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Summary

Title: An evaluation of a psychoacoustic model of the
changing-state hypothesis

Short-term memory disruption ascribed to the nature of sound has been
studied under the paradigm of “irrelevant sound,” where test partici-
pants perform serial-recall tasks in the presence of background sounds.
By analyzing the test scores for different acoustic stimuli in relation
to a reference condition from such experiments, the “irrelevant sound
(speech) effect” (ISE) can be quantified. The ISE is thought to result
from the interference of two parallel ordering processes; one for the de-
liberate processing of visually presented items which the subject needs
to memorize in the correct order, and one for the involuntary processing
of the acoustically presented irrelevant sound. This interference is ob-
served as a decrease in memory performance and is often explained by
the changing state hypothesis: In order to induce an ISE, the background
sound must be separable into tokens where successive tokens change in
frequency or spectral content.

In this thesis, a spectral predictor, called frequency domain correla-
tion coefficient (FDCC), is evaluated for its ability to predict the ISE.
This predictor has been proposed by Park et al. (2013) and it is an algo-
rithmic approach to capture the changing-state hypothesis. The metric
divides the continuous background sound into temporal tokens and the
change between successive states is quantified by computing the correla-
tion coefficient between the power spectra of the successive tokens.

In Chapter 2, noise-vocoded speech (NVS) was employed as the ir-
relevant sound in two serial-recall experiments. Noise-vocoded speech is
a manipulation of speech stimuli where the speech signal is filtered into
frequency bands and the intensity envelope of each frequency band is
mapped to band-limited white noise covering the corresponding spectral
range. The result is a harsh, metallic distorted speech sound. NVS pre-
serves parts of the spectro-temporal shape of the original speech while
the number of frequency bands used in synthesis determines its intelli-
gibility. More importantly for this study, by increasing the number of
frequency bands, the spectral variation also increases which is reflected
in a systematic decrease in the FDCC values. The two experiments con-
sisted of eight NVS conditions, in which the number of frequency bands
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varied between 1 to 18, alongside the original speech and the silence
condition. The experimental results were compared with the prediction
values computed by the FDCC as defined by Park et al. (2013) and
three other metrics used in the literature to predict ISE: the fluctuation
strength (FS), the speech transmission index (STI) and the normalized-
covariance metric (NCM). None of the metrics did successfully predict
the short-term memory disruption, but by comparing the values of the
FDCC, the STI and the NCM we concluded that both temporal and
spectral features of the sound should be taken into account in order to
adequately predict the ISE.

In Chapter 3, a new variant of the FDCC was developed by integrating
a peak detection stage before the correlation, in order to ensure that the
token selection process in the metric captures the prominent parts of
the sound (e.g., syllables in a word). The new version was evaluated
by collecting a large set of stimuli from the literature and comparing
the prediction values of the FDCC, both for the old and new versions,
and the FS. Results showed that the new FDCC predicts the ISE under
distorted / masked speech or speech-like sounds better than the old one
and the FS, while for non-speech sounds, the performances of the new
FDCC and the FS are similar to each other and better than that of the
original FDCC predictor.

In Chapter 4, the newly developed token selection stage of the al-
gorithm was evaluated in two experiments. The first was a serial-recall
experiment: A set of irrelevant sound stimuli from the literature was seg-
mented into tokens using the token selection stage of the algorithm by
preserving the the original timing of the tokens. In order to avoid on- and
offset artifacts at the token boundaries an adaptive low-level noise was
added to fill the temporal gaps between the tokens. The expectation was
that, if the token selection stage did correctly select all segments which
comprise the distractive properties of the sound, the experimental scores
for the original and the segmented stimuli should be the same. The ex-
pectation was supported in the experiments for continuous speech, for
which the segmented version yielded very similar results. In contrast,
for other background stimuli, like highly intelligible NVS with six bands,
significant differences were observed in the two conditions. The second
part of the third study investigated the sensitivity of the segmentation
stage by focusing on a set of NVS stimuli from the literature where the
original work had tried to evaluate the impact of speech fidelity on the
ISE. This had been evaluated by temporally reversing the information
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within two-thirds of the frequency bands of the NVS and comparing the
serial-recall results with the original NVS. The FDCC values were in line
with the experimental results where the reversed NVS was observed to
be less disruptive than the original NVS. The outcome indicated that the
token selection stage of the algorithm was sensitive enough to capture
the temporal differences between the two stimuli, which was reflected in
the serial-recall results.

The last set of experiments attempted to independently investigate
the impact of temporal and spectral features of irrelevant sounds on
serial-recall performance. Two serial-recall experiments were designed
by generating white noise pulse sequences where every second pulse was
modified in spectral shape and duration. In the first experiment the noise
pulses were presented strictly periodically, and no ISE effect was observed
for such stimuli. In the second experiment, the information regarding the
temporal position, amplitude and duration of each pulse was extracted
from continuous speech samples while the pulse modification method
was the same as in the first experiment. The result agreed with those
from the first experiment: The speech-positioned pulses did not yield any
distraction in the serial-recall task. The findings of these experiments
suggest that it is not possible to create an ISE by modifying the spectral
and temporal features of noise pulses. This observation is an indication
that spectral changes in successive parts of a background sound are not
a sufficient condition to create an ISE and thus puts some limitations
on the changing-state hypothesis and, in consequence, on the predictive
power of the FDCC parameter.

The thesis reports studies which attempt to investigate the impact
of the spectral variation on serial-recall performance and evaluate the
changing-state hypothesis by employing an acoustic metric designed to
quantify spectral distinctiveness. The results show that the spectral
variation plays an important role and, for speech and masked-speech
sounds, the FDCC appears to be a valid predictor of the ISE: The FDCC
can be useful for room acoustic applications where noise maskers are used
to reduce background-sound-induced distraction. However, the studies
also reveal limitations of the metric and, particularly the results of the
last study, indicate that the validity of the changing-state hypothesis
may be stimulus dependent.
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1 General introduction

1.1 Adverse effects of background sounds on
cognitive performance

In contrast to the visual world which might be avoided by deflecting or
shutting one’s eyes or blocking the view with a physical barrier, the ear
comes furnished with no mechanical means of eliminating unexpected
or unwanted sounds: The auditory world remains inevitable. The ears
always being open not only gives certain advantages when the sounds
are relevant, but also the auditory events that are out of one’s sight do
not go unregistered. This unintentional awareness of one’s acoustic en-
vironment is very useful for detecting the events which stay out of sight,
but are of importance like a car passing by or a fire alarm. However,
a by-product of the continuous processing of the surrounding auditory
events is that currently irrelevant information intrudes on the organism
and may induce mandatory processing, potentially detrimental to any
focal task. One demonstration of this concept is staying concentrated
on the set of information gathered by reading this text and ignoring the
sound of someone chatting nearby. The dilemma is that this necessity to
stay focused on the focal task (e.g., comprehending the text) is connected
with the need to continue processing the irrelevant auditory information
in parallel, such that we can turn our attention to it in the case that our
current goal changes or there are significant differences in the environ-
ment which require to be acted upon immediately. This open processing
system increases the mental workload and therefore creates an unwanted
distraction on mental processing (Baldwin, 2016, Ch. 7).

The example mentioned in the first paragraph presents reading com-
prehension as the focal task and speech stimuli as the distractor. A
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1 General introduction

semantic task, such as reading comprehension, may consist of a seman-
tic component (prior knowledge of the content) and an episodic memory
component (familiarity or experience with the examples stated in the
text) (Marsh and Jones, 2010). Potential disruption caused by the unat-
tended speech in this complex task may have arisen from either one or
both of these two components, depending on the characteristics of the
speech (e.g., language, intelligibility, semantic similarity, acoustic prop-
erties, number of speakers). Considering the diversity of acoustic envi-
ronments and types of obstacles we have to overcome in our daily life, the
underlying principles of the auditory distraction and the acoustic prop-
erties of the background sounds can turn into a multifaceted question
and therefore attracts interest from different research fields.

The room acoustics community has a long-standing interest in the ef-
fects of noise in spaces such as open-plan offices, classrooms and hospitals
considering the work efficiency, health and well-being of the occupants
(Biley, 1994; Haka et al., 2009; Jahncke et al., 2013; Reinten et al., 2017).
Soundscape designers and urban planners have been working on devel-
oping new and sustainable solutions to eliminate negative effects of en-
vironmental noise on well-being (Yang, 2005; Galbrun, 2012). Linguists
and educational scientists are curious about the impairment of reading
and arithmetic capabilities of young children (Ljung et al., 2009) as well
as writing skills of adults (van de Poll et al., 2014). Additionally there
are numerous high-stress, high-workload environments in which the inad-
equacy of auditory warnings may have dramatic consequences (Baldwin,
2016, Chp. 2), like medical care (Baldwin, 2016, p. 28 - 29) and aviation
(Hermann and Hunt, 2011). The recent development of electrical vehi-
cles also emphasizes the question of safety in traffic settings due to its
generation of lower sound pressure levels compared to gasoline or diesel
engine cars (Parizet et al., 2014).

Even though the practical settings for these examples are different,
the research methods used are similar. Researchers attempt to create
an interaction between a focal task and an auditory distractor in a lab-
oratory which is similar to the ones expected in real life in terms of
the underlying cognitive principles. For example, in order to asses the
impact of background sounds on work efficiency in an open-plan office
environment, long experimental sessions (3-4 h) with multiple tasks are
constructed (Haka et al., 2009; Jahncke et al., 2013; Haapakangas et al.,
2014). The experiment typically takes place in a laboratory shaped as
an open-plan office and is accompanied by different sounds which usually
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resemble the ones in a real life situation (e.g., office noise). The mem-
ory tasks are chosen in a way that the task demands are thought to be
similar to those of the daily tasks of the office workers and the impact
of the background sounds on work efficiency is quantified by comparing
the task scores under different acoustic conditions.

As opposed to the applied research methods, a more common ap-
proach in fundamental research is to investigate the interaction between
a specific type of background sound and a single focal task. One of the
most used tasks in the literature is a short-term memory task, the serial-
recall task: Typically, participants are asked to recall the order of a list of
seven to nine verbal items (e.g., letters, digits) presented one at a time
on a screen. This procedure is accompanied by irrelevant background
sounds alongside a control condition (e.g., silence), usually delivered via
headphones, either during only the presentation and the retention pe-
riods, or the whole trial. The serial-recall disruption is quantified by
comparing the scores between different acoustic conditions (e.g., speech
and silence) and is typically presented as an error rate (%). A large
body of evidence shows that the serial-recall task is vulnerable to dis-
ruption induced by background sounds (Colle and Welsh, 1976; Salamé
and Baddeley, 1982; Jones and Macken, 1993; Banbury and Berry, 1998;
Ellermeier and Hellbrück, 1998; Park et al., 2013).

This thesis is particularly concerned with the impact of the back-
ground sounds on serial-recall performance, namely, the irrelevant sound
effect and the hypothesis which attempts to explain the phenomenon,
changing-state hypothesis. The relation between the acoustical variations
within the irrelevant sound and the corresponding serial-recall disruption
is the major interest in this thesis, since the studies reported here eval-
uate a prediction model for serial-recall disruption which was inspired
by the changing-state hypothesis. However, it is a complex phenomenon
and it has been studied for more than three decades, therefore before
moving into the prediction models proposed in the literature and the
properties of the changing-state hypothesis, a summary of the theoreti-
cal background with a focus on the irrelevant sound effect is presented.
This is followed by the description of the acoustic / psychoacoustic met-
rics proposed as prediction models and a brief literature review regarding
the psychoacoustic properties of the changing-state effect. This chapter
is concluded by the sections that present the goals and the contributions
of this thesis and is finalized by the outline.
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1 General introduction

1.2 Irrelevant Sound Effect (ISE)

The detrimental effect of background sounds on serial-recall performance
has been extensively studied in the literature (for a review, see Banburry
et al., 2001) and was first described as a phenomenon called the “acoustic
masking in primary memory” in Colle and Welsh (1976), where the recall
of visually presented letters was impaired by accompanying continuous
speech (spoken text in a foreign language). It had been initially expressed
as the irrelevant speech effect (ISE) when referring to the serial-recall
results observed in speech conditions in Salamé and Baddeley (1982).
However, several key findings in the literature revealed that speech is
not the only type of sound that disrupts serial-recall performance: Pure
tones changing in frequency (Jones and Macken, 1993); instrumental mu-
sic (Schlittmeier et al., 2008); office noise (Schlittmeier et al., 2012); and
bandpass-filtered noise bursts with different center frequencies (Trem-
blay et al., 2001) were also shown to produce serial-recall disruption.
Since it became obvious that the effect was not only observed in speech
conditions, it was renamed to the irrelevant sound effect. Nevertheless,
the speech stimulus is still pointed out as the most disruptive stimulus
(Ellermeier and Hellbrück, 1998; Park et al., 2013; Ellermeier et al., 2015;
Senan et al., 2018) with an observed mean error rate of 38 - 50 %, while
the control conditions typically yield a mean error rate of 26 - 32 %.

Cognitive models

There exist a number of cognitive models proposed by researchers which
aim to describe the ISE based on the underlying cognitive processes
(Baddeley, 2000; Jones et al., 2000; Neath, 2000). Two short-term mem-
ory models follow the idea that the disruption is a consequence of the
auditory stimuli and the representations of the verbal items having ac-
cess to the same space, either being the phonological store (phonological
loop model, e.g., Salamé and Baddeley, 1982; Baddeley, 2000) or the pri-
mary memory (the feature model, e.g., Nairne, 1990; Neath, 2000). The
two accounts, the phonological store and the feature model, although
different in terms of the descriptions they provided regarding how the
interference occurs, both govern the idea that the recall impairment is
due to the similarity in the content between the irrelevant sounds and
the items to be recalled, rather than the processes involved.

As mentioned above, several key findings in the literature revealed
that speech is not the only type of sound that disrupts serial-recall per-
formance which undermines the assumptions made by the models re-

Page 4



1 General introduction

C
h
a
p
te
r
1

garding the role of the content in background sound induced disruption.
With respect to the feature model, one of the limitations discussed in
the paper by Jones and Tremblay (2000) was that it did not provide
an explanation for the non-speech sounds, but instead states that it is
a different effect and the model is not extensible to the irrelevant non-
speech sounds. In addition to that, the impact of similarity of content on
serial-recall performance was investigated using a set of irrelevant speech
stimuli (e.g., ton, gnu, tee, etc.) which rhymed or did not rhyme (e.g.,
wick, tip, dub, etc.) with the visually presented items (digits) and it was
shown that the serial-recall results observed in the two conditions were
not significantly different (LeCompte and Shaibe, 1997).

As opposed to the phonological loop and the feature models, the
interference-by-process model proposes that background sounds produce
disruption by interfering with the processes involved in the focal task
(Jones and Macken, 1993) rather than the similarity of the content.
Within the context of the serial-recall disruption, the interference-by-
process model proposes that the change within a sound sequence gives
rise to an obligatory ordering process, which interferes with the process
of seriating the visually presented to-be-remembered items (Jones and
Macken, 1993). This has been known as the changing-state hypothesis :
The irrelevant background sounds should consist of perceptually distinct
variations from one distinguishable entity to the next one and the distinc-
tiveness between subsequent items in the sound stream is the primary
element of disruption.

The changing-state effect within the concept of serial-recall disruption
was supported by several findings in the literature (e.g., Colle and Welsh,
1976; Jones and Macken, 1993; Jones et al., 1999; Schlittmeier et al.,
2012; Senan et al., 2018). For example, a steady-state sound stream
like “A, A, A, A...” produces a degree of disruption similar to silence
while a sound sequence like “A, B, A, B...” or “A, C, E, Z...” induces a
significantly higher serial-recall disruption than the steady-state sound
stream (Hughes et al., 2005). A sequence of tones changing in frequency
disrupts serial-recall performance significantly as opposed to a sequence
of repeated tones (Jones and Macken, 1993). In addition to this, music
containing many legato passages is shown to produce less disruption
than music with many changes in tempo and pitch (Schlittmeier et al.,
2008). Further research also showed that the meaning of speech does
not play a role in serial-recall performance (Jones et al., 1992; Jones and
Macken, 1995a; Buchner, 1996; Marsh et al., 2008), hence supporting the
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1 General introduction

prominent role of the acoustic variation.

Since the interference-by-process model advocates that the similarity
of the process, not the content, is the reason behind the disruption, it was
proposed to be an efficient explanation for the cases where the focal task
is other than serial-recall. One of the findings which support this assump-
tion was demonstrated by a free-recall task where the participants were
asked to recall the words they remember from a list of visually presented
words. When the background speech consisted of words semantically re-
lated with the list to be recalled, the recall performance was lower than
what was reported for semantically unrelated background speech. How-
ever, when the participants were asked to perform the same task but
this time in the order in which the words were presented (serial-recall)
then the usual ISE was observed: The serial-recall performance in se-
mantically related or unrelated speech conditions was not significantly
different. It has been discussed extensively whether the interference is
driven by the retrieval process in the semantic memory (Marsh et al.,
2008) or by the similarity of the content as proposed by the phonological
loop and the feature models, interference-by-content, (Baddeley, 2003).
Marsh et al. (2008) stated that, if it were the content that was relevant
for the disruption, then the semantically related speech would be disrup-
tive in both the free and serial-recall settings (for a review, see Marsh et
al., 2009).

An alternative view, the attentional capture, proposes that the im-
pairment in memory induced by irrelevant sounds can be explained by
the reorientation of attention triggered by a deviant sound within the
auditory stream and is observed regardless of the processing involved in
the task (e.g., Hughes et al., 2005; Lange, 2005; Sörqvist, 2010; Vachon
et al., 2012). The attention of the listener can be diverted from the focal
task if the background sound consists of a prominent, unexpected change
in the auditory sequence. For example, if the sound sequence consists
of a tone with a frequency (“B”) following a succession of tones with a
different frequency (“AAAAABA”), it will tend to capture attention as
it interferes with the expectation for another “A” (Hughes et al., 2005).

It was investigated whether the serial-recall disruption results from a
sequence of deviant sounds, thus whether the attentional capture mech-
anism can account for any background-sound-induced disruption or the
attentional capture and the interference-by-process paradigms are two
distinct forms of auditory distraction (Hughes et al., 2005; Hughes et
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al., 2007). Duplex-mechanism account of auditory distraction proposed
by Hughes et al. (2007, 2013) represents a current framework model for
the effect of background sounds on cognitive performance in which also
the changing-state hypotheses was integrated as one concretisation of
the “interference-by-process” principle. Several findings in the literature
favor the duplex-mechanism account (Hughes et al., 2007) and one of the
most clear-cut evidences comes from the study of Hughes et al. (2007).
A serial-recall task was designed in a way that the irrelevant sound se-
quences contained an additional deviant sound. A letter spoken by a
male voice was inserted in an irrelevant sound sequence of female spo-
ken letters. The results showed that the addition of the deviant sound
increased the error rate in both the changing-state (10 different letters)
and the steady-state (repeated letter) conditions. It was reasoned that, if
the attentional capture paradigm was able to account for the serial-recall
disruption, then the mean error rates observed in the changing-state and
steady-state sequences with added deviant sound would be similar.

The second experiment in the same study revealed another strong
evidence using a short-term memory task which does not require a se-
riation process. The missing item task is another task for measuring
verbal short-term memory capacity (Klapp et al., 1983) where one of
the visually presented items is missing (e.g., eight of the nine digits pre-
sented in the random order from a set of 1-9) and participants are asked
to detect the missing item instead of recalling the order of the list. The
aforementioned two acoustic conditions were employed in a missing item
task and it was shown that adding a deviant sound equally increased the
error rate for both sound conditions. It was concluded that the effects
of changing-state sequences and deviants are independent and additive.

The interference-by-process account gathers its strength from provid-
ing an explanation for the auditory distraction which is detached from
the identity of the background sounds, but rather related with their pro-
cess demanding properties, and proposes that the impairment is a result
of similarity of the concurrent processes. Particularly important for this
study is that, within the context of ISE, the primary ordering process is
vulnerable to sounds which posses a variation, a change in state, which
intrudes a secondary seriation process.
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1.3 Prediction models

The cognitive models summarized so far create a frame of research with
respect to qualitative principles (investigating the decrease in the cogni-
tive performance based on the irrelevant sound - focal task interaction
and deriving conclusions regarding the interference process) and do not
attempt to quantify the disruptive effects of the irrelevant sounds. Most
important to this study is that they are not acoustic or psychoacoustic
models that can predict the degree of disruption based on acoustic fea-
tures of the irrelevant sounds. There exist, however, several attempts to
explain the phenomenon based on the acoustic features of the irrelevant
sounds and the findings derived from the cognitive studies guide these
proposals. The following sections explain briefly each proposed model
including the motivation behind and the discussions which emerged af-
terwards.

Speech Transmission Index (STI)

The earliest proposed ISE prediction model (Hongisto, 2005) is based on
the speech transmission index (STI), which is a measure used to quan-
tify the quality of a sound transmission path based on the intelligibility
of speech (Houtgast and Steeneken, 1985). Listening tests can be con-
ducted to measure speech intelligibility: Typically a narrator is speaking
and participants are transcribing what they hear during the test. The
speech intelligibility is calculated based on the average percent of correct
answers and is usually different for words, sentences or syllables. The
direct measurement of speech intelligibility for an actual environment
can be very expensive and time consuming therefore physical measures,
such as the STI, have been developed (International Electrotechnical
Commission, 2003).

The fast fluctuations of the intensity envelope of the speech corre-
spond to the phonemes within words and the slow fluctuations coincide
with sentence and word boundaries. These fluctuations, termed modu-
lations, carry the most relevant information contributing to speech in-
telligibility and can be quantified as a function of modulation frequency
(Houtgast and Steeneken, 1973). Any degradation of the modulation
spectrum induced by the transmission path is considered to reduce speech
intelligibility, as this reduction of the modulation spectrum coincides
with the decrease in the modulation depth at one or more modulation
frequencies. This change in modulation depth is quantified by the Mod-
ulation Transfer Function (MTF). The working hypothesis is that the
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MTF of a sound transmission path reflects its performance with respect
to speech intelligibility and is widely used in room acoustics (Houtgast
and Steeneken, 1985).

Conversion of the MTF values to the STI is a five step procedure
and briefly consists of averaging signal-to-noise ratios along the two vari-
ables, modulation frequency and the carrier frequency (Houtgast and
Steeneken, 1985). The resulting STI values change between 0 and 1,
while the former corresponds to silence or stationary noise, the latter
refers to a fully comprehensible speech (see Appendix A).

The STI was first proposed as a basis for an ISE prediction model
in the study of Hongisto (2005). The author presented findings from a
literature review and classified the studies based on different focal tasks.
The experimental results were summarized in a table with a focus on
the number of subjects, length of the experiment, type of cognitive task,
auditory stimuli employed in the experiment and the test performance
in the relevant acoustic conditions (Hongisto, 2005, Table 2). The rela-
tionship between the performance scores and STI was supposed to follow
the results of the subjective speech intelligibility tests of the sentences,
obtained from IEC 60268-16. The relationship was non-linear and dif-
ferent for words, sentences and syllables. Subjective speech intelligibility
increased rapidly for the STI values above 0.2 and reached 100 % when
the STI was above 0.6 (Hongisto, 2005, Fig. 3). For the last stage of
the development of the model, the author computed the average of the
normalized error rates (performance decrease relative to the control con-
dition) for each type of focal task and employed the smallest value (7 %,
proofreading task) in a sigmoid function. The exponential curve reaching
100 % speech intelligibility represented 7 % decrease in performance rela-
tive to the silence condition and this point corresponded to an STI value
above 0.6. The highest performance, on the other hand, was obtained
when no speech is heard, when the STI is equal to 0.

There exist a number of studies which evaluated the STI parameter as
an ISE predictor (e.g., Haka et al., 2009; Park et al., 2013; Haapakangas
et al., 2014; Ellermeier et al., 2015; Liebl et al., 2016; Senan et al., 2018)
and the model was reported to do well in accounting for situations of
degraded / masked stimuli, however, it requires prior knowledge of the
signal which can be an unknown factor. The choice of the normalization
constant (7 %) and the unvarying normalized error rate above an STI
value of 0.6 were also discussed as critical factors and considered to be
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possible reasons behind the limitations of the model (Ellermeier and
Zimmer, 2014). The STI parameter is evaluated as an ISE predictor in
the experiments reported in Chapter 2 and the computation of the STI
is presented in Appendix A.

Fluctuation Strength(FS)

Another attempt to model the ISE was proposed by Schlittmeier et al.
(2012) which is based on the hearing sensation fluctuation strength (FS)
(Fastl and Zwicker, 2007, p. 247 - 256). FS is a psychoacoustic sen-
sation that occurs because of the perception of temporal modulations.
Temporal modulations can result in two different percepts: Roughness
at higher frequencies of modulation and FS at low frequencies of modu-
lation. Even though the boundary that separates FS from roughness is
not strict, amplitude modulations below 20 Hz are attributed to FS and
modulation frequencies above 20 Hz are attributed to the sensation of
roughness (Fastl and Zwicker, 2007).

The FS reaches its maximum at a 4 Hz modulation frequency and
shows a band-pass characteristic (the effect quickly diminishes for higher
and lower modulation frequencies), which coincides with the average syl-
lable rate in narrative speech (4 Hz) (Fastl and Zwicker, 2007). The FS
value of 1 vacil (the unit of the fluctuation strength) is generated by a
stimulus with 100 % amplitude modulation, a carrier frequency of 1 kHz
and a level of 60 dB. FS values typically vary between 0 and 2 vacil.

In the study of Schlittmeier et al. (2012), a large number of serial-recall
measurements (N = 70) were obtained using a variety of irrelevant sounds
(e.g., speech, traffic noise, animal sounds, tone sequences, music, etc.)
for the development of the prediction model based on the FS. One of the
irrelevant sounds (music with staccato passages) which led to the median
error rate with smallest interquartile range was selected as a reference
sound. The normalized median error rate (7.5 %) obtained in the digit-
recall task for the reference sound condition and its FS value (0.68 vacil)
were used as normalization constants in the prediction algorithm. The
FS values of all of the irrelevant sounds employed in the experiment were
computed and used in the prediction model and the resulting normalized
error rates were compared with the normalized error rates obtained from
experiments.

The model managed to predict the error rates of 63 behavioral mea-
surements out of 70 within the interquartile range of the experimental
results. For the irrelevant sounds that particularly caused disruption
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(e.g., speech, staccato music, office noise), the algorithm produced valid
estimates. The model was also successful in predicting the absence of
a disruptive effect for continuous, steady-state sound conditions (e.g.,
legato music, traffic noise, continuous noise).

The FS was analyzed as an ISE prediction model in several studies
after it had been proposed (Ellermeier et al., 2015; Liebl et al., 2016;
Senan et al., 2018). The results reported in these studies are discussed in
detail in Chapter 2 and Chapter 3 where the FS parameter is evaluated.
The definition of the parameter is presented in Appendix A.

1.4 Frequency domain correlation coefficient
(FDCC)

The last prediction model to be discussed in this section is called the
frequency domain correlation coefficient (FDCC) and in contrast to the
aforementioned two models, this model was proposed as an ISE predic-
tion model solely in the study by Park et al. (2013). In the study, an
adaptive noise-masker algorithm was developed and evaluated with re-
spect to its capability to reduce the ISE. The major objective of the study
was to investigate if the adaptive masking approach can further reduce
the serial-recall disruption when compared to stationary noise-maskers.
Introduction of the stationary noise, combined with background speech,
has already been stated as a useful option to reduce the ISE (Ellermeier
and Hellbrück, 1998; Haapakangas et al., 2014). The reason behind this
performance increase is thought to result from the reduction of the spec-
tral distinctiveness between the successive segments of the sound after
the masking noise is added. Thus, the changing-state sound became
“less” changing in “state” (more “steady-state”) after the masker was
introduced when compared with its original, unmasked version.

In order to investigate the effect of masking noise on ISE, Park et
al. (2013) conducted a serial-recall experiment which consisted of two
stationary masking noise conditions with two different signal-to-noise ra-
tios; an adaptive masking noise condition; a continuous speech condition
and continuous noise as control condition. The results were consistent
in terms of the authors’ expectations: The adaptive masking stimuli
succeeded in improving the serial-recall performance when compared to
the stationary masking noise with low noise level while the stationary
masking noise condition with high noise level produced a similar degree
of disruption as the control condition. The authors computed the STI
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values for the experimental stimuli and the parameter values were in
conflict with the error rate for the adaptive masking conditions. It was
concluded that the ISE can not be predicted by only using a temporal
distinctiveness measure based on the STI, but it should be approached
from a spectro-temporal perspective.

The FDCC was proposed as a spectral similarity metric which at-
tempts to quantify the changing-state effect by following the definition
of the hypothesis: The metric segments the stimuli into sound tokens
and computes similarity between the power spectra of the successive to-
kens using correlations. For all audio samples in the study, the FDCC
value was computed and the correlation values were found to be in line
with the experimental results: The original speech stimuli resulted in
the lowest FDCC value (largest spectral distinctiveness between sound
segments) and the FDCC values for noise masking conditions followed
the trend of the serial-recall results. The authors concluded that the use
of the STI and the FDCC are limited as ISE predictors due the former
one’s focus on speech stimuli and the latter one’s statistical approach
to the segmentation of the tokens. However, these two models can be
improved in a way to cover a wider scope of irrelevant sounds either by
introducing a different modulation frequency weighting function for the
STI or by arranging a different threshold point for the time intervals
between the sound tokens for the FDCC.

Here it should be noted that the term “token”, when used within the
context of the FDCC, corresponds to the segments of sounds extracted by
the token selection stage of the FDCC parameter. The FDCC attempts
to relate the magnitude of the spectral variation within the irrelevant
sound to the observed serial-recall performance and, as the main focus
of this dissertation, it is evaluated as an ISE predictor in every chapter
of the thesis. Therefore, the token selection stage of the parameter is
also explained, modified and evaluated in this thesis.

On the other hand, the definition of the term “token” varies between
different studies in the ISE literature, depending on how the irrelevant
sound stimulus was constructed. The term generally refers to the small-
est building block of the disruptive sound stimulus. For instance, if the
irrelevant sound used is a sequence of words (e.g., bowls-boy-day-dog-
go-than-view), then each word is considered as a token. Similarly, if
the disruptive sound stimulus consists of sine tones then each tone is
accepted as a token (e.g., Jones et al., 1999).
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The next section provides some examples of the different types of ir-
relevant sounds used in the literature. It focuses on some of the critical
findings from the literature where the relation between the degree of the
serial-recall disruption, ISE, and the magnitude of the variation within
the irrelevant sounds, causing the changing-state, were investigated.

1.5 Changing-state hypothesis

The changing-state hypothesis states that the degree of the change, the
physical mismatch, between successive items within the irrelevant stimu-
lus determines the level of the secondary seriation process. Therefore, the
stronger the prominence of the secondary seriation process the stronger
the interference should be, hence the magnitude of the changing-state
within the irrelevant sound is related to the degree of disruption. A brief
literature review regarding the required physical mismatch and its rela-
tion to the degree of serial-recall disruption is presented in the following
paragraphs.

The domain of the acoustic variation required to create the changing-
state effect was investigated in several studies where the spectral and
temporal features of the irrelevant sounds were systematically manip-
ulated. The impact of the change in frequency was examined using:
low-pass filtered words with different roll-off values (Jones et al., 2000);
sequences of sine tones with repeated and changing frequencies (Jones
and Macken, 1993); sequences of vowels changing in pitch (Jones et al.,
1999); as well as noise-vocoded speech with different numbers of fre-
quency bands (Ellermeier et al., 2015; Senan et al., 2018). These studies
reported that changes in frequency within the irrelevant sound produced
significant serial-recall disruption when compared to the control condi-
tions.

It was shown that within the normal hearing range the serial-recall
disruption is not dependent on sound intensity: The recall performance
is approximately the same whether the sound pressure level is 80 dB(A)
(e.g., someone talking loudly) or 45 dB(A) (e.g., a quiet library) (Colle,
1980; Ellermeier and Hellbrück, 1998). This attribute is also observed
when the sound level is modified within or between the trials (Tremblay
and Jones, 1999). In addition to this, modulating the irrelevant sound
with a fixed or varying envelope (Jones et al., 1992) or changing the du-
ration between the concurrent tokens of the irrelevant sounds (Tremblay
and Jones, 1999) were shown to be ineffective in producing an ISE.
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A number of studies investigated the relation between the degree of
disruption and the acoustic features of the irrelevant sounds. Due to the
aforementioned findings, an assumption about the degree of disruption
was that the magnitude of the ISE should be reduced when the spectral
variation within the irrelevant sound was reduced.

In the first experiment reported in the study of Jones et al. (2000), a
set of 14 male-spoken words was systematically degraded by applying a
low-pass filter with roll-off values changing between 0 to 24 dB/octave,
with a step size of 6 dB and the recall performance increased monotoni-
cally as a function of the filter roll-off value. In the second experiment,
the degradation of the speech stimuli was increased to an extent that
the speech was transformed into amplitude-modulated noise. As a re-
sult, the interference by the irrelevant speech stimuli decreased when the
degradation was increased and the effect was reported to be significantly
linear.

In Jones et al. (1999), the first experiment also supported this as-
sumption: Three irrelevant sound conditions were created by employing
sine-tones and were labeled on the basis of frequency differences between
the members of each set; small, medium and large. There were four
acoustic conditions, including the silence condition. The results were in
line with the expectation of observing a monotonic increase in the mean
error rate as a function of frequency difference between the tones.

In the second experiment (Jones et al., 1999, Exp. 2), the authors
increased the variation in the stimuli by introducing timbral differences
to the tone sequences using square (energy only at odd harmonics) and
sawtooth (energy at all harmonics) waves. Four sound conditions were
created: (1) repeated timbre, repeated frequency (only one of the tones
repeating per sequence); (2) changing timbre, repeated frequency (a se-
quence of three tones with a frequency of 440 Hz changing in timbre
only); (3) repeated timbre, changing frequency (one of the tones chang-
ing in frequency only); and (4) changing timbre, changing frequency
(both attributes changing randomly in a sequence). The results showed
that simultaneous variations in two parameters (timbre and frequency)
produced lower mean error rate when compared to variation in only
one parameter: Repeated timbre-repeated frequency (1) and changing
timbre-changing frequency (4) generated lower mean error rates (∼= 40
%) than the repeated timbre-changing frequency and changing timbre-
repeated frequency conditions (∼= 45 %).
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It was argued that the non-monotonic relation between the magni-
tude of the changing-state within the sound sequences and the observed
recall performance in the aforementioned experiment results from the
introduction of a large variation in the sound sequence. If the differences
within the sequence are within a perceptual limit that preserves the char-
acteristics of the sequence, then the sequential information is retained;
when the difference is too large, the sequential information is diminished
and therefore the secondary ordering process is weakened.

Jones et al. (1999, Exp. 3) investigated the role of perceptual limits
on the ISE by introducing pitch changes to the semitones from relatively
modest (two and five semitones) to the extreme (10 semitones) in the
third experiment with the expectation that if the pitch changes are above
the “limit” (five semitones) then the sequence would be perceived as two
distinct streams with repeated frequency instead of one with changing
frequency and the impairment would drop. The disruption increased
as a function of pitch difference and reached the maximum at the five-
semitones condition, while the error rates observed for the two- and the
ten-semitones conditions were similar. The results in the study clearly
demonstrated that the function relating the pitch difference and degree
of disruption is not monotonic and the perceptual organization of the
auditory stimulus, in this case the auditory stream segregation based on
pitch perception (Bregman, 1990), plays a key role.

The role of perceptual organization on the ISE was investigated fur-
ther by Jones and Macken (1995a) focusing on the spatial location of
the irrelevant sounds. In the first experiment two sound sequences were
created by recording three letters spoken by a female voice: “U”, “C”
and “O”. The first material was recorded monaurally and presented di-
otically. The second sequence was created for stereophonic presentation
in which “U” was played on the left channel, “O” was played on the
right channel and “C” was played on both channels. When the stereo-
phonic recording was played over headphones it led to the perception of
three repeating streams based on their location instead of one varying
sequence. The serial-recall results also supported this distinction of the
streams: The mean error rate observed in the stereo sound condition was
lower than what was observed in the mono condition.

A similar experiment was conducted by Jones and Macken (1995b)
using a speech stimulus as the irrelevant sound: Six overlapping voices
were presented from either one spatial location (babble speech) or from
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six loudspeakers located in six different positions. It was observed that
when the voices were played back from different locations there was a
significantly higher degree of disruption when compared to the babble
speech condition. This was explained by the role of stream segmentation
on the ISE: When the voices overlap the cues for segmentation, such as
amplitude variations, are reduced due to energetic masking, and speech
gradually develops into a relatively steady-state sound with occasional
words and syllables noticeable; when the individual voices are presented
from different spatial locations, the speech is perceptually reorganized
and the segmentation cues are recovered.

Another example of the role of segmentation was demonstrated using
non-speech sounds: A continuous tone randomly varying in pitch did
not produce an ISE, but when the same sound was interrupted by short
segments of silence, the ISE was observed (Jones et al., 1993). The result
showed that the magnitude of the physical change itself, the degree of
the variation in pitch, is not sufficient to produce an ISE: In order to
generate the changing-state effect, the change has to occur from one
segment to another.

The key findings related to the features of the changing-state hypothe-
sis are not limited to those reported above, however, this overview should
be sufficient to give an idea about the acoustic and perceptual aspects
involved in the serial-recall disruption. The impact of the spectral vari-
ations within the irrelevant sounds (Ch. 2-5), the role of segmentation
(Ch. 4), the role of temporal variations within the irrelevant sounds and
the role of auditory stream segregation (Ch. 5) on the ISE are the fea-
tures of the changing-state hypothesis which are discussed in detail in
the corresponding chapters.

1.6 Goals of the thesis

The major goal of this dissertation is to evaluate and improve an ISE
predictor, the FDCC, with respect to its ability to quantify the magni-
tude of the changing-state effect observed for various types of auditory
stimuli, from degraded, masked or continuous speech to sequences of
noise-bursts. This predictor is the only predictor designed for such a
purpose in the literature and thus follows the definition of the changing-
state hypothesis. Therefore, the FDCC was employed not only for evalu-
ating and detecting its limitations, but also used as a medium to observe
the relationship between the magnitude of the spectral variation that
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the irrelevant sounds comprise and the ISE observed in such acoustic
conditions because this is typically not a monotonic relation.

The use of a spectral metric gave further insight into the role of speech
intelligibility on the ISE. The systematically manipulated speech-like
stimuli were evaluated by both the STI and the FDCC parameters. It
was observed that the variation applied in the frequency domain was also
reflected in changes in the time domain. When both variations could be
quantified, these could be independently evaluated and their independent
roles, with respect to the ISE, could be analyzed. This was demonstrated
in the studies reported in Chapter 2. In the same chapter, the normal-
ized covariance measure (NCM) was also evaluated as a potential ISE
predictor.

The role of the changing-state syllables, vowels and consonants was
also investigated in a way that the token selection stage of the FDCC
was evaluated based on a small set of short speech samples in Chapter
3. It was found that when the token selectivity of the segmentation
procedure was revised with a focus on syllables, the prediction accuracy
was increased. More interestingly, when the metric was improved, the
prediction accuracy was increased not only for speech sounds, but also for
non-speech sounds as well. Furthermore, the developed token selection
stage was used as a basis to investigate the role of segmentation on the
ISE in Chapter 4.

Moreover, the magnitude of the spectral variation was shown to yield
different results in ISE experiments depending on the type of irrelevant
sounds, such as pure tones varying in frequency vs pitch shifted vowels
(Jones et al., 1999), which eventually had led to a discussion about the
role of speech and non-speech irrelevant sounds on the ISE (LeCompte
et al., 1997). In Chapter 5, we generated a set of non-speech stimuli
which possessed the same magnitude of spectral variation and similar
temporal characteristics as speech. The role of spectral variation on
the ISE was evaluated using both speech and non-speech stimuli in a
serial-recall experiment and the use of the FDCC allowed us to base our
conclusions on a physical measure.

The FDCC was evaluated regarding its ability to predict the ISE and
its applicability as a physical measure in the ISE studies. We aimed to
reveal the promising aspects as well as the limitations of the metric and,
when possible, we attempted to improve the prediction accuracy of the
FDCC.
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1.7 Outline
The prediction models explained above, the STI, the FS, the FDCC and
the NCM are evaluated using a distorted speech stimulus, noise-vocoded
speech (NVS), in two serial-recall experiments in Chapter 2 where the
number of frequency bands used in generating the NVS stimuli is varied.
The noise-vocoding technique used to generate the NVS stimulus allowed
us to investigate the role of spectral features on ISE as well as the speech
intelligibility.

In Chapter 3, the two ISE predictors, the FDCC and the FS are
evaluated using a large dataset (N = 91) obtained from four studies in
the literature. The Pearson correlation values between the two metric
values and the corresponding normalized error rates are computed and
compared. In the same study, the token selection stage of the FDCC is
also modified and evaluated by comparing it with the previous version.

Two studies are presented in Chapter 4: In the first study, the recently
developed token selection stage of the FDCC is analyzed by segment-
ing continuous speech into tokens and employing both the continuous
and segmented versions in a serial-recall task. The experiment also con-
sisted of segmented non-speech stimuli obtained from the literature and a
between-subject analysis is conducted for the continuous and segmented
non-speech sounds. In the second study, a set of specially crafted NVS
stimuli is obtained from the literature and the roles of speech fidelity and
the spectral variation on ISE are investigated.

The spectral and temporal features of the irrelevant sounds are inves-
tigated in Chapter 5 using two metrics, the average modulation transfer
function (AMTF) and the FDCC. Two sets of noise-pulse trains are
generated and used in two experiments, in which the spectral and tem-
poral features of the noise stimuli are modified independently. The first
set contains periodic noise-pulse sequences while in the second set, the
position, the amplitude and the duration of each pulse is derived from
speech samples which are extracted using the token selection stage of the
FDCC algorithm. In both sets, the second pulse of each noise-pulse train
is independently modified in time or frequency content and the resulting
modified noise-pulses are used in serial-recall experiments.

In Chapter 6 the results and conclusions derived from each chapter
are summarized. The revealed advantages and limitations of the FDCC
are presented. Further improvements that can be applied to the FDCC
are also discussed.
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2 Cognitive disruption by noise-vocoded speech
stimuli: Effects of spectral variation1

Abstract

The effect of irrelevant sounds on short-term memory was investigated in
two experiments using noise-vocoded speech (NVS) stimuli. Speech sam-
ples were systematically modified by a noise-vocoder and a set of stimuli
varying from amplitude-modulated white noise to intelligible speech was
created. Eight NVS conditions, composed of 1, 2, 4, 6, 9, 12, 15 and
18-bands, were used as the irrelevant sound stimuli in a digit-recall task
next to the speech and silence conditions. The results showed that per-
formance decreased with the number of frequency bands up to the 6-band
condition but there was no influence of number of bands on performance
beyond 6 bands. The results were analyzed using four acoustic metrics
proposed in the literature: the frequency domain correlation coefficient,
the fluctuation strength, the speech transmission index and the normal-
ized covariance measure. None of the metrics successfully predicted the
results. However, the parameter values of the frequency domain corre-
lation coefficient, the speech transmission index and the normalized co-
variance measure indicated that a prediction model for irrelevant sound
effect should account for both temporal and spectral features of the ir-
relevant sounds.

1This chapter is a modified version of:
Senan, T. U., Jelfs, S., and Kohlrausch, A. (2018). “Cognitive disruption by noise-vocoded speech
stimuli: Effects of spectral variation,” J. Acoust. Soc. Am. 143(3), 1407-1416.
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2.1 Introduction

The detrimental effects on cognitive performance attributed to back-
ground sounds have been investigated under the paradigm of irrelevant
sound. Typically, subjects perform working memory tasks in the pres-
ence of background speech, and the performances in different acoustic
conditions are compared to quantify the irrelevant speech effect (ISE)
(Salamé and Baddeley, 1982). The finding is robust: The presence of
background speech heavily impairs the recall performance even though
the subjects are instructed to ignore it. It was soon discovered that the
effect is not only apparent when the accompanying sound is speech but
also occurs using background noise, music, alternating tones, reversed
speech, etc. As a result, the recall impairment has been renamed the
irrelevant sound effect while keeping the same acronym (ISE) (Banburry
et al., 2001; Ellermeier and Zimmer, 2014).

A serial-recall task is a short-term memory task which requires remem-
bering the order of visually presented items (e.g., a random sequence of
the digits 1-9), and is the most widely used memory task in ISE research.
Experimental evidence from the literature, within the context of serial-
recall tasks, suggests that the ISE is a joint product of the intentional
processing of the order of the items and of the involuntary processing
of the sound. This formulation has been conceptualized as interference
by process, which occurs due to two parallel ordering mechanisms: one
for the visually presented items and one for the acoustically presented
background sound (Hughes et al., 2007). The conflict between these
two modalities arises because the brain processes the irrelevant stimuli
as well as the visually presented items. In order to create this conflict,
the irrelevant stimuli should comprise perceptually distinct features in
successive segments of the sound. This observation is manifested in the
changing-state hypothesis: The successive tokens of the sound should
have different characteristics in terms of acoustic features in order to
create the disruption (Jones, 1999). For example, a sequence of identi-
cal tones does not degrade the performance while a sequence of tones,
changing in frequency, disrupts performance considerably. Several stud-
ies modified the temporal (Ellermeier and Hellbrück, 1998; Tremblay and
Jones, 1999) and spectral features (Jones and Macken, 1993; Jones et al.,
2000) of the irrelevant stimuli in a systematic way in order to examine the
relation between the magnitude of disruption and the acoustic properties
of the sounds. However, clear-cut evidence which relates the degree of
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disruption to a single acoustic descriptor is yet to be found. Neverthe-
less, the variation in the spectrum is regarded to be a prominent factor
(Jones et al., 1999; Ellermeier and Zimmer, 2014).

The changing-state hypothesis provides a framework for the percep-
tual conditions required to observe the effect, but does not try to quantify
the magnitude of the ISE. An attempt to quantify the ISE, by following
the definition of the changing-state hypothesis, has been introduced in
the study of Park et al. (2013), who defined the frequency domain cor-
relation coefficient (FDCC). In the study, the effect of adaptive masking
on the ISE was investigated and the spectral distinctiveness of the sound
tokens was quantified by a spectral model. The results were promising,
but this is the only study where speech stimuli were used in combina-
tion with a spectral estimator. The FDCC was later used in another
study where spectral and temporal features of white noise pulse trains
were modified systematically, however, no clear trend in the experimental
results was observed (Senan et al., 2015).

Quantifying the magnitude of the ISE is not a straightforward process
since the degree of disruption using speech stimuli is larger than observed
for any other irrelevant sound and the acoustic features responsible for
such a distinction are not clear. This dilemma is taken into account in
the literature by focusing on speech-specific acoustic properties of the
irrelevant sounds while developing a prediction model.

The psychoacoustic hearing sensation of fluctuation strength (FS)
(Fastl and Zwicker, 2007), a measure which quantifies the perception
of slow (<20 Hz) amplitude modulation was used as the basis of a pre-
diction model (Schlittmeier et al., 2012). The numerical predictions for
the degree of disruption stayed within the interquartile range of the ex-
perimental results for 63 out of 70 types of background stimuli. However,
the model lacked the ability to identify whether two successive sound to-
kens are spectrally similar or not, which is critical in the ISE research
(Ellermeier and Zimmer, 2014).

In Hongisto (2005), speech intelligibility was used as a temporal pa-
rameter to predict the ISE in an open-plan office environment. The
Speech Transmission Index (STI) is a physical measurement method to
estimate speech intelligibility. The STI can be derived from the reduc-
tion in the modulation index of the intensity envelope of a signal after
the signal has traveled through a sound transmission system (Steeneken
and Houtgast, 1980). The STI has been shown to be a promising ISE
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model for speech and speech-like stimuli and has been shown to pre-
dict intelligibility accurately when the speech degradation is induced
by additive noise and/or reverberation. However, when the speech is
processed non-linearly, such as by dynamic envelope compression intro-
duced by hearing aids, the STI fails to predict the intelligibility. This
shortcoming has been addressed and several modifications have been
proposed in the literature (Steeneken and Houtgast, 1980; Goldsworthy
and Greenberg, 2004). Among those modifications the Normalized Co-
variance Measure (NCM) correlated moderately well with the subjective
intelligibility scores of noise-suppressed sentences (Ma et al., 2009) and
vocoded sentences where both sine wave and white noise were employed
as the carrier signals (Chen and Loizou, 2011b). The NCM determines
the transmission index values from the band pass filtered intensity en-
velopes of the clear and degraded signals, just like the STI, but quanti-
fies the intelligibility by computing the covariance between the intensity
envelopes rather than using the modulation transfer function for deter-
mining the change in the modulation depth. Unlike the STI, the NCM
has not been used as an ISE predictor in the literature. Although both
measures are in need of a reference signal to be computed, which can be
a limitation, the NCM gives better results in terms of intelligibility for
vocoded speech (Chen and Loizou, 2011a) and is therefore evaluated in
the current study as an ISE predictor.

The present study describes a stimulus synthesis procedure which al-
lows for the creation of a continuum from the most disruptive acoustic
condition (speech) to a non-disruptive one (amplitude modulated broad-
band noise) by systematically modifying the spectral features of the stim-
uli. In order to accomplish this, speech is processed by a noise vocoder
which is a technique used in cochlear implant and speech perception stud-
ies (Shannon et al., 1995; Roberts et al., 2011). Noise-vocoded speech
is a manipulation of natural speech that is generated by filtering speech
into frequency bands, extracting the amplitude envelope of each band
and using it to modulate band-limited white noise in the correspond-
ing frequency band. In the final step, all amplitude-modulated noise
bands are combined to create the noise-vocoded speech. The result is a
harsh, metallic, distorted speech sound. Despite lacking many qualities
of natural speech, noise-vocoded speech (NVS) stimulus can still be as
intelligible as speech, depending on the number of employed frequency
bands. Due to the way it is synthesized, noise-vocoded speech is intelli-
gible primarily as a result of intensity variations (Shannon et al., 1995).
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Modifying the number of frequency bands in NVS allows to manipu-
late the spectral variation of the stimuli and, important to this study,
it creates an ideal case to investigate the effect of spectral variation on
cognitive performance.

Noise-vocoded speech was first used in the irrelevant speech paradigm
in the master’s thesis of Dorsi (2013). In the study, a letter-recall task
with seven letters is reported for one control (steady-state white noise)
and four NVS conditions: 3-bands, 6-bands, 9-bands and 12-bands. The
cut-off frequencies were obtained by dividing the spectrum into logarith-
mically spaced frequency bands. The results showed that the recall per-
formance decreased when the number of frequency bands was increased
from 3-bands to 9 and 12-bands.

In a more recent study by Ellermeier et al. (2015), a similar approach
was followed while introducing slight changes to the number and the
cut-off frequencies of the spectral bands. The digit-recall experiment
consisted of one control condition, and five acoustic conditions where
the number of frequency bands was increased. The cut-off frequencies
were determined using the Bark scale (Zwicker, 1961). Japanese and Ger-
man speech was presented to both Japanese and German participants.
Participants were randomly assigned to one of the language conditions,
including their non-native language. In addition to the language compo-
nent, this study also applied STI and FS prediction models and compared
experimental results with parameter values. The conclusion was that the
STI performed much better, but that there needs to be a spectral model
in order to accurately predict the ISE. Another study where STI and
FS models were compared, this time in an open-plan office context, also
showed that the STI model was generally more successful at predicting
recall performance for the masked speech conditions while the FS model
failed except for the (unmasked) speech condition (Liebl et al., 2016).

In the present study, we aim to investigate the effect of NVS stimuli
on serial-recall following a similar approach and evaluating three met-
rics proposed in the ISE literature and one metric that has not been
used as an ISE predictor before in the light of experimental results. We
intend to broaden the scope of previous studies by employing a finer
grain on the number of frequency bands and investigating the behaviour
of the spectral parameter, the frequency domain correlation coefficient.
Two experiments were conducted where different ranges of the number
of frequency bands were used in order to cover the spectral parameter
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values varying between non-speech to speech stimuli. The following sec-
tion explains the spectral descriptor and relates the parameter values
to the auditory stimuli. Section 2.3 and 2.4 describe the experimental
procedures for the two experiments. The results of the aforementioned
prediction models are compared in Section 2.5 in the light of the ex-
perimental results, where each parameter is explained in Appendix A
including two new metrics which are not analyzed in this chapter. The
chapter ends with the discussion (Sec. 2.6) and conclusion (Sec. 2.7)
sections.

2.2 Spectral estimator and stimuli

2.2.1 Spectral estimator

The spectral estimator used in this study is called frequency domain
correlation coefficient (FDCC). The FDCC was proposed as an ISE es-
timator in the study of Park et al. (2013) where adaptive and stationary
masking noises were developed and applied to the speech stimuli in order
to observe the effect of masking on the ISE.

Masking of the background speech by stationary noise is known to
be effective in reducing the irrelevant-sound-related cognitive disruption
(Ellermeier and Hellbrück, 1998; Haapakangas et al., 2014). This finding
was attributed to the reduction of distinctiveness in the power spectrum
of the successive sound tokens since the amount of spectral variation,
therefore the magnitude of the changing-state, decreased with the intro-
duction of background noise (Park et al., 2013).

The FDCC attempts to follow the definition of the changing-state
hypothesis. The computation of the FDCC begins with dividing the
sound into tokens which is followed by quantifying the spectral difference
between the successive ones. The intensity envelope of the signal is
obtained by squaring and applying a second-order Butterworth low-pass
filter at 10 Hz. In order to determine the borders of the tokens, first
the median of the envelope is computed and the segments with envelope
values above the median are accepted as feasible tokens. Second, the
time intervals of the feasible tokens are computed and the median interval
duration is obtained. Tokens which are shorter than the median interval
are discarded. Each of the remaining sound tokens is filtered through 19
one-third octave band filters with center frequencies ranging from 125
Hz to 8 kHz and the power P is calculated for each band of each token.
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The FDCC for two successive tokens is defined as follows:

FDCCi =

19∑
j=1

Pi,jPi+1,j√(
19∑
j=1

P 2
i,j

)(
19∑
j=1

P 2
i+1,j

) (2.1)

where Pi,j indicates the power for the token i and the frequency band j.
Finally, the FDCC values are averaged across the number of extracted
tokens. The estimator can highlight changes in the frequency domain
where a high correlation value indicates less distinctiveness, therefore
more spectral similarity between nearby tokens.

2.2.2 Noise-vocoded speech (NVS)
As mentioned in the first section, noise-vocoded speech is a modifica-
tion of natural speech where speech is filtered into frequency bands and
the intensity variation of each frequency band is mapped to band-limited
white noise. Finally, the resulting amplitude-modulated noises of various
frequency bands are combined to generate the stimuli. For the current
study, NVS stimuli were generated by dividing the speech signal between
50 and 8000 Hz into 1, 2, 4, 6, 9, 12, 15 and 18 Hanning-shaped band-
pass filtered frequency bands by modifying the scripts used in a speech
comprehension study (Davis et al., 2005) in Praat software (Institute of
Phonetic Sciences, University of Amsterdam, Amsterdam, The Nether-
lands, software is available at www.praat.org). The band pass filters
have a roll off of 6 dB/w, where w, the width of the regions between pass
and stop bands on both sides of the frequency band, was determined by
dividing the upper cut-off frequency of each band by 10.

The cut-off frequencies were determined by an exponential function
developed by Greenwood (1961). The Greenwood function relates the
location of the inner ear hair cells with the frequencies at which they
are activated, hence, it is considered to be the mathematical basis of the
cochlear implant array placement (Greenwood, 1990).

Sentences were re-synthesized by replacing information in each fre-
quency band with amplitude-modulated bandpass noise. This proce-
dure allows to create a set of stimuli which changes from broadband
amplitude-modulated white noise to highly intelligible NVS when in-
creasing the number of frequency bands. The cut-off frequencies and the
number of frequency bands of the stimuli are presented in Table 2.1.
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Table 2.1: Noise-vocoded speech stimuli with the number of frequency bands and upper
frequency boundaries.

Nr. of bands Exp. used in Cut-off frequencies (Hz)

18 Bands (Exp. 1 and 2) 98, 157, 229, 317, 425,
558, 720, 918, 1160, 1457,

1820, 2265, 2809, 3474, 4289,
5286, 6506

15 Bands (Exp. 1) 110, 184, 280, 402, 560,
756, 1010, 1332, 1742, 2265,

2931, 3782, 4863, 6242

12 Bands (Exp. 1) 126, 229, 369, 558, 814,1160,
1630, 2265, 3125, 4289, 5865

9 Bands (Exp. 1) 157, 317, 558, 918, 1457,
2265, 3474, 5286

6 Bands (Exp. 1 and 2) 229, 558, 1160, 2265, 4289
4 Bands (Exp. 2) 370, 1160, 3125
2 Bands (Exp. 2) 1160
1 Band (Exp. 2) ...

In the study by Ellermeier et al. (2015), the experimental results
showed that when four or more bands were used in the native language
condition, the recall performance got very close to the level of original
speech. The explanation of this may be linked to the almost-speech-
like intelligibility of the NVS conditions when more than four bands are
employed (Davis et al., 2005). However, when the spectral parameter
values are examined (see Fig. 2.1), the spectral similarity continues to
decrease beyond the 4-bands condition. In fact, NVS stimuli with more
than four frequency bands cover almost half of the variation in the pa-
rameter values between broadband noise and speech. Therefore, in the
current study, we distribute the whole range of parameter values over
two experiments to investigate the impact of spectral variation for in-
telligible and unintelligible NVS conditions. The NVS conditions with 6
frequency bands and beyond are investigated in the first experiment and
the second experiment focuses on the lower number of frequency bands
where the test performance is known to change drastically between con-
ditions (Ellermeier et al., 2015). The choices of the NVS stimuli for the
two experiments are explained in detail in the Sections 2.3 and 2.4.
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Figure 2.1: Parameter values of the frequency domain correlation coefficient (FDCC) for all
acoustic conditions used in the two experiments. A value of 1 indicates no spectral difference
between successive sound tokens of the stimulus. Error bars represent the standard error of
the mean (SEM).

2.3 Experiment 1

For the first experiment, five different NVS stimuli conditions were cho-
sen in a way that the corresponding FDCC values cover the lower half
of the parameter range between 1-band and the original speech stimuli.

2.3.1 Method

Participants

Fifteen native speakers of Dutch (eight females and seven males, age
range between 18-50 years) participated in the experiment, which was
performed at the Philips Research Laboratories in Eindhoven, The Nether-
lands. Participants reported normal hearing and vision during the in-
take as part of the informed consent. All participants were volunteering
Philips employees. Safety of participants, data privacy, ethical compli-
ance and framework of the experimental design were documented, con-
trolled and approved by the Internal Committee Biomedical Experiments
(ICBE) of Philips Research.
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Stimuli

The original speech sentences were taken from a speech reception study
by Plomp and Mimpen (1979). There were 10 lists of 13 sentences in
Dutch, spoken by a female speaker. Each trial was synthesized by con-
catenating 13 sentences (6-8 s each) from the same list and forming one
42-55 s long speech sample. The resulting 10 long speech exemplars
were used in the original speech condition and were transformed into
noise-vocoded speech stimuli for every condition (for the procedure, see
Sec. 2.2.2). In addition to the silent training condition, there were seven
acoustic conditions; 6-band NVS, 9-band NVS, 12-band NVS, 15-band
NVS, 18-band NVS, silence (SLNC) and original speech (Speech).

Apparatus

The experiment was run on a Hewlett-Packard computer using MAT-
LAB (R2014b). All background sounds were generated in MATLAB at
a 44.1-kHz sampling rate, to a resolution of 16-bits and played out di-
otically using a PC soundcard (RME Hammerfall DSP Multiface). The
participants were placed in a double-walled IAC soundproof booth (In-
dustrial Acoustics Company GmbH) at Philips Research Eindhoven and
Beyer-Dynamic DT 990 headphones were used for playback. The average
sound level of the stimuli was calibrated to 60 dBLAeq1min. A computer
screen was positioned outside of the soundproof booth and was visible
through the double-glass window.

Procedure

A single trial began with three asterisks disappearing one by one indicat-
ing that the presentation stage is going to begin in three seconds. In the
presentation stage, nine digits (sampled from 1-9) were presented to the
subjects on a computer screen, flashing one by one every second. Each
number was shown for 0.7 s followed by a 0.3 s pause. The presentation
was randomized in a way that two consecutive numbers were not shown
in descending or ascending order. A 10 s retention period was inserted
before the recall stage and then participants were asked to recall the cor-
rect order of the numbers by clicking on the corresponding box from the
number pad that appeared on the screen. The layout of the number pad
was randomized in every trial so that the visual cue of the key positions
was eliminated. There was no possibility to skip a number, to correct
the previously pressed key input or to select a number key more than
once. The auditory stimuli were played back continuously throughout
the trial (e.g., during presentation of the digits, retention and recall).
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The digit-recall task consisted of eight blocks. The first block of each
session was the training block and consisted of eight trials in the silence
condition. The rest of the blocks corresponded to different acoustic con-
ditions and these were randomized in a controlled manner such that the
control condition (SLNC) always appeared after the second and before
the sixth block. Each block consisted of 10 trials and took approximately
7.5 min to complete. There were 2 min breaks after each block and one
experimental session took approx. 60 min to complete. A detailed ex-
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Figure 2.2: Mean error rate (%) as a function of the order of the presentation blocks. Dark
error bars represent the SEM and blue error bars represent the standard deviation (SD).

planation of the procedure was given to each participant both in written
form and orally before the session began. They were told that repeating
the digits out loud and/or using their fingers to remember the earlier dig-
its was not allowed, there was no time constraint to complete the recall
stage so that they could use as much time as they needed, and the whole
session was being monitored from an additional screen in duplicate mode
by the researcher.

2.3.2 Results
The recall of the correct digit in the correct order was evaluated as a
correct response, and the performance was measured as error rate (%)
out of nine digits. Before the analysis of the error rates per condition,
the data were checked for a possible learning effect.
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Figure 2.3: Recall performance of 15 participants as a function of the acoustic conditions,
represented as mean error rates (%). Grey and dark bars represent normalized and original
scores, respectively. Error bars represent the SEM.

In Fig. 2.2, the test scores are plotted based on their presentation
position, regardless of the acoustic conditions presented. The exponential
decay in the mean error rate is clearly visible which indicates that the
participants either developed a new strategy or got better in their own
by experience. The difference in mean error rate percentage between the
first (TRNG) and the last block amounted to 11.4 % and nearly half of
the mean error rate reduction was completed at the end of the second
block. The effect was confirmed to be highly significant by a repeated
measures ANOVA, F (7, 98) = 3.205; p < .005. In order to account for
this learning effect, performance scores were normalized: The mean error
rate difference between the last block and each presentation position was
calculated and the resulting value was subtracted from the original mean
error rate of the corresponding acoustic conditions.

Figure 2.3 presents the mean error rates as a function of the acous-
tic conditions calculated for both original and the normalized scores.
The difference between the mean error rates for SLNC (31.5 %) and the
speech condition (40.2 %) is slightly smaller than what is reported in
the literature (≈ 12 %) but the original mean error rate for the silent
condition is in line with the literature (Jones and Macken, 1993; Trem-
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blay and Jones, 1999; Schlittmeier et al., 2012). However, it is evident
that there is no systematic variation in the error rates as a function of
the number of frequency bands; the scores in the vocoder conditions are
spread between silence and the speech conditions. As it appears, the re-
call performances varied in a rather random manner for the various NVS
stimuli. The statistical analyses were conducted for normalized data.

The effect of sound on recall performance was confirmed by a one way
repeated measures ANOVA, F (6, 84) = 2.198, p < .05, η2 = 0.01. Tukey
HSD tests were conducted on all possible pairs of sound conditions. Only
one pair of groups was found to be significantly different (p <.05): SLNC
(M = 31.4, SD = 24.2) and Speech (M = 40.2, SD = 23.4); p = .015.

2.3.3 Discussion
The data did not show a significant increase in mean error rates with an
increase in the number of frequency bands within the NVS conditions.
In fact, there was no significant difference between conditions except for
the comparison of SLNC and speech. On the other hand, the FDCC
values for these conditions (see Sec.2.2, Fig. 2.1) showed a systematic
decrease as the number of bands increased.

These results indicate that the spectral variation in the current stim-
ulus set is not crucial for recall performance. The lack of any meaningful
trend in the experimental results may be due to the small sample size
or the choice of the number of frequency bands and will be discussed
in Section 2.5. Nevertheless, the continuous decrease of FDCC values
as a function of number of the frequency bands clearly shows that the
interpretation of the parameter needs to be adapted, in order to be a
valuable predictor of the ISE.

2.4 Experiment 2
For the second experiment, the NVS evolving from non-speech to speech-
like stimuli were chosen where both spectral variation and speech intel-
ligibility increase as a function of the number of frequency bands. In
order to allow further comparison, a couple of NVS conditions used in
the first experiment were also preserved in the experimental design.

2.4.1 Method
Participants

Twenty-five participants (15 females and 10 males, age range between
18-50 years) participated who were recruited via the JF Schouten sub-
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ject database of the Eindhoven University of Technology, Eindhoven,
The Netherlands. Twenty of twenty-five participants were university
students and all participants were native Dutch speakers. As part of
the recruitment procedure, subjects were chosen by specifying the nec-
essary criteria: healthy vision and hearing, no history of memory related
disorder and speaking Dutch as native language. They provided their
informed consent before starting the experimental session where all the
criteria were cross-checked. They were paid a small compensation fee for
their participation. The experimental procedure was approved by the In-
ternal Committee Biomedical Experiments (ICBE) of Philips Research
and by the Human Technology and Interaction department, Eindhoven
University of Technology.

Stimuli

The original speech stimuli and the noise-vocoding technique were iden-
tical with the first experiment. The only difference was the choice of the
number of frequency bands in three NVS conditions: The 9-bands, 12-
bands, 15-bands were replaced with 1-band, 2-bands and 4-bands. The
6-bands, 18-bands, Speech and SLNC conditions were preserved.

Apparatus

The experiment was run on a Hewlett-Packard computer using MATLAB
(R2014b). All acoustic conditions were generated at a sample rate of
44.1-kHz with 16-bits resolution and delivered diotically in MATLAB via
a PC soundcard (M-Audio Transit). The participants were positioned
in a double-walled IAC soundproof booth in the auditory lab of the
Human Technology Interaction department at the Eindhoven University
of Technology, and Sennheiser HD Linear 265 headphones were used
for playback. The average sound level of the stimuli was calibrated to
60 dBLAeq1min. One Philips computer screen was positioned inside the
sound booth and one outside, to enable a real-time monitoring of the
experiment for the responsible researcher.

Procedure

The experimental procedure was exactly the same as in the first experi-
ment.

2.4.2 Results

A similar learning effect, as shown in Fig. 2.2 was observed when the
error rates were computed as a function of the block order. The effect
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was highly significant and confirmed by a repeated measures ANOVA,
F (7, 168) = 11.59; p < .001. The mean error rate percentage difference
between the first (TRNG) and the last block was ≈ 20 % and half of
the mean error rate decrease was completed at the end of the second
block. The error rates were normalized as in the first experiment and the
statistical analysis reported in this section refers to the normalized test
scores. Figure 2.4 shows the error rate percentages in different acoustic
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Figure 2.4: Recall performance of 25 participants as a function of the experimental con-
ditions, presented as mean error rates (%). Grey and dark bars represent normalized and
original scores, respectively. Error bars represent the SEM.

conditions. The mean error rate in the SLNC and speech conditions were
27.5 % and 35.5 %, respectively. The lowest mean error rate was observed
in the 1-band NVS condition, 27 %, and the highest was observed in 6-
band NVS, 37.6 %. The increase in the mean error rate as a function of
the number of frequency bands follows the trend of the parameter values
(see Fig. 2.1), except for the 18-band NVS condition: The decrease in
the mean error rate in this condition is not reflected in the parameter
values.

The effect of acoustic conditions on recall performance was highly
significant and confirmed by a one way repeated measures ANOVA, F (6,
144) = 7.939, p < .001, η2 = 0.02. Post-hoc analyses were conducted
given the statistically significant ANOVA result. All possible pairs were

Page 33



2 Cognitive disruption by noise-vocoded speech stimuli: Effects of spectral variation

compared by Tukey HSD tests. Seven pairs of acoustic conditions were
found to be significantly different (p < .05). The statistical results are
summarized in Table 2.2.

2.4.3 Discussion

The normalized mean error rate for SLNC (27.5 %) and the speech con-
ditions (35.5 %) differ by 8 % which is slightly lower than what is re-
ported in the literature (≈ 12 %). Nevertheless, the error rate in the
original silent condition is as high as reported in the literature (Jones
and Macken, 1993; Tremblay and Jones, 1999; Schlittmeier et al., 2012).
The increase in the mean error rates as a function of the number of fre-
quency bands between the 1-band and 4-band conditions was similar to
the finding in the study of Ellermeier et al. (2015). However, the (non-
significant) decrease in mean error rate in the 18-band vocoder condition
was unexpected when compared to the 20-band condition in the same
study.

The results are similar to those from the first experiment in terms
of SLNC and speech conditions with an exception that the speech stim-
ulus did not lead to the highest error rate. Although the speech and
6-band conditions yielded similar scores, speech is known to be the most
distractive sound in the ISE literature. Similar results were reported in
Ellermeier et al. (2015) for native Japanese speaking subjects in the 4-
band Japanese NVS condition: The mean error rate in the 4-band NVS
condition was slightly higher than in the original speech condition but
there was no significant difference for the pair and the mean scores were
very close.

Further analyses of the data can be performed by looking closer at
the common NVS conditions, 6-bands and 18-bands. Both original and
normalized mean error-rates for the two conditions were similar in both
experiments. When the post hoc tests were applied to the original data
of the second experiment, the 6-band and 18-band pairs differed signif-
icantly (original score; p = .035, normalized; p = .314). The change
occurred against the predictions of the FDCC parameter. There were no
other differences in terms of pairwise comparison between the original
and normalized data.

While the systematic increase in the error-rates from 1 to 6 bands
supports the effect of spectral variation within the ISE, the FDCC pa-
rameter, in its current form, is not adequate to address the complexity
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Table 2.2: Pairwise comparison of test performances for all possible pairs using the Tukey
HSD test. Only the pairs with statistical significance are reported.

Statistically significant pairs Mean error rate (%) p values

SLNC - Speech 27.5 - 35.5 p < .002
SLNC - 6-Bands 27.5 - 37.6 p < .001
1-Band - 6-Bands 27 - 37.6 p < .001
1-Band - 18-Bands 27 - 33.2 p < .05
1-Band - Speech 27 - 35.5 p < .001
2-Bands - 6-Bands 29 - 37.6 p < .001
2-Bands - Speech 29 - 35.5 p < .05

of the phenomenon. In fact, the experimental results indicate that the
cognitive response towards the spectral variation is not straightforward
and a perceptual approach to the spectral features may be needed to
predict the ISE.

2.5 Prediction models from the literature

The experimental results have been further analyzed by evaluating three
objective metrics as prediction models for ISE: the fluctuation strength
(Fastl and Zwicker, 2007), the speech transmission index (Steeneken and
Houtgast, 1980) and the normalized covariance measure (Goldsworthy
and Greenberg, 2004).

The two experiments have different sample sizes and sample popula-
tion characteristics. However, in order to investigate the impact of the
full range of the number of frequency bands, and to observe the behaviour
of the aforementioned metrics in a single axis, the data obtained from the
two experiments were combined by a second normalization step. First,
normalized error rates were averaged over all trials in a sound condition
for each participant and the performance in the silence condition was
subtracted from this value. The resulting value was accepted as a rela-
tive error rate which showed the magnitude of disruption in the specific
sound condition for each participant. Second, the obtained relative error
rates were averaged for every sound condition. The relative mean error
rates for all sound conditions in the two experiments are presented in
Fig. 2.5.

The first metric, proposed in the study of Schlittmeier et al. (2012), is
derived from the hearing sensation fluctuation strength (FS) (Fastl and
Zwicker, 2007) and aims to predict the ISE resulting from both speech
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Figure 2.5: Relative mean error rate with respect to silence for the irrelevant sound condi-
tions of the two experiments. Dark gray, light gray and black bars represent the different
sample sizes of 15, 25 and 40, respectively.

and non-speech stimuli. The model focuses on the slow (<20 Hz) am-
plitude and frequency modulations of the signal and the FS reaches the
maximum around the modulation rate of 4 Hz, known to be the syl-
lable rate of speech. In the study where the metric was proposed 70
behavioural measurements, obtained for 44 sound conditions (e.g., na-
tive, foreign and babble speech, tones changing in frequency, music, office
noise, etc.), were presented. The FS values of the experimental stimuli
and the corresponding experimental results were used in an algorithm
(Schlittmeier et al., 2012, Eq. 2) which estimated the disruption ob-
served in a particular sound condition. The algorithm was successful in
predicting the performance drop for 63 out of the 70 measurements and
the FS parameter values shared 55 % of the overall variance with the
experimental results (Schlittmeier et al., 2012).

All 90 stimuli (10 long sentences x 9 acoustic conditions) used in the
present study, were analyzed with the FS model (using ArtemiS 12.01
Sound Quality software, HEAD acoustics, Herzogenrath, Germany) and
the parameter values for the irrelevant sound conditions are presented in
Fig. 2.6.

First, it can be seen that the FS model can not make accurate predic-
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Figure 2.6: Mean parameter values of the frequency domain correlation coefficient, the
fluctuation strength, the speech transmission index and the normalized covariance measure
for the noise-vocoded speech and the original speech stimuli.

tions about the test scores: The parameter values stay almost constant
for all the acoustic conditions. Second, the absolute parameter values
(FS) in the current study are quite different from those reported for the
corresponding conditions in the study of Ellermeier et al. (2015). In their
study, fluctuation strength tended to decrease (from a maximum of 0.69
to 0.49) with increasing number of vocoded channels for both German
and Japanese NVS stimuli. The issue has been discussed with the au-
thors of the study and it is thought to result from the different choice of
parameters in the software for the two studies.

The second metric analyzed for the NVS conditions is based on the
speech transmission index (STI), an estimator for speech intelligibility,
which was proposed as an ISE prediction model in the study of Hongisto
(2005). In the study, the author presented a table which summarized the
experimental results obtained from studies that investigated the impact
of speech on task performance (Hongisto, 2005, Table 2). The results
were grouped based on the types of the focal tasks employed in the
experiments and the relative mean error rates for each group were com-
puted. The obtained minimum relative mean error rate (7 %, proofread-
ing task) was used in a sigmoid function which was built using the curve
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of subjective speech intelligibility results derived from IEC 60268-16 (In-
ternational Electrotechnical Commission, 2003) with the generalization
that all task performances were disturbed at least 7 % by intelligible
speech. The model proposed that task performance starts to decrease at
an STI value of 0.2 and reaches its minimum when the parameter value
reaches 0.7. In the present study, only the STI values of acoustic condi-
tions were computed and the sigmoid function proposed in the study of
Hongisto (2005) was not used.

The computation of the STI requires a reference signal and for the
analysis of NVS stimuli, the original sentences were used as the reference
and STI values were computed for every vocoding condition (10 test sen-
tences x 8 noise vocoding conditions). The mean values of the parameter
are presented in Fig. 2.6. When the values of the STI parameter are in-
vestigated, it can be seen that the parameter value increases with the
number of the frequency bands of the NVS stimuli. However, relative
mean error rates for the NVS conditions with more than 6 frequency
bands do not follow the trend of the parameter values, while the relative
error rates for 1 to 6-band NVS shows resemblance.

The last metric, the normalized covariance measure, also requires a
reference signal to be computed and the original speech sentences were
used as the reference signals for every irrelevant sound condition. The
mean parameter values are presented in Fig. 2.6. The absolute pa-
rameter values increase from 0.32 to 0.59 almost linearly between 1 and
15-bands, and the value for the 18-bands condition reaches 0.61. The
difference between the original speech condition (NCM: 1) and 18-bands
(NCM: 0.61), 0.39, is larger than the overall range of the parameter
values for the NVS conditions.

The increase in the parameter values of the NCM, as a function of the
number of frequency bands, yields a similar trend as the STI, except the
shape of the curve and the large difference between 18-bands and original
speech. Nevertheless, the NCM, as well as the other objective metrics
observed above, is not able to predict the magnitude of the disruption,
at least for the acoustic conditions employed in the current study.

2.6 General discussion

The experiments explored serial-recall performance, a standard short-
term memory measure, using speech and systematically distorted speech-
like stimuli. The FDCC varied systematically (FDCC: 1 - 0.6) when
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the number of frequency bands increased and by the addition of speech
stimuli (FDCC: 0.48), a continuum from non-speech to speech stimuli
was obtained. Such a stimulus set allowed to examine the extent to
which the detrimental effects of speech and speech-like stimuli on recall
performance can be predicted by a spectral parameter.

The results of the experiment indicated that while the increase in
spectral variation follows the increase in the number of frequency bands,
the memory performance does not follow the trend over the full range
(see Fig. 2.5). Varying the number of frequency bands between 6 and
18 (represented by dark gray bars in Fig. 2.5) did not produce any
clear trend in recall performance, it seemed like the increase in spec-
tral variation did not have a substantial effect. However, using smaller
numbers of frequency bands (represented by light gray bars in Fig. 2.5)
demonstrated that, to a certain extent, the spectral parameter can be a
promising predictor of the recall performance.

The mean error rate increase between 1 to 6-band conditions followed
the trend of parameter values, but reached a ceiling in the 6-band NVS.
The indication of a critical value in the number of frequency bands was
not completely unexpected: In Ellermeier et al. (2015), the largest differ-
ence in error rate was observed between 1-band and 4-bands and in the
study of Dorsi (2013) the significant differences between error rates only
occurred when the number of bands increased from 3 to 9 and 12 bands,
not from 6 to 12, or from 9 to 12 bands. The non-linear relation between
the magnitude of disruption and spectral variation can be observed in
Fig. 2.5, where the relative error rate reached their maximum in the
6-band NVS condition. The nature of such a limit is hard to explain
but it was observed that this maximum appeared when the NVS became
intelligible.

Loizou et al. (1999) stated that intelligibility of noise-vocoded speech
reaches a ceiling at 9-bands, and it is possible that there are no gains in
speech perception beyond this ceiling. Davis et al. (2005) showed that
10-band NVS are readily intelligible. The intelligibility thresholds as a
function of the number of bands, were, however reported differently in the
two ISE studies. In Ellermeier et al. (2015), the 4-band NVS condition
yielded a 75-80 % syllable identification. In the study of Dorsi (2013),
although the intelligibility was proven to increase from 3 to 12-bands,
the overall rate of speech comprehension was very low, below 0.5 %, for
the 3-bands and reached 5 % for the 12-bands conditions. While these
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two studies differ in some aspects and a direct comparison would not
be possible, the extreme low intelligibility found in the study of Dorsi
(2013) is at odds with other work.

The subjective intelligibility scores reported in the literature should
only be taken as indicative values for the current study since the usage
of the same sentences for both NVS and the original speech conditions
might have created an increase of the perceived clarity of speech content
in NVS stimuli: When the original speech and/or NVS with higher num-
ber of frequency bands (e.g. 18-bands) appear early in an experimental
session, perceived intelligibility of NVS with lower number of bands (e.g.
4-bands, 2-bands) dramatically increases. Such change in perception is
referred as pop-out effect and has been demonstrated in the study of
Davis et al. (2005): Subjects who listened to the clear speech between
two identical vocoded versions reported a significantly higher percentage
of words correctly recognized than the subjects who did not hear the
clear speech. The same study also reported that hearing NVS stimuli
repetitively improved subject’s comprehension performance (15 %) even
for repetitions of the same vocoded sentences (without pop-out possibil-
ity). The authors have discussed that information presented by the clear
speech eased learning to understand vocoded sentences which indicates
an influence of top-down processing. On the other hand, the performance
increase without pop-out was attributed to the impact of repetitions of
low level acoustic features on learning to understand vocoded speech.

The aforementioned limitation, induced by the experimental design,
rules out the possibility of predicting the actual perceived intelligibility
of NVS stimuli used for the current study and therefore drawing con-
clusions based on subjective intelligibility is not possible. However, it
has been shown that intelligibility of speech should not particularly de-
termine such a threshold within a serial-recall context: Reversed speech
and foreign speech diminished the performance similar to native speech
stimuli (Jones et al., 1990). The role of intelligibility on the ISE is only
negligible if intelligibility is interpreted as the ability to understand the
semantic information delivered by speech stimuli, it may also be inter-
preted as “preserving the acoustic cues needed to be intelligible” since
the reversed and foreign speech create a similar degree of disruption on
recall as the original speech: They preserve the temporal and the spectral
features of the unaltered speech stimuli.

When data of the experiment are analyzed using this interpretation,
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a first thing to notice is that the test scores are similar for the speech
and the 6-band conditions and that the 6-band NVS stimuli are highly
intelligible. It can be argued that when the stimulus reached a certain
level of preserving the temporal and the spectral features of the original
speech, its detrimental impact reaches a maximum. One can think that
if the 6-band condition already preserves the acoustic cues needed to
create maximum disruption, NVS conditions with more than 4 bands
should be equally distractive as the speech. From this perspective, 6-
bands, 9-bands, 12-bands, 15-bands, 18-bands and speech stimuli can be
counted as one acoustic condition and the average relative error rate for
these six conditions is 5.5 % which is similar with what is observed for
the 4-band condition, 5.25 %. In such a case, the trend of the mean
error rate increase as a function of the number of frequency bands would
stabilize beyond 4-bands, but the spectral parameter, FDCC, would still
be an inadequate metric since the predicted parameter values continue
to decrease beyond 4-band NVS condition.

When analyzing the STI and the NCM values the first thing to notice
is the inconsistency between the absolute parameter values of the STI and
those reported in the literature. In the study of Ellermeier et al. (2015),
the reported STI values of 1-band, 2-band and 4-band NVS conditions
are 0.75, 0.81 and 0.89, respectively. These parameter values are elevated
by a constant amount with respect to our measurements depicted in Fig.
2.6. Note that the 1-band condition in their study already reaches a
parameter value above 0.7, which is the STI beyond which performance
is not expected to deteriorate further (Hongisto, 2005). Second, the
STI value of 0.54 attributed to 1-band NVS condition in the current
study indicates that the STI overestimates the intelligibility levels of
NVS stimuli regardless of this inconsistency.

The subjective intelligibility scores (Dorman, et al., 1997) and NCM
values have been reported in the study of Chen (2011) where 2-band,
4-band and 6-band NVS stimuli correspond to 50 %, 90 % and 100 %
of words correctly recognized with the approximate NCM values of 0.44,
0.52, and 0.55, respectively. The values presented in Fig. 2.6 are slightly
lower than what is reported in that study: 0.35, 0.42 and 0.45. The
small differences may be due to the different parameter choices made in
the generation of the vocoded sentences. Nevertheless, when compared
to the STI, the NCM parameter predicts more realistic values in terms
of intelligibility, as reported in the literature.

Page 41



2 Cognitive disruption by noise-vocoded speech stimuli: Effects of spectral variation

Regardless of the role of intelligibility on serial-recall performance and
the intelligibility predictions of these two metrics, it should be noted
that the STI and the NCM are affected by the increase in the number of
frequency bands of NVS stimuli in a systematic way, just like the FDCC.
This may be an indication that both temporal and spectral information
may be needed to successfully predict the phenomenon.

2.7 Conclusion

1. Cognitive disruption observed in the presence of systematically mod-
ified speech stimuli yielded a decrease in the serial-recall perfor-
mance. The outcome is in agreement with what is reported in the
literature: Serial-recall performance is vulnerable to noise-vocoded
speech and speech stimuli.

2. The mean error rate increase as a function of the number of fre-
quency bands is in line with literature for the second experiment:
The performance decreases up to 6-band noise-vocoded speech stim-
uli. The ceiling effect observed in the second experiment and the
data of the first experiment indicate that there may be no influence
of spectral variation beyond 6-bands on cognitive performance.

3. The irrelevant sound effect can not be predicted by the current
structure of the spectral parameter: The FDCC values indicate a
change in frequency spectrum beyond the 6-bands which does not
create an interference in seriation process. There may be some
perceptual cues that the FDCC is currently unable to recognize.
The FDCC needs to be adapted by investigating the reason behind
this mismatch.

4. The prediction models proposed within the ISE literature, speech
transmission index and fluctuation strength, also failed to make
accurate estimates for the magnitude of the disruption for noise-
vocoded speech stimuli. It appears that the complexity of the
paradigm exceeds the capabilities of a single acoustic metric, there-
fore a more sophisticated model which accounts for this complexity
should be developed.
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3 Psychoacoustic modelling of the changing-state
hypothesis in short-term memory experiments
involving serial recall

Abstract

Previous research has shown that the FDCC was able to predict the
serial-recall results to a certain extent but also demonstrated limita-
tions. The present study investigated those limitations and attempted
to improve the parameter’s prediction accuracy by integrating a peak
detection phase into the token segmentation stage of the algorithm. The
improved metric was evaluated by employing a large set of irrelevant
sound stimuli from the ISE literature and comparing the experimental
results with prediction values of the two versions of the FDCC and the
fluctuation strength parameters.
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3.1 Introduction

The irrelevant sound effect (ISE), the detrimental impact of background
sounds on short-term memory, has been extensively studied in the lit-
erature and it was shown that in order to observe the effect, certain
combinations of the focal task and the irrelevant sound stimuli should
be formed: While some focal tasks are affected by certain irrelevant
sounds, other tasks stay unaffected by the presence of the same disrup-
tive stimuli. In addition to this complexity, the magnitude of disruption
also depends on both the properties of the focal task (Hughes et al., 2007)
and the irrelevant stimuli (Jones, 1999; Jones et al., 1999). Although the
critical aspects of the ISE have been well established and a framework
has been created, predicting the magnitude of disruption was shown to
be a complicated challenge (Ellermeier et al., 2015; Liebl et al., 2016).

As demonstrated in the previous chapter, the ISE can be quantified by
behavioral experiments where participants try to perform cognitive tasks
in the presence of irrelevant background sounds. Typically, disruptive
sounds consist of a reference condition (e.g., silence or steady-state noise)
and the ISE is quantified by averaging the error rates over all trials in
each acoustic condition and subtracting the average error rate of the
reference condition from these values. The results serve as a measure of
relative error rate per participant for each sound condition. Moreover,
the individual error rates are averaged in order to obtain the normalized
error rate for each sound condition. Further on in this study, the term
normalized error rate is used to indicate the performance drop when
compared to the silence condition while the term error rate refers to the
absolute error rates.

One of the most commonly employed cognitive tasks in the ISE liter-
ature is the serial-recall task where participants try to recall the order of
to-be-remembered items (e.g., letters or digits) presented in a random-
ized order on a computer screen while being exposed to the irrelevant
acoustic stimuli. Even though the participants are instructed to ignore
the background sounds, the brain still processes the auditory input as
well as the visual, which may degrade cognitive performance.

This inevitable conflict is thought to result from the interference of
two parallel ordering processes; one for the conscious processing of the
visually presented items, and one for the involuntary processing of the
acoustic input. In order to reach a degree of interference, the acoustic
properties of the irrelevant sound should vary in time. This is explained
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by the changing state hypothesis (Jones et al., 1996): An acoustic stim-
ulus should be distinguishable into perceptually discrete segments, and
each segment of the stimulus must differ, in terms of spectral features,
from the one that precedes it.

The properties of the changing-state hypothesis have been investi-
gated by studies which revealed that while spectral variation impairs the
short-term memory performance (Jones and Macken, 1993; Jones et al.,
2000), changes in the sound pressure level between successive sound seg-
ments do not create disruption (Ellermeier and Hellbrück, 1998; Trem-
blay and Jones, 1999). In fact, the short-term memory disruption is
observed in any acoustic condition which satisfies the changing state hy-
pothesis, regardless of the information it consists of: background music
(Perham and Vizard, 2011), alternating tones (Jones and Macken, 1993;
Jones et al., 1999), alternating band-pass filtered noise bursts with dif-
ferent center frequencies (Tremblay et al., 2001) as well as native, foreign
and reversed speech (Jones et al., 1990).

The changing state hypothesis aims to explain the short-term mem-
ory disruption by providing a framework and defining the requirements in
order to observe the effect. However, the relationship between the mag-
nitude of the changing state and short-term memory disruption seems
to be a complex problem since the performance drop reaches a maxi-
mum using speech stimuli as the irrelevant sound (Tremblay et al., 2000;
Schlittmeier et al., 2012; Ellermeier and Zimmer, 2014). This finding is
in conflict with the changing-state hypothesis as it ascribes a special role
to speech stimuli and suggests that the phenomenon can be explained by
focusing on speech specific properties instead of global acoustic features.
One of the proposed ISE predictors, the speech transmission index (STI),
follows this reasoning.

The STI is a speech intelligibility metric which quantifies the tem-
poral change of the original speech after it is transmitted through a
medium (e.g., phone line, a room) (Steeneken and Houtgast, 1980): It is
defined by the amplitude modulation ratio between the modified signal
(e.g., recorded signal) and the original (e.g., source signal). The STI was
proposed as a basis for predicting the cognitive disruption induced by
background sounds, by processing the parameter values with a sigmoid
function (Hongisto, 2005). A couple of limitations were observed: The
computation of the STI requires a reference signal which may not always
be available and the model seems to be efficient for speech and masked
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speech stimuli only. It was also reported that the metric can overesti-
mate the intelligibility of 1-band noise-vocoded speech, which is actually
amplitude-modulated white noise (Ellermeier et al., 2015).

Other than the STI, two metrics have been proposed as ISE predictors
in the literature which do not ascribe any special role to the speech
stimuli: the fluctuation strength (FS) (Schlittmeier et al., 2012) and the
frequency domain correlation coefficient (FDCC) (Park et al., 2013).

The FS is based on a psychoacoustic sensation (Fastl, 1982; Fastl and
Zwicker, 2007) which is perceived when listening to slowly modulated
(< 20 Hz) sounds. The unit of FS is called vacil and it reaches a max-
imum with fluctuations of approx. 4 Hz, which is close to the average
syllable rate in continuous speech (Jones et al., 1992). The FS was first
employed as an ISE prediction metric in the study of Schlittmeier et al.
(2012). The model was evaluated with a diverse and large set of stim-
uli and 70 behavioral measurements were conducted using a serial-recall
task. The predicted error rates were within the interquartile range of the
experimental results for 63 out of 70 measurements.

Currently, the FS model is the most successful prediction model within
the context of ISE, although some limitations were reported: The lack
of ability to discriminate between amplitude and frequency modulation
is a limitation which was observed in another study where noise-vocoded
speech stimuli were used as the irrelevant sound (Ellermeier et al. 2015;
Chapter 2). The model was also shown to be inadequate in another
ISE study where various degrees of masked speech were employed as the
irrelevant sound stimuli (Liebl et al., 2016). These three studies indicate
that the FS model has shortcomings when used with degraded speech
stimuli.

The third metric proposed for predicting ISE, the FDCC, follows a
different approach than the aforementioned ones and attempts to quan-
tify the changing-state hypothesis: The metric divides the sound into
segments and computes a correlation between the power spectra of the
successive segments of the sound. The FDCC, by definition, does not
distinguish between speech and non-speech sounds and only focuses on
the change in the spectrum from one segment to another. The metric was
first proposed in the study of Park et al. (2013), where the authors sys-
tematically modified the speech stimuli by employing an adaptive mask-
ing scheme and serial-recall results were evaluated using, among others,
the FDCC metric. The results were promising, however, the experimen-
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tal results reported in Chapter 2, where noise-vocoded speech stimuli
with 1 to 18 frequency bands were used as irrelevant sounds, showed
that the metric predicted the serial-recall performance successfully to a
certain extent but demonstrated limitations (Chapter 2).

The aforementioned two prediction models, the FS and the FDCC,
are particularly important for the current study since the present study
attempts to evaluate the spectral descriptor, the FDCC, by employing
four sets of irrelevant sound stimuli from the literature for which the FS
values are also available. The relationship between the experimental data
and the parameter values of the FDCC is investigated and the results
are used to compare the prediction ability of the FDCC with that of
the FS. In addition to this, the token selection stage of the FDCC is
also modified and the parameter values of the two versions, FDCCold (as
defined in Chapter 2) and FDCCnew, are evaluated. The FDCCnew is
defined in Sec. 3.2, where a detailed explanation of the modification is
included. The experimental data, collected irrelevant sound stimuli and
the descriptions of the experimental procedures are presented in Sec. 3.3.
The results are presented in Sec. 3.4 and the study is finalized by the
conclusion section, Sec. 3.5.

3.2 FDCCnew

The FDCC is a correlation measure between successive segments of a
sound in the frequency domain. It was proposed as a spectral similarity
metric (Park et al., 2013) and attempts to explain the behavior of the ISE
by following the definition of the changing-state hypothesis. It should
be noted that the token segmentation stage of the FDCC in the present
study is different from the one reported in Chapter 2 and in the previous
studies (Park et al., 2013; Senan et al., 2015). Throughout the rest of
this thesis, the term FDCCold will be used to refer to the computation
of the FDCC using the token selection stage explained in Chapter 2 and
FDCCnew will be used to denote the recently developed version which is
explained below.

The FDCCnew mainly consists of two stages: segmentation of the
sound into tokens and computation of the correlation between the power
spectra of the extracted successive tokens. For the token segmentation,
the intensity envelope of the sound is obtained by squaring and applying
a second order Butterworth low-pass filter at 10 Hz which is followed by a
peak detection stage where the built-in MATLAB (The MathWorks Inc.,

Page 47



3 Psychoacoustic modelling of the changing-state hypothesis in short-term memory
experiments involving serial recall

Natick, MA) function, findpeaks (R2007b), is applied on the extracted
intensity envelope. The width of each peak is determined by establishing
a reference horizontal line at half of the peak amplitude and measuring
the distance between the two points where the descending signal inter-
cepts the reference horizontal line. If the two consecutive peaks are too
close to each other that the signal starts ascending before it drops down
to the half peak amplitude, the sample point where the ascending begins
is chosen as the interception point. As a result, the tokens are selected in
a way that the peak locations correspond to the mid-point of the tokens
and the durations of the tokens are determined by the width of the corre-
sponding peaks. The sound levels of the extracted tokens are computed
and the ones which are 15 dBLAeq lower than the average sound level
are discarded. The choice of 15 dB is derived from the definition of the
speech transmission index (STI, see Appendix A for details), as it is the
lower limit of the signal-to-noise ratio defined by this metric (Steeneken
and Houtgast, 1980; International Electrotechnical Commission, 2003).

The previous version, FDCCold, (see Sec. 2.2.1) differs in the stage
after extracting the intensity envelope of the signal: First the median of
the envelope was computed and the segments with envelope values above
the median were accepted as feasible tokens. Second, the durations of
the feasible tokens were computed and the median interval duration was
obtained. Tokens which were shorter than the median duration were
discarded.

The motivation behind the change was to increase the sensitivity of
the token selection procedure of the algorithm in order to capture a
more detailed image of the stimulus regarding fluctuations in the time
domain, with the expectation that a finer degree of spectral variation can
be quantified. The token selection stage of the algorithm was evaluated
manually by monitoring its ability to detect at least the syllables in
13 short speech samples (3-5 s each) in Dutch (Plomp and Mimpen,
1979, list 1) since sequences made up of one syllable words and vowels
were shown to produce an ISE (e.g., Jones et al., 1999; Schlittmeier et
al., 2012; Dorsi et al., 2018). The role of vowels and consonants in a
one-word syllable (consonant-vowel-consonant (CVC)) on the ISE has
been investigated in the literature and it was shown that changing the
vowel was most effective in terms of revoking the ISE when compared to
changing the initial and the last consonants of a CVC syllable (Hughes et
al., 2005). However, in the present study we deliberately refrained from
further fine-tuning the algorithm for detecting only the vowels because
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the metric is expected to account for both speech and non-speech sounds
and it might lead to an overfitting of the algorithm to the set of stimulus
used for evaluation. The short speech samples used for the evaluation
were the same samples that were concatenated to form one long speech
sample of 50 s, and had been used as one of the 10 irrelevant speech
stimuli in Chapter 2.
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Figure 3.1: Plots on the left side of the figure show the intensity envelopes of the same
speech sample where the red lines represent the boundaries of the tokens determined by the
token selection stages of the FDCCold (a) and the FDCCnew (c). Plots on the right side
present the tokens extracted using the FDCCold (b) and the FDCCnew (d).

Three of those short speech samples, taken from Plomp and Mimpen
(1979), are used to demonstrate the difference of the two segmentation
procedures. The first short speech sample consists of nine syllables; mor
- gen - wil - ik - maar - een - li - ter - melk. The token extraction stage
of FDCCold, used in section 2.2.1, results in two tokens, gen - wil - ik and
een - li, where several syllables are grouped into one token. When the
same speech sample is segmented into tokens by the new token selection
procedure, it can be observed that there are nine short tokens which
correspond to the position of the nine syllables. The token boundaries
and the extracted tokens using both the FDCCold and the FDCCnew are
presented in Fig. 3.1.

The second example consists of eight syllables: de - ze - kerk - moet
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Figure 3.2: The intensity envelopes of the same speech sample are presented in the plots
on the left side of the figure where the red lines represent the boundaries of the tokens
determined by the token selection stages of the FDCCold (a) and the FDCCnew (c). Plots
positioned on the right side of the figure show the tokens extracted using the FDCCold (b)
and the FDCCnew (d).

- ge - sloopt - wor - den. The FDCCold results in two tokens, ge -
sloopt and wor - den, while the FDCCnew results in eight tokens which
correspond to the positions of the syllables. The token boundaries and
the selected tokens using the two versions are presented in Fig. 3.2.

The last example demonstrates that the tokens extracted using the
FDCCnew can contain a single consonant instead of a syllable as well.
The third speech sample consists of eight syllables: de - nieu - we -
fiets - is - ge - sto - len. The token boundaries and the selected tokens
determined using FDCCold and FDCCnew are presented in Fig. 3.3. The
FDCCold results in two tokens, de - nieu - we and is - ge, while the
FDCCnew produces nine tokens: de - nieu - we - fiet - s - is - ge - sto
- len. It can be seen that the FDCCnew divides the speech sample into
nine tokens which is more than the syllables it consists of, by picking up
the consonant s. On the other hand, the FDCCold can not detect the
word fiets and produces two tokens which contain several syllables.

When the two methods are compared, it can be seen that the peak
detection stage yields a more detailed representation of the short speech
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Figure 3.3: The intensity envelopes of the same speech sample are shown in the plots
positioned on the left side of the figure where the red lines denote the boundaries of the
tokens determined by the token selection stages of the FDCCold (a) and the FDCCnew (c).
Plots on the right side of the figure present the tokens extracted using the FDCCold (b) and
the FDCCnew (d).

stimulus used in the examples above: The 13 short speech samples (50
s) used in developing the new token selection stage are analyzed and it
was found that the FDCCold results in 34 tokens (0.68 tokens / second)
while the FDCCnew results in 130 (2.6 tokens / second). The impact of
the two approaches on the predicted FDCC values will be examined in
this study.

The rest of the computation is the same for both versions: Each
extracted token is filtered through one-third octave band filters with
center frequencies between 125 Hz and 8000 Hz and the power, P, is
calculated for each band of each token. The FDCC is formulated as
follows:

FDCCi =

19∑
j=1

Pi,jPi+1,j√(
19∑
j=1

P 2
i,j

)(
19∑
j=1

P 2
i+1,j

) (3.1)

where Pi,j indicates the power in token i and frequency band j. Finally,
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the FDCC values are averaged across the extracted pairs of tokens.

The estimator can highlight changes in the frequency domain where
a high correlation value indicates more similarity and therefore higher
serial-recall performance. The FDCC is inversely related to the chang-
ing state hypothesis and therefore the parameter values are presented as
spectral distinctiveness values, 1-FDCCnew and 1-FDCCold, when indi-
cated.

3.3 Experimental data and stimuli

Four studies from the ISE literature were chosen based on four criteria:
The cognitive task used in the experiments should be a serial-recall task,
the FS values should be (made) available, the final set of stimuli collec-
tion should include a rich diversity in terms of types of sounds and the
irrelevant sound stimuli should be provided in order to compute FDCC
values.

The first set of stimuli is taken from the study of Park et al. (2013).
The study investigated the impact of masked speech sounds on serial-
recall performance where an adaptive masking scheme was proposed.
There were five sound conditions alongside silence; stationary white
noise; continuous unmasked speech; speech with a low level station-
ary noise masker; speech with a high level stationary noise masker; and
speech with an adaptive noise masker. The experiment was conducted in
two parts and there were 20 subjects in the first part of the experiment
while only 11 of them participated in the second part. The first part
of the experiment was divided into three sessions and the sessions were
completed in three consecutive days. The second part of the experiment
was conducted one month after the last day of the first part of the ex-
periment and was completed in one day. The authors of the study have
taken the time schedule of the experiment into account while computing
the normalized error rates for each sound condition: The last experimen-
tal block of each day was the silence block and the reported normalized
error rates were computed by subtracting, for each participant, the error
rate obtained in the last block of each day (silence condition) from those
in the other test conditions on the same day (for a detailed explanation
of the potential bias regarding the normalization, please see Appendix A
in Park et al. (2013)).

The background sounds were played back via headphones (diotically)
at a sound pressure level of 55-65 dB(A) and there were 20 trials for
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each sound condition. The parameter values of the STI and the FDCC
for each sound condition were reported in the discussion section of the
study.

The largest set of sounds is obtained from the study of Schlittmeier
et al. (2012). It included 44 sound conditions which consist of native,
foreign and babble speech as well as office noise, traffic noise, music, tone
sequences, and animal sounds. These sounds were used in 70 behavioral
measurements where 18 to 36 subjects had to perform digit-recall tasks
for three to seven of the different sound conditions. All background
sounds were presented via headphones (diotically) or loudspeakers at a
sound pressure level of 35-60 dB(A) and there were 15-20 trials for each
sound condition.

The experiments were conducted in different settings and some of the
auditory stimuli were used in more than one of the 70 experimental mea-
surements. For more detailed information the reader is referred to Table
1 in Schlittmeier et al. (2012). The authors stated that they computed
median error rates instead of mean error rates because of the asymmetric
distribution of the data. The study reported the predicted error rates
based on the FS values which were computed using the software PAK
(Müller-BBM VibroAkustik Systeme GmbH).

The third set of stimuli is obtained from the study of Liebl et al. (2016)
who had seven sound conditions in the serial-recall task next to the si-
lence condition: continuous speech-like noise; masked speech sounds with
different signal-to-noise ratios, 0, -3 and -6 dB; unmasked native speech;
variable speech-like noise; and pink noise. The continuous speech-like
noise had spectral characteristics similar to the spectral shape of male
speech without the temporal structure. The masked speech sounds were
generated by using the continuous speech-like noise as a masker at differ-
ent sound pressure levels. The unmasked native speech was unmodified
running speech in German and variable speech-like noise is similar to
the continuous speech-like noise as they both preserve the spectral char-
acteristics of natural speech, while the variable speech-like noise also
preserves the temporal structure. In addition to these, pink noise was
also included in the experiment as it has been commonly employed in re-
search focusing on the impact of sound conditions on performance (e.g.,
Ellermeier and Hellbrück, 1998).

There were, in total, 24 participants who participated in the digit-
recall experiment where each had to perform 12 trials in each of the eight
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sound conditions. The irrelevant sound conditions were all presented
binaurally via headphones at a sound pressure level of 55 dB(A). The
FS values were computed using the software ArtemiS (HEAD acoustics
GmbH, Herzogenrath, Germany).

The last set of stimuli analyzed in this study are the noise-vocoded
speech (NVS) stimuli employed in Chapter 2 of this thesis. NVS is a
manipulation of continuous speech where the speech stimulus is filtered
into frequency bands and the intensity envelope of each frequency band is
mapped to band-limited white noise. NVS stimuli were generated by di-
viding the speech signal between 50 and 8000 Hz into a different number
of Hanning-shaped bandpass filtered frequency bands. This technique
enabled the creation of a set of stimuli where the non-disruptive ampli-
tude modulated white noise was transformed into a disruptive intelligible
NVS stimulus by increasing the number of frequency bands. The orga-
nized modification of the spectrum allowed the authors to evaluate the
FDCC, which was the major objective of the study.

Nine sound conditions, 1-, 2-, 4-, 6-, 9-, 12-, 15-, 18-band NVS and
speech were employed in two digit-recall experiments alongside silence.
There were 15 subjects in the first experiment and 25 participants were
enrolled in the second experiment. Each sound condition was played back
10 times in one experimental session for each participant. The acoustic
conditions were presented via headphones (diotically) at a sound pres-
sure level of 60 dB(A). The ArtemiS software (HEAD acoustics GmbH,
Herzogenrath, Germany) was used to compute the FS values of the NVS
stimuli.

3.4 Results

The FDCCnew and the FDCCold are computed for every sound condi-
tion in the four sets of stimuli. The FS values are used as reported in
the three original studies and calculated using Artemis for the stimuli
obtained from the study of Park et al. (2013), since they were not re-
ported in the paper. The Pearson correlation between the normalized
error rates and values of the both versions of the spectral distinctiveness
metric, 1-FDCCnew and 1-FDCCold as well as the FS are computed. The
significance of the difference between the two correlation coefficients, for
1-FDCCnew and FS, obtained for the 91 data points is computed based
on Fisher’s r to z transformation (Fisher, 1921). The spectral distinctive
metric values presented in the figures are the 1-FDCCnew values while
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the 1-FDCCold values are only reported in the text.
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Figure 3.4: The normalized mean error rates as a function of the spectral distinctiveness
values, 1-FDCCnew, derived from the study of Park et al. (2013). Each point represents a
serial-recall measurement for a certain sound condition.

The normalized mean error rates of the five experimental measure-
ments obtained from the study of Park et al. (2013) as a function of the
spectral distinctiveness metric are presented in Fig. 3.4. A Pearson cor-
relation coefficient is computed in order to investigate the relationship
between the normalized error rates derived from the experiments and the
values of the spectral distinctiveness metric. A statistically insignificant
correlation is observed between the two variables, r = 0.80 (p > 0.05),
and for the 1-FDCCold, the Pearson’s r is 0.87 (p > 0.05). The resulting
correlation values are lower than the Pearson’s r between the normalized
error rates and the FS values for the same set of stimuli, r = 0.92 (p <
0.05).

The normalized median error rates of the 70 experimental measure-
ments obtained from the study of Schlittmeier et al. (2012) as a function
of the spectral distinctiveness metric are presented in Fig. 3.5. A Pearson
correlation coefficient is computed in order to investigate the relation-
ship between the normalized error rates derived from the experiments
and the values of the spectral distinctiveness metric. A highly signifi-
cant positive correlation is observed between the two variables, r = 0.76
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Figure 3.5: The normalized median error rates as a function of the spectral distinctive-
ness values, 1-FDCCnew, derived from the study of Schlittmeier et al. (2012). Each point
represents a serial-recall measurement for a certain sound condition.

(p < 0.01). The correlation value computed for 1-FDCCold is 0.58 (p <
0.01). The correlation value obtained from the spectral distinctiveness
metric, 1-FDCCnew, is slightly higher than the Pearson’s r computed for
the normalized error rates and the FS values reported for the same sound
conditions, r = 0.67 (p < 0.01).

The normalized mean error rates corresponding to the seven sound
conditions in the study of Liebl et al. (2016), and the spectral distinc-
tiveness values of each stimulus are presented in Fig. 3.6. The normalized
error rates and the spectral distinctiveness values are highly correlated
yielding a Pearson correlation value of r = 0.93 (p < 0.01), which is
similar to the one computed for 1-FDCCold, 0.95. The computed cor-
relation values are higher than the correlation values obtained from the
normalized error rates and the FS values, r = 0.31 (p > 0.05).

The normalized error rates corresponding to the nine sound condi-
tions obtained from Chapter 2, as a function of the spectral distinctive-
ness metric are presented in Fig. 3.7. The normalized error rates and
the spectral distinctiveness values are moderately correlated producing a
Pearson correlation coefficient of, r = 0.68 (p < 0.05). The same compu-
tation for the 1-FDCCold yields a correlation value of r = 0.70 (p < 0.05).
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Figure 3.6: The normalized mean error rates as a function of the spectral distinctiveness
values, 1-FDCCnew, derived from the study of Liebl et al. (2016). Each point represents a
serial-recall measurement for a certain sound condition.
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Figure 3.7: The normalized mean error rates as a function of the spectral distinctiveness met-
ric, 1-FDCCnew, derived from Chapter 2. Each point represents a serial-recall measurement
for a certain sound condition.

Page 57



3 Psychoacoustic modelling of the changing-state hypothesis in short-term memory
experiments involving serial recall

The normalized error rates and the FS values have a lower correlation
value, r = 0.27 (p > 0.05).
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Figure 3.8: The normalized error rates as a function of the spectral distinctiveness values,
1-FDCCnew, for 91 behavioral measurements. The four data sets are represented by four
different symbols.

The experimental results and the parameter values of the two metrics
for the aforementioned four studies are combined to form 91 data points.
The normalized error rates corresponding to the 91 sound conditions as
a function of the spectral distinctiveness metric are presented in Fig. 3.8
and as a function of the FS model in Fig. 3.9.

The normalized error rates and the spectral distinctiveness metric
values are significantly correlated yielding a Pearson correlation value of
r = 0.70 (p < 0.01). In comparison, Pearson’s r computed for 1-FDCCold

has a value of r = 0.59 (p < 0.01). The same computation using the FS
values result in a lower correlation value of r = 0.50 (p < 0.01). The
two Pearson correlation values computed for the 1-FDCCnew and FS are
significantly different (p < 0.05). On the other hand, the r value for
the 1-FDCCold is not significantly different from the correlation values
computed for the other two metrics.

An additional analysis was conducted in order to asses the influence
of the outliers within the 91 data points for the two metrics and the
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Figure 3.9: The normalized error rates as a function of the fluctuation strength metric for
the total of 91 behavioral measurements. The four data sets are represented by four different
symbols.
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Figure 3.10: The normalized error rates as a function of the spectral distinctiveness values,
1-FDCCnew, are presented for the 21 behavioral measurements obtained from the three
studies. The three data sets are represented by three different symbols.
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normalized error rates by computing the Cook’s distance. One of the
sounds, the synthesized duck’s quacking sequence, which yields the max-
imum FS value among the 91 sounds (the data point positioned close
to the lower-right corner in the Fig. 3.9, FS = 1.77), obtained from the
study of Schlittmeier et al. (2012), is detected as an influential outlier.
The original study reported that there was no significant behavioral ef-
fect observed for the sound condition (normalized median error rate =
3.89 %) and the FS value overestimated the serial-recall performance.

When the duck sound and the associated recall score are removed
from the data set, the Pearson’s r between the normalized error rates and
the FS values increased to 0.55 (p < 0.01). The two correlation values,
computed for the 1-FDCCnew and FS, are not significantly different after
the exclusion.

The final comparison for the Pearson correlation values of 1-FDCCnew

and the FS is realized by excluding the data obtained from the study of
Schlittmeier et al. (2012) from the total set of data points, in order to
observe the behavior of the two metrics for speech and modified / de-
graded speech-like sounds such as adaptive / stationary masked speech,
variable speech-like noise and NVS.
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Figure 3.11: The normalized error rates as a function of the fluctuation strength values are
displayed for the 21 behavioral measurements. Each symbol represents a different dataset.

The behavioral results and the parameter values of the two metrics
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derived from the stimuli of the three studies are combined to form 21
data points. The normalized error rates corresponding to the 21 sound
conditions as a function of the spectral distinctiveness metric are pre-
sented in Fig. 3.10 and as a function of the FS in Fig. 3.11.

The normalized error rates and the values of the spectral distinctive-
ness metric are significantly correlated producing a Pearson correlation
value of r = 0.53 (p < 0.05), while the previous version of the metric,
1-FDCCold, yields a higher value or, r = 0.72 (p < 0.01). The Pearson
correlation between the FS values and normalized error rates reveals a
very low, insignificant correlation value of r = 0.08 (p > 0.05).

3.5 Conclusion

For the current study, a large set of sounds was collected and analyzed in
order to evaluate two parameters, the FDCC and the FS. All sound stim-
uli were analyzed using the two versions of the FDCC and the FS. The
resulting values were investigated in relation to the behavioral measure-
ments. The analysis was conducted for each set of stimuli individually
and finally for all the experimental data.

A significant difference between correlation coefficients was observed
when the metric values, the FDCCnew and the FS, were compared for
the 91 data points. Here it should be noted that the correlation values of
the FDCCnew and the FS were not significantly different when the out-
lier was removed from the data set. Regarding that the FS parameter
attempts to predict the ISE for any sound condition, as a novel metric,
the outlier can only be an indication of a limitation which has to be
analyzed closely rather than removing the data point. The authors ver-
balized the limitation by stating that the FS parameter failed to predict
ISE for artificial sounds in the original study (Schlittmeier et al., 2012).

A further analysis was conducted using the degraded / masked speech
and speech-like stimuli from the three studies (Park et al. 2013; Liebl et
al. 2016; Chapter 2). It was observed that the correlations between both
versions of the FDCC and the data collected from these three studies were
higher than that for the FS. Both versions of the FDCC parameter tend
to be more efficient than the FS parameter for such a set of stimuli, which
is in line with what was reported in the associated literature (Ellermeier
et al. 2015; Liebl et al. 2016; Chapter 2). However, the change in the
token segmentation stage resulted in a decrease in the correlation value
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between the FDCC parameter and behavioural measurements collected
under degraded / masked speech stimuli.

It should be pointed out that the sound set collected from the study
of Schlittmeier et al. (2012) contains sounds which are more likely to be
heard in daily life, such as music, office and traffic noise when compared
with noise-vocoded and masked speech employed in the other three stud-
ies. Despite the overestimation of the recall performance for the duck
sound, which is unlikely to be heard in daily life in its synthesized ver-
sion, the FS parameter reached a similar level of performance as the
FDCCnew parameter for this set of stimuli.

The results reported for the total set of stimuli show that the two
investigated metrics are similar in terms of prediction accuracy with the
FDCCnew generating a slightly higher correlation value, which favors the
role of spectral variation within the context of serial-recall disruption. It
can also be observed from the results that the integration of the peak
detection stage to the spectral parameter increased the prediction ac-
curacy of the algorithm. It should be noted that there is an obvious
limitation coming from the small number of data points which does not
allow us to derive a concrete conclusion regarding the performance of the
descriptors. Nevertheless, the FDCCnew parameter, in its current shape,
performs at least equally well as an ISE predictor when compared to the
FS parameter.
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Abstract

The token selection stage of the FDCCnew introduced in Chapter 3 was
evaluated in two studies. The first study employed a set of stimuli which
was generated by segmenting the continuous versions of the stimuli into
tokens using the token selection stage of the FDCCnew and adding low-
level adaptive noise in order to prevent onset-offset artifacts. The set of
segmented irrelevant stimuli was used in a serial-recall task and the re-
sults were compared with the serial-recall results observed using the con-
tinuous versions of the same sounds. It was observed that the FDCCnew

was sensitive enough to capture disruptive properties of the irrelevant
speech, but not of 6-band noise-vocoded speech (NVS). In the second
study, a set of modified NVS stimuli from the literature was obtained,
and the FDCCnew values for the stimuli were computed. The results
showed that FDCCnew was able to predict the difference in serial-recall
results between the unmodified and modified NVS stimuli.
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4.1 Introduction

The impact of spectral variation and the use of spectral features as a
basis for an ISE prediction model were investigated in the previous two
chapters. In Chapter 2, a set of special stimuli, noise-vocoded speech
(NVS), was generated and employed in a serial-recall task. The noise-
vocoding technique allowed us to create a set of stimuli where the spectral
features of the irrelevant sounds were systematically modified by increas-
ing the number of frequency bands employed in the NVS stimuli. This
was particularly important for the experiment since the obtained spec-
tral variation was reflected in a frequency domain metric, the frequency
domain correlation coefficient (FDCCold), and the relation between the
serial-recall results and the FDCCold values was the major objective of
the study. The serial-recall performance showed almost a linear decrease
as a function of the increase in the number of frequency bands up to a
critical point, but not beyond that. The experiments demonstrated that
spectral features of the irrelevant sounds are relevant in terms of gener-
ating an ISE, however the spectral variation and the test performance
were not linearly related.

In Chapter 3, the role of spectral variation on the ISE and the perfor-
mance of the FDCCnew as a prediction model were further investigated
by employing a large set of stimuli (N = 91) from the literature and
comparing the metric values with the serial-recall results reported in the
studies. Ninety-one sounds, obtained from four different studies, were
analyzed by the FDCC algorithm, using both the initial (FDCCold) and
the improved versions (FDCCnew), and the resulting metric values were
compared with the experimental scores. It was shown that the recent
change in token selection stage increased the Pearson correlation value
between the spectral metric and the serial-recall results by 0.11, from
0.59 (FDCCold) to 0.70 (FDCCnew) for the 91 data points.

The change in the token selection stage was realized by applying a
peak detection stage and the token selection accuracy was analyzed by
manually monitoring the syllable extraction ability of the metric using 13
short Dutch speech samples (3-5 s) taken from the study of Plomp and
Mimpen (1979). The result was demonstrated in Sec. 3.2 by presenting
the selected tokens of three of the 13 short speech samples.

The present chapter further investigates the newly developed token
selection stage of the algorithm in two experiments. The first experiment
employed a serial-recall task where the irrelevant sounds were segmented
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into tokens by the token selection stage of the FDCCnew and used in the
serial-recall experiment by their segmented versions only. The expecta-
tion is that, if the token selection stage of the algorithm is efficient in
preserving the disruptive properties of the stimuli, then the serial-recall
results should be similar to those of the unsegmented, original stimuli.
The sound stimuli were chosen from sounds used in Chapter 2 and in the
ISE literature (Schlittmeier et al., 2012) and the choice was motivated
by the observed correlation between the reported recall-performance and
the computed FDCCnew values for the continuous versions.

The second experiment evaluated if the token selection stage of the
FDCCnew is accurate enough to detect the disruptive parts of the irrel-
evant stimuli by focusing on a set of specially crafted NVS stimuli from
the literature (Dorsi et al., 2018): The NVS stimuli were modified by
temporally reversing the information within two-thirds of the frequency
bands with the aim of altering speech fidelity of the NVS. The origi-
nal work had attempted to investigate the impact of speech fidelity on
the ISE by comparing the serial-recall results of the selectively reversed
NVS with the unmodified NVS. The FDCCnew values of the two sets
of NVS stimuli were computed and the results were compared with the
serial-recall results reported in the original study.

The computation of the FDCCnew in the present chapter is identical
with what is reported in Sec. 3.2. The first experiment, including the
method, the stimuli, results and the discussion, is presented in Sec. 4.2.
The second experiment is described in Sec. 4.3 and the study is finalized
by the general discussion and the conclusion, in sections 4.4 and 4.5,
respectively.

4.2 Experiment 1

In the previous chapter, the token selection stage of the spectral metric
had been modified with a focus on speech stimuli and it was observed
that the integration of the peak detection stage increased the ISE pre-
diction performance, when compared with the initial version. The token
selection stage was modified by manually monitoring its ability in terms
of extracting syllables, and the resulting FDCCnew values correlated well
with serial-recall scores obtained using speech and speech-like stimuli.

It had been demonstrated in the study by Jones et al. (1993) that seg-
mentation plays a crucial role in serial-recall disruption. Speech stimuli
were regarded as to be inevitably perceived as segmented because of its
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natural acoustic variations, while for a non-speech stimulus this was not
the case: When a pure tone slowly varying in pitch was interrupted by
short segments of silence (100 ms), a significant serial-recall disruption
was observed but the uninterrupted version of the same stimulus failed to
produce an ISE (Jones et al., 1993, Exp. 1). In the second experiment,
short segments of silence (100 ms) were used to replace the first 100 ms
of every vowel resulting in an alternating sequence of silence and vowel.
The serial-recall disruption observed for the interrupted vowels was not
significantly different from the uninterrupted vowel condition. The au-
thors stated that speech and words possess clear cues for segmentation,
while for some non-speech sounds, those cues may not be prominent and
this might give an explanation regarding the inconsistent effects observed
for different kinds of music, such as music with a slow tempo or pitch
variations (Schlittmeier et al., 2008).

In the second experiment mentioned above, the interruption of the
vowel sequence by segments of silence did not change the ISE. If the vow-
els in the sequences would be successfully detected by the token selection
stage of the FDCCnew then the FDCCnew values of the two conditions,
interrupted and uninterrupted vowel sequences, would be the same. In
the same experiment, the locations of the interruptions were periodic
(first 100 ms of each 500 ms vowel) and the vowel-to-vowel structure of
the original sequence was preserved. For the present study, we replace
the periodically positioned vowels with continuous speech and the loca-
tions of the interruptions are determined by the token selection stage of
the FDCCnew: If the token selection stage of the algorithm is capable of
preserving the disruptive parts of the temporally complex speech stimuli
then the segmented and the continuous speech should produce a similar
degree of disruption.

On the other hand, the results of the first experiment reported in the
study of Jones et al. (1993) showed that the segmented and continuous
versions of the same non-speech stimulus might result in different levels
of ISE depending on the segmentation cues it provides. Therefore the be-
haviour of the token selection stage of the algorithm for non-speech and
distorted speech stimuli is also investigated. Music with legato passages
is chosen as the irrelevant non-speech stimulus in order to observe the
influence of the token segmentation process on a sound with slow ampli-
tude and pitch variations. The degraded speech stimulus is the 6-band
NVS which was shown to be almost as intelligible as speech, (Davis et al.,
2005) and the 1-band NVS stimulus serves as steady-state speech that
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can be segmented. The last stimulus is office noise which consists of vari-
ous types of speech and non-speech sounds. Irrelevant stimuli used in the
literature were regenerated or obtained from the authors (Schlittmeier
et al. 2012; Chapter 2), and the serial-recall results of the experiment
using segmented stimuli were compared with the results reported in the
literature for the corresponding unsegmented stimuli.

The stimulus segmentation process is explained in detail in the fol-
lowing section. The acoustic conditions employed in the serial-recall task
with the FDCCnew values of the segmented and the continuous versions of
each condition, as well as the mean error rates of the continuous stimuli
reported in the literature are presented in Sec. 4.2.2.

4.2.1 Segmentation process
A segmented irrelevant stimulus was generated by dividing the continu-
ous irrelevant stimulus into tokens based on the information derived from
the FDCCnew algorithm. The individual tokens were concatenated, while
preserving their original order and position in time, in order to form a
segmented stimulus. A short speech sample and the segmented version
of the same sample are presented in Fig. 4.1a and 4.1b, respectively.
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Figure 4.1: Continuous (a) and segmented (b) versions of a short speech sample in Dutch.

A set of irrelevant continuous and segmented speech stimuli was em-
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ployed in a pilot serial-recall task and it was found that the segmented
stimuli produced significantly higher mean error rates than the continu-
ous speech. This was due to the onset-offset artifacts (e.g., clicks) intro-
duced by the segmentation process, which are not part of the continuous
speech stimuli.

In order to avoid audible artifacts, an adaptive low-level noise was
introduced. First, the long term average frequency spectrum of each
continuous sample was extracted and applied to white noise with the
same duration of the corresponding continuous stimulus. The continu-
ous stimulus was segmented into tokens based on the information derived
from the FDCCnew and the root-mean-square (RMS) of each segmented
token was computed. The level of the parts of the noise which correspond
to the positions of the segmented tokens in the continuous stimulus was
adjusted to be 15 dB lower than that of the corresponding segmented
tokens. The change in the amplitude between the adjacent noise to-
kens were shaped by linear ramps where the slope of each ramp was
determined by the time gap and the amplitude differences between the
adjacent tokens. Finally, 10 ms Hanning onset and offset ramps were
introduced to each token of the segmented stimulus and the segmented
stimulus was summed with the low-level adaptive noise. An example of
the segmented speech and the resulting noise-added segmented speech is
presented in Fig. 4.2a and 4.2b, respectively.

A similar approach had been followed in the study of Jones et al.
(1993, Exp. 3): The non-disruptive tone used in the first experiment
in the same study, a pure tone gradually changing in frequency, was
interrupted with white noise low-pass filtered at 4 kHz (spectrally sim-
ilar noise) and high-pass filtered at 4 kHz (spectrally dissimilar noise)
instead of silence. The tone interrupted with spectrally similar noise
and the continuous, uninterrupted tone condition produced a similar de-
gree of disruption, while the tone interrupted with spectrally dissimilar
noise created a significantly higher mean error rate than the other two
conditions.

The authors stated that filling the silences with the segments of white
noise which covered the frequency range of the varying pitch of the orig-
inal signal preserved the perceived continuity while the bursts of high-
pass filtered noise enhanced the segmentation process and increased the
error rate. Therefore, the aforementioned method used to prevent the
onset-offset artifacts is expected not to affect the serial-recall scores in
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Figure 4.2: The top panel (a) shows a segmented version of the short speech sample before
the low-level noise was added and the bottom panel (b) presents the same segmented short
speech sample after the addition of the low-level adaptive noise.

the present experiment.

4.2.2 Method

Participants

Twenty-three participants (10 females and 13 males, age range between
18-50 years) participated in the serial-recall task who were recruited via
the JF Schouten subject database of the Eindhoven University of Tech-
nology, Eindhoven, The Netherlands. All participants were university
students and native Dutch speaker. As part of the recruitment proce-
dure, subjects were chosen by specifying the necessary criteria of healthy
vision and hearing as well as no history of memory related disorder. The
eligibility criteria were double checked by the experimenter and par-
ticipants who satisfied the criteria signed the informed consent forms
before the experiment began. They were paid a small compensation
fee determined by the university department board. The experimental
procedure was examined and approved by the Human Technology Inter-
action department, Eindhoven University of Technology and the Internal
Committee Biomedical Experiments (ICBE) of Philips Research.
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Stimuli

The segmentation procedure described in Sec. 4.2.1 was applied to five
sets of stimuli: 1-band NVS, music, 6-band NVS, office noise and speech.
The four segmented conditions, 1-band NVS, music, 6-band NVS, office
noise, are between-subject variables and the serial-recall scores of the
segmented versions obtained in the present experiment are compared
with the continuous versions reported in the original studies.

The speech condition is a within-subject variable: Both the segmented
and the continuous speech were employed in the serial-recall task in order
to compare the normalized error rates of the two conditions directly.
Alongside the six sound conditions, a control condition (SLNC) was also
employed in the experiment and the average sound level of each stimulus
was calibrated to 65 dBLAeq1min.

NVS

The 42 to 55 second long speech samples were generated by concate-
nating short sentences in Dutch which were obtained from a speech re-
ception study (Plomp and Mimpen, 1979) and from the Dutch matrix
test (Houben et al., 2014). The two sets of NVS stimuli were generated
by bandpass filtering the speech samples into 1 (50 - 8000 Hz) and 6
bands (50 - 229 Hz, 229 - 558 Hz, 558 - 1160 Hz, 1160 - 2265 Hz, 2265 -
4290 Hz, 4290 - 8000 Hz) using sixth-order Butterworth filters. For the
6-band NVS, the cut-off frequencies were determined by an exponential
function developed by Greenwood (1961) as explained in Sec. 2.2.2. The
envelopes of each frequency band of the speech signals were extracted by
half-wave rectification and low-pass filtering (second-order Butterworth
filter) with a 50-Hz cutoff frequency. The resulting envelopes were ap-
plied to modulate band-limited white noise, which was band-pass filtered
with the same Butterworth filters and the noise-modulated envelopes of
each band were finally combined.

Ten long (42-55 s) 1-band NVS and 10 long (42-55 s) 6-band NVS
stimuli were generated using 20 different long speech samples. The 20
NVS stimuli were segmented into tokens and summed with adaptive low-
level noise as explained in the previous section. The segmented 1-band
NVS yielded an FDCCnew value of 0.99 and the FDCCnew revealed 1257
tokens for 10 1-band NVS stimuli (2.6 tokens per second). The FDCCnew

value for the segmented 6-band NVS is 0.55 and for the 6-band NVS,
there were 1827 tokens detected (3.8 tokens per second) in total.
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Music (M)

A 16 min long legato music passage, one of the irrelevant sound condi-
tions used in the study of Schlittmeier et al. (2012, stimulus Nr. 41 in
Fig. 1 in the original study), was divided into 1 min long music sam-
ples. Ten 1 min long music samples were chosen randomly out of the
16 and were segmented into tokens in order to use in the serial-recall
experiment. The segmented M yielded an FDCCnew value of 0.78 and
the total number of tokens for 10 long music samples was 1839 (3 tokens
per second).

Office noise (ON)

A 15 min long office noise sound was provided by the authors of the
same study as the music sample (Schlittmeier et al., 2012, stimulus Nr.
25 in Fig. 1 in the original study). The office noise sample contained
various types of sounds, such as phone ringing, conversations by different
speakers, classical music, as well as low-level machinery sounds, sounds of
keyboard typing and footsteps. The long office noise sample was divided
into 1 min long versions and 10 of the 1 min long office noise samples
were segmented into tokens as explained in the previous section. The
segmented ON yielded an FDCCnew value of 0.61 and the total number
of the tokens detected using the FDCCnew for 10 long ON stimuli were
999 (1.6 tokens per second).

Segmented speech (SS)

The segmented speech was generated by segmenting the 42 to 55 sec-
ond long speech samples which were generated by concatenating 2 to 4
second long, female and male spoken sentences in Dutch (Houben et al.,
2014). Ten long SS stimuli, five female and five male spoken, formed
the SS condition in the serial-recall task. The FDCCnew value of the
SS condition is 0.40 and there were in total 1840 tokens (3.8 tokens per
second) detected for 10 SS stimuli.

Continuous speech (SPCH)

Female and male spoken short sentences in Dutch (2-4 s) were concate-
nated to form ten long (42-55 s) speech samples. Ten long speech samples
yielded an FDCCnew value of 0.38 and were used in their original contin-
uous form in the serial-recall experiment. The SS and SPCH conditions
were generated by using different speech samples and the conditions are
expected to yield similar mean error rates in the serial-recall experiment.
The number of tokens detected using the FDCCnew for 10 long SPCH
stimuli were 1759 (3.5 tokens per second).
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The FDCCnew values of the experimental sound conditions

The FDCCnew values of the six sets of stimuli with their continuous and
segmented versions are presented in Fig. 4.3.
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Figure 4.3: The FDCCnew values of the continuous and segmented versions of the 1-band
noise-vocoded speech (1-band), music (M), office noise (ON) and 6-band noise-vocoded
speech (6-bands) stimuli. The parameter values of the segmented (SS) and continuous
speech (SPCH) stimuli are also presented. The error bars represent the standard error of
the mean (SEM).

It can be observed that the segmentation process did not change the
FDCCnew values of the stimuli by more than 0.05, which is the difference
observed between the continuous and segmented versions of the 6-band
NVS stimuli. In addition to this, the FDCCnew values show a systematic
change as a function of the acoustic conditions and this is expected to
be reflected in the serial-recall results.

Apparatus

The apparatus used for the current experiment was the same as that
reported in Sec. 2.4.1.

Procedure

The GUI used for the serial-recall and the experimental procedure re-
garding the visual part of the experiment was the same as reported in pre-
vious experiments. The serial-recall task design consisted of six blocks.
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The first block was the training block and consisted of 14 trials without
any irrelevant sound (silence). After the training block, the experimenter
controlled if the participant comprehended the focal task and if he/she
had any questions or problems about the test procedure or the environ-
ment. Each of the remaining five block also consisted of 14 trials, where
two trials of each condition were presented in randomized order in each
block. Six blocks were completed in approximately 65-70 min, including
2 min breaks between each block.

4.2.3 Results
The experimental results in seven acoustic conditions, represented as
error rates (%), are shown in Fig. 4.4.
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Figure 4.4: Recall performance of 23 participants are represented as mean error rates (%)
for seven acoustic conditions: silence (SLNC), 1-band noise-vocoded speech (1-band), music
(M), office noise (ON), 6-band noise-vocoded speech (6-bands), segmented (SS) and contin-
uous speech (SPCH). Error bars represent the SEM.

The mean error rate observed in the SLNC condition (29.05 %) is in
line with what is reported in the literature. The mean error rate observed
in the SPCH condition (47.75 %), resulting in a normalized error rate
of 18.5 %, is at the upper end of the range reported in the literature for
speech stimuli (8 - 20 %).

A one way repeated measures ANOVA determined that there was a
highly significant impact of background sound on serial-recall, F (6, 132)
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= 15.89, p < .001, η2 = 0.08. Post hoc analyses were conducted due to
the ANOVA result: Each sound condition was compared with the SLNC
condition using the Bonferroni correction (p = 0.008 for six pairs). The
analysis revealed that the mean error rates for SPCH (M = 47.75, SD =
26.29) and SS (M = 46.05, SD = 24.79) were significantly higher than
that of the SLNC (p < 0.001). The SS and SPCH were also compared
by a pairwise t-test and there was no significant difference observed (p
> 0.05).

The data were further investigated by comparing the results with
the literature. Before doing so, the test scores were normalized: For
each participant, the mean of the error rates was computed over all
trials in each condition. The mean SLNC condition performance of each
participant was subtracted from the mean scores of each condition: A
normalized error rate per condition for each participant was obtained.
The mean and the median of these participant-based normalized error
rates were computed. Here it should be noted that the representation
of the serial-recall results as normalized mean error rates was applied
throughout the thesis, which is also the common practice in ISE studies.
However, the continuous versions of the stimuli M and ON were obtained
from the study of Schlittmeier et al. (2012), where the test scores were
reported as the normalized median error rates instead of mean error
rates. For those two conditions, the normalized median error rates are
reported in this study.

The normalized mean / median error rates as a function of the acoustic
conditions used in the present study and those of the continuous versions
reported in the literature are presented in Fig. 4.5: The normalized mean
error rates for 1- and 6-band NVS are those reported in Sec. 2.4.2, and
the normalized median error rates are those reported for the continuous
M and ON stimuli in the study of Schlittmeier et al. (2012).

Independent t-tests revealed no significant difference between the data
for the continuous 1-band NVS condition (normalized mean error rate
= -0.4 %, N = 25) obtained from Chapter 2 and the data for the seg-
mented 1-band NVS (normalized mean error rate = -0.04 %) collected in
the present study (p > 0.05). The continuous 6-band NVS (normalized
mean error rate = 8.05 %, N = 40) in the same study yielded signif-
icantly higher normalized mean error rate than the segmented 6-band
NVS (normalized mean error rate = 1.8 %, p < 0.01).

The normalized median error rate reported for the continuous music
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Figure 4.5: Recall performance of 23 participants are represented as normalized mean and
median error rates (%) for six acoustic conditions: 1-band noise-vocoded speech (1-band),
music (M), office noise (ON), 6-band noise-vocoded speech (6-bands), segmented (SS) and
continuous speech (SPCH). Serial-recall results observed in the continuous versions of the
stimuli obtained from literature are presented in red and blue. Error bars represent the
SEM and interquartile ranges between the first (Q1) and the third (Q3) quartiles.

condition in the study of Schlittmeier et al. (2012) and the normalized
median error rate observed for the segmented M in the present study
are very similar, 3 % and 2.25 %, respectively. The continuous office
noise stimuli in the same study yielded normalized median error rate of
7 % while the normalized median error rate for segmented ON condition
in the present study is 2.2 %. Paired comparisons for these two condi-
tions were not conducted, since the data are not available to us and the
sample size is unknown. It was reported in the study of Schlittmeier et
al. (2012) that the data were not symmetrically distributed in all be-
havioral experiments, so regenerating a dataset from random numbers
which satisfies the statistics reported would not be reliable. However,
the normalized error rates reported for the two studies can be used as a
basis for comparison since the difference between the maximum and min-
imum normalized mean error rates observed in the present study (19.3 %
for SPCH – 1-band NVS) is very similar to the maximum difference be-
tween the normalized median error rates (18.67 % for speech in Japanese
– legato music) reported in the study of Schlittmeier et al. (2012). It can
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be observed that the segmented ON condition was slightly less disruptive
than the continuous office noise.

4.2.4 Discussion
It was shown that the token selection stage of the FDCCnew successfully
captured the disruptive parts of the speech stimuli: The mean error rates
observed in the SS and the SPCH conditions were very similar. This was
expected since the token selection stage of the FDCCnew algorithm was
crafted based on speech stimuli with a focus on syllables. The extracted
tokens from a speech stimulus created an almost equal degree of disrup-
tion as the continuous speech.

The general trend of the FDCCnew values for the acoustic conditions
was also reflected in the serial-recall results, except for the ON and the
6-band NVS conditions: The token selection stage of the algorithm failed
to detect the disruptive tokens of the ON and the 6-band NVS stimuli.

When the ON stimuli were analyzed, the first noticeable difference
between the ON and the rest of the acoustic conditions was the low
number of tokens extracted from the stimuli. The ON stimuli yielded
an average of 1.6 tokens per second, while the 1-band NVS stimuli were
made up of approx. 2.6 tokens per second and the other conditions
consisted of three or more tokens per second. In addition to this, the
token frequency was not normally distributed along the trials: Half of the
ON trials consisted of 40 tokens on average, which is close to 0.5 tokens
per second. This means that there were long segments of silence in
some trials, steady-state noise in this case, which might have increased
the serial-recall performance. Nevertheless, this observation reveals a
limitation in the definition of the FDCCnew: The FDCCnew does not
take into account the temporal distance between the successive tokens.
While the lack of a token distance criterion is not critical for speech
stimuli, it might lead to problems for non-speech stimuli with very low
token rates.

The more apparent discrepancy was observed in the normalized mean
error rates for continuous and segmented 6-band NVS conditions. The 6-
band noise-vocoder was shown to produce different serial-recall results in
the literature: In the study of Dorsi et al. (2018), the reported normalized
mean error rate was 3.5 %, while in Chapter 2 the 6-band NVS yielded
a normalized error rate of 8.05 %.

One of the differences between the two studies is that in Chapter 2
the same speech samples were used for generating all NVS conditions, as
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well as the continuous speech condition. This is particularly important
because NVS is known to become more intelligible if NVS with higher
number of frequency bands is heard before the NVS with lower num-
ber of frequency bands, which is known as pop-out effect (Davis et al.,
2005). The presentation order of the blocks in the same experiment was
not counter-balanced to avoid such an effect, hence the 6-band NVS con-
dition might have appeared after 9-, 12-, 18-band NVS and speech in an
experimental session. This problem in the experimental procedure was
discussed in Sec. 2.5 in detail and it was concluded that the objective
intelligibility metrics used in the same study can only be used as tem-
poral distinctiveness metrics because the actual perceived intelligibility
of the NVS stimuli may be very different. It was also stated that the
intelligibility of speech should not play a role in ISE since reversed and
foreign speech disrupted the serial-recall performance similar to native
speech stimuli (Jones et al., 1990). Furthermore, the 4-band NVS stimuli
(≈ 8.5 %) used in the study of Ellermeier et al. (2015) yielded a similar
mean error rate as the original speech condition (≈ 10.5 %) in the same
experiment, where the two conditions were generated by using different
speech samples.

When the mean error rates and the FDCCnew values of the continuous
6-band NVS and the segmented 6-band NVS are compared, it can be
clearly seen that the change in the power spectra between the sound
tokens, as quantified by the FDCCnew, can not be responsible for the
serial-recall disruption observed for continuous or segmented 6-band NVS
condition. In addition to this, an important characteristic of the 6-band
NVS was mentioned to be its high level of intelligibility in Chapter 2
and speech perception scores for 4-band NVS were the same as those of
speech in the study of Ellermeier et al. (2015), which eventually implies
a role for the intelligibility.

For the present study, these interpretations are rather speculative
since there is not enough evidence to ascribe a special role to the intel-
ligibility of speech within the context of ISE based on the scores of the
segmented 6-band NVS. There is however another study which inves-
tigated the relation between the speech-specific properties of the NVS
within the context of ISE from a slightly different perspective: In the
study of Dorsi et al. (2018), the impact of NVS on ISE, with a focus
on speech specific properties of the NVS, was investigated by manipu-
lating the speech fidelity of the NVS stimuli while preserving the overall
changing-state complexity by keeping the number of frequency bands
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constant. The stimuli were later used in a serial-recall task. The stimuli
used in the study of Dorsi et al. (2018) were provided to us by the au-
thors and we have investigated the experimental results of this study by
computing the FDCCnew values of the NVS stimuli.

4.3 Experiment 2

The second experiment focuses on a study where Dorsi et al. (2018)
have generated specific NVS stimuli and used them in a serial-recall ex-
periment. In the study of Dorsi et al. (2018), the NVS stimuli were
employed in three experiments with the aim of investigating the effect of
speech-fidelity on auditory distraction. The first two experiments were
serial-recall tasks: The first experiment (N = 81, between subjects) em-
ployed 3-, 6-, 9-, and 12-band NVS stimuli and the second experiment (N
= 77, within subjects) employed 6-, 12- and 18-band of both unmodified
and selectively reversed NVS. The first experiment was designed in order
to investigate the impact of the number of frequency bands on the ISE
and similar results were observed as those of the studies in the literature
(Ellermeier et al. 2015; Chapter 2).

The second experiment aimed at evaluating the impact of speech
fidelity on ISE with the argument that the temporally reversed NVS
stimuli, such as 6-band reversed NVS, lacked speech fidelity which the
original 6-bands provided while simultaneously preserving the changing-
state complexity. The results showed that the temporally reversed NVS
disrupted the serial-recall significantly less than the original NVS: The
authors argued that speech fidelity was an important factor in the ISE.

The third experiment was a missing item task (N = 77, within sub-
jects) which was designed to dissociate whether the effect of the speech
fidelity observed in the second experiment was due to interference-by-
process or due to attentional capture. The selectively reversed NVS stim-
uli did not alter the missing-item performance significantly and the au-
thors concluded that the effect of speech fidelity could not be attributed
to attentional capture.

For the present study, we focus on the second experiment reported
in the study of Dorsi et al. (2018): The significant difference between
the serial-recall results obtained using the selectively reversed and the
typical NVS observed in the second experiment is particularly interesting
since the frequency spectra of the two types of NVS, for instance 6-
band reversed NVS and typical NVS, are identical. The set of NVS
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Table 4.1: Noise-vocoded speech stimuli with the number of frequency bands and upper
frequency boundaries.

Nr. of bands Cut-off frequencies (Hz)

18 Bands 66, 88, 116, 154,
205, 271, 360, 477, 632,

838, 1112, 1474, 1954,
2590, 3434, 4552, 6034

12 Bands 76, 116, 178, 271, 414, 632,
965, 1474, 2249, 3434, 5241

6 Bands 229, 558, 1160, 2265, 4290

stimuli employed in the second experiment was analyzed in terms of the
FDCCnew values of these stimuli.

4.3.1 NVS
As it was explained in detail in Sec. 2.2.2 of Chapter 2, NVS is a
manipulated speech stimulus which is generated by filtering the origi-
nal speech into frequency bands and mapping the intensity envelope of
each frequency band to band-limited white noise. The resulting speech-
enveloped noise bands are summed to create a harsh, metallic distorted
speech.

The noise-vocoding technique used in the study of Dorsi et al. (2018)
is very similar to that reported in the second chapter: The NVS stimuli
were generated by dividing the speech signal between 50 and 8000 Hz
into 6, 12, and 18 Hanning-shaped bandpass filtered frequency bands by
modifying the same Praat scripts (Praat software, Institute of Phonetic
Sciences, University of Amsterdam, Amsterdam, The Netherlands) that
were used in Chapter 2, which were initially employed in a speech com-
prehension study (Davis et al., 2005). The chosen cut-off frequencies are
presented in Table 4.1.

Seven words, bowls, boy, day, dog, go, than and view, were used to
generate the NVS stimuli. The NVS conditions were created by concate-
nating the seven noise-vocoded words in a randomized order for each
NVS condition and each NVS stimulus was repeated twice during each
trial to reach the duration of the presentation stage.

4.3.2 Selectively reversed NVS
The selectively reversed NVS conditions were generated by temporally
reversing the lower two-thirds of the vocoded channels of each noise-
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vocoded word. The method applied in the study of Dorsi et al. (2018)
was similar to that of the selectively reversed sine wave-speech used in
the study of Viswanathan et al. (2014). The cross-over frequency of the
reversal corresponds to 1474 Hz in the 12- and 18-band NVS conditions
while in the 6-band NVS condition it is 2265 Hz (see Table 4.1). The
authors concluded that the reversal applied to the NVS distorted the
speech information, and was therefore used as a technique to manipulate
the speech fidelity in the experiment.

The reversal method was applied to the seven noise-vocoded words
individually and the selectively reversed noise-vocoded words were con-
catenated in randomized order to generate a selectively reversed NVS
stimulus for each condition. Each stimulus was repeated two times, un-
til the end of the presentation stage, in each trial.

4.3.3 Summary of the experimental procedure reported in
the study of Dorsi et al. (2018)

Participants

The serial-recall experiment consisted of 77 participants from the Univer-
sity of California, Riverside. All participants were reported to be native
English speakers with normal hearing and normal or corrected to normal
vision.

Stimuli

There were seven acoustic conditions presented in the experiment: Three
NVS, 6-, 12-, 18-band, three selectively reversed versions of the same
NVS conditions and the silence condition (SLNC). The playback level of
the sound conditions were reported to be 70 dB.

Apparatus and procedure

The serial-recall tasks followed the general protocol followed in ISE stud-
ies. The to-be-remembered items were seven different consonants and
were presented to the subjects via a computer screen in randomized
order. The subjects were instructed to write down the order of the pre-
sented item 1 second after the last letter was shown. The paper did not
report any information about the retention period or where the experi-
ment took place.

Each sound condition was repeated six times in one experimental ses-
sion and each trial consisted of one randomly selected irrelevant stimulus.
The irrelevant sounds were played back through headphones.
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Results

The authors first analyzed the effect of sound on serial-recall results and
it was reported that both unmodified (M = 35 %, SD = 20.15 %, p <
.01) and reversed NVS (M = 32.5 %, SD = 19.5 %, p < .01) conditions
created significantly higher serial-recall disruption than SLNC (M = 29
%). Here it should be noted that the SD values were not reported in
the original study, and they were regenerated based on the SEM values
presented in the figure showing the normalized error rates in the paper
(Dorsi et al., 2018, Fig. 2). The SLNC condition was not presented in
that figure and the mean error rates for the SLNC condition was only
shown in a table (Dorsi et al., 2018, Table 1), without reporting the SD
and SEM values.

The mean error rates reported in the study were normalized by sub-
tracting the mean error rate observed in the SLNC condition, and the
normalized mean error rates (%) as a function of the acoustic conditions
are regenerated and presented in Fig. 4.6.
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Figure 4.6: Normalized mean error rates (%) as a function of the reversed and unmodified
noise-vocoded speech conditions for 77 participants. Error bars represent the SEM.

It was reported in the study (Dorsi et al., 2018) that the unmodified
NVS conditions, regardless of the number of the frequency bands em-
ployed, produced significantly higher normalized mean error rates than
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those of the reversed NVS conditions (p < .05). There were no further
statistical analysis reported in the original study.

4.3.4 Analysis of the experimental results with respect to
the FDCCnew

The FDCCnew values for each acoustic condition were calculated from
the long NVS stimuli which were actually used in the experiment. The
parameter values, as a function of the acoustic conditions, are presented
in Fig. 4.7.
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Figure 4.7: FDCCnew values as a function of the reversed and unmodified noise-vocoded
speech conditions. Error bars represent the SEM.

For both types of the unmodified and the reversed NVS stimuli, there
is a general trend of a decrease as a function of the number of frequency
bands, but it should be noted that the FDCCnew values of unmodified
NVS with 12 (0.58) and 18 bands (0.57) are very close.

More relevant to the present study, the normalized error rates ob-
served for the pairs of the unmodified and reversed NVS stimuli, based
on the number of channels employed, were reflected in the FDCCnew val-
ues: The FDCCnew values of the unmodified NVS stimuli are lower than
those of the reversed NVS stimuli with the same number of frequency
bands.
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The reason for finding higher FDCCnew values for the selectively-
reversed NVS was investigated by choosing one of the 12-band NVS
as an exemplar to analyze, since the difference between the normalized
mean error rates of the unmodified and the reversed 12-band NVS is
the largest (difference in normalized error rate = 3.8 %) when compared
with the two other conditions.

First the cross-over frequency of the reversal was examined by plotting
the spectrogram of the first two words of the unmodified and the reversed
12-band NVS stimuli and it was observed that the cross-over frequency
is around 1474 Hz as reported in the study. The spectrograms of the first
two words of the unmodified 12-band NVS and the selectively-reversed
12-band NVS are presented in Fig. 4.8a and 4.8b, respectively.

(a)

(b)

Figure 4.8: The top panel (a) shows the spectrogram of the first two words, go - bowls, of
the unmodified 12-band noise-vocoded speech and the spectrogram of the same two words
of the selectively-reversed 12-band noise-vocoded speech are presented in the bottom panel
(b).

Second, the original and the selectively-reversed NVS stimuli were seg-
mented into tokens by the token selection stage of the FDCCnew and the
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spectrograms of the segmented tokens were examined. The two spectro-
grams are presented in Fig. 4.9a and 4.9b. It can be clearly observed that

(a)

(b)

Figure 4.9: The spectrogram of the selected tokens of the original 12-band noise-vocoded
speech are presented in the top panel (a) and the bottom panel (b) shows the spectrogram
of the selected tokens of the selectively-reversed 12-band noise-vocoded speech.

the spectra of the majority of the tokens, selected using the FDCCnew,
are rich in energy between 50 to 1000 Hz in the two spectrograms. The
exception is the third token of the unmodified 12-band NVS (Fig. 4.9a):
The third token, which represents the end of the letter, s, at the end
of the second token, bowls, only comprises energy above the cross-over
frequency.

When the spectrogram of the selectively-reversed 12-band NVS (Fig.
4.9b) is examined, it can be observed there is no such token like the third
one of the original 12-band NVS: When the lower two-thirds of the bands
were reversed, the process created an overlap between the regions below
and above the cross-over frequency, and the singular high-frequency rich
token, s, became part of a token with broader frequency spectrum.

The closer look at the correlation values between the adjacent tokens
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revealed that the FDCCnew value obtained between the second and the
third tokens (0.0010) and the third to fourth tokens (0.0018) of the orig-
inal 12-band NVS stimuli were the lowest correlation values obtained
from the two stimuli. All unmodified and reversed NVS conditions were
analyzed, and the same outcome was observed for all sounds: After se-
lectively reversing the NVS stimuli in the time domain, the resulting
overlap increased the similarity between the adjacent tokens, hence the
low FDCCnew values associated with the letter s were not present any-
more.

The unmodified and the selectively-reversed 12-band NVS stimuli
yielded different serial-recall results as well as different FDCCnew val-
ues and the trend of the FDCCnew values was reflected in the normalized
mean error rates. The authors have stated that this is a strong indica-
tion that speech may have a special role, however, the reduction in the
speech fidelity was achieved by altering the magnitude of the spectral
variation in the NVS stimuli using the method of selectively-reversing
the lower two-thirds of the frequency bands: The frequency spectra of
the long unmodified and the reversed NVS stimuli are identical, but the
changing-state complexity they comprise is different since the definition
of the changing-state hypothesis takes the time-domain information into
account. The variation in the power spectra, from one token to an-
other, has changed when the information within the lower two-thirds of
the frequency region was temporally reversed. The reversal technique
applied here simply aligned the “outlying” high-frequency energy with
low-frequency energy, and therefore the spectral variation between the
tokens was reduced. The FDCCnew was sensitive enough to detect the
reduction in the magnitude of change produced by the reversal tech-
nique for this particular set of stimuli, which was also reflected in the
serial-recall results.

4.4 General discussion

Two experiments were conducted in order to asses the accuracy of the
token selection stage of the FDCCnew algorithm, with respect to its abil-
ity to detect the parts of the sound which comprise the states where
between-changes would be disruptive in serial-recall.

The first experiment showed that the token selection stage was accu-
rate enough to detect the disruptive properties of the speech stimuli, but
it also revealed that the lack of a token distance criterion in the FDCCnew
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is a limitation, since it does not take into account the duration between
two adjacent tokens in a sound. The second limitation was observed
in the segmented 6-band NVS condition: The mean error rate observed
in the first experiment for the 6-band NVS condition was significantly
lower than what is reported in Chapter 2. Both conditions yielded sim-
ilar FDCCnew values, 0.50 for the continuous 6-band NVS and 0.55 for
the segmented 6-band NVS, which showed that the FDCCnew was not
able to predict the differences in disruptive performance for the two con-
ditions and the token selection stage of the FDCCnew was not accurate
enough to detect the disruptive properties of the continuous 6-band NVS
stimuli. The change in the power spectra of the two adjacent tokens in
the 6-band NVS was preserved for both the segmented and continuous
versions, but the magnitude of the disruption observed for two conditions
was significantly different.

This is particularly interesting since the segmented speech did not
create a significantly different disruption when compared to continuous
speech, but for the distorted speech condition, a significant difference
was observed: When the speech-specific acoustic properties were reduced
compared to the original speech, such as in 6-band NVS, the segmenta-
tion process further reduced its disruptive capabilities. The segmentation
process discarded the non-token parts, but did not change the frequency
domain changes which were thought to be ISE relevant. Clearly, there is
more than spectral features that play a role in serial-recall performance
for the 6-band NVS condition in the present study.

The aforementioned observation can be rephrased: When a degraded
speech stimulus, 6-band NVS, was segmented, the speech-specific proper-
ties (natural acoustic variations) were reduced further to a level which is
below the ISE threshold. On the other hand, when the continuous speech
were segmented with the same technique, the speech specific properties
were preserved to a certain degree, which was enough to produce an ISE.
This interpretation ascribes a special role to speech stimuli, which vio-
lates the changing-state hypothesis and subsequently the FDCCnew. Nev-
ertheless, increasing the number of frequency bands in NVS increases the
speech intelligibility (Davis et al., 2005; Ellermeier et al., 2015) while in-
creasing the magnitude of spectral variation as reflected in the FDCCnew

values in Chapter 2. This was supported by the systematic increase in
the values of the speech transmission index and the normalized covari-
ance measure reported in the same study. As a result, the reason behind
the serial-recall disruption observed for NVS stimuli in Chapter 2 is not
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known for certain. In order to clarify this, the spectral features of the
irrelevant sound stimuli should be modified in a way that the temporal
features of the same stimuli should not be affected.

The second experiment investigated a set of stimuli, which was used to
evaluate the impact of speech fidelity on ISE from a different perspective:
Distorting the information in speech was accomplished by temporally re-
versing the information in the lower two-thirds of the frequency bands in
the NVS stimuli. The reversal was successfully detected by the FDCCnew

since it changed how the frequency spectrum varied in time. There was
no subjective intelligibility test conducted in the study of Dorsi et al.
(2018), so the argument regarding the reduction in the speech fidelity
based on the process of selective reversal is simply the author’s interpre-
tation. The interpretation sounds likely, however, this was achieved by
modifying the spectral features of the stimuli so the observed increase
in the serial-recall performance after the reversal supports the changing-
state hypothesis and does not ascribe any speech specific property to the
ISE in that experiment.

4.5 Conclusion

1. The token selection stage of the FDCCnew successfully detected the
disruptive tokens in continuous speech stimuli, but failed to extract
the disruptive tokens in 6-band noise-vocoded speech.

2. The FDCCnew values for the segmented stimuli followed the trend
of the serial-recall results, except for the office noise and 6-band
noise-vocoded speech conditions: Even though the continuous 6-
band noise-vocoded speech and the segmented 6-band noise-vocoded
speech yielded similar FDCCnew values, the between-subject analy-
sis showed that the serial-recall results of the two conditions were
significantly different.

3. The FDCCnew was sensitive enough to capture frequency domain
changes introduced by the selective reversal technique applied to
the noise-vocoded speech stimuli. The serial-recall results observed
for the unmodified and the revered noise-vocoded speech conditions
were reflected in the FDCCnew values.
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5 Spectral and temporal features as the estimators
of the irrelevant sound effect1

Abstract

The present work attempts to investigate the relation between the fea-
tures from both the temporal and spectral domain, and the ISE, by
predicting its behaviour separately with two estimators: The average
modulation transfer function (AMTF) and the FDCCnew. The first pa-
rameter is a measure for temporal variations in a sound, the latter one
measures the spectral variability within a sound stream. For the first ex-
periment, background stimuli were synthesized from a noise-pulse train
in which modified and unmodified pulses alternate. In order to modify
the temporal and spectral features in the stimuli, a numerical optimiza-
tion method was used to generate two sets of background stimuli where
one of the two descriptors was kept constant and the other was varied
in a systematic way. In the second experiment, alternating noise-pulses
were generated by a similar approach but with a difference: The infor-
mation regarding duration, amplitude and the positions of the pulses
was derived from speech samples, hence resulting in an irregular inter
noise-pulse interval. Both sets of stimuli were used as irrelevant sounds
in a serial-recall experiment and the impact of temporal and spectral
features was investigated.

1Part of this work was published in:
Senan, T. U., Park, M., Kohlrausch, A., Jelfs, S., and Navarro, R. F. (2015). “Spectral and temporal
features as the estimators of the irrelevant speech effect,” in Proceedings of Euronoise 2015, edited
by C. Glorieux (Maastricht, The Netherlands), pp. 1925–1930
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5.1 Introduction

The short-term memory performance decrease induced by background
task-irrelevant sounds has been investigated thoroughly in the literature
(for a review, see Banburry et al., 2001). Researchers have looked into
the interaction between the background sounds and the magnitude of
the disruption through digit or letter recall tasks. The phenomenon was
first observed in close relation with background speech (Colle and Welsh,
1976) and there were debates about speech stimuli having a special role
(see, e.g., Baddeley, 1997). Soon, it was shown that both foreign and
reversed speech (Jones et al., 1990) disrupted serial-recall to a similar
degree as native, intelligible speech.

The claim that speech has a special role in the ISE was also disputed
by studies showing that a repeated speech token is not more disruptive
than silence (Jones et al., 1992), and also by experiments where the
acoustic features of the speech or non-speech background sounds were
manipulated in a systematic manner and the degree of manipulations was
reflected in the serial-recall scores (Jones and Macken, 1993). Speech
tokens in alternating order, such as C-H-U-J, produced a significantly
larger magnitude of disruption when compared to a repeated set of tokens
(e.g., J, J, J, J) (Jones et al., 1992). Similar results were found when the
same principle of within sequence variation was applied to non-speech
sounds, such as pure tones changing in frequency (Jones and Macken,
1993).

In several studies, the magnitude of acoustic variation, whether the
change is between one discrete token to another or within a continuous
sound, was shown to be directly related to the serial-recall performance
(Jones and Macken, 1993; Jones et al., 1993). An acoustic variation can
be understood as the magnitude of acoustic change from one sound seg-
ment to another, hence was defined as the changing-state hypothesis:
The irrelevant sound must be segmentable into perceptually discrete to-
kens and each token should be acoustically different from the one that
preceded it (Jones et al., 1993; Hughes et al., 2007). The acoustic de-
terminant of the changing-state was investigated in literature by taking
a closer look into the temporal and spectral features of the irrelevant
sounds.

For instance, it was shown that modifying the intensity of the to-
kens of the sounds within an irrelevant sound stream did not create an
ISE (Tremblay and Jones, 1999). The serial-recall performance was also
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shown to not be affected by changing the time gap between successive
segments of the background sounds (Tremblay and Jones, 1999) or mod-
ulating a sound source with random and fixed envelope (Jones et al.,
1992), hence undermining the role of temporal features on the ISE.

The impact of spectral variation on the ISE, which is the major source
of interest in this thesis, has also been investigated thoroughly in the lit-
erature (e.g., Jones et al., 1999, 2000; Ellermeier and Zimmer, 2014). The
relation between the change in frequency and the ISE was examined by
means of various types of auditory stimuli, such as pitch shifted vowels
(Jones et al., 1999); sequencing tones with repeated and changing fre-
quencies (Jones and Macken, 1993); alternating band-pass filtered noise
bursts with different center frequencies (Tremblay et al., 2001); low-pass
filtered stimuli with different roll-off values (Jones et al., 2000); as well
as noise-vocoded speech (NVS) stimuli (Ellermeier et al. 2015; Chapter
2). All these studies support the notion that the spectral variation in a
background sound disrupts serial-recall performance remarkably.

The attributed high prominence of frequency change within the con-
text of the ISE, however, did not evolve into a successful prediction
model, due to the complex nature of the problem. In fact, throughout
this thesis we have studied the only descriptor which attempts to predict
the ISE based on the magnitude of the changing-state in the frequency
domain. The results, so far, supported the findings in literature: The
changes in the frequency domain are relevant, if not necessary, for cre-
ating an ISE. However, limitations were also revealed, which indicated
that the magnitude of the spectral variation within the irrelevant sounds
may not be enough by itself to predict the size of the ISE.

For instance, the results of the experiments in Chapter 2 showed that
the STI and the NCM resembled the trend of serial-recall scores using
NVS stimuli to a similar extent as the FDCCnew did: The parameter
values followed the performance scores up to 6-band NVS successfully,
and failed beyond that. The increase in the number of frequency bands
employed in NVS not only increased the spectral variation but also mod-
ified the temporal features of the stimuli in a systematic way and this
systematic change in temporal features of the NVS was quantified by the
STI and the NCM (for the definitions of the two metrics, see Appendix
A). The relation between the trend of the two parameter values, actual
test results, and the impact of speech intelligibility on the ISE were dis-
cussed in detail in Sec. 2.6. Nevertheless, the fact that the performance
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of the spectral descriptor was similar to those of the two temporal de-
scriptors suggested that both the spectral and the temporal features of
irrelevant sounds must be examined, independently from each other, in
order to comprehend the sole impact of spectral features of background
sounds on the ISE.

The role of spectral variations on the ISE was investigated by calculat-
ing the FDCCnew for a large set of stimuli from the literature in Chapter
3. The FDCCnew values correlated well with the serial-recall results ob-
tained for 91 data points (Pearson’s r = 0.70, p < 0.01). Although the
value strongly links the change in frequency with the ISE, it also sup-
ports that the magnitude of spectral variation within an irrelevant sound
stream may not be the only reason behind the ISE.

The present work attempts to build a relation between the features
from both the temporal and spectral domain and the ISE, by predict-
ing its behavior with two estimators: The Average Modulation Transfer
Function (AMTF) and the FDCCnew. A set of white noise-pulse train
stimuli was created for which the values of the two metrics can be mod-
ified independently. For the first experiment, the noise stimuli were
organized in a way that there were 10 noise-pulse train conditions where
only the AMTF was modified, and 10 noise-pulse train conditions where
the FDCCnew values were varied while the AMTF was kept constant.
The results of the first experiment revealed some limitations regarding
the experimental design and the FDCCnew. The reasons behind the lim-
itations were further investigated by designing another set of noise-pulse
train stimuli, where the rhythmic structure of the stimuli was inspired
by continuous speech. The speech-positioned noise-pulse train stimuli
were employed in a second serial-recall experiment.

The details of the two metrics are described in section 5.2. Tempo-
ral and spectral modifications applied to the stimuli used in the first
experiment are explained in sections 5.3.1 and 5.3.2, the experimental
procedure for the first experiment is presented in sections 5.4. The sec-
ond experiment, including the motivation, procedure, stimuli, results and
discussion is described in section 5.5 through section 5.5.4. The study is
finalized by the general discussion and the conclusion sections, 5.6 and
5.7, respectively.
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5.2 Estimators of the ISE and stimuli

In the following sections the AMTF and the FDCCnew are used to quan-
tify the spectral and temporal properties of the irrelevant sound stimuli
in order to observe the influence of the acoustic properties of background
sounds on the ISE. The AMTF is explained in the following section and
the computation of the FDCCnew is identical with what is reported in
section 3.2.

5.2.1 Average Modulation Transfer Function

The concept of the Modulation Transfer Function (MTF) has been ap-
plied to predict the intelligibility of speech in a variety of room condi-
tions and used to evaluate the temporal distinctiveness (Houtgast and
Steeneken, 1985). The MTF describes the reduction of the modulation
index of the intensity envelope as a function of modulation frequency. If
a signal is modified in the temporal domain and then compared to the
reference, the changes in the modulation index can be quantified using
the MTF.

To obtain the MTF, an octave-band analysis is carried out in order
to cover the range of frequencies between 125 Hz and 8 kHz. For speech
intelligibility investigations, a range of modulation frequencies between
0.5 Hz and 16 Hz is chosen. The intensity envelope of the input signal,
x, is obtained for each octave band by filtering the input signal with a
second-order Butterworth band-pass filters (BPF), squaring the output,
and then applying a second-order Butterworth low-pass filter (LPF) to
the signal with a cutoff frequency of 30 Hz. The resulting intensity enve-
lope is analyzed for each modulation frequency with an octave-band filter
with center frequencies ranging from 0.5 Hz to 16 Hz. The root-mean-
square (RMS) of the filtered intensity envelope, yij (where i indicates
the i -th octave band, and j the j -th modulation frequency) is computed
and normalized by the mean of the envelope, yij. For the elements of
the resulting K-by-N matrix, mij, K is the number of octave bands and
N is the number of modulation frequencies. The modulation index for
each octave band, and for each modulation frequency, mij, is compared
with the corresponding values for the reference signal, obtaining a new
K x N matrix describing the changes between the modified signal and
the reference:

Mij =
mij, x

mij ref
(5.1)
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The estimator used in this study to describe the performance of each
stimulus is obtained by averaging the MTF matrix in both dimensions
(i, j) resulting in a single value, AMTF (M).

5.3 Noise-pulse train (NT)

A white noise pulse (P1) was generated as the basis of the reference
signal, for which the FDCCnew and the AMTF can be manipulated in-
dependently. White noise, G(t), and a Hanning window W(t), of size w,
were used to define the pulse shape. A one-third octave-band filter with
center frequencies ranging from 125 Hz to 8 kHz was used to perform
the decomposition of WG(t) into 21 bands. Seven out of the 21 bands,
whose center frequencies are 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz,
4000 Hz and 8000 Hz, were selected and the P1 of size w was generated
by summing the selected seven bands:

P1 =
K=7∑
i=1

xi(t) (5.2)

where i indicates the i-th octave band.

A half-second sample was generated where two pulses, P1 and P2, of
50 ms separated by 250 ms alternate. The amplitude of P2 was lowered
to be one-third of P1. A 1 min basic signal was formed by concatenating
a sequence of half-second samples containing P1 and P2, and was defined
as the reference signal. An illustration of the reference signal is presented
in Fig. 5.1.
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Figure 5.1: A two second segment of the reference noise-pulse train (NT) stimulus is pre-
sented above, where the two pulses, P1 and P2, alternate within every half second segment.

Page 94



5 Spectral and temporal features as the predictors of the irrelevant sound effect

C
h
a
p
te
r
5

The reference signal served as a basis, from which the independent
temporal and spectral modifications were achieved by processing P2 only,
by the methods described below.

5.3.1 Modifying the temporal features
In order to modify the AMTF without changing the FDCCnew values,
the pulse width of P2 was modified from 50 ms to 450 ms in steps of
25 ms. It was observed that, as the width of P2 increased, the AMTF
decreased, while the FDCCnew remained constant. This technique was
used to create a set of periodic 1 min long noise-sequences with AMTF
values ranging from 0.58 - 1 (see Fig. 5.2), which was later employed in
the experiments.

5.3.2 Modifying the spectral features
The spectral features of the reference noise-pulse train stimulus were
modified by applying gains between 0 and 1 to seven octave bands (125
Hz - 8 kHz) of P2. The applicable gains were selected using a gain opti-
mization procedure because applying gains to octave bands does change
the AMTF value as well. The gain optimization procedure was designed
to find the optimal gain values which would keep the AMTF value of
the spectrally modified noise-pulse train constant. The procedure was
used to generate a set of periodic 1 min long spectrally modified noise-
pulse train stimuli and the parameter values of the chosen stimuli are
presented in Fig. 5.2. The gain optimization procedure is explained in
Appendix B.

5.4 Experiment 1

The present experiment employed 20 noise-pulse train (NT) stimuli with
varying AMTF and FDCCnew values in a serial-recall experiment, in or-
der to observe the independent impact of the temporal and spectral fea-
tures of irrelevant sounds on the ISE. The experiment was designed with
the expectation that the spectrally modified noise-pulse trains would
produce an ISE and the magnitude of serial-recall disruption would be
reflected in the FDCCnew values, while the temporally modified stimuli
should not disrupt serial-recall performance.

5.4.1 Method
Participants

A total number of 10 participants (four females and six males, age range
between 18-50 years) from the Philips Research Laboratories in Eind-

Page 95



5 Spectral and temporal features as the predictors of the irrelevant sound effect

hoven participated voluntarily. All participants were employees of Philips
Research and stated that they had healthy vision and hearing and no
history of memory related disorder. The eligibility criteria were cross
checked prior to the experiment, before they signed the informed con-
sent forms. The experimental procedure was evaluated and approved
by the Internal Committee Biomedical Experiments (ICBE) of Philips
Research.

Stimuli

There were 20 NT stimuli selected for the experiment: 10 NT stimuli
with AMTF values of 0.58, 0.61, 0.66, 0.70, 0.74, 0.77, 0.81, 0.91, 0.96,
1, and FDCCnew values of 1; 10 NT stimuli with FDCCnew values of
0.06, 0.08, 0.19, 0.37, 0.52, 0.58, 0.60, 0.74, 0.95, 1 and AMTF values
of 1. The parameter values of the selected 20 stimuli are presented in
Fig. 5.2. Alongside the noise conditions, there was a silence condition
(SLNC) which served as a control condition for the experiment. The
average sound level of the stimuli in the experiment was calibrated to 60
dBLAeq1min.
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Figure 5.2: The FDCCnew and the AMTF values of the 20 audio stimuli. The x-axis
shows the AMTF values and the y-axis shows the FDCCnew values. Each point represents
a noise-pulse train (NT) stimulus.

Apparatus

The apparatus was same as the one reported in Sec. 2.3.1.
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Procedure

The serial-recall is the focal task in this experiment and the MATLAB
script used in Sec. 2.3 was used to conduct the experiment.

The serial-recall task design consisted of five blocks. The first block
was the training block, enabling the participant to learn the test pro-
cedure by running four trials without any background sounds (silence).
The instructor then checked if the participant had any questions or prob-
lems about the test procedure or the environment before continuing the
experiment. The remaining four blocks consisted of 22 trials each: one
dummy trial (NT stimulus, AMTF = 1, FDCCnew = 1), one SLNC and
20 NT stimuli. In each trial, a different background stimulus was pre-
sented 3 seconds before the first digit’s appearance until the participant
pressed the last button at the end of the recall section. The order of the
trials was randomized for every block except the dummy trial being the
first one of each block. Four blocks were presented with 5 min breaks
between the blocks. During the pilot test, it was found that five test
blocks can be completed in about 60-65 minutes, including the breaks.

5.4.2 Results

Each digit not recalled in its previously presented serial position was
scored as an error, and the score of the very first trial of each block was
discarded, resulting in a total of 21 scores available for the data analysis
in each test block. The performance was measured as error rate (%) out
of nine digits.

The mean error rates as a function of the AMTF values of the NT
stimuli and SLNC are presented in Fig. 5.3 and the test scores as a
function of the FDCCnew values of the NT stimuli are presented as mean
error rates, alongside SLNC in Fig. 5.4. The mean error rate for SLNC
(28 %) is in line with what has been reported in the literature (e.g.,
Schlittmeier et al., 2012; Park et al., 2013; Liebl et al., 2016) and in
Chapters 2 and 4. However, it can be clearly seen from the two figures
that there is no impact of NT stimuli on recall performance regardless of
the type of modification applied. This observation was confirmed by a
one way repeated measures ANOVA, F (20, 180) < 1. Due to the lack of
any significant effect of sound on recall performance, no further analyses
were conducted.
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Figure 5.3: Mean error rates (%) as a function of the AMTF values of noise-pulse train
(NT) stimuli and silence (SLNC). The error bars represent the standard error of the mean
(SEM).
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Figure 5.4: Mean error rates (%) as a function of the FDCCnew values of noise-pulse train
(NT) stimuli and silence (SLNC). The error bars represent the SEM.
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5.4.3 Discussion

Results show that the NT stimuli did not create an ISE. The lowest error
rate (highest score) was expected to be achieved in the SLNC condition
(28 %), which, in fact, was not the result: All modifications, on average,
had similar scores as the SLNC and the lowest mean error rate was
obtained using the NT stimulus with an FDCCnew value of 0.60 (23 %).
Nevertheless, the data did not show any systematic change in the error
rate as a function of the two parameters.

The temporal variation was not expected to create an ISE: The tem-
poral modifications which would create a change in AMTF, such as,
changing the intensity of the tokens within the sound sequences (Trem-
blay and Jones, 1999), altering the time gap between tokens in a sequence
(Tremblay and Jones, 1999) or modulating a speech source with random
and fixed envelope (Jones et al., 1992), were shown to be ineffective in
terms of creating a serial-recall disruption. The results in this experi-
ment are in line with what is reported in the aforementioned studies:
There was no impact of temporally modified NT stimuli on serial-recall
performance.

On the other hand, the experiment was designed with the hypoth-
esis that the spectrally modified noise-pulse sequences would lead to
a decrease in serial-recall performance. The expectation was derived
from literature, where the studies showed that band-pass filtered noise
bursts changing in center frequency (Tremblay et al., 2001) and sine tones
changing in frequency (Jones and Macken, 1993) disrupted serial-recall
significantly, while repeated noise-bursts and sine tones did not. Further-
more, the magnitude of the disruption was expected to change in relation
to the magnitude of the spectral variation, as evidenced in literature by
employing sine tone sequences and pitch shifted vowels (Jones et al.,
1999), masked speech (e.g., Park et al., 2013; Liebl et al., 2016), noise-
vocoded speech (Ellermeier et al. 2015; Chapter 2), sine-wave speech
(Tremblay et al., 2000; Viswanathan et al., 2014), and low-pass filtered
speech (Jones et al., 2000). Clearly, the expectation of observing a larger
performance decrease for spectrally modified stimuli, when compared
with temporally modified noise-pulse train stimuli, was not realized in
this experiment.

The results of the experiment showed that there was no impact of
NT stimuli on serial-recall performance, regardless of the modification
applied. Such an outcome prevents us from reaching solid conclusions
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about the impact of the temporal and spectral features of the irrelevant
sound on serial-recall. There are four possible explanations about the
lack of an ISE observed in the experiment.

First, the limited statistical power caused by the modest sample size
in the present study (N = 10) may be the main reason behind the lack
of an ISE observed. Due to the high number of acoustic conditions, each
condition was only presented four times to each subject. Therefore, each
sound condition was presented 40 times in total throughout the experi-
ment (four repetitions of each sound condition per participant), and this
number is very low when compared to that of the typical ISE studies.
Despite this low power in our experiment, we investigate and discuss po-
tential causes for the lack of an ISE in the next paragraphs in order to
eliminate those while designing the second experiment.

Second, the irrelevant sound set did not consist of a type of stimulus
which is known to produce an ISE. Therefore, it is not possible to judge
the validity of the experimental procedure.

The third possible explanation comes from the regularity of the NT
stimuli: The continuous alternation of the two pulses, ...P1-P2-P1-P2...,
might be perceived as two independent sound sources of repeated tokens,
instead of a stream of sound tokens changing in acoustic properties. A
stream can be defined as the percept of organizing simultaneous or suc-
cessive sound elements into one coherent sequence, as they all originate
from the same sound source (van Noorden, 1975; Bregman, 1990). De-
pending on the acoustic similarities / differences of the sound elements,
a rapid sequence of sounds can be perceived as one (fusion) or more than
one stream (fission or stream segregation).

It has been shown that stream segregation can occur without need-
ing the full attention of the listener. This was demonstrated in two ISE
studies: Jones et al. (1999) employed four sine tone sequences where the
alternating tones were zero, two, five or 10 semitones apart. The serial-
recall performance was degraded as a function of the tone distance, and
reached its minimum when the two tones were five semitones apart. The
serial-recall performance increased remarkably in the 10 semitones differ-
ence condition, indicating that the participants perceived two repetitive
streams instead of one changing in frequency. In the study of Macken et
al. (2003), the presentation rate of the sequences was varied and it was
observed that the serial-recall performance decreased up to the medium
rate condition (100 ms separation), and the performance improved when
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the rate of presentation was increased from medium to high (10 ms sep-
aration).

In many studies streaming was induced by differences in the frequency
of the sine tones (van Noorden, 1975; Bregman, 1990); differences in the
center frequency of band-limited white noise bursts (Dannenbring and
Bregman, 1976; Bregman et al., 1999); and increasing the presentation
rate (with alternation rates in the range 2–10 per second), by reduc-
ing the offset-to-onset interval (Bregman et al., 2000). It was shown
that when the difference in the frequencies was small, a higher rate of
presentation was needed, and if the presentation rate was low, a larger
frequency difference was required to elicit fission. The typical offset-
to-onset intervals used in the stream segregation studies (0-120 ms in
the studies where the presentation rate was not investigated) are shorter
than that of the NT stimuli (200 ms), but longer than what was demon-
strated to elicit fission in the study of Macken et al. (2003), 10 ms. The
fission studies typically employ tasks in which the subjects are instructed
to pay attention to the sounds delivered, and make judgments based on
what they perceive. When the presented sound is unattended, as in the
serial-recall tasks, the required offset-to-onset interval was even shorter,
hence making it unlikely that the NT stimuli elicit fission. However, it
has been shown that the streaming effect builds up rapidly in 10 seconds,
and continues to build up gradually up to 60 seconds (Anstis and Saida,
1985), unless an abrupt change in the stimulus was produced, such as si-
lence (Beauvois and Meddis, 1997; Cusack et al., 2004). The rapid build
up time, 10 s, coincides with the presentation of the seventh digit in the
serial-recall task employed in this experiment, and it is known that an
ISE can be generated until the end of the retention period. So, it is
not possible to rule out the possibility that the NT stimuli have elicited
fission, however, it should be noted that due to the relatively slow rate
of presentation, this is unlikely.

Nevertheless, when the results of the experiment are interpreted to-
gether with the three possible explanations listed above, the NT stimuli
with low spectral variation, with relatively high FDCCnew values, might
have failed to generate an ISE due to the low number of repetitions of the
sound conditions. For the NT stimuli with very low FDCCnew values,
there is a possibility that participants might have perceived the spec-
trally modified NT stimuli as two repeating token sequences, resulting
in an improved serial-recall performance.
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Except for the possibility of fission, the lack of the impact of spec-
trally modified noise-pulses on serial-recall was especially surprising con-
sidering that when band-pass filtered noise bursts with different center
frequencies were concatenated to form a changing-noise sequence, it was
shown that serial-recall disruption was significantly higher than that of
the steady-state noise sequence (p < .001) (Tremblay et al., 2001). The
noise-pulses used in the present experiment differ from the noise bursts
used in that study in terms of frequency characteristics. The band-pass
filtered white noise bursts change in center frequency from one token to
another, so each token has energy in one band only. On the other hand,
the reference noise-pulse used in this experiment comprises equal energy
in seven octave bands. The spectral modification was obtained by ap-
plying gains with values between 0 and 1, to each band of the reference
noise-pulse. The seven gain values were generated with an optimization
procedure (see Appendix B) designed to find the optimum gain values
that satisfy both a desired FDCCnew and a constant AMTF value. So
the spectral modification can be obtained by altering the energy in one
band drastically, or applying moderate gains to each octave band. In the
latter scenario, the perception of the frequency domain changes between
the subsequent noise-pulses would be very different from the perception
of the change in the center frequency of successive noise bursts used in
the study of Tremblay et al. (2001).

The definition of the FDCCnew also supports this possibility: The
FDCCnew only quantifies the change / similarity between the power spec-
tra of the successive tokens, and does not take the absolute tone / center
frequency difference, tonal distance, into account. When the center fre-
quencies of the successive noise bursts are wider than one-third octave
band, as used in the study of Tremblay et al. (2001), the corresponding
FDCCnew value would be very close to 0. In fact, a sequence of alternat-
ing band-pass filtered noise bursts with the center frequencies of 250 Hz
and 500 Hz yields an FDCCnew value of 0.09. When the bands are two
octaves apart (250 Hz and 1000 Hz), the FDCCnew value is 0.0001. If
the center frequencies were within one-third octave bandwidth, it would
be close to 1.

The changing-state noise used in the same study was regenerated here
and the FDCCnew value for the changing-noise sequence is 0.05, which
is lower than the lowest FDCCnew value obtained from the NT stimuli
used in this experiment (0.06). It can be clearly seen that there is an
important property of the changing-state hypothesis that the FDCCnew
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is unable to detect and quantify. It is highly possible that this is the
tonal distance.

However, the other three issues, the lack of adequate statistical power,
the lack of a stimulus which is known to create an ISE, and, although
unlikely, the possibility of elicited fission should be eliminated in order to
make a solid conclusion about the results of the first experiment. There-
fore, a second serial-recall experiment was conducted where all of the
aforementioned issues were addressed with a twofold objective: investi-
gating the impact of the temporal and the spectral features of irrelevant
sounds on the ISE and investigating the impact of the type of spectral
variation on the ISE.

5.5 Experiment 2

It was shown in stream segregation studies that when the B tone in
ABAB (van Noorden, 1975) and ABA- sequences(Bregman et al., 2000)
was delayed, it was possible for participants to discriminate the tempo-
rally asynchronous stimulus more easily when the sound was perceived
as one stream. The required duration of the delay depends on the tonal
distance for pure tones and the difference in center frequencies for more
complex, less tonal stimuli. A similar approach was followed for the
present experiment: The asynchrony was produced by extracting the
offset-to-onset information from short speech samples by the token se-
lection stage of the FDCCnew algorithm, and arranging the positions of
tokens in NT stimuli based on those time gaps. Moreover, since the
P1-P2-P1-P2 sequence of the NT stimuli was preserved, we have also in-
troduced short silence segments (0.5-1.5 s) (Beauvois and Meddis, 1997;
Cusack et al., 2004) at the end of each short speech-positioned pulse
train (1.5-2.5 s) to prevent a build up of the fission effect, in the case the
obtained irregular offset-to-onset structure was inadequate. In addition
to this, the amplitude and the duration of each token were also modified
based on the information derived from the speech samples, so the new
NT stimuli were converted into more speech-like stimuli.

A similar approach had been followed in an ISE study, mostly focus-
ing on the rhythmic organization of the irrelevant sound tokens rather
than the duration and the amplitude of each one. In the study of Jones
and Macken (1995a), a single utterance of “ah” was used to create two
sequences: An irregular inter stimulus interval (ISI) was created by plac-
ing the 300 ms long “ah” utterances with an ISI randomly selected from
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the range of 0, 100, 200, 800, 900 and 1000 ms, and the periodic sequence
was generated by keeping an ISI of 500 ms between the subsequent ut-
terances. The letter-recall task (N = 20) showed that the irregular ISI
stimuli created a significantly higher mean error rate (M = 23 %) when
compared with regular ISI (M = 19.7 %, p < .05) and silence (M = 18.5
%, p < .01). There was no significant difference between the regular ISI
and the control condition.

At first glance the results disagree with the suggested prominence of
the role of frequency domain changes in the changing-state hypothesis,
however, the authors stated that the irregularity might have created a
temporal conjunction of the utterances and this might have served as a
basis for the changing-state effect: Two utterances might have been too
close to each other, resulting in being perceived as one.

The generation of the irregular ISI in the present experiment does not
allow a randomized temporal token grouping, because the information
regarding the time gap between successive pulses is extracted from speech
stimuli by the token selection stage of the FDCCnew. The FDCCnew at-
tempts to divide the speech into syllables, so the time gap between the
two syllables would be preserved to a certain extent and it would reduce
the possibility of a temporal conjunction effect. As a result, an aperi-
odic speech-positioned noise-pulse train, without temporal and spectral
modifications, is not expected to create an ISE.

Four speech-positioned noise-pulse train (SNT) conditions are formed:
a reference SNT (SNTref, AMTF = 1, FDCCnew =1), a temporally mod-
ified SNT (TM, AMTF = 0.7, FDCCnew = 1), and two spectrally mod-
ified SNT stimuli (SMHi, AMTF = 1, FDCCnew = 0.4, SMLo, AMTF =
1, FDCCnew = 0.7, where the abbreviations of the SMHi and the SMLo

are used to emphasize the magnitude of the spectral distinctiveness). A
set of continuous speech samples and the reference NT stimulus (AMTF
= 1, FDCCnew = 1) used in the first experiment are also introduced in
the second experiment, in order to asses the validity of the experimental
procedure and to observe the behaviour of the new SNTref, respectively.

The hypothesis of the second experiment is similar to that of the first
experiment: The spectrally modified noise stimuli are expected to create
higher serial-recall disruption than the other noise conditions, and SLNC.
The SMHi condition is expected to yield similar serial-recall disruption
as the continuous speech stimuli and the SMLo condition is expected to
degrade the performance less than the SMHi and speech conditions but
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more than the others. The TM condition is expected to yield similar
mean error rates as the SLNC, reference NT and the SNTref. To summa-
rize, the serial-recall scores are expected to reflect the FDCCnew values,
and not the AMTF values.

The generation of the SNT stimuli, spectral and temporal modifica-
tions and the detailed explanations about the acoustic conditions in the
second experiment are presented in the following sections.

5.5.1 Speech-positioned noise-pulse train (SNT)
A reference SNT stimulus was generated by using the white-noise pulse,
P1, as defined in Eq. 5.2. The information regarding the duration, the
amplitude, and the ISI of the reference SNT stimuli was derived from
short matrix speech samples (2-4 s) in Dutch (Houben et al., 2014).

The token extraction stage of the FDCCnew, which was explained in
detail in the second paragraph of Sec. 3.2 in Chapter 3, was used to
extract the information regarding the temporal structure of the short
speech samples. The information about the duration and the amplitude
of each feasible token, as well as the time gap between the successive
tokens of the speech samples were extracted.

The reference noise-pulse (Eq. 5.2) was modified based on the afore-
mentioned information obtained from a speech sample for each token,
and the resulting Hanning-windowed amplitude and width modified pulses
were concatenated based on the time gap information derived for cor-
responding peaks. An example of two short speech samples and the
associated reference SNT stimulus is presented in Fig. 5.5.

It can be observed that the objective of creating a speech-like timing
for the noise-pulse train was achieved, and the temporal structure of
the short speech sample was reflected to a certain degree. Just like the
first experiment, the temporal and spectral modifications were applied
only to the even-indexed pulses, while the odd-indexed pulses were kept
unmodified.

This technique allowed us to generate a sequence of noise-pulses with
a similar approach as in 5.3. The stimuli used in the first experiment
consisted of identical noise pulses positioned in an odd and even-indexed
fashion, hence were labeled as P1 and P2. For the SNT, this is not the
case anymore. However, the same terminology will be kept throughout
the rest of the chapter to emphasize the unmodified / modified pulse
distinction within a sequence and for the purpose of simplicity.
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Figure 5.5: Time-domain plot of two short speech samples concatenated (top figure), and
the short speech-positioned noise-pulse train (SNT) stimulus generated by the information
derived from the same two short speech samples (bottom figure).

Modifying the temporal features of SNT

The temporal features of the SNT were modified by following the same
approach explained in Sec. 5.3.1: The width of every P2 was increased in
order to change the AMTF value. However, since the time gap between
the tokens varies for each P2 in the case of SNT, the width of the P2 was
increased to the maximum possible size: The shortest time gap between
the P2 and the two neighboring tokens was taken as the maximum half-
width size of the modified P2. An example of the reference SNT and the
temporally modified SNT is presented in Fig. 5.6.

In experiment 2, 10 long SNT stimuli (40-45 s) were generated by
concatenating the temporally modified short SNT stimuli. Only one
temporal modification condition was generated, which was obtained by
maximizing the width of the P2 of each long SNT stimulus.

Modifying the spectral features of SNT

Two target FDCCnew values were chosen to be used in experiment 2: the
FDCCnew values of 0.4 and 0.7. The FDCCnew value of 0.4 was chosen
because the speech stimuli investigated in previous chapters typically
yielded a value around 0.4. The value of 0.7 was chosen to include
an additional level of spectral modification as an acoustic condition in
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Figure 5.6: Time-domain plot of the reference speech-positioned noise-pulse train (SNT)
stimulus (in black), and the temporally modified version of the same short reference SNT
stimulus (in blue).

experiment 2.

The gains obtained from the optimization process explained in Sec.
5.3.2 were applied to 800 reference SNT stimuli where the pulse infor-
mation for each one of them was extracted from a different short speech
sample. The AMTF and the FDCCnew values of the resulting spectrally
modified SNT stimuli were monitored and the ones which satisfy the con-
ditions of a constant AMTF value, with a tolerance of 0.1 (0.9 to 1.1),
and the target FDCCnew value were stored. For each target FDCCnew

value, ten 40 to 45 second long SNT stimuli were generated by concate-
nating 20-22 of the obtained short SNT stimuli. The AMTF and the
FDCCnew values of the 20 long SNT stimuli were cross-checked after the
long SNT stimuli were formed. Each short SNT stimulus was used only
once and only for one target FDCCnew value.

5.5.2 Method

Participants

Twenty-five participants (14 females and 11 males, age range between
18-50 years) participated who were recruited via the JF Schouten sub-
ject database of the Eindhoven University of Technology, Eindhoven,
The Netherlands. All participants were students at the University and
spoke English as second language. As part of the recruitment procedure,
subjects were chosen by specifying the necessary criteria: healthy vision
and hearing, no history of memory related disorder and speaking English
as a foreign language. They signed the informed consent forms before
the experiment began, and the eligibility criteria were double checked.
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They were paid a small compensation fee determined by the university
department board. The experimental procedure was examined and ap-
proved by the Human Technology Interaction department, Eindhoven
University of Technology.

Stimuli

In addition to the silence (SLNC), used as the control condition in this
experiment, there were six acoustic conditions presented as irrelevant
sounds to the participants: reference NT (the reference noise-sequence
used in the first experiment) and reference SNT, both with the AMTF
and FDCCnew values of 1, temporally modified SNT (AMTF = 0.7,
FDCCnew = 1), two spectrally modified SNT stimuli (AMTF = 1 for
both sets with the mean FDCCnew values of 0.4 and 0.7), and contin-
uous speech in English. The average sound level of each stimulus was
calibrated to 65 dBLAeq1min.

Reference NT (NTref)

The NTref stimulus was the noise-pulse sequence generated by regularly
spacing 50 ms long unmodified reference white-noise pulses and was the
same as the one used in experiment 1. There was no modification applied
to P2, so the AMTF and FDCCnew values were 1.

Reference SNT (SNTref)

The SNTref condition consisted of 10 unmodified SNT stimuli, where each
SNT was generated by concatenating unmodified short speech-positioned
noise-pulse trains. The information regarding the temporal structure
of each short SNT was extracted from a different short matrix speech
sample in Dutch (Houben et al., 2014). Ten 40 to 45 second long SNTref

stimuli were created for the experiment, where each one had a different
temporal structure.

Temporally modified SNT (TM)

The TM condition was made up of 10 temporally modified SNT stim-
uli where the pulse widths of each P2 were increased to the maximum
possible, without overlapping the neighboring pulses. As in the SNTref

condition, each short SNT was generated by deriving information from a
different short matrix speech sample in Dutch (Houben et al., 2014), and
the short SNT stimuli were concatenated to form 10 long (40-45 s) SNT
stimuli. In total, 10 long SNT were created and modified by increasing
the width of each P2 pulse in each long SNT. The average AMTF value
of the 10 long TM stimuli were computed to be 0.7 and the average
FDCCnew value was 1.

Page 108



5 Spectral and temporal features as the predictors of the irrelevant sound effect

C
h
a
p
te
r
5

Spectrally modified SNT (SM)

The SM conditions were formed by 10 spectrally modified SNT stim-
uli with the average FDCCnew value of 0.4, and 10 with the average
FDCCnew value of 0.7. Each short SM stimulus was generated by us-
ing a different short speech sample (Houben et al., 2014) as a source of
temporal structure information, and 20 long SM stimuli were formed by
concatenating the two groups, based on the FDCCnew values, of short
spectrally modified SNT stimuli. The average AMTF values for each one
of the 20 long SM stimuli were between 0.9 and 1.1.

Continuous speech (SPCH)

The speech stimuli were taken from the set of speech samples used in the
study of Park et al. (2013), and were the recorded samples from “National
Public Radio” (http:// www.npr.org), which contained monologues or
conversations in English between at most two persons on various topics.
The recordings were sliced into 10 long (45-50 s) speech samples. The
average FDCCnew value computed for the 10 long English speech samples
was 0.44.

Apparatus

The apparatus used for the current experiment were same as the one
reported in Sec. 2.4.1.

Procedure

The GUI used for the serial-recall and the experimental procedure re-
garding the visual part of the experiment was same as reported in pre-
vious experiments, as well as that of experiment 1 in this chapter.

The serial-recall task design consisted of six blocks. The first block
was the training block and consisted of 14 trials without any irrelevant
sound (silence). When the training block ended, the responsible re-
searcher checked if the participant had fully understood the focal task
and if he/she had any questions or problems about the test procedure or
the environment before continuing the experiment. The remaining five
blocks also consisted of 14 trials each (2 trials for each acoustic condition)
and the presentation order of 14 trials was randomized in each block. Six
blocks were presented with 2 min breaks between the blocks and each
block took approx. 10 min to complete. One experimental session was
typically completed in about 65-70 min, including the breaks.

Page 109



5 Spectral and temporal features as the predictors of the irrelevant sound effect

5.5.3 Results

The evaluation of participants’ experimental performance was the same
as reported in previous experiments. The acoustic conditions and the
test scores, represented as error rates (%), are shown in Fig. 5.7.
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Figure 5.7: Recall performance of 25 participants are represented as mean error rates (%) for
the seven acoustic conditions: silence (SLNC), reference noise-pulse train (NTref), reference
speech-positioned noise-pulse train (SNTref), temporally modified SNT (TM), two spectrally
modified SNT conditions (SMLo and SMHi) and continuous speech (SPCH). Error bars
represent the SEM.

The difference between the mean error rates for SLNC (24.15 %) and
SPCH (39.75 %) is slightly higher than what is reported in previous
chapters, but still within the range reported in the literature (approx.
∆8− 20%). The mean error rate for the silent condition is slightly lower
than what was observed in experiment 1 (28 %), which are both not
uncommon values in the ISE studies.

However, it is visible in Fig. 5.7 that there is no systematic variation
in the error rates as a function of the acoustic conditions; the scores in
the NTref, SNTref and in the three modified SNT conditions are almost
identical with the result in the SLNC condition. As it appears, the recall
performances did not vary in any systematic manner for noise stimuli.
The results of the statistical analyses confirmed the lack of effect of the
noise-pulse trains, regardless of the modifications applied.
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A one way repeated measures ANOVA determined that there was
a highly significant impact of background sound on serial recall, F (6,
144) = 16.44, p < .001, η2 = 0.04. Post hoc tests using the Bonferroni
correction (p = 0.005 for 10 pairs) revealed that the mean error rate for
SPCH (M = 39.75, SD = 27.75) was significantly higher than the one
for all other acoustic conditions (p < 0.001), and there were no other
significant differences between the pairs.

5.5.4 Discussion

The results of the experiment showed that there are no significant serial-
recall disruption observed except for SPCH. The difference in mean error
rates between the SLNC and the SPCH is in line with the range reported
in the literature. The NTref, the SNTref and the TM conditions did not
create a disruption as expected.

On the other hand, the SM conditions did not produce an ISE, which
supports the assumption that the tonal distance between the noise-pulses
did not reach a sufficient level to produce serial-recall disruption. The
SMHi was expected to yield a mean error rate similar to that of the con-
tinuous speech, since the FDCCnew values of both conditions are similar
(≈ 0.4), and the SMLo was expected to degrade the performance less
than the SMHi and SPCH.

Finally, it can be clearly seen that the values of the metrics, the
AMTF and the FDCCnew, were not reflected in the serial-recall results.
In fact, it was observed that there is no impact of the noise stimuli on
serial-recall performance. The reasons behind this outcome is discussed
in the following section in detail, together with the results of the first
experiment.

5.6 General discussion

Two experiments were conducted where a reference noise-pulse stimu-
lus was processed specifically to produce a systematic variation in the
temporal and the spectral features of the irrelevant sounds, in order to
investigate the impact of both features on serial-recall performance, in-
dependently. The first experiment employed a periodic alternating NT
stimulus and the results showed that the NT stimuli did not generate
an ISE, regardless of the modification applied. For the second experi-
ment, the NT stimuli were further processed and converted into a more
speech-like sound, SNT stimuli, and a second serial-recall experiment
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was conducted. The result was the same as that of the first experiment:
The noise stimuli used in these experiments did not create any ISE.

As mentioned earlier, the idea of choosing white noise as the basis for
the irrelevant sound stimuli in the two experiments was derived from the
major findings from the literature: The irrelevant background sounds dis-
rupt serial-recall performance when acoustic properties of the individual
tokens vary from one segment to the next, and instrumental music, sine
tones, pitch-shifted vowels, as well as native, foreign and reversed speech
were shown to be capable of producing an ISE. And most relevant for
the stimuli used in this study, band-pass filtered noise bursts disrupted
serial-recall performance significantly when the alternating noise bursts
had different center frequencies (Tremblay et al., 2001).

The results of the first experiment turned out to be contradictory to
the aforementioned findings. The reasons behind the lack of observing
an ISE were investigated and four possible explanations were discussed
in Sec. 5.4.3: the low sample size, the inability of validating the experi-
mental procedure due to the lack of a stimulus which is known to produce
an ISE, the stream segregation possibility due to the periodic structure
of the noise-pulses and the lack of sufficient tonal distance between the
noise-pulses due to the way the reference pulse was generated. The first
three issues were addressed in the second experiment by increasing the
number of participants, including a continuous speech condition and gen-
erating a speech-like noise stimulus where segments of short silences were
integrated. However, the reference pulse used in the first experiment was
preserved in order to isolate the possible explanation based on the tonal
distance, since it reveals a major limitation of the spectral metric, the
FDCCnew.

The NT stimuli were turned into a more speech-like sound by deriving
information from short speech samples by the peak detection stage of the
FDCCnew. It was shown in Chapter 4 that when the speech stimuli were
segmented into tokens by the FDCCnew, the resulting segmented speech
created serial-recall disruption similar to that of the continuous speech.
So, if FDCCnew were an adequate prediction model for the ISE, the SMHi

condition (FDCCnew ≈ 0.4) should have created serial-recall disruption
to a similar degree as the continuous speech condition (FDCCnew ≈0.4)
used in the same experiment.

The results of the second experiment showed that the spectrally mod-
ified SNT stimuli, with FDCCnew values of 0.4 and 0.7 did not create any

Page 112



5 Spectral and temporal features as the predictors of the irrelevant sound effect

C
h
a
p
te
r
5

serial-recall disruption. On the other hand, the continuous speech stimuli
significantly disrupted the serial-recall which indicates that the experi-
mental procedure was efficient. This outcome supports that the observed
lack of any ISE in the first experiment may be due to the insufficient tonal
distance between the successive noise-pulses and the FDCCnew does not
quantify that. This is an important limitation of the spectral estima-
tor, especially when the irrelevant sounds are generated based on simple
sounds such as sine tones or white noise.

When the speech and SNT stimuli employed in the second experiment
are examined, it can be seen that they have similarities: a speech-like
rhythm and token-to-token amplitude variation, the magnitude of the
spectral similarity between tokens (averaged across tokens), and rela-
tively broader frequency spectrum when compared to two sine tones and
band-pass filtered white noise used in the ISE literature. As mentioned
earlier, two successive band-limited sound tokens result in an FDCCnew

value of 0 if they don’t have energy in common frequency bands. For
both the speech and SMHi stimuli, each one of the extracted successive
tokens comprises energy in some common frequency bands: The power
spectrum varies gradually, instead of making distinct and detached tonal
shifts. From this perspective, it can be stated that the impact of the
spectral variation within the continuous speech on serial-recall is differ-
ent than that of the SMHi.

Considering that both the SPCH and SMHi conditions did not yield
distinct tonal shifts, the tonal distance can not explain the ISE observed
for SPCH in the second experiment. The FDCCnew, as a value for the av-
erage magnitude of spectral similarity between tokens, produced promis-
ing results for SPCH in terms of ISE, but failed to do so for the SNT.

When the speech and the SNT stimuli are re-examined, it is clear that
they also possess differences, such as contained semantic information and
token set size. The token set size here refers to the number of different
tokens in terms of frequency characteristics: Each speech token has a
different frequency spectrum while the SNT stimuli were generated by
concatenating pulses which have identical frequency spectra, in alternat-
ing fashion. However, neither the semantics (Jones et al., 1990), nor the
token set size (Tremblay and Jones, 1998) were shown to have any effect
on serial-recall performance in previous studies.

The results of the second experiment, when interpreted with a focus
on the spectral variation, yield discrepant and confusing outcomes: A
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magnitude of change in the power spectra between tokens of the speech
stimuli is sufficient to create an ISE while the same magnitude of change
is not relevant in the ISE, when the stimulus is noise-based. The lack
of distinct tonal shifts looks like not important for the ISE when the
irrelevant sound is speech, however, there are no other reasons known
to us which can explain the lack of disruptive effects observed in SMHi

condition.

However, the changing-state hypothesis refrains from ascribing a spe-
cial role to any stimulus within the context of the ISE, including speech.
For instance, there was no difference between the mean error rates ob-
served for pitch-shifted syllable and pitch-shifted sine tone sequences in
the study of Jones and Macken (1993, Exp. 5): Speech and non-speech
were shown to be equal in terms of their ability to disrupt serial-recall
performance. This property of the changing-state hypothesis was labeled
as the equipotentiality hypothesis and it was discussed in great detail in
the study of LeCompte et al. (1997). According to the authors, there
were two major issues with the experiments which led to the equipoten-
tiality hypothesis: (1) The sample sizes of Exp. 2 (N = 24) and Exp. 5
(N = 20) in the study of Jones and Macken (1993) were too low to reach
a statistical power of 80 %, (2) the use of random permutations of letters
C, H, J, U in experiment 2, and the use of a syllable, ah, in experiment
5, make the speech condition a prototypical example of speech, rather
than a meaningful one. A new experiment was designed in the study
of LeCompte et al. (1997) by addressing these two issues: The sample
size was increased to 59 and the irrelevant speech condition was created
by using the four words –hey, you, me, no– in a randomized order in
the sequence. The results, with reported statistical power of approx. 90
%, showed that the irrelevant speech disrupted serial-recall significantly
more than the sine tone sequence (p < 0.001). A similar outcome was
also reported in the study of Jones et al. (1999, Exp. 3), where the
pitch-shifted vowel i disrupted serial-recall more than pitch-shifted sine
tones. The mean error rate difference between the conditions was not
significant, but authors stated that with sufficient power, the difference
might have reached statistical significance.

The difference in serial-recall disruption between the irrelevant speech
and tones was explained with the argument that the speech tokens ex-
hibit greater token-to-token acoustic variation, which generates a larger
changing-state effect than the simple tones do (Tremblay et al., 2000).
It should be noted that the concept of speech tokens was defined as the
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discrete speech items within the irrelevant sounds, such as words or syl-
lables. Jones and Macken (1993) explicitly treated one utterance as one
segment of sound, for instance, the letters were never treated as tokens
in a word when there was more than one word presented in the sequence.
In addition to this, it can also be argued that ascribing a special defini-
tion to the concept of a token for a certain type of sound, based on the
acoustic complexity, would also attribute a special role to that particu-
lar sound within the context of ISE, at least if a prediction model is of
major interest. Nevertheless, the token selection stage of the FDCCnew

was modified to be sensitive enough in terms of segmenting the words
into syllables (see Sec. 3.2) and it was shown to be successful when it
comes to extracting the parts that comprised disruptive properties of the
irrelevant background speech (see Chapter 4).

Regardless of the discussion about the potential stimulus-specific be-
haviour of the spectral features of the irrelevant sounds on the ISE, it can
be clearly seen that the FDCCnew does not account for a global acoustic
determinant of serial-recall disruption: The computed FDCCnew values
of the speech and noise stimuli do not follow the experimental results
observed in the second experiment, and the lack of an ISE observed for
noise conditions in both experiments prevents us from making a general
statement regarding the impact of the temporal and spectral features of
the irrelevant sounds on the ISE.

5.7 Conclusion

1. The noise-pulse train and speech-positioned noise-pulse train stimuli
did not reduce serial-recall performance when compared to silence
in the two experiments.

2. The modification of the temporal features of the stimuli did not
produce an ISE: The systematic decrease in the AMTF values of the
noise-pulse train stimuli in the first experiment, as well as the only
temporally modified speech-positioned noise-pulse train condition
in the second experiment failed to disrupt serial-recall performance.

3. The modification of the spectral features of the stimuli did not pro-
duce an ISE: The systematic decrease in the FDCCnew values of the
noise-pulse train stimuli in the first experiment, as well as the two
spectrally modified speech-positioned noise-pulse train conditions in
the second experiment did not produce any ISE.
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4. The continuous speech condition employed in the second experiment
created statistically significant serial-recall disruption as expected.

5. The FDCCnew failed to make accurate estimates for the magnitude
of the disruption for the noise and speech stimuli: The noise stimuli
with low FDCCnew values did not generate an ISE in the two experi-
ments, and the two conditions, continuous speech and the spectrally
modified speech-positioned noise-pulse train (FDCCnew = 0.4), pro-
duced significantly different serial-recall performances, but yielded
very similar FDCCnew values.
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The studies reported in this thesis focused on investigating the role of
spectral features of irrelevant background sounds on serial-recall perfor-
mance, known as the irrelevant sound effect (ISE) (for a review, see Ban-
burry et al., 2001). In these studies, we had the opportunity to quantify
the magnitude of spectral variation within irrelevant sounds using a psy-
choacoustic metric, the frequency domain correlation coefficient (FDCC)
(Park et al., 2013), which was designed to predict the detrimental impact
of background sounds on the ISE. The metric was defined as a spectral
similarity measure and was inspired by the changing-state hypothesis.
The changing-state hypothesis states that the background sound should
be segmentable into perceptually distinct tokens and each token should
be different form the one that preceded it in order to produce an ISE
(Jones and Macken, 1993). The metric attempts to transform the defini-
tion of the hypothesis into a psychoacoustic parameter: The FDCC is de-
rived by segmenting the irrelevant sounds into tokens and computing the
correlation between the successive tokens in the frequency domain, which
was shown to be an important acoustic feature of the irrelevant sounds
(e.g., Jones and Macken, 1993; Jones et al., 2000; Ellermeier et al., 2015;
Senan et al., 2018). The FDCC was evaluated and modified throughout
the thesis using various types of stimuli in each chapter: noise-vocoded
speech (NVS), a large set of stimuli from the literature (e.g., native,
foreign and babble speech, music, office noise, traffic sounds, artificial
animal sounds, etc.), various types of segmented stimuli, selectively re-
versed NVS, periodic and speech-positioned noise-pulse train stimuli.

The second chapter reported two studies where a set of distorted
speech stimuli, NVS, was employed in serial-recall experiments which
allowed us to evaluate the role of spectral variation on the ISE using
the FDCCold. The results showed that the FDCCold was able to follow
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the trend of the serial-recall disruption up to an extent (6-band NVS,
FDCCold = 0.72) but failed beyond that. Three other metrics from the
literature, the fluctuation strength (FS), the speech transmission index
(STI) and the normalized covariance measure (NCM) were also evaluated
in the same study and it was shown that the STI and the NCM were
as successful as the FDCCold in terms of following the trend of serial-
recall performance: The noise-vocoding technique used in generating the
NVS stimuli in the experiments produced a systematic change in both
the frequency and the time domain hence the parameter values of the
FDCCold and the two temporal metrics, the STI and the NCM, varied
systematically as the number of frequency bands increased. However,
the serial-recall results did not follow the systematic change observed in
the parameter values of the three metrics and none of the metrics was
successful in predicting the ISE for the NVS conditions.

In the Chapter 3, the token selection stage of the FDCCold was modi-
fied and the change was evaluated employing a large set of data (N = 91)
from the ISE literature. The parameter values of the two versions of the
FDCC, the FDCCold and the FDCCnew, as well the FS were computed
for the stimuli. Pearson correlation values between the experimental re-
sults and the values of the three parameters were compared. The results
showed that the change in the token selection stage of the FDCC resulted
in an improved Pearson’s r (r = 0.70, p < 0.01) when compared to the
FDCCold (r = 0.59, p < 0.01). The correlation between the error rates
of the total dataset and the FDCCnew values was significantly higher
than what was observed for the FS (r = 0.50, p < 0.01). In addition to
that, the FDCCnew and the FS were evaluated using the speech / masked
speech stimuli only (N = 21) and the correlation between the FDCCnew

(r = 0.53, p < 0.05) and the normalized mean error rates was higher
than the correlation computed using the FS values (r = 0.08, p > 0.05).
It was concluded that for the total set of behavioral measurements used
in the study, the two metrics, the FDCCnew and the FS, were equally
successful in predicting the ISE and for the masked / degraded speech
stimuli, the FDCCnew parameter produced more promising values than
the FS.

The change in the token selection stage of the FDCCnew was further
evaluated in Chapter 4 using a serial-recall task where the segmented
versions of the irrelevant sounds from the literature (Schlittmeier et al.,
2012; Senan et al., 2018) were employed alongside a continuous speech
condition. The serial-recall results observed for the segmented music, 1-
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band and 6-band NVS, as well as the office-noise stimuli were compared
with experimental results reported in the associated literature for the
continuous versions of these conditions. The segmented and the continu-
ous speech conditions were within-subjects variables. The results showed
that the normalized mean error rates for the segmented (17 %) and con-
tinuous speech (18.7 %) conditions were similar. In addition to that, the
serial-recall results observed for the segmented 1-band and music condi-
tions were also similar to the results reported in the literature (p > 0.05).
However, the segmented office-noise (normalized median error rate = 2.2
%) and the segmented 6-band NVS (normalized mean error rate = 1.8
%) produced different results when compared to the results reported in
the literature for continuous office noise (normalized median error rate =
7 %) and 6-bands (normalized mean error rate = 8.05 %) conditions. In
the second experiment, a specific type of NVS stimuli were collected from
the ISE literature and were evaluated with respect to the experimental
results reported in the original study (Dorsi et al., 2018). The original
NVS stimuli were modified by temporally reversing the lower two-thirds
of the frequency bands of the NVS and this had resulted with an increase
in serial-recall performance when compared to the original NVS. The au-
thors had concluded that the reduction in speech fidelity was the reason
behind the improvement in the performance. When the two sets of NVS
stimuli were run through the FDCCnew algorithm, it was observed that
the reversal technique changed the position of one of the tokens and the
single token with energy only in high frequency bands was integrated into
a token with broader frequency spectrum which eventually increased the
FDCCnew values. It was concluded that the role of speech fidelity on the
serial-recall performance might be lower than what was claimed to be
in the original study and the token selection stage of the FDCCnew was
sensitive enough to detect that.

The results observed in Chapter 2 were further investigated by modi-
fying the temporal and the spectral features of a noise-pulse train (NT)
stimulus and employing the set of NT stimuli in a serial-recall task. The
spectral modification was monitored by the FDCCnew and the temporal
modification was controlled by another metric, the average modulation
transfer function (AMTF), which is a parameter similar to the STI. The
first experiment showed that when the temporal and spectral features
of the periodically positioned NT stimulus were modified independently
from each other, there was no change in the serial-recall performance
when compared to the silence. The second experiment in the same study
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varied the temporal positions of the noise pulses using the temporal in-
formation of speech stimuli extracted by the token selection stage of the
FDCCnew and employed the speech-positioned noise-pulse train (SNT)
stimuli in a serial-recall experiment alongside a continuous speech condi-
tion. The results showed that while the continuous speech created a sig-
nificant serial-recall disruption (normalized mean error rate = 15.6 %, p
< 0.001), the SNT stimuli failed to disrupt the performance, even though
the FDCCnew values of one of the SNT conditions (SMHi, FDCCnew =
0.4, normalized mean error rate = 2.28 %), and the continuous speech
(FDCCnew = 0.44) were very close. It was concluded that the magnitude
of the spectral variation quantified by the FDCCnew parameter could not
account for the lack of ISE observed for the SNT conditions.

As summarized above, the spectral estimator was evaluated and mod-
ified throughout this thesis and certain advantages and limitations were
observed. The advantages of the use of the FDCCnew are discussed in
the next section and the limitations, as well as further research proposals
to overcome those limitations, are presented in Sec. 6.2.

6.1 Advantages of the FDCCnew

The main advantage of the spectral metric is that it was proposed as an
ISE predictor solely and it attempts to provide a mathematical basis for
the changing-state hypothesis. The lack of an quantitative estimator for
the changing-state effect has been mentioned as a limitation in the liter-
ature (e.g., Schlittmeier et al., 2008, 2012) and the FDCCnew attempts
to fill this gap by following the definition of the changing-state hypoth-
esis. With the use of the FDCCnew in the ISE studies, the variations
introduced to the experimental stimulus can be measured quantitatively
and the reasons behind the serial-recall disruption or the lack of it can
be classified and / or distinguished from each other.

An example of the strength of this analytical approach was given
in the second experiment reported in Chapter 4: The selective-reversal
technique used in generating the reversed NVS stimulus simultaneously
modified the spectro-temporal features of the NVS and this change was
quantified by the FDCCnew. The use of the spectral metric allowed us to
observe that the reversal technique used in the original study might not
be the ideal method for investigating the role of the speech fidelity on the
ISE, at least when used in combination with that particular stimulus.

A second example from this thesis comes from the results of the second
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experiment reported in Chapter 5: The SNT stimuli with an FDCCnew

value of 0.4 and the continuous speech with the same parameter value
produced significantly different serial-recall disruption. It can be clearly
stated that the role of the spectral variation on the ISE, as quantified
by the FDCCnew, is not the same for the SNT and the original speech
stimulus. For the SNT stimulus, the change in frequency from one pulse
to the next one can not explain the lack of ISE by itself. Another example
where the FDCCnew can be put into good use as an analytical basis in
auditory distraction research comes from the literature. For instance, the
studies where a deviant sound (female spoken letter “B”) had been added
into a changing-state sequence of male spoken letters (“ABABfemaleAB”),
it had shown an increase in the serial-recall disruption when compared
to the changing-state sequence with no deviant sound (Hughes et al.,
2007). The computation of the FDCCnew values for the two stimuli would
give a clear idea regarding the difference between the magnitude of the
spectral variation of the two stimuli and therefore might serve as a basis
to distinguish the effect of the deviant sound from the changing-state
sequence.

Another advantage of the metric is that it can provide a value for
any sound that is segmentable. Similar to the FS model and in contrast
to the STI and the NCM models, it does not require a reference sig-
nal. When compared with the FS model, it was also observed that the
FDCCnew produced better results for masked / degraded speech stimuli
and although being far from perfect, it can be used as an ISE predictor
in room acoustics research where noise masking systems are used to im-
prove the performance of office workers in open-plan office settings (e.g.,
Haka et al., 2009; Park et al., 2013).

6.2 Limitations of the FDCCnew and ideas for
future research

The studies reported in this thesis allowed us to observe several limi-
tations of the model with respect to its ability to predict the ISE. The
critical limitations of the metric as well as some ideas for future research
to overcome these limitations are presented below.

The results of the first experiment showed that the FDCCold values
continued to decrease while there was no further serial-recall disrup-
tion observed beyond the 6-band NVS condition. Similar results were
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observed in the literature where NVS was used as irrelevant sound stim-
ulus (Ellermeier et al., 2015) and the serial-recall disruption did not
follow the number of frequency bands used in the NVS beyond a critical
point. It indicates that there may be some perceptual features of the
changing-state hypothesis that the FDCCnew is unable to capture. In
addition to the perceptual limit that was observed in the NVS studies,
the FDCCnew is also not able to detect the auditory stream segregation
effect (see Chapter 5 for a detailed discussion) which was shown to have
an impact on the ISE (Jones et al., 1999). The lack of perceptual as-
pects of the metric was known to us and one of the critical features of the
changing-state hypothesis, the role of segmentation on the ISE, was in-
vestigated in Chapter 4. Moreover, an attempt was also made to quantify
the just noticeable differences of the metric (see Appendix C), however,
the experiment was unsuccessful and therefore the results were not taken
into account in this thesis. Nevertheless, the metric would benefit most
from the line of research that aims at improving the perceptual aspects
of the spectral parameter. Furthermore, the spectral metric currently
works as a monaural prediction model and the studies from the litera-
ture delivered evidence that the stream segregation (Jones and Macken,
1995a) as well as stream segmentation (Jones and Macken, 1995b) can
occur based on spatial cues and both have an impact on the ISE (Jones
and Macken, 1995a).

The results reported in Chapter 4 revealed another limitation of the
metric: The FDCCnew does not possess a criterion for the temporal dis-
tance between the successive tokens and treats each token equally in
terms of its disruptive capacity. The segmented office noise stimuli used
in the first experiment in Chapter 4 consisted of long segments of steady-
state noise which might have an impact on the serial-recall performance.
This may not be a limitation for speech and speech-like stimuli but for
sounds with long steady-state segments, this may be be a problem. The
token distance criterion can be implemented after investigating the min-
imum duration of silence that is required to increase the serial-recall
performance and the FDCCnew values can be adapted if such long seg-
ments of silence are detected in the irrelevant sounds.

The biggest limitation of the metric was observed in Chapter 5: It is
not capable of quantifying a tonal distance between successive segments
of the sound. If the change in frequency between the successive sine tones
is more than one third-octave apart, the FDCCnew results in a value of
0 and if it is less than one-third octave apart, the FDCCnew produces a

Page 122



6 Summary and conclusions

C
h
a
p
te
r
6

value close to 1. This limitation is mostly derived from the use of the
correlation as a method to quantify the similarity of the two magnitude
spectra: The correlation value between the magnitude spectra of the two
sine tones with different frequencies is 0. It is very unlikely to improve
this limitation by modifying the current definition of the spectral metric
since quantifying the tonal distance between the successive tokens would
require a more elaborate approach. An example for such an approach
can be to follow a very different method and integrate an auditory model
into the second stage of the algorithm which was recently proposed as a
perceptual metric for assessing the similarity of musical sounds (Osses,
2018).

6.3 General conclusion

The major objective of the this thesis was to evaluate the FDCC as an
ISE predictor and this was carried out by designing serial-recall experi-
ments accompanied by sets of irrelevant stimuli which were crafted with
the aim of revealing the advantages and the limitations of the param-
eter. Due to the definition of the metric, the studies reported in the
thesis focused on the spectral variation within the irrelevant sounds and
its relation to the ISE. Particular interest was concentrated on gener-
ating stimuli which allowed us to combine and distinguish acoustic and
speech-specific features of the irrelevant sounds, such as noise-vocoded
speech and SNT stimuli. The motivation for this choice was to gain fur-
ther insights into the role of spectral variation on the ISE as well as to
investigate the boundaries of the metric, and if possible, to improve it.
The reported studies revealed that the relation between the magnitude
of the spectral variation in the irrelevant sounds and the ISE is not lin-
ear (Chapter 2), the change in the token selection stage of the algorithm
improved the accuracy of the metric (Chapter 3), the FDCCnew can be a
promising ISE predictor for speech and degraded / masked speech stim-
uli (Chapter 3) and the metric can be used as a quantitative measure in
the ISE studies (Chapter 4 and 5).
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Appendices

The following appendices are included in the next pages:

A. FS, STI, NCM, CSII and PESQ
The appendix explains the metrics used in Chapter 2. In addition
to the FS, the STI and the NCM, two other metrics, the CSII, and
the PESQ, are also explained in detail. The parameter values of the
CSII and the PESQ measures for NVS stimuli are presented.

B. Gain optimization procedure for generating spectrally-modified
noise-pulse train stimuli
The gain optimization procedure used for generating the experimen-
tal stimuli employed in Chapter 5 and in Appendix C is described.

C. An attempt to quantify the perceptual sensitivity to changes
in the FDCCnew

This appendix presents a three-interval forced choice experiment
which was conducted with the aim of quantifying the perceptual
sensitivity to changes in the spectral metric, the FDCCnew.
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This appendix presents detailed explanations regarding implementations
of the metrics, the fluctuation strength (FS), the speech transmission in-
dex (STI) and the normalized covariance measure (NCM), which were
analyzed in Chapter 2 alongside the frequency domain correlation coeffi-
cient (FDCCold). Two additional metrics, the coherence-based speech in-
telligibility index (CSII) and the perceptual evaluation of speech quality
(PESQ), are also introduced in order to further investigate the impact of
intelligibility of noise-vocoded speech (NVS) on the serial-recall results.

The results of Chapter 2 showed that there was a systematic decrease
in serial-recall performance as a function of the number of frequency
bands used in the NVS stimuli, up to a critical point, where the NVS
became highly intelligible. This outcome was discussed in detail in Sec.
2.6 and two objective speech intelligibility metrics were analyzed, the
STI and the NCM. The parameter values of the two metrics increased
as a function of the number of frequency bands, indicating a relation
between intelligibility and serial-recall results. However, the parameter
values continued to increase beyond the critical point, 6-band NVS, be-
yond which there was no further systematic decrease in performance. In
addition to this discrepancy, the STI value computed for 1-band NVS is
unrealistically high, 0.54, while the corresponding NCM value is 0.35.

The limitations of the STI when used with nonlinearly processed
speech such as tone- and noise-vocoding, has been discussed in the lit-
erature and alternative metrics were proposed alongside the NCM: CSII
and PESQ (Goldsworthy and Greenberg, 2004; Chen and Loizou, 2011a).
These two metrics were shown to produce promising values as intelligi-
bility predictors for tone- and noise-vocoded speech (Chen and Loizou,
2010; Chen, 2011; Chen and Loizou, 2011a), and are thus analyzed as
ISE predictors in this appendix.

The definitions of the parameters used in Chapter 2, as well as the
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CSII and the PESQ, are explained individually in the following sections
and the parameter values of the CSII and the PESQ, derived from NVS
stimuli, are presented in the final section.

FS

Two different kinds of hearing sensation occur when sounds are ampli-
tude modulated. For amplitude modulations below 20 Hz, the hearing
sensation is called fluctuation strength (FS) and when the modulation
frequency rises above 20 Hz the hearing sensation of roughness takes
place (Fastl and Zwicker, 2007, p. 247 - 256). The 20 Hz limit is not
a strict border from one sensation to another, instead, the transition
between the two is smooth.

The unit of FS is vacil, and 1 vacil is defined as the sensation caused
by a 60-dB, 1-kHz tone 100 % amplitude modulated at 4-Hz. The FS
shows a bandpass characteristic as a function of modulation frequency
and at 4 Hz it reaches its maximum: A 4 Hz modulation frequency,
which is also the syllable rate in fluent speech, creates a large fluctuation
strength whether the modulated sounds are broad-band or narrow-band.

An FS model was proposed in the study of Fastl (1982):

F ∼ ∆L

(fmod/4Hz) + (4Hz/fmod)
(A.1)

where fmod is the modulation frequency and ∆L is the temporal mask-
ing depth. It should be noted that the temporal masking depth, ∆L, is
different from the magnitude of the physical modulation depth due to
forward masking. The denominator in Eq. A.1 underlines the impor-
tance of the 4 Hz modulation frequency.

For amplitude modulated broad-band noise, the magnitude of tempo-
ral masking depth was shown to be independent of the center frequency.
However, for amplitude modulated and frequency modulated tones there
is a frequency dependency. For amplitude or frequency modulated tones
fluctuation strength may be approximated by integrating the temporal
masking depth, ∆L, along the critical-band rate:

F =
0.008

∫ 24 Bark

0
(∆L/dB Bark) dz

(fmod/4Hz) + (4Hz/fmod)
vacil (A.2)

While for these synthetic sounds the values of ∆L are available in the
literature (Fastl, 1982; Fastl and Zwicker, 2007) this is typically not the
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situation for real life sounds. It was mentioned in the last paragraph of
the corresponding chapter of the book (Fastl and Zwicker, 2007, Ch. 11)
that a computer program was developed which uses differences in specific
loudness instead of the ∆L. Several commercial software packages offer
computation of FS values (Pulse by Brüel & Kjaer, ArtemiS by Head
Acoustics GmbH, PAK by Müller BBM) while the information regarding
the actual calculations is not revealed.

The FS was for the first time used as the basis of an ISE predic-
tion model in the study of Schlittmeier et al. (2012) for the first time.
Later, several studies analyzed FS values of the irrelevant sounds and
reported the outcomes (Ellermeier et al., 2015; Liebl et al., 2016). The
FS values reported in these studies as well as those reported in Chapter
2 and Chapter 3 of this thesis, were computed using Artemis Suite (Head
Acoustics, Herzogenrath, Germany) except for the values derived from
the study of Schlittmeier et al. (2012), which were computed using PAK
software (Müller-BBM VibroAkustik Systeme, Planegg, Germay) by the
authors of the study.

STI

The STI was proposed as an ISE predictor in the study of Hongisto (2005)
by describing values of a large set of sounds using a sigmoid function. The
study concluded that the magnitude of disruption reaches a maximum
around the STI value of 0.6 and stays constant beyond that. The lowest
critical value was found to be 0.2, where there was no disruption expected
for STI values lower than that.

The metric was evaluated in several ISE studies (e.g., Park et al.,
2013; Ellermeier et al., 2015; Liebl et al., 2016), as well as in Chapter
2 of this thesis. The STI values for the NVS stimuli used in Chapter 2
were computed by applying the following procedure to both the reference
(original speech) and the test (NVS) signals.

The computation of the STI begins with filtering the reference and
the test signals with octave-wide band-pass filters with center frequencies
ranging from 125 Hz to 8 kHz. The intensity envelope of each band
is extracted by squaring and low-pass filtering the signals with a cut-
off frequency of 30 Hz. The output is analyzed for each modulation
frequency through a one-third octave-wide band-pass filter with center
frequencies ranging from 0.63 to 12.5 Hz (see Sec. B in Houtgast and
Steeneken (1985)). The modulation index for each octave band and for
each modulation frequency is computed by taking the root-mean-square

Page 145



A FS, STI, NCM, CSII and PESQ

of each modulation-band-specific envelope and normalizing by the mean
of the envelope. This results in two 7 × 14 matrices, one for the test
and one for the reference signal, containing the modulation index for
each octave band at each modulation frequency. The modulation index
matrix of the test signal is compared with the modulation index matrix
of the reference signal in order to compute the modulation reduction
matrix, m. The m is converted into a corresponding signal-to-noise ratio
(SNR) by:

SNRSTI(i, j) = 10 log10 [m(i, j) / (1−m(i, j))] (A.3)

where i represents the octave-band and j denotes the modulation fre-
quency band. The resulting SNR values in the matrix are limited to
[-15, 15] dB before computing the octave-band specific mean, which is
done by averaging the 14 SNR values derived from one octave band
without multiplying with a modulation frequency band weighting factor.
The octave-band-specific SNR values are summed, taking into account
the weighting factors of the seven octave-bands:

SNR =
7∑

i=1

wi × SNRSTI(i) (A.4)

The values of wi, weighting factors for seven octave bands, are 0.13,
0.14, 0.11, 0.12, 0.19, 0.17, and 0.14. The computation is finalized by
converting the average SNR values to the index, STI:

STI =
(SNR + 15)

30
(A.5)

The STI takes values between 0 and 1. The STI value of 1 indi-
cates the maximum intelligibility of speech, while 0 indicates maximum
degradation of the reference speech signal. The STI values reported in
Chapter 2 were computed by the MATLAB script used in the study of
Park et al. (2013).

NCM

The NCM is an STI-variant measure with a major difference: Instead
of quantifying the change in modulation depth between the input and
output signals’ envelopes using the modulation transfer function, it com-
putes the covariance between the reference and test envelope signals com-
puted in each frequency band.
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The NCM values are computed as follows: First, the reference and
test signals are divided into a number of bands (20 bands, spanning
the bandwidth of 300 - 3400 Hz for the present study), using 4th order
Butterworth filters, with the center frequencies determined by a cochlear-
frequency position function (Greenwood, 1990). The envelope of each
frequency band is extracted using a Hilbert transform and downsampled
to 25 Hz, in order to limit the modulation frequencies to 0 - 12.5 Hz.
The normalized covariance in the i-th frequency band is calculated as:

pi =

∑
t(xi(t)− xi(t))(yi(t)− yi(t))√∑

t(xi(t)− xi(t)) 2

√∑
t(yi(t)− yi(t)) 2

(A.6)

The xi(t) and yi(t) represent the downsampled envelopes of the reference

and test signals in the i-th band, while xi(t) and yi(t) are the mean values
of the corresponding envelopes, respectively. The SNR in each band is
computed as

SNRi = 10 log10(
p2
i

1− p2
i

) (A.7)

and limited to the range of [-15, 15] dB. The transmission index (T) of
each band is computed by mapping SNR values to the range 0 to 1:

Ti =
(SNRi + 15)

30
(A.8)

The computation is finalized by averaging the transmission index values
across all frequency bands:

NCM =

∑20
i=1 Ti ×Wi

Wi

(A.9)

where Wi are the weights applied to each of the 20 bands (see Table A.1).

The NCM values for the NVS stimuli reported in Chapter 2 were
based on our own implementation in MATLAB. Later, the MATLAB
script used in the study of Chen (2011) was provided to us by the author,
and it was used to crosscheck our results.

CSII

The CSII was proposed by Kates and Arehart (2005) as one of the exten-
sions of the magnitude squared coherence (MSC) function (or the normal-
ized cross-spectral density of two signals) which has been used to analyze
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Table A.1: AI weights (ANSI, 1997) with corresponding center frequencies of each band,
used in the implementation of the NCM (left) and the CSII (right) for sentence materials.

NCM CSII

Band Hz Weight Hz Weight

1 325 0.0772 150 0.0192
2 377 0.0955 250 0.0312
3 435 0.1016 350 0.0926
4 500 0.0908 450 0.1031
5 571 0.0734 570 0.0735
6 650 0.0659 700 0.0611
7 737 0.0580 840 0.0495
8 834 0.0500 1000 0.0440
9 941 0.0460 1170 0.0440

10 1060 0.0440 1370 0.0490
11 1191 0.0445 1600 0.0486
12 1337 0.0482 1850 0.0493
13 1498 0.0488 2150 0.0490
14 1676 0.0488 2500 0.0547
15 1873 0.0493 2900 0.0555
16 2092 0.0491 3400 0.0493
17 2334 0.0520 - -
18 2602 0.0549 - -
19 2898 0.0555 - -
20 3227 0.0514 - -

effects of hearing aid distortion on speech intelligibility (Kates, 1992).
The CSII has been investigated as a speech intelligibility metric for de-
graded, masked speech stimuli as well as noise and tone vocoded speech
in several studies (Ma et al., 2009; Chen and Loizou, 2011a,b). The
metric generated promising values for the intelligibility of tone-vocoded
stimuli, while failing to predict the intelligibility scores for NVS stimuli
(Chen, 2011).

The computation of the MSC begins with dividing the reference and
test signals into a number (K) of overlapping windowed frames (using
30-ms Hanning windows with 50 % overlap in this study), computing the
cross power spectrum for each frame, and then taking the average across
all frames. For K number of data frames, the MSC at frequency bin, w,
is given by:

MSC(w) =
|
∑K

k=1 Xk(w)Y ∗
k (w)|2∑K

k=1 |Xk(w)|2
∑K

k=1 |Yk(w)|2
(A.10)
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The asterisk sign stands for the complex conjugate while Xk(w) and
Yk(w) denote the spectra of x(t) and y(t). For the present study, x(t)
corresponds to the reference and y(t) corresponds to the test signal. The
MSC measure takes values between 0 and 1.

The resulting MSC value is used to compute the signal-to-distortion
(SDR) ratio by using the coherence between the reference and test signals
by:

SDRCSII(i, k) = 10 log10

∑N
n=1 Gi(wn)×MSC(wn)× |Yk(wn)|2∑N

n=1 Gi(wn)× [1−MSC(wn)]× |Yk(wn)|2

(A.11)

where Gi(w) represents the rounded exponential filter (Moore and Glas-
berg, 1993) centered around the i -th critical band, and N is the FFT
size. The resulting value is limited to [-15, 15] dB, and mapped linearly
to the range 0 to 1 using:

TCSII(i, k) =
(SDRCSII(i, k) + 15)

30
(A.12)

Finally, the CSII measure is calculated by:

CSII =
1

K

K−1∑
k=0

∑N
i=1 TCSII(i, k)×W (i, k)∑N

i=1W (i, k)
(A.13)

where W (i, k) is the weight placed on the i -th frequency band (i.e.,
band importance function, (ANSI, 1997)). The center frequencies and
the associated weightings of the 16 bands used in the current study are
presented in Table A.1.

The CSII values for the NVS stimuli were computed by our own im-
plementation in MATLAB and are presented in the last section of this
appendix. The MATLAB implementation was crosschecked with the
script used in the study of Chen (2011), which was provided by the
author.

PESQ

The PESQ measure was originally developed as a speech quality predic-
tor for narrow-band handset telephony and narrow-band speech codecs
(ITU-T, 2000; Rix et al., 2001). It was used as an intelligibility metric
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for noise suppressed speech stimuli, corrupted by four different maskers
(car, babble, train, and street interferences) at two different SNR levels
(0 and -5 dB) in the study of Ma et al. (2009). The Pearson’s r between
the speech recognition scores and the PESQ values yielded a moderately
high correlation value, 0.79.

Later, the PESQ measure was evaluated in the study of Chen (2011)
with tone- and noise-vocoded speech, and the trend of the PESQ values
followed the increase in the number of frequency bands employed in the
NVS stimuli. It was observed that the prediction accuracy was lower for
the tone-vocoded when compared to noise-vocoded speech. The Pear-
son correlation between the PESQ values and the intelligibility scores
observed for the different number of frequency bands in the vocoded
stimuli was not reported based on the type of the carrier. For all the
vocoded stimuli, the Pearson’s r was reported as 0.46.

The computation of PESQ begins with equalizing the levels of the test
and the reference signals to a standard listening level. Afterwards, the
two signals are passed through a filter with a response similar to that of a
telephone handset. Time delays are compensated for by time aligning the
signals and the loudness spectra are computed. The loudness difference
between the test and the reference signals is computed and averaged over
time and frequency in order to generate a subjective quality rating. The
PESQ values are within the range of -0.5 to 4.5, while for most cases the
output stays between 1.0 and 4.5. High values indicate higher quality.

The PESQ values for the NVS stimuli were computed by MATLAB
scripts compiled from the PESQ version 2.0 binary (ITU-T, 2005; Woj-
cicki, 2011).

Parameter values of the CSII and the PESQ for NVS stimuli

The NVS stimuli were analyzed with the CSII and the PESQ metrics.
The CSII values as a function of the acoustic conditions are presented in
Fig. A.1.

The CSII was shown to produce high prediction accuracy with noise-
suppressed speech (Ma et al., 2009), broadband (non-vocoded) Mandarin
Chinese (Chen and Loizou, 2011a) and tone-vocoded English (Chen and
Loizou, 2011b). However, it can be seen that the CSII values did not
follow the increase in the number of frequency bands in NVS stimuli. In
fact, there is no variation in the parameter values, except for the original
speech.
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Figure A.1: Parameter values of the CSII metric for all acoustic conditions used in the two
experiments in Chapter 2.

This outcome is due to the computation of the CSII: The CSII mea-
sure mainly makes use of the spectral-envelope information to asses intel-
ligibility and could not account for the degradation regarding the tempo-
ral envelope of the NVS stimuli. The CSII values were not well correlated
with the increase in the number of frequency bands, subsequently with
the intelligibility of the NVSS, as well as with the serial-recall results
collected in Chapter 2.

It should be noted that, in the study of Chen (2011), the CSII values
for the tone-vocoded speech increased as a function of the number of
frequency bands, although not in a systematic way: The CSII values
increased between 2 to 4 bands and then stayed constant up to 8 bands,
where the values continued to increase again for higher number of bands.

The PESQ values for the NVS stimuli and the original speech condi-
tion can be seen in Fig. A.2. The PESQ measure was shown to perform
modestly well on predicting the intelligibility of consonants and sentences
in noise (Ma et al., 2009) and for predicting the intelligibility of tone-
vocoded English (Chen and Loizou, 2010), as well as NVS (Chen, 2011).
The PESQ values for the NVS stimuli reported in the study of Chen
(2011) increased gradually from 2-band (approx. 0.95) to 8-band NVS
stimuli (approx. 1.8), which is a relatively small increase when the range
of the parameter (-0.5 - 4.5) is considered.

It can be seen that there is a slight increase in PESQ values as a
function of the number of frequency bands for the NVS stimuli used
in Chapter 2. However, while 1-band NVS yielded a PESQ value of
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1.07, the 18-band NVS resulted in a value of 1.20. The increase in the
PESQ values is not reflecting the increase in the number of frequency
bands when compared with the results in Chen (2011). The authors had
stated that the PESQ measure was well correlated with the intelligibility
scores of tone-vocoded speech when the channel number was fixed at 8,
while the curve of the intelligibility scores between 2 to 5 bands was not
reflected in the PESQ values.

Figure A.2: Parameter values of the PESQ measure for the NVS and original speech stimuli
used in the two experiments reported in Chapter 2.

Finally, it should be emphasized that there was no subjective intel-
ligibility test conducted for the stimuli used in Chapter 2. Instead, the
relation between the number of frequency bands and the perceived intel-
ligibility of the NVS stimulus is based on experimental results reported
in the literature (e.g., Davis et al., 2005; Chen, 2011; Ellermeier et al.,
2015). Based on the common findings derived from these studies, it can
be concluded that the CSII metric failed to account for the intelligibility,
while the PESQ values demonstrated a small increase when the number
of frequency bands increased. More important to this study, neither one
of the metrics is capable of predicting the serial-recall results reported
in Chapter 2.
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B Gain optimization procedure for generating
spectrally-modified noise-pulse train stimuli

The impact of temporal and spectral features of irrelevant sounds on
the ISE was investigated using a reference noise-pulse train stimulus (see
Sec. 5.3) in a serial-recall task after modifying the temporal and spectral
features of every second-indexed pulse, P2, in Chapter 5. The temporal
modification was obtained by increasing the pulse width of P2 which
changed the AMTF values systematically. The spectral modification
was obtained by applying gains to seven octave bands (125 Hz - 8 kHz)
of P2 which varied the FDCCnew values. Because this would result in a
change in AMTF as well, an optimized gain structure was developed.

The present appendix describes the gain optimization procedure de-
veloped for generating spectrally modified noise-pulse train (NT) stimuli
used in the two experiments reported in Chapter 5. The procedure ex-
plained here was also used for modifying the spectral features of the
experimental stimuli employed in Appendix C and the only difference
between the two processes is the different acoustic characteristics of the
reference stimuli used in the optimization procedure explained below.

Gain optimization procedure

The process began with investigating the behaviour of the modulation
index in each octave band with respect to the gain values applied. A
total of eleven gains were applied in each octave band of P2, ranging
from θ = 0 to θ = 1 in steps of ∆ = 0.1. The duration of the width of
P2 was kept at 50 ms.

The modulation index values for all octave bands and for each mod-
ulation frequency were calculated and it was observed that the patterns
of the modulation index values of each modulation frequency were sim-
ilar in all octave bands. Therefore, the patterns were averaged across
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octave bands and the modulation index values as a function of gains are
presented in Fig. B.1.
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Figure B.1: The mean modulation index values for each modulation frequency as a function
of the eleven gains.

Here it should be reminded that in order to compute the MTF a
reference signal is needed. The modified pulses were used to generate a
spectrally modified 1 min NT stimulus for each gain level and the MTF
for each NT stimulus was computed using the unmodified NT stimulus as
the reference. The resulting MTF values of each modulation frequency
as a function of the gains are presented in Fig. B.2. It can be seen
that when the gain of each octave band increased, the MTF decreased
at the modulation frequencies of 0.5 Hz, 1 Hz, 2 Hz and 16 Hz, while in
the case of modulation frequencies of 4 Hz and 8 Hz, the MTF remained
constant. The behaviour of the MTF in each modulation frequency band
with respect to octave band gains is formulated as a quadratic function:

Mij(θi) =

{
1 if j = 4, 8 Hz

αjθi
2 + βjθi + γj if j = 0.5, 1, 2, 16 Hz

(B.1)

where αj, βj, γj are the coefficients of the quadratic function in the
j-th modulation frequency, and the θi is the gain applied to the i-th
octave band. The coefficient values for each modulation frequency band
were approximated using the built-in polyfit function in MATLAB (The
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Figure B.2: The MTF values as a function of octave band gains for each modulation fre-
quency. The x-axis presents the gain values applied to P2 and the y-axis shows the corre-
sponding MTF values. Each line represents a different modulation frequency.

MathWorks Inc., Natick, MA), and are presented in Table B.1.

Table B.1: Coefficient values for α, β and γ.

0.5 Hz 1 Hz 2 Hz 4 Hz 8 Hz 16 Hz

α 0.037219 0.11496 -0.50495 0 0 0.092307
β -0.13014 -0.52378 -0.8472 0 0 -0.365651
γ 1.0378 1.1536 1.332 1 1 1.1066

The MTF values as a function of octave band gains for each modu-
lation frequency were computed using the coefficient values presented in
Table B.1 in the quadratic function (Eq. B.1) and the resulting values
are presented in Fig. B.3.

The quadratic function relates the gains with the MTF, thus the com-
putation of the AMTF in a given octave band gain value was realized
by:

M =
1

N K

K=7∑
i=1

N=6∑
i=1

Mij(θi) (B.2)

where N represents the number of the modulation frequency bands and
K is the number of octave bands.
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Figure B.3: The MTF values computed using the coefficient values presented in Table B.1,
as a function of octave band gains for each modulation frequency are presented. The x-axis
presents the gain values applied to P2 and the y-axis shows the approximated MTF values.
Each line represents a different modulation frequency.

Equation B.2 was used to generate a set of octave band gains which
satisfies the condition of a desired FDCCnew value and a constant AMTF
value by optimizing a cost function:

minimize
x

Q(Θ) = (F (Θ)− F0)2 − (M(Θ)−M0)2

subject to 0 ≤ Θ ≤ 1
(B.3)

where Θ denotes the vector containing gain values for seven octave bands,
F , F0, M and M0 represent calculated FDCCnew, the target FDCCnew,
calculated AMTF and the target AMTF values, respectively.

The cost function (Eq. B.3) was presented as a constrained minimiza-
tion problem and the MATLAB function fmincon was used to find the
optimal Θ which satisfies both the desired values for the FDCCnew and
the AMTF.

This optimization method was tested for the target FDCCnew val-
ues ranging from 0 to 1, in steps of 0.1, while the AMTF was fixed at
1. The optimum gain values obtained from the algorithm were checked
by computing the actual estimators in order to observe if the following
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conditions were satisfied:

Ftol = |F − F0| ≤ 0.05

Mtol = |M −M0| ≤ 0.1
(B.4)

where Ftol and Mtol stand for the tolerated deviations from the desired
FDCCnew and ATMF values, respectively.

The initial gain values were randomized and the computation was
repeated again if the conditions expressed above were not satisfied after
20 trials. A maximum number of 500 iterations was allowed for one
desired FDCCnew value: If the conditions (Eq. B.4) were still not met,
the process restarted with the next desired FDCCnew value.

Several trials revealed that gains associated with the FDCCnew ≤
0.2 were suitable values to be used as initial values to begin with the
optimization process. Three trials were run with three different initial
values, and 30 sets of gains were obtained. The gains resulted in the
FDCCnew values ranging from 0.06 to 1, while the AMTF values obtained
from the same gains were kept at 1, within a tolerance of 0.1.
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Figure B.4: The FDCCnew and the AMTF values of the 30 spectrally modified noise-pulse
train stimuli. The x-axis shows the spectrally modified noise-pulse train stimuli and the
y-axis shows the parameter values of the FDCCnew (blue triangle markers) and the AMTF
(red asterisk markers) of each stimulus.

The results show that the intended purpose of modifying the FDCCnew

while keeping the AMTF constant was achieved by the aforementioned
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technique. Thirty spectrally modified NT stimuli were generated and the
parameter values for the set of NT stimuli are presented are Fig. B.4.
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C An attempt to quantify the perceptual
sensitivity to changes in the FDCCnew

C.1 Introduction

The role of spectral variation on the irrelevant sound effect (ISE) has been
investigated using a spectral metric, the frequency domain correlation
coefficient (FDCCnew), in different experiments throughout this thesis.
The experimental stimuli were generated by techniques which produced
a systematic spectral variation in the stimuli in order to evaluate the
accuracy of the FDCCnew as a prediction model for the ISE.

These experiments not only allowed us to observe the strengths and
the limitations of the FDCCnew, but also provided a deeper understand-
ing regarding the relation between the spectral features of the sounds
and the ISE. It was shown that the serial-recall results resembled the
FDCCnew values up to an extent when the speech stimuli were manipu-
lated in the frequency domain in a systematic way. On the other hand,
the results reported in Chapter 5 clearly showed that when the experi-
mental stimuli were generated by modifying simpler non-speech stimuli,
the FDCCnew failed to predict the lack of an ISE: The noise-pulse train
(NT) stimuli, which comprised a similar degree of spectral variation as
the speech stimuli, did not produce an ISE.

This was considered to be a surprising outcome since a similar type
of stimulus, a sequence of band-pass filtered noise bursts, was shown to
create an ISE (Tremblay et al., 2001). It was discussed that the lack of
ISE observed in Chapter 5 might be due to the signal processing tech-
nique used to generate the NT stimuli: The reference noise pulse was
generated by summing seven band-limited noise-pulses and the change
in the FDCCnew values was generated by applying gains to seven oc-
tave bands. This is different than concatenating band-pass filtered noise
bursts with different center frequencies (Tremblay et al., 2001), because
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the spectra of the two successive band-limited noise bursts with differ-
ent center frequencies would not comprise energy in shared frequency
bands if the quality factor (Q) is high enough. This would result in an
FDCCnew value of 0 if the distance between the two center frequencies is
larger than one-third octave.

The results of Chapter 5 revealed a critical limitation for the FDCCnew:
The FDCCnew can not account for the tonal distance between the suc-
cessive tokens of the sounds. The FDCCnew value would not change if
the center frequencies of the two band-pass filtered noise bursts were
two, three or four octaves apart. The observed limitation of the metric
produced a new question about the lack of ISE observed in the same
experiment: Did the participants hear any differences between the NT
stimuli with different FDCCnew values?

In the present study, we expand on this question and further investi-
gate the perceptual sensitivity to changes in the FDCCnew by measuring
just noticeable differences (JNDs) of the different value ranges of the
spectral metric values. The JNDs were measured with an alternative
forced choice (AFC) paradigm (Levitt, 1971), in which subjects had to
listen to trials of three sound intervals. One of these intervals was a spec-
trally modified version of the other two (reference) intervals and had to
be identified by the participants. The NT stimuli used in the first experi-
ment in Chapter 5 were chosen for the task in order to further investigate
the lack of ISE observed in the results. The stimuli and the experimental
procedure are explained in the following sections. The results and the
discussion are presented in sections C.4 and C.5.

C.2 Noise-pulse train (NT)

A half-second long reference noise-pulse train was generated by concate-
nating the two Hanning-shaped reference noise-pulses employed in the
experiments in Chapter 5 (see section 5.3, Eq. 5.2). The pulse width
of the first pulse (P1) was kept the same as in Chapter 5, 50 ms, while
the pulse width of the second pulse (P2) was increased to 150 ms. The
amplitudes of P2 and P1 were equal and the peaks of the two pulses
were separated by 250 ms. Four half-second noise-pulse sequences were
concatenated and a two second long reference NT stimulus was formed.
The reference NT stimulus is presented in Fig. C.1.

The reference NT stimulus has a flat spectrum. The frequency spec-
trum of P2 is identical to P1 and the FDCCnew value is 1. The experi-
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Figure C.1: Time course of a two second long section of the reference noise-pulse train
stimulus. The two pulses, P1 and P2, alternate two times per second.

mental stimuli were generated by applying gains to the octave bands of
P2 while keeping the temporal features unmodified which is controlled
by computing the average modulation transfer function (AMTF, for a
detailed explanation see 5.2.1) values constantly. The method used in
the present study is identical with the method used in Chapter 5 and pre-
sented in Appendix B, however, an additional step of gain optimization
was also introduced.

C.2.1 Modifying spectral features

The gain optimization procedure described in Appendix B was initiated
by using the reference NT stimulus of the present study, with 21 tar-
get FDCCnew values between 0 and 1, with a stepsize of 0.05. It was
observed that it was not possible to generate gains which would yield
FDCCnew values lower than 0.25 without modifying the temporal fea-
tures. Therefore, the lowest FDCCnew value used in the pilot and the
main experiment in the present study was chosen to be 0.25.

An additional gain optimization procedure was required due to the
definition of the FDCCnew: The FDCCnew quantifies the spectral vari-
ation from one token to the next one, P1 to P2 in this case, but does
not reflect the overall spectrum of the stimulus. For instance, a desired
FDCCnew value can be reached by applying seven similar gain values
to the P2 or only altering one band drastically. The resulting two NT
stimuli would be easy to distinguish from each other even though the
FDCCnew values are the same, hence not suitable for an AFC task.
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The aforementioned limitation was demonstrated by generating four
sets of gains where three (Fig. C.2a, Fig. C.2b, Fig. C.2c) of those
produce similar FDCCnewvalues while the fourth one (Fig. C.2d) pro-
duces a very different FDCCnew value. When the gains presented in
the left (a), the middle-left (b), the middle-right (c) and the right (d)
graphs in Fig. C.2 were applied to P2 of the reference NT stimulus,
the resulting FDCCnew values were 0.5059, 0.5256, 0.5140 and 0.7939,
respectively. The NT stimuli produced using the gains presented in Fig.
C.2b (FDCCnew = 0.5256) and Fig. C.2c (FDCCnew = 0.5140) will be
easily distinguished from the NT stimulus produced using the gains pre-
sented in Fig. C.2a (FDCCnew = 0.5059) in an AFC task. On the other
hand, the NT stimulus generated using the gains presented in Fig. C.2d
(FDCCnew = 0.7939) will not be easy to identify when it is presented
next to the NT stimulus generated using the gains in the left graph (Fig.
C.2a), even though the corresponding FDCCnew values are further apart.
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Figure C.2: Four sets of gain values are presented which were generated by the optimization
procedure where the lower and upper ranges of the applicable gains were 0 and 1. The gain
values presented in the left graph (a) yield an FDCCnew value of 0.5059, the gains presented
in the middle-left graph (b) produce an FDCCnew value of 0.5256, the gains presented in
the middle-right graph (c) generate an FDCCnew value of 0.5140, and the gains presented
in the right graph (d) generate an FDCCnew value of 0.7939 when applied to P2.

In order to prevent this, the optimization procedure was modified in
a way that it would have access to a smaller range of applicable gain val-
ues by decreasing the upper and increasing the lower boundaries of gain
limits for each octave band. This limitation reduces the likelihood of ob-
taining an extreme gain value for one of the octave bands. An additional
step of gain optimization was introduced to determine the new limits of
the gain optimization procedure: 16 sets of octave-band gains between
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0.25 and 1 were generated by using the optimization procedure which
satisfy an ATMF value of 1 (with a tolerance of 0.1) and 16 FDCCnew

values between 0 to 1 (with a tolerance of 0.02), with a stepsize of 0.05.
The average (µ) and the standard deviation (σ) of the 16 gains for each
octave band were computed. The new lower boundary (θmin) for each
octave band was computed by µi − σi and the upper boundary (θmax)
was determined by µi + σi, where i represents i-th octave band. The
lower and upper boundaries for applicable gains in each octave band are
presented in Table C.1.

Table C.1: The lower and upper boundaries of the applicable gain values.

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

θmin 0.35 0.04 0.34 0.02 0.05 0.04 0.04
θmax 0.88 0.65 0.82 0.56 0.52 0.53 0.29

The results of introducing a new stage to the gain optimization pro-
cedure were investigated by running a pilot AFC test.

C.2.2 Pilot experiment

Three sets of gains were generated by running the optimization pro-
cess three times with the same gain limits and same target FDCCnew

values. Each set of obtained gains was used to produce a set of spec-
trally modified NT stimuli by applying the gains to P2. Each desired
FDCCnew value was obtained three times, one in each set, with different
gain structures. The expectation is that, when the JNDs are measured
for the same FDCCnew values generated by different sets of gains with
identical limits, the results should be similar.

Method and procedure

An adaptive three-interval AFC (3-AFC) procedure was used in order to
validate the aforementioned gain-range limitation technique. Two of the
intervals always contained the reference stimulus, while the remaining
interval contained the spectrally modified NT. The participants were
asked to detect which interval was different from the other two.

The thresholds were determined with an adaptive 1-up, 2-down stair-
case procedure (Levitt, 1971), which meant that the absolute difference
between the FDCCnew values of the spectrally modified and the reference
NT stimuli (∆FDCCnew) was reduced when the participant correctly
identified the spectrally modified interval in two consecutive trials. If
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the participant failed to detect the modified NT, the ∆FDCCnew was
increased. The participant was given a visual-feedback regarding his /
her answer after each trial.

The stepsize, the change in the ∆FDCCnew from one trial to another,
of each trial varied according to the ∆FDCCnew of the present trial: If
the ∆FDCCnew of the present trial was larger than 0.05, the ∆FDCCnew

was increased or decreased by a stepsize of 0.05 and if the ∆FDCCnew

value of the present trial was between 0.05 and 0.03, the stepsize was
0.01. For ∆FDCCnew values between 0.03 and 0.01, the stepsize was
0.005 and if the participant reached the trials where the ∆FDCCnew was
0.01 and lower, the stepsize was 0.0025. The target ∆FDCCnew values
of the pilot experiment were the same as those of the major experiment
for the reference FDCCnew value of 0.5. The target values are presented
in the first column of Table C.2.

The ∆FDCCnew value of the first trial in each session was 0.2 while the
minimum value reachable was 0 and the maximum value was determined
by the FDCCnew value of the reference NT. For the pilot experiment, the
FDCCnew values of the three reference NT stimuli were chosen to be 0.5.
The FDCCnew values of the target stimuli were lower than the reference
stimulus, 0.5, until the ∆FDCCnew value of the present trial reached
0.25. For the ∆FDCCnew values higher than 0.25, the FDCCnew values
of the target stimuli were higher than the FDCCnew value of the reference
stimulus. The values written in blue color in the third column of Table
C.2 denote the ∆FDCCnew values of the trials where the FDCCnew value
of the reference stimulus is lower than that of the target stimulus. Here
it should be reminded that the actual ∆FDCCnew values in the third
column of Table C.2 are the values used in the main experiment for
the reference FDCCnew of the 0.5 condition, not in the pilot. However,
the first column of the table can be used as a guideline for the stepsize
structure of the pilot experiment.

If the participant reached the trial where ∆FDCCnew had the maxi-
mum possible value and could still not detect the different stimulus three
times in one session, the session was terminated and data was discarded.
There were no preventive measures taken for the reversed scenario: If
participant reached the trial where ∆FDCCnew was 0, then it would
eventually be counted as a reversal in every one time out of three, and
this would be reflected in the measured JNDs. However, a visual and
an auditory event was programmed to trigger a signal in the monitor-
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ing screen placed outside of the sound booth in order to make sure that
the responsible researcher observes the situation in real time and stops
the experiment if necessary. Each session was stopped after 10 reversals
and the mean of the ∆FDCCnew values observed in the last six reversals
served as the threshold.

Stimuli, participants and apparatus

There were three acoustic conditions and each condition consisted of
a set of spectrally modified NT stimuli generated by a different set of
gains. For each condition, 20 spectrally modified NT stimuli, including
the reference NT stimuli with the FDCCnew value of 0.5, were generated
by applying the 20 octave-band gains to P2. The 19 spectrally modified
NT stimuli yielded 19 different FDCCnew values which correspond to the
stepsize structure explained in the previous section (see first column in
Table C.2). Here it should be noted that there was a degree of variation
allowed for these values and the NT stimuli which yielded the FDCCnew

values closest to the target FDCCnew values were chosen.

Four normal-hearing subjects (three males and one female, age range
= 18 - 28) participated in the experiment. All subjects were students
of the Eindhoven University of Technology and reported normal hearing
and normal or corrected vision. The participants were paid a small
compensation fee.

The experimental procedure was structured as a block design: Each
condition was presented in only one block and repeated once for each
participant. The blocks were presented in randomized order and the
presentation of the experimental blocks was preceded by a short training
block. There were 3 min breaks between each block and one experimental
session was completed in approx. 30 minutes.

The experiment took place in the same lab and the same hardware
equipment was used as it was reported in Sec. 2.4.1. The 3-AFC test
was conducted using APEX 3 software developed at ExpORL (Francart
et al., 2008). The sounds were presented through headphones in a diotic
reproduction and the average sound level of each stimulus was calibrated
to 65 dBLAeq.

Results

The results are presented in Fig. C.3 as mean values with standard er-
rors (SEM) over four subjects. The JNDs measured for the three 0.5
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conditions were slightly different from each other, however, the differ-
ences were not statistically significant. The lowest measured JND was
0.22 and the highest was 0.30.
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Figure C.3: JNDs for the three acoustic conditions where the reference stimulus used in
each condition yielded an FDCCnew value of 0.5. Error bars represent the SEM. (N = 4)

The objective of the pilot experiment was to observe if the gain-range
limitation introduced to the gain optimization stage was successful to
avoid the generation of stimuli with extreme gain values. The results
showed that the measured JNDs for three conditions were statistically
similar and the NT stimuli with similar FDCCnew values generated simi-
lar JNDs regardless of the profile of the gains applied. The adapted gain
optimization procedure was employed to generate the spectrally modified
NT stimuli for the main 3-AFC experiment.

C.3 Experiment
The perceptual sensitivity of the FDCCnew was determined by measuring
JNDs with six different reference FDCCnew values, in order to obtain a
set of JND measures as a function of the FDCCnew values. The experi-
mental procedure was identical with that of the pilot test, except for the
number of sessions which was increased to 6, one for each condition, for
each participant. The description of the experimental procedure is given
below.
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Table C.2: List of ∆FDCCnew values for each acoustic condition. Each column represents a
set of ∆FDCCnew values for a group of spectrally modified noise-pulse train stimuli which
belongs to one of the six acoustic conditions. The FDCCnew value of the reference stimulus
used in each condition is presented in the second row of the table and the target ∆FDCCnew

values for each row is denoted in the first column. The colored values denote the cases where
the FDCCnew value of the test signal is higher than the FDCCnew value of the reference
stimulus.

∆FDCCnew values of each set of stimuli

∆FDCCnew 0.25 0.5 0.7 0.8 0.9 0.98

0.0025 0.0020 0.0010 0.0024 0.0069 0.0025 0.0031
0.0050 0.0047 0.0016 0.0062 0.0094 0.0049 0.0057
0.0075 0.0072 0.0031 0.0089 0.0109 0.0082 0.0083
0.0100 0.0087 0.0113 0.0118 0.0126 0.0111 0.0107
0.0150 0.0142 0.0160 0.0196 0.0136 0.0232 0.0156
0.0200 0.0200 0.0217 0.0203 0.0187 0.0252 0.0182
0.0250 0.0244 0.0240 0.0294 0.0252 0.0345 0.0254
0.0300 0.0283 0.0311 0.0361 0.0285 0.0438 0.0317
0.0400 0.0390 0.0404 0.0497 0.0454 0.0467 0.0401
0.0500 0.0530 0.0481 0.0562 0.0490 0.0698 0.0506
0.1000 0.1026 0.0947 0.0993 0.1003 0.1071 0.0990
0.1500 0.1599 0.1447 0.1454 0.1499 0.1550 0.1530
0.2000 0.1988 0.1968 0.1986 0.1904 0.2054 0.2019
0.2500 0.2573 0.2530 0.2653 0.2456 0.2595 0.2471
0.3000 0.2964 0.3010 0.2941 0.3093 0.3000 0.3046
0.3500 0.3492 0.3470 0.3391 0.3561 0.3553 0.3547
0.4000 0.3990 0.4032 0.3984 0.4008 0.4189 0.4056
0.4500 0.4480 0.4331 0.4286 0.4553 0.4505 0.4554
0.5000 0.5059 0.4811 - 0.4992 0.5105 0.5063
0.5500 0.5495 - - 0.5289 0.5528 0.5531
0.6000 0.6042 - - - 0.6088 0.6199
0.6500 0.6554 - - - 0.6385 0.6649
0.7000 0.6806 - - - - 0.7038
0.7500 0.7386 - - - - 0.7510

C.3.1 Method
Participants

A total number of 14 participants (eight females and six males, age
range between 18-50 years) were recruited via the JF Schouten subject
database of the Eindhoven University of Technology, Eindhoven, The
Netherlands. All participants stated that they had healthy vision, hear-
ing and no history of memory related disorder. The eligibility criteria
were cross checked prior to the experiment, before they signed the in-
formed consent forms. The experimental procedure was examined and

Page 167



C An attempt to quantify the perceptual sensitivity to changes in the FDCCnew

approved by the Human Technology Interaction department, Eindhoven
University of Technology and the Internal Committee Biomedical Exper-
iments (ICBE) of Philips Research.

Stimuli

Six reference FDCCnew values were chosen: 0.25, 0.5, 0.7, 0.8, 0.9 and
0.98. Six sets of spectrally modified NT stimuli were generated by ap-
plying six sets of gains produced by a range-limited gain optimization
procedure explained in the previous section, where the upper and lower
boundaries of the applicable gains were identical for each set and the
same as those presented in Table C.1. The gain values used to gener-
ate the six reference NT stimuli are presented in Table C.3. The set of
stimuli for the 0.5 condition was regenerated with the same gain limita-
tions, hence they were not the ones used in the pilot experiment. The
∆FDCCnew values of each spectrally modified stimulus in each condition
are presented in Table C.2.

Table C.3: The gain values used to generate the six reference noise-pulse train stimuli
FDCCnew values.

Ref. FDCCnew 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

0.25 0.85 0.06 0.80 0.08 0.08 0.06 0.06
0.5 0.56 0.23 0.45 0.12 0.17 0.15 0.06
0.7 0.40 0.41 0.47 0.26 0.28 0.38 0.20
0.8 0.39 0.38 0.44 0.30 0.31 0.36 0.24
0.9 0.35 0.35 0.41 0.30 0.29 0.35 0.28
0.98 0.59 0.50 0.55 0.17 0.28 0.18 0.27

Apparatus

The apparatus was the same as the one used in the pilot experiment.

Procedure

The experimental procedure was identical to that of the pilot experiment:
Each condition was repeated once per session and presented in one block
only. The presentation order of the blocks was randomized and the actual
experiment began after participants completed a short training block.
One experimental session took approx. 60 mins to complete including
the breaks.

C.4 Results
The measured JNDs are presented in Fig. C.4 as a function of the
FDCCnew values for 14 subjects. Two of the subjects could not detect
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the different stimulus when the ∆FDCCnew value of the active trial was
the maximum possible in the 0.7 and 0.98 conditions. Corresponding
experimental data were discarded.
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Figure C.4: JNDs for six acoustic conditions as a function of the FDCCnew values. Error
bars represent the SEM. (N = 14)

Each set of spectrally modified NT stimuli generated for a specific ref-
erence FDCCnew value was treated as an acoustic condition and the effect
of acoustic treatments on JNDs was confirmed by a one way repeated
measures ANOVA, F (5, 63) = 15.79; p < .001. Post-hoc analyses were
conducted using the Bonferroni correction (p = 0.003 for 15 pairs) and
seven pairs of acoustic conditions were found to be significantly different
(p < .05). The statistical results are summarized in Table C.4.

The results showed that the JNDs tend to increase as a function of
the reference FDCCnew values. Participants successfully detected the
different NT stimulus when the ∆FDCCnew value reached approx. 0.15
in the lowest reference FDCCnew value condition (0.25), while for the
reference FDCCnew value of 0.98 the JND was measured as 0.35. There
was a steep increase observed in the JNDs between 0.5 (0.19) and 0.8
(0.36) conditions and the JND value for 0.7 (0.29) condition was in be-
tween. Noticeably, the JND for the reference FDCCnew value of 0.9 did
not follow the trend. In fact, the smallest JND value (0.14) was mea-
sured for the 0.9 reference FDCCnew, while the largest JND value (0.36)

Page 169



C An attempt to quantify the perceptual sensitivity to changes in the FDCCnew

Table C.4: Pairwise comparison of JNDs for the all possible pairs using Bonferroni correction.
Only the seven significant pairs are presented.

Statistically significant pairs JNDs (FDCCnew) p values

0.25 - 0.8 0.16 - 0.36 p < .001
0.25 - 0.98 0.16 - 0.35 p < .001
0.5 - 0.8 0.19 - 0.36 p < .01
0.5 - 0.98 0.19 - 0.35 p < .01
0.7 - 0.9 0.29 - 0.14 p < .05
0.8 - 0.9 0.36 - 0.14 p < .001
0.9 - 0.98 0.14 - 0.35 p < .001

was measured for 0.8, one of its two neighboring conditions.

C.5 Discussion

The results demonstrated a well-defined behaviour of the JNDs as a func-
tion of the FDCCnew values, except the statistically significant decrease
of the JND observed for the 0.9 condition. A possible explanation can
be that the results of the pilot experiment might be misleading and the
gain limitation approach might have been unsuccessful. In that case,
one of the NT stimuli would be much more easy to detect and the corre-
sponding ∆FDCCnew value would appear more frequently in the list of
reversals.

The ∆FDCCnew values corresponding to the reversals obtained from
the 3-AFC sessions for 14 participants in the 0.9 condition are presented
in Table C.5. When the ∆FDCCnew values of the reversals were inves-
tigated, it was observed that 21 times (denoted by red and green font
colors) out of 98 reversals occurred when the ∆FDCCnew was 0.0698
(10th row in the 6th column in Table C.2). Participants successfully
detected the NT stimulus seven times (green) out of 21 and 14 reversals
(red) were incorrect answers. However, similar numbers of repetitions of
one of the NT stimulus in the reversal lists as a correct response were
also observed in the other acoustic conditions and the number of incor-
rect responses associated with this particular stimulus already eliminates
a possible gain-limitation procedure problem.

Despite the unexpected result observed in the 0.9 condition, the be-
haviour of the JNDs supports the lack of ISE observed in the first exper-
iment reported in Chapter 5: Participants might have failed to perceive
any differences between the majority of the NT stimuli presented in the
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Table C.5: The list of ∆FDCCnew values corresponding to the last six reversals of each
participant observed in the 0.9 condition are presented. The colored values show the reversals
observed when the ∆FDCCnew of the active trial was 0.0698. The values in red color
represent the incorrect answers given by the participant and the green colors indicate that
the participant successfully identified the stimulus as the different one.

∆FDCCnew values of each reversal for each participant

Par1 0.5105 0.4189 0.4505 0.4189 0.4505 0.4189
Par2 0.1071 0.0467 0.0698 0.0438 0.0698 0.0467
Par3 0.0698 0.1071 0.0698 0.1071 0.0698 0.1071
Par4 0.0698 0.1071 0.0698 0.3553 0.2054 0.3553
Par5 0.1071 0.0698 0.1550 0.1071 0.1550 0.0698
Par6 0.0698 0.2595 0.0467 0.0698 0.0467 0.0698
Par7 0.0698 0.1071 0.0467 0.2054 0.0467 0.0698
Par8 0.2595 0.1550 0.3553 0.1550 0.3553 0.0698
Par9 0.0438 0.0467 0.0438 0.0467 0.0345 0.0698

Par10 0.1550 0.3000 0.2054 0.2595 0.1071 0.1550
Par11 0.0698 0.1550 0.0698 0.1550 0.0698 0.1550
Par12 0.0698 0.1071 0.0467 0.0698 0.0467 0.1071
Par13 0.0345 0.0438 0.0345 0.0467 0.0232 0.0345
Par14 0.4189 0.2595 0.3553 0.1550 0.2054 0.1550

experiment. It should also be noted that the 3-AFC task requires sub-
jects to concentrate on the sounds presented to them, while the serial-
recall task instructs the opposite. It might be possible that the required
∆FDCCnew values to perceive any difference in the NT stimuli may be
even larger in a serial-recall context than the JNDs measured in this
study.

Nevertheless, the JNDs measured for the 0.9 condition prevent us from
quantifying the perceptual sensitivity of the FDCCnew and the present
study only accommodates indications regarding the perceptual behaviour
of the spectral metric for the NT stimuli. Therefore, the study is posi-
tioned in the appendix section and the results are not considered as a
basis for any further conclusions and / or assumptions in the rest of the
thesis.
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