fit of a lognormal distribution and
a power-law distribution with an exponential cutoff by computing likelihood ratio
tests as in [66]. A negative likelihood ratio suggests a better fit than the pure power
law, whereas a positive value of the likelihood ratio implies that a power law is a
better fit. For the degree distributions, we conclude that the Gowalla data set follows
a power law, the Amazon and WordNet degree distributions can be approximated
by power laws with cutoffs. The degree distribution of the Google data set does not
show evidence for a power law, a lognormal distribution or a power-law distribution
with exponential cutoff. For the community-size distribution, we conclude that
the WordNet data set can be approximated by a power law. The Amazon and
Google community-size distributions are better approximated by power laws with
exponential cutoffs. The community-size distribution of the Gowalla set does not
show evidence for a lognormal distribution, a power law or a power law with
exponential cutoff.

power law lognormal cutoff
g.o.f. LR p LR p

Amazon 0,02 -2,76 0,01 -14,37 0,00
Gowalla 0,80 2,24 0,02 0,00 0,98

WordNet 0,00 4,38 0,00 -61,65 0,00
Google 0,00 10,32 0,00 -1,27 0,26

Table 12.2: Fitting the degree distribution. The first column presents the goodness of
fit criterion (g.o.f.) from [66]. The next columns present the likelihood ratios (LR) for
the degree distributions: lognormal distribution and a power-law distribution with
exponential cutoff versus a power-law distribution. The p-values for significance of
the likelihood ratio tests, as in [66] are also shown. Statistically significant values are
shown in bold.

power law lognormal cutoff
g.o.f. LR p LR p

Amazon 0,25 -1,98 0,05 -4,74 0,03
Gowalla 0,02 4,95 0,00 -1,33 0,25

WordNet 0,60 0,04 0,00 -0,39 0,53
Google 0,06 -1,35 0,18 -5,59 0,02

Table 12.3: Fitting the community-size distribution. Goodness of fit and likelihood
rations as in Table 12.2 for the community-size distribution. Statistically significant
values are again bold.
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In this chapter, we study the performance of two random graph models that
create a network with similar community structure as a given network on real-world
network data. One model, the HCM introduced in Chapter 11, preserves the exact
community structure of the original network, while the other model only preserves
the set of communities and the vertex degrees. Testing these models on real-world
network data shows that community structure is an important determinant of the
behavior of percolation processes on networks, such as information diffusion or
virus spreading: the community structure can both enforce as well as inhibit diffusion
processes. In Chapter 11, we already showed that for bond percolation and stylized
community shapes both effects may be present, depending on the community struc-
ture. In this chapter, we show that both effects can also occur in real-world community
structures and for other types of epidemic processes. Our models further show that it
is the mesoscopic set of communities that matters. The exact internal structures of
communities barely influence the behavior of percolation processes across networks.
This insensitivity is likely due to the relative denseness of the communities.

13.1 Introduction

The behavior of dynamic processes such as percolation or epidemic models on net-
works are of significant interest, since for example they model the spreading of
information or a virus across a network [18, 32, 76, 178]. Understanding models for
percolation may enhance insight in how an epidemic can be stopped by immuni-
zation, or how a message can go viral by choosing the right initial infectives. An
important question is how the structure of the network affects the dynamics of the
epidemic [163]. A vast amount of research focuses on scale-free networks that possess
a power-law degree distribution [66, 106, 158, 162, 212]. The exponent τ of the degree
distribution was found to play a central role in various percolation processes [22, 23,
55, 67, 177]. Other authors have focused on the influence of clustering on the spread
of epidemics [93, 95, 197, 198, 206].

Real-world networks, however, are not completely characterized by their microsco-
pic and macroscopic properties. Many real-world networks display a community

285
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structure [92], where groups of vertices are densely connected, while edges between
different groups are more scarce. Since communities are small compared to the entire
network, but seem to scale with the network size, they are typically of mesoscopic
scale [80, 181]. The problem of detecting the community structure of a network has
received a lot of attention [80, 138]. The exact way in which communities influence
the properties of a network is a different problem. For example, the community struc-
ture of a network influences the way a cooperation process behaves on real-world
networks [143], and using community structure improves the prediction of which
messages will go viral across a network [215]. Several stylized random graph models
with a community structure have shown that communities influence the process
of an epidemic across a network [13, 46, 94, 113, 142, 194, 221, 224], but the extent
to which community structure affects epidemics on real-world networks is largely
unexplained. Our main goal is to enhance our understanding of the intricate relation
between community structures and the spread of epidemics, and in particular to
identify the properties of community structures that have the largest influence.

We study two random graph models that generate networks with a similar com-
munity structure as any given network: the HCM model introduced in Chapter 11
and a second model that also randomizes the internal community structure. In
Chapter 11 we have studied the behavior of bond percolation on the HCM model
analytically. In this chapter, we study the behavior of several other types of epidemics
by simulation, and compare the results to the behavior of epidemics on real-world
networks. We find that these models capture the behavior of epidemics or percolation
on real-world networks accurately, and that the mesoscopic community structure is
vital for understanding epidemic spreading. We find that the sets of communities
are of crucial importance, while quite surprisingly, the precise structure of the intra-
community connections hardly influences the percolation process. Furthermore, we
find that community structure can both enforce as well as inhibit percolation.

13.2 Models

We now describe our two random graph models in detail. For a given real-world
network, both models randomize the edges of the network, while keeping large parts
of the community imprint. Suppose that we are given the set of communities of a
particular real-world network. Then the first model, the hierarchical configuration
model (HCM) as introduced in Chapter 11, keeps all edges inside the communities,
while rewiring the inter-community edges. Indeed, all inter-community edges are
replaced by two half-edges, one at each end of an inter-community edge. Then,
one by one, these half-edges are paired at random. Thus, in HCM, the precise
community structure of the network is the same as in the original network, but the
inter-community connections are random. The second model (HCM*), introduced as
the modular random graph in [193], replaces both the inter-community edges and the
intra-community edges by pairs of half-edges. Then again, the half-edges are paired
at random. An additional constraint is that all inter-community half-edges must be
paired to one another, and all half-edges corresponding to the same community must
be paired to one another (see Figure 13.1). Thus, a network generated by HCM* is
completely random, except for the set of communities and the degree distributions
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(a) A network with 3 com-
munities.

(b) HCM randomizes the ed-
ges between different com-
munities.

(c) HCM* also randomizes
the edges inside the commu-
nities.

Figure 13.1: HCM and HCM* illustrated.

inside and outside the communities.
More precisely, given a real-world network and the collection of its communities,

obtained e.g., using a community detection algorithm, we construct HCM and HCM*
in the following way. First, rewire the edges between different communities, using
the switching algorithm. Select two inter-community edges uniformly at random,
{u, v} and {w, x}. Now delete these edges and replace them by {u, x}, {w, v} if
this results in a simple graph. Otherwise keep the original edges {u, v} and {w, x}.
Empirically, it has been shown that this randomizes the inter-community edges
uniformly if this procedure is repeated at least 100E times, where E is the number of
inter-community edges [151]. This creates HCM. This construction is not precisely
the same as its construction in Chapter 11, since this construction requires HCM to be
simple, whereas the construction in Chapter 11 may result in a multigraph. Therefore,
the edges of HCM are not quite connected as in the CM, since self-loops and multiple
edges are forbidden. To create HCM*, the edges within the communities are also
randomized after rewiring the inter-community edges, again using the switching
algorithm. This is repeated for all communities.

HCM and HCM* are extensions of the configuration model (CM), described in
Section 1.1.1. CM only preserves the microscopic degree distribution of the real-world
networks, while HCM* also preserves the mesoscopic community structure. HCM
instead, preserves the entire community structure. Therefore, if we sort the random
graph models in decreasing randomness, we first have CM, then HCM*, and then
HCM. When comparing the behavior of an epidemic process on these random graphs
to the original network, we see how much of the behavior of epidemics on real-world
networks can be explained by its degree distribution (CM), its rough community
structure (HCM*), or the exact community shapes (HCM). The aim of this chapter
is to investigate to which extent microscopic and mesoscopic network properties
determine the spread of epidemics.

In Chapter 11 we have shown that the fixed community shapes combined with
the randomized inter-community connections make HCM analytically tractable.
However, keeping all intra-community edges fixed makes HCM prone to overfitting.
HCM* does not have this problem and is more suitable to generate a random network
with a community structure, since all edges within communities are randomized.
Randomizing the intra-community edges makes HCM* harder to analyze analytically
than HCM. Some analytical results of HCM such as the largest component size,
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however, can be extended to results of HCM*.

13.3 Results

We analyze six different real-world networks: the internet on the Autonomous Sy-
stems level [137], an email network of the company Enron [129, 137], the PGP web
of trust [36], a collaboration network in High energy physics, extracted from the
arXiv [137], a FACEBOOK friendship network [214] and an interaction network be-
tween proteins in yeast [53]. Table 13.1 shows several statistics of these data sets
and their community structures. We extract the communities of these networks with
the Infomap community detection algorithm [190], and use these communities as
input for the HCM and HCM* model, to create networks with a similar community
structure as the original networks. Table 13.1 shows that the communities are of
mesoscopic size: while the communities are small compared to the entire network,
and have a small expected size, all networks still contain a few large communities.

N E [s] smax δnetw δcom δw
com

AS 11,174 21 910 3.75 ·10−4 0.38 0.10
Enron 36,692 15 1,722 2.73 ·10−4 0.73 0.22
HEP 9,877 10 181 5.33 ·10−4 0.59 0.32
PGP 10,680 12 160 4.26 ·10−4 0.41 0.24
FB 63,731 29 2,247 4.02 ·10−4 0.41 0.14
yeast 2,361 9 97 2.57 ·10−3 0.55 0.25

Table 13.1: Statistics of the data sets. N is the number of vertices in the network,
E [s] the average community size, smax the maximal community size. The denseness
of the network δnetw is defined as the number of edges divided by the number of
edges in a complete graph of the same size. δcom equals the average denseness of the
communities, and δw

com the average denseness of the communities weighted by their
sizes.

Giant component size. An important property of a network is its connectedness,
expressed by the fraction of vertices in the largest component. For HCM, the size of
the largest component has been derived analytically in Theorem 11.1. This size is
independent of the precise community shapes, and therefore is the same for HCM
and HCM*, as long as the communities of HCM* remain connected. The size of the
largest component of real-world networks can be well predicted using the analytical
estimates of HCM, which only uses the joint distribution of community sizes and the
number of edges going out of the communities (Table 13.2). These estimates yield a
considerable improvement compared to CM, which is generally a few percent off.

The fact that the analytical estimate for the size of HCM* accurately estimates
the giant component size in real-world network data suggests that communities
generated by HCM* generally remain connected. Table 13.3 presents the fraction of
disconnected communities fdis that HCM* generates. Table 13.3 also presents Ndis,
the average number of vertices that are not connected to the largest component of
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S (data) S (HCM) S (HCM*) S (CM)

AS 1.000 1.000 1.000 0.960
Enron 0.918 0.918 0.918 0.990
HEP 0.875 0.875 0.875 0.990
PGP 1.000 1.000 1.000 0.960
FB 0.995 0.995 0.995 0.999
yeast 0.941 0.941 0.941 0.948

Table 13.2: The size S of the giant component in the data sets compared to the
analytical estimates of HCM (Theorem 11.1) and CM [117].

the community after rewiring, given that the community is disconnected. We see
that the fraction of disconnected communities is different for the different networks.
For the networks with a more dense community structure, the probability that a
community becomes disconnected after rewiring is low, while for for example the
AS network this probability is higher. In all cases, the number of vertices that are
disconnected from the largest component is low, indicating that the community stays
largely connected. Thus, Theorem 11.1 can also be used to approximate the size of
the largest component of HCM*.

Community structure of HCM and HCM*. By keeping the sets of communities
fixed, we expect both HCM and HCM* to generate networks with a similar commu-
nity structure as the original data set. We first extract the communities (Ci)i≥1 from
the data sets. We use these communities to generate HCM and HCM*. To test how
similar the community structures of the generated networks and the original net-
works are, we once more perform a community detection algorithm on the networks
generated by HCM and HCM*. Let the communities detected by this algorithm be
denoted by (CHCM

i )i≥1. We then define the similarity wHCM of the two community
structures as

wHCM =
1
N ∑

i

|Ci ∩ CHCM
i |

|Ci|
, (13.3.1)

where Ci and CHCM
i are the sets of vertices that are in the same community as vertex i

in the original network, and the HCM network respectively. We define the similarity
for the community structure generated by HCM* similarly as wHCM*. Table 13.3
presents this similarity measure for all networks. We see that for most networks, the
degree of overlap is large, but for the AS network, the overlap between the original
network community sets and the networks generated by HCM or HCM* is smaller.
This may be explained by the fact that the AS network has less dense communities,
so that rewiring the edges between communities can easily shift vertices from one
community to the other.

Overfitting. Table 13.4 shows the fraction of edges of the data sets that are inside
communities. HCM fixes all these edges, so one could argue that HCM overfits
the data by keeping this fraction of edges fixed. For this reason, we also consider
HCM*. Figure 13.2 shows the fraction of rewired edges in HCM* in communities of
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fdis Ndis wHCM wHCM*

AS 0.24 3.00 0.68 0.65
Enron 0.02 3.62 0.94 0.92

HEP 0.04 2.23 0.96 0.94
PGP 0.17 2.54 0.97 0.91

FB 0.17 2.61 0.93 0.92
yeast 0.11 2.29 0.85 0.81

Table 13.3: The fraction of disonnected HCM* communities fdis, the average number
of vertices inside a disconnected community not connecting to the largest part of the
community Ndis and the overlap of community structure of generated networks and
original networks wHCM and wHCM* as defined in (13.3.1).

size s. This is the fraction of edges that are different from the edges in the original
community after the rewiring procedure inside communities. In general, a large
fraction of edges is different after randomizing the intra-community edges. The cases
where only a few edges were rewired correspond to small communities, where only
a small amount of simple random graphs with the same degree distribution exist,
or larger communities that are complete graphs, or star-shaped (where only one
simple graph with that degree distribution exists). This shows that HCM* creates
substantially different graphs than HCM, and is less prone to overfitting the data
than HCM.

AS Enron Hep PGP FB yeast

0.58 0.58 0.70 0.83 0.54 0.52

Table 13.4: The fraction of edges inside communities in the data sets.

Epidemics on HCM and HCM*. The long-term properties of an epidemic outbreak
can be mapped into a suitable bond percolation problem. In this framework, the pro-
bability p that a link exists is related to the probability of transmission of the disease
from an infected vertex to a connected susceptible vertex. The latter corresponds
to removing edges in a network with probability 1− p and keeping the edges with
probability p independently across edges (other types of epidemics are discussed
in Appendix 13.A). A quantity of interest is the size of the largest component as a
function of p, which we described analytically for HCM in Chapter 11. However,
this size depends on the community shapes, and therefore bond percolation on HCM
does not necessarily give the same results as percolation on HCM*. Inspired by the
insensitivity of the giant component to the exact community shapes, we establish
whether the community shapes significantly influence the size of the giant percolating
cluster by simulation, by showing how bond percolation affects the connectivity of
the original networks, compared to CM, HCM and HCM* (Figure 13.3).

We see that the behavior of the real-world networks under bond percolation is cap-
tured accurately by both HCM and HCM*, in contrast to CM. In Appendix 13.A, we
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Figure 13.2: The fraction of rewired edges inside communities for HCM*. Every dot
corresponds to a community. The fraction of rewired edges is the fraction of edges in
the community that are present after randomizing the intra-community edges, but
were not present before randomizing.
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Figure 13.3: HCM, HCM* and CM under bond percolation compared to real-world
networks. Independently, each edge is deleted with probability 1− p. The size of the
largest component after deleting the edges is the average of 500 generated graphs.
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see that HCM and HCM* also perform well for other types of percolation processes
and an SIR epidemic. These results reveal and confirm the key role of the mesoscopic
community structure in percolation processes. Furthermore, the fact that the pre-
dictions of HCM and HCM* are both close to the behavior of the original network
under percolation indicates that the shapes of the communities only have a minor
influence on the percolation process. The surprising finding that the exact internal
community structure barely influences the epidemic processes may be explained by
the denseness of the communities. Table 13.1 shows that the communities are very
dense compared to the entire network. Since community detection algorithms look
for dense subsets in large complex networks, applying HCM or HCM* to real-world
networks typically yields sets of dense communities. The Autonomous Systems
network has communities that are much less dense than in most other networks [136],
but even in that network the communities are much denser than the entire network.
Therefore, in the case of bond percolation for example, the communities of mesoscopic
size are supercritical, and the communities will be almost connected after percolation.
Thus, an epidemic entering a community of mesoscopic size will reach most other
community members. It is more difficult for the epidemic to reach other communities,
which makes the inter-community edges the important factor for the spread of an
epidemic. When generating a HCM* network, the communities stay of the same
denseness, and therefore it is still relatively easy for the epidemic to spread inside the
communities, regardless of their exact shapes.

The only process where HCM and HCM* are not always close to the process
on the original graph, is a targeted attack (Figure 13.6), even though both models
still outperform CM. Furthermore, some networks show a difference between the
predictions of HCM and HCM*. Therefore, the exact community structures may have
some influence on a targeted attack on a real-world network. Another interesting
observation is that where most networks are highly sensitive to a targeted attack, the
FACEBOOK network has a community structure that makes it more resistant against a
targeted attack than a configuration model. This particular feature of the FACEBOOK
network can be explained by the fact that in the FACEBOOK network, most vertices of
high degree are in the same community. Therefore, deleting high-degree vertices has
a smaller effect than in a corresponding CM model.

The results of the yeast network show that in some situations CM performs
equally well as HCM or HCM*. Thus, in some cases the mesoscopic properties of a
network do not influence percolation processes. In the case of the yeast network, this
can be explained by its almost tree-like structure; there is no noticeable community
structure. Thus, by adding the community structure in HCM or HCM*, no structural
information is added. This suggests that CM, HCM and HCM* combined can also
show whether the community structure given by a community detection algorithm is
meaningful. When the behavior of various processes on CM, HCM and HCM* are
similar, this may imply that there is no real community structure in the network.

The ENRON, High Energy Physics and PGP networks have communities that
inhibit percolation or an SIR epidemic compared to a configuration model with the
same degree distribution. This is similar to the observation that communities can act
as traps for an epidemic process across a network [168]. In contrast, the communities
in the Autonomous Systems graph enforce the percolation process, which may be
attributed to its star-like community structure. Since HCM* preserves the degrees
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of the vertices inside their own community, HCM* creates a graph that captures this
star-like structure.

An important conclusion is that these findings confirm that both HCM and HCM*
are realistic models for real-world networks.

Microscopic and macroscopic properties of HCM and HCM* Where [170] creates
a reshuffling of a given network using several microscopic properties of every vertex,
HCM and HCM* use mesoscopic properties instead. An advantage of using HCM or
HCM* is that both models are easy to generate. Since HCM* is more random than
HCM, it is a better choice for generating a random network. In HCM*, the rewiring of
intra-community edges makes the community structure a uniform simple graph with
the prescribed degrees. Specifically, if the interest is to generate a random graph such
that percolation on that graph behaves in a similar way as in the original network,
then our results show that HCM* is a suitable choice. However, HCM* does not
capture the microscopic properties of the original network as effectively as HCM.
HCM*, for example, does not generate networks with similar clustering as in the
original network [193]. Therefore, when the goal is to create a network with similar
clustering as the original network, using HCM* may be less suitable. Indeed Table 13.5
shows that in most cases HCM generates a network with a clustering coefficient that is
closer to the value of the original network. An exception is the Autonomous Systems
network, where HCM* is closer to the real value of the clustering. An explanation
for this is that the communities in the Autonomous Systems network have virtually
no clustering; all clustering is between different communities. HCM also has no
clustering inside the communities, but the pairing between different communities
destroys the clustering between different communities, and therefore HCM creates
a network with a lower clustering coefficient. HCM* also destroys the clustering
between different communities, but by rewiring the edges inside communities, creates
some clustering inside the communities. Therefore, the value of the clustering of
HCM* is closer to the value of the original network than the one of HCM.

Table 13.6 shows that HCM and HCM* generate networks that match the assor-
tativity of the original network closer than a configuration model. However, the
assortativity generated by HCM does not always match its theoretical value of Pro-
position 11.2. An explanation for this is that HCM generates simple graphs, while
the theoretical estimate does not take this into account. Since both ends of a self-
loop have the same degree, having non-simple graphs increases the assortativity.
Furthermore, these self-loops typically occur at nodes of large degree, increasing
the assortativity even further, so that the theoretical assortativity is higher than the
observed assortativity.

The fact that HCM* does not capture the clustering coefficient and the assortativity
well, but does capture the spread of an epidemic across a network, again confirms
that the mesoscopic properties are of vital importance for the spread of an epidemic
across a network. Even though microscopic features such as clustering are destroyed
in HCM*, the mesoscopic properties are sufficient to know how an epidemic spreads,
making HCM* a suitable random graph model when considering the mesoscopic
structure of networks.

Figure 13.4 presents the graph distances for the different data sets. In some



294 Chapter 13. Epidemics on networks with community structures

data HCM HCM* CM

AS 0.30 0.16 0.20 0.09
Enron 0.50 0.35 0.22 0.03
HEP 0.47 0.40 0.24 0.00
PGP 0.26 0.24 0.19 0.00
FB 0.22 0.15 0.08 0.00
yeast 0.13 0.12 0.12 0.01

Table 13.5: Average clustering for the original data set, HCM, HCM* and CM. The
presented values are averages of 100 generated graphs.

data HCM HCM* CM HCM (theory)

AS -0.19 -0.16 -0.16 -0.14 0.00
Enron -0.11 -0.06 -0.05 -0.05 -0.02
HEP 0.27 0.25 0.23 0.00 0.25
PGP 0.24 0.26 0.26 -0.01 0.26
FB 0.18 0.11 0.10 0.00 0.11
yeast -0.10 -0.03 0.00 -0.01 -0.02

Table 13.6: Assortativity of HCM, HCM* and CM compared to the real network and
theoretical HCM value of Proposition 11.2. The values of HCM, HCM* and CM are
averages over 500 generated graphs.

instances, HCM and HCM* capture the graph distances better than CM. However, for
example for the yeast network, the distances in CM are already close to the distances
in the original data set.

13.4 Conclusion

Community structures in real-world networks have a profound impact on percolation
or epidemic spreading, which is central to our understanding of dynamical processes
in complex networks. In this chapter, we have investigated the behavior of several
epidemic processes in the HCM model introduced in Chapter 11 and its randomized
counterpart HCM*. Both HCM and HCM* turn out be highly suitable to capture
epidemic spreading on real-world networks. We have shown this by mapping the
models to various real-world networks, and by investigating a range of epidemic
processes including bond percolation, bootstrap percolation and a SIR epidemic.
Our experiments show that while it is essential to take the community structure
into account, the precise internal structure of communities is far less important
for describing an epidemic outbreak. This insensitivity is likely due to the relative
denseness of the communities. When communities are sparse, their internal structures
are expected to have a more decisive effect on epidemic spreading.
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13.A Other epidemic processes

In Figure 13.3 we compared the behavior of bond percolation on real-world network
data to bond percolation on HCM, HCM* and the CM. In Figures 13.5- 13.9 we now
present similar results for four other types of epidemic processes. Here we describe
these processes in detail.

Site percolation. In site percolation, every vertex, and all edges adjacent to it, are
deleted with probability 1− p, independently for every vertex. As in bond percolation,
we are interested in the fraction of vertices in the largest component after this deletion
process.

Targeted attack. In a targeted attack, a fraction of p of the vertices and the edges
adjacent to them are removed, starting with the highest degree vertex, then the second
highest degree vertex and so on. Again, the quantity of interest is the fraction of
vertices in the giant component after deleting the edges.

Bootstrap percolation. In bootstrap percolation with threshold t initially a certain
fraction of vertices is infective. The initially infected vertices are selected at random.
Then, every vertex with at least t infected neighbors also becomes infected. This
process continues until no new vertices become infected anymore. In the results, we
consider bootstrap percolation with threshold t = 2. The quantity of interest is the
fraction of infected vertices when the process has stopped.

SIR epidemic. In an SIR epidemic, vertices are either susceptible, infected or reco-
vered. One vertex is selected uniformly at random to be the initial infective. Then,
every infected vertex infects his susceptible neighbors independently at rate β. Every
infected vertex recovers at rate γ. As in [194], we set γ = 1 and β = 3E [D] /γ, where
E [D] is the average degree of the network. We are interested in how the fraction
of infected and recovered vertices evolves over time. Since every vertex is either
susceptible, infected or recovered, the fraction of susceptible vertices is then also
known.
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Figure 13.4: Distances in the original network, HCM, HCM* and CM. Distances are
approximated by sampling 5,000 nodes from the graphs, and calculating all distances
between pairs of nodes in the sampled set. The values for HCM, HCM* and CM are
the average over 100 generated graphs.
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Figure 13.5: HCM, HCM* and CM under bootstrap percolation compared to real-
world networks. Initially, a certain fraction of the vertices is infected at random. Then,
a vertex becomes infected when at least 2 of its neighbors are infected. The final
fraction of infected vertices is the average of 500 generated graphs.
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Figure 13.6: HCM, HCM* and CM under a targeted attack, compared to real-world
networks. The fraction of 1− p vertices of highest degree are removed. The size of
the largest component after the vertices are removed is the average of 500 generated
graphs.
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Figure 13.7: HCM, HCM* and CM under site percolation compared to real-world
networks. Independently, every vertex is removed from the network with probability
1− p. The size of the largest component after the vertices are removed is the average
of 500 generated graphs.
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Figure 13.8: The number of infected individuals in an SIR epidemic in HCM, HCM*
and CM compared to real-world networks. The presented results are the average
of 500 generated graphs, with recovery rate γ = 1 and infection rate β = 3E [D] /γ,
where E [D] is the mean degree.
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Figure 13.9: The number of recovered individuals in an SIR epidemic in HCM,
HCM* and CM compared to real-world networks. The presented results are the
average of 500 generated graphs, with the recovery rate γ = 1 and the infection rate
β = 3E [D] /γ, where E [D] is the mean degree.
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Based on:
Mesoscopic scales in hierarchical configuration models

R. van der Hofstad, J.S.H. van Leeuwaarden and C. Stegehuis
Stochastic Processes and their Applications (2018)

In this chapter, we again study the hierarchical configuration model (HCM) intro-
duced in Chapter 11, to better understand the mesoscopic scales of the communities.
In Chapter 11 we investigated the component sizes when the HCM is in the su-
percritical or in the subcritical regime and we derived the component sizes after
supercritical and subcritical bond percolation. We expand upon these results by
investigating the scaling of the component sizes at criticality and by studying critical
bond percolation. We find the conditions on the community sizes under which the
critical component sizes of HCM behave similar to the component sizes in a critical
configuration model. We show that the ordered components of a critical HCM on N
vertices are O(N2/3). More specifically, the rescaled component sizes converge to the
excursions of a Brownian motion with parabolic drift.

14.1 Introduction

In networks, it is common to distinguish between two levels, referred to as “mi-
croscopic” and “macroscopic”. Vertex degrees and edges between vertices provide a
microscopic description, whereas most network functionalities require a macroscopic
picture. Random graph models are typically defined at the microscopic level, in
terms of degree distributions and edge probabilities, leading to a collection of local
probabilistic rules. This provides a mathematical handle to characterize the ma-
croscopic network functionality related to global characteristics such as connectivity,
vulnerability and information spreading.

Intermediate or “mesoscopic” levels are less commonly considered in random
graph models and network theory at large, and apply to substructures between the
vertex and network levels. Mesoscopic levels are however becoming increasingly in
focus, for example because of community structures or hidden underlying hierarchies,
common features of many real-world networks. It is not easy to define what is
precisely meant with mesoscopic, apart from the obvious definition of something
between microscopic and macroscopic. This chapter deals with large-network limits,
in which the network size N (number of vertices) will tend to infinity. The mesoscopic
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(a) Subcritical (b) Critical (c) Supercritical

Figure 14.1: Phase transition for the component sizes in a configuration model

scale then naturally refers to structures of size Nα, where it remains to be determined
what values of α need to be considered.

We will associate the mesoscopic level with the community structure, defined as
the collection of subgraphs with dense connections within themselves and sparser
ones between them. Once the number and sizes of the network communities are
identified, not only the community sizes are mescoscopic characteristics, but also the
connectivity between communities and their internal organization.

To better understand the mesoscopic scale, we study the HCM introduced in
Chapter 11 in the critical regime, when the random graph is on the verge of having
a giant connected component, by studying a depth-first exploration process. This
critical regime has been explored for wide classes of random graph models, including
the CM. Indeed, most random graph models undergo a transition in connectivity, a
so-called phase transition, as illustrated in Figure 14.1. The component sizes of random
graphs at criticality were first investigated for Erdős-Rényi random graphs [7, 25],
and more recently for inhomogeneous random graphs [23, 209] and for the CM [71,
72, 123, 156, 189]. All these models were found to follow qualitatively similar scaling
limits, and hence can be considered to be members of the same universality class.

Taking the HCM as the null model for studying critical connectivity, we can
investigate the influence of the community structure. A relevant question is under
what conditions the HCM will show the same scaling limit as in the classical random
graph models and hence is a member of the same universality class. An alternative
formulation of the same question is to ask what the natural order of the mesoscopic
scale should be, to influence or even alter the critical graph behavior. Our analysis
shows that α = 2/3 is a strong indicator for the extent to which mesoscopic scales
change the global network picture. When communities are of size N2/3 or smaller, the
mesoscopic scales are small (yet not negligible), and the critical structures that arise
are comparable to the structures encountered in the classical CM. When communities
are potentially larger than N2/3, the communities themselves start to alter the critical
structures, and have the potential to entirely change the macroscopic picture.

We then proceed to study percolation on the HCM. We will exploit the fact that any
supercritical HCM can be made critical by choosing a suitable percolation parameter.
Therefore, we also study the scaling limits of the component sizes of a HCM under
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critical bond percolation. We show that under percolation, the community structure
potentially not only affects the component sizes, but also the width of the critical
window.

Our main results for the critical components, both before and after percolation,
crucially depend on the mesoscopic scale of the community structure. We obtain
the precise conditions (Conditions 14.1 and 14.2) under which the mesoscopic scale
does not become dominant. These conditions describe the maximum order of the
community sizes that can be sustained in order not to distort the picture generated
by the CM. In other words, when the community sizes remain relatively small, the
results proven for the CM remain valid, despite the fact that the locally tree-like
assumption is violated. And equally important, the same conditions indicate when
the community sizes become large enough for the mesoscopic scale to take over. In
that case, the CM is not an appropriate model.

14.1.1 Model conditions

We study the HCM model as defined in Section 11.1.1. We assume that the following
conditions hold:

Condition 14.1 (Community regularity).

(i) Pn(H) = n(n)
H /n → P(H), where (P(H))H is a probability distribution on labeled

graphs H of arbitrary size.

(ii) limn→∞ E[Sn] = E[S] < ∞.

(iii) E[DnSn]→ E[DS] < ∞.

(iv) smax = maxi∈[n] si � n2/3

log(n) .

Condition 14.2 (Inter-community connectivity).

(i) limn→∞ E[D3
n] = E[D3] < ∞.

(ii) P(D = 0) < 1, P(D = 1) ∈ (0, 1).

(iii) νDn := E[Dn(Dn−1)]
E[Dn ]

= 1 + λn−1/3 + o(n−1/3), for some λ ∈ R.

Condition 14.1(i), 14.1(ii), and 14.2(ii) are the same conditions as the conditions on
the HCM model introduced in Section 11.1.1. Condition 14.1(iii), 14.1(iv) and 14.2(iii)
are the extra conditions that are necessary to investigate the behavior of the HCM in
the critical window.

Remark 14.1. Because the inter-community half-edges are paired uniformly at random,
it is possible that two half-edges attached to the same community are paired to each
other, so that the inter-community half-edges form an edge inside some community
H. However, since this corresponds to a self-loop in the macroscopic configuration
model, Condition 14.2(i) ensures that such edges are rare as N becomes large [106,
Section 7.3].
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14.1.2 Results on critical component sizes

For a connected component of G, we can either count the number of communities in
the component, or the number of vertices in it. We denote the number of communities
in a component C by v(H)(C ), and the number of communities with inter-community
degree k by v(H)

k (C ). The number of vertices in component C is denoted by v(C ).
Define

νD =
E[D(D− 1)]

E[D]
, (14.1.1)

where D is the asymptotic community degree in Condition 14.2. Let pk = P(D = k).
Let Bµ

λ,η(t) denote Brownian motion with a parabolic drift [1, 99]: Bµ
λ,η(t) =

√
η

µ B(t) + λt − ηt2

2µ3 , where B(t) is a standard Brownian motion. Let Wλ(t) be the

reflected process of Bµ
λ,η(t), i.e.,

Wλ(t) = Bµ
λ,η(t)− min

0≤s≤t
Bµ

λ,η(s), (14.1.2)

and let γλ denote the vector of ordered excursion lengths of Wλ. Choose µ = E[D],
η = E[D3]E[D]−E[D2]. Let C(j) denote the jth largest component of a HCM, and
C (CM)

(j) the jth largest component of the underlying CM (i.e.,C (CM)

(j) is the jth largest
component measured in terms of the number of communities). Since the underlying
CM satisfies Condition 14.1, by [71],

n−2/3
(

v(H)(C (CM)

(j) )
)

j≥1
→ γλ. (14.1.3)

Thus, the number of communities in the components of a HCM follows the same
scaling limit as the configuration model, since the communities are connected as in a
configuration model.

The following theorem shows that the scaled component sizes of a HCM converge
to a constant times γλ as well:

Theorem 14.1. Fix λ ∈ R. For a hierarchical configuration model satisfying Conditi-
ons 14.1 and 14.2,

N−2/3(v(C(j)))j≥1
d−→ E [S]−2/3 E [DS]

E [S]
γλ, (14.1.4)

with respect to the product topology.

In the Erdős-Rényi random graph, the inhomogeneous random graph as well as
in the CM, the scaled critical component sizes converge in the `2

↓ topology [7, 23, 71],
defined as

`2
↓ :=

{
x = (x1, x2, x3, . . . ) : x1 ≥ x2 ≥ x3 ≥ . . . and

∞

∑
i=1

x2
i < ∞

}
, (14.1.5)

with the 2-norm as metric. Theorem 14.1 only proves convergence of the scaled
component sizes of a HCM in the product topology. Convergence in the product
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topology ensures that for any fixed k, the k largest components converge to the limit
of Theorem 14.1. Convergence in the `2

↓ topology ensures that the entire inifinite-
dimensional vector of component sizes converges. Furthermore, for convergence
in the `2

↓ -topology, the sum of squared rescaled component sizes is required to be
finite. Thus, convergence in the `2

↓ -topology is a stronger notion than convergence
in the product topology. In the CM, the conditions for convergence in the product
topology and convergence in the `2

↓ -topology are the same. In the HCM however,
the conditions for convergence in the product topology turn out to be different than
those in the `2

↓ -topology:

Theorem 14.2. Suppose G is a hierarchical configuration model satisfying Conditions 14.1
and 14.2. Then the convergence of Theorem 14.1 also holds with respect to the `2

↓ -topology if
and only if G satisfies E

[
S2

n
]
= o(n1/3).

Remark 14.2. This theorem shows that there exist graphs where the critical component
sizes converge in the product topology, but not in the `2

↓ -topology. As mentioned
before, this does not happen in other random graph models such as the Erdős-
Rényi random graph, the inhomogeneous random graph and the CM [7, 23, 71].
Furthermore, we can find the exact condition under which the component sizes only
converge in the product topology. This theorem also shows that the conditions for
convergence in the product topology and the `2

↓ -topology are indeed equivalent in
the CM: the CM is a special case of the HCM with size one communities. Therefore,
E [Sn] = 1 for the CM, and the component sizes always converge in the `2

↓ -topology
if they converge in the product topology. It is surprising that the condition on the `2

↓
convergence only depends on the community sizes, but not on the joint distribution
of the community sizes and the inter-community degrees.

Remark 14.3. The results of this chapter can also be applied to a CM or a HCM with
vertex attributes. In this setting, every vertex of a CM has a positive, real-valued
vertex attribute S, where S satisfies Conditions 14.1 and 14.2. These vertex attributes
may for example denote the capacity or the weight of a vertex. If we are interested
in the sum of the vertex attributes in each connected component, then these sums
scale as in Theorem 14.1. In an even more general setting, the random graph has a
community structure, and every vertex within the communities again has a vertex
attribute. Then we are back in the HCM setting, only now the community size
S does not denote the number of vertices in a community, but the sum over the
vertex attributes in a certain community. Therefore, also in a random graph with
community structure and vertex attributes, the critical sum over vertex attributes
satisfies Theorem 14.1 under appropriate conditions as in Condition 14.1.

14.1.3 Results on critical percolation on the HCM

We now consider bond percolation on the hierarchical configuration model, where
every edge is removed independently with probability 1− π. In the CM, the random
graph that remains after percolation can be described in terms of a CM with a different
degree sequence [43, 81, 115]. Furthermore, if the CM is supercritical, it is possible
to choose π such that the resulting graph is distributed as a critical CM. Similarly,
Section 11.3 showed that after percolating a HCM, we again obtain a HCM, but with a
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different community distribution since the communities are percolated. By adjusting
the parameter π we can make sure that the HCM is critical after percolation. Thus,
given any supercritical HCM, it is possible to create a critical HCM, by setting π
correctly.

In the hierarchical configuration model, it is convenient to percolate first only
the edges inside communities. This percolation results in a HCM with percolated
communities. These percolated communities may be disconnected. However, if we
define the connected components of the percolated communities as new communities,
we have a new HCM. Let S(π)

n and D(π)
n denote the size and degree of uniformly

chosen communities after percolation only inside the communities with probability
π, and S(π) and D(π) their infinite-size limits. After this, we percolate only the inter-
community edges. This percolation is similar to percolation on the CM, since the
inter-community edges are paired as in the CM.

We assume the following:

Condition 14.3 (Critical percolation window).

1. Sn and Dn satisfy Conditions 14.1 and 14.2(i) and (ii), and

ν(n)

D(πn)
n

:=
E[D(πn)

n (D(πn)
n − 1)]

E[D(πn)
n ]

→ E[D(π)(D(π) − 1)]
E[D(π)]

> 1. (14.1.6)

2. For some λ ∈ R,

πn = πn(λ) :=
1

ν(n)

D(πn(λ))

(
1 +

λ

n1/3

)
. (14.1.7)

Here π is the solution to π = 1/νD(π) .

Remark 14.4. It can be shown that ν(n)

D(π) is increasing in π. Thus, (14.1.7) has a unique
solution for every λ ∈ R when n is large enough.

Equation (14.1.6) makes sure that after percolation of the intra-community edges,
the new HCM is supercritical, otherwise there is no hope of making the graph critical
by removing more edges. After percolating inside communities with parameter π,
ν(n)

Dπ
n

is the value of ν of the new macroscopic CM.

Let D̃(π) denote the exploded version of D(π), that is, every half-edge of a per-
colated community is kept with probability

√
π, and with probability 1−√π, it

explodes, in that it creates a new community of the same shape with only one half-
edge attached to it. By [71, Thm. 3], the component sizes of a percolated CM have
similar scaling limits as the original configuration model, but with D replaced by
its exploded version. For the HCM, a similar statement holds. Let γ̃λ denote the
ordered excursions of the reflected Brownian motion Bλ

η,µ, with µ = E
[
D̃(π)

]
and

η = E
[
(D̃(π))3]E

[
D̃(π)

]
−E

[
(D̃(π))2]2. We denote the percolated components of a

hierarchical configuration model by C ′. Then the following theorem shows that the
percolated component sizes follow a similar scaling limit as the critical component
sizes of Theorem 14.1:
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Theorem 14.3. Under Condition 14.3, in the percolated hierarchical configuration model,

N−2/3(v(C ′(j)))j≥1 → E[S̃(π)]−2/3 E[D̃(π)S̃(π)]

E[D̃(π)]

√
πγ̃λ, (14.1.8)

in the product topology.

Remark 14.5. By [71], the critical window of a CM satisfies

πn(λ) =
1

ν(n)
(1 + λ/n1/3) = πn(0)(1 + λ/n1/3). (14.1.9)

Therefore, the critical window (14.1.7) in the HCM is similar to the critical window
in the CM, with the difference that in the HCM, we first perform an extra step
of percolation inside the communities. For this reason, the critical window of the
HCM (14.1.7) is in an implicit form, as it depends on both the percolation inside
communities, captured in ν(n)

D(πn)
, and it depends on the inter-community percolation.

In Section 14.3.2, we show that the critical window in the HCM can be written as

πn(λ) = πn(0)
(

1 +
c∗λ
n1/3

)
, (14.1.10)

for some constant c∗ ≤ 1 when E
[
D2

nSn
]
→ E

[
D2S

]
< ∞. In this case, the critical

window for the HCM is very similar to the critical window in the CM. The constant c∗

captures how much smaller the critical window becomes when adding a community
structure. The more vulnerable the communities are to percolation, the smaller the
constant c∗.

Remark 14.6. In Theorem 14.3, we assume that the intra-community edges are equally
vulnerable for percolation as the inter-community edges. It is also possible to study
percolation where the edges inside communities are percolated with some parameter
πin, and the inter-community edges are percolated with probability πout. Several
different combinations of the parameters πin and πout then correspond to critical
percolation. When percolating inside the communities with parameter πin results in
a supercritical graph, it is always possible to find πout = 1/νD(πin)(1 + λ/n1/3) such
that after percolation the resulting graph is in the critical window with parameter λ.
The critical value of the HCM is then defined as the value such that πin(λ) = πout(λ).
Figure 14.2 illustrates this for several values of λ for star-shaped communities. The
higher the intra-community parameter πin, the lower the inter-community percolation
parameter πout needs to be to make the resulting graph critical.

Remark 14.7. Theorem 14.3 shows the convergence of the percolated component sizes
in the product topology. As in Theorem 14.2, by assuming that E

[
S2

n
]
= o(n1/3), we

can also show convergence in the `2
↓ -topology. However, in the case of percolation,

E
[
S2

n
]
= o(n1/3) is not a necessary condition for convergence in the `2

↓ -topology.
After percolating first only edges inside communities, we apply Theorem 14.1 or 14.2
to the percolated clusters. In the example of line communities, communities that have
the shape of a line, we can make the lines large enough such that E

[
S2

n
]
> εn1/3.

However, if we then percolate inside these line communities, E[(S(π)
n )2] = o(n1/3).
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Figure 14.2: The value of πout corresponding to a given πin for star-shaped communi-
ties with five end points (as in Figure 14.4), with n = 105. The intersection with the
line y = x gives the critical value πn(λ).

Thus, after percolating inside the communities we can use Theorem 14.2 to show that
the percolated component sizes converge in the `2

↓ -topology, even though E
[
S2

n
]
≥

εn1/3.

14.1.4 Discussion

What makes communities "small"? Communities form a mesoscopic structure of
a graph. If the communities become very large, then the critical component sizes
will be determined by the sizes of the largest communities. In this chapter, we
find the conditions under which the influence of the mesoscopic structure on the
critical component sizes is small when the inter-community degrees have a finite
third moment. In this situation, the mesoscopic structures of the configuration
model are small enough for the model to be in the same universality class as the
configuration model. Theorems 14.1 and 14.2 show that there are different scales
on which communities can be "small". Theorem 14.1 shows that the communities
are small on the mesoscopic scale when Condition 14.1 holds. In particular, the
maximum size of a "small" community is n2/3/ log(n). This is much smaller than the
total number of vertices in the graph, but it still tends to infinity when n→ ∞, which
shows the mesoscopic nature of the communities. Under these conditions, the order
of the components is determined by the order of the components in the underlying
CM. Since the convergence of Theorem 14.1 holds in the product topology, this only
holds for the first k components, for k fixed. Theorem 14.2 shows that an additional
condition is necessary for the communities to be small on a macroscopic scale. If
this condition does not hold, then the first k components are still determined by the
macroscopic CM for any fixed k, but some large components that are small in the
macroscopic sense will be discovered eventually.

Similarity to the configuration model. The scaling limit of Theorem 14.1 is similar
to the scaling limit of the configuration model; it only differs by a constant. In
fact, the CM is a special case of the HCM: the case where all communities have
size one. One could argue that therefore the HCM is in the same universality class
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as the CM. However, there are still some differences. The variable D in the HCM
is the inter-community degree. Then, if D has finite third moment, the scaling
limit of a HCM is similar to the scaling limit of a CM with finite third moment of
the degrees. However, Chapter 12 showed that it is possible to construct a HCM
with finite third moment of D, but infinite third moment of the degree distribution.
One example of this is a hierarchical configuration model where all communities
are households [14]: complete graphs, where all vertices of the complete graphs
have inter-community degree one. In this household model, every community of
inter-community degree k, contains also k vertices of degree k. Therefore, the inter-
community degree distribution may have finite third moment, while the degree
distribution has an infinite third moment. In the CM, the scaling limit under an
infinite third moment is very different from the one with finite third moment [72].
However, using this household model, it is possible to construct a random graph
with an infinite third moment of the degree distribution, but a similar scaling limit as
the CM under the finite third-moment assumption. Similarly, it is possible to create a
community structure such that the inter-community degrees have an infinite third
moment, but the degree distribution has a finite third moment. Therefore, adding
a community structure to a graph while keeping the degree distribution fixed may
change the scaling limits significantly.

Surplus edges. The number of surplus edges of a connected graph G is defined as
SP(G) := (# edges of G)− |G|+ 1 and indicates how far G deviates from being a
tree. In the CM, the rescaled component sizes and the number surplus edges in the
components converge jointly. A surplus edge in the macroscopic CM stays a surplus
edge of the HCM, since all communities are connected. In the intuitive picture of
densely connected communities, the communities have many surplus edges. In
the HCM, we give each vertex in the macroscopic CM a weight: the size of the
corresponding community. Then, in Theorem 14.1 and 14.2, we are interested in the
weighted size of the components. Counting surplus edges is very similar, now we also
give each vertex in the macroscopic CM a weight: the number of surplus edges in the
corresponding community. We are again interested in the weighted component sizes,
which counts the total number of surplus edges inside communities. The surplus
edges between different communities are the surplus edges of the macroscopic CM.
The number of such edges rescaled by N2/3 goes to zero by [71]. Therefore, if the
surplus edges satisfy the same conditions as the community sizes in Condition 14.2(ii),
they scale similarly to the component sizes. Thus, if SPn denotes the number of
surplus edges inside a uniformly chosen community, and E [SPn] → E [SP] < ∞,
E [SPn · Dn]→ E [SP · D] < ∞ and SPmax � n2/3

log(n) , then

N−2/3(v(C(j)),SP(C(j)))j≥1
d−→ E [S]−2/3 γλ

(
E [DS]
E [S]

,
E [SP · D]

E [S]

)
, (14.1.11)

in the product topology, where SP(C ) denotes the number of surplus edges in com-
ponent C .

Unsurprisingly, this scaling of the surplus edges is very different from the scaling
of the surplus edges in the CM, which is locally tree-like, even though the scaling of
the component sizes is very similar to the one in the CM.
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LetNλ = (Nλ(s))s≥0 denote a counting process of marks with intensity Wλ(s)/E [D]
conditional on (Wλ(u))u≤s, with Wλ(s) as in (14.1.2). Furthermore, let N(γ) denote
the number of marks in the interval γ. Let SP(H)(C ) denote the number of surplus
edges of component C that are inter-community edges. These surplus edges are the
surplus edges of the macroscopic CM. By [71], these surplus edges converge jointly
with the component sizes to N(γλ). Therefore, in the HCM,

(N−2/3v(C(j)),SP
(H)(C(j)))j≥1

d−→
(

E [S]−2/3 γλ E [DS]
E [S]

, N(γλ)

)
. (14.1.12)

Infinite third moment. We investigate the scaled component sizes of a random
graph with communities, where the inter-community degrees have a finite third
moment. A natural question therefore is what happens if we drop the finite-third
moment assumption. The scaled component sizes of random graphs with infinite
third moment, but finite second moment, have been investigated for several models.
If the degrees follow a power-law with exponent τ ∈ (3, 4), then the component
sizes of an inhomogeneous random graph as well as a CM scale as n(τ−2)/(τ−1) [22,
72]. In the HCM this may also be the correct scaling, but clearly then we need to
replace Condition 14.1(iv) by smax = o(n(τ−2)/(τ−1)), since otherwise the largest
community will dominate the component sizes. This indicates that the heavier the
power-law tail, the smaller the maximal community size can be for the HCM to be in
the same universality class as the CM. What exact assumptions on the community-
size distribution are needed to obtain the same scaling limit as in the CM remains
open for further research.

Optimality of conditions. Condition 14.2 is necessary for the macroscopic CM to
have components of size O(n2/3). Clearly it is also necessary that the maximum
community size is o(n2/3), since otherwise the largest community could dominate
the component sizes. For example, it would be possible to create communities of size
larger than n2/3 with inter-community degree zero. Then, these components are the
smallest components of the macroscopic CM, but may be the largest components in
the HCM. Condition 14.1(iv) has an extra factor 1/ log(n), which we need to prove
that the component sizes are not dominated by the community sizes. Probably this
condition is not optimal, we believe the optimal condition to be smax = o(n2/3).
Furthermore, Conditions 14.1(ii) and (iii) are necessary for taking the limit in (14.1.4).

Outline. The remainder of this chapter is organized as follows. In Section 14.2 we
prove Theorem 14.1 by studying a depth-first exploration process. This proof relies
heavily on the fact that the macroscopic CM follows a similar scaling limit [71]. Then
we prove Theorem 14.2 in Section 14.2.3. In Section 14.3, we study percolation on the
HCM. First we prove Theorem 14.3, and after that we show in Section 14.3.2 that the
critical window of a HCM is similar to the critical window of the CM. We conclude
Section 14.3 with some examples of communities.
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14.2 Proof of the scaling of the critical HCM

In this section, we prove Theorems 14.1 and 14.2. We start by describing an explora-
tion process that finds the component sizes in Section 14.2.1. We use this exploration
process to show that the components that are found before time Tn2/3 for some large
T converge to the right scaling limit. After that, we prove in Section 14.2.2 that the
probability that a large component is found after that time is small, which completes
the proof of Theorem 14.1. Then we prove Theorem 14.2 in Section 14.2.3.

14.2.1 Exploration process

To find the component sizes, we use the same depth-first exploration process for the
CM as in [71, Algorithm 1]. However, instead of exploring vertices, we now explore
communities. This means that we only explore the macroscopic CM. In each step of
the exploration process, we discover an entire community, and we explore further
using only the inter-community connections. Therefore, the only difference between
our exploration process and the standard exploration process for the CM, is that we
count the number of vertices in each community that we discover. At each step t, an
inter-community half-edge can be in the ordered set of active half-edges At, in the
set of sleeping half-edges St, or none of these two sets. Furthermore, every vertex
of the HCM is alive or dead. When a vertex is dead, it is in the set of dead vertices
Dt. The set Ct that appears in the algorithm keeps track of the half-edges that connect
to another half-edge of the same community. The set Bt keeps track of the number
of half-edges that connect to a community that has already been discovered in a
previous set of the algorithm.

Algorithm 14.1. For t = 0, all inter-community half-edges are in S0, and both D0 and A0
are empty. While At 6= ∅ or Sk 6= ∅ we set k = k + 1 and perform the following steps:

1. If At 6= ∅, then take the smallest inter-community half-edge a from At.

2. Take the half-edge b that is paired to a. By construction of the algorithm, the community
H to which b is attached, is not discovered yet. Declare H to be discovered. Let
bH1, . . . , bHr be the other half-edges attached to community H, and let VH denote the
set of vertices of community H. Let bH1, . . . , bHr be smaller than all other elements
of At, and order them as bH1 > bH2 > · · · > bHr. Let Ck ⊂ {bH1, . . . , bHr} denote
all half-edges attached to community H that attach to another half-edge adjacent to H.
Furthermore, let Bt ⊂ At ∪ {bH1, . . . , bHr} denote the collection of half-edges in At
that have been paired to one of the bHi’s, together with the bHi s they have been paired to.
Then, set Ak+1 = Ak ∪ {bH1, . . . , bHr} \ (Bt ∪ Ct), St+1 = Sk \ {b, bH1, . . . , bHr}
and Dt+1 = Dk ∪ VH .

3. If At = ∅, then we pick a half-edge a from St uniformly at random. Let H be the
community to which a is attached, and aH1, . . . , aHr the other half-edges attached to
community H. Again, order them as aH1 > aH2 · · · > aHr > a. Let VH denote the
vertices of community H. Declare H to be discovered. Let Ct again denote the collections
of half-edges of H that attach to another half-edge incident to H. Then set Ak+1 =
{a, aH1, . . . , aHr} \ Ct, St+1 = St \ {a, aH1, . . . , aHr} and Dt+1 = Dt ∪ VH .
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Algorithm 14.1 discovers one community at each step. When the inter-community
edges create a cycle, double edge or self-loop on the community level, the correspon-
ding half-edges are in Bt or Ct, and they are thrown away. Therefore, at each step, an
unexplored community is discovered. Since the communities are found by selecting a
half-edge uniformly at random, the communities are explored in a size-biased manner
with respect to the number of edges going out of the community. The dead vertices
correspond to all vertices inside communities that have already been discovered. We
define the additive functional

Zn(t) = |Dt| (14.2.1)

as the number of vertices that have been discovered up to time k. The exploration
process finds an undiscovered community of the HCM at each step, and therefore

Zn(t) =
k

∑
i=1

s(i), (14.2.2)

where s(i) denotes the size of the ith discovered community.
Let d(i) be the inter-community degree of the ith explored community. Define

Qn(k) as
Qn(0) = 0,

Qn(t) =
t

∑
i=1

(d(i) − 2− 2c(i)), (14.2.3)

where c(i) denotes the number of cycles/self-loops or double edges that are found
when discovering the ith community. Let Cj denote the jth component that is found
by the exploration process, and define

τj = inf{t : Qn(t) = −2j}. (14.2.4)

Then, τj − τj−1 is the number of communities in component Cj [71], so that

v(H)(Cj) = τj − τj−1. (14.2.5)

Furthermore, the size of Cj equals

v(Cj) = Zn(τj)− Zn(τj−1). (14.2.6)

By [71], the rescaled process Qn(t) converges to the reflected version of a Brownian
motion with negative parabolic drift. To derive the sizes of the components in the
hierarchical configuration model, we now study the convergence of the process Zn(t):

Lemma 14.1. For any u ≥ 0,

sup
t≤u

∣∣∣n−2/3Zn(btn2/3c)−E[DS]/E[D]t
∣∣∣ P−→ 0. (14.2.7)

Proof. We use [71, Proposition 29], choosing α = 2/3 and fn(i) = si. This yields

sup
t≤u

∣∣∣n−2/3
btn2/3c
∑
i=1

s(i) −
tE[DS]

/
E[D]

∣∣∣ = OP(n−1/3√usmax ∨ n−1/3u2dmax). (14.2.8)
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Using that dmax = o(n1/3) and smax = o(n2/3) by Condition 14.1(iv) gives the result.

Lemma 14.2. For any u ≥ 0,(
n−1/3Qn(tn2/3), n−2/3Zn(tn2/3)

)
t≤u

d−→
(

Wλ(t), E[DS]/E[S]t
)

t≤u
(14.2.9)

in the J1 × J1 topology, which is the product topology of the Skorokhod J1 topology.

Proof. Since t 7→ tE[DS]/E[S] is deterministic,
(

n−1/3Qn(tn2/3)
)

d−→
(

Bλ(t)
)

by [71, Thm. 8] and
(

n−2/3Zn(tn2/3)
)

P−→ (tE[DS]/E[S]) in the J1 topology, an
analogy of Slutsky’s theorem for processes proves the lemma.

By [71], the excursion lengths of Q̄n converge to the excursions of Wλ(t) defined
in (14.1.2), where

Q̄n(t) = n−1/3Qn(tn2/3). (14.2.10)

Since the excursions of Qn encode the number of communities in the components,
and Zn encodes the sum of the corresponding community sizes, Lemma 14.2 shows
that the components that have been discovered before time Tn2/3 satisfy (14.1.4).

14.2.2 Sizes of components that are discovered late and convergence in
product topology

By Lemma 14.2, the component sizes that have been discovered up to time Tn2/3

converge to a constant times the excursion lengths of a reflected Brownian motion
with parabolic drift. To prove that the ordered components of the HCM converge to
the ordered excursion lengths of this process, we need to show that the probability of
encountering a large component after time Tn2/3, is small, so that all large compo-
nents are discovered early in the process. From [72, Lemma 14], we know that for
every η > 0

lim
T→∞

lim sup
n→∞

P
(

v(H)(C ≥T
max) > ηn2/3

)
= 0, (14.2.11)

where C ≥T
max is the largest component found after time Tn2/3. Therefore, we only

need to show that the probability that there exists a component with less than ηn2/3

communities such that its size is larger than δn2/3 is small when η � δ. We prove
that the probability that a uniformly chosen component satisfies this property is
exponentially small in n. Therefore, the probability that such a component exists is
also small.

We first explore the HCM according to Algorithm 14.1 until the first time after
Tn2/3 that a component has been explored. Then, we remove all components that
have been found so far. We denote the resulting graph by G≥T. For any realization of
the graph G≥T, the probability p≥T

k,s(n) that a uniformly chosen community in G≥T has
degree k and size s can be bounded as

p≥T
k,s(n) ≤

nk,s

n− Tn2/3 = p(n)
k,s(1 + o(n−1/3)), (14.2.12)
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where nk,s denotes the number of communities of size s and inter-community degree
k. Therefore, for any realization of G≥T, the expected size of a community in G≥T,
E [S≥T] < ∞, and similarly E [D≥T] < ∞ and E [D≥TS≥T] < ∞. Now, we start
exploring G≥T as in Algorithm 14.1. We want to show that with high probability G≥T

does not contain components larger than δn2/3. By [72], the CM with high probability
does not contain any components of size ηn2/3 that are discovered after time Tn2/3.
Therefore, with high probability G≥T does not contain components with more than
ηn2/3 communities.

Lemma 14.3 shows that the probability that the first explored ηn2/3 communities
using Algorithm 14.1 contain more that δn2/3 vertices is small. This lemma holds
for all HCMs satisfying Conditions 14.1 and 14.2. In the proof of Theorem 14.1 we
will apply this lemma to show that the HCM G≥T with high probability only has
components with at most ηn2/3 communities.

Lemma 14.3. For any η, δ > 0 satisfying δ > 2ηE [DS] /E [D],

P

( bηn2/3c
∑
i=1

s(i) > δn2/3
)
≤ e−ζn2/3/smax , (14.2.13)

for some ζ > 0.

Proof. Let Ti be independent exponential random variables with rate dHi /`n. Furt-
hermore, let M(t) = #{j : Tj ≤ t}. Then,

E [M(t)] = ∑
i∈[n]

(
1− e−tdHi

/`n
)
≤ t, (14.2.14)

using that 1− e−x ≤ x. Similarly, using that 1− e−x ≥ x− x2/2,

E [M(t)] ≥ ∑
i∈[n]

( tdHi

`n
−

t2d2
Hi

`2
n

)
= t− t2E

[
D2

n
]

nE [Dn]
. (14.2.15)

Furthermore, for n large enough, if t = o(n),

P(M(2t) < t) ≤ P

(
M(2t) <

3
2

t
(

1− tE [Dn]

nE [D2
n]

))
≤ P

(
M(2t) <

3
4

E [M(2t)]
)
= P(e−uM(2t) > e−

3
4 uE[M(2t)])

≤ e
3
4 uE[M(2t)]E

[
e−uM(2t)

]
,

(14.2.16)
for any u > 0, where the last inequality uses the Markov inequality. Let qi =

1− e−2tdHi
/`n . Since M(2t) is a sum of independent indicator variables,

E
[
e−uM(2t)

]
= ∏

i∈[n]

(
1 + qi(e−u − 1)

)
≤ ∏

i∈[n]
eqi(e−u−1) = eE[M(2t)](e−u−1), (14.2.17)
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where the inequality uses that 1 + x ≤ ex, with x = qi(e−u − 1). Plugging this
into (14.2.16) and setting u = − log( 3

4 ) yields

P(M(2t) < t) ≤ eE[M(2t)]( 3
4 u+e−u−1) = eE[M(2t)](− 3

4 log( 3
4 )− 1

4 ). (14.2.18)

Then, using that −(1− x) log(1− x) ≤ x− x2

2 ,

P(M(2t) < t) ≤ e−
E[M(2t)]

32 ≤ e−Ct(1− t
n ), (14.2.19)

for some C > 0, where we have used (14.2.15).
Consider Yt = ∑

M(t)
i=1 s(i) − t E[DnSn ]

E[Dn ]
. Let Ft denote the sigma-field generated by

the information revealed up to time t. Then,

E [Yt | Ft−1] = Yt−1 + ∑
i∈[n]

siP(Ti ∈ [t− 1, t] | Ti > t− 1)− E [DnSn]

E [Dn]

= Yt−1 + ∑
i∈[n]

si(1− e−dHi
/`n)− E [DnSn]

E [Dn]
≤ Yt−1. (14.2.20)

Therefore, Yt is a supermartingale. Furthermore,

Var(Yt | Ft−1) = Var( ∑
i∈[n]

si1{Ti∈[t−1,t]}) = ∑
i∈[n]

s2
i (1− e−dHi

/`n)e−dHi
/`n

≤ ∑
i∈[n]

s2
i dHi /`n ≤ smax

E [DnSn]

E [Dn]
. (14.2.21)

Thus, we can apply [63, Thm. 7.3], which states that for a supermartingale X with
Var(Xt | Ft−1) ≤ σ2

t and Xt −E [Xt | Ft−1] ≤ K for all t ∈ [n],

P(Xn ≥ X0 + u) ≤ exp

(
− u2

∑n
i=1 σ2

i + Ku/3

)
. (14.2.22)

Applying this to Yb2ηn2/3c with Y0 = 0, σ2
i = smax and K = smax, we obtain

P(Yb2ηn2/3c > u) ≤ exp
(
− u2

2ηn2/3smax + smaxu/3

)
. (14.2.23)

Because by assumption ξ = δ− 2ηE [DS] /E [D] > 0,

P

( M(b2n2/3ηc)
∑
i=1

s(i) > δn2/3
)
= P

(
Yb2n2/3ηc > δn2/3 − 2ηn2/3 E [DnSn]

E [Dn]

)
= P

(
Yb2n2/3ηc > ξn2/3

)
≤ exp

(
− ξ2n4/3

2ηn2/3smax + smaxξn2/3/3

)
≤ e−ζn2/3/smax ,

(14.2.24)
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for some ζ > 0. Thus,

P

( bηn2/3c
∑
i=1

s(i) > δn2/3
)
≤ P

( M(b2ηn2/3c)
∑
i=1

s(i) > δn2/3
)
+ P(M(b2ηn2/3c) < ηn2/3)

≤ e−ζn2/3/smax + e−Cn2/3(1−n−1/3), (14.2.25)

which proves the lemma.

By applying the previous lemma to the hierarchical configuration model G≥T, we
can now show that the probability that a component of size δn2/3 is found after time
Tn2/3 is small for T large enough:

Lemma 14.4. Let C ≥T
max denote the largest component of a hierarchical configuration model

satisfying Conditions 14.1 and 14.2, of which the first vertex is explored after time Tn2/3.
Then, for all δ > 0,

lim
T→∞

lim sup
n→∞

P(v(C ≥T
max) ≥ δn2/3) = 0. (14.2.26)

Proof. We condition on the size of the components of the underlying configuration
model. Choose η > 0 satisfying δ > 2ηE [DS] /E [D]. Then,

P(v(C ≥T
max) > δn2/3)

= P(v(C ≥T
max) > δn2/3 | v(H)(C ≥T

max) ≤ ηn2/3)P(v(H)(C ≥T
max) ≤ ηn2/3)

+ P(v(C ≥T
max) > δn2/3 | v(H)(C ≥T

max) > ηn2/3)P(v(H)(C ≥T
max) > ηn2/3)

≤ P(v(C ≥T
max) > δn2/3 | v(H)(C ≥T

max) ≤ ηn2/3) + P(v(H)(C ≥T
max) > ηn2/3). (14.2.27)

By [71], for any η > 0,

lim
T→∞

lim sup
n→∞

P(v(H)(C ≥T
max) > ηn2/3) = 0, (14.2.28)

so that the second term in (14.2.27) vanishes.

Now we study the first term in (14.2.27). Given any component C ≥T, we start
exploring at a vertex of that component, until time ηn2/3. By Lemma 14.3, the
probability that more than δn2/3 vertices have been found at time ηn2/3 is quite small.
Furthermore, we know that C ≥T has been fully explored, since v(H)(C ≥T

max) < ηn2/3.
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Then, by the union bound and by Lemma 14.3,

P (v(C ≥T
max) > δn2/3 | v(H)(C ≥T

max) ≤ ηn2/3)

≤
n

∑
j=1

P(v(C ≥T
j ) > δn2/3 | v(H)(C ≥T

max) ≤ ηn2/3)

=
∑n

j=1 P(v(C ≥T
j ) > δn2/3, v(H)(C ≥T

max) ≤ ηn2/3)

P(v(H)(C ≥T
max) ≤ ηn2/3)

≤
∑n

j=1 P(v(C ≥T
j ) > δn2/3, v(H)(C ≥T

j ) ≤ ηn2/3)

P(v(H)(C ≥T
max) ≤ ηn2/3)

≤
∑n

j=1 P(v(C ≥T
j ) > δn2/3 | v(H)(C ≥T

j ) ≤ ηn2/3)

P(v(H)(C ≥T
max) ≤ ηn2/3)

≤ ne−ζn2/3/smax

P(v(H)(C ≥T
max) ≤ ηn2/3)

, (14.2.29)

for some ζ > 0. Since smax � n2/3/ log(n), using (14.2.28) and taking limits proves
the lemma.

Proof of Theorem 14.1. By [71], the ordered excursions of the process Q̄n(t) defined
in (14.2.3) converge to γλ, the ordered excursions of a reflected Brownian motion
with parabolic drift. Then, by Lemma 14.2 and (14.2.6), the ordered component sizes
of the HCM that have been discovered up to time Tn2/3 for some T > 0 converge to
E [DS] /E [D] γλ. Combining this with Lemma 14.4 then shows that

n−2/3(v(C(j)))j≥1 →
E [DS]
E [S]

γλ, (14.2.30)

in the product topology. Then, using that N/n = E [Sn] completes the proof of
Theorem 14.1.

14.2.3 Convergence in `2
↓ topology: Proof of Theorem 14.2

To prove Theorem 14.2, we show that the probability that a uniformly chosen vertex
is in a large component is small, by using the Markov inequality. Thus, we need to
bound the expected component size of a uniformly chosen vertex in a HCM. To do
this, we bound the expected component size of a uniformly chosen community of size
s and inter-community degree k in Lemma 14.6. To prove Lemma 14.6, we first count
the number of paths in the macroscopic configuration model in Lemma 14.5: the
number of paths from community to community, ignoring the internal community
structures. Let P(H0)

L be the set of all macroscopic paths of length L in a HCM, starting
from community H0. Furthermore, define PW(H0)

L as the number of macroscopic paths
of length L, starting in H0, weighted by the size of the last community, i.e.,

PW(H0)
L = ∑

P
(H0)
L

slast community. (14.2.31)
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Lemma 14.5. For any L < 1
4 n and for some K > 0,

E
[

PW(H0)
L

]
≤ K

E [DnSn]

E [Dn]
dH0 νL−1

Dn
, (14.2.32)

with νDn as defined in Condition 14.2(iii).

Proof. This proof is quite similar to the proof of [117, Lemma 5.1]. If L = 1, then the
equation states that E

[
PW(H0)

1

]
≤ K E[DnSn ]

E[Dn ]
dH0 , which is true, since there are at most

dH0 paths from H0, and the expected weight of the community at the end of the path
is E [DnSn] /E [Dn].

For L ≥ 2, the path consists of communities H0, H1, . . . , HL. This path consists
of two half-edges at communities H1, . . . HL−1, and one half-edge at the start and
at the end of the path. The probability that these half-edges are paired as a path is
(`n − 1)−1(`n − 3)−1 · · · (`n − 2L + 1)−1. Therefore,

E
[

PW(H0)
L

]
=

dH0 ∑∗
i1,...,iL∈[n] ∏L−1

j=1 dHij
(dHij

− 1)dHiL
siL

∏L
j=1(`n − 2j + 1)

, (14.2.33)

where ∑∗ denotes the sum over distinct indices, since all communities in the path
must be distinct. If we only sum over iL 6= {0, i1, . . . iL−1}, we obtain

∑
iL 6={H0,i1,...iL−1}

dHiL
siL = ∑

i∈[n]
dHi si − dH0 sH0 −

L−1

∑
j=1

dHij
sij

≤ nE [DnSn]− 2(L− 1)− 1

≤ `n
E [DnSn]

E [Dn]
− 2L− 1 ≤ E [DnSn]

E [Dn]
(`n − 2L− 1) , (14.2.34)

where we have used that dHij
≥ 2 for j = 1, . . . L− 1 and that si ≥ 1 for all i. Therefore,

E
[

PW(H0)
L

]
≤ E [DnSn]

E [Dn]

dH0 ∑∗
i1,...,iL−1

∏L−1
j=1 dHij

(dHij
− 1)

∏L−1
j=1 (`n − 2j + 1)

≤ E [DnSn]

E [Dn]
(nE [Dn])

−L+1
dH0 ∑∗

i1,...,iL−1
∏L−1

j=1 dHij
(dHij

− 1)

∏L−1
j=1 (1− 2j/`n)

.

(14.2.35)
By arguments of [117, Lemma 5.1]

∑∗

i1,...,iL−1

L−1

∏
j=1

dHij
(dHij

− 1) ≤ (nE [Dn(Dn − 1)])L−1
L−2

∏
j=0

(
1− j

r

)
, (14.2.36)
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where r denotes the number of communities with inter-community degree larger
than or equal to 2. Since r ≤ 1

2 `n,

E
[

PW(H0)
L

]
≤ E [DnSn]

E [Dn]

(
E [Dn(Dn − 1)]

E [Dn]

)L−1 dH0 ∏L−2
j=0

(
1− j

r

)
∏L−1

j=1 (1−
2j
`n
)

≤ E [DnSn]

E [Dn]
νL−1

Dn
dH0

∏L−2
j=0

(
1− 2j

`n

)
∏L−1

j=1 (1−
2j
`n
)

≤ E [DnSn]

E [Dn]
νL−1

Dn
dH0

(
1− 2L− 2

nE [Dn]

)−1

≤ E [DnSn]

E [Dn]
νL−1

Dn
dH0

(
1− 1

2E [Dn]

)−1
, (14.2.37)

where we have used that L < 1
4 n. This proves the claim, since E [Dn] > 1.

Using Lemma 14.5, we can bound the expected component size in a HCM. We are
interested in the expected component size of a randomly chosen community of size s
and inter-community degree k, v(C(k,s)).

Lemma 14.6. For some C > 0,

E
[
v(C(k,s))

]
≤ s + C

k
1− νn

+ o(1). (14.2.38)

Proof. We split the expectation into two different parts,

E
[
v(C(k,s))

]
= E

[
v(C(k,s))1{v(H)(Cmax)≤ 1

4 n}
]

+ E
[
v(C(k,s))1{v(H)(Cmax)>

1
4 n}
]

. (14.2.39)

We bound the first part similar to the argument in [120, Lemma 4.6]. For every
community H′ in the same component as community H0, there is at least one path
between H0 and H′. Furthermore, H′ adds sH′ vertices to the component. Therefore
C (H0), the connected component containing community H0, satisfies

v(C (H0)) ≤∑
L

PW(H0)
L (14.2.40)

This yields

E
[
v(C(k,s))

]
≤∑

L
E
[

PW
H(k,s)
L

]
, (14.2.41)

where H(k,s) is a community of size s and inter-community degree k. The sum of the
first term in (14.2.39) only goes up to L = 1

4 n, since the maximal path size is smaller
than the maximal component size. Thus, by Lemma 14.5,

E
[
v(C(k,s))1{v(H)(Cmax)≤ 1

4 n}
]
≤ s +

1
4 n

∑
L=1

E
[

PW
H(k,s)
L

]
≤ s +

E [DnSn]

E [Dn]
Kk

∞

∑
L=1

νL−1
n
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= s +
E [DnSn]

E [Dn]

kK
1− νn

. (14.2.42)

For the second term, we use that the maximal component size is bounded from
above by the total number of vertices N = E [Sn] n. Then we need to bound the
probability that the maximal hierarchical component has size at least 1

4 n. This is the
probability that the size of the largest component in a regular configuration model is
larger than 1

4 n. We can use the same arguments as in [71, Lemma 14] to show that

P
(
v(H)(Cmax) > n/4

)
≤ 16E [Dn]

n(1− νn)
+ o(n−1). (14.2.43)

This gives

E
[
v(C(k,s))1{v(H)(Cmax)>

1
4 n}
]
≤ 16NE [Dn]

n(1− νn)
+ o(1) ≤ 16kE [Sn]E [Dn]

1− νn
+ o(1),

(14.2.44)
for k > 0. Combining (14.2.43) and (14.2.44) then yields

E
[
v(C(k,s))

]
≤ s + C

k
1− νn

+ o(1), (14.2.45)

for some C > 0.

Proof of Theorem 14.2. We first show that E
[
S2

n
]
= o(n1/3) is a necessary condition

for convergence in the `2
↓ -topology. Thus, we assume that E

[
S2

n
]
≥ εn1/3 for some

ε > 0. Let jT denote the maximal index such that C(1), . . . , C(jT) have all been explored
before time Tn2/3. Then, for any δ > 0,

lim
T→∞

lim sup
n→∞

P( ∑
j≥jT

v(C(j))
2 ≥ δn4/3) = 0 (14.2.46)

needs to hold for convergence in the `2
↓ topology. Then

∑
j≥jK

v(C(j))
2 ≥ ∑

j≥1
v(C ≥T

j )2 ≥ ∑
i≥Tn2/3

s2
(i)

= ∑
s

n≥T
s s2 = ∑

s
nss2 −∑

s
n≤T

s s2, (14.2.47)

where n≥T
s and n≤T

s denote the number of communities of size s, discovered after or
before time Tn2/3 respectively.

We can use a martingale argument similar to [71, Proposition 29], to show that

sup
u≤t

∣∣∣n−2/3
bun2/3c

∑
i=1

s2
(i) −

∑k,s ks2nk,s

`n
u
∣∣∣ = oP(n2/3). (14.2.48)

Therefore

∑
s

n≤T
s s2 = Tn2/3 ∑k,s ks2nk,s

`n
+ oP(n4/3) = T

o(n)
`n

∑
s

s2ns + oP(n4/3), (14.2.49)
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where we have used that dmax = o(n1/3). Therefore, we obtain

∑
s

s2n≥T
s = ∑

s
s2ns (1− To(1)) + oP(n4/3) ≥ εn4/3(1− To(1) + oP(1)). (14.2.50)

Taking the limit first for n→ ∞, and then for K → ∞ shows that

lim
T→∞

lim
n→∞

P
(

∑
j≥jT

v(C(j))
2 > δn4/3

)
> 0 (14.2.51)

for δ < ε, hence the component sizes do not converge in the `2
↓ -topology.

Now we show that E
[
S2

n
]
= o(n1/3) is sufficient for convergence in the `2

↓ -
topology. Let iT denote the index of the first component that is explored after time
Tn2/3. Then, for convergence in the `2

↓ topology it is sufficient to show that that for
any δ > 0,

lim
T→∞

lim sup
n→∞

P( ∑
i≥iT

v(Ci)
2 ≥ δn4/3) = 0. (14.2.52)

Let G≥T denote the graph that is obtained by removing all components that have
been explored before time Tn2/3. To show that E

[
S2

n
]
= o(n1/3) is sufficient for

convergence in the `2
↓ topology, we obtain using the Markov inequality

P
(

∑
i≥iT

v(Ci)
2 > δn4/3

)
≤ 1

δn4/3 E

[
∑

i≥iT

v(Ci)
2
]
=

1
δn1/3 E [v(C ≥T(Vn))]

=
1

δn1/3 E
[
S≥T

Hn
v(C ≥T(Hn))

]
, (14.2.53)

where Vn denotes a randomly chosen vertex of G≥T, and Hn denotes a randomly
chosen community. Furthermore,

E
[
S≥T

Hn
v(C ≥T(Hn))

]
= ∑

k,s
p≥T

k,s(n)sE
[
v(C ≥T

(k,s))
]

, (14.2.54)

where v(C ≥T
(k,s)) denotes the size of a component where the first explored community

has size s and inter-community degree k. By [71], the criticality parameter of G≥T, ν̄n,
satisfies

ν̄n ≤ νDn − CTn−1/3 + oP(n−1/3), (14.2.55)
with νDn as in Condition 14.2(iii). Then, combining Lemma 14.6 and (14.2.54) gives

E [SHn v(C ≥T(Hn))] ≤ E
[
(S≥T

n )2
]
+ KE [D≥T

n S≥T
n ]

n1/3

CT − λ
. (14.2.56)

Furthermore, E
[
(S≥T

n )2] ≤ E
[
S2

n
]

/(n − Tn2/3) = E
[
S2

n
]
(1 + O(n−1/3)). By as-

sumption, E
[
S2

n
]
= o(n1/3). Combining this with (14.2.53) and (14.2.56) yields

P
(

∑
i≥iT

v(Ci)
2 > δn4/3

)
≤ oP(1) +

K
δ(CT − λ)

, (14.2.57)

so that
lim

T→∞
lim

n→∞
P
(

∑
i≥iT

v(Ci)
2 > δn4/3

)
= 0. (14.2.58)

Thus, if E
[
S2

n
]
= o(n1/3), then Theorem 14.1 also holds in the `2

↓ topology.
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14.3 Percolation on the HCM

In this section we prove Theorem 14.3, which identifies the scaling limit for the
cluster sizes of a HCM under critical percolation. As described in Section 14.1.3, it
is convenient to percolate first only the edges inside communities. This percolation
results in a HCM with percolated communities. These percolated communities may
be disconnected. However, if we define the connected components of the percolated
communities as new communities, we retrieve an updated HCM. After this, we
percolate the inter-community connections. These edges are distributed as in the
CM. Therefore, for this second step of percolation, we follow a similar approach as
in [115]. Combining these two steps of percolation results in the following algorithm
that constructs a percolated HCM:

Algorithm 14.2.

(S1) For each community H, remove every intra-community edge of H independently with
probability 1− π. Let n̄ denote the number of connected components of communities
after percolation inside the communities. Then, define the connected components of the
percolated communities as new communities (H(π)

i )i∈[n̄].

(S2) Let H(π)
e be the percolated community attached to inter-community half-edge e. Then,

every inter-community half-edge e explodes with probability 1−√π, it detaches from
H(π)

e , and is associated to a new community H′(π)
e of the same shape, but with e as its

only inter-community half-edge. Let nH+ denote the number of new communities of
shape H that are created in this way, and ñ = n̄ + ∑H nH+. Let (H̃(π)

i )i∈[ñ] be the
new communities after detaching the half-edges.

(S3) Construct a hierarchical configuration model with community sequence (H̃(π)

i )i∈[ñ].

(S4) For all community shapes H, delete the exploded communities with inter-community
degree one.

Figure 14.3 illustrates Algorithm 14.2. By [115], a similar algorithm creates a
percolated CM. Therefore, by adding the extra step of percolation inside communities,
Algorithm 14.2 creates a percolated HCM. In this bond-percolation procedure, there
are three sources of randomness: the percolated communities H(π), the explosion
procedure, and the pairing of the edges to construct a HCM.

Remark 14.8. In percolation on the regular configuration model, instead of deleting
the exploded vertices n+, it is also possible to choose n+ vertices uniformly at random
from all vertices with degree one, and to delete them [115]. This procedure also results
in a multigraph with the same distribution as a percolated configuration model.
Similar to this, in our setting it is possible to replace step (S4) of Algorithm 14.2 by

(S4’) For all community shapes H, choose nH+ communities uniformly at random from all
communities of shape H and inter-community degree one. Delete these communities.

Remark 14.9. In the CM, each exploded half-edge is replaced by a single half-edge
attached to a new vertex. In Algorithm 14.2, each exploded inter-community half-
edge is attached to a new community of the same shape as the original community,
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(a) A set of communities (b) Step (S1): percolation in-
side communities

(c) New communities H(π)

(d) Step (S2): exploding half-
edges (red) results in commu-
nities H̃(π)

(e) Step (S3): connect as in the
CM

(f) Step (S4): delete exploded
communities

Figure 14.3: Illustration of Algorithm 14.2. In this example n = 3, n̄ = 7, ñ = 9.

but with only one half-edge adjacent to it (see Figure 14.3d). This difference is
caused by the fact that in the HCM, communities of the same inter-community degree
may not be equal. Different communities with inter-community degree k may have
different sizes. The effect on the component sizes of percolating a half-edge of a
community of inter-community degree k depends on the community size. Percolating
the half-edge adjacent to a larger community has more effect on the component sizes
than percolating the half-edges adjacent to a smaller community. For this reason, we
replace exploded half-edges by half-edges attached to a community of the same size
as the original community, instead of replacing it by a vertex of degree one.

14.3.1 The sizes of critical percolation clusters

We now analyze Algorithm 14.2 to prove Theorem 14.3. Let S(πn)
n and D(πn)

n denote
the size and degree of communities after percolation only inside the communities
with probability πn, and S(π) and D(π) their infinite size limits. Furthermore, let
g(H, v, k, π) denote the probability that after percolating community H with parame-
ter π, the connected component containing vertex v contains k half-edges. By (11.3.1)
of Chapter 11,

P(D(π) = k) =
∑H ∑v∈VH

P(H)d(b)
v g(H, v, k, π)/k

∑H ∑v∈VH ∑l P(H)d(b)
v g(H, v, l, π)/l

. (14.3.1)

We denote the number of communities in the original graph by n, the number of
communities after percolating only the intra-community edges by n̄, and the number
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of communities after the explosion procedure by ñ. After percolation inside the
communities, the number of vertices N is still the same. Furthermore, similarly
to [71], let Pn̄

πn denote the probability measure containing the shapes of the exploded
communities after Algorithm 14.2, step (S2). Then Pπ denotes the product measure
of (Pn̄

πn)n̄≥1. Since nH+ ∼ Bin(dH n̄H , 1−√πn), a.s. with respect to Pπ

nH+ = dH n̄H(1−
√

πn) + o (dH n̄H) . (14.3.2)

Therefore,
ñ
n̄
= 1 + ∑H nH+

n̄
= 1 + E

[
D(π)

]
(1−

√
π) + o(1), (14.3.3)

a.s. with respect to Pπ .
The following lemma proves that the HCM with community sequence (H̃(πn)

i )i∈[ñ]
satisfies Conditions 14.1 and 14.2, so that we can apply Theorem 14.1 to find its
component sizes:

Lemma 14.7. Let G be a hierarchical configuration model satisfying Condition 14.3 with
community sequence (Hi)i∈[n]. Then the hierarchical configuration model with community
sequence (H̃(πn)

i )i∈[ñ], constructed as described in Algorithm 14.2, satisfies Conditions 14.1
and 14.2.

Proof. By (14.3.1),

E
[
(D(πn)

n )3
]
=

∑H ∑v∈VH ∑k Pn(H)d(b)
v g(H, v, k, πn)k2

∑H ∑v∈VH ∑l Pn(H)d(b)
v g(H, v, k, πn)/l

. (14.3.4)

Let H(πn)
v denote the connected component of the percolated community H containing

vertex v. Then,

∑
v∈VH

∑
k

Pn(H)d(b)
v g(H, v, k, πn)k2 = ∑

v∈VH

Pn(H)d(b)
v E

[
(# outgoing edges of H(πn)

v )2
]

≤ ∑
v∈VH

Pn(H)d(b)
v d2

H = Pn(H)d3
H . (14.3.5)

To show that E
[
(D(πn)

n )3
]

converges, we use the General Lebesgue Dominated Con-
vergence Theorem (see for example [191, Thm. 19]), which states that if | fn(x)| ≤
gn(x) for all x ∈ E, ∑x∈E gn(x)→ ∑x∈E g(x) < ∞, and fn converges pointwise to f ,
then also ∑x∈E fn(x)→ ∑x∈E fn(x). By Condition 14.2, E

[
D3

n
]
→ E

[
D3], so by the

General Lebesgue Dominated Convergence Theorem and (14.3.5), E
[
(D(πn)

n )3
]
→

E
[
(D(π))3]. Similarly,

E
[

D(πn)
n S(πn)

n

]
=

∑H ∑v∈VH ∑k Pn(H)d(b)
v g(H, v, k, πn)sH(π)

v

∑H ∑v∈VH ∑l Pn(H)d(b)
v g(H, v, k, πn)/l

. (14.3.6)
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We can bound the summands in the numerator as

∑
v∈VH

∑
k

Pn(H)d(b)
v g(H, v, k, πn)sH(π)

v
≤ ∑

v∈VH

∑
k

Pn(H)d(b)
v g(H, v, k, πn)sH

= Pn(H)dHsH , (14.3.7)

so that again by the General Lebesgue Dominated Convergence Theorem and Condi-
tion 14.1 E

[
S(πn)

n D(πn)
n

]
→ E

[
S(π)D(π)

]
. By a similar reasoning E

[
S(πn)

n

]
→ E

[
S(π)
]
.

Thus, we have proved that D(πn)
n and S(πn)

n satisfy Conditions 14.1 and 14.2(i). Hence,
after percolating inside the communities, the HCM still satisfies these conditions.

We want to prove that D̃(πn)
n and S̃(πn)

n also satisfy Conditions 14.1 and 14.2(i), so
that after the explosion process the conditions are still satisfied. Since D(πn)

n satisfies
Condition 14.2, [71, Lemma 24] shows that D̃(πn)

n also satisfies Condition 14.2.
Now we prove the convergence of the first moment of S̃(πn)

n . After explosion, the
first n̄ entries of (S̃(πn)

i )i∈[ñ] are the same as in (S(πn)
i )i∈[n̄], since the community sizes

are not changed when percolating the inter-community edges. Furthermore, there are
nH+ duplicated communities of shape H. Thus, the limiting distribution (S̃(π), D̃(π))
can be written as

P
(
S̃(π) = s, D̃(π) = k

)
=

P
(
S(π) = s, D(π) = k

)
1 + E [D(π)] (1−√π)

+ 1{k=1}
∑j j(1−√π)P

(
S(π) = s, D(π) = j

)
1 + E [D(π)] (1−√π)

. (14.3.8)

By (14.3.2) and (14.3.3),

1
ñ ∑

i∈[ñ]
s̃(πn)

i =
1
ñ

(
∑

i∈[n̄]
s(πn)

i +
ñ

∑
i=n̄+1

s̃(πn)
i

)
=

n̄
ñ

E
[
S(πn)

n

]
+

∑H sHnH+

ñ

=
E
[
S(πn)

n

]
+ (1−√πn)E

[
D(πn)

n S(πn)
n

]
1 + E

[
D(πn)

n

]
(1−√πn)

+ o(1), (14.3.9)

so that E
[
S̃(πn)

n

]
→ E

[
S̃(π)
]
. Furthermore,

1
ñ ∑

i∈[ñ]
s̃(πn)

i d̃(πn)
Hi

=
1
ñ ∑

i∈[n̄]
s(πn)

i d(πn)
Hi

, (14.3.10)

and therefore the combined moment also converges, and Condition 14.1 is satisfied.
To prove Condition 14.2(iii), note that

ν
D̃(πn)

n
=

∑i∈[ñ] d̃(πn)
Hi

(d̃(πn)
Hi
− 1)

∑i∈[ñ] d̃(πn)
Hi

=
πn ∑i∈[n̄] d(πn)

Hi
(d(πn)

Hi
− 1) + o(n2/3)

∑i∈[n̄] d(πn)
Hi

= πnν
D(πn)

n
+ o(n−1/3) = 1 + λn−1/3 + o(n−1/3), (14.3.11)

where the second equality follows from [71, equation (7.2)].
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Remark 14.10. In Lemma 14.7, we have assumed that the HCM satisfies Conditi-
ons 14.1 and 14.2 (i) and (ii) before percolation. Then, we have shown that S(π)

n and
D(π)

n also satisfy these conditions. However, it is also possible to assume from the
start that S(π)

n and D(π)
n satisfy these conditions. This means for example that the

inter-community degrees only need to have finite third moment after percolating
inside the communities, they may have an infinite third moment before percolating
inside the communities. We gave an example of such a community in Remark 14.7.

Proof of Theorem 14.3. After explosion, the HCM satisfies the assumptions of The-
orem 14.1 by Lemma 14.7. Then Theorem 14.1 gives the component sizes of the
exploded HCM. To obtain the sizes of the components of the percolated HCM, we
need to know how many vertices are deleted in the last step of Algorithm 14.2. We
denote the components of the graph after step (S3) of Algorithm 14.2 by C̃ , and the
percolated components after step (S4) of the algorithm by C ′. Furthermore, we denote
the number of vertices that are deleted in step (S4) from component C̃ by vd(C̃ ). If
a community of size s is deleted, s vertices are deleted. Thus, this number can be
written as

vd(C̃ ) =
v(H)(C̃ )

∑
i=1

sH̃i
1{H̃i is deleted}. (14.3.12)

Let ñH,1 denote the number of communities of shape H and inter-community degree
one. Using [71, Proposition 29] with α = 2/3 and fn(i) as the indicator function
that community i is of shape H and has inter-community degree one, we can show
that the number of communities of shape H with inter-community degree one in
component C̃ satisfies

v(H)

H,1(C̃ ) = v(H)(C̃ )
ñH,1

ñE
[
D̃(πn)

] + oPπ

(
n1/3 ñH,1

∑H ñH,1

)
. (14.3.13)

Therefore, the number of vertices in communities of shape H with inter-community
degree one in a component C̃ satisfies

vH,1(C̃ ) = v(H)(C̃ )
sH ñH,1

ñE
[
D̃(πn)

] + oPπ

(
n1/3 sH ñH,1

∑H ñH,1

)
. (14.3.14)

A fraction of nH+/ñH,1 communities of shape H with outside degree one is removed
uniformly. Therefore, for j fixed,

vd(C̃(j)) = v(H)(C̃(j))
∑H sHnH+

ñE
[
D̃(πn)

] + oPπ

(
n1/3 ∑H sH ñ+H

∑H ñH,1

)
+ oPπ

(
∑
H

n+H

)
= v(H)(C̃(j))

∑H sHnH+

ñE
[
D̃(πn)

] + oPπ (n
1/3) + oPπ (n

2/3), (14.3.15)
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where we have used (14.3.2) and the fact that ñH,1 ≥ nH+. Thus, by (14.3.15), (14.3.2), (14.3.10)
and (14.1.4),

vd(C̃(j)) = v(H)(C̃(j))
∑H sHn+H

ñE
[
D̃(πn)

] + oPπ (n
2/3)

=
(1−√πn)∑H dHsH n̄H

ñE
[
D̃(πn)

] v(H)(C̃(j)) + oPπ (n
2/3)

= (1−√πn)
∑k,s ksn̄k,s

ñE
[
D̃(πn)

]v(H)(C̃(j)) + oPπ (n
2/3)

= (1−√πn)
∑k,s ksñk,s

ñE
[
D̃(πn)

]v(H)(C̃(j)) + oPπ (n
2/3)

= (1−√πn)
E
[
D̃(πn)S̃(πn)

]
E
[
D̃(πn)

] v(H)(C̃(j)) + oPπ (n
2/3)

= (1−√πn)v(C̃(j)) + oPπ (n
2/3). (14.3.16)

We now use that the components C ′ after step (S4) of the algorithm are obtained by
removing vd(C̃ ) vertices from component C so that

v(C ′(j)) =
√

πnv(C̃(j)) + oPπ (n
2/3). (14.3.17)

Then, Theorem 14.1 gives

ñ−2/3(v(C(j)))j≥1
d−→ E

[
D̃(π)S̃(π)

]
E
[
S̃(π)
] √πγ̃λ. (14.3.18)

Noting that N = ∑ñ
i=1 s̃(πn)

i leads to

N
ñ

P−→ E
[
S̃(π)
]

, (14.3.19)

so that (14.1.8) follows.

14.3.2 The critical window

Equation (14.1.7) gives an implicit equation for the critical window. We want to know
whether it is possible to write (14.1.7) in the form

πn(λ) = πn(0)
(

1 +
λc∗

n1/3

)
+ o(n−1/3), (14.3.20)

for some c∗ ∈ R, so that the width of the critical window in the hierarchical confi-
guration model is similar to the width of the critical window in the configuration
model.

Since g(H, v, k, πn(λ)) is not necessarily increasing in λ, we rewrite (14.1.7) as

πn(λ) =
E[Dn]

∑H Pn(H)∑v∈VH
d(b)

v ∑DH−1
k=1 B(H, v, k + 1, πn(λ))

(
1 +

λ

n1/3

)
, (14.3.21)
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where B(H, v, k, πn(λ)) is the probability that after percolating H with probability
πn(λ), the connected component of v contains at least k inter-community half-edges,
which is increasing in λ.

Lemma 14.8. For a hierarchical configuration model satisfying Condition 14.3 as well as
limn→∞ E

[
D2

nSn
]
= E

[
D2S

]
< ∞,

πn(λ) = πn(0)
(

1 +
λc∗

n1/3

)
+ o(λn−1/3), (14.3.22)

where

c∗ =
E [D]

E [D] + π2 ∑H P(H)∑v d(b)
v ∑k

d
dp B(H, v, k + 1, p)p=π

. (14.3.23)

Remark 14.11. Equation (14.3.23) shows that c∗ ≤ 1, so that the critical window of a
HCM is smaller than the critical window of a CM where no communities are inserted.
Here d

dp B(H, v, k, p)p=π captures how vulnerable community H is to percolation

inside the community. The larger d
dp B(H, v, k, p)p=π will be, the larger the difference

between λ and λc∗ will be. Intuitively, when d
dp B(H, v, k, p)p=π is small, this indicates

that changing the percolation probability changes the degrees of the percolated
communities very little. Therefore, the critical behavior is almost entirely explained
by the macroscopic CM in that case. On the other hand, when d

dp B(H, v, k, p)p=π is
large, increasing the percolation probability by a small amount increases the degrees
of the communities by a lot. Then λc∗ may be much smaller than λ.

Proof. We can write (14.3.21) as

πn(λ) = Ln(πn(λ))

(
1 +

λ

n1/3

)
, (14.3.24)

where

Ln(πn(λ)) =
E[Dn]

∑H Pn(H)∑v∈VH
d(b)

v ∑DH−1
k=1 B(H, v, k + 1, πn(λ))

. (14.3.25)

Calculating the derivative gives

π′n(λ) =
Ln(πn(λ))

n1/3(1− L′n(πn(λ))(1 + λ/n1/3))
(14.3.26)

Then, by the mean value theorem, there exists λ∗ ∈ [0, λ] such that

πn(λ) = πn(0) +
λ

n1/3
Ln(πn(λ∗))

1− L′n(πn(λ∗))(1 + λ∗/n1/3)
. (14.3.27)

Since B(H, v, k, π) is the probability of an increasing event, Ln(πn(λ)) is continuous.
Calculating the derivative of Ln(πn(λ)) gives

L′n(πn(λ)) = −
E[Dn]∑H Pn(H)∑v d(b)

v ∑k B′(H, v, k + 1, πn(λ))(
∑H Pn(H)∑v d(b)

v ∑k B(H, v, k + 1, πn(λ))
)2 , (14.3.28)
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where we have denoted

B′(H, v, k, π) =
d

dp
B(H, v, k, p)p=π . (14.3.29)

Since B is an increasing function of the percolation parameter p, L′n(πn(λ)) ≤ 0. By
Theorem 11.2

ν(n)

D(πn)
=

∑H Pn(H)∑v∈VH
d(b)

v ∑DH−1
k=1 B(H, v, k + 1, πn(λ))

E[Dn]
, (14.3.30)

Therefore, by (14.1.6) and (14.3.30),∣∣L′n(πn(λ))
∣∣ = E[Dn]∑H Pn(H)∑v d(b)

v ∑k B′(H, v, k + 1, πn(λ))(
∑H Pn(H)∑v d(b)

v ∑k B(H, v, k + 1, πn(λ))
)2

≤ ∑H Pn(H)∑v d(b)
v ∑k B′(H, v, k + 1, πn(λ))

E[Dn]
. (14.3.31)

Hence, we need to bound B′(H, v, k, πn(λ)). The event that v is connected to at least k
half-edges is increasing in λ. Let E(H, v, k) denote the event that vertex v is connected
to at least k half-edges of community H. An edge is pivotal for E(H, v, k) in a certain
configuration, if the event occurs when the edge is made present, and the event
does not occur when the edge is removed. The event that edge e is pivotal does not
depend on the actual edge status of e. Furthermore, pivotal edges cannot form a cycle,
because otherwise E(H, v, k) can still occur after removing one of the pivotal edges
on the cycle. Then, by Russo’s formula [192],

B′(H, v, k, πn(λ)) = ∑
e∈H

Pπn(λ)(e pivotal for E(H, v, k + 1))

=
1

πn(λ)
∑

e∈H
Pπn(λ)(e present and pivotal for E(H, v, k + 1))

=
1

πn(λ)
Eπn(λ)[# pivotal, present edges for E(H, v, k + 1)]

≤ 1
πn(λ)

(SH − 1), (14.3.32)

because at most SH − 1 pivotal edges can be present in a community, since otherwise,
they would form a cycle. Therefore,

∣∣L′n(πn(λ))
∣∣ ≤ ∑H Pn(H)∑v d(b)

v ∑dH−1
k=1 (sH − 1)

E[Dn]πn(λ)
≤ ∑H Pn(H)d2

HsH

E[Dn]πn(λ)
. (14.3.33)

Since E
[
D2

nSn
]
→ E

[
D2S

]
, we can use the General Lebesgue Dominated Con-

vergence Theorem to conclude that

lim
n→∞

L′n(πn(λ
∗)) = −E [D]∑H P(H)∑v d(b)

v ∑k B′(H, v, k + 1, π)(
∑H P(H)∑v d(b)

v ∑k B(H, v, k + 1, π)
)2

= −π2 ∑H P(H)∑v d(b)
v ∑k B′(H, v, k + 1, π)

E [D]
, (14.3.34)
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where the last equality follows from (14.3.30) and (14.1.7). Furthermore, we can
use the General Lebesgue Dominated Convergence Theorem (see the proof of Theo-
rem 11.2) to conclude that

lim
n→∞

Ln(πn(λ)) = L(π) = π. (14.3.35)

Inserting this into (14.3.27) proves (14.3.22).

Example 14.1 (Star-shaped communities). We now consider the case where all com-
munities are star-shaped, so that every community has one vertex in the middle,
connected to l other vertices that all have inter-community degree one (as in Fi-
gure 14.4). Then (14.1.7) becomes

πn(λ) =
1

(l − 1)πn(λ)2

(
1 +

λ

n1/3

)
, (14.3.36)

or

πn(λ) =
1

(l − 1)1/3

(
1 +

λ

n1/3

)1/3
. (14.3.37)

A first order Taylor approximation then gives

πn(λ) =
1

(l − 1)1/3

(
1 +

λ

3n1/3

)
+ O(n−2/3), (14.3.38)

so that c∗ = 1/3, which is the same result that is obtained when computing (14.3.22).
Table 14.1 compares the approximation of (14.3.22) with the exact values of πn(λ)
from (14.3.37).

n = 105 n = 106

λ πn(λ) πn(λ) appr. πn(λ) πn(λ) appr.

-10 0,581 0,585 0,608 0,609
-1 0,625 0,625 0,628 0,628
0 0,630 0,630 0,630 0,630
1 0,634 0,634 0,632 0,632

10 0,672 0,675 0,650 0,651

Table 14.1: Values of πn(λ) for star-shaped communities with 5 end points, and the
approximation by (14.3.22).

Example 14.2 (Line communities). We now consider the case where all communities
are either line communities of length 5 (as in Figure 14.5), or single vertices of degree
3, both with probability 1/2. Here a line community is a community that consists
of a line of 5 vertices. The two vertices at the ends of the line have inter-community
degree one, the other vertices have inter-community degree zero. It is possible to
calculate (14.3.22) analytically in this setting. Table 14.2 compares this approximation
with the exact values of πn(λ). We can see that the approximation is very close to the
actual value of πn(λ), especially for n large and λ small.
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Figure 14.4: A star-shaped
community

Figure 14.5: A line com-
munity of length 5

n = 105 n = 106

λ πn(λ) πn(λ) appr. πn(λ) πn(λ) appr.

-10 0,623 0,636 0,696 0,698
-1 0,741 0,741 0,747 0,747
0 0,753 0,753 0,753 0,753
1 0,764 0,764 0,758 0,758

10 0,858 0,870 0,804 0,807

Table 14.2: Values of πn(λ) for line communities and single vertex communities, and
the approximation by (14.3.22).

14.4 Conclusion

In this chapter we have investigated the influence of mesoscopic community structu-
res on critical component sizes in the hierarchical configuration model (HCM). We
have considered the critical component sizes of the HCM when the inter-community
connections have a finite third moment. These critical component sizes converge as
n → ∞ to a similar scaling limit as the critical component sizes in the CM, as long
as the mesoscopic scales remain smaller than n2/3. The critical component sizes of
the HCM only depend on the sizes of the communities, and are independent of the
precise community shapes. We have also obtained an implicit critical percolation
window for the HCM, that depends on both the connections between communities,
as well as the connections inside communities. We have found that under stricter
conditions on the community sizes and the inter-community edges, the critical win-
dow can be written in an explicit form. The question whether this stricter condition
is necessary to write the critical window in an explicit form remains open for further
research.

The HCM can be used to model real-world networks with a community structure.
Since Chapter 12 shows that many real-world networks have diverging third mo-
ments of their inter-community connections, it would be worthwhile to investigate
the scaling limits of the HCM in this setting.
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Summary

A network is a collection of vertices, connected in pairs by edges. Many objects
of interest can be thought of as networks. Examples include social networks, the
Internet, biological networks, the brain or communication networks. Even though
these networks are very different in application, their connectivity patterns often
share several universal properties. For example, most networks contain communities:
groups of densely connected vertices. In social networks these communities may
correspond to groups of friends or groups of people with similar interests, but
many other types of networks also contain community structures. Another frequently
observed network property is that two neighbors of a vertex are likely to be connected
as well. In a social network for example, this means that two of your friends are likely
to know each other as well.

Networks are typically modeled with random graphs: mathematical models
generating large networks that may serve as null models for real-world networks.
Whereas a real-world network often consists of just one network observation, random
graphs are able to generate many network samples, allowing for statistical analy-
ses. Furthermore, properties of these random graph models can often be analyzed
mathematically. For this reason, random graph models are used to study network
properties. In this thesis, we study several observed properties of real-world net-
works using random graph models, aiming to understand the similarities and the
differences between random graph models and real-world networks.

We first investigate degree correlations, investigating whether high-degree ver-
tices typically connect to other high-degree vertices, or to lower-degree vertices.
Specifically, we study the average degree of a neighbor of a vertex of degree k, a(k).
Chapter 2 shows that a(k) also decays in k in several random graph models, as has
also been observed in many real-world networks, indicating that high degree vertices
tend to connect to lower-degree vertices.

The second network property we analyze describes the relationships between
neighbors of a vertex. In many networks, two neighbors of a vertex are likely to
be connected as well. This can be quantified in terms of the clustering spectrum,
measuring the probability that two neighbors of a vertex of degree k are connected to
one another. In many real-world networks the clustering spectrum decays in k. This
indicates for example that two random friends of a popular person are less likely to
know each other than two random friends of a less popular person. In Chapters 3-6
we develop methods to analyze the clustering spectrum for different random graph
models, and show that all these models display a decaying clustering spectrum.
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346 Summary

The clustering spectrum of a network describes the presence of triangles in net-
works. However, other small subgraphs, such as squares or larger complete graphs
can also provide relevant structural information. In Chapters 7-9 we identify the
degrees of the vertices where subgraphs are most likely to be present for several
random graph models. These optimal subgraph structures resolve the trade off that
on the one hand, high degree vertices take part in many subgraphs, but on the other
hand, such vertices are rare. Investigating these optimal subgraph structures enables
us to count the number of subgraphs and to analyze their fluctuations. In Chapter 10
we use these optimal structures to design an algorithm that efficiently searches for a
subgraph in a large random graph.

The third part of this thesis studies community structures, groups of densely
connected vertices. In Chapter 11 we define a mathematically tractable random
graph model that includes communities. We show that applying this model to real-
world network data gives new insights into the community structures of real-world
networks in Chapter 12. We then investigate how epidemic processes spread across
the random graph model in Chapters 13 and 14. By comparing the spread of an
epidemic process on the model with community structures to the behavior of the
same process on traditional random graph models without community structures,
we find how community structure influences the spread of epidemics. Interestingly,
community structures speed up the spread of an epidemic in some networks, but
slow it down in other networks, depending on the exact community shapes. This
illustrates the importance of using community structures in network models.



About the author

Clara Stegehuis was born on May 24 1991 in Amersfoort, The Netherlands. She
completed her secondary education at Corderius College in Amersfoort in 2009,
and then started her studies in applied mathematics at Twente University. After
obtaining her bachelor’s degree in 2012, she continued her studies by pursuing a
master’s degree in applied mathematics, with the specialization Stochastic Operations
Research. She obtained her master’s degree in 2014.

Clara started her PhD project at Eindhoven University of Technology in February
2015 under the supervision of Remco van der Hofstad and Johan van Leeuwaarden.
Her research focuses on structures in large networks. The results of this research are
presented in this dissertation and provided the basis for several scientific publications.
During her PhD she spent four months at the INRIA - Microsoft Research Centre in
Paris. Beside her research, Clara is one of the ’Faces of Science’, PhD students elected
by the Royal Netherlands Academy of Arts and Sciences (KNAW) to promote science
among high school students through blogs and public appearances.

347




	Contents
	1 Introduction
	I Clustering and correlations
	2 Degree-degree correlations
	3 Global clustering in inhomogeneous random graphs
	4 Local clustering in inhomogeneous random graphs
	5 Local clustering in erased configuration models and uniform random graphs
	6 Local clustering in dynamic and spatial models

	II Subgraph structure
	7 Subgraphs in erased configuration models
	8 Subgraph fluctuations in inhomogeneous random graphs
	9 Subgraphs in preferential attachment models
	10 Finding induced subgraphs in inhomogeneous random graphs

	III Networks with community structure
	11 Hierarchical configuration models
	12 Power-law relations in networks with community structures
	13 Epidemics on networks with community structures
	14 Mesoscopic scales in hierarchical configuration models
	Bibliography
	Summary
	Summary
	Author


