

Optimization of product flows in flexible manufacturing
systems
Citation for published version (APA):
van Pinxten, J. H. H. (2018). Optimization of product flows in flexible manufacturing systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 20/12/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/844fd14b-7e43-4475-b720-add4cd5e104b

OPTIM
IZ

ATIO
N O

F

PRODUCT F
LOW

S

IN
 F

LEXIB
LE M

ANUFACTURIN
G S

YSTEMS

JO
OST VAN PIN

XTEN

Optimization of Product Flows
in Flexible Manufacturing Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op
donderdag 20 december 2018 om 13:30 uur

door

Joost Hendrikus Hubertus van Pinxten

geboren te Sint-Michielsgestel

Dit proefschrift is goedgekeurd door de promotor en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr.ir. J.H. Blom

1e promotor: prof.dr.ir. T. Basten

co-promotor: dr.ir. M.C.W. Geilen

leden: prof.dr. Sebastian Engell (Technische Universität Dortmund)

prof.dr. Frits Vaandrager (Radboud Universiteit Nijmegen)

prof.dr.ir. Jeroen Voeten

dr. Lou Somers

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Optimization of Product Flows
in Flexible Manufacturing Systems

J.H.H. van Pinxten

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 402.

This work is part of the research program Integrated Scheduling and
Control with project number 12693, which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO).

Copyright © 2018, J.H.H. van Pinxten.

All rights reserved. Reproduction in part or in whole is prohibited with-
out the written consent of the copyright owner.

Printed by Proefschriftmaken, The Netherlands

A catalogue record is available from the Eindhoven University of Tech-
nology Library. ISBN 978-94-6380-165-2

To my family and our purrito’s.

Summary

Optimization of Product Flows
in Flexible Manufacturing Systems

Wafer scanners, robotic assembly lines, and industrial printers are examples
of flexible manufacturing systems (FMSs) that manufacture customized products.
Wafer scanners expose silicon wafers with UV-light in a process to create com-
puter chips, and industrial printers transfer digital images onto sheets of paper.
Each product may have different requirements or characteristics, which can lead
to different timing constraints between operations. The productivity of FMSs is
limited by cyber constraints, such as the computation time of an on-line schedul-
ing algorithm, as well as physical constraints, such as limitations on the movement
of a product. The interaction between components in FMSs as well as their pro-
ductivity requirements are ever increasing. In this thesis, we provide techniques to
perform on-line scheduling of the product flows of such cyber-physical FMSs, and
to analyse the impact of system design parameters on total system performance.

FMSs can take many forms. We focus on scheduling algorithms for re-entrant
FMSs, i.e., where the product re-enters one of the machines. Such a use case is
found in industrial printing, where a sheet (i.e., the product) needs to be printed
on both sides, by passing through an image transfer station twice. The media types
and output order of the sheets are determined by the customer, and are not al-
lowed to be changed. After processing a sheet, the image transfer station may need
to be reconfigured before it can process the next sheet. The reconfiguration times
typically depend on the differences in length, thickness, coating, and other me-
dia characteristics. The characteristics for a particular product, and therefore their
timing requirements, are known only moments before the FMS must receive the
processing instructions. Therefore, a scheduler must quickly calculate efficient
timing instructions for each operation. The challenge is to merge the streams of
unprinted sheets and re-entering printed sheets without collisions and without
violating reconfiguration times, while optimizing the performance of the system.
The sequence of the products at the image transfer station plays an important role
in the performance of industrial printers, since it directly impacts the reconfigu-
ration times between products. The performance is therefore determined by the
interplay of user input, the physical parameters of the system components, and
the scheduling decisions.

vi

First, we present an efficient on-line sheet scheduling algorithm for indus-
trial printers. The problem is modelled using a re-entrant flow shop with set-up
times, due dates, and fixed output order. Given a particular sequence of prod-
ucts (i.e., a print job), the sheet scheduling algorithm determines a feasible and
efficient sequence of operations at the re-entrant machine (i.e., the image trans-
fer station). The timing instructions for each of the operations on the sheets can
then be efficiently found. Our heuristic algorithm uses multi-objective optimiza-
tion to explore intermediate sequencing options without performing backtracking.
The heuristic leverages several properties of the scheduling problem, such as the
output ordering of the sheets and limitations on the number of products that are
partially processed. For the type of FMS considered, the output order of products
within a batch (e.g., a print job is a batch of sheets) is fixed, but the batches still
need to be ordered.

The second contribution is a scheduling heuristic that determines the orders
of batches and selects system settings for each batch, such that Pareto-optimal
productivity and quality trade-offs are found. Optimizing input order is particu-
larly relevant for FMSs that may need reconfiguration between different products,
such as industrial printers. The problem is modelled as a Multi-objective Gener-
alized Traveling Salesman Problem (MOGTSP) and the ordering algorithm is an
on-line, multi-objective heuristic that yields good results in less computation time
than the state-of-the-art approaches for MOGTSP.

Third, we contribute a parametric critical path analysis for design-time ana-
lysis. During the design phase, a designer needs to create a physical layout that
realizes a particular topology, i.e., a set of machines and their interrelations. Such
a layout is constrained by limitations from many different domains. Constraints
may, for example, come from minimal and maximal heating times, minimal seg-
ment lengths, or maximal velocities. The designer needs to choose a realization
that simultaneously optimizes the total system behaviour and cost. Design pa-
rameters such as segment length or travelling velocity directly influence the total
system behaviour, as e.g. processing a product becomes faster or slower. Our para-
metric critical path analysis identifies relationships between (physical) parameters
and the productivity of an FMS. The scheduling graphs used in the sheet schedul-
ing heuristic are annotated with affine expressions that relate timing constraints
to design parameters. The analysis identifies bottlenecks in the productivity of an
FMS in terms of affine expressions for different sets of parameter combinations.
This analysis enables designers to identify how productivity depends on combina-
tions of parameters.

As a fourth contribution, we present an algorithm that determines the impact
of certain parameters on scheduling. Changes in the parameters may lead to se-
lecting different scheduling choices, and therefore creating different schedules. We
show that for some classes of schedulers it is possible to retrieve information about
which scheduling decisions are chosen for different parameter combinations. This
information can be obtained by performing symbolic scheduling. We can then ap-
ply the parametric critical path analysis to each of the different schedules. The

vii

total system productivity is then investigated in terms of these parameters, also
considering the scheduling decisions.

This dissertation provides designers and engineers with several tools to analyse
and optimize the system behaviour of FMSs. Trade-offs between productivity and
quality can be decided at run-time by effectively ordering the received batches.
The on-line sheet scheduler increases productivity due to more effective explo-
ration of scheduling options for 2-re-entrant flow shops. The input optimization,
parametric critical path analysis, and parametric scheduling characterization are
applicable to systems having events with minimal and maximal time lags.

Contents

1 Introduction 1
1.1 Manufacturing systems . 4
1.2 Flexible manufacturing systems . 6
1.3 Industrial printers . 7
1.4 Flexible manufacturing system challenges 9
1.5 Flexible manufacturing system design trends 10
1.6 Research aims and contributions . 12

2 Online Scheduling of Re-entrant Flexible Manufacturing Systems 15
2.1 Scheduling product flows in re-entrant FMSs 17
2.2 Problem definition . 19
2.3 Scheduling approach . 23
2.4 Exploring trade-offs in scheduling decisions 31
2.5 Experimental evaluation . 36
2.6 Related work . 41
2.7 Conclusion . 43

3 Multi-objective Optimization of Product Batches 45
3.1 Introduction . 47
3.2 Multi-Objective Generalized TSP . 49
3.3 Related work . 50
3.4 2PPLS for MO-GTSP . 53
3.5 CPMH applied to MO-GTSP . 57
3.6 Benchmarks and experimental evaluation 61
3.7 Conclusion . 68

4 Parametric Critical Path Analysis 69
4.1 Introduction . 71
4.2 Event networks . 72
4.3 Parametric critical path analysis . 74
4.4 Case studies . 85
4.5 Related work . 94
4.6 Conclusion . 97

x CONTENTS

5 Parametric Scheduler Characterization 98
5.1 Symbolic scheduling . 100
5.2 Running example . 101
5.3 Parametrized schedulers . 102
5.4 Exploring parameter combinations 109
5.5 Experimental evaluation . 113
5.6 Related work . 121
5.7 Conclusion . 122

6 Conclusions and Future Work 124
6.1 Conclusions . 125
6.2 Future work . 127

Acronyms 129

Appendices 133

A Bellman-Ford-Moore longest-path algorithm 134

B Proofs for convex polyhedra 140

Bibliography 147

Samenvatting 160

Acknowledgements 164

Curriculum Vitae 169

1

1

Introduction

Through the 19th and 20th century, the majority of the global work force shifted
from performing agricultural and manual labour to manufacturing goods in fac-
tories and assembly lines [26, 124]. Research on factories and manufacturing lines
greatly improved the efficiency and productivity of manufacturing resources. In-
creased efficiency of goods manufacturing through the late 20th century and early
21st century allowed the work force to shift from goods manufacturing to provid-
ing services instead [124]. Many goods are now produced using partially or fully
automated manufacturing systems [24, 85]. In this thesis, we contribute research
into the optimization and analysis of flexible manufacturing systems (FMSs), i.e.,
manufacturing lines that can easily adapt to produce customer-specific products.
Such manufacturing lines make use of robots and automated processing stations
to execute operations on (raw) input materials to produce goods.

Manufacturing systems that use technologies such as robots and automated
processing stations benefit from technological improvements. A technological im-
provement enables a higher quality of the final product, extending the range of
products, and/or improving the productivity of the machine. The productivity and
performance of automated manufacturing systems continues to improve by taking
advantage of technological improvements in areas such as computers, robots, and
artificial intelligence [24]. Global efforts to reduce time-to-market and production
costs are leading to ever higher demands on the performance of machines. To cope
with such demands, however, manufacturing systems must operate very close to
physical limitations. In addition, more coordination is needed between different
components, typically realized in the form of embedded systems. As a result, the
complexity of manufacturing systems has been increasing together with the qual-
ity, flexibility and productivity requirements.

The productivity of manufacturing lines has soared in the 19th and 20th century
due to investments in technological developments and research. The current chal-
lenge is to develop systems that are as productive, but are more flexible in nature.
Increased flexibility makes it possible to produce ‘one-off’ customized products.
Requirements on such products are often known only moments before produc-
tion. The processing and set-up times of the processing stations are derived from
the product requirements. More dynamic and complex product flows lead to more
interaction between products, and create a necessity to perform online schedul-
ing. Designing more flexible systems in such a way that their productivity is re-

1

4 Introduction

tained is more complicated due to the interactions that occur between products.
We first illustrate the trends and challenges in manufacturing systems, before the
contributions are outlined.

1.1 Manufacturing systems

The simplest manufacturing system consists of a single processing machine with
associated transport mechanisms. A drilling system with roller conveyors is illus-
trated as an example in Figure 1.1a. Its associated product flow is shown in Fig-
ure 1.1b. If a hypothetical drilling station can process a product in two seconds,
then the maximum throughput is limited to half a product per second, as shown
in Figure 1.3a. Suppose a faster drill is available but requires that the products are
drilled under stricter conditions, e.g. at a particular temperature. The manufac-
turing system’s topology (i.e., machines and their connections) can be extended
with pre-processing and post-processing steps (Figure 1.2a and 1.2b) such that
the product meets the required conditions for the new drilling station. If both
the pre-processing and post-processing steps cost one second, and all steps can
be performed in parallel with each other, then the system is capable of delivering
(in steady state) one product per second. However, the time to manufacture one
product (i.e., the product flow time) is increased from two to three seconds. The
pipelining effect is visualized in Figure 1.3b.

This type of extension is typical for systems where a particular machine is the
bottleneck. The productivity is increased, but so are the footprint and product flow
time of the system. Therefore, a design-time trade-off between system character-
istics needs to be made.

A similar change has occurred in microprocessor design several decades ago.
Increasing the clock frequency means that more work can be performed per time
unit. However, the clock frequency of a microprocessor is limited by the longest
delay that can occur between two clock edges. This delay is necessary to ensure
that the transistors have produced correct output values given their new inputs.
The switching delay of individual transistors has a fundamental physical limit,
which imposes a lower bound on the delay. System performance could only be
improved by parallelizing the execution of instructions.

During the design of complex systems like FMSs, trade-offs are explored and
one of the trade-offs that satisfies particular goals is selected. For example, the la-
tency, throughput, footprint, and power consumption of a system are all impacted
by these design decisions. Creating a processor that has a high throughput will
typically also yield a high power consumption. The same is true for manufacturing
systems. High productivity may lead to a higher latency and cost due to pipelin-
ing and parallelization, and a high product quality may need more processing time
reducing productivity. This thesis provides new computer-aided design, analysis,
and optimization techniques for trade-offs in flexible manufacturing systems.

1

1.1 Manufacturing systems 5

(a) A simple drilling manufacturing line.

Drill

2s

(b) Abstract representation of a simple manu-
facturing line.

Figure 1.1: A simple drilling system.

(a) A drilling manufacturing line with pre-processing (left, heating) and post-processing
(right, cooling).

Heat

1s

Drill

1s

Cool

1s

(b) Abstract representation of the extended manufacturing system’s linear topology.

Figure 1.2: An extended drilling system.

1

6 Introduction

1.2 Flexible manufacturing systems

FMSs are systems consisting of interacting machines that can manufacture a range
of products. These machines perform operations according to customer specifi-
cations such that specific (customized) products are manufactured from unpro-
cessed input material. Automotive assembly lines, industrial printers, wafer scan-
ners, and automated robotic packing systems are examples of FMSs.

Machines can range from conveyor belts, pinches, processing stations such as
a print head or a lithography exposure stage, to robot arms drilling holes at the
right location, picking up components, and finally assembling them into a fin-
ished product. In this thesis, we focus on FMSs that have machine and/or op-
eration flexibility; i.e., the ability to perform the same operation on different types
of unprocessed components without manual reconfiguration of the machine, or
to apply variations of operations on the same type of unprocessed component.

Most products are manufactured according to a particular product flow, i.e., a
certain sequence of specific operations needs to be performed to manufacture a
product. For industrial printers, the actions in this product flow are loading, print-
ing, heating, cooling and unloading either a simplex or a duplex sheet. A simplex
sheet is printed only on one side, while a duplex sheet is printed on both sides. For
wafer scanners, a wafer must be exposed to light in several steps according to a spe-
cific sequence of masks. Either type of FMS leaves no freedom in the order of oper-
ations for a single product. However, multiple products are simultaneously inside
the pipeline of the machine, in different stages of their product flow. Each product
may require a different operating state of the machines in the system. In indus-
trial printers, for example, the print head height must change between thicker and

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time

Drill Drill Drill

(a) Activity trace for simple drill system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time

Heat Heat Heat Heat

Drill Drill Drill Drill

Cool Cool Cool Cool

(b) Activity trace for extended drill system.

Figure 1.3: Activity traces for manufacturing lines.

1

1.3 Industrial printers 7

thinner sheets. The machines require time to change from one state to another,
which gives rise to sequence-dependent machine reconfiguration times.

The requirements for the products may not be known long in advance of man-
ufacturing. For this reason, a scheduler must be able to make decisions for a hori-
zon that is continuously updated. The computation of these decisions must not
take too long, or it starts to hinder the productivity of the system. For many FMSs
an online scheduler is required to optimize the product flow of different products
such that each machine in the FMS is instructed in time when to perform which
operation on which product.

1.3 Industrial printers

The research in this thesis focuses on optimizing product flows in flexible manu-
facturing systems. This research has been carried out in collaboration with Océ

1.

2.

3.

4.

5.

Productivity

Quality

Compactness

(Construction cost)-1

Cost effectivity

Media flexibility

Industrial printer Home printer Photo printer

Figure 1.4: Radar chart comparing three types of printers; higher scores are better.

1

8 Introduction

Technologies [91], a company that mainly creates printing and work flow manage-
ment solutions. Océ Technologies and Canon, its parent company, provide a wide
range of printers and printing solutions, ranging from printers for homes and small
offices to multi-functional copiers, wide-format printers, to industrial printers.
Each of these printers targets a specific market segment and has unique features
to fit within that segment. Different market segments have different requirements
on productivity (i.e., pages per minute), print quality, construction costs, running
costs (i.e., cost effectiveness), media flexibility, and system size (i.e., compactness).
An example qualitative comparison between three printer types is shown in Fig-
ure 1.4. Even though each of these characteristics has improved over the years, it is
not possible to create a single small, productive, cheap printer that can print on all
media types and sizes at a high quality. An industrial printer has high productivity
and high print quality but also has a large footprint and high construction cost;
the machines that perform the actions are large and expensive. In other words, a
single printer cannot simultaneously dominate on all six characteristics.

The industrial cut-sheet printers were the main driving case for the research in
this thesis. Figure 1.5 shows an example of an industrial cut-sheet printer, the Océ
VarioPrint i300. The main challenge for this printer is to maintain a high through-
put for a wide range of media, while producing a high quality print. This printer
contains a long paper path that transports sheets through several machines that
perform operations, aiming at a throughput of transferring 300 images per minute
to sheets, over a wide range of media.

Heating drum Image transfer station Laser sentry

Paper input moduleVacuum conveyor beltStacker (output) Duplex return loop

Figure 1.5: A cross section of the paper path of the Varioprint i300.

1

1.4 Flexible manufacturing system challenges 9

The printer consists of a paper input module (PIM), which separates sheets
and loads them into the metal track of the paper path. The sheets are transported
by pinches and conveyor belts. Before a sheet gets printed, a laser sentry scans
the sheet to determine whether it can be printed. If the laser sentry measures an
acceptable deformation of the sheet, the sheet continues to the image transfer sta-
tion (ITS), otherwise it rejects the sheet. The conveyor belt under the ITS moves at
a fixed speed, so that the frequency of the nozzles releasing ink drops is matched
to the required dots-per-inch (DPI) of the requested image. The ink is water-based
and therefore sheets need to be dried after an image is transferred to it. A heating
drum is used to evaporate the water from the sheets while at the same time trans-
porting them to the cooling section. After a sheet has cooled down, it either exits
the printer through the paper finishing module (FIN), or it returns through the
duplex return loop (DL) and the turn track (TT) to the merge point (MP). It is then
transported to the ITS to be printed again. The sheet is turned in the turn station
of the duplex return loop. The paper path shown in Figure 1.5 is also visualized in
a more abstract way in Figure 1.6.

1.4 Flexible manufacturing system challenges

Processing and transporting individual products becomes harder as the perfor-
mance pushes the execution towards the boundaries of the laws of physics. For
wafer scanners, the quality is limited by the feature size that can be achieved, while
the productivity is limited by the time it takes to achieve accurate positioning. For
printing, the quality depends heavily on the correct interaction of the ink or toner
with the sheets. Strong mono-disciplinary knowledge is required to push the per-
formance of the individual machines, i.e., the processing stations and transport
mechanisms, to their physical boundaries.

Figure 1.6: A schematic representation of the paper path of an industrial printer [111].

1

10 Introduction

Besides the laws of physics, the economical impact of building and running the
machine must also be taken into account. The cost of a machine should be as low
as possible to improve the return-on-investment of such devices. Topologies with
minimal use of resources and maximal productivity are preferred. The total system
productivity can be affected when the number of processing stations is altered. A
change in topology may introduce additional complexity in the decision making
process. For example, the topology shown in Figure 1.6 is significantly different
from a linear topology, as it allows a product to re-enter the ITS for re-processing,
at the cost of additional travelling time. Re-entrant topologies require schedulers
that can interleave product flows in an effective manner [121]. In an industrial
printer, for example, the stream of sheets that has not been processed at all (i.e.,
unprocessed sheets) must be merged productively with the stream of sheets that
has been printed once (re-entrant sheets).

Each machine is tuned such that a desirable trade-off between quality and pro-
ductivity is achieved. The total system behaviour, and therefore its performance,
does not depend only on how well each individual machine is optimized, but also
on how well the timing constraints of several machines combine. The interaction
between machines needs to be managed by the designers, and by a supervisory
controller for online decision making. It is a major challenge in high-end FMSs to
schedule the product flows such that the system productivity is maximized [122].
If the decision making process takes too much time, it defeats the purpose of opti-
mizing the system, as it will itself become a performance bottleneck.

Multi-disciplinary models and knowledge are required to understand the com-
plex interactions between the machines in an FMS. Each product flow can impose
different requirements on the processing stations, which may need to be reconfig-
ured between different products to achieve the required operation. It is difficult
to pinpoint the performance bottlenecks in a system where many product flows
interact with each other due to reconfiguration requirements. Product flow op-
timization becomes more complex and time consuming due to more and more
re-use of machines and higher demands on productivity.

1.5 Flexible manufacturing system design trends

Virtual prototyping has become more prominent in the design of FMSs [60, 61,
86, 88]. The cost and complexity of building and maintaining multiple physical
prototypes has driven the creation of visualizations and associated testing tools
such as software-in-the-loop and hardware-in-the-loop testing environments [57,
100]. Early validation of design decisions can then be tested by simulating the de-
sign [111]. The effects of the real-time embedded platform [10] and the mecha-
tronics transporting the products can be explored without building a physical pro-
totype. At a different level of abstraction, some parts of the FMS’ environment can
be modelled, such as the FMS operator’s instructions, the room temperature, or
raw product conditions, to show the impact on the system’s behaviour.

1

1.5 Flexible manufacturing system design trends 11

One of the major trends in the design of FMS is the increased use of Model-
Based Design tools [108, 111]. The effort to create specific tooling that allows early
investigation of particular aspects of a system has initially given rise to simulations
that are dedicated to a single prototype [8]. Such dedicated simulators are now be-
ing replaced by configurable simulators. These configurable simulators can then
be re-used for new versions of products in the same product line. Model-Based
Design languages such as UML and SysML [108] are used to model, document
and generate design artifacts and system components. More recently, Domain-
Specific Languages and their corresponding editors (such as MPS 1, MetaEdit+ 2,
and Eclipse 3), are for example used to create configurations for early prototypes,
and generate specialized pieces of code. Although initial investment of creation
and adoption of such models can be relatively high, it yields flexibility in develop-
ing products and faster understanding of the core issues when correctly applied.

The models, like the simulators, are becoming more and more reusable and
adaptable to new situations. This leads to better re-use of previously engineered
solutions and less re-work [113, 114]. At the same time, the models are synchro-
nised with each other to catch inconsistencies early on in the design process. Mod-
els that generate run-time components can be integrated in the design process to
simulate the behaviour of the FMS in a more accurate manner.

Designers need to be more and more aware of trade-offs in their system. They
need to use manual or automated tools to explore alternatives that lead to efficient
designs, i.e., design-space exploration (DSE). A system model may be composed of
several modular models, each of which has different performance characteristics.
The total system may then be simulated to find the trade-offs in performance and
cost. Different types of models are necessary to describe different aspects of the
system; e.g., continuous time controllers and finite-element models are used to
model the transportation of sheets in the printer, while discrete-event models are
used to determine the relevant scheduling events in a printer.

The impact of a technological or design change can be difficult to assess from
a total system perspective. In this thesis, we investigate whether the productivity
of FMSs can be analysed automatically. This allows answering questions such as:
does reducing the size of a machine also reduce the efficiency of a scheduler, or can
the selected scheduler benefit from it? What is the difference in system productiv-
ity if one of its components is slowed down or sped up? Such questions are difficult
to answer, as it is already difficult for a single person to maintain an overview of the
system. A designer should have the tools to make informed decisions about such
complex systems. We draw inspiration and build upon the ideas from the many
researchers that have already disseminated on such topics, originating from inte-
grated circuit design, project planning, and operations research perspective.

1https://www.jetbrains.com/MPS
2https://www.metacase.com/mep/
3https://www.eclipse.org/

https://www.jetbrains.com/MPS
https://www.metacase.com/mep/
https://www.eclipse.org/

1

12 Introduction

1.6 Research aims and contributions

The problem statement driving the research aims of this thesis is:

Constraints from many domains impact the productivity of product flows in an
FMS. The goal is to automatically optimize and evaluate the productivity of re-
entrant FMSs and to trace productivity bottlenecks back to their original domain.

The research presented in this thesis aims to improve the productivity of FMSs
by (1) performing online scheduling of re-entrant product flows, (2) relating per-
formance of individual components to the system performance. In particular, we
focus on online schedulers for re-entrant FMSs and on the relation between pro-
ductivity, cost, and design-time structural parameters.

In this thesis, we contribute online schedulers and productivity analysis tech-
niques for FMSs. In Chapter 2, we show a prototype scheduler for industrial print-
ers that optimizes sheet sequences online by selecting between re-entering sheets
and unprocessed sheets, while guaranteeing a given output order.

Optimizing the product flows on-line is non-trivial due to the wide range of
products that the system supports, leading to a wide range of set-up times at dif-
ferent stations. Effectively interleaving the product flows is required to effectively
utilize the system. However, re-entering products have processing deadlines, de-
termined by the physical layout of the FMS. Locally productive choices may lead to
infeasibility of future interleaving options, forcing the system to wait. Leaving too
much room for future choices under-utilizes the system as well. The combination
of set-up times and deadlines makes this a particularly challenging problem.

Our approach uses a graph-based algorithm to interleave product flows such
that the productivity of the printer is optimized while meeting all timing require-
ments. This work is based on:

1. Joost van Pinxten, Umar Waqas, Marc Geilen, Twan Basten, and Lou Somers.
Online scheduling of 2-re-entrant flexible manufacturing systems. ACM
Transactions on Embedded Computing Systems (TECS), 16(5s):20, October
2017

The scheduler in Chapter 2 does not change the system and product settings, as
these have been pre-determined by the operator. An FMS can operate in multiple
modes, leading to differences in productivity and quality. The performance of the
scheduler can be non-trivial to predict, due to the flexibility of the input jobs. The
transitions between jobs may lead to productivity gains or penalties. Optimizing
sequences of batches can lead to higher system utilization.

In Chapter 3 we introduce a technique to explore productivity-quality trade-
offs by re-ordering batches of products and selecting product and system settings.
An FMS operator can then choose the product and system settings that best fit the
current situation. This work is based on:

1

1.6 Research aims and contributions 13

2. Joost van Pinxten, Marc Geilen, Twan Basten, Umar Waqas, and Lou Somers.
Online heuristic for the multi-objective generalized traveling salesman
problem. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016, pages 822–825. IEEE, March 2016

It is useful for an FMS designer to understand what the productivity bottle-
necks are before the FMS is realized. However, a designer needs to take into ac-
count aspects from the control domain, the mechanical and physical domain, and
the scheduler domain. We present a technique to characterize the performance of
a system in terms of several parameters, such as machine length, travelling speed,
or conditioning time. The first step towards such parametric analysis of a system
is presented in Chapter 4 where we introduce a bottleneck analysis that can eval-
uate how sensitive a given schedule is for changes in the structural parameters of
an FMS. The result is a method that identifies relations between the system bot-
tlenecks and the parameters from multiple domains. This work is based on:

3. Joost van Pinxten, Marc Geilen, Martijn Hendriks, and Twan Basten. Para-
metric critical path analysis for event networks with minimal and maximal
time lags. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 2697 – 2708, October 2018

As the parameter values change, the scheduler may take different decisions,
and therefore create different dependencies between operations in the product
flows. The system productivity is heavily influenced by the decisions that a sched-
uler takes. It is, however, not trivial to determine the impact of the parameters
from multiple domains on the available scheduling choices and decisions.

We apply symbolic scheduling to keep track of relations between parameters
and scheduling decisions. The resulting information is used in a new approach
that finds which schedules are generated for which parameter combinations. This
technique (Chapter 5) shows that information can be extracted from such a sym-
bolic scheduler to relatively quickly cover all parameter combinations. This work
is based on:

4. Joost van Pinxten, Marc Geilen, and Twan Basten. Characterising parametric
schedulers. [submitted]

The combination of the scheduler characterization and parametric critical path
analysis allows exploration of the behaviour of schedulers and their associated sys-
tem productivity. The relationships between the contributions and the context
is shown in Figure 1.7. Domain models capture the timing constraints between
system events based on the information from the multi-domain design artefacts.
These artefacts are parametrized, and can be used to generate code that represents
the timing constraint models. These timing constraint models can be queried by
the sheet scheduler during run-time.

Chapter 6 gives the final conclusions and directions for future work. Figure 1.7
shows an example iterative design method. The relationships between tools are

1

14 Introduction

Bottleneck
analysis

Domain models

Design parameters
from multiple domains

job speci�cations

code
generationBatch ordering and

system settings selection

job requests

Run time / Timing domain Design time / Timing domain Design time / Multi-domain

feedback

Online sheet scheduler

Ch. 3

Ch. 2

Ch. 4

Scheduler
characterization

parameter
annotations

Ch. 5

operation timing

Figure 1.7: Overview of the relation between domains, run-time and design-time artefacts
and the chapters of this thesis.

denoted by arrows, annotated by the information that is communicated. The tools
in the flow are annotated by the respective chapters in which they are discussed.

2

2Online Scheduling of Re-entrant
Flexible Manufacturing Systems

Flexible manufacturing systems (FMSs) require online scheduling as manufactur-
ing requests arrive on the fly [19, 29, 122]: the timing requirements of a particular
operation are only known seconds before the scheduling decision needs to be ex-
ecuted. We focus on re-entrant product flows; i.e., where a product is processed
more than once by the same machine.

The challenge for a scheduler is to effectively interleave re-entering products
with unprocessed products. A scheduling algorithm needs to compute such deci-
sions in an online fashion. An online scheduler must instruct the FMS, such as an
industrial printer, in time. If it takes too long to compute, it may become a bottle-
neck for productivity. It is therefore essential to find the best possible schedule of
interleaved product flows in time.

In this chapter, we contribute such an online scheduler, particularly targeted
at product flows with a single re-entrant machine. Even if the timing constraints
between operations of a single product flow are fixed, there is considerable room to
optimize the interleaving of product flows. The product flexibility leads to product-
dependent set-up times, while the minimum traveling speed leads to due dates
on a product re-entering the system. Greedily filling the re-entrant loop leads to
over-filling it. This would mean that the loop needs to be completely emptied of-
ten when there are no interleaving options available for new products to enter the
FMS. Leaving too much room lowers the productivity too much. We contribute
an online scheduling algorithm that automatically finds a good balance between
filling the loop, and leaving space for future products.

2.1 Scheduling product flows in re-entrant FMSs

Several different aspects are used to classify FMSs [17, 105]. In this thesis, we fo-
cus mainly on FMSs with operational/machine flexibility, i.e., the flexibility to cre-
ate different products with the same machine. For these types of systems, online
scheduling for the product flows is necessary as the operation requirements of a

The content of this chapter is an adaptation of the work published in CODES-ISSS 2017 [120].

2

18 Online Scheduling of Re-entrant Flexible Manufacturing Systems

product are known only moments in advance. In this chapter, we focus on re-
entrant FMSs, which are systems that need to process products multiple times on
the same processing station. Typically, the time between two passes of the same
product is considerably higher than the processing time, due to the conditioning
steps required to achieve the proper quality. The flow of the products is fixed, the
products need to be produced at the output in a given order, and reordering at the
output is not possible.

A particular instance of such an FMS is an industrial printer [122]. The type of
industrial printer that we consider in this thesis prints simplex and duplex sheets
that need to be processed once respectively twice by the same print head. The
print head is the most costly component of the system, and it is therefore not du-
plicated. Industrial printers are FMSs because they process many different kinds
of media, and the image on each print is unique. This leads to varying processing
and set-up times, which need to be taken into account during online scheduling.
A print head can print hundreds of pages per minute. The instructions for how the
sheet should flow through the printer need to be provided well within a second.

Other examples of re-entrant FMSs include lacquer [11] and mirror produc-
tion [21], and lithography machines [98]. Several production steps are required to
produce the final product. The products are transported through the manufactur-
ing system to undergo several chemical and physical processes. These processes
need a certain minimum and maximum time between two subsequent processing
steps on the same product/material. The FMSs under consideration have signifi-
cant, but limited buffers for re-entrant products.

In industrial printers the re-entrancy buffer is the return loop within the printer
that prepares sheets for printing the opposite side of the sheet. Each sheet has a
minimum and maximum travel time determined by physical constraints on heat-
ing, cooling, length, acceleration and velocity. Reconfiguration times are signifi-
cant and have a strong impact on system productivity.

The scheduling freedom in the considered FMSs consists of deciding the or-
der in which new and returning products are processed on the same machine. A
schedule needs to meet timing requirements that consist of the travel times be-
tween processing stations, and reconfiguration times of the station between pro-
cessing different products. Once a processing order has been chosen, the most ef-
ficient timing can be efficiently derived from the timing requirements [122] using
the Bellman-Ford-Moore (BFM) longest-path algorithm [12, 41]. This computa-
tion method is described in Appendix A.

The goal of the scheduling algorithm is to find a feasible and maximally pro-
ductive schedule; the throughput of the system should be as high as possible.
Moreover, the timing of the operations for a product need to be provided while the
schedule is not completed yet. Operation timing instructions should be computed
within the time budget available for scheduling a product. However, assessing the
impact of sequencing options is not trivial. Interaction between different kinds of
products flowing through the FMS makes this problem complex to tackle.

To address this scheduling problem, we model the FMS as a re-entrant flow

2

2.2 Problem definition 19

shop. This chapter improves upon the greedy scheduling mechanism of the Heuris-
tic Constraint-based Scheduler (HCS) [122] for online performance by eliminating
many infeasible scheduling options and by applying a generic multi-dimensional
meta-heuristic. First, we introduce the Bounded HCS (BHCS) which improves the
greedy scheduling mechanism of HCS by deriving a scheduling horizon from lim-
itations imposed by the re-entrancy buffer. Defining this scheduling horizon al-
lows BHCS to (a) efficiently remove many a priori infeasible sequencing options,
(b) calculate timing information only within the scheduling horizon. This leads to
much faster evaluation of sequencing options. This speed up allows us to increase
the search space within the time budget. We apply a multi-dimensional meta-
heuristic, similar to the Compositional Pareto-algebraic Heuristic (CPH) [106], to
create the Multi-dimensional BHCS (MD-BHCS). MD-BHCS simultaneously ex-
plores multiple sequencing options, without resorting to backtracking. This leads
to higher quality schedules.

MD-BHCS achieves a better worst-case time complexity, a better average run-
ning time and schedules with shorter makespans, on average, compared to the
original HCS algorithm. The algorithms presented in this chapter focus on 2-re-
entrant flow shops with bounded travel times and reconfiguration times that are
significantly larger than the processing times. Such instances are found in the in-
dustrial printing problem, in which context we evaluate our solutions.

The next section precisely defines the problem we address. Section 2.3 presents
the BHCS heuristic. Section 2.4 combines BHCS with a multi-dimensional meta-
heuristic. Section 2.5 contains the experimental evaluation. Section 2.6 discusses
related work. In Section 2.7 we conclude this chapter.

2.2 Problem definition

We first define re-entrant flow shops and introduce terminology and notation. We
then relate scheduling of the FMS to re-entrant flow shop optimization.

2.2.1 Re-entrant flow shops

Manufacturing lines are commonly modelled through a variant of a job shop
scheduling problem, such as a flow shop. In a job shop, each of a set of jobs needs
to be allocated to a resource, while minimizing the total execution time. A flow
shop is a variant of a job shop for which each job must be processed according to
a given flow of operations.

In this chapter, we use re-entrant flow shops with sequence-dependent set-up
times and relative due dates to model re-entrant FMSs. A re-entrant flow shop
is a flow shop where a sequence J = 〈 j1, . . . , jn 〉 of n jobs are processed by a set
M of machines. Every job j ∈ J is a sequence of r operations 〈o j ,1, . . . ,o j ,r 〉 that
needs to be executed. We use o j ,i to denote the i -th operation of the job j . The
operations O of the flow shop are the union of the operations of its jobs: O =

2

20 Online Scheduling of Re-entrant Flexible Manufacturing Systems

{
o j ,k | j ∈ J ,k ∈ {1, . . . ,r }

}
. A re-entrant flow vector φ= 〈µ1, . . . ,µr 〉 specifies that the

i -th operation o j ,i of job j must be executed on machine φ(i) = µi ∈ M . A re-
entrant flow vector contains at least one machine that is visited more than once.
The first and second time an operation for a job is executed on machine µ are re-
spectively called the first and second pass of that job j on machine µ, and so forth.
This is denoted respectively by o j ,µ,1, o j ,µ,2, and o j ,µ,i . We say that o j ,µ,x is a higher
pass or lower pass operation than ok,µ,y when x > y or x < y respectively.

The processing times of operations are denoted by a function P : O → R>0.
The processing times indicate the time required to finish an operation once it has
started. Once started, operations must continue their execution until completion.
The set-up times are reconfiguration and travelling times that occur regardless of
the sequence of operations on a machine. The set-up times are defined as a partial
function S : O ×O 7→R≥0, where S(ox ,oy) is the minimal time needed between the
completion of ox and the beginning of oy . If S(ox ,oy) is undefined, then S does
not impose any restriction between the completion of ox and the beginning of oy .
We assume that the very first operation on each machine does not require recon-
figuration times. The sequence-dependent set-up times occur only when two op-
erations are executed one immediately after the other on the same machine and
are defined as a partial function SS : O ×O 7→R≥0, where SS(ox ,oy) is the minimal
time from completion of ox to beginning of oy which is needed to reconfigure a
machine. The relative due dates impose a maximum time delay between the begin
times of two operations, and are denoted by a partial function D : O ×O 7→ R>0. If
D(ox ,oy) is undefined, then there is no restriction on the maximum time from the
beginning of ox to that of oy . The algorithms in this chapter assume due dates only
occur within jobs, i.e., from ox,i to ox, j with i < j .

Definition 1 (schedule). A schedule B : O → R≥0 for a flow shop describes begin
times for all operations; C (o) = B (o)+P (o) denotes the time that operations com-
plete. The following constraints need to be satisfied:

• Every machine µ ∈ M can execute at most one operation at a time. That is:(∀ox,i ,oy , j ∈O
)[(

φ(i) = φ(j)∧ox,i 6= oy , j
)

=⇒ (
C (ox,i) ≤ B(oy , j)∨C (oy , j) ≤ B(ox,i)

)]
• The sequence-independent set-up times of S between each pair of operations

ox and oy in the domain of S must be met, if S(ox ,oy) is defined, then B(oy) ≥
C (ox)+S(ox ,oy).

• If no other operation begins between the begin time of ox,i and oy , j on the
same machine, then the sequence-dependent set-up time between them must
hold: (∀ox,i ,oy , j ∈O,Øoz,k ∈O

)[(
φ(i) =φ(j)∧φ(j) =φ(k)

∧(
B(ox,i) < B(oz,k)∧B(oz,k) < B(oy , j)

))
=⇒ B(oy , j) ≥C (ox,i)+SS(ox,i ,oy , j)

]

2

2.2 Problem definition 21

• If a due date D(ox ,oy) from ox to oy is defined, then it imposes a due date on
oy such that B(oy) ≤ B(ox)+D(ox ,oy).

A schedule is feasible if all of these constraints are satisfied, and infeasible otherwise.

Definition 2 (makespan). The makespan of a schedule B is the latest completion
time of any operation:

makespan(B) = max
o∈O

(C (o)) = max
o∈O

(B(o)+P (o))

As the processing and set-up times are all non-negative, the order of the jobs
and operations impose that the completion time of the last operation of the last
job on,r determines the makespan: makespan(B) = B(on,r)+P (on,r).

Definition 3 (re-entrant flow shop optimization problem). An optimal solution
to a given flow shop problem is a feasible schedule B with the smallest possible
makespan.

In the algorithms presented in this chapter, we consider a single re-entrant ma-
chine. The job output order is fixed, i.e., (∀ jx , jy ∈ J)[x > y =⇒ B(ox,r) > B(oy ,r)].
Products are travelling on the same physical track, which means that the order in
which products leave a machine, is also the order in which they arrive at the next
machine. As there is only one track between each pair of machines, this leads to
the following constraint:

(∀o j ,k ,o j ,k+1,ol ,m ,ol ,m+1 ∈O)[
(
φ(k) =φ(m)∧φ(k +1) =φ(m +1)

∧B(o j ,k) > B(ol ,m)
)

=⇒ B(o j ,k+1) > B(ol ,m+1)]

In other words, products are not allowed to overtake each other. The topology
of the industrial printer has only one physical track between the different stages
in the flow vector. This means that the operation following in the flow vector φ
cannot begin before all its previous job’s operations up to that operation have been
executed1. For example, it is not allowed that o2,2 is executed before o2,1 or o1,2

(see Figure 2.1). Different passes of different jobs such as o2,2 and o1,3 do not have
a particular order enforced.

2.2.2 FMS as re-entrant flow shops

The re-entrant flow shops we study are derived from FMSs. The resulting flow
shops may have multiple machines, and one machine that processes a product
multiple times. Each processing station of the FMS is transformed into a machine,

1When the product flow vectors differ (e.g., both simplex and duplex sheets are printed), then there
are fewer restrictions on the operations before the re-entrant machine [115]

2

22 Online Scheduling of Re-entrant Flexible Manufacturing Systems

and operations on the products in the processing stations are encoded as oper-
ations of the flow shop. The minimum time between two processing steps, due
to, e.g., travelling time, reconfiguration or cleaning, is captured by a (sequence-
dependent) set-up time between operations. In this chapter we focus on FMSs
that have bounded-time buffering capabilities for a re-entrant machine, which
manifest as relative due dates on operations of the same job.

For example, an industrial printer can be modelled as a 3-machine flow shop
with four operations per job, re-entrance vector 〈µ1,µ2,µ2,µ3〉, and one job for
each sheet that needs to be printed [122]. An example with five jobs is shown in
Figure 2.1. Machineµ1 (first row, yellow) loads a sheet,µ2 (second row, cyan) prints
one side of a sheet, after which it is turned in the re-entrancy buffer, before enter-
ing µ2 again (third row, cyan) to print the other side. It is unloaded by machine µ3

(fourth row, magenta). The load and unload operations must be executed in order
of the print sequence. The operations on machine µ2 need to be ordered such that
the system is maximally productive, i.e., has minimum makespan.

In Figure 2.1 operations are represented by circles, with processing times in-
side. Between operations of the same job, set-up times enforce the operation order
(shown with black, vertical arrows). Between the same operation of subsequent
jobs, set-up times enforce the job order (shown with black, horizontal arrows). The
order of operations on machine µ2 is enforced through sequence-dependent set-
up times (shown with blue dashed edges).

10

o1,1

20

o1,2

30

o1,3

40

o1,4

10

o2,1

20

o2,2

30

o2,3

40

o2,4

10

o3,1

20

o3,2

30

o3,3

40

o3,4

10

o4,1

20

o4,2

30

o4,3

40

o4,4

10

o5,1

20

o5,2

30

o5,3

40

o5,4

10

10

115

15

20

20

5

10

10

115

15

20

20

5

10

10

115

15

20

20

5

10

10

115

15

20

20

5

10

115

20

5 5 5 5

30

150

60

30

150

60

30

150

60

30

150

60

30

150

60

Figure 2.1: Example re-entrant flow shop with ordering sequences; the operations are rep-
resented by circles, with their processing times inside. Operations with the same
colour are mapped to the same machine. Set-up times are shown by black edges,
due dates by dashed red edges. Additional set-up times due to the scheduled se-
quence of operations are shown in dashed blue edges. The effective order of
operations on the machines is indicated with thicker edges.

2

2.3 Scheduling approach 23

Scheduling a re-entrant flow shop boils down to ordering the operations per
machine followed by determining the operation begin times. Figure 2.1 shows or-
ders per machine in thick edges. The ordering sequences for machines µ1 and
µ3 are simply the order in which the jobs need to be processed, as overtaking of
products is not allowed. For machine µ2 a scheduler needs to enforce sequence
dependent set-up times between re-entrant operations of the machine to ensure
that only one operation can be using the machine at any given point in time. The
selected order in Figure 1 is o1,2, o2,2, o1,3, o2,3, . . . o5,3 and is denoted by thick black
and dashed blue edges. The chosen sequence of operations leads to sequence-
dependent set-up times, indicated by the annotations of the blue dashed edges.
When such a sequence has been determined the earliest begin times of the oper-
ations can be computed efficiently by applying a longest-path algorithm between
the first operation and the other operations (see Section 2.3.2 and 2.3.4).

2.3 Scheduling approach

We present the outline and describe components of the scheduling approach be-
fore investigating them in detail.

2.3.1 Scheduling outline

The scheduling outline of HCS [122] is the basis for the Bounded HCS (BHCS)
algorithm. BHCS is defined by Algorithms 1 to 4. (B)HCS is a list scheduling ap-
proach that per iteration adds one operation into a sequence until a complete fea-
sible schedule is obtained. It has two stages per iteration; (1) finding (potentially)
productive sequencing options for operations on the re-entrant machine, followed
by (2) finding the earliest begin times that satisfy all requirements for each of the
operations. It then selects one of the feasible options. BHCS follows the struc-
ture of HCS but deviates most notably in the implementation of generating the
sequences (Algorithm 4) and finding operation times for the generated sequences
(Algorithm 19). Finding a maximally productive sequence is a difficult combina-
torial optimization problem, but finding the earliest possible begin times once an
operation sequence has been determined is rather efficient (see Section 2.3.2).

(B)HCS constructs sequences of operations. These sequences of operations
can then be translated to their corresponding sequence-dependent set-up times
between operations to find operation begin times and check their feasibility.
(B)HCS starts with creating an initial sequence (the function CREATE_INITIAL_-
SEQUENCE in Algorithm 2) of the first pass operations of each job, followed by the
higher pass operations of the last job for each re-entrant machine. For example,
Figure 2.2 shows a flow shop f for which CREATE_INITIAL_SEQUENCE(f , µ) gener-
ates the sequence o1,1, o2,1, o3,1, o4,1, o5,1, o5,2 for the only machine in the exam-
ple, µ. These operations must follow a pre-defined order defined by the scheduling
constraints. In Algorithms 1, 2, and 3 each sequence s has a schedule t associated

2

24 Online Scheduling of Re-entrant Flexible Manufacturing Systems

with it. The schedule t contains the earliest possible begin times of the operations
that respect the sequence s.

(B)HCS then iteratively inserts higher pass operations, such as eligible opera-
tion o1,2 in Figure 2.2, into the sequence s, adding the corresponding sequence-
dependent set-up times (e.g., add the edges from o3,1 to o1,2 and o1,2 to o4,1) before
checking feasibility of the timing requirements on t . NEXT_ELIGIBLE_OPERATION

is a function that returns the first re-entrant operation that does not yet occur in
the ordering sequence in a job-first operation-first order.

The scheduler extends the sequence of operations by inserting a higher pass
operation of jobs downstream in the input into the current sequence. At each it-
eration, the partial sequences have updated associated schedules. The schedules
contain a lower bound on the begin times of operations. GENERATE_OPTIONS gen-
erates options by inserting an operation in multiple places in the given sequence
s to produce new partial sequences s′ and updates copies of t to new schedules t ′.
When all operations of a job have been included in a sequence, no first or second
pass can be inserted before the second pass of this job, and lead to a feasible sched-
ule. The begin times of the operations of the current job can therefore be used to
instruct the machine to start processing a job. The scheduler finally returns all the
operation begin times associated with the chosen sequence.

The RANK function computes an absolute assessment for each partial solution
based on a number of metrics from which (B)HCS greedily selects the option with
the best assessment. The metrics we used are introduced in Section 2.4.3.

For each eligible operation, the sequencing options are created and evaluated
in Algorithm 3. It creates a set l of feasible sequences and associated schedules
by inserting the eligible operation before any of the operations returned by Algo-
rithm 4. The sequences for each option are evaluated, and added to the list only
when they are feasible.

The begin times are calculated using the BFM [12, 41] longest-path algorithm
on a directed graph (Section 2.3.2) created from the combination of the processing

10

o1,1

20

o1,2

10

o2,1

20

o2,2

10

o3,1

20

o3,2

10

o4,1

20

o4,2

10

o5,1

20

o5,2

115

15

20

115

15

20

115

15

20

115

15

20

11515

20
150 150 150 150 150

Figure 2.2: A sequencing option (dashed arrows), the sequenced operations (dashed out-
lined vertices) and the corresponding sequence-dependent set-up times (thick
edges).

2

2.3 Scheduling approach 25

Algorithm 1 Scheduling outline of BHCS

1: function SCHEDULE(flow shop f , re-entrant machine µ, ranking RANK)
2: (s, t) = CREATE_INITIAL_SEQUENCE(f , µ)
3: repeat
4: oe = NEXT_ELIGIBLE_OPERATION(f , s)
5: // Generate feasible options and update operation times
6: l = GENERATE_OPTIONS(f , oe , (s, t))
7: // Select the best result from the set
8: (s, t) = SELECT_BEST(RANK, f , l , oe)
9: until all re-entrant operations of µ included in s

10: return t

Algorithm 2 Create initial sequence and initialize begin times

1: function CREATE_INITIAL_SEQUENCE(flow shop f , re-entrant machine µ)
2: s = 〈〉
3: // Add first passes of all jobs
4: for each i = 1 to |J | do append oi ,µ,1 to s

5: // Followed by re-entrant operations of last job
6: for each i = 2 to |r | do append o|J |,µ,i to s

7: // Initialize all begin times associated with s
8: for each o ∈O(f) do t [o] = 0

9: return (s, t)

Algorithm 3 Find and apply all sequencing alternatives, and update begin times
accordingly

1: function GENERATE_OPTIONS(flow shop f , operation oe , ordering sequence
with associated begin times (s, t))

2: l = ;
3: for each op in FIND_INSERTION_POINTS(f , s,oe) do
4: s′ = copy of s
5: insert oe into s′, before op

6: (t ′, v) = UPDATE_BEGIN_TIMES(f , s′, t)
7: // If v is true, the schedule is feasible so far
8: if v then
9: l = l ∪{

(s′, t ′)
}

10: // Return the set of feasible sequences and associated times
11: return l

2

26 Online Scheduling of Re-entrant Flexible Manufacturing Systems

Algorithm 4 Find the set of sequencing options

1: function FIND_INSERTION_POINTS(flow shop f , sequence s, operation oi ,k)
2: r =;
3: op = oi ,k−1

4: slack = smallest transitive due date in D on op

5: // Add all successors until slack is non-positive
6: while slack > 0∧ (s has operation after op) do
7: on = NEXT(op , s)
8: r = r ∪ {on }
9: d = smallest transitive due date in D on on

10: slack = min(slack - P (op)−SS(op ,on) , d)
11: op = on

12: return r

times, set-up times, and the relative due dates. When BFM detects positive cycles
in this graph, then the sequence has no feasible schedule.

In the following sections, we introduce these ingredients in more detail. In par-
ticular, we identify two properties of the problem that allow us to bound the execu-
tion time of the online algorithm. These two properties allow us to define BHCS,
which significantly improves the worst-case time complexity of HCS. We also in-
troduce new metrics that improve the quality of the schedules. The first property
allows us to purge many infeasible sequencing options (Section 2.3.3). The second
property allows us to calculate begin times for only a bounded horizon and to still
guarantee detection of infeasible sequencing options (Section 2.3.4). This results
in an online adaptation of the Bellman-Ford-Moore longest-path algorithm.

2.3.2 Computing operation begin times from a sequence

The decisions made by the scheduling algorithm (Algorithm 1) ensure that all re-
entrant operations are eventually scheduled into a single sequence per machine.
Such a sequence leads to sequence-dependent set-up times, shown as dashed blue
edges in the example in Figure 2.2. A schedule of begin times can be computed
from the sequence of operations by a longest-path algorithm. The earliest possible
begin times t for a given operation sequence are the longest-path time distances
of all operations starting from the initial operation [103]. The earliest possible op-
eration times t are the most productive operation times for a given operation se-
quence, and are therefore used as the schedule B .

The graph for longest-path computation consists of vertices representing the
begin times of operations, and edges that impose timing constraints between op-
erations. An edge from ox to oy with weight δ in the converted graph means that
B(oy) ≥ B(ox)+δ. The constraints of Definition 1 are translated from the process-

2

2.3 Scheduling approach 27

ing, (sequence-dependent) set-up times, and relative due dates as follows:

B(oy) ≥ B(ox)+P (ox)+S(ox ,oy)

B(oy) ≥ B(ox)+P (ox)+SS(ox ,oy)

B(oy) ≤ B(ox)+D(ox ,oy) ⇔ B(ox) ≥ B(oy)−D(ox ,oy)

The resulting graph looks similar to Figure 2.1, except that the red dashed edges
corresponding to due dates are reversed, and their values are negated. Processing
times are propagated into all of the vertex’s corresponding set-up times [122].

The longest-path computation is equivalent to finding the solution to the sys-
tem of inequalities that represents the scheduling constraints for the chosen se-
quence. Appendix A explains how the BFM algorithm can be used to compute
such begin times in an on-line manner. If a solution exists (in the form of begin
times for each operation), then the schedule is feasible. If no such solution exists,
then the timing constraints are inconsistent, and such a sequence can never lead
to a feasible schedule.

If a feasible schedule is found for a sequence that contains only the re-entrant
operations for the first i jobs, then the (B)HCS scheduler will always be able to
finish inserting operations and produce a feasible schedule for the full problem.
As the deadlines for the jobs are contained within the jobs, there are no infeasi-
bility issues between jobs, if there are no sequence-dependent set-up times that
interleave products. In other words, no positive cycle can be created if a constraint
from an operation of job i to an operation of job k > i is made. It is necessary,
however, to include the operation and job ordering constraints: the products that
are already (partially) interleaved, need corresponding sequence-dependent set-
up times for the second passes to exit the re-entrant loop. Despite the restriction
to intra-job due dates, this statement holds for 2-re-entrant systems, but not for
higher re-entrancies.

2.3.3 Purging infeasible sequencing options

We can determine the sequencing options for each of the re-entrant operations
(Algorithm 4) by iteratively generating options until sequencing options become
definitely infeasible. We use the property that an eligible operation o j ,x must obey
the operation sequence for job j and also obey the job sequence for the operation
x. So o j ,x cannot begin before any of its predecessors oi ,y such that i ≤ j ∧ y ≤ x,
nor after any of its successors i ≥ j ∧ y ≥ x. Consider an FMS with one re-entrant
machine where three passes of a job need to be scheduled on a single machine. In
the example of Figure 2.3 all hatched operations cannot be sequenced immediately
before operation o3,2 due to job and operation sequence constraints.

Additionally, we use the invariant that the scheduling algorithm does not re-
order operations in the scheduling sequence. The algorithm will only insert more
second pass operations into this sequence. This property and invariant allow us

2

28 Online Scheduling of Re-entrant Flexible Manufacturing Systems

to determine which scheduling option is the last possible insertion point in the
given sequence using static information about set-up times and due dates. This
allows us to conclude infeasibility without calculating earliest begin times. The
minimum time approximation in Algorithm 4 is used to determine which due date
is the first to be certainly violated. The algorithm traverses the sequence starting
from the source of the due date oi ,k−1 by iteratively investigating the NEXT opera-
tion in the sequence. NEXT returns the immediate successor of op in the sequence
s. Summing the processing and set-up times for the given sequence provides a
lower bound on the time difference between the given operation and its source in
any valid schedule.

An example of five jobs executed in a 3-re-entrant flow shop is shown in Fig-
ure 2.3. In this example, a partial sequence has already been applied by previous
scheduling decisions, as indicated by the dotted blue edges. All due dates are 150
time units. The lower bound on the longest path starting from o3,1 starts at 0. This
lower bound is increased by the sum of the processing time of that operation and
the set-up time to the next operation, for example: at least 0+5+15 = 20 is required
before operation o1,2 can start, at least 20+10+15 = 45 is required before operation
o2,2, at least 45+10+25 = 80 before o1,3, at least 80+15+20 = 115 before o2,3, at
least 115+15+20 = 150 before o4,1, and at least 150+5+15 = 170 before o5,1. The
operation o3,2 therefore cannot begin after operation o5,1, o5,2 or o5,3, as this would
violate the due date from the start of o3,2 to the start of o3,1; the lower-bound time
differences following the given sequence between o3,1 and these operations are re-

5

o1,1

10

o1,2

15

o1,3

5

o2,1

10

o2,2

15

o2,3

5

o3,1

10

o3,2

15

o3,3

5

o4,1

10

o4,2

15

o4,3

5

o5,1

10

o5,2

15

o5,3

115

15

115

15

115

15

115

15

115

115

15

20

115

15

20

115

15

20

115

15

20

115

15

20

25

150 150 150 150 150

150 150 150 150 150

Figure 2.3: Operation o3,2 might only be feasibly inserted between operations o2,2 and o1,3,
o1,3 and o2,3, or o2,3 and o4,1 which are marked by a red highlight. Inserting
operation o3,2 into the sequence immediately after hatched operations (marked
with diagonal lines) is infeasible due to sequence constraints on jobs and op-
erations. Sequencing o3,2 anywhere after o4,1 (operations with thick border) is
infeasible due to violation of the due date of o3,1 to o3,2.

2

2.3 Scheduling approach 29

spectively 170, 290, and 415, which are all more than the due date constraint of 150.
When this lower bound on the minimum time between two operations exceeds the
tightest due date encountered, then any schedule containing this ordering will be
infeasible. Scheduling after the last possible operation is definitely infeasible as
we found that there is at least one path which has a total time that is already larger
than the due date imposed on the scheduled operation. As all the processing and
set-up times are non-negative, we cannot insert more lower pass operations in the
re-entrant buffer when the due date would already be violated at some point. The
due date with the least slack typically corresponds to the smallest re-entrant buffer
time in the FMS. In other words, the number of sequencing options to be consid-
ered is bounded by the ratio L which is the largest buffer time of the FMS divided
by the smallest processing time.

If we would not take into account this property, we would end up with O (|J |)
options per iteration. The bound described in this subsection allows us to stop
generating options which would never be chosen, as they can never lead to feasible
schedules. Their infeasibility would be detected by checking for positive cycles in
a graph, which typically incurs the worst-case runtime of the BFM algorithm (see
Appendix A). It is, therefore, much more efficient to avoid evaluating them. The
difference in worst-case complexity with and without purging is studied in more
detail in Section 2.3.5.

2.3.4 Bounded horizon

For online scheduling, it is only necessary to find feasible (and hopefully produc-
tive) begin times for the operations that are to be executed next. BHCS can defer
computing the begin times of operations that do not influence the current deci-
sion. Such operations can still be indefinitely postponed and do not influence the
feasibility of the current sequencing option.

To detect infeasibility of a sequencing option, BHCS needs to include at least
those edges that are potentially involved in a positive cycle. Only the first of the two
edges introduced by a sequencing option (such as o3,1 to o1,2 in Figure 2.2) creates
additional cycles. To check for positive cycles, BFM needs to check the sub-graph
induced by all operations in jobs between the job of the sequenced operation and
the job of its predecessor in the sequence. All operations of these jobs are included,
as they may have intra-job due dates associated with them.

The sources Vs are the operations which have been fully scheduled before.
They indicate when the machines become available to process the next operations.
They are all operations that have set-up times into that smallest sub-graph, but are
not included in that smallest sub-graph. For example, the smallest sub-graph for
scheduling and checking feasibility of inserting o2,2 between o4,1 and o5,1 in Fig-
ure 2.2 consists of the operations of jobs 2 to 4. Its sources are the operations of job
1. The begin times for the sources are not allowed to be changed, as these opera-
tions may have been executed already.

Although the longest-path computation is computationally efficient, it is still

2

30 Online Scheduling of Re-entrant Flexible Manufacturing Systems

the most time-consuming element of the scheduling algorithm when the job set
becomes larger. Typical speed-up approaches such as GPU-acceleration can im-
prove the worst-case execution time by a factor 50 to 100 [18] for some cases. How-
ever, this gain is not enough as the number of jobs can increase arbitrarily. Such
accelerations can be implemented orthogonally, but without bounding the sub-
graph to be analysed, the longest-path computation will always become a limiting
factor to the online applicability of the algorithm. We use the bounded subset of
operations described in the previous paragraph as input for the modified BFM al-
gorithm, defined in Algorithm 19 in Appendix A, to reduce the computational effort
to evaluate a scheduling option.

We assume that the initial graph without sequence-dependent set-up times
is feasible, and that we schedule one operation at a time. Inserting an operation
in the sequence of scheduled operations introduces additional set-up times. An
additional positive cycle must include at least one of the two edges introduced by
the scheduling option, the processing and set-up times, and at least one due date.
As we consider only intra-job due dates, operations of jobs later than the insertion
point cannot create additional positive cycles.

If a sequence is considered feasible, then for an FMS with one 2-re-entrant
machine this is sufficient to guarantee that this sequence can be extended to at
least one feasible solution to the overall problem. The sequence-dependent set-up
times that are necessary to empty the loop from higher pass operations returning
from the buffer are already included as constraints, and have already been verified
to not violate due dates. The set-up time after emptying the buffer delays opera-
tions which can still be delayed indefinitely and, therefore, such a decision will not
violate any due date. Operations of a job can still be delayed whenever there is no
path of constraints that can lead to a previous job. When feasible begin times are
returned for a given sequence, it is guaranteed that this partial schedule is feasible
for the overall problem with this sequence. For higher-re-entrancy FMSs or mul-
tiple re-entrant machines however, the heuristic might select a feasible sequence
that does not have any feasible follow-up option.

Algorithm 19 runs in O (max(|Es |, |Va | · |Ea |)) where Es is the set of edges from
source vertices, Va is the set of active vertices, and Ea its corresponding set of
edges. This helps us to greatly decrease the run-time complexity of the schedul-
ing algorithm.

2.3.5 Worst-case time complexity of HCS and BHCS

We assess the impact of the improvements by comparing the worst-case time com-
plexity of HCS to BHCS for flow shop instances that are derived from the structure
of an FMS. Recall that |J | denotes the number of jobs and r the number of oper-
ations per job. The number of vertices in the converted graph (Section 2.3.2) is
O (|J |·r) and the number of edges is also O (|J |·r) as the number of edges per vertex
is bounded. We assume there are no inter-job due dates, and set-up times occur

2

2.4 Exploring trade-offs in scheduling decisions 31

only between operations of the same job, between same pass operations of subse-
quent jobs and in sequencing options.

The worst-case time complexity of HCS occurs when the last evaluated option
is the only feasible option, as it then encounters the worst-case execution time for
BFM, which is O (|V | · |E |) = O (|J |2 · r 2), for each scheduling option. The number
of options to be evaluated may grow in the worst case with the size of the par-
tial sequence for each re-entrant operation, O (

∑|J |·r
i=1 i) =O

(|J |2 · r 2
)
, the worst-case

complexity for HCS is O
(|J |4 · r 4

)
.

BHCS creates at most L sequencing options for each of the O (|J | · r) re-entrant
operations (see Section 2.3.3). The largest subset of edges and vertices that needs
to be used to detect infeasibility is then of size O (L · r), and we only need to use a
limited set of operations as sources, the worst-case complexity of Algorithm 19 is
O (|Va | · |Ea |) =O

(
L2 · r 2

)
.

Therefore, the worst-case complexity of BHCS is the number of re-entrant op-
erations to be scheduled (|J | · r) multiplied by the number of sequencing options
to be evaluated (L) multiplied by the evaluation cost of one option (L2 · r 2); to-
talling O

(|J | ·L3 · r 3
)
, where r ¿ |J | and L ¿ |J | in typical cases. The reduction in

evaluation of options and the bounded horizon lead to a worst-case complexity
of BHCS which is linear in the number of jobs and is therefore preferred over the
super-linear complexity of HCS.

2.4 Exploring trade-offs in scheduling decisions

We first introduce a multi-dimensional Pareto meta-heuristic in Section 2.4.1. This
algorithm is based on CPH [106]. We then apply this meta-heuristics to intro-
duce the MD-BHCS (Section 2.4.2) and define the metrics to rank schedules (Sec-
tion 2.4.3). In the scheduling outline (Algorithm 1, Line 8) we implicitly used the
idea of good schedules. These metrics are used in a linear combination in (B)HCS
to select a single option greedily. They are used as separate metrics in MD-BHCS
to simultaneously explore multiple Pareto-optimal options.

2.4.1 Constructive Pareto Meta-Heuristic

In this section, we present a meta-heuristic template that can be used to simulta-
neously explore multiple options, without requiring backtracking. The Construc-
tive Pareto Meta-Heuristic (CPMH) is inspired by the Algebra of Pareto points [45,
46], CPH [106], and Strength-Pareto Evolutionary Algorithm (SPEA2). A Pareto-
optimal solution is a solution for which no other solution improves on one or more
of the objectives without worsening any of the others. If one solution is better in
one objective than another solution and not worse in any other objectives, the lat-
ter is dominated by the former [46]. The Pareto-optimal solutions are those solu-
tions that are not dominated.

2

32 Online Scheduling of Re-entrant Flexible Manufacturing Systems

The goal of the meta-heuristic is to construct (all or a representative subset of)
Pareto-optimal (partial) solutions. In other words, to eliminate those options for
which there is some other option that is at least as good in any of the metrics and
strictly better in at least one metric. Note that two or more partial solutions may
have the same values for all metrics. If they are Pareto-optimal, then both options
are kept.

The Pareto meta-heuristic incrementally extends a set of partial solutions with
items to be scheduled to generate new partial solutions2. At most k representative
solutions are kept at the beginning of every iteration. New partial solutions are
created by extending each of the k partial solutions with a new item. Optionally,
these partial solutions are improved by a fast online local optimization. The set of
partial solutions is minimized through the Pareto-cull process which removes all
dominated solutions from the set; only the Pareto-optimal solutions are kept for
the next iteration.

Most multi-objective optimization algorithms create complete solutions, and
assume that all information is known. Local search algorithms [109] construct an
initial solution, which is iteratively improved until no further local improvement is
found. Evolutionary algorithms [128] heuristically or randomly construct an initial
generation of solutions for the full problem, which are then stochastically mutated
and combined into new generations of solutions.

The Pareto meta-heuristic can easily be applied to algorithms that incremen-
tally add the items to be scheduled. In CPH for the Multi-dimensional Multiple-
choice Knapsack Problem (MMKP) partial solutions correspond one-to-one to
Pareto Algebra configurations [46], and can therefore be evaluated in terms of opti-
mization objectives. The algorithm improves the running time greatly by applying
a number of reductions; at each iteration at most a given number k of partial solu-
tions are taken into account, and Pareto-optimality is determined on a 2D projec-
tion of the configurations (i.e., solution quality versus aggregated resource usage).
CPH for MMKP is an exact algorithm when these reductions are not used [106].

In our version of the Pareto meta-heuristic we use objectives in such a way that
Pareto-optimal partial solutions present interesting trade-offs in the exploration of
the schedule solution space. Partial schedules cannot be meaningfully compared
in terms of the lower bound on the final makespan objective. Such a comparison
would not make any trade-offs between earlier completion, buffer filling and re-
maining work explicit. We introduce auxiliary metrics to capture those aspects.
Pareto-dominance is then used to allow simultaneous exploration of promising al-
ternatives, without requiring backtracking. The meta-heuristic is a powerful tool
for online optimization, due to the combination of constructive simultaneous ex-
ploration of alternatives, while reducing the number of representatives. The algo-
rithm has been applied to MMKP, multi-objective bin-packing [87], and a multi-
objective generalized travelling salesman problem (see Chapter 3).

2If partial solutions can be efficiently combined with other partial solutions, the approach is compo-
sitional [106]

2

2.4 Exploring trade-offs in scheduling decisions 33

Algorithm 5 Pareto meta-heuristic

1: function PARETO_METAHEURISTIC(problem instance P , size of partial solu-
tions set k)

2: // step 1
3: Initialize the set of initial partial solutions Sp

4: // step 2
5: for each item i to be scheduled do
6: // 2a: Select at most k partial solutions
7: Sp = REDUCE(Sp ,k)
8: // step 2b
9: Sp = EXTEND(Sp , i)

10: Sp = IMPROVE(Sp) // Optional online improvement
11: // step 2c
12: Sp = min(Sp)

13: Sp = POSTPROCESS(Sp) // Optional post improvement
14: // step 3
15: return Sp

When many of the partial solutions are Pareto-optimal then the set of partial
solutions may grow very large. This can be prohibitive for online performance.
However, as partial solutions with similar metric values are likely to produce sim-
ilar results, we approximate the full set with a subset of bounded size which is as
diverse as possible in the considered metrics. The number of partial solutions to
consider is a parameter of CPMH. Keeping more partial solutions typically leads
to a higher runtime but also to a higher schedule quality.

The template for a CPMH-based algorithm is shown in Algorithm 5. It ab-
stracts from the particular problem definition, and shows how multi-objective op-
timization problems can be tackled.

Step 1 initializes the partial solutions Sp that will develop into the final solu-
tions, i.e., Pareto-optimal solutions to the problem instance. Each of the partial
solutions is extended with a new part of the problem instance in Step 2. This step
is repeated once for every unscheduled item. Step 2a ensures that no more than k
elements are kept in Sp . Step 2b extends the partial solutions to create a new set
of partial solutions, which include all previously scheduled item, plus the item i .
From the resulting solutions, we only keep those that are non-dominated by ap-
plying Pareto-minimization at the end of each iteration (Step 2c). Once all sets are
combined, the results are returned in Step 3.

Steps 2b and 2c can be combined in an implementation to increase the com-
putational efficiency of the heuristic. Pre- and post-processing steps can be in-
troduced to tune the search direction of the algorithm. In addition, during the
extension phase, a quick, typically greedy, improvement heuristic can be applied
after step 2c to improve partial solutions.

2

34 Online Scheduling of Re-entrant Flexible Manufacturing Systems

2.4.2 Multidimensional scheduling outline

The Pareto meta-heuristic allows the scheduler to explore multiple sequencing op-
tions simultaneously, while still limiting the computation time. Where the com-
bination of metrics in (B)HCS is used to select a greedily single (Pareto-)optimal
trade-off, MD-BHCS explores multiple Pareo-optimal trade-offs.

Algorithm 6 MD-BHCS

1: function SCHEDULE(flow shop f , re-entrant machine µ, size of partial solu-
tions set k)

2: g =
{

CREATE_INITIAL_SEQUENCE(f ,µ)
}

3: repeat
4: REDUCE(g ,k)
5: take an arbitrary (s, t) ∈ g
6: oe = NEXT_ELIGIBLE_OPERATION(f , s)
7: g ′ =;
8: for each (s, t) ∈ g do
9: // Combine - Generate feasible options, update operation times

10: l = GENERATE_OPTIONS(f ,oe , (s, t))
11: g ′ = g ′∪ l

12: g = min(g ′)
13: until all re-entrant operations of µ included in g
14: return s ∈ g with the smallest makespan

MD-BHCS (Algorithm 6) is a heuristic that follows the template of the Pareto
meta-heuristic to generate partial solutions as follows. Similar to BHCS, the ini-
tial sequence is initialized before any operation is scheduled and it is the starting
point for all partial solutions that will be explored. A set of partial sequences is
explored, starting with only the initial sequence. The outer loop ensures that each
sequence eventually contains all re-entrant operations. The inner for-loop creates
a new generation (i.e., a set of partial solutions) of sequences by scheduling one el-
igible operation, starting from each of the previous generation’s sequences in g . A
representative set of partial solutions at most size k survives from the current gen-
eration to the next generation. Algorithm 19 is again used to evaluate feasibility of
sequencing options and to compute the begin times of operations.

Instead of selecting a single ‘best’ option, we make a multi-dimensional as-
sessment of the partial solutions. The partial solutions generated by the EXTEND

operator may not all be Pareto-optimal. We can remove all dominated solutions
from the solution set by applying Pareto minimization. This minimization process
removes all dominated solutions and is typically implemented by the simple cull
algorithm as described extensively in [45,106] and [125]. The reduction operator is
explained in Section 2.4.4.

2

2.4 Exploring trade-offs in scheduling decisions 35

2.4.3 Assessing partial solutions

We divide a schedule into three parts for the assessment: (1) the part containing
jobs for which all operations are sequenced and should be executed as fast as pos-
sible, (2) the part that reflects the impact of the sequencing options on the state of
the re-entrancy buffer, and (3) the part which can still be indefinitely postponed.

MD-BHCS assesses these three parts with metrics that can be readily obtained
from the begin times provided from Algorithm 19 and that together characterize
partial solutions. For the last inserted operation o, and a sequence s with an asso-
ciated partial schedule B :

• past work is assessed by measuring the earliest possible begin time B for o:
P (B ,o) = B(o) (lower is better),

• committed work is assessed by the earliest possible begin time for the oper-
ation immediately following o in the scheduled sequence:
W (B ,o) = B(NEXT(o, s)) (lower is better),

• future work is assessed by the productivity of the remaining part (higher is
better). We approximate it by the number of operations nr _ops(s,o) that
can be delayed indefinitely (lower is better).

The metrics influence the makespan of the final schedule as follows. Past work
compares the influence of a scheduling option on the begin time of the eligible op-
eration, taking into account how much buffer time is used by processing lower pass
operations. The metric favours sequences for which the last inserted operation be-
gins earlier. Delaying the last inserted operation is only interesting when we would
benefit in the future from avoiding work or penalties for unsequenced operations.
The committed work indicates the amount of work added to the re-entrant buffer,
trying to minimize the work that needs to be done directly after this option. Fu-
ture work measures how many units of work remain after all the committed work
has been done, favouring less work. These metrics are heuristics to determine the
different qualities of a sequencing option for the final makespan. We evaluate the
metrics through the schedule quality in Section 2.5.3 by comparing the different
variants of HCS to lower bounds.

2.4.4 Reducing the set of candidate solutions

We reduce the set of partial solutions such that it contains at most a pre-defined
maximum number of partial solutions k. We use the archive truncation method
from the multi-dimensional genetic algorithm SPEA2 [128]. It iteratively removes
the solution which has the smallest distance to other solutions, until there are only
k partial solutions left [128]. To reduce the impact of different magnitudes of the
metrics on the distance, we normalize each metric between 0 and 1 by scaling them
linearly to fit between their minimum and maximum observed value.

2

36 Online Scheduling of Re-entrant Flexible Manufacturing Systems

The normalized metrics are used in the ranking function of BHCS which de-
fines the respective relevance of the metrics. In the Pareto-cull process of MD-
BHCS the metrics are used without normalizing them, as the relative weight has
no effect on Pareto optimality.

2.4.5 Worst-case time complexity of MD-BHCS

The main difference between BHCS and MD-BHCS is in the number of the partial
solutions and how they select their next generation of sequences. Whereas BHCS
starts each iteration with one solution and generates at most L solutions to evalu-
ate, MD-BHCS starts with k solutions and generates at most k ·L solutions for each
of the O (|J |·r) re-entrant operations. The Pareto minimization uses the Pareto-cull
operation and takes at most O

(
k2 ·L2

)
. The reduction process of SPEA2’s archive

truncation method for a solution set of size M has a worst-case time complexity
of O

(
M 3

)
[128], where M ≤ k ·L. The minimization, reduction, and evaluation of

begin times are all in the inner loop and are executed for each iteration. The com-
plexity of evaluating the begin times of all k ·L options takes O (k ·L ·L2 · r 2). The
worst-case time complexity of MD-BHCS is therefore O

(|J | · r ·k ·L3(k2 + r 2)
)
.

As k, r and L are constants, the algorithm runs in time linear to the number of
operations |J | in the flow shop problem. The worst-case time complexity of BHCS
as explained in Section 2.3.5 is O

(|J | ·L3 · r 3
)
. The additional complexity of MD-

BHCS over BHCS for evaluating more options is at most cubic in k. In practical
applications however, the evaluation of feasibility remains the bottleneck, as its
absolute runtime is much larger than the other components.

The number of items that fit in the loop increase as the re-entrant loop time in-
creases, or as smaller products are supported. This complexity analysis hints when
this scheduler may become the bottleneck in system productivity. The impact of
the productivity optimization is then nulled by taking too much time to compute
the instructions for the operations in the FMS.

2.5 Experimental evaluation

In this section we describe the experimental set-up, compare the makespan of the
generated schedules, and evaluate the runtime of the schedulers.

2.5.1 Experimental set-up

We have implemented the two scheduling-algorithm variants, i.e., BHCS and MD-
BHCS. As in the original HCS implementation, the processing times, set-up times
and due dates are encoded as fixed precision values to avoid rounding errors that
are typical for floating point implementations. All experiments have been executed
on the same 8-core Intel i7 running at 3.0 GHz. All algorithms are implemented as
single-thread programs.

2

2.5 Experimental evaluation 37

The 3-machine, 2-re-entrant benchmarks representing print requests for the
industrial printer as introduced in [122] are used to assess the quality of the sched-
ules and the runtime of the algorithms. The benchmark consists of 85552 sheets
in 701 print requests. For the details of the test set, we refer to [122]. Each print
request is taken from one of the following categories:

H Homogeneous: repetition of one sheet type

RA Repeating A: repetition of one sheet type followed by another sheet type

RB Repeating B: repetition of one to three sheets of a type followed by another
sheet type

BA Block A: 5 blocks of 5 different sheet types, each block contains 10 or 20
sheets of the same type

BB Block B: 5 blocks with two alternating sheet types, each block contains 5 to
25 sheets of the same type

We compare the makespans generated by our algorithms with the makespans
of schedules generated by HCS and the results of a mixed integer programming
(MIP) formulation of the scheduling problem. While searching for the optimal
solution for the MIP, CPLEX [64] (a generic MIP solver) also computes the opti-
mal objective value for linear relaxations of the MIP. Such relaxations give a lower
bound for the makespan of the MIP. A schedule computed for a linear relaxation
typically violates integer feasibility constraints, and as such does not necessarily
represent a solution to the original problem. When our heuristic or CPLEX finds
a schedule that has a makespan equal to the lower bound, then the bound is ex-
act and that schedule is proven to be optimal. Otherwise, it is unknown how close
the lower bound is to the actual optimum value. The lower bounds for the bench-
marks have been calculated with CPLEX 12.6.0 with a time limit of 1000 seconds
(pre-solve and solve).

We used a weighted combination of the normalized metrics for the ranking
mechanism of BHCS. These weights were chosen empirically by selecting initial
weights and tuned by iteratively applying small variations and re-scheduling the
full benchmark. Tuning was repeated until no further improvements in makespan
were found. The best results by BHCS, for the benchmark defined in our set-up,
were found using the following weighted combination for a given schedule B , as-
sociated sequence s and last inserted operation o:

r ank(B ,o, s) = 0.3·NORM(P (B ,o))+0.6·NORM(W (B ,o))+0.1·NORM(nr _ops(s,o))

NORM ensures that a dimension is normalized between 0 (best observed) and
1 (worst observed).

2

38 Online Scheduling of Re-entrant Flexible Manufacturing Systems

2.5.2 Sensitivity to number of partial solutions

The performance of the MD-BHCS algorithm, both in quality (Figure 2.4) and run-
time (Figure 2.5), depends on the number of partial solutions k. The makespan of a
schedule typically becomes shorter when parameter k becomes higher, while the
average time per iteration increases. MD-BHCS with k = 2 is faster than BHCS
and also produces worse schedules. With k = 2, the scheduler can only account
for two extremes in a three-dimensional assessment and, therefore, cannot cover
the trade-offs accurately. Additionally, BHCS’ weighted sum does not focus on the
extremes of the trade-offs. They are likely to be too aggressive in one aspect, for
example, aggressively filling the buffer. The generated Pareto points for k = 2 are
less likely to have many follow-up options, and typically lead to fewer evaluations
of infeasible sequences.

The quality benefits of the multi-dimensional start to diminish when k = 10
or more partial solutions; the schedules improve only slightly, but at the cost of
additional runtime. Figure 2.4 shows that when k = 20 partial solutions are taken
into account, MD-BHCS produces the best makespans. The effect of exploring
multiple options simultaneously with the meta-heuristic does not increase the ob-
served runtime significantly, as the number of Pareto-optimal partial solutions is
often less than k.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of partial solutions k

0%

1%

2%

3%

4%

M
ak

es
p

an
im

p
ro

ve
m

en
t

Figure 2.4: Average makespan improvement of MD-BHCS (vertical blue bars) and BHCS
(horizontal red line) over HCS.

2

2.5 Experimental evaluation 39

2.5.3 Makespan comparison

The box plot in Figure 2.6 shows the improvement over the makespans from HCS.
The median improvement lies between 0% and 4%, with several outliers over 20%.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of partial solutions k

0

5

10

15

20

25

30

A
vg

.t
im

e/
it

er
at

io
n

(m
s)

Figure 2.5: Average time per iteration for MD-BHCS for varying k. The horizontal orange
line is the average time per iteration for BHCS.

BA BB H RA RB

category

-10%

0%

10%

20%

30%

40%

50%

%
im

p
ro

ve
m

en
to

ve
r

H
C

S

BHCS

BA BB H RA RB

category

MD-BHCS

Figure 2.6: Makespan improvement of BHCS and MD-BHCS (k = 20 solutions) relative to
HCS (higher is better).

2

40 Online Scheduling of Re-entrant Flexible Manufacturing Systems

Table 2.1: Makespans compared to CPLEX lower bounds; C PLE Xal l is average percentage
above the lower bound (all 701 cases), C PLE Xopt is average percentage above
lower bound for 108 CPLEX optimal cases, OPT is number of cases where the
makespan is known to be optimal.

C PLE Xal l C PLE Xopt OPT

HCS 21.90% 4.40% 39

BHCS 18.26% 1.48% 48

MD-BHCS k=2 18.96% 2.33% 40

k=6 16.87% 0.64% 74

k=10 16.60% 0.62% 80

k=20 16.54% 0.62% 80

The difference in the H and BB category is very small as the set-up times in all of
these job sets are very small. Both schedulers manage to keep the buffer occupied
for these cases which produces close-to-optimal results. For the other categories,
MD-BHCS typically out-performs HCS.

Table 2.1 shows how close the results of different variants of HCS are to the
CPLEX lower bounds. The first two columns show the average percentage above
the lower bound; column C PLE Xal l includes all benchmark instances, and col-
umn C PLE Xopt includes only those instances for which CPLEX found an opti-
mal solution. In the OPT column, the number of solutions which have makespan
equal to their lower bound are shown. These results show that the makespans are
over 15% higher than the CPLEX lower bounds (C PLE Xal l). However, when we
compare only the cases where CPLEX found optimal schedules, (C PLE Xopt), we
see that the results are within 1% of the optimal result. CPLEX found 108 opti-
mal schedules, and the different schedulers found several optimal schedules. The
HCS variants sometimes manage to find optimal schedules when CPLEX only de-
termined a lower bound but could not determine whether it is indeed possible to
achieve such a schedule.

2.5.4 Runtime evaluation

The runtime per category in Figure 2.7 for this benchmark with k = 20 is below 600
ms, with an average runtime of 28 ms. This shows that the proposed algorithm is
indeed fast enough for online computation of schedules for the industrial printer,
indicating that it can be applied to re-entrant flow shops originating from FMSs.
Figure 2.7 also shows that the observed worst-case running time is 10 higher than
the median, due to the infeasibility checks still incurring worst-case behaviour.
Due to the large data set the many outliers have been included in the whiskers.

2

2.6 Related work 41

We have also compared the runtime of our implementations to the implemen-
tation of HCS [122] and noticed that the difference in runtime can become arbi-
trarily large. In the benchmark, the runtime is up to 100 times slower than BHCS.
The observed runtime of HCS scales super-linearly with the number of jobs in
the input. The average processing time per scheduling decision in the complete
benchmark is 240ms for HCS and 8.6ms for BHCS, on average 28 times faster. For
only 14% of the cases, HCS is up to twice faster than BHCS. MD-BHCS with k = 20
is 3 times slower than BHCS and, therefore, only 9 times faster than HCS on the
whole benchmark.

2.6 Related work

Manufacturing-line scheduling has received a lot of attention in the operations
research field. Manufacturing systems are traditionally modelled as job shops or
flow shops. Many specialized exact algorithms and heuristics have been developed
to deal with offline and online optimization of job shop and flow shop variants.
A plethora of optimization objectives have been defined [50], among which are
minimizing makespan [11, 20, 69, 93], total tardiness [65], maximum lateness [29]
mean flow time [74], and total completion time [19,66]. Some approaches can deal
only with processing times, others include set-up times, or due dates. Other ap-

BA BB H RA RB

category

0

100

200

300

400

500

600

T
im

e/
it

er
at

io
n

(m
s)

BHCS

BA BB H RA RB

category

MD-BHCS

Figure 2.7: Runtime per scheduling decision for BHCS and MD-BHCS (k = 20) (outliers
included in whiskers).

2

42 Online Scheduling of Re-entrant Flexible Manufacturing Systems

proaches deal with claiming (multiple) shared resources and simultaneously solve
a mapping and a sequencing problem [11]. Use cases such as production lines for
mirrors, lacquer [11] and textile [69] have been researched. For this chapter we as-
sume that the mapping of operations to machines, the flow of operations, and the
sequence of jobs is fixed, and that a product is processed twice by one of the ma-
chines. The scheduling freedom in our FMS consists of choosing the sequence of
operations on the re-entrant machine and selecting efficient operation start times.

In our use case, the due dates are relative to the begin times of the operations,
and are not allowed to be missed. Relative due dates are more general than ab-
solute due dates. In most of the related work, due dates are absolute and do not
change when the sequence of operations changes. When due dates are involved,
most algorithms try to minimize the maximum lateness [29, 48]; i.e the maximum
time that a job is completed later than its due date. In case any of the due dates
is violated in the type of re-entrant FMS, the products collide. This will lead to
damaged products at best, and a malfunctioning system at worst.

Most scheduling problems also allow for arbitrary ordering of the jobs, but in
our case it is required to complete them in a specific order. The HCS [122] heuristic
addresses the same problem as in this work but it approximates the impact of a
scheduling decision, and explores a single option; is therefore more sensitive to the
tuning of its internal ranking mechanism. We improve on the current state of the
art, HCS. The effectivity of our MD-BHCS algorithm arises from the combination
of leveraging necessary properties of feasible schedules for the flow shop problem
with exploring multiple options simultaneously.

MIP Heuristics for job and flow shops such as the Rolling Horizon Procedure
(RHP) [19] and decomposition methods [29] have been used to improve the ef-
ficiency of exact algorithms by applying them to smaller sub-problems and then
implementing a portion of the solution to the sub-problem. This yields close-to-
optimal solutions for problems with only sequence-dependent set-up times. Solv-
ing a sub-problem with relative due dates with CPLEX may yield optimal solutions
for RHP, but does not typically terminate within less than 10 seconds. For some
cases, it did not even return any feasible schedule within 10 seconds, making it
ineffective for online scheduling.

Many online algorithms such as rate-monotonic and priority scheduling can-
not be applied on FMSs, or they would significantly restrict the flexibility of the
system. These online algorithms require cyclic behaviour in the input sequences,
or the possibility to assign a priority to the operations beforehand. They more-
over do not take into account the relative deadlines of the operations. Online al-
gorithms such as Earliest-Deadline-First (EDF) and Least-Slack-Time (LST) will
schedule the operations in a job-first operation-first order, effectively leading to a
single product flowing through the re-entrant buffer. This is ineffective, as in the
time between a product’s first and second pass the FMS could have used the re-
entrant machine to finish other operations. It is also not effective to greedily fill
the buffer such that as many products as possible are in the loop, as the sequence-
dependent set-up times of a future product possibly cannot be accommodated.

2

2.7 Conclusion 43

This leads to emptying the re-entrant buffer too often. The Nearest Edge Heuris-
tic [65] modified to include relative due dates [122] has also been shown to yield
much lower-quality schedules than the current state of the art, HCS.

The problem in this chapter concerns 2-re-entrant flow shops. This prob-
lem has been generalized to allow mixes of product flows with one and two re-
entrances [116], where overtaking of products with different product flows is al-
lowed at the re-entrant machine. This generalization can also be supported by the
algorithms described in this chapter. To support variable re-entrant flows, the ini-
tial sequence generation needs to be adapted, and the operation sequence at the
input machines (before the re-entrant machines) must be enforced in the same
order as they enter the re-entrant machine [116].

Several specialized algorithms have been devised for re-entrant hubs [74], and
multiple re-entrant stations [21, 65]. If the re-entrancies of different machines are
to be interleaved with each other, then the selection of product sequencing for
earlier machines directly influences the options for later machines. Our algorithm
does not guarantee feasibility for such cases. If, however, the flow of the flow shop
first finishes all re-entrant operations in a station, before processing in the follow-
ing re-entrant station, then our proposed algorithm will work if there is sufficient
product buffering capabilities between the re-entrant machines. The streams of
products exit a re-entrant machine in the same order as they enter, and each ma-
chine can be emptied to continue processing. This means that the feasibility of the
operation sequences at the re-entrant machines is decoupled, and our algorithm
will always find a feasible schedule. Maintaining the same ordering of operations
at each re-entrant station is another common way [21,65] to deal with multiple re-
entrant stations. Our heuristic algorithm is expected to significantly drop perfor-
mance when the sequence-dependent set-up times are small for most re-entrant
machines, and large for one re-entrant machine. The sequence-dependent set-up
times are then close to the maximum of either set-up time.

2.7 Conclusion

We have shown that we can drastically reduce the worst-case time complexity and
average running time of a heuristic scheduler for re-entrant flow shops that orig-
inate from FMSs compared to the scheduler of [122]. The resulting MD-BHCS
scheduling algorithm investigates a smaller part of the timing of operations, and
avoids the evaluation of infeasible sequencing options. We have used properties
of the scheduling problem to quickly remove infeasible options by inspecting lo-
cal information. We have also shown that the worst-case time complexity of the
heuristic depends on the maximum number of products that fit simultaneously in
the re-entrant buffer of an FMS.

The performance of the multi-dimensional Pareto meta-heuristic CPMH on
this flow shop scheduling problem confirms it is a promising meta-heuristic for
online scheduling. MD-BHCS produces on average 4.6% shorter makespans on

2

44 Online Scheduling of Re-entrant Flexible Manufacturing Systems

a relevant industrial benchmark than the previous state of the art, and is 9 times
faster. Trading off solution quality for runtime is useful to avoid the scheduler be-
coming a bottleneck for productivity.

Products within a product batch are required to be processed in a particular
order. Once an order of batches has been determined, the online scheduler opti-
mizes the interleaving of processed and unprocessed streams of sheets. In the next
chapter, we provide an approach to find good orderings of batches.

3

3

Multi-objective Optimization of
Product Batches

The previous chapter presented an algorithm to optimize the merging of re-entrant
product streams. A key restriction in that problem is that the products must leave
the FMS in a given order. In industrial printing, the sheets must be output in the
sequence requested by the customer. Product batches are logical units of work that
need to be processed together. Although the products within a batch (e.g., pages
within a book) must not be shuffled, it is still allowed to determine the order in
which different batches are manufactured. In this chapter, we therefore allow the
output order of product batches to change, and use this to optimize for productiv-
ity. An FMS operator not only needs to select the product batch order, but also the
settings that determine the production mode. The settings of FMSs typically lead
to different productivity, quality, and/or running costs. E.g., if the highest printing
quality is required, the productivity may be relatively low, at additional cost for us-
ing extra ink to achieve a particular quality. If subsequent batches need different
settings, the machine needs to reconfigure, which leads to unproductive set-up
times. In the printing case of the previous chapter, set-up times occur when in-
terleaving sheets from different print jobs inside the printer. These set-up times
affect productivity and potentially cost and quality.

In this chapter, we contribute a model and algorithms that sequences batches
and selects appropriate system settings such that an operator can choose from
Pareto-optimal trade-offs in aspects like, productivity, quality, and costs. As a first
contribution, we provide a reference heuristic that focuses on solution quality but
is not applicable to online optimization. Online optimization is needed when
batches arrive on-the-fly. As a second contribution, we provide an online heuristic
that provides good solution quality in acceptable time.

3.1 Introduction

Many scheduling problems that require sequence optimization can be defined as a
Traveling Salesman Problem (TSP) [99], or a variant of the TSP [76,89]. The TSP is
a well-known combinatorial optimization problem that aims to optimize the cost

The content of this chapter is an extension of the work published in DATE 2016 [118].

3

48 Multi-objective Optimization of Product Batches

of a tour, i.e., minimizing the cost to visit each of a set of cities exactly once. We ex-
plore online optimization techniques for scheduling FMSs that besides sequenc-
ing, involve selection of settings, while optimizing for multiple objectives. Such
problems are then expressed as a Multi-Objective Generalized TSP (MO-GTSP).

The FMS can produce the product batches in one of several modes, resulting
in different processing values (time, quality, etc.). Changing modes occurs only
between batches, and typically has an associated processing penalty, for instance
in time and/or cost. An online scheduling algorithm needs to determine in what
order to execute the batches, and in which modes. Figure 3.1 gives an example of
such trade-offs, encoded in an MO-GTSP.

Real-world optimization problems are often multi-objective in nature. The
goal of (meta-)heuristics for multi-objective optimization problems is to find the
efficient set, a set of solutions with Pareto-optimal values. The efficient set consists
of all solutions that have values that are not dominated by any other solution. The
Multi-Objective Traveling Salesman Problem (MO-TSP) is a TSP variant in which
multiple objectives, i.e., tour metrics, need to be optimized simultaneously.

Many problems are also multiple-choice in nature; we have to select, e.g., ex-
actly one system mode per product batch. Sequencing choices occur in reconfig-
urable FMSs that have sequence-dependent or even history-dependent reconfig-
uration times. Selection choices occur when the input sequences can be adapted,
e.g., to increase performance. This freedom of choice is captured by the general-
ized aspect of the Generalized TSP (GTSP), where an optimal tour through clusters
of cities needs to be found, visiting exactly one city from each cluster.

Not all information may be available before any decisions need to be taken.
For a printer, batches can arrive at any point in time. An algorithm either needs
to be fast enough to recompute all optimization decisions, or to have an online
component, where information can be incorporated on-the-fly.

(5s, 4$)

(4s, 8$)

(5s, 6$)

(6
s,

10
$)

(7s, 3$)

(5s, 4$)

(8s, 5$)

(5
s,

2$
)

Figure 3.1: Example MO-GTSP, with time and cost objectives. The ellipses with dots are
clusters of cities in the MO-GTSP, representing print jobs and printer modes,
resp. The two tours, print sequences and mode selections, have objective values
(25s, 14$) and (20s, 28$) resp., showing a time, cost trade-off.

3

3.2 Multi-Objective Generalized TSP 49

We apply the Constructive Pareto Meta-Heuristic (CPMH), the constructive
meta-heuristic that was introduced in Section 2.4.1, to MO-GTSP. The application
of CPMH to MO-GTSP is incremental in nature, enabling online computation of
solutions. CPMH is inspired by CPH, originally applied to the Multi-dimensional
Multiple-choice Knapsack Problem (MMKP) [106]. Such problems are found in,
e.g., online resource management and in routing of wires on chips. The incremen-
tal and parametrized nature of CPH has shown particularly flexible and powerful
for use as a tunable, online algorithm. The main difference between MMKP and
MO-GTSP is that MMKP is essentially a selection problem whereas MO-GTSP
is a combined sequencing and selection problem. Whereas TSP does not impose
bounds on any of the dimensions of the optimization problem, MMKP enforces
hard bounds.

We are the first to develop dedicated heuristics for the MO-GTSP. Our MO-
GTSP solutions build upon approaches for solving MO-TSP and GTSP, The state-
of-the-art algorithms for solving MO-TSP are non-deterministic meta-heuristics
with powerful local search [109]. Pareto Local Search (PLS) [5,96] has been used to
find approximations of the efficient set of MO-TSP. PLS explores the neighbour-
hood of solutions to find neighbouring, hopefully non-dominated, solutions. Two-
Phase Pareto Local Search (2PPLS) [83] is the current state-of-the-art for MO-TSP.
In its first phase it uses a strong single-objective solver to generate an initial ap-
proximation of the efficient set. In the second phase, it uses PLS to find additional
non-dominated solutions. The Memetic Algorithm for GTSP (MA-GTSP) [52] is
currently the state-of-the-art algorithm for GTSP.

We combine the state-of-the-art approaches (2PPLS and MA-GTSP) to cre-
ate a reference heuristic for MO-GTSP that focuses on solution quality. It is not
suitable for online application. We use CPMH and PLS as a basis for our online
MO-GTSP heuristic.

3.2 Multi-Objective Generalized TSP

We extend the single-objective GTSP model presented in [39] to a MO-GTSP. We
are given a complete weighted directed graph G(V ,E) with vertices V and edges
E =V ×V . In addition, a partitioning C =C1, . . . ,Cn of V =C1 ∪C2 ∪·· ·∪Cm , such
that Ci ,C j ∈ C : i 6= j =⇒ Ci ∩C j = ; defines the clusters to be visited. A cycle
is feasible if and only if it visits each cluster exactly once. The objective function
z : E → Rn

≥0 maps each edge to its corresponding n-dimensional objective. These
objectives can be length, weight, and/or cost. Solutions to the problem are tours
T ⊆ E , which are feasible cycles with a Pareto-optimal multi-objective tour cost∑

e∈T c(e). The sum of value-tuples is obtained through element-wise addition.
A tour T is dominated if and only if there exists another tour T ′ in a set such

that z(T ′) dominates z(T), i.e., if and only if each objective is worse or equal to
that of tour T ′ and the tour objectives are not the same; z(T) 6= z(T ′). The Pareto-
optimal tours are those that are not dominated by any other tour. The two tours in

3

50 Multi-objective Optimization of Product Batches

Figure 3.1 are not dominated by each other.
The MO-GTSP corresponds to print batch optimization as follows. Each clus-

ter of the MO-GTSP corresponds to a print batch. Each city in such a cluster cor-
responds to one of the print modes for that print batch. Exactly one city of each
cluster must be visited; i.e., each print batch must be executed exactly once in one
of the given print modes. The edges between cities correspond to the time or cost
associated with executing subsequent print batches in certain print modes. The
MO-GTSP therefore matches the structure of the print batch optimization prob-
lem directly, making it the appropriate modelling choice.

3.3 Related work

Although many algorithms have been developed for many TSP variants, like the
GTSP and MO-TSP, no algorithms dedicated to solving the combined challenge of
GTSP and MO-TSP were published prior to our own work. The preliminary work
published in [118] is further developed in this chapter. We discuss work related to
TSP, MO-TSP, GTSP, and to MO-GTSP.

3.3.1 Traveling Salesman Problem

The TSP is a classical problem [7,54,77], famous for its simple definition, and noto-
rious for its difficult optimization landscape. Many algorithms have been defined
to solve geometric/Euclidean versions of the TSP [6,7,77], either exactly or heuris-
tically. It has been a proving ground for general optimization techniques such
as branch-and-bound, and branch-and-cut algorithms [68, 92] and sophisticated
approximation algorithms for the geometric TSP [22]. Such approximation algo-
rithms for TSP typically rely on the computation of closely related problems for
which optimal solutions can be computed in polynomial time, such as minimum
spanning trees, and perfect matchings. Most algorithms focus on the instances
where distances between cities are symmetric; i.e., symmetric TSP. Several short-
cuts can be taken when the instances are symmetric, and therefore the algorithms
for the asymmetric TSP are typically slower and yield lower quality solutions.

Exact algorithms require a significant amount of time to execute, as the TSP is
an NP-hard optimization problem. The difficulty lies both in finding the best solu-
tion, and in proving that no other solution can be better. Heuristics have been
found that typically find very good solutions in a small amount of time. Such
heuristics typically start from some initial solution, and iteratively apply improve-
ments. Several local modification algorithms exists for the TSP. By applying a local
modification to a tour, a neighbouring solution can be found. The neighbourhood
of a solution consists of all its neighbouring solutions for some given local modifi-
cation approach.

Iterated Local Search (ILS) [109] iteratively accepts a neighbouring solution if
it improves the objective. In case no further improvement can be found, the local

3

3.3 Related work 51

search stops, as it has found a local optimum. The 2-exchange and 3-exchange
neighbourhoods are well-known examples of effective local searches; they modify
a tour by cutting it into two respectively three pieces, and assembling the pieces
in a different order. ILS eventually finds a local optimum, but may miss the global
optimum if this is not reachable by locally improving solutions. Stochastic Local
Search (SLS) [62] adds a non-deterministic perturbation step that creates one ar-
bitrary modification. Such a solution is likely worse, but the new neighbourhood
may allow the ILS to escape from a local minimum.

3.3.2 Multi-Objective Traveling Salesman Problem

Many heuristics have been defined for MO-TSP, but only recently has an exact al-
gorithm been applied successfully to find the efficient set [40]. The efficient set for
MO-TSP instances has been calculated with the Augmented Epsilon Constraint
algorithm (AUGMECON2) [40] using a branch-and-cut algorithm for the single-
objective TSP. AUGMECON2 generates all the solutions in the efficient set using
an augmented version of the ε-constraint method. The ε-constraint method gen-
erates single-objective mixed integer programming (MIP) instances from a multi-
objective problem instance, which are solved by a generic solver for one objective,
while the other objectives are constrained. As the objective values for TSP are inte-
ger, a grid of instances can then be explored for each combination of the objective
values between the origin and the worst attainable objective values. The approach
uses slack information of the previously calculated Pareto-optimal values to dras-
tically increase the efficiency of searching the grid. Despite this improvement, it
takes almost a day to compute the efficient set for instances with 100 cities. This
is unsurprising because of the computational complexity of the single-objective
TSP. The computational complexity of multi-objective combinatorial optimiza-
tion problems in general is very high [33].

Paquete et al. have extended SLS for single-objective TSP to bi-objective
TSP [96, 97]. Their algorithm, Pareto Double Two Phase Local Search (PD-
TPLS) and its implementation are still among the state-of-the-art MO-TSP meta-
heuristics, and is visualized in Figure 3.2a. In a first phase, the algorithm generates
a solution that is near-optimal for a single-objective TSP instance, and in the sec-
ond phase the algorithm applies weighted aggregation to find neighbouring non-
dominated solutions. The heuristic sweeps over the objective space by gradually
modifying the local search direction in a pre-defined number of discrete steps. Al-
gorithms that use weighted averages of multiple objectives can only find points on
the convex hull of the Pareto-front. That is, they only find supported Pareto points.

Most Pareto-optimal solutions of a bi-objective TSP are reachable through the
immediate 2-exchange neighbourhood [15, 95]. This observation has been lever-
aged to quickly search through the neighbourhood of a previously generated solu-
tion to find other solutions that are likely in the efficient set [97]. Several algorithms
use Pareto Local Search [5,94], where a neighbourhood of a (set of) Pareto-point(s)
is explored to iteratively find neighbouring non-dominated points. The 2PPLS [83]

3

52 Multi-objective Optimization of Product Batches

algorithm (visualized in Figure 3.2b) generates supported points for a bi-objective
TSP through weighted aggregations in its first phase according to a dichotomic
scheme originally proposed in [4]. In the second phase, it uses PLS to find nearby
non-supported Pareto points. This relatively simple approach is currently among
the state-of-the-art. The choice of neighbourhoods for SLS and PLS significantly
impacts the effectiveness of these algorithms [96].

3.3.3 Generalized TSP

Memetic algorithms such as MA-GTSP [52,53] are regarded as the state-of-the-art
heuristics for GTSP. Memetic algorithms combine the ideas of crossover and mu-
tation from genetic algorithms with a strong local improvement element. These
algorithms differ from SLS as they keep more than one solution at a time, and try
to recombine the good parts of different tours into a new tour. Memetic algorithms
are typically slower than their deterministic counter-parts, but have more oppor-
tunities to escape local minima.

A branch-and-cut algorithm [39] has been created for GTSP to find the ex-
act optimal solution of a GTSP instance. The work presents several sophisticated
heuristics to generate additional constraints (i.e., cuts) for a MIP formulation of a
relaxed version of GTSP until a feasible solution to the GTSP is found. As this is an
exact algorithm, very large instances require long computation times.

Objective 1

O
b

je
ct

iv
e

2

(a) Pareto Two-Phase Local Search (PT-
PLS) [97] starts from a random solution,
and optimizes gradually to the second
objective..

Objective 1

O
b

je
ct

iv
e

2

(b) Two-Phase Pareto Local Search
(2PPLS) [83] starts from several random
solutions, which are optimized for
different weighted aggregations.

Figure 3.2: Random initial solutions (red) are optimized through SLS or similar 1D opti-
mization (arrow) to find supported non-dominated points (blue). PLS explores
the neighbourhood of the supported points to find non-supported points in the
grey triangles.

3

3.4 2PPLS for MO-GTSP 53

3.3.4 Multi-Objective Generalized TSP

Prior to the work in this thesis, no dedicated algorithm or heuristic for MO-GTSP
had been presented in the literature. An evolutionary approach has been sug-
gested for a generalized bi-objective TSP [75]. The generalization in this case
does not consider clusters of cities. Instead, it consists of allowing multiple (non-
dominated) edges between cities. For our printing case, we need to encode that
selecting a particular print mode for one batch will lead to a limited number of
options for the subsequent batch. This restriction cannot be encoded in the gen-
eralized version of [75]. The MO-GTSP as introduced in Section 3.2 can express
the generalized version of [75] by expanding each city into a cluster containing
one city for each incoming edge.

Because no prior solutions for MO-GTSP exist, we approximate the efficient
set of an MO-GTSP by modifying the components of the 2PPLS. We combine the
state-of-the-art memetic algorithm MA-GTSP [52] and the dichotomic scheme
of [4] to generate supported Pareto-optimal points, as elaborated in Section 3.4.
Alternatively, we could have combined AUGMECON2 [40] with the branch-and-
cut heuristic for GTSP [39]. However, [39,53] suggest that this exact approach does
not scale well for asymmetric instances, indicating that AUGMECON2 for GTSP
does not scale well to larger instances.

We then apply the CPMH meta-heuristic to create an online heuristic for MO-
GTSP. The incremental CPH approach presented for MMKP [106, 107] already
deals with multiple choices and multiple objectives. We deal in addition with se-
quencing (of clusters), by combining the incremental approach of CPMH with
PLS.

3.4 2PPLS for MO-GTSP

We first outline the two phases of the 2PPLS algorithm. We then show how MA-
GTSP is used in the first phase, and how PLS is used in the second phase.

3.4.1 2PPLS

2PPLS [83] (Algorithm 7) consists of two phases. It takes an MO-GTSP instance
consisting of graph G , clustering of cities C and objective function z as input. In
the first phase an approximation Px of the supported Pareto-optimal solutions is
found through any existing single-objective algorithm. Supported Pareto-optimal
solutions are those solutions that lie on the convex hull of the Pareto-optimal so-
lutions. Such solutions are the subset of the efficient set that can be found by
applying a good single-objective heuristic to weighted aggregations of the multi-
objective instances (see Section 3.4.2). Figure 3.2b shows how some random ini-
tialization (i.e., the red points) is explored towards close to efficient solutions (i.e.,
the blue points).

3

54 Multi-objective Optimization of Product Batches

In the second phase, a neighbourhood N is explored around each current
non-dominated solution p ∈ Px (see Section 3.4.3). All non-dominated neighbour-
ing solutions are added to the approximation of the efficient set. The procedure
ADDSOLUTION adds the given solution to a set if and only if it is not dominated by
any other solution in the set. In addition, it removes all solutions that are dom-
inated by this solution from the set. It returns true when the solution was not
dominated, and false otherwise. If a new non-dominated point is found, its neigh-
bourhood is eventually explored, unless in the mean time it becomes dominated
by a solution from a different neighbourhood. These solutions will typically lie in
the grey triangles between the supported solutions. Similar to how ILS finds local
optima, this approach finds a set of locally Pareto-optimal solutions [83, 94, 95].

Algorithm 7 2PPLS [83] for MO-GTSP

1: function 2PPLS(MO-GTSP P = (G = (V ,E),C , z))
2: // First phase; generate initial approximation of the efficient set
3: Px = DICHOTOMIC_MAGTSP(P)
4: X = Px

5: // Second phase; Pareto Local Search
6: while Px 6= ; do
7: Select some p ∈ Px

8: for each p ′ ∈N (p) do
9: if z(p) 6≺ z(p ′) then

10: if ADDSOLUTION(X , p ′,P) then
11: // p ′ is not dominated by any other solution
12: // Explore its neighbourhood in a later iteration.
13: ADDSOLUTION(Px , p ′,P)

14: // Finished exploring all points in the neighbourhood of p
15: Px = Px \

{
p

}
16: return X // Return the approximation of the efficient set

3.4.2 Dichotomic scheme with MA-GTSP

For the first phase of 2PPLS, a single-objective heuristic is used to estimate the
supported points of the efficient set for bi-objective problem instances. In gen-
eral, multi-objective problem instances (with objectives z1 to zn) can be trans-
formed into a single-objective instance by using the weighted-sum method [36].
This method minimizes a positively weighted sum of the objectives:

min
n∑

i=1
(λi · zi (x)), with λi > 0,

n∑
i=1

λi = 1

x represents some solution to the problem, and λi the weighting factors for
each of the n objectives of the problem. We can find all Pareto points close to the

3

3.4 2PPLS for MO-GTSP 55

convex hull of the efficient set by choosing different objective weights with λi ∈
(0,1), and solving a single-objective problem.

The dichotomic scheme [4,83] provides a structured way of selecting appropri-
ate weights for bi-objective instances, as illustrated in Figure 3.3. It first determines
the range of the objectives by finding the best (or very good) solutions for either of
the objectives. These solutions are the initial xr and xs . Based on two adjacent
non-dominated solutions, the weights λi for each objective zi are determined ac-
cording to the normal of the line segment joining two supported points. Using
these weights, a single-objective instance is created, which is subsequently solved
by MA-GTSP [52] and its implementation1. The resulting solutions (i.e., tours) are
evaluated to obtain the multi-objective values. If optimizing for the λ values for
two points xr and xs (see Figure 3.3) has led to a supported solution xt , then the
algorithm branches to xr , xt and xt , xs . In theory, a supported point xt could domi-
nate one or both of the points xr or xs , if the heuristic found sub-optimal solutions
for xr and xs . This is however unlikely to occur when xr and xs are near-optimal.
If it does occur, however, the exploration terminates. It also terminates when no
new supported point xt is found.

This convex hull approximation technique for bi-objective problems can be
generalized to multiple objectives [27]. It is noted that the normal vector to a 3D
surface may contain negative components, and can therefore not always be used
as the weights. This work provides a technique to determine the facets that re-
quire additional exploration, and how to find the associated weights. Where deter-
mining the bounding hyper-surfaces in 2D is trivial, it requires more complicated
techniques for three or more objectives. In addition, determining the initial range

1http://www.cs.nott.ac.uk/~dxk/gtsp_ma_source_codes.zip

z(xr)

z(xs)

z(xt)

λ= (z2(xr)− z2(xs), z1(xs)− z2(xr))

z1

z2

Figure 3.3: Dichotomic scheme [4, 83]; use λ between xr and xs to optimize in a particular
direction, and to find a new supported solution xt . If xt falls in the interior of the
grey triangle, then the algorithm branches to the regions (xs , xt) and (xt , xr).

http://www.cs.nott.ac.uk/~dxk/gtsp_ma_source_codes.zip

3

56 Multi-objective Optimization of Product Batches

for the objective values (i.e., the Nadir point) is more complicated in multiple di-
mensions. As such, we focus on the bi-objective benchmarks and the bi-objective
reference algorithm.

We will refer to the combination of the dichotomic scheme with MA-GTSP as
dichotomic MA-GTSP. The combination of dichotomic MA-GTSP with 2PPLS is
referred to as 2PPLS-MA-GTSP.

3.4.3 Neighbourhood for PLS

Local search techniques use local modifications to search a neighbourhood of a
solution for improvements. For single-objective problem instances, the global op-
timum should preferably be reachable by several successive applications of local
modifications, in not-too-large neighbourhoods. If no local modification can be
made to improve a solution, then it is called a local optimum. PLS generalizes
this idea to multiple dimensions; any non-dominated solution is an improvement,
and is potentially locally Pareto-optimal. Keeping track of the non-dominated so-
lutions leads to a Pareto local optimum set [94].

The solutions in the efficient set should preferably be reachable by local mod-
ifications from other non-dominated solutions. PLS heuristics for the MO-TSP
typically use the 2-exchange or 3-exchange neighbourhoods [83, 94]. The stan-
dard 2-exchange respectively 3-exchange neighbourhood consists of cutting the
tour into two respectively three parts, and assembling the tour in such a way that
another tour is created.

We use the generalized 2-exchange neighbourhood for the MO-GTSP (N in
Algorithm 7, Line 8), as introduced in [39]. The generalized 2-exchange neighbour-
hood changes the order in which clusters are visited, see Figure 3.4, while also con-
sidering the selected cities in the clusters. Consider cities x,u, v , w , where v follows
w and x follows u in the tour. Let these cities be from the clusters Cα,Cβ,Cγ,Cδ

respectively. Then we want to find cities x∗, v∗,u∗, w∗ such that the cost of revers-
ing a part of the tour leads to a non-dominated solution. In the single-objective
version, this amounts to selecting the shortest path through the changed cluster
ordering. For the symmetric TSP, reversing a tour only changes the values for two
edges. For the symmetric GTSP, reversing a tour changes the values for at most six
edges (the dashed edges in Figure 3.4). The reversed part of the tour maintains the
same value. For the asymmetric (G)TSP more edges need to be re-evaluated once
a part of a tour is reversed.

For the MO-GTSP we can enumerate all (possibly non-dominated) paths to
find non-dominated city selections. Note that in general the bi-objective shortest-
path problem is NP-Hard and intractable in the number of vertices [35]. However,
the number of involved vertices (for symmetric MO-GTSP instances) is at most
four. In a symmetric MO-GTSP enumerating all shortest paths for the four ver-
tices x∗, v∗,u∗, w∗ is limited to maxc∈C (|c|)4 paths. For asymmetric MO-GTSP
instances, however, the number of non-dominated paths can scale exponentially
with the number of clusters [39].

3

3.5 CPMH applied to MO-GTSP 57

3.5 CPMH applied to MO-GTSP

The general outline of CPMH for MO-GTSP is shown in Algorithm 8. The partial
solutions of CPMH for MO-GTSP are represented by tours, and their associated
multi-dimensional costs. The clusters are disclosed one by one, and extend the
partial solutions in each iteration. The following subsections provide the details of
how we define the operators for the CPMH for MO-GTSP.

3.5.1 Initialization of partial solutions

We initialize the set Sp of partial solutions by creating a set of two-vertex tours. The
Cartesian product of cities from the first two clusters is translated to a set of tours
(i.e., partial solutions) in Sp by simply taking the Pareto-optimal tours for these
two clusters. Operator ‘min’ in Algorithm 8 returns the non-dominated solutions
of its argument.

3.5.2 Reduction operator

The REDUCE operator makes sure that the set of partial solutions is reduced to size
k ≥ 2 at the beginning of each iteration. There are several alternatives to compute
such a reduction. For bi-objective problems, CPH [106] uses a selection mecha-

hj

w∗
w

v
v∗

u
u∗

i

z∗
z

k

Figure 3.4: Generalized 2-exchange move [39]. While changing the cluster ordering, simul-
taneously change the visited cities in those clusters.

3

58 Multi-objective Optimization of Product Batches

Algorithm 8 CPMH for MO-GTSP

1: function CPMH_GTSP(MO-GTSP P = (G = (V ,E),C , z), size of partial solu-
tions set k)

2: Sp = min(INITIAL_TOURS(P ,C1,C2))
3: mark C1 and C2 as visited
4: for each unvisited cluster Ci ∈C do
5: Sp = REDUCE(Sp ,k)
6: Sp = min(EXTEND(P ,Sp ,Ci))
7: S′

p = IMPROVE(COPY(Sp))
8: Sp = min(Sp ∪S′

p)
9: mark Ci as visited

10: return Sp

nism that slices the 2D space into equal parts and selects one solution per slice.
Figure 3.5a shows how the space between the two extreme non-dominated values
is subdivided by k−2 lines with equal angles between subsequent lines. The oper-
ator returns the extreme points and one of the solutions per subdivision.

The archive truncation method from SPEA2 [128] can be applied to a data set
of arbitrary dimensions. Given a data set, it iteratively removes the solution which
has the smallest distance to other solutions, until there are only k solutions left.

The reduction mechanisms from CPH [106] and SPEA2 [128] both aim to find
a set of k representatives that are evenly spaced over the objective space. We have
not found significant differences in our experiments, and therefore do not distin-
guish between these two operators in the presented experiments.

Objective 1

O
b

je
ct

iv
e

2

Dominated

Non-dominated

Selected

(a) Reduction mechanism.

Objective 1

O
b

je
ct

iv
e

2

original

optimized

(b) Improvement vectors.

Figure 3.5: Visualization of the effect of the reduction and improvement operators for
CPMH on the objective space.

3

3.5 CPMH applied to MO-GTSP 59

3.5.3 Extension operator

Each iteration, a cluster is disclosed and is added to the existing partial solutions,
constructing new partial solutions. The extension operator inserts each city of ver-
tex Ci into each position of a sub-tour T ∈ Sp , creating |Sp | · |T | · |Ci | new solutions.
Even though each position is used, there is no guarantee that a Pareto-optimal tour
of size |T | generates new Pareto-optimal tours for size |T |+1. Consider the exam-
ple in Figure 3.6 where the goal is to minimize the tour length. The figure shows an
example where the best possible insertion into an optimal tour is not an optimal
tour itself.

As indicated on Line 6 of Algorithm 8, we can opt to apply Pareto-minimization
to the newly extended tours, to reduce the number of tours which are optimized, in
the subsequent step. This leads to a faster execution, but worse quality, compared
to when minimization is omitted in this step.

3.5.4 Improvement operators

A sub-optimal tour can be improved by searching its neighbouring solutions. An-
other tour can be generated by swapping the position of two nodes in the tour,
thereby changing four edges. Although such a swapping neighbourhood works
well for certain scheduling techniques, it is famously irregular for the TSP [77],
and is therefore ineffective for ILS. More effective neighbourhoods such as the 2-
exchange and 3-exchange neighbourhood cut a tour into two or three parts respec-
tively and join the parts into a different arrangement forming a tour.

The core idea of improvement operators in CPMH is that they can reconsider
previous choices which may have led to sub-optimal results. Such sub-optimality
may be introduced by a heuristic combination operator, by the reduction oper-
ator, or by previous optimizations. Single-objective optimization techniques can
be used to optimize solutions towards a particular direction by using the weighted
sum schema [36, 109] (i.e., a linear combination of all objectives), as illustrated in
Figure 3.5b. This is similar to the dichotomy scheme, except that we use the fol-

a

b

c
d

a

b

c
d

e

a

b

c
d

e

Figure 3.6: (left) Optimal partial tour a,b,c,d , (middle) best-insertion of new vertex e (cre-
ating a,b,c,e,d), (right) optimal tour a,e,c,b,d including vertex e (by a 2-
exchange move to reverse sub-tour b,c,e).

3

60 Multi-objective Optimization of Product Batches

lowing λ values as optimization directions for a solution x:

λ=
(

z1,max − z1(x)

z1,max − z1,min
,

z2,max − z2(x)

z2,max − z2,min

)
and λ= (1,0) and λ= (0,1)

These values are chosen such that the solutions are optimized in a direction
to a value ratio that they already represent in the solution set. The extreme objec-
tives (z1,max, z2,min) and (z1,min, z2,max) are optimized further to their extremes, to
maintain a good spread over the whole range. For more than two objectives, these
weights can be determined in a way similar to the generalization of the dichotomic
approach given in [27].

As indicated by the current state-of-the-art [39, 52, 96], the 2-exchange and
3-exchange neighbourhoods can be applied relatively efficiently and reorder the
solutions effectively to improve the results. We use the 2-exchange and reduced
3-exchange neighbourhood as described in ILS [109]. Iteratively applying these
exchange neighbourhoods until no further improvement is found, leads to 2-opt
and 3-opt tours. I.e., a tour is 2-opt or 3-opt when no 2-exchange respectively 3-
exchange change can be made to improve the tour.

Several speed-up techniques can be applied to these improvement operators
for the (MO-)TSP, such as limiting the search to a limited number of nearest neigh-
bours [67], don’t look bits [13] to avoid evaluating options that were recently con-
sidered and fixed radius search [13]. These techniques can significantly decrease
the absolute running time, but do not significantly change the way these algo-
rithms scale. The generalization of the problem to MO-GTSP does not allow trivial
application of these speed-up techniques. We have therefore opted to not include
these speed-up techniques in any of our implementations.

In addition to the 2-exchange and 3-exchange neighbourhoods, we have
adopted the single-objective Cluster-Optimization heuristic introduced in the
branch-and-cut approach for GTSP [39]. Given a fixed cluster order, it optimizes
the selection of cities per cluster through a modified shortest-path algorithm. This
heuristic has been shown to explore a very large neighbourhood [70] in polynomial
time and is typically very fast. We always apply cluster optimization as the last im-
provement operator. The 2- and 3-exchange operators improve the ordering of the
clusters, while the cluster optimization improves the selection of the nodes inside
the cluster. Together, they effectively solve the simultaneous sequencing and se-
lection problem of GTSP.

We will show two variants of our approach; one using only weighted improve-
ment operators, and another that uses a PLS as a post-improvement step. We refer
to these versions as CPMH and CPMH-PLS respectively. As performing PLS on
relatively poor approximations of the Pareto fronts can lead to significant running
time if a Pareto local minimum set is to be found, we instead search the gener-
alized 2-exchange neighbourhoods of only the solutions obtained after our nor-
mal improvement round, and add the non-dominated solutions to the solution
set. CPMH-PLS does not continue searching in the newly found non-dominated

3

3.6 Benchmarks and experimental evaluation 61

solutions, whereas the PLS introduced in Algorithm 7 does. This version of PLS is
similar to the Pareto local search element of PD-TPLS [97].

3.6 Benchmarks and experimental evaluation

We assess how CPMH performs as an offline and online MO-GTSP heuristic by
comparing the runtime and solution quality to our reference algorithm integrat-
ing the state-of-the-art algorithms 2PPLS and MA-GTSP. The benchmark is de-
scribed in the following subsection. We then present our method to compare the
quality of the calculated Pareto fronts and finally perform the experiments that
show the offline and online performance of CPMH compared to the reference. We
have run all benchmark instances on an Intel Core i5-4300M notebook running
Windows 10.

3.6.1 MO-GTSP benchmark

The GTSP Instances Library2 (GTSPLIB) provides a subset of instances from the
TSPLIB3 [99] with cluster information [39]. The Krolak instances in this set repre-
sent distance problems with geographical clustering.

A single-objective GTSP definition in the GTSPLIB consists of two parts; the
distances between nodes, and the clustering data. Multi-objective instances are
obtained by using the distance data of two or more instances as the objectives,
and the clustering data of one of the instances. The procedure that created the
clustering [39] used geometrical information of the instances, and therefore the

2http://www.cs.nott.ac.uk/~dxk/gtsp.html
3https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

1

23

4

5 6

1 4 5 2 3 6

(a) Sub-optimal tour.

1

23

4

5 6

1 2 3 4 5 6

(b) 3-exchange to a shorter tour.

Figure 3.7: One of the 3-exchange moves; the tour is cut in three places joined together in a
different way.

http://www.cs.nott.ac.uk/~dxk/gtsp.html
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

3

62 Multi-objective Optimization of Product Batches

first objective of the MO-GTSP in our benchmark have a stronger correlation to
the clustering than the second one.

We combine five instances (20KroA100 to 20KroE100), each containing 20 clus-
ters, and two instances with 40 clusters (40KroA200 and 40KroB200) to form 22 bi-
objective MO-GTSP instances. We adopt the notation used for both MO-TSP and
GTSP as follows: 20KroAB100 denotes the instance with 20 clusters and 100 cities,
where the objectives are defined by the 20KroA100 and 20KroB100 instances, and
the clusters are defined by the 20KroA100 instance.

3.6.2 Pareto front comparison

The solutions generated by the MO-GTSP algorithms should cover as much of the
trade-off space as possible, while having solutions that are as close as possible to
the efficient set. We approximate the efficient set by finding the non-dominated
solutions in the union of all reported solutions per benchmark over all the experi-
ments we performed.

Two Pareto fronts A,B can be compared in many different ways for an indi-
cation of the relative quality of the generated solutions [127]. We use the Epsilon
Iε(A,B) and Hyper-volume ratio IHV R = Ih (A)

Ih (B) indicators [126, 127] to gain insight
into the relative quality of solutions. The Epsilon indicator between Pareto front
A and Pareto front B is the largest scalar multiplication factor of the solution val-
ues of A for which A dominates B . The Hyper-volume ratio considers the relative
surface (or hyper-volume) of the area bounded by the Pareto front and some up-
per bound point; we take the worst observed values in the two sets A and B per
dimension. We compare each Pareto front A to the approximated efficient set s,
using Iε(A, s), and Hyper-volume ratio IHV R = Ih (A)

Ih (s) . If Iε(A, s) and IHV R are close
to 1, then the Pareto front A approaches the efficient set s. The Epsilon and hyper-
volume indicators combined gives a better assessment of the relation between the
results of two algorithms than the individual indicators [127].

3.6.3 Offline optimization

In the offline experiment, all information is available at the start of the algorithm.
The details of the experiment, including the benchmark files, and the results, can
be found at www.es.ele.tue.nl/pareto/mogtsp. The trade-off between time and
quality is visible in Figure 3.8; the reference algorithms have a very good solu-
tion quality (i.e., the indicators are both very close to one), but also have a very
high running time. The variants of CPMH without PLS run very fast but do not
yield high quality results, despite the iterative improvement operators that are em-
ployed. This figure also shows that the Iε and IHV R show roughly the same trends.

Interestingly, when k is smaller for CPMH-PLS, the running time tends to be
longer than for larger k. We measured the time spent on the components of the
algorithm, and our PLS implementation was the dominating factor. Apparently

www.es.ele.tue.nl/pareto/mogtsp

3

3.6 Benchmarks and experimental evaluation 63

1.0 1.2 1.4 1.6 1.8

Epsilon (lower is better)

0

50

100

150

200

250

T
im

e
(s

)

Dichotomic MA-GTSP

2PPLS MA-GTSP

CPMH-PLS[k=1000]

CPMH-PLS[k=100]

CPMH-PLS[k=10]

CPMH[k=1000]

CPMH[k=100]

CPMH[k=10]

(a) Comparison of trade-off in time and Iε quality indicator.

1.00 1.05 1.10 1.15 1.20 1.25

Hypervolume ratio (lower is better)

0

50

100

150

200

250

T
im

e
(s

)

Dichotomic MA-GTSP

2PPLS MA-GTSP

CPMH-PLS[k=1000]

CPMH-PLS[k=100]

CPMH-PLS[k=10]

CPMH[k=1000]

CPMH[k=100]

CPMH[k=10]

(b) Comparison of trade-off in time and IHV R quality indicator.

Figure 3.8: Trade-offs in quality of Pareto fronts (Iε,IHV R) versus time t for the benchmark
instances with 20 clusters.

3

64 Multi-objective Optimization of Product Batches

achieving a local Pareto-optimal set takes significantly longer when the approxi-
mation is not of high enough quality. The motivation for using a very strong single-
objective solver in the first phase in [82] is based on the same observation.

Figure 3.9 compares the results of the reference algorithm (Dichotomic MA-
GTSP and 2PPLS-MA-GTSP) with several variants of the CPMH algorithm for
the instance 20kroAB100. Figure 3.9a shows that CPMH with large k finds decent
approximations, but fails to find a Pareto-optimal point with the optimal value for
the second objective. In addition, it fails to get close enough to the reference at
around objective values of 13000.

Figure 3.9b shows that for increasing parameter values of k the quality of the
approximations also increases. When k is too small, the algorithm does not escape
local minima often enough. The second objective seems to suffer more with re-
gards to the decrease in k. We suspect that this is due to the clustering; the first
objective has a stronger correlation to the clustering, which may make it easier to
escape local minima for the first objective than for the second objective.

The results of the offline evaluation for the 22 benchmark instances are listed
in Table 4.3. CPMH-PLS is three to five times faster, and approaches the reference
set much better than CPMH without PLS for instances with 20 clusters. The run-
ning time of the algorithm does become a significant amount longer. This is partly
due to PLS itself, but also due to the larger number of non-dominated partial solu-
tions that are found in each iteration. The Pareto-minimization and improvement
operators simply take more time in total because of the larger number of partial
solutions to process.

3

3.6 Benchmarks and experimental evaluation 65

10000 15000 20000 25000 30000 35000 40000

20kroA100

5000

10000

15000

20000

25000

30000

35000

20
kr

o
B

10
0

Dichotomic MA-GTSP

2PPLS

CPMH k=1000

(a) Pareto fronts generated by the references and CPMH without PLS.

10000 15000 20000 25000 30000 35000

20kroA100

5000

10000

15000

20000

25000

30000

35000

20
kr

o
B

10
0

CPMH k=10

CPMH k=100

CPMH-PLS k=1000

(b) Pareto fronts generated by different versions of CPMH.

Figure 3.9: Pareto fronts generated for the benchmark of 20kroAB100.

3

66 Multi-objective Optimization of Product Batches

Ta
b

le
3.

1:
T

h
e

b
i-

o
b

je
ct

iv
e

M
O

-G
T

S
P

b
en

ch
m

ar
k

re
su

lt
s;

t w
a

ll
is

th
e

w
al

l
cl

o
ck

ti
m

e
in

se
co

n
d

s,
I ε

an
d

I H
V

R
ar

e
re

sp
ec

ti
ve

ly
th

e
E

p
si

lo
n

In
d

ic
at

o
r

an
d

th
e

H
yp

er
-v

o
lu

m
e

R
at

io
,t

h
e

ti
m

e
t

is
in

se
co

n
d

s
C

P
U

-t
im

e.

D
ic

h
o

to
m

ic
M

A
-G

T
S

P
2

P
P

L
S-

M
A

-G
T

S
P

C
P

M
H

-P
L

S
(k

=1
00

0)

In
st

an
ce

I ε
I H

V
R

t
I ε

I H
V

R
t

I ε
I H

V
R

t

20
kr

o
A

B
10

0
1.

06
10

1.
00

46
13

7.
87

2
1.

01
86

1.
00

03
14

7.
75

8
1.

02
11

1.
00

10
40

.4
75

20
kr

o
A

C
10

0
1.

08
61

1.
01

02
10

4.
80

8
1.

01
21

1.
00

04
11

2.
16

5
1.

01
39

1.
00

09
33

.6
03

20
kr

o
A

D
10

0
1.

04
92

1.
00

46
16

1.
13

6
1.

01
58

1.
00

04
17

0.
42

8
1.

03
93

1.
00

44
36

.6
23

20
kr

o
A

E
10

0
1.

05
15

1.
00

54
14

1.
81

6
1.

00
93

1.
00

04
14

9.
23

1
1.

03
34

1.
00

51
56

.3
22

20
kr

o
B

A
10

0
1.

07
37

1.
00

88
10

6.
60

0
1.

01
17

1.
00

07
11

7.
09

7
1.

06
14

1.
00

54
44

.5
56

20
kr

o
B

C
10

0
1.

12
14

1.
01

90
91

.5
28

1.
03

00
1.

00
17

98
.5

99
1.

07
53

1.
01

37
43

.1
09

20
kr

o
B

D
10

0
1.

06
20

1.
00

97
12

2.
53

6
1.

01
40

1.
00

05
13

1.
14

4
1.

04
55

1.
00

69
34

.3
74

20
kr

o
B

E
10

0
1.

04
46

1.
00

30
15

3.
39

2
1.

02
21

1.
00

03
16

0.
27

8
1.

09
89

1.
01

12
47

.2
00

20
kr

o
C

A
10

0
1.

08
90

1.
01

11
15

3.
67

2
1.

01
07

1.
00

06
16

1.
62

5
1.

06
13

1.
01

37
40

.7
12

20
kr

o
C

B
10

0
1.

07
71

1.
00

46
14

4.
16

8
1.

01
38

1.
00

03
15

6.
02

0
1.

04
31

1.
00

29
61

.4
04

20
kr

o
C

D
10

0
1.

04
40

1.
00

54
14

9.
03

2
1.

01
73

1.
00

06
15

7.
06

0
1.

02
66

1.
00

41
61

.8
22

20
kr

o
C

E
10

0
1.

06
13

1.
00

50
16

4.
92

8
1.

01
22

1.
00

02
17

4.
83

0
1.

04
02

1.
00

32
60

.0
81

20
kr

o
D

A
10

0
1.

05
25

1.
00

72
14

6.
86

4
1.

01
75

1.
00

04
15

4.
79

3
1.

14
80

1.
01

52
36

.2
40

20
kr

o
D

B
10

0
1.

04
96

1.
00

55
15

6.
93

6
1.

03
12

1.
00

07
16

5.
53

4
1.

20
01

1.
03

29
41

.5
68

20
kr

o
D

C
10

0
1.

06
53

1.
00

53
18

7.
68

8
1.

02
00

1.
00

03
19

7.
03

7
1.

09
21

1.
00

72
45

.8
33

20
kr

o
D

E
10

0
1.

05
97

1.
00

53
23

5.
04

0
1.

01
43

1.
00

03
24

3.
94

0
1.

02
65

1.
00

39
54

.1
39

20
kr

o
E

A
10

0
1.

08
45

1.
00

52
13

9.
32

0
1.

03
34

1.
00

04
14

6.
69

0
1.

04
87

1.
00

56
46

.3
70

20
kr

o
E

B
10

0
1.

06
41

1.
00

60
16

7.
44

8
1.

00
76

1.
00

03
17

6.
64

8
1.

10
07

1.
01

43
76

.8
23

20
kr

o
E

C
10

0
1.

05
73

1.
00

63
21

5.
05

6
1.

01
34

1.
00

07
22

0.
77

8
1.

04
82

1.
00

96
46

.0
44

20
kr

o
E

D
10

0
1.

03
95

1.
00

39
17

5.
72

8
1.

01
40

1.
00

03
18

1.
05

8
1.

04
18

1.
00

89
39

.9
23

40
kr

o
A

B
20

0
1.

03
16

1.
00

25
13

16
.5

5
1.

00
02

1.
00

00
15

46
.3

95
1.

19
08

1.
02

52
50

8.
27

6

40
kr

o
B

A
20

0
1.

04
81

1.
00

30
13

64
.7

5
1.

00
00

1.
00

00
16

61
.6

58
1.

18
24

1.
03

00
39

0.
34

1

3

3.6 Benchmarks and experimental evaluation 67

Table 3.1 shows that the effect of the second phase of 2PPLS-MA-GTSP is
small on the running time, but that it significantly increases the solution quality.
The best instance of our algorithm (CPMH-PLS with k = 1000) finds solutions in a
shorter time than the dichotomic scheme, and typically with a higher quality. The
solution quality, however, is not quite as good as that found in 2PPLS-MA-GTSP.
Our approach sometimes finds non-dominated solutions that are not found by
2PPLS-MA-GTSP, otherwise both quality indicators would have been equal to
one for the solutions generated by 2PPLS-MA-GTSP.

All algorithms take a significant amount of time longer to compute a Pareto
front for the instances with 40 clusters, 40kroAB200 and 40kroBA200. The size of
the efficient set and the size of each solution increases with the number of clusters.
Both of these properties lead to a longer running time. Doubling the number of
clusters and cities leads to almost a ten-fold increase in time for the dichotomic
scheme. The running time for CPMH-PLS is also significantly higher for larger
clusters, and the Pareto fronts generated are of less quality. This is likely due to
the early optimizations changing from global to local minima. The drop in quality
for larger instances is possibly due to the maximum number of partial solutions
becoming larger than 1000, which means that the intermediate set is reduced to a
smaller size. As Figure 3.9b hints, reducing the number of intermediate solutions
leads to a lower quality Pareto front, and to a higher running time due to the longer
PLS phase.

3.6.4 Online optimization

We also assess how well CPMH for MO-GTSP performs as an online algorithm.
To do so, we measure the time the algorithms need to (re-)compute a problem
instance extended with a new cluster. The runtime for the instance 40kroAB200
is presented in Figure 3.10. All algorithms require increased runtime when the
instance size grows; there are both more non-dominated solutions, the solutions
are larger, and the neighbourhoods of the solutions are significantly larger.

When PLS is not used in CPMH, the running time is much smaller, yet we
have already observed that this also leads to significantly worse quality. The differ-
ence in runtime between CPMH and CPMH-PLS, and between CPMH-PLS and
2PPLS-MA-GTSP is one and two orders of magnitude respectively. The larger in-
stances suffer from more quality degradation, as indicated by the worse quality
indicators in Table 3.1 for the instances with 40 clusters.

The running time for CPMH-PLS remains under a minute for adding the 40th

cluster to the instance. The dichotomic scheme however, requires the full execu-
tion time, which is over 20 minutes, as it does not re-use information from previ-
ous computations. Note that the number of runs of MA-GTSP in the dichotomic
scheme can be reduced to decrease the runtime by stopping the exploration, for
example when a time limit is reached. The algorithm can then stop generating
and evaluating new single-objective instances before its natural stopping criterion
is reached. The supported Pareto-optimal points that have been found so far can

3

68 Multi-objective Optimization of Product Batches

then be used as the final result. However, this will decrease both the runtime as
well as the approximation quality of the Pareto fronts. In addition, PLS will then
take more time to ‘repair’ the quality of the Pareto front.

3.7 Conclusion

We have shown that product batch optimization corresponds to optimizing tours
in the MO-GTSP. Optimizing the sequences and system modes for an FMS then
corresponds to optimizing the sequencing and selection of cities in the MO-GTSP.

The state-of-the-art approaches for GTSP and MO-TSP have been combined
into a new reference algorithm for the MO-GTSP. We have shown that the Con-
structive Pareto Meta-Heuristic combined with suitable improvement operators
yields good results for MO-GTSP in a shorter running time than the reference al-
gorithm. CPMH for MO-GTSP is suitable for online computation due to its run-
time and incremental nature.

CPMH is a promising meta-heuristic to solve multi-objective, multiple-choice
scheduling and packing problems online. We have shown that by incorporating
local search heuristics, the runtime is much faster and the quality of solutions can
approach that of the state-of-the-art non-deterministic algorithms. Depending on
the time budget available, and the size of the instances, one can select one of the
approaches presented in this chapter to optimize batches in FMSs.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

cluster

10 1

100

101

102

103

Ti
m

e
(s

)

CPMH-PLS [k=1000]
2PPLS
CPMH [k=1000]

Figure 3.10: Running time when an MO-GTSP instance is extended one cluster at a time.

4

4

Parametric Critical Path Analysis

In the previous chapters, we have focused on online optimization of FMSs. In this
and the next chapter, we contribute two design-time analysis tools that connect
the performance of an FMS to multi-domain design parameters.

4.1 Introduction

High-end manufacturing systems are cyber-physical systems (CPSs) composed
of several cooperating machines, which have strict timing requirements between
their operations. These requirements can be modelled as minimal and maximal
timing constraints between events, resulting in an event network with events and
constraint relationships. Such constraints often occur due to some physical or
computational process, and influence the productivity of the system. Groups of
constraints typically share an underlying cause, such as a motor that actuates mul-
tiple components simultaneously. The interrelationship of the parameters influ-
encing the constraints are explored during the design phase and one or several
trade-offs are selected. It is of interest to quantify the relationship of (component)
parameters to the system performance.

Scheduling activities according to a set of constraints is common in engineer-
ing [90], research and design [84] projects, and project management [71]. Identi-
fying and alleviating performance bottlenecks is a core activity for improving the
performance of schedules. The identified bottlenecks, which are critical paths in
the event network, are important hints for reducing the earliest completion time
of the schedules. We show that such bottleneck analysis techniques can also be
extended to manufacturing CPSs.

In this chapter, we show that it is possible and useful to extend the critical path
analysis [71] technique with parametric analysis, so that the interdependence be-
tween parameters is taken into account. In parametric analysis, the problem is
to find solutions, e.g. critical paths, for all possible values of the parameters. Our
approach first finds constraints that characterize all feasible combinations of pa-
rameters and then, for all feasible combinations of parameters, a symbolic critical
path in the form of an expression in terms of the parameters of the event network.

The content of this chapter is an adaptation of the work published in CODES-ISSS 2018 [119].

4

72 Parametric Critical Path Analysis

This approach is related to parametric linear programming and Max-Plus sensitiv-
ity analysis, which is discussed further with the related work (Section 4.5). We show
the effectiveness of our approach and observe that the scalability is primarily de-
termined by the time to find the extremes of a polyhedron that captures a param-
eter value region in which the critical path does not change. Our method provides
system designers with a quantitative approach to evaluate interaction between de-
sign parameters. We also show a method to efficiently determine the parameter
combinations that yield Pareto-optimal performance-cost trade-offs. System de-
signers can then take informed decisions selecting trade-offs between parameters.

Section 4.2 introduces terminology and notation of event networks. Section 4.3
first shows how to find critical paths and extends the terminology with parameters
that can describe physical relations; it then shows how to find expressions for criti-
cal paths in parametrized event networks. In Section 4.4 we show the applicability
of the method on two different manufacturing systems: the Twilight system [112],
and a Large Scale Printer [111, 122], which was also used as a case study in Chap-
ters 2 and 3. These two examples show that we can quantitatively relate relaxation
of parameters to productivity gains of the machine. Section 4.5 positions our work
in the body of existing work and Section 4.6 concludes the chapter.

4.2 Event networks

We adopt the following notation from Elmaghraby and Kamburowski [37]: an event
is identified by k ∈ E= {0, . . . , N +1} ⊂N, and is represented by a node in a network
graph. The source node 0 represents the start event and the sink node N +1 repre-
sents the finish event. An example network is shown in Figure 4.1. The realization
time of event k is denoted tk . The realization time of the source is fixed to 0.

A minimal time lag relation from event i to event j is captured in the standard
form: t j ≥ ti +D(i , j). Such a relation is represented by an edge (i , j) ∈ E2 from
event i to event j with weight D(i , j) ∈ R. The interpretation of the minimal time
lag D(i , j) depends on its sign. I.e., we allow maximal time lags L(i , j) from event i
to event j , by transforming them into standard form [72]:

t j ≤ ti +L(i , j) ⇐⇒ ti ≥ t j −L(i , j)

⇐⇒ ti ≥ t j +D(j , i)

That is, a positive maximal time lag L(i , j) from i to j is equal to a negative minimal
time lag D(j , i) =−L(i , j) from j to i . Task graphs with minimal and maximal time
lags may introduce cyclic time constraints. To ensure that all events are related to
the source, we assume that the source has minimal time relations with zero lag to
all other events. Each event, analogously, must be related to the sink, and has a
minimal time relation with zero lag to the sink node.

A network graph is equivalent to a system of inequalities. A graph is feasible
if and only if there exists a solution to its corresponding system of inequalities.

4

4.2 Event networks 73

Equivalently, a network is infeasible if and only if it has a cycle with positive cumu-
lative weight. The earliest feasible realization time t k of an event k is the smallest
number for which the system of inequalities is feasible. t k is equal to the weight of
the longest path from the source node to node k in network G :

t k = max
a∈paths(0→k)

∑
(i , j)∈a

D(i , j)

Definition 4 (makespan). The makespan M of a graph is the earliest possible real-
ization time of the sink node, M = t N+1.

t k is the latest possible realization time of node k. The latest possible realiza-
tion t k of event k is found by subtracting the longest path from k to the sink from

src

A B C D

sink

1

8

1

7

3

-13

-6

Figure 4.1: Example event graph with given time lags between events. Positive minimal time
lags are shown with black edges. Negative minimal time lags are shown in dashed
red edges and represent maximal time lags or, in other words, relative deadlines.
The grey edges have zero time lag. The only critical path src-ACD-sink is shown
with thick edges.

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11
Time

AB BC

AC CD

BD

CB

DA

A B C D

Figure 4.2: Possible realization intervals for event graph shown in Figure 4.1, shown in the
top lane. The constraints are shown in the bottom five lanes as arrows, origi-
nating from the earliest realization time of its source event having length D(i , j).
Critical and non-critical constraints are represented with solid and dashed lines
respectively.

4

74 Parametric Critical Path Analysis

the makespan:

t k = M − max
a∈paths(k→N+1)

∑
(i , j)∈a

D(i , j)

For any graph, the latest possible realization time of the sink node is equal to
the makespan: t N+1 = M . The possible realization intervals [t i , t i] of the example
in Figure 4.1 are shown in Figure 4.2. Notably, the realization of event B can start
at earliest 2 time units after A, even though the relation AB allows B to start one
time unit after A. Path AB has length 1, while path ACB has length 8−6 = 2, i.e., the
earliest realization of B is bounded by the maximal time difference between B and
C. The makespan of the graph in Figure 4.1 is 11, corresponding to the longest path
src-ACD-sink. The latest realization of B is 4; the longest path from B to the sink is
7, and it can therefore occur in the range [2,4] without affecting the makespan.

A relation from i to j has slack S(i , j) = t j − (t i +D(i , j)): the difference be-
tween the latest realization of the target event j and the earliest realization of the
originating event i , taking into account the minimal time between i and j . The
relation slack determines how much a relation can be increased without affecting
the realization time of the sink node. In the example network, AB has a slack of 3.
The relation D(A,B) is allowed to increase by 3 time units before it starts affecting
the makespan of the network. AC has slack 0, and it cannot be increased by any
amount without affecting the realization time of the sink node.

Definition 5 (critical relation). A relation between i and j is critical if and only if
there is no relation slack: S(i , j) = 0, or equivalently: t i +D(i , j) = t j .

Definition 6 (critical path). A critical path is a simple sequence of connected critical
relations (i.e., no event is traversed more than once), originating from the source and
leading to the sink of the network.

A longest path in a network defines the makespan of the network, and as such
is equal to a critical path in the network. At least one critical path exists in the
network as the latest allowed realization of the sink node is equal to its earliest
possible realization. The makespan of the example network is 11 time units, and
the critical path in the example network is src-ACD-sink. In this example, this is
the only path which originates in the source, ends in the sink, and has zero slack
for each edge in the path.

4.3 Parametric critical path analysis

In this section, we generalize the event model such that the time lags can be linear
functions of parameters, and then show how to perform critical path analysis on
such models. Parameters can correspond to the speed of operations, reconfigura-
tion times, transport times, etc. An example parametrized event network is shown

4

4.3 Parametric critical path analysis 75

Table 4.1: Path lengths of the example network in Figure 4.3.

Path length critical if and only if

ABCD 2q +p p ≥ q +5∧2q ≥ p +5

ABD 3q +5 p ≤ q +5∧p +q ≥ 5∧3q ≥ 2p

ACD 2p +5 2q ≤ p +5∧3q ≤ 2p ∧3p ≥ 2q +5

ACBD −p +2q +10 p +q ≤ 5∧3p ≤ 2q +5

in Figure 4.3, where relations between events are denoted as functions of param-
eters p and q , such as D(A,C) = 2p +5. The example in Figure 4.1 is an instance
of Figure 4.3 with (p, q) = (3,1). There are four simple paths in Figure 4.3 from the
source to the sink for non-negative values of p and q . The path lengths are listed
in Table 4.1, where the last column indicates for which part of the parameter space
the path length is maximal. The expression in the last column is constructed as
follows. Let P = {e1,e2,e3,e4 } be the path expressions of Table 4.1. Then ei ∈P is
critical at point p= (p, q) if and only if ei (p) = maxe∈P (e(p)).

4.3.1 Overview of the approach

Our approach finds the critical paths for all feasible parameter combinations after
it finds which combinations of parameter values have feasible results. The results
of our approach for the example event network are illustrated in Figure 4.4. Fig-
ure 4.4 shows four regions in the 2D parameter space. In one region (blue), the
network is infeasible. In each of the three other regions, different paths in the
event network are critical. Each path, and hence each region, is associated with
its own critical path expression. The makespan of the example in Figure 4.1 is 11
time units, which corresponds to the expression 2p + 5 at (p, q) = (3,1), which is
part of the yellow region in the figure. Parameters often relate to costs, e.g., faster
transport is more expensive. Thus the identified regions enable trading off cost and

A B C D
q

5 + p

q

5+2q

p

-13

-2p

Figure 4.3: Example parametrized event network with minimal and maximal time lags. Fig-
ure 4.1 is an instance of this parametrized network with (p, q) = (3,1). The
source, sink, and their relations have been omitted.

4

76 Parametric Critical Path Analysis

performance. We provide further insight into cost/performance trade-offs in Sec-
tion 4.3.6. The rest of this section shows how such expressions can automatically
be found for all parameter combinations in a specified range.

We start from an existing algorithm that can be applied to non-parametrized
event networks with maximal time lags (Section 4.3.2). As a first contribution, we
use a symbolic version of this method to find a critical path expression for one
combination of the parameters (Section 4.3.3). We prove that such critical-path
expressions, as well as the conditions for which the network is feasible, are con-
vex. Our second contribution is explained in detail in Section 4.3.4, where we in-
troduce an algorithm that removes all infeasible parameter combinations from a
parameter space for a given event network. This algorithm provides the conditions
under which feasible solutions exist. Our third contribution is that we introduce
parametric analysis for event networks to find critical-path expressions for each
of the feasible parameter combinations (Section 4.3.5). We show that the divide-
and-conquer method of [47] can be extended to find all such expressions relatively
efficiently. Finally, as a fourth contribution, we show that we can find the Pareto-
optimal trade-offs for linear cost functions, and provide some interpretation of the
expressions found as a basis for optimization in Section 4.3.6.

Infeasible 2 p+5 3 q+5 -p+2 q+10

Z

Y

X

W

V

U

T

0 1 2 3 4 5

0

1

2

3

p

q

Figure 4.4: Critical-path expressions and infeasible parameter combinations for the exam-
ple in Figure 4.3. The grey contour lines inside a polyhedron are iso-makespan
lines. The extremes of the polyhedra are labelled with a letter.

4

4.3 Parametric critical path analysis 77

4.3.2 Critical Path Analysis for event networks with minimal and
maximal time lags

We first show how to calculate earliest and latest realizations for networks with
fixed minimal and maximal time lags for a particular parameter point. Event real-
ization times are calculated efficiently using a longest-path algorithm such as the
BFM algorithm [12, 41]. BFM has been used in the (E)MPM algorithm [72, 102], as
well as activity networks with generalized precedence relations (GPRs) [37]. Their
algorithms also detect infeasibility in event networks.

The BFM algorithm can provide both critical paths and infeasible cycles. A
network is infeasible when a cycle with positive weight exists in the network. Ker-
bosch and Schell [72] and Sedgewick and Wayne [103] showed that it is possible to
find an arbitrary critical path by doing an as-soon-as-possible (ASAP) analysis and
keeping track of the relaxations per node. In case the network is feasible, the BFM
algorithm keeps track of a parent tree [103] that defines which of the incoming
nodes was last used to relax a node. This data structure can be efficiently updated
while finding the ASAP times of the events in the network. A critical path can be
found by following the parent relationships from the sink node up the parent tree
until the source node has been reached. Or, in case the network is infeasible, a
positive cycle is found by tracking back the parent graph from the sink node until
a node is encountered that has been visited already. These algorithms are detailed
in Appendix A.

4.3.3 Parametrized event networks

In networks resulting from CPSs, the relations between events are typically derived
from physical or control constraints that the CPS needs to adhere to [11, 112, 122].
It is often possible to parametrize the relations in the event network such that they
are linear combinations of some (physical) parameters. The travelling time t of a
product at a velocity v , for example, can be modelled as the linear combination of
the required displacement x and displacement rate δx = 1

v , resulting in the linear
relation t = x

v = x·δx . In the example parametrized network (Figure 4.3) p and q are
two such displacement rates, for example of two robotic arms moving at different
speeds.

We first show how to assess the feasibility and the makespan of an event net-
work for a particular parameter through the critical path analysis detailed in Sec-
tion 4.3.3. We then prove that such critical path and infeasibility expressions relate
to geometrical half-spaces and form convex polyhedra in Section 4.3.3. We use the
half-space representation in a feasibility detection algorithm (Section 4.3.4), after
which we apply a divide-and-conquer to find all expressions in the feasible space
(Section 4.3.5).

4

78 Parametric Critical Path Analysis

Relating critical paths and positive cycles to parameters

The parametric weight D(i , j)(p) of a relation r = (i , j) is a parametric affine ex-
pressione(p) = br ·p+cr , wherep is a vector of parameters, br is a vector of weights,
cr is a constant and · denotes a vector inner product. For d parameters, the affine
function e can be represented by a vector consisting of coefficients br and the con-
stant cr in the Rd+1 space, and the function evaluation at a parameter point p ∈Rd

of e becomes e(p) = [br cr] · [p 1]. Consequently, the makespan for a parameter
point p becomes:

M(p) = max
a∈paths(0→N+1)

(∑
(i , j)∈a

D(i , j)(p)

)

A path in the parameter space is critical if the path has the maximal weight of
all paths for some combination of parameters. The makespan M can be expressed
as a linear combination b ·p+ c of the occurrences of parameters in some critical
path P for all p for which the expression of P is critical:

M(p) = ∑
(i , j)∈P

D(i , j)(p) = ∑
r=(i , j)∈P

br ·p+ cr = b ·p+ c,

where b=∑
r∈P br and c =∑

r∈P cr .
A critical path expression can only be found in case the network has feasible

solutions. Otherwise, instead of a critical path expression, we extract a positive
cycle C causing infeasibility at a parameter point p by retrieving the expression V
of that cycle C :

V (p) = ∑
r∈C
br ·p+ cr = b ·p+ c > 0,

where b=∑
r∈C br and c =∑

r∈C cr .
Any point p for which a positive cycle exists (i.e., V (p) > 0) is infeasible. This

inequality therefore defines a half-space for which no feasible solutions exist for
the network. When the cycle BCB in Figure 4.3 of length q − 2p is greater than
zero, the network is infeasible; we therefore recognize that all points (p, q) from
the parameter space for which q −2p > 0 are infeasible.

Convex polyhedra of critical-path expressions

We adapt Proposition 5 from [47] to show that the critical-path expressions form
convex polyhedra in the parameter space. The proof of that proposition also ap-
plies to Proposition 3.

Proposition 1.
{
p ∈Rd | M(p) = e(p)

}
is a convex polyhedron for any (critical path)

expression e.

4

4.3 Parametric critical path analysis 79

Any half-space s can be described by an affine expression e such that s(e) =
{p ∈ Rd | e(p) ≥ 0}. A convex polyhedron can also be represented as the intersec-
tion of a finite set of half-spaces, each of which is represented by an expression or
vector. i.e., a polygon can be represented by a subset h ⊂Rd+1. We lift the function
s to sets of half-spaces: s(h) =⋂

e∈h s(e). A convex polyhedron can therefore be de-
scribed by a set of expressions that correspond to half-spaces. Proposition 4 helps
to determine the feasible parameter combinations.

Proposition 2. If all corners of a convex polyhedron with half-space representation
h are feasible, then all points in s(h) are feasible.

Proof. If there would be a parameter point p in the polyhedron (with half-space
representation h) that is infeasible, then at that point a positive cycle with cumu-
lative weight V (x) = b ·x+ c must exist such that V (p) > 0. The inequality b ·x+ c
corresponds to a half-space that contains p. The half-space containing p includes
at least one corner point of h. Therefore, that corner point must be infeasible too.
This is a contradiction and therefore proves the proposition.

4.3.4 Determining feasible parameter combinations

Consider a situation where a convex polyhedron (possibly the entire parameter
space) is explored for infeasible points, with the goal to prune these points. Algo-
rithm 9 removes infeasible half-spaces using the information from a positive cycle
found in the graph. If BFM (in EVALUATE) finds an infeasible corner point of the
polyhedron, it removes the half-space described by the positive cycle expression
V (p) > 0, as defined in Section 4.3.3. It does so by adding the restriction −V (p) ≥ 0
to the polyhedron. The algorithm continues in a recursive fashion with the re-
maining space until all corner points are feasible. This process is illustrated in
Figure 4.5a-4.5d. The result is returned through the recursive calls. From Proposi-
tion 4 it follows that all parameter combinations in that (possibly empty) polyhe-
dron are feasible.

Algorithm 9 Determine feasible parameter combinations

1: function DETERMINEFEASIBLEPOINTS(event network G , convex polyhedron
C P)

2: for each corner ci of s(C P) do
3: feasible, cycle_expression = EVALUATE(G ,ci)
4: if ¬ feasible then
5: C P ′ =C P ∪{−cycle_expression

}
6: return DETERMINEFEASIBLEPOINTS(G , C P ′)
7: return C P // All points in C P are feasible

4

80 Parametric Critical Path Analysis

4.3.5 Divide-and-conquer approach

The polyhedron obtained from Algorithm 9 contains only feasible points, and al-
lows the use of the divide-and-conquer approach presented in [47] (Algorithm 10).
That approach finds all critical-path expressions for all parameter combinations
by partitioning the parameter space into smaller and smaller pieces until an ex-

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p-8 ≤ 0

(a) Alg. 9: remove infeasible region (ACDA)
2p −8 > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

q-2 p ≤ 0

(b) Alg. 9: remove infeasible region (BCB)
q −2p > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

3 q-8 ≤ 0

(c) Alg. 9: remove infeasible region (ABDA)
3q −8 > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

-p+ 2 q- 3 ≤ 0

(d) Alg. 9: remove infeasible region
(ACBDA) 2q −p −3 > 0

Figure 4.5: Illustration of our method for the example in Figure 4.3. p and q both range from
0 to 5.

4

4.3 Parametric critical path analysis 81

pression is found that holds for all corner points of the polyhedron. When an
expression ei found in the interior of a polyhedron does not hold for one of its
corner points c with expression ec , the polyhedron is split across the hyperplane
ei = ec ; i.e., to one polyhedron the equation ei −ec ≥ 0 is added and to the other
ei −ec ≤ 0. For the example in Figure 4.3, the algorithm starts from the feasible pa-
rameter combinations found in Figure 4.5d. It finds expression M(p, q) = 2p+5 for

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p+5

-p+ 2 q+ 10

3 p-2 q- 5 0

(e) Alg. 10: expression −p+2q+10 6= 2p+5
at (3,3/5), split by 3p −2q −5 = 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

-p+ 2 q+ 10

3 q+5

2 p-3 q 0

(f) Alg. 10: expression −p +2q +10 6= 3q +5
at (16/11,24/25), split by −p −q +5 = 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p+5

3 q+5

2 p-3 q 0

(g) Alg. 10: expression 2p + 5 6= 3q + 5 at
(36/10,2), split by 2p −3q = 0

Figure 4.5: Illustration of our method for the example in Figure 4.3. p and q both range from
0 to 5. (Cont.)

4

82 Parametric Critical Path Analysis

the point (p, q) = (3,3/5), which does not hold at corner (0,0) as M(0,0) = 10 (Fig-
ure 4.5e). The expression M(p, q) =−p+2q+10 is found at (0,0), and we therefore
split the polyhedron into two pieces, by the equation −p +2q +10 = 2p +5. This
process is repeated two more times as illustrated in Figure 4.5f and 4.5g.

Once an expression is found that holds for all corner points of a polyhedron,
the algorithm stops exploring that part of the parameter space and continues with
another polyhedron. For the two polyhedra found in Figure 4.5f the algorithm
finds two expressions that hold in these polyhedra respectively. It continues with
a polyhedron for which no expression has been found yet in 4.5g. The results of
Algorithm 9 and 10 are combined in Figure 4.4.

The divide-and-conquer approach of [47] is reproduced in Algorithm 10. This
algorithm requires a feasible solution to be found for an arbitrary point inside the
polyhedron, along with an expression that holds for that point.

Algorithm 10 Divide-and-conquer

1: function DIVIDECONQUER(event network G , convex polyhedron C P)
2: p = random point in s(C P)
3: ec =FIND_EXPRESSION(G , p)
4: for each corner ci of s(C P) do
5: ei = FIND_EXPRESSION(G , ci)
6: if ec (ci) 6= ei (ci) then
7: // Divide C P into two polyhedra
8: C P1 =C P ∪ {ei −ec }
9: C P2 =C P ∪ {ec −ei }

10: S1 = DIVIDECONQUER(G ,C P1)
11: S2 = DIVIDECONQUER(G ,C P2)
12: // Return all expressions found in polyhedra
13: return S1 ∪S2

14: return {ec } // Expression holds for each corner

Unfortunately, no efficient algorithm is possible for generating extreme points
(i.e., the corners) of a convex polyhedron [42]. When all parameter combinations
are feasible, Algorithm 10 initially needs to transform a non-degenerate set of half-
spaces in d dimensions into 2d corner points. Enumerating an exponential num-
ber of corner points is expensive, but it turns out to be feasible for a moderate num-
ber of parameters (e.g. < 15). Furthermore, the number of calls to DIVIDECONQUER

is at least the number of expressions to be identified, and possibly more. The poly-
hedron for 3q+5 for the example of Figure 4.3 is found by combining the results of
two different sub-problems (Figure 4.5f, 4.5g). Each call to FIND_EXPRESSION costs
at most O (|E ||R|) where |E | is the number of events (nodes), and |R| the number of
relations (edges).

In comparison with the modified BFM algorithm of Levner et al. [79], we see
that their approach is more efficient for a single parameter, but it cannot take into

4

4.3 Parametric critical path analysis 83

account multiple parameters simultaneously. Their modified algorithm finds the
critical paths in O (|R|2 · |E |) time when the parameter coefficient on the relations
is chosen from {−1,0,1}. For arbitrary integer values, the approach takes O ((b ·
|R|)2 · |E |), where b is the largest parameter coefficient occurring on any edge. Our
method solves a generalized version of the problem of [79], where parameters can
be rational numbers, and multiple parameters are taken into account. For a given
number of parameters, the running time of our approach depends on the number
of regions to be found, the time to evaluate a particular parameter point, and the
time to convert the half-space representation into corner points. The number of
regions that will be found depends on the parameter range, which is selected by
the designer.

4.3.6 Assessing the parameter regions

The results of our approach can be used to determine the quantitative impact
of decreasing/increasing parameters. The rate of change per unit of reduction is
found in the gradient ∇ of the expression in the region around the current set-
point or working point. The gradient component for a single parameter i at a
point with expression e = (b1, . . . ,bd ,c) is equal to the aggregate contribution bi

of parameter i to the critical path, i.e., ∇ie = bi . In Figure 4.4, ∇M(3,1) = (2,0)
and ∇M(1,1) = (−1,2). Changing the parameter by ∆i will impact the makespan
by bi ·∆i , as long as the critical path expression still holds for the new parameter
point, i.e., it lies in the same region.

We assume that the makespan and a cost function, say C (p, q) = p −2q in the
example of Fig 4.4, are both to be minimized. Typically, the optimal cost is found
at a different parameter combination than the optimal makespan, and therefore
trade-offs exist between makespan and cost. For example, starting from point
X = (7/3,8/3), any point on the line segment X W in Figure 4.4 closer to W has
shorter makespan M(p, q) = −p + 2q + 10 and higher cost C (p, q) = p − 2q . On
the other hand, the cost-makespan trade-off at X is preferred over any of the cost-
makespan points found on the line XU . The parameter selection can be improved
by following the gradient such that the cost decreases or stays the same, and the
makespan decreases, or vice versa. A parameter combination is called dominated
iff it is worse in at least one of the two aspects and not better in the other than some
other parameter combination.

In general, we want to find all Pareto-optimal cost-performance trade-offs in
the parameter space. The Pareto-optimal parameter combinations are those for
which no other parameter combinations exist that dominate it. For an arbitrary
linear cost function C (x) =α·x, the cost and makespan can be computed for each
point in the space. All Pareto-optimal parameter combinations can be found by
projecting the parameter-space to the cost-performance trade-off space, finding
the trade-offs in that space and translating them back to the parameter combina-
tions. Transforming a polyhedron from the parameter space to the cost-makespan

4

84 Parametric Critical Path Analysis

space, where M(x) = b ·x+ c is the associated expression, is defined by:

T (x) =
[

M(x)

C (x)

]
=

[
b c

α 0

][
x

1

]
=

[
b

α

]
x+

[
c

0

]
=P1x+p2

whereP1 is the matrix

[
b

α

]
and p2 is the vector

[
c

0

]
.

Applying the affine transformation T to all points of a convex polyhedron in the
parameter space yields a new convex polyhedron in the cost-makespan space. It
is sufficient to transform the extreme points of the polyhedron to obtain the poly-
hedron in the cost-makespan space. An example of such a projection is shown in
Figure 4.6. The transformed corner points of Figure 4.4 are labelled with the same
letters, and the regions have the same colours. The Pareto-optimal corner points
are efficiently identified in the cost-makespan space by applying algorithms such
as Simple Cull [125] to the finite set of corner points. Point U in Figure 4.6 is dom-
inated by point Y and X , and point T is dominated by the points V , Z and W . The
set of Pareto-optimal corner points is the set of remaining, non-dominated points
V , Z ,W ,Y , X .

The Pareto-optimal line segments can be found as follows. First determine the
centroid (i.e., the mean of the corner points) and assign a counter-clockwise direc-
tion to the Pareto-optimal corner points [49], such as V , Z ,W ,Y , X . Now each line
segment between Pareto-optimal corners has a direction, it can be interpreted as
a vector. If this vector between two subsequent Pareto-optimal corner points ci ,
ci+1 has a direction such that M(ci+1)− M(ci) > 0 and C (ci+1)−C (ci) < 0 then
each point that lies on the line segment between these points is Pareto-optimal as
well [32]. In the example, all points on the line segments between corner points V
and X (Y) are Pareto optimal.

Transformation T is not necessarily bijective. That is, multiple parameter com-
binations xi ,xk may map to the same makespan-cost trade-off (M(xi),C (xi)) =
(M(xk),C (xk)). Each Pareto-optimal point (M(x),C (x)) in a convex region in the
trade-off space can be translated back to the parameter space through the pseudo-
inverse of the transformation associated with that convex region:

x= T †(M ,C) =P †
1

([
M

C

]
−p2

)

Each Pareto-optimal point (M(x),C (x)) on the Pareto-optimal line segments maps
to the space (T †(M(x),C (x))⊕K (P1))∩E where E is the polyhedron corresponding
to the transformation T , and K (P1) is the kernel of P1. For two subspaces A and
B , ⊕ is their extension: A⊕B = {a+b |a ∈ A,b ∈ B }. Each extension of a kernel and
a point in the parameter space is a subspace of the parameter space.

In the example of Figure 4.6, the line segment X W of region 3q +5 has a trans-
formation T with full rankP1, and each point on the line segment therefore corre-

4

4.4 Case studies 85

sponds uniquely to a point on the line segment X W in the parameter space of Fig-
ure 4.4. Similarly, the line segment V W for region 2p +5 maps uniquely to the line
segment V W in the parameter space. However, all points of the 2D polyhedron for
the expression −p +2q +10 in Figure 4.4 have been mapped to points on the line
V X in the trade-off space. Its correspondingP1 has less than full rank. The kernel
of transformation P1 is the same for all of the Pareto-optimal line-segments, and
these line segments map to the intersection of two half-spaces. Each point in the
region −p +2q +10 is therefore a Pareto-optimal parameter combination: for ex-
ample, the point Y in the cost-makespan space maps to a line 2p +q +d = 0 such
that the line passes through Z = T †(13,−3) = (8/5,4/5) in the parameter space, i.e.,
d =−4. On this line, the combinations of p and q are such that the makespan re-
mains the same, i.e., they coincide with an iso-makespan line, and also such that
the cost does not change. As one point on the line has been shown to be Pareto-
optimal, each point in the region that falls onto that line is also Pareto-optimal.
The resulting Pareto-optimal parameter combinations are thus the polyhedron for
−p +2q +10.

4.4 Case studies

We describe two case studies and perform parametric temporal critical path ana-
lysis on them. We investigate the relative speeds of two robot arms for the Twilight
system [112], and a specific reconfiguration aspect of the print head of a industrial
printer [111]. Algorithms 9 and 10 have been implemented in C++ and run on a
64-bit Ubuntu machine with a 3.0Ghz Intel Core i7 950 processor. We have used
the C-library of the Double Description method [42] in combination with the GMP
library [51].

2 p + 5

3 q + 5

Z

Y,X

W

V

U

T

8 9 10 11 12 13
Makespan

-2

2

4

cost

Figure 4.6: Cost-makespan trade-off space for c(p, q) = p − 2q for Figure 4.3. The labelled
corners correspond to those in Figure 4.4.

4

86 Parametric Critical Path Analysis

4.4.1 Twilight System

The Twilight System [112] (see Figure 4.7) is an example created for the study of
controller synthesis and performance analysis and optimization of manufacturing
systems. The manufacturing system processes balls that need to be drilled. Before
drilling is allowed, the ball needs to be conditioned to the right temperature. First,
a ball is picked up at the input buffer by the load robot (LR). Once it is brought to
the conditioner (COND) it is processed immediately. Once the conditioning of the
ball has finished, it immediately needs to be transported by either one of the robots
to the drill (DRILL), where it is drilled before the conditioning of the ball expires.
Finally, the drilled ball is transported to the output by the unload robot (UR). Fig-
ure 4.8 depicts a simple schedule where the unload robot moves the product from
COND to DRILL. Consider that the time it takes for these robots to travel one unit
of distance at movement speeds vLR and vU R is LR = 1/vLR and U R = 1/vU R re-
spectively. Increasing LR and U R corresponds to reducing the movement speeds.

The robots can travel either horizontally or vertically, but not diagonally, and
always need to move to the highest vertical position before moving horizontally.
The horizontal distance between input and conditioning is 10 units, from condi-
tioning to drilling and drilling to output is 5 distance units each. The vertical dis-
tance to the input box is 3 units, to the conditioning and drilling platforms 1 unit,
and the ball is allowed to be released at any height above the output buffer. Hand-
ing over a ball is synchronized and immediate. Conditioning takes exactly 9 time
units and expires 8 time units after conditioning has finished. Drilling takes exactly
3 time units. The processing rate of the conditioning, C , and the drilling D are fixed
to 1. U R and LR range between 0 and 1.5. Even though they are fixed, C and D are
still annotated as parameters in the model to distinguish their contribution to the
critical paths.

LR

IN OUTCOND DRILL

UR

Figure 4.7: Twilight manufacturing system, from [112].

4

4.4 Case studies 87

Lo
ad

n
ew

p
ro

d
u

ct

M
ov

e
ab

ov
e

C
O

N
D

M
ov

e
aw

ay
fr

o
m

C
O

N
D

re
se

t

w
ai

t
C

O
N

D
IT

IO
N

re
se

t

h
an

d
ov

er

w
ai

t

M
ov

e
to

C
O

N
D

M
ov

e
to

D
R

IL
L

M
ov

e
ab

ov
e

D
R

IL
L

re
le

as
e

co
lli

si
o

n
ar

ea

M
ov

e
to

D
R

IL
L

re
se

t

re
le

as
e

co
lli

si
o

n
ar

ea

h
an

d
ov

er

w
ai

t

D
R

IL
L

re
se

t

h
an

d
ov

er

h
an

d
ov

er

M
A

X
C

O
N

D
T

IM
E

F
ig

u
re

4.
8:

E
xa

m
p

le
lif

e-
cy

cl
es

an
d

sc
h

ed
u

li
n

g
d

ep
en

d
en

ci
es

fo
r

th
e

Tw
il

ig
h

tS
ys

te
m

(F
ig

u
re

4.
7)

;t
h

e
Lo

ad
R

o
b

o
t(

o
ra

n
ge

)l
o

ad
s

a
p

ro
d

u
ct

an
d

d
el

iv
er

s
it

to
th

e
co

n
d

it
io

n
in

g
st

ag
e

(p
u

rp
le

).
T

h
e

U
n

lo
ad

R
o

b
o

t
(g

re
en

)
p

ic
ks

it
u

p
an

d
n

ee
d

s
to

d
el

iv
er

it
to

th
e

D
ri

ll
(c

ya
n

)
b

ef
o

re
th

e
co

n
d

it
io

n
in

g
ex

p
ir

es
.D

o
tt

ed
ed

ge
s

ar
e

d
ep

en
d

en
ci

es
fr

o
m

th
e

cu
rr

en
tp

ro
d

u
ct

to
th

e
n

ex
tp

ro
d

u
ct

.T
h

e
tw

o
p

o
si

ti
ve

cy
cl

es
ar

e
sh

ow
n

w
it

h
gr

ee
n

an
d

b
lu

e
h

ig
h

li
gh

te
d

ed
ge

s.

4

88 Parametric Critical Path Analysis

Figure 4.9 shows the critical-path expressions as function of U R, LR, C , and
D . For the given ranges, two positive cycles are detected (blue region). U R and
LR become too large to meet the required maximum time between condition-
ing and finishing the drilling, leading to a positive cycle. In the other cycle, the
time it takes for one robot to move away and the other to pick the ball from the
conditioner is too large, and the conditioning deadline is violated. Three critical
path regions denote the behaviour of the schedule for particular combinations
of the robot travelling rates. As LR and U R tend towards zero, the movement
speed of the robots becomes infinitely fast, and the makespan becomes M(0,0) =
90C + 3D + 26LR + 70U R = 90C + 3D . This is a lower bound on the performance
imposed by the time needed for the drilling and conditioning process.

In the green region, changes in U R have the highest impact on performance.
The unload robot performs some movements in parallel with the drilling process.
Before the unload robot becomes too slow to pick up the ball immediately after
drilling ends, there is another cycle that becomes positive. When the unload robot
is faster than drilling, the drilling time is always in the critical path, as shown by
component 30D . In the yellow region, the load robot is most often in the critical
path. Even though the unload robot performs most actions, our result shows that
improving the load robot’s speed will give the highest gain. The load robot’s speed
is in the critical path more often due to the scheduled dependencies. In the red re-
gion, the conditioning process becomes the most important bottleneck, especially
when LR and U R tend towards zero; the smallest possible makespan for 10 prod-
ucts is M(0,0) = 93 time units. This is significantly less than the largest discovered
makespan M(1.5,0) = 483 time units.

These results show that optimization efforts can be based on the relative and

Infeasible

9C+3D+314 LR+7UR

9C+30D+17 LR+169UR

90C+3D+26 LR+70UR

O

N
M

L K

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

LR

U
R

Figure 4.9: Expressions for the Twilight system.

4

4.4 Case studies 89

absolute travelling rates of the system. This makes it possible to investigate the
interaction of system parameters and performance. Discussing such relations can
be valuable when deciding with different stake-holders about the performance of
the systems components, such as the robot travelling speeds, conditioning times
and interdependencies. Also cost-performance trade-offs are possible. Figure 4.9
shows the Pareto-optimal combinations for a cost function C (LR,U R) = −LR −
3U R with a thick black line.

4.4.2 Large-Scale Printer

The paper path of an industrial printer [111] is defined as a path that sheets fol-
low in the printer. The paper path consists of several motors, switches, and func-
tions that perform actions on the sheets. The sheets are guided on a metal track
and their speed and acceleration are controlled by pinches. Figure 4.10 shows the
topology of a paper path. The sheets need to move twice through the image trans-
fer station (ITS) before going to the output. Duplex sheets enter the duplex loop
(DL), and a turn track (TT) reverses the sheet’s direction, for printing on the oppo-
site side. The sheets return from the duplex loop to the merge point (MP) within
a pre-defined interval from their first print. The sheets are not allowed to overlap
or collide with the sheets coming from the paper input module (PIM). When the
sheet has been processed fully, it leaves the printer through the finisher (FIN).

The acceleration profiles of sheets are determined almost completely before-
hand; a pre-determined buffer region is used to somewhat slow down the sheets.
The range of this buffer is encoded as a minimum and maximum travelling time
by the vertical edges in the example event network (Figure 4.11). Even though the
relation between acceleration profiles and minimum and maximum loop times is
nonlinear, separating these two variables still allows them to be modelled as linear
constraints. The horizontal and diagonal edges in the example encode the non-
overlapping constraints.

Figure 4.10: Industrial printer schematic overview, from [111].

4

90 Parametric Critical Path Analysis

Table 4.2: Sheet specifications.

(a) Sheet details

L H

A: A4 210 0.25

B: A3 420 0.1

C: A3+ 483 0.3

(b) ITS reconfiguration times

Current

A4 A3 A3+

A4 0.26 4.51 2.01

A3 4.78 0.53 6.03

P
re

v.

A3+ 2.35 6.10 0.60

The sheets can have highly varying specifications, and the modules therefore
may need to reconfigure themselves to another operating point to achieve the re-
quired quality. One such reconfiguration occurs at the ITS; the print head may
need to be raised or lowered between sheets to achieve the proper print gap dis-
tance for image quality. The print head height H , for example, can be modelled
as a linear movement, which can be started after the previous sheet has been fully
printed (i.e., has left the ITS). The ITS is ready for the next sheet when it has moved
for its full length L, and the print head moved and the stabilization time γ has
passed. That is, the time that the ITS can start processing the current product
(tI T S,cur) is limited by the start of the previous process (tI T S,pr ev), and the time
it takes to process the previous product and prepare for the current product:

tI T S,cur ≥ tI T S,pr ev +∆t

= tI T S,pr ev +
Lpr ev

v I T S
+

∣∣Hpr ev −Hcur
∣∣

vver t
+γ

= tI T S,pr ev +αLpr ev +β
∣∣Hpr ev −Hcur

∣∣+γ (4.1)

As the speeds v I T S and vver t are constant, we can use parameters α= 1/v I T S ,
β= 1/vver t . The equation then becomes a linear expression, as Hpr ev , Hcur , Lpr ev

are all sheet-dependent and assumed constant. The constraint simplifies to the
following when no head movement is needed tI T S,cur = tI T S,pr ev +αLpr ev . De-
creasing the value of α means increasing the speed at the ITS. Decreasing β means
increasing the speed of the vertical movement. Decreasing γ means that oscilla-
tions dissipate faster, perhaps due to higher damping in the system.

A repeated pattern of duplex sheets is fed into the printer, i.e., (ABC)60. The
symbols A, B , C refer to one of the types of sheets denoted in Table 4.2a and move
at the ITS at v I T S = 800mm/s. The nominal speed of the head movement is 0.04
units per second.

Let’s assume that the ITS is the bottleneck; the PIM and FIN are always ready
to provide/receive a sheet. In the event network for the schedule for this print job
(Figure 4.11), each sheet returns to the merge point in the interval tr ∈ (10,15) from

4

4.4 Case studies 91

the first time at the merge point. The sequence of first prints and second prints
that the scheduler has chosen leads to a requirement on the reconfiguration times
between passes in the sequence (diagonal edges).

The critical-path expressions associated with different combinations of β and
γ are shown in Figure 4.12. Depending on β and γ, the majority of the time in the
critical path is spent on either: (α) moving the sheet under the ITS, (β) head move-
ments, (γ) oscillations, (lmi n) travelling through the loop. Asβ and γ decrease, they
also occur less often in the critical path. The performance of the system is lower
bounded by the loop time lmi n , which occurs 26 times in the region with the low-
est makespan. The bottleneck changes from the loop time to the head movement
parameters as β and γ increase. The expressions show that α becomes relevant for
performance, even though only β and γ are varied in the experiment. Eventually,
β and γ become so large that lmax is violated.

For β ≥ 0.9, the iso-makespan lines are much closer together, showing that
from this point onward, the influence of β and γ are much higher. In these pa-

J1O, 1

J1O, 2

J1O, 3

J1O, 4

J2O, 1

J2O, 2

J2O, 3

J2O, 4

J3O, 1

J3O, 2

J3O, 3

J3O, 4

J4O, 1

J4O, 2

J4O, 3

J4O, 4

J5O, 1

J5O, 2

J5O, 3

J5O, 4

J6O, 1

J6O, 2

J6O, 3

J6O, 4

J7O, 1

J7O, 2

J7O, 3

J7O, 4

J8O, 1

J8O, 2

J8O, 3

J8O, 4

J9O, 1

J9O, 2

J9O, 3

J9O, 4

J10O, 1

J10O, 2

J10O, 3

J10O, 4

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

149999 13701975

2227579

10210379

2227579

387000

645718

314106

2227579 13701975

2227579

10210379

2227579

387000

645718

314106

2227579 13701975

2227579

10210379

2227579

387000

645718

2227579 13701975

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

Figure 4.11: Example event network and critical path for an industrial printer flow shop in-
stance with 10 products. Each column describes a product travelling through
the flow shop, and each row shows the operations on each product. The second
and third operation (rows) are mapped onto the same machine. Sequencing
edges (diagonal) ensure that at most one product occupies the machine at any
time.

4

92 Parametric Critical Path Analysis

rameter ranges, the makespan is more sensitive to the head movement rate β than
to the settling time γ, as can be seen from the contribution of these components in
the critical-path expressions. One can conclude from this analysis that it is more
meaningful to spend development effort on increasing the head movement speed,
rather than reducing the settling time.

Infeasible

0.01134α+90. β+6. γ+26. lmin

0.013566α+185. β+13. γ+25. lmin

0.014049α+180. β+12. γ+25. lmin

0.014238α+26. lmin

0.020244α+350. β+34. γ+22. lmin

0.02247α+402. β+41. γ+21. lmin

0.022953α+400. β+40. γ+21. lmin

0.064764α+1276. β+174. γ+2. lmin

0.067473α+1320. β+180. γ+ lmin

0.069216α+1372. β+185. γ

0.089103α+1120. β+112. γ+3. lmin

0.092295α+1162. β+117. γ+2. lmin

0.092715α+1160. β+116. γ+2. lmin

0.095004α+1206. β+123. γ+ lmin

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

β

γ

Figure 4.12: Example critical-path expressions for an industrial printer.

4

4.4 Case studies 93

Table 4.3: Experimental results of parametric critical path analysis

Event network Parametric Critical Path Analysis

Instance |E | |R| t (s) paths eval. splits

Example (Figure 4.3) 6 15

p ∈ (0,1), q ∈ (0,1) 0.03 3 19 3

Twilight (Figure 4.9) 162 605

U R ∈ (0,100),LR ∈ (0,100) 0.355 3 32 7

U R ∈ (0,100),LR ∈ (0,100),C ∈ (0,1) 0.631 3 61 12

U R ∈ (0,100),LR ∈ (0,100),C ∈ (0,1),D ∈ (0,1) 1.502 3 167 27

Industrial printer 362 1785

β ∈ (0,0.4),γ ∈ (0,1) 9.315 17 210 60

α ∈ (0,1.25),β ∈ (0,0.4),γ ∈ (0,1) 26.7 23 574 152

α ∈ (0,1.25),β ∈ (0,0.4),γ ∈ (0,1), lmi n ∈ (0,10) 71.9 40 1709 430

Packing 200 products 6614 21265

U R ∈ (0,1) 59 55 279 92

U R ∈ (0.9,1),LR ∈ (0.9,1) 231 99 1078 99

Packing 500 products 16514 53114

U R ∈ (0,1) 373 136 714 237

U R ∈ (0.9,1),LR ∈ (0.9,1) 5484 665 9387 2988

Packing 1000 products 33014 106243

U R ∈ (0,1) 1492 262 1404 467

U R ∈ (0.9,1),LR ∈ (0.9,1) 49236 2639 39378 12634

Packing 2000 products 66014 212430

U R ∈ (0,1) 6484 551 2976 991

Packing 3000 products 99014 318561

U R ∈ (0,1) 14995 852 4569 1522

4

94 Parametric Critical Path Analysis

4.4.3 Evaluation

We have evaluated the DETERMINEFEASIBLEPOINTS and DIVIDECONQUER algo-
rithms on several event networks using different parameter ranges. The examples
that have been presented so far are summarized in Table 4.3. The illustrated exam-
ples have been extended by including more parameters. All experiments are run
on an Intel Core i7 950 at 3GHz.

The Packing instances are variations on the Twilight example which only con-
tain minimal time lags. Each product is modelled with 30 events, and dynamic
relations exist between events of subsequent products. The time constraints of the
relations have been determined stochastically by drawing from several PERT distri-
butions, and are associated with their respective machines, U R or LR. The result-
ing network is a rather large directed acyclic network without negative constraints,
and as such the topological sorting as used in Critical Path Method (CPM) [71] has
been used in our experiment, instead of the slower, but more generic BFM.

We observe that the number of critical paths found in the packing cases grows
with O (|E |) when only the U R is parametrized, and with O (|E |2) when both the LR
and U R are parametrized. We conjecture that the number of critical paths grows
in general with O (|E |d) where d is the number of parameters.

Due to the growing number of critical paths and corner points of regions for
problems with multiple parameters, both the number of splits and number of eval-
uations go up. The time taken for each evaluated point remains roughly the same
for each network instance, and does not depend on the number of parameters.

4.5 Related work

Event and activity networks have been used in project modelling and other kinds
of scheduling problems to model minimal and maximal time lags between events
or activities. We use the project modelling approach started by Roy [102], and Ker-
bosch and Schell [72], and further developed by Elmaghraby [37]. The time lags
make it possible to describe constraints on the feasible time ranges between events
in a CPS. In this chapter, we use minimal and maximal time lags to express con-
straints between events in terms of parameters.

The CPM [71] and GPRs [37] are used to model event networks, and also to find
critical paths in such networks. The CPM and GPRs use the difference between
the occurrence of an event in an ASAP and as-late-as-possible (ALAP) schedule to
determine the slack of events/activities. Those with zero slack are critical, and any
delay in any of these critical events leads to an according delay in the completion
of the network. It does not, however, give the designer any insight into how much
system productivity is gained when critical constraints are relaxed. Some critical
path methods assume stochastic time lags and are applied to observations of sys-
tems, such as the shifting bottleneck detection [101]. In this method, the machines
that are most often active are regarded as the bottleneck. This method gives an in-

4

4.5 Related work 95

dication of the bottlenecks over time. However, this approach does not show the
impact of deadlines, as imposed by maximal time lags, and can therefore hide the
true interaction of different machines, especially when deep pipelining behaviour
occurs. Stochastic time lags have also led to investigations of the stochastic crit-
icality index, such as shown in [9]. In this chapter, we assume that time lags are
deterministic, and focus on the interaction between parameters.

As described in [55], when cost slopes are known for shortening activities (also
known as crashing), CPM can be used with Linear Programming to give the effi-
cient trade-offs between project duration and project (direct) cost. There are sev-
eral methods available that can be applied to networks that do not have maximal
time lags (Fondahl’s method, Siemens method) [55]. The work of [37] generalizes
these crashing methods such that maximal time lags can be taken into account.
These works, however, do not take into account that the underlying cause for each
constraint can be shared. That is, each constraint is independently relaxed, and
it is assumed that other relationships remain the same. Ignoring interdependen-
cies between parameters in CPSs and FMSs leads to incorrect conclusions from a
system perspective.

Critical path drag has been introduced in [30] as the amount of time a par-
ticular relation can be decreased before another path becomes critical. Drag is
defined as the minimum slack on parallel paths. Parallel paths, however, are not
well-defined for graphs that contain cycles. Maximal time lags are not taken into
account by drag. Each time lag must have a value that is independent of the others.

Approaches using parametric analysis for single or multiple parameters have
been developed for many kinds of problems. Generic techniques such as paramet-
ric linear programming [43] [38] use a symbolic simplex algorithm and symbolic
Gomory cuts to find the lexicographical minimum candidates to both continuous
and (mixed-)integer problems. It is intended to solve small parametric problems to
find integer values as a sub-procedure for automatically rewriting (i.e., optimizing)
computer programs. Instead of the lexicographical minimum we are interested in
finding the more typical economical minimum (i.e. a linear preference function
as objective). It is possible to use the parametric linear programming approach to
find the economic minimum. The approach can replace the divide-and-conquer
algorithm for finding makespan expressions. The approach also has a worst case
complexity that is exponential in the number of parameters.

Max-Plus arithmetic has been used to determine the sensitivity of assembly
line parameters in the context of manual workstations [104]. Kobayashi has pre-
sented some theoretical results on the adjacency of critical paths using Max-Plus
tropical geometry [73]. The algorithm of Kobayashi assumes that each relation is
independent of all other relations, while we are interested in finding the interrela-
tion between parameters.

The modified Bellman-Ford-Moore (BFM) algorithm of Levner [79] efficiently
finds all critical paths for the feasible values of a single parameter for integer edge
weights. Our approach allows an arbitrary number of parameters, with rational
numbers as values and weights. Graphs with rational values can be used in the ap-

4

96 Parametric Critical Path Analysis

proach of Levner [79] after multiplying all expressions with an integer factor such
that all rational numbers become integer values.

Most methods for multiple parameters are based on the observation that pa-
rameter combinations occur in convex regions [47, 58, 63]. Parametric analysis
of synchronous data-flow graphs has been used to determine, for example, the
parameter combinations for which the same maximum cycle mean expression
holds [28, 47]. The divide-and-conquer approach from [47] shows that perfor-
mance expressions can be found even when the parameters do not necessarily
take integer values. In this chapter, we prove that this parametric analysis can be
applied to event networks with maximal time lags.

Some work has been carried out to identify for which parameter combinations
parametrized models have feasible solutions. The work of Elmaghraby [37] intro-
duces flexibility of an activity/constraint in an activity network as the amount of
time it can be increased/decreased such that all constraints can still be met in a
schedule; i.e. it indicates when networks become infeasible. The convexity of pa-
rameter regions has also been used by [14] to determine for which parameter com-
binations a periodic fixed priority system is schedulable. Interaction between tasks
and their relation to system utilization are modelled with fixed priority scheduling
rules, and precedence relations between tasks are explicitly not allowed.

Several parametric methods have also been developed for timed automata [23,
63]. In [63] a subclass of parametric timed automata has been identified for which
it can decide on the emptiness problem when automaton variables are upper and
lower bounded by parameters. A parameter may either occur in lower bounds, or
in upper bounds, but never in both. The approach of [63] can detect parameter
combinations for which the system does not have conflicting requirements, i.e., is
feasible. Our extension of the parametric method allows parameters both in lower
and upper bounds (minimum and maximum time lags). In [23], the feasibility of
activating a set of real time tasks is checked through parametric timed automata.
Similar to the work of [14] the approach does not allow precedence constraints, as
it models interaction between tasks through periodic activation patterns.

Finding Pareto-optimal performance-cost trade-offs for a single convex region
is equivalent to finding Pareto-optimal facets in a multi-objective linear program.
Such problems have received attention in their general form since the 1980s [32].
Current research contributes on relations between problems [81] and improve-
ments of search algorithms [34] are still relevant research areas. These algorithms
are limited to find Pareto-optimal/efficient solutions in a single convex region. We
provide a method that can find Pareto-optimal faces for sets of convex regions in
two-dimensional spaces.

We extend this existing body of work by finding all feasible parameter com-
binations and their associated performance characterization through parametric
temporal analysis of event networks with minimal and maximal time lags. The
quantitative analysis allows finding Pareto-optimal performance-cost trade-offs.

4

4.6 Conclusion 97

4.6 Conclusion

We have shown that it is possible and useful to identify quantitative relationships
between system parameters and system performance when the timing constraints
in schedules are annotated in linear combinations of design parameters. If the
parameters have non-linear relationships, the non-linear model can be split into
several models, for which linearised expressions hold around a working point. We
have shown that parametric analysis can be applied to the classical Critical Path
Method such that regions of critical-path expressions and infeasibility expressions
are found. These regions and expressions are used to quantify the impact of a pa-
rameter change, such as a settling time or a robot travelling rate, on the makespan
of the generated schedules. The results of our approach give insight into the inter-
relationships between design parameters.

We use a divide-and-conquer approach to find the critical-path expressions
in the parameter space. This chapter shows for two manufacturing CPSs how
to interpret such relations by combining this information with the original
parametrized graph. We also show that Pareto-optimal parameter combinations
can be found by transforming the found polyhedra to the cost-makespan space,
finding the Pareto-optimal points in that space, and translating the results back
to the parameter space. These results can form a sound basis for discussing the
trade-offs between cost and performance.

The analysis in this chapter focuses on the relation between parameters and
the productivity for a particular schedule. In the next chapter, we extend the para-
metric analysis to include the discrete decisions that schedulers make.

5

5

Parametric Scheduler
Characterization

In the previous chapter, we have shown a technique to find expressions for the
performance of an event network (representing a schedule of, e.g., flow shop op-
erations) in terms of design parameters. In this chapter, we show that it is possible
to find which schedule is used for which parameter combinations. It is useful to
understand how the parameters of a system impact the scheduling decisions that
are made. The parameters can again be used to relate physical quantities, i.e., tim-
ing constraints, to their underlying cause. In Chapter 4, we have shown that if
the event network is known, the bottlenecks in the system can be quantified. It
is therefore of interest to find which event network is used to compute the earli-
est possible realization times of events for each parameter combination. We show
that it is also possible to model some of the decision mechanisms that are used in
deterministic schedulers.

We consider deterministic schedulers that need to enforce orderings, while
meeting certain requirements on the timing of events in the system. The technique
requires a scheduler to (re-)construct symbolic conditions for its decisions. We use
these symbolic conditions in a divide-and-conquer algorithm to find regions for
which the same parametric result is produced. Expressions for the makespan of
the result can then be found. A key challenge is to determine the parameter com-
binations to evaluate such that the parametric decision regions are characterized
including their borders, where a scheduler changes its decision because of some
critical constraint or requirement.

We first define symbolic scheduling (Section 5.1) and illustrate how to inte-
grate it into a classical scheduling heuristic (Section 5.2). We show how such a
symbolic scheduler is used to evaluate a concrete parameter combination (Section
5.2) and how to interpret the information it returns (Section 5.3). In Section 5.4,
we introduce an exact scheduler characterization algorithm that covers all param-
eter combinations in a given range. In Section 5.5, we evaluate the algorithm for
the classical Shortest Processing Time First (SPTF) scheduler and schedulers for a
manufacturing system. Related work is discussed in Section 5.6. In Section 5.7, we
conclude this chapter.

5

100 Parametric Scheduler Characterization

5.1 Symbolic scheduling

Schedulers decide in what order and at what time events should take place, to op-
timize some objective. A scheduling problem often contains a set of static timing
constraints that are enforced regardless of the scheduler’s decisions. For example,
there may be a minimum and maximum time constraint between the start and
the end of a task. Conditional timing constraints, such as reconfiguration times
or sequence-dependent set-up times, are active only when certain conditions are
met. The scheduler needs to take into account that the set of active constraints
can change when the order of events or the resource allocation changes. Many
schedulers first decide on which resource and/or in what order the required events
should take place, before start times are determined. Such decisions on resource
allocation and ordering are typically encoded in an event network by adding time
constraints between events. The relations in the event network can express min-
imal or maximal time lags between events, similar to the previous chapter. The
scheduler must ensure that all timing constraints of the scheduling problem are
satisfied. A sequence of decisions is taken, based on the evaluation of certain al-
ternatives. The scheduler then computes the earliest possible event realization
times from the event network, so that they can be used to instruct the manufactur-
ing system. We can view schedulers as algorithms that enforce relations between
events in such a way that a feasible schedule is generated for the scheduling prob-
lem, while optimizing some objective.

Schedulers typically use concrete values to choose between options. In sym-
bolic scheduling, these concrete values are replaced by symbolic expressions, that
relate the values to system parameters. The scheduler can then evaluate the sym-
bolic expressions by substituting the parameters with their concrete values. We
show that such a symbolic scheduler can determine to what extent the parameters
may change before any decision in the decision sequence changes. In this chapter,
we show that if the conditions used in the scheduler are restricted to conjunctions
of affine inequalities of parameters, then we can relatively efficiently determine for
all parameter combinations which decision sequence will be taken. We assume
that a symbolic scheduler returns the following information:

• the schedule produced at a particular parameter point,

• a set of necessary symbolic conditions, i.e., affine inequalities on the param-
eters, defining a region that includes all points that lead to the same decision
(i.e., outside of which, the scheduler will definitely take a different sequence
of decisions),

• the result of a concrete decision sequence, e.g., the parametrized timing re-
lations between events (e.g., in the form of a parametrized event network).

All symbolic conditions in the set should hold at the parameter point for which
the scheduler returns them. The set of symbolic conditions contains conditions
that are necessary for the decisions made by the scheduler.

5

5.2 Running example 101

5.2 Running example

We first introduce a basic scheduling model: an m-machine n-task allocation prob-
lem. We then explain the SPTF heuristic. We use this particular scheduler to show
that our approach is applicable to commonly used types of schedulers and as run-
ning example.

5.2.1 m-machine n-task allocation problem

A queue1 T = 〈 (t1,d1), . . . , (tn ,dn)〉 of tasks ti with duration T (ti) = di needs to be
allocated on a set of m identical machines. The tasks have no dependencies among
each other. The objective is to complete the tasks and return both machines to idle
state as quickly as possible, i.e., minimize the maximum completion time Cmax

of all machines. Once a task ti ∈ domT has started on a machine, it is executed
without interruptions for the specified duration di = T (ti). This means that if task
ti starts at time σ(ti), then no other task can start on that machine in the interval
(σ(ti),σ(ti)+di). The problem is to assign each task to a machine and determine
a feasible schedule σ of realization times for the start of each task such that Cmax

is minimized. This optimization problem has been shown to be NP-hard for m ≥
2 [78], but this problem has been selected due to its easy description and many
relevant simple heuristic scheduling strategies.

We use a simple list scheduler heuristic as an example for our approach. List
schedulers iteratively schedule the highest ranked task onto the highest ranked re-
source. It suffices to define task and resource ranks to complete the algorithm. I.e.,
a list scheduler is typically used together with ranking methods, such as outlined
in Algorithm 11.

Algorithm 11 List scheduling outline

1: function LIST_SCHEDULING(task queue T , resources R)
2: // initialize empty queues Q for each resource
3: for each r ∈ R do
4: Q(r) = 〈 〉
5: repeat
6: take a task t from T with highest task rank and remove t from T
7: r is the resource from R with highest resource rank
8: append t to Q(r)
9: σ(t) = earliest start time for t

10: until T is empty
11: return Q,σ

1A queue is a set for which the index of the elements denote a total ordering. We implicitly use this
notation to indicate that the elements of a set are ordered.

5

102 Parametric Scheduler Characterization

5.2.2 Shortest Processing Time First Scheduler

An SPTF scheduler is a list scheduler that iteratively schedules a remaining task
with the shortest processing time on the earliest available resource (Algorithms 12
and 13). The result is a partitioning of the task queue over resource queues. The re-
source queues represent dependencies between tasks due to the shared resources,
for example 〈 (t1, a), (t2,2a)〉 ,〈 (t3,b)〉 expresses two resource queues of tasks with
parametric execution times with parameters a and b in which t2 depends on the
completion of t1, both allocated to the first resource.

At each step, the scheduler must select exactly one option; a tie-breaking con-
dition is required if several options are equally preferable. If several tasks or re-
sources have the same duration or availability time, then Algorithm 12 always se-
lects the first occurrence, which makes it deterministic. In literature, such a tie is
typically broken arbitrarily.

Algorithm 12 Shortest processing time first scheduler

1: function SPTF_SCHEDULE(task queue T = 〈 (t1,d1), . . . , (tn ,dn)〉, resources R =
〈r1, . . . ,rm 〉)

2: for each r ∈ R do
3: Q(r) = 〈 〉 // empty queues Q for each resource

4: repeat
5: remove first task x = (tx ,d) ∈ T with duration d = min(ti ,di)∈T di

6: select first resource r ∈ R with the smallest COMPLETION(Q(r))
7: s = COMPLETION(Q(r))
8: append x to Q(r)
9: σ(tx) = s

10: until T is empty
11: return Q,σ

Algorithm 13 Calculate completion time of a task queue on a processor

1: procedure COMPLETION(queue q)
2: return

∑
(ti ,di)∈q di

5.3 Parametrized schedulers

We introduce the concept of decision regions, taking the shape of polyhedra in
the design parameter space, in Section 5.3.1, before extending the SPTF scheduler
with symbolic scheduling in Section 5.3.2. In Section 5.3.3, we show how to extend
the evaluation of conditions in the symbolic scheduler such that it can evaluate
points that are arbitrarily close to, but not on, the edge of a polyhedron. We use this

5

5.3 Parametrized schedulers 103

concept to deal with tie-breaking conditions, characterizing the parameter combi-
nations where a scheduler changes its decision. In Section 5.3.4, we visualize the
branching conditions used in the symbolic scheduler as a decision tree.

5.3.1 Decision regions

We consider deterministic schedulers for which the conditions of scheduler deci-
sions can be denoted as the conjunction

∧
S of a set S of symbolic affine inequali-

ties. The universe of symbolic affine inequalities with d parameters is represented
by U =Rd+1 × {<,≤ }. We denote a symbolic affine inequality by a tuple (e,/) with
e ∈ Rd+1 and / ∈ {<,≤ }. A symbolic scheduler evaluates parametric affine expres-
sions e(p) = b ·p+c, where p is a vector of parameters, b is a vector of weights, c is
a constant and · denotes a vector inner product. A symbolic affine inequality can
be evaluated to a boolean at a parameter point p as e(p)/0, where / is either <
or ≤. Note that in Chapter 4, inequalities were always inclusive inequalities ≤. In
this chapter, we need their strict counterparts. The negation of an affine inequality
¬(e/0) is defined as follows: ¬(e,<) is equivalent to (−e,≤), and ¬(e,≤) is equiv-
alent to (−e,<).

A conjunction of symbolic affine inequalities can be interpreted as the inter-
section of half-spaces in the parameter space, as shown in Proposition 3 in Chap-
ter 4. The resulting polyhedron is convex. For strict inequalities, the bounding
hyperplane is excluded. We want to find a polyhedron for every point in which,
the scheduling algorithm makes the same sequence of decisions. We use the term
decision region to refer to such a convex polyhedron.

Algorithm 12 returns the task ordering Q(r) for each resource r , which implic-
itly represents an event network, and for each task t ∈ domT the earliest possible
starting time σ(t). In addition, the scheduler can keep track of the reasons why it
made these decisions for the given parameter values. For example, let the queue of
symbolic tasks and their duration expressions be 〈 (t1,2a), (t2,b), (t3,2a +1)〉. The
selection condition d = min(ti ,di)∈T di (used in Algorithm 12 Line 5) can be written
as the conjunction of inequalities such that the duration dx of task tx is at most
the duration of any task in T :

∧
(ti ,di)∈T dx ≤ di . When a = 1/4, b = 2, the scheduler

picks task t1 with duration a first, and will do so for other parameter combinations,
as long as 2a ≤ b.

Similarly, the minimum completion time condition can also be expressed as
a symbolic inequality, as the completion time of a resource is the sum of a set of
symbolic duration expressions. In the example, after selecting task t1, the first,
least busy resource is selected to execute for an additional 2a time units. Both
resources are available at time 0, and therefore task t1 is scheduled on r1. The
completion times of r1 and r2 are then 2a and 0 respectively. Task t3 with time
2a +1 = 3/2 then remains the smallest task as long as 2a +1 ≤ b. Resource r2 will
be selected for task t3 under the condition that there is no other resource than r2

that is idle earlier, i.e., the scheduler requires that 0 ≤ 2a. Moreover, as resource r1

occurs earlier in the resource list than r2, the scheduler also requires that r2 is the

5

104 Parametric Scheduler Characterization

first resource in the list that is idle at the given time, i.e., the scheduler requires that
¬(2a ≤ 0). The two conditions combined simplify to 0 < 2a. After scheduling t3,
the resource completion times are 2a and 2a +1 for r1 and r2 respectively. Finally,
the only remaining task t2 with duration b is added to the resource with minimum
completion time. The resource selection condition 2a ≤ 2a + 1 is true regardless
of the value of a, and t2 is therefore scheduled on resource r1. This schedule is
shown in Figure 5.1a. For this example, Cmax = max(2a +b,2a +1), for the param-
eter values(a,b) = (1/4,2): Cmax = max(2a +b = 5/2,2a +1 = 3/2) = 5/2 time units.

5.3.2 Symbolic SPTF scheduler

Given a particular parametrized set of tasks and resources, a deterministic sched-
uler makes its decisions sequentially. Algorithm 14 extends Algorithm 12 with sym-
bolic scheduling. It captures the conditions that distinguish between the selection
of scheduling options. In Algorithm 14, the condition for selecting task t on Line 6
is captured on Line 7. Similarly, the resource selection condition for r is evaluated
on Line 8 and is captured on Line 9.

Note that the symbolic scheduler captures only closed intervals, even though
on the interface between two decisions, only one decision is taken. We show in
Section 5.4 that it is not necessary to explicitly return the tie-breaking condition

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

2a b

2a +1

(a) Schedule for parameter combination (a,b) = (1/4,2).

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

2a 2a +1

b

(b) Schedule for parameter combination (a,b) = (1/2,3/2).

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

b 2a +1

2a

(c) Schedule for parameter combination (a,b) = (1,1).

Figure 5.1: Shortest Processing Time First (SPTF) example schedules for task queue
〈 (t1,2a), (t2,b), (t3,2a +1)〉.

5

5.3 Parametrized schedulers 105

Table 5.1: Decision region details for task queue T = 〈 (t1,2a), (t2,b), (t3,2a +1)〉.

Colour p= (a,b) Task cond. Resource cond. Queues

Red (1/4,2) 2a +1 < b 0 < 2a 〈2a,b 〉 ,〈2a +1〉
Green (1/2,3/2) 2a ≤ b ∧b ≤ 2a +1 0 < 2a 〈2a,2a +1〉 ,〈b 〉
Blue (1,1) b < 2a 0 < b 〈b,2a +1〉 ,〈2a 〉

for our approach.

Algorithm 14 Symbolic shortest processing time first scheduler

1: function SYMBOLIC_SPTF_SCHEDULE(task queue T = 〈 (t1,d1), . . . , (tn ,dn)〉,
resources R = 〈r1, . . . ,rm 〉, parameter values p)

2: c =; // initialize an empty set of conditions
3: for each r ∈ R do
4: Q(r) = 〈 〉 // empty queues Q for each resource

5: repeat
6: remove first task x = (t ,d) ∈ T with duration d(p) = min(ti ,di)∈T di (p)
7: c = c ∪ { (d−di ,≤) | (ti ,di) ∈ T }
8: select first resource r ∈ R with the smallest COMPLETION(Q(r))(p)
9: c = c ∪{

(COMPLETION(Q(r))−COMPLETION(Q(ri)),≤) | ri ∈ R
}

10: s= COMPLETION(Q(r))
11: append x to Q(r)
12: σ(t) = s
13: until T is empty
14: return c,Q,σ

Let the queue of symbolic tasks and their duration expressions again be
〈 (t1,2a), (t2,b), (t3,2a +1)〉. Figure 5.1 shows three symbolic schedules that are
produced for this task set for three different parameter combinations ((a = 1/4,b =
2), (a = 1/2,b = 3/2) and (a = 1,b = 1)). At these parameter combinations the
scheduler returns several necessary conditions for the same decisions to be taken
as shown in Figure 5.2. The relevant task and resource selection conditions are
shown in Table 5.12. These selection conditions result in polyhedra that overlap,
yet the scheduler only returns one specific result and schedule for each parame-
ter combination; each point in the parameter space is associated to exactly one
schedule. In Figure 5.2, the points on the line b = 2a belong to the blue region, as
the task with duration 2a (as the first task in the task queue) would be picked first.
Similarly, the points on the line b = 2a+1 belong to the green region, as task t2 with
duration b would be picked before task t3.

2In figures and tables, the task indices have been omitted.

5

106 Parametric Scheduler Characterization

5.3.3 Evaluating points strictly inside a decision region

For our exploration algorithm, we need to distinguish between parameter combi-
nations that lie on the border of a polyhedron, and those arbitrarily close to, but not
on, the border to detect in which decision region they fall. If at parameter combi-
nation pmultiple tasks tie for the smallest duration, Algorithm 14 chooses the task
that occurs first in the queue. I.e., on the ‘border’ between two decision regions,
exactly one of several mutually exclusive branching decisions is taken. This is in
contrast to the problem in Chapter 4, where the critical-path expressions of either
region were valid on the border between regions.

The decision regions can be open or closed such as visualized for task queue
〈 (t1, a), (t2,2a), (t3,2), (t4,5)〉 in 1-dimensional intervals in Figure 5.3a. This exam-
ple is synthetic as it allows negative task execution times. However, it illustrates
aspects that may occur in realistic, more complex examples, for more complex
schedulers. The figure shows that any side of a scheduling region can be open
or closed, depending on the conditions used in the scheduler. Moreover, it shows
that schedules may occur for only a single parameter value. Point a = 0 is the only
point in the example that leads to schedule 〈 (t1, a), (t2,2a), (t3,2)〉 ,〈 (t4,5)〉. The
maximum completion times associated with the schedules have different slopes
for different decision regions, as shown in Figure 5.3b. In more complex examples,
the makespan may even make discrete, discontinuous steps at borders of regions.
The slopes of the regions can be determined by Algorithm 10 of Chapter 4.

0 1 2 3 4
a

0.0

0.5

1.0

1.5

2.0

b

Figure 5.2: Example polyhedra returned by the symbolic scheduler for task queue T =
〈 (t1,2a), (t2,b), (t3,2a +1)〉, at parameter points (a,b) = (1/4,2), (1/2,3/2) and
(1,1) (the red dots). The regions denote for which parameter combinations the
same sequence of decisions are taken.

5

5.3 Parametrized schedulers 107

For our approach, we need to evaluate parameter combinations that are just
off a region border, to find to which decision region a border belongs. We add an
infinitesimally small ε to some of the parameters such that the scheduler evaluates
conditions as if the parameter point is strictly inside a polyhedron to influence the
tie-breaking decisions that the scheduler makes. This procedure is explained in
Section 5.4.2.

5.3.4 Interpreting a symbolic scheduler as a decision tree

The decision sequences that can be taken by the SPTF scheduler for the task queue
〈 (t1,2a), (t2,b), (t3,2a +1)〉 are visualized in Figure 5.4 as a decision tree. For each
parameter combination p = (a,b) a particular sequence of decisions (i.e., a path
in the decision tree) is followed. Starting from the left, the branches of the tree
contain the minimum task and resource selection, and the leaves show the result-

-2 0 2 4 6 8

<2,a>,<5,2a>

<2,5>,<a,2a>

<2,2a>,<a,5>

<a,2a>,<2,5>

<a,2>,<2a,5>

<a,2a,2>,<5>

<2a,a,2>,<5>

<2a,a,2,5>,<>

(a) Open and closed intervals for different scheduling regions for varying values of a.

-2 2 4 6 8
a

5

10

15

20

Cmax

<2,a>,<5,2a>

<2,5>,<a,2a>

<2,2a>,<a,5>

<a,2a>,<2,5>

<a,2>,<2a,5>

<a,2a,2>,<5>

<2a,a,2>,<5>

<2a,a,2,5>,<>

(b) Maximum completion time of the resources for varying values of a.

Figure 5.3: Scheduling regions and maximum completion times for scheduling the task
queue 〈 (t1, a), (t2,2a), (t3,2), (t4,5)〉 on two resources.

5

108 Parametric Scheduler Characterization

ing resource queues. In Section 5.4 we present a structured way to find for all pa-
rameter combinations which branch of the decision tree is taken. This allows the
behaviour of the scheduler to be characterized with respect to the parameters.

There are branches that cannot be taken for any p. The task t1, with duration
2a, for example, is always smaller than t3 with duration 2a +1, so task t3 cannot
be scheduled before scheduling t1. Similarly, if a task selection requires that the
parameters are related in a particular way, then certain resource allocations can
never be selected. Figure 5.2 shows the decision regions for strictly positive pa-
rameters. Figure 5.5 shows the geometric decision regions for each combination
{(a,b)|−1 ≤ a ≤ 8/5∧−1 ≤ b ≤ 8/5}. Only three decision regions fall in the positive
quadrant. For the remaining decision regions, at least one parameter is negative.

As a or b becomes negative, at least one task duration becomes negative. As
before, we allow negative tasks durations for illustration purposes. Behaviour that
we see in this example may also occur in more complex schedulers. For some neg-
ative task durations the SPTF scheduler delivers the same schedule as for certain
positive parameters, although following a different decision sequence. An example
occurs in Figure 5.8, the two decision regions that are labelled with C correspond

. . .

. . .

.

A:[2a,b,2a +1], []

B:[2a,b], [2a +1]

C:[2a,2a +1], [b]

D:[2a], [b,2a +1]

E:[2a,2a +1,b], []

C:[2a,2a +1], [b]

B:[2a,b], [2a +1]

F:[2a], [2a +1,b]

G:[b,2a,2a +1], []

H:[b,2a], [2a +1]

I:[b,2a +1], [2a]

J:[b], [2a,2a +1]

t1

t2

t3

r1
r2

r1
r2

t2
t3

t1
t3

r1
r2

r1
r2

r1
r2

t3

t3

t2

t2

t3

t3

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

r1
r2

Figure 5.4: Example decision tree for SPTF scheduling tasks 〈 (t1,2a), (t2,b), (t3,2a +1)〉. A
solid edge is a decision on a task, and a dashed edge is a decision on a resource.
Greyed out decisions cannot be taken due to conflicting requirements on the
parameter values.

5

5.4 Exploring parameter combinations 109

to different paths in the decision tree visualized in Figure 5.4. Different sequences
of decisions can lead to the same internal state of the scheduler, which may lead
to the same scheduling result.

5.4 Exploring parameter combinations

In Section 5.4.1, we present a divide-and-conquer approach that identifies to which
decision regions each parameter combination belongs. To evaluate all parameter
combinations for polyhedra with strict inequalities, we describe a procedure to
generate ε corners, i.e., corner points that are an infinitesimal distance away from
an open corner of a polyhedron, in Section 5.4.2.

5.4.1 Divide-and-conquer approach

Algorithm 15 shows a divide-and-conquer approach that covers all parameter com-
binations in a given bounded convex parameter region C P . It returns a set of pairs
consisting of a set of constraints defining a convex polyhedral parameter region
and the parametric result that the scheduler produces in that region.

Lines 5 to 7 collect all the constraints and all the scheduler results for all cor-
ner points of the parameter region C P . A convex polyhedron can be transformed

1.0 0.5 0.0 0.5 1.0 1.5
a

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

b

G

B

B

H

C
C

A

E

E

I

A:<2a,b,2a + 1>,<> -> 0
B:<2a,b>,<2a + 1> -> 2a + 1
B:<2a,b>,<2a + 1> -> 2a + b
C:<2a,2a + 1>, -> 4a + 1
C:<2a,2a + 1>, -> b
E:<2a,2a + 1,b>,<> -> 0
G:<b,2a,2a + 1>,<> -> 4a + b + 1
H:<b,2a>,<2a + 1> -> 2a + 1
I:<b,2a + 1>,<2a> -> 2a + b + 1

Figure 5.5: Geometric visualization of which parameter combinations lead to which re-
source queues for the example in Figure 5.4. The legend shows resource queues
and symbolic maximum completion times for each explored decision region.
The letters relate to the leaves in Figure 5.4.

5

110 Parametric Scheduler Characterization

into a set of corner points using the double description library [42]. Lines 10 to 12
check if all constraints found (Line 11) hold in all corner points of C P (Line 10). If
so, then the recursion ends and we arrive at Line 19. All corner points returned the
same scheduling result (g tot contains only one element); therefore we can return
a pair with C P and the schedule result, in Line 19. In the case that one of the con-
straints was found not to hold for one of the corner points (Line 12), the region C P
contains points from more than one decision region. This situation is visualized
in Figure 5.6a. In that case, we use that constraint to split the region C P in two
new (smaller) regions in Lines 13, 14; Algorithm 15 then recursively computes the
results for the two new parameter regions (Lines 15, 16) and returns the union of
their separate results (Line 17). The branching stops when a region is found for
which all the corner points have conditions that hold for all the corner points, as
visualized in Figure 5.6b.

Algorithm 15 Divide-and-conquer for symbolic scheduling

1: function DIVIDECONQUERSCHEDULE(scheduling problem P , bounded convex
parameter polyhedron C P)

2: // Empty sets to record conditions and scheduler results
3: ztot =;, g tot =;
4: // Combine the conditions of all corners
5: for each corner pεc of EPSILON_CORNERS(C P) do
6: zi , gi = EVALUATE_PROBLEM(P , pεc)
7: ztot = ztot ∪ zi

8: g tot = g tot ∪ gi

9: // Check whether all corners admit to all conditions
10: for each corner pεc of EPSILON_CORNERS(C P) do
11: for each z ∈ ztot do
12: if ¬z(pεc) then // Divide C P into two disjoint polyhedra
13: C P1 =C P ∪ { z }
14: C P2 =C P ∪ {¬z }
15: R1 = DIVIDECONQUERSCHEDULE(P ,C P1)
16: R2 = DIVIDECONQUERSCHEDULE(P ,C P2)
17: return R1 ∪R2 // Return all regions and schedule results

18: Let gm be the only element of g tot .
19: return

{〈
C P , gm

〉}

5.4.2 Evaluating polyhedra with strict inequalities

The conditions leading to decision regions may include strict inequalities and non-
strict inequalities. We represent a polyhedron with strict inequalities that exclude
bounding faces using corner points that are at an infinitesimally small distance
from the concrete corner (ε corners), inside the polyhedron. To determine such

5

5.4 Exploring parameter combinations 111

(a) The intersection does not cover all points of the hatched convex polyhedron. The algo-
rithm can split the polyhedron along one of the two red dashed lines.

(b) The intersection covers all points in the hatched convex polyhedron.

Figure 5.6: Two situations for the intersection (outlined in thick black) of the green, yellow
and blue conditions returned by their respectively coloured corners.

5

112 Parametric Scheduler Characterization

ε corners for strict inequalities (i.e., an open interface of a polyhedron), we use
the technique visualized in Figure 5.7. This technique creates a smaller polyhe-
dron, by tightening the conditions (i.e., translation in the figure) such that they cut
off the points that lie on the interface of the strict inequality Si = (e,<). The points{
x ∈Rd |e(x= 0)

}
are those that lie on the hyper-surface defined by e; we call such

points adjacent to Si . We find a distance δ, to be added in the normal direction of
the inequality Si , such that concrete new corner points for a new polyhedron C P ′
(spanned by c1 and the red corners c ′2,1, c ′2,2, c ′3,1, and c ′4,1) are created. δ is cho-
sen small enough to retain all corners that are not adjacent to this strict inequality.
The distance at which a corner ck not adjacent to Si would be cut off is the perpen-
dicular distance δ(Si ,ck). Therefore, any concrete translation distance δ of Si less
than the minimum perpendicular distance of Si to any non-adjacent corner point
ck does not cut off corner points that are not adjacent to Si .

Translating the inequality Si with a concrete value leads to a smaller concrete
polyhedron C P ′. For example, when S2 is translated by δ(S2,c3)/3, a new polyhe-
dron is created that is spanned by c1, c ′2,1, c ′2,2, c3, and c4. The corner points of
C P ′ that do not coincide with any corner of C P (in the previous example, c ′2,1, c ′2,2)

c ′2,1

c ′2,2

c ′3,1

c ′4,1

c1

c2

c3

c4

S1

S2

δ(S2,c4)

δ(S2,c1)

δ(S2,c3)

δ(S1,c2)

δ(S1,c1)

Figure 5.7: Creating ε corners. c1,c2,c3,c4 are corners of a polyhedron, and S1 and S2 are
strict inequalities (denoted by dash-dot lines). Calculate new concrete corners
(c ′2,1, c ′2,2,c ′3,1, and c ′4,1) by translating Si a concrete distance, using one third
of the minimum (perpendicular) distance δ(Si ,ck) of Si to each other corner
ck . This procedure generates new corner points (the red dots) without removing
corners (such as c1) on non-strict inequalities (denoted by solid lines).

5

5.5 Experimental evaluation 113

are used to determine the ε corners. The ε corner is determined by moving the
original corner in the direction of the corresponding concrete corner(s) of C P ′ by
an infinitesimal distance. This creates a corner point for which no concrete point
lies between that corner and the original corner, for example c2 + ε(c ′2,1 − c2). As
multiple corners may be cut and generated (as for S1 and corners c3 and c4) we
need a way to distinguish which new corners relate to the old corners. To do so, we
take the concrete δ small enough so that any new corner is generated closer to its
original corner than to any other corner. This distance should be less than half the
minimum of the distance to adjacent corners and the perpendicular distances to
non-adjacent corners.

In Figure 5.7, a simpler method seems possible; namely, for each corner point
adjacent to a strict inequality, generate new corners that are in the direction of the
adjacent corner points. When more than one strict inequality is supplied for a cor-
ner point, this method would generate multiple corner points, each of which is still
adjacent to at least one other strict inequality. Therefore, this simpler procedure
will not always lead to the correct corner points to describe the polyhedron with
strict inequalities.

For the procedure sketched here to work, the symbolic scheduler that is used by
the exploration algorithm should be capable to evaluate conditions for parameter
values with infinitesimal parts.

5.5 Experimental evaluation

We apply our approach to several schedulers to show that the technique is applica-
ble to both classical processor scheduling and scheduling techniques relevant for
manufacturing systems. The result of our parametric scheduler characterization
allows us to investigate scheduling productivity with respect to design parameters
for re-entrant manufacturing systems. We do not compare our approach to other
techniques as no other technique exists that can determine the scheduling regions.

The experiments described in this chapter have been implemented and exe-
cuted with Python3, using the Python wrapper for the CDD double description
library [42], on an Intel Core i5-4300M notebook running 64-bit Windows 10.

5.5.1 Shortest Processing Time First scheduler

The characterisation of the SPTF scheduler has already been shown for the task
queue 〈 (t1,2a), (t2,b), (t3,2a +1)〉 in Figure 5.4. Forp+ = (a,b) with strictly positive
parameters (a > 0,b > 0) three decision regions are found. As task durations 2a
and 2a + 1 are already ordered, these decision regions correspond to the relative
ordering of b to 2a and 2a +1. The decision regions have maximum completion
times that depend both on a and b. The static part of the task duration, 1, in 2a+1
is not critical as long as b > 2a +1.

5

114 Parametric Scheduler Characterization

Figure 5.8 shows the performance characterization for the task queue
〈 (t1, a), (t2,2a), (t3,b), (t4,1)〉, for −1/2 ≤ a ≤ 1,−1/2 ≤ b ≤ 2; 22 different sched-
uler results are found in 26 decision regions. The maximum completion time in
the region R1 = {(a,b) | 0 ≤ a ≤ 1/2,0 ≤ b ≤ 1} depends either on a or on b, but not
on both. For all parameter combinations in R1, the task with duration 1 is the last
to be scheduled as none of the other tasks are bigger in this region, and therefore
always ends up in the maximum completion time expression.

The two examples of Figures 5.4 and 5.8 illustrate the type of analysis that our
divide-and-conquer approach supports.

5.5.2 Schedulers for re-entrant FMSs

Re-entrant FMSs (see also Chapter 2) need to interleave product flows at different
stages (passes) to optimize the productivity of the machines. We assume here that
(i) the minimum re-entrant loop time lmi n and maximum re-entrant loop time
lmax are design-time parameters that are constant during scheduling, (ii) that the
set-up times SS : Z × Z → R between two products (z1, z2) ∈ Z 2 at the re-entrant
processing station are determined fully by their product types, (iii) that the set-up
times between products with the same type are the smallest possible, and (iv) that
the products all need to be processed twice by some processing station (i.e., prod-
ucts are processed in two passes). For sake of simplicity of presentation, the set-up
times of the machines include the processing time, and are the same between first
pass processing and the second pass processing.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
a

1.0

0.5

0.0

0.5

1.0

1.5

2.0

b

2a + 1

3a + b + 1

3a + b + 1

1

3a

2a + b + 1

2a + b + 1

b + 1

0

2a + b

b + 1

0

2a + 1

b 2a + b

a + b + 1

2a
0 1

3a + b

2a + 1

a + 1
3a

2a + b

Figure 5.8: SPTF performance characterization for task queue
〈 (t1, a), (t2,2a), (t3,b), (t4,1)〉. The maximum completion times are shown
per decision region.

5

5.5 Experimental evaluation 115

Eager Scheduler

The Eager Scheduler [122] selects the ‘first fitting slot’ in which an operation can
be executed. It does so by trying to insert a re-entrant operation into an operation
sequence in such a way that it does not influence the chosen timing of previously
scheduled operations. The Eager Scheduler iteratively inserts the second pass op-
eration of the next product into a sequence of (initially only first pass) operations.
The scheduler fixes the re-entering time for a product after inserting its second
pass to the earliest time allowed by the constraints. Evaluating whether an opera-
tion can be inserted while satisfying all constraints is possible through a modified
longest-path algorithm that detects the presence of positive cycles and does not
allow changing the operation times of previously scheduled operations (see Ap-
pendix A). The presence of a positive cycle indicates that the constraints cannot
be met. The symbolic scheduler needs to determine a constraint on parameters
for which a given cycle is positive.

2 4 6 8 10 12 14

0

20

40

60

80

100

Minimum loop time l

M
ak
es
pa
n

Figure 5.9: Eager Scheduler applied to 25 identical sheets, l− = l , l+ = l + 3. The different
decision regions are colour coded in the bottom. The top part of the graph shows
the makespan as a function of l−. As the minimum loop time increases, the slope
of the makespan becomes smaller, while the starting offset for subsequent line
segments is slightly higher.

5

116 Parametric Scheduler Characterization

Enumerating all cycles in a graph is prohibitively time-consuming, and many
of the resulting positive cycle expressions will be redundant. Instead, it is sufficient
to return some positive cycle expression if an explored choice is infeasible. Our
exploration algorithm, Algorithm 15, can then divide the polyhedron on that con-
dition, to separate the decision regions on the outcome of that cycle. Additional
positive cycles may appear during recursive evaluation of the smaller polyhedra.

Figure 5.9 shows how the Eager Scheduler performs for 25 identical products
under variation of the minimum loop time, with a maximum buffer time of 3 sec-
onds. The makespan per product increases as the minimum loop time increases,
until another product fits in the loop. At that point, the scheduler can avoid some
idle time by filling the loop more. Thus, the decision regions returned by the sched-
uler correspond to the number of products that fit in the re-entrant loop. As the
minimum loop time increases, the slope in each region decreases; the minimum
loop time is less and less often in the critical path. Performing such an evaluation
for typical product queues will lead to a better understanding of which minimum
loop time is productive.

Pattern Scheduler

If the products in a re-entrant flow-shop are coming in a regular pattern, then in-
stead of optimizing a single product at a time, we can interleave patterns with each
other. This is exploited by the Pattern Scheduler [123]. By aligning first and second
passes of products from different instances of the pattern, large set-up times can
be avoided. A good heuristic is to find the maximum number of patterns that fit
in the loop and allow the alignment of the two passes. We analyse a scheduler
that determines how many patterns fit in a 2-re-entrant loop, and then calculates
which pattern interleaving schedule would be indefinitely repeatable. A pattern
Z = 〈z1, . . . , zk 〉 is an ordered list of |Z | product types. The pattern repeats r times
in the job.

The number of patterns n that can be concurrently in the re-entrant loop is
calculated in a way similar to the steady-state performance estimator of Waqas
et al. [123] for re-entrant flow-shops, which models a steady-state pattern sched-
uler. It calculates how many interleaved patterns could be executed in the interval
between the minimum and maximum loop time. The buffer range is denoted by
lb = l+− l−). Figure 5.10a shows that the first passes (solid rectangles) of pattern k
are interleaved with the second passes (dashed rectangles) of pattern k−n. Pattern
time tp is derived as a sum of set-up times, given this particular interleaving of first
and second passes, and use the knowledge of the pattern that the product type of
i −n · |Z | is the same as i :

tp = ∑
zi∈Z

(S(zi , zi−n·|Z |)+S(zi−n·|Z |, zn i +1))

= ∑
zi∈Z

(S(zi , zi)+S(zi , zi+1))

5

5.5 Experimental evaluation 117

In steady state, this means that the first passes of a pattern k and the second
passes of a re-entrant pattern k − n are processed every tp time units. For any
product zi , the deadline D(zi) (denoted with red dashed arrows in Figure 5.10b)
between the first and second passes must be satisfied for a valid schedule to exist.
The relative due date D(zi) is assumed constant, and parametrized by l+. Before
the second pass of a product of pattern k is executed, n patterns (n · |Z | products)
must be processed, plus a first pass product from pattern k+n+1. That is, for each
product zi ∈ Z , the chosen loop time t∗l = n · tp +S(zi , zi+n·|Z |) ≤ D(zi) should be
less than the re-entrant due date D(i). The set-up time S(zi , zi+n·|Z |) = S(zi , zi) in
Figure 5.10a corresponds to the set-up time between ak+n

1 , and ak
2 . This constraint

is shown as the cycle of highlighted blue edges in Figure 5.10b, and is the same for
each instance of the pattern, but may be different for each product type within the
pattern. Therefore, we can locally check whether the deadlines for each product
type in the pattern can be met for a particular value of n.

The number n of patterns that fit in the loop is determined by the pattern time
tp , the maximum additional set-up time ts = maxzi∈Z S(zi , zi), l− and l+ as follows:

n∗ =
⌊

l−
tp

⌋
nmax =

⌊
l+− ts

tp

⌋

n =

0 if nmax ≤ 0

nmax if 1 ≤ nmax < n∗
n∗ otherwise

The maximum number of patterns that fit in the loop is then nmax . To maintain
a high throughput, the scheduler tries to fit n∗ patterns in the loop, such that n∗ ·
tp ≥ l−, because then the re-entrant products can return exactly after finishing
some previous pattern’s first passes. However, if n∗ > nmax then there exists no
n such that the pattern can return within the time window l− ≤ n∗ · tp ≤ l+. In
that case the scheduler uses the maximum number of patterns that fit in the loop
n = nmax .

The actual timing of the operations is determined by first filling the loop with
n products, then interleave products of pattern k with k −n in steady-state, until
the loop needs to be emptied again. Algorithm 16 first creates an event network as
shown in Figure 5.10b, without any operation order enforced yet (Lines 2 to 4). It
then determines the operation sequence; i.e., a sequence of first and second pass
products. This operation sequence first requires to fill the loop with n products
(lead-in on Line 7), then interleave products of pattern k with k − n in steady-
state (Line 8 to Line 10), until the loop needs to be emptied again: (lead-out on
Line 11). The appropriate sequence-dependent set-up times for this sequence are
added (Line 13), and the earliest realization times (i.e., a schedule) are calculated
(Line 14). Finally, the schedule is returned along with the event network G . All
conditions used in this decision process are captured symbolically as expressions
in the minimum loop and buffer times l− and lb .

5

118 Parametric Scheduler Characterization

If no complete pattern fits in the loop (i.e., nmax = 0), then the interleaving pro-
cedure schedules both passes of a product to be processed before the next product
starts its first pass. This is rather inefficient, so if nmax = 0 the previously men-
tioned Eager Scheduler is invoked instead.

Algorithm 16 Pattern-scheduling

1: function INTERLEAVEPATTERNS(pattern Z , repetitions r , set-up times SS :
Z 2 →R, number of patterns to interleave n)

2: Create an empty event network G
3: For each first and second pass operation o ∈ {1,2} of each job j ∈ {1, |Z | · r },

insert an associated event e j ,o into G
4: Between each e j ,1 and e j ,2, add constraints for the minimum loop time lmi n

and maximum loop time lmax in G
5: operation sequence w = 〈 〉
6: d = min(n,r) // determine number of products in transient phase
7: for each i ∈ {1,d · |Z | } do append ei ,1 to w

8: for each i ∈ {d · |Z |+1,r · |Z | } do
9: append ei ,1 to w

10: append ei−n·|Z |,2 to w

11: for each i ∈ {max(0,(r −n) · |Z |)+1,r · |Z | } do append ei ,2 to w

12: for each i ∈ {1,r · |Z |−1} do
13: add edge wi → wi+1 with weight SS(wi , wi+1) to graph G

14: Compute earliest realization times t and feasibility f of G
15: if f then return G , t
16: else return G , ;

Figure 5.11 shows for a pattern of three products, repeated 5 times, how mini-
mum loop time and buffer time impact the decisions made by the pattern sched-
uler. One pattern takes 15/2 time units, while the maximum first to second pass
set-up time of the same product is ts = 2. Figure 5.11 shows that for these com-
binations of minimum loop times and buffer times at most two patterns are used
in the loop. The interpretation of triangle {(l−, lb) | 15 ≤ l−∧ l−+ lb < 17∧ lb ≥ 0}
is that one pattern less is interleaved because the maximum loop time (being the
minimum loop time plus buffer time) is not sufficient yet to allow the product’s
second pass to start. In this region, the adjusted loop time n · tp < l− is less than
the minimum loop time, and therefore some unproductive idle time has been in-
serted between patterns. The productivity is therefore decreased if the minimum
loop time is increased and idle time is introduced, until an additional pattern fits
again. In the bottom left, the more irregular structure of the regions is due to the
Eager Scheduler making less regular decisions.

5

5.5 Experimental evaluation 119

a
k 1

a
k
−n

2
b

k 1
b

k
−n

2
ck 1

ck
−n

2
a

k
+n

1
a

k 2

t∗ l
≤

l +

re
p

ea
te

d
n

ti
m

es

t a
1

,a
2

t a
2

,b
1

t b
1

,b
2

t b
2

,c
1

t c
1

,c
2

t c
2

,a
1

t a
1

,a
2

t p

(a
)

A
ti

m
e

re
p

re
se

n
ta

ti
o

n
o

ft
h

e
in

te
rl

ea
vi

n
g

o
fn

p
at

te
rn

s,
st

ar
ti

n
g

at
th

e
fi

rs
tp

as
s

o
fp

at
te

rn
k

.

1a 2

1b 2

1c 2

1a 2

1b 2

1c 2

1a 2

1b 2

1c 2

p
at

te
rn

k
−n

p
at

te
rn

k
p

at
te

rn
k
+n

l −

..
.

..
.

..
.

..
.

−l
+

(b
)

A
n

ev
en

t/
co

n
st

ra
in

tg
ra

p
h

re
p

re
se

n
ta

ti
o

n
o

ft
h

e
in

te
rl

ea
vi

n
g

o
fn

p
at

te
rn

s.

F
ig

u
re

5.
10

:A
st

ea
d

y-
st

at
e

p
at

te
rn

in
te

rl
ea

vi
n

g
ex

am
p

le
.

5

120 Parametric Scheduler Characterization

This result enables a designer to study the ability of the buffer to adapt to differ-
ent patterns with respect to the physical layout of the printer. Improvements can
then be explored on how a larger minimum loop time or a larger buffer would im-
pact the ability to adapt to different patterns. For this particular scheduler, adding
additional buffering capabilities above some threshold does not yield additional
productivity. By performing such an analysis for typical use cases, a designer can
make more informed decisions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Minimum loop time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Bu
ffe

r t
im

e

Figure 5.11: FMS pattern scheduling for three products, repeated 5 times. In the green area,
one pattern is used in the loop, in the orange area two patterns are used. If no
pattern fits in the loop (below left of the green area), then the eager scheduler
decides on the operation ordering.

5.5.3 Scalability

Table 5.2 shows some runtime statistics for the example instances discussed in the
previous subsections. The SPTF scheduler is very fast at evaluating single param-
eter points, and the task queues are rather small. These experiments only con-
tain few different scheduler results and decisions. In these cases, our divide-and-
conquer approach does not branch much more than strictly necessary in these
cases, as the number of regions is close to or equal to the number of parametric
scheduler results found. The Eager Scheduler and Pattern Scheduler require many
more evaluations to cover the initial convex parameter region. In all experiments,
almost all the time is spent in evaluating corner points, and the time spent gather-

5

5.6 Related work 121

Table 5.2: Parametric scheduling exploration statistics. The columns show per instance how
many evaluations (E) were performed (i.e., symbolic schedule calls), how many
regions (R) were generated, and how many different parametric scheduler results
(PSR) were found. The last column shows the execution time (T) of the divide-
and-conquer algorithm including all scheduling calls.

Instance E R PSR T

SPTF Scheduler Figure 5.3a 15 8 8 0.8s

SPTF Scheduler Figure 5.5 19 10 8 1.3s

SPTF Scheduler Figure 5.8 47 24 21 5.5s

Eager Scheduler Figure 5.9 54 14 14 289s

Pattern Scheduler Figure 5.11 366 45 11 948s

ing the conditions and choosing a branching condition were negligible.
The experiment of Figure 5.11 shows that many redundant regions were found,

most leading to the same parametric scheduler results, which are in this case part
of the same (green) decision region. The green area could have been detected by
three cuts, but the cuts that were generated for the eager scheduler also cut the
green area in more parts than necessary. These experiments can possibly be sped
up by heuristically (instead of arbitrarily) choosing a separation condition that typ-
ically leads to fewer corner evaluations.

5.6 Related work

Schedulability regions have been determined for periodic task sets [14]. Task ex-
ecution times in this work are parametric, and it provides scheduling models for
rate-monotonic and fixed-priority scheduling. The results show that it is possible
to use hyperplane representations for these scheduling models. The hyperplanes
determine limits on the schedulability, i.e., for which task execution times the pro-
cessors are proved to be capable of executing a workload. Their results map the
parameter space to a binary outcome (schedulable or not schedulable), and the
approach is specific to the rate-monotonic and fixed-priority scheduling.

The parametric scheduling work of Subramani [110] also focuses on schedu-
lability queries for real-time systems, using the execution-time-constraints (ETC)
framework. This dispatching mechanism only considers constraints from and to
past events. It does not take into account that constraints from and to future events
impact the scheduling decision, and computes a single range in which a task/job
can be dispatched.

Parametric timed automata approaches such as [63] [44] also return a set of
symbolic conditions, called zones. The typical query, however, is whether a given
state is reachable. The problem in this chapter requires finding whether any ac-

5

122 Parametric Scheduler Characterization

cepting state is reachable under certain parameter evaluations, which has been
shown to be PSPACE-Complete [3]. Current approaches [44], however, do not give
an algorithm to discover any accepting states automatically and also capture the
symbolic conditions for the decisions leading to these states (in the form of a de-
cision region). Our approach simultaneously discovers the reachable scheduling
results and the symbolic conditions under which they are reachable.

The convexity of parametric problems is often based on the resulting para-
metric affine expression, as in [47] and [119]. In these works, the throughput and
critical-path expressions are determined for data-flow graphs and event networks
respectively. Such expressions are valid on the border of regions, whereas our
problem requires the regions not to overlap. Our approach finds symbolic condi-
tions that are related only to the decision making, but are not necessarily derived
from the scheduling result.

Scheduling problems can often be expressed as integer programming prob-
lems. Such integer programming problems are often not amenable to solving to
optimality due to the complexity of the scheduling problem. The constraints of
such integer programming problems can be expressed through parameters [38].
Their work solves a different kind of parametric scheduling problem; the decision
making is performed by a general-purpose solver. As with the previously men-
tioned related work, the scheduling result relates directly to the symbolic condi-
tions under which they are optimal, which is not required for our approach.

We recognize that the problem at hand resembles a classification problem from
the machine learning domain. In particular, classification trees [16] at first glance
seem to match the problem. The algorithms that build such decision trees, how-
ever, only create rules in which a single feature (i.e., a parameter) is compared to
a constant, or selected from a known set of values. The condition a > b would
therefore either require that this relationship is linearised in a feature, defeating
the purpose of learning such relations automatically, or that it be approximated
through many constants. In addition, the number of samples needed to find these
relationships would likely be much larger than in our approach. A minimally ade-
quate oracle is also required for an active learning algorithm to terminate.

5.7 Conclusion

A product flow scheduler has a significant impact on the productivity of an FMS.
We therefore want to find out how a design parameter in a given range influences
the sequence of decisions made in a scheduler. These decisions lead to the activa-
tion or avoidance of timing constraints, and therefore lead to a particular system
performance. In this chapter, we introduced a symbolic scheduling model that
captures the conditions under which certain decisions are taken. We introduced
a divide-and-conquer algorithm that uses such information from symbolic sched-
ulers to determine which parameter combinations lead to the same scheduling
decisions for deterministic scheduling algorithms. It covers all possible parameter

5

5.7 Conclusion 123

combinations in a given range. It can be used to exhaustively test how the system
behaves in this range.

We applied this technique to several schedulers, to show that different kinds
of problems and schedulers can be characterised by this technique. We believe
that many deterministic schedulers are amenable to this analysis. The symbolic
scheduling can be introduced to an existing scheduler to include symbolic rela-
tions with relatively few modifications.

6

6

Conclusions and Future Work

This thesis contains techniques to perform online optimization of product flows
in re-entrant flexible manufacturing systems (FMSs) and to perform design-time
analysis of the performance of FMSs, including the behaviour of the employed
scheduling algorithms.

6.1 Conclusions

Online scheduling of product flows in re-entrant FMSs requires fast and efficient
decision making to optimize the system productivity. We have provided an online
scheduling algorithm for interleaving product flows in a 2-re-entrant flow shop.
Given a stream of products and their associated flow, the scheduling algorithm
quickly determines good scheduling decisions. The algorithm uses longest-path
computations to compute timing instructions for the FMS, and to check whether
such timing instructions exist for different scheduling options. We have identi-
fied restrictions on operation orderings to avoid the time-consuming computa-
tion of the longest path. We generalize the Compositional Pareto-algebraic Heuris-
tic (CPH) into Constructive Pareto Meta-Heuristic (CPMH); a multi-dimensional
meta-heuristic that explores multiple options without backtracking. Exploring mul-
tiple options improves the quality of the schedules and reduces the need for man-
ual tuning of the weights for the algorithm’s decision metrics. This allows the
scheduler to be effective for a wider range of products, as is desired for an FMS. We
have also shown that the worst-case time complexity of our algorithm is related to
the largest number of products that can ever be interleaved with each other. This
leads to interesting design trade-offs, as it implies a limit to the maximum use-
ful size of the re-entrant loop relative to the smallest product. At some point, the
scheduling algorithm will itself become a bottleneck for the system productivity.

We have also contributed an online scheduling algorithm for batches of prod-
ucts that need to be processed by the re-entrant FMS, in the form of a multi-
dimensional Generalized TSP (GTSP) algorithm. This algorithm explores order-
ing batches of (ordered) product streams and selection of system settings to find
trade-offs between productivity and quality. The re-entrant FMS scheduler takes
a predefined product output ordering into account. The GTSP algorithm has the
freedom to choose the ordering of batches as input for the FMS. The algorithm

6

126 Conclusions and Future Work

is also based on CPMH and incrementally constructs trade-off spaces in an on-
line manner. The incremental and compositional construction of trade-off spaces
is a promising direction to research. The performance in runtime is better than
the current state-of-the-art approaches, and the quality of solutions is similar. The
meta-heuristic is particularly suited for online optimization problems, where in-
formation arrives incrementally. The algorithms for GTSP are not restricted to 2-
re-entrant FMSs. It is applicable to any FMS for which the input batch order has
an impact on performance.

The input interleaving and batch optimization algorithms improve the pro-
ductivity of existing FMSs. As the design of such FMSs is continuously evolving,
the next design iteration of an FMS benefits from understanding the impact of
variations of the current design. In particular, it is useful to evaluate the effect of
combinations of structural parameters, such as loop lengths and settling times, on
system productivity. We have contributed two parametric algorithms that can be
used together to fully characterize the system performance of an FMS for particu-
lar sequences of products. The algorithms together characterize how the structural
parameters relate to the scheduling decisions and the bottlenecks of schedules.

The parametric scheduling algorithm allows a designer to identify the impact
of different parameter combinations on the scheduling decisions that are taken.
We have shown a method to divide the parameter combinations into regions where
the parameters lead to the same scheduling decisions. This allows investigation of
the scheduling algorithm for different design choices. This also helps to under-
stand in which situations a particular scheduler outperforms another or is more
robust against parameter changes.

Once the scheduling decisions determine the dependencies between events,
our parametric critical path algorithm can find the bottlenecks, i.e., critical-path
expressions. The critical-path expressions are found for each parameter combina-
tion. The combination of these techniques yields a performance perspective of the
total system, including the discrete performance steps that are introduced by the
scheduling behaviour. The parameters have a (physical) interpretation in another
domain. The critical-path expressions therefore yield feedback information that
can be translated back to the original domain. A designer can then assess what the
impact of parameter changes is for typical jobs, and determine the right trade-off
between cost and productivity. The parametric analysis algorithms advance the
current state-of-the-art for design-time performance analysis of FMSs in terms of
parameters, e.g., from the control, or physical domain.

The techniques and algorithms presented in this thesis have wider-ranging ap-
plications. CPMH is a promising multi-dimensional meta-heuristic that can be
used for online scheduling and allocation problems. The parametric critical path
algorithm can be applied to many different problem domains, as the underlying
event network uses little assumptions. The parametric scheduling algorithm has
applications in learning the decisions that a deterministic algorithm takes given
different parameters. These last two algorithms are applicable as long as the rela-
tionships between events, and the conditions for decisions, are expressed as lin-

6

6.2 Future work 127

ear combinations of parameters. These parametrized models and algorithms pro-
vide a way to characterise the system performance of an FMS taking into account
both continuous timing constraints as well as discrete scheduling decisions. These
characterizations can be related to the original domain, by translating the anno-
tated parameters.

6.2 Future work

The online flow shop scheduler works for 2-re-entrant systems and an obvious, but
non-trivial, extension would be to include higher re-entrancy systems [121]. To
guarantee that our list scheduler produces feasible results, any partially completed
product sequence should lead to a set of set-up times that are sufficient to return
to an empty manufacturing system. That is, for each feasible interleaving option,
there is a feasible follow-up option, which is in the worst case the empty state. We
assume that an FMS can always restart its operation from an empty state. For 3-re-
entrant or higher-re-entrant systems it is possible that none of the follow-up op-
tions are feasible; if it is feasible to insert a second pass into a series of first passes,
then two operations need to add set-up times, violating each other’s deadlines,
even though neither of these deadlines was violated by the previously taken deci-
sion. Although the schedule-space-exploration algorithms of [121] make it more
likely to find feasible schedules, they are not online algorithms, and it would re-
quire significant effort to maintain a good balance between high quality and fast
computation time.

Variable re-entrancy scheduling for industrial printers (i.e., mixing simplex and
duplex pages) has been investigated by [116]. The impact of variable re-entrancy
on online operation sequencing in higher re-entrancy systems is still unclear. Fur-
ther research could focus on improving the understanding of the impact of opera-
tion ordering on exploring scheduling options.

The current re-entrant scheduling model assumes that the state of a machine is
fully determined by its preceding operation. In many FMSs the state of a machine
is influenced by many factors, such as the history of products, the time since a
particular product was last processed, the idle time between two operations, or
the environment. These constraints have not been modelled and the scheduling
algorithm does not take them into account. The online scheduling problem can
be extended to incorporate the states of the machines, and make decisions based
on maintenance or system reconfiguration requirements.

The re-entrant flow shop scheduling algorithm could be made into an any-time
algorithm, such that it provides scheduling solutions before completing the calcu-
lation of the new generation. One step in this direction would be to remove pa-
rameter k and evaluate options according to a given time budget. Another way to
reduce the peaks in computation time is to reduce the maximum number of relax-
ations performed in the Bellman-Ford-Moore (BFM) algorithm. If the operation
begin times corresponding to the scheduling option do not converge fast enough,

128 Conclusions and Future Work

one can consider the option to be infeasible.
The Pareto meta-heuristic CPMH is an interesting candidate for solving online

problems. One of its steps is to approximate a large set of solutions by selecting di-
verse trade-offs, in the hopes that the search space still contains the optimal solu-
tions. It would also be interesting to incorporate solution diversity in the reduction
operator. The reduction operators used in this thesis select representatives based
on the assessment of partial solutions, but do not consider diversity or distance in
the solution domain.

The batch scheduler currently does not take into account that particular batches
may have deadlines, or precedence constraints. The inclusion of such properties
may make the general problem harder. Yet it also yields opportunities to cut off
parts of the solution space that definitely do not meet the constraints. The un-
certainty in the prediction of batch processing times may be included by using a
Pareto-dominance where the uncertainty in the prediction is explicitly taken into
account [59].

The parametric critical path analysis has scalability issues when the parameter
space has many dimensions, or when parameter combinations may lead to many
different regions. We conjecture that it is possible to use lower and upper bounds
on the critical-path expressions, based on the constraints imposed by neighbour-
ing critical-path expressions. Such an approximation requires a measure of con-
vergence, and an effective way to determine that measure. It would also be inter-
esting to see whether the technique can be improved by taking into account certain
non-linear relationships more effectively.

The parametric scheduling characterization problem resembles an active learn-
ing problem. The structure of the underlying decision tree then needs to be learned.
This implies that the parametric scheduling problem actually solves a larger class
of problems than we intended to solve. An interesting research direction would
be to see whether this grey-box active learning can be applied to different kinds of
deterministic algorithms as well.

Due to the generic nature of the characterization algorithm that is defined for
a wide class of schedulers, it is difficult to give generic correctness proofs. It would
be interesting to provide correctness proofs and a deeper analysis of the charac-
terization algorithm for specific classes of schedulers. This would improve the un-
derstanding of the assumptions on the scheduler made in the characterization al-
gorithm.

The results of the parametric analysis yield insight into the relationship be-
tween the multi-domain timing constraints, and the performance of the system.
Currently, the analysis is applied to representative individual product sequences.
The flexibility of the systems can be taken into account by aggregating these re-
sults in a meaningful way, for example by using weighted sums of piecewise linear
functions.

Acronyms

2PPLS Two-Phase Pareto Local Search.

ALAP as-late-as-possible.

ASAP as-soon-as-possible.

AUGMECON2 Augmented Epsilon Constraint algorithm.

BFM Bellman-Ford-Moore.

BHCS Bounded HCS.

CPH Compositional Pareto-algebraic Heuristic.

CPM Critical Path Method.

CPMH Constructive Pareto Meta-Heuristic.

CPS cyber-physical system.

DSE design-space exploration.

EDF Earliest-Deadline-First.

FIN paper finishing module.

FMS flexible manufacturing system.

GPR generalized precedence relation.

GTSP Generalized TSP.

HCS Heuristic Constraint-based Scheduler.

ILS Iterated Local Search.

132 Acronyms

ITS image transfer station.

LST Least-Slack-Time.

MA-GTSP Memetic Algorithm for GTSP.

MCME maximum cycle mean expression.

MD-BHCS Multi-dimensional BHCS.

MIP mixed integer programming.

MMKP Multi-dimensional Multiple-choice Knapsack Problem.

MO-GTSP Multi-Objective Generalized TSP.

MO-TSP Multi-Objective Traveling Salesman Problem.

PD-TPLS Pareto Double Two Phase Local Search.

PIM paper input module.

PLS Pareto Local Search.

RHP Rolling Horizon Procedure.

SDF synchronous data-flow.

SLS Stochastic Local Search.

SPEA2 Strength-Pareto Evolutionary Algorithm.

SPTF Shortest Processing Time First.

TSP Traveling Salesman Problem.

Appendices

A

Bellman-Ford-Moore
longest-path algorithm

This appendix describes the problem statement and some of the subtleties of choos-
ing a longest-path algorithm. We first describe the shortest-path problem, and dis-
tinguish between two versions of the longest-path problem. We then describe in
more detail the label-correcting algorithm BFM to find longest paths, and adapt
this algorithm to incrementally determine the longest path for online algorithms.

A.1 Shortest-path problem

The shortest-path problem is a common problem in computer science: given a
weighted graph G = (V ,E) with vertices V and edges E ⊆V ×V and a weight func-
tion w : E → R determine a shortest path p ⊆ E with minimum weight w(p) =∑

a∈p (w(a)) from a source vertex s ∈ V to another vertex t ∈ V . A subset of E is a
path from s to t if it is a finite sequence of edges which connect a sequence of ver-
tices, starting at s and ending at t . If a vertex t is reachable from the source s, and if
there are no negative-weight cycles then at least one of the paths in the graph has
the shortest weight.

Common algorithms for the shortest-path problem include Dijkstra’s shortest-
path algorithm [31], A* [56]. These algorithms are only suitable for directed acyclic
graphs with positive weights on the edges.

A.2 Longest-(simple-)path problem

In contrast to the shortest-path problem, the longest-path problem is often de-
fined as finding a simple path with maximum weight. A simple path is a path with
no repeated vertices. We will call this version of the problem the longest-simple-
path problem to distinguish from the longest-path problem where paths with re-
peated vertices are allowed. These problems are the same when graphs are not
allowed to have cycles. A cycle is a path with at least one edge, whose first and last
vertices are the same.

The longest-simple-path problem is NP-hard [25], as it reduces to the Hamil-
tonian path problem if all weights are unit weights, and there exists a polynomial

136 Bellman-Ford-Moore longest-path algorithm

time verifier whether a path is indeed simple. Any graph has a maximum weight
simple path between two nodes as long as there exists a path between the two
nodes. Determining such paths in general cannot be solved in polynomial time
unless P=NP.

If there are cycles in the graph, and the problem does not restrict to simple
paths, then there are infinitely many paths. A path that visits any part of a cycle
can be extended by adding the cycle to the path, and can therefore be infinitely
extended. If such a cycle has a positive weight, then the extended path is longer
than the original path. As such cycles can be added without restriction, these paths
can become infinitely long, and no bounded longest path exists. However, efficient
polynomial time algorithms exist that either prove that no bounded longest path
exists, or that return a longest path.

A.3 Systems of linear inequalities

The shortest-path and longest-path problems are equivalent to finding a solution
to a system of linear inequalities, where each vertex vi ∈ V is labelled as li . For a
given G = (V ,E) and weight function w , the system of linear inequalities is given by
l j ≥ li +w(vi , v j) for each (vi , v j) ∈ E . For this reason, a weighted graph with this
interpretation of the weights is also called a constraint graph [25]. It is a special
case of a linear program, where the objective is to minimize one of the variables.

The label-correcting longest-path algorithm BFM detects that either (i) there
is a longest path from the source of the graph, or determines that (ii) a graph con-
tains a positive cycle. The BFM algorithm iteratively updates distance labels of
vertices, as shown in Algorithm 17. Before the first iteration, only the source con-
tains a label and the rest is set to −∞. At each iteration, the distance labels are
relaxed once for each edge in the graph. At the beginning of the i th iteration, the
labels d contain the distance of the longest path of at least i −1 edges. The relax-
ation corrects/updates the labels d such that at least one additional edge is taken
into account for the longest path to any target. After the relaxation, d therefore
contains the distance of the longest path of at least i edges. Each iteration relaxes
the distance labels by at least one edge; if no distance label needed to be changed,
the labels were already sufficiently far apart, and have therefore converged to the
final solution.

However, in case the graph contains a positive cycle, the labels will never con-
verge, and will continue to increase. Any path that does not contain a cycle (i.e.,
a simple path) may contain at most |V | − 1 edges. The BFM algorithm performs
relaxations for |V |−1 iterations, and then checks whether any further relaxation is
still possible. If it is, then there must exist a path of at least |V | edges that is longer
than any of the paths of at least |V | −1 edges. Any path of length |V | edges must
include at least one vertex that is visited more than once. Therefore, if the last
relaxation loop detects that the distance labels have not converged, it will never
converge. If there are no positive cycles, then the algorithm converges in at most

A.3 Systems of linear inequalities 137

O (|V ||E |) time. If there are positive cycles, then the algorithm detects it in its final
pass, and returns false.

At each relaxation, the mapping ‘pred[v]’ is updated to the source u of an edge
u, v when the target label must be corrected. This allows us to determine which
edge relaxation was last executed, and therefore occurs in a longest path between
the source and that node. By recursively following the predecessor, we can deter-
mine in linear time one of the longest paths in the graph. If the graph contains
positive cycles, we perform a similar recursion to find the start of a cycle, and then
continue until the start of the cycle occurs again.

Note that if the edges are sorted in order of a longest path, that the sequen-
tial relaxation will find the longest paths in the first relaxation of iteration. In the
second relaxation iteration, none of the labels will change anymore. This means
that in a constant three iterations (including the feasibility check), the algorithm
terminates in time linear to |E |.

Algorithm 17 Bellman-Ford-Moore

1: function BFM(Graph G(V ,E), weight function w , source vs ∈V)
2: for all vi ∈V do
3: li =−∞ for each vi ∈V // Initialize labels to ’unreachable’
4: pred[vi]= NIL // Initialize the predecessors subgraph

5: ls = 0 // Initialize the source to distance 0
6: for i ∈ {1, . . . , |V |−1} do
7: c = true // Assume converged
8: for all (u, v) ∈ E do
9: c = c ∧¬RELAX(d ,u, v , w ,pred)

10: if c then break
11: // Check whether the labels have converged
12: for each edge u, v ∈ Ea do
13: if RELAX(d ,u, v , w ,pred) then return false, d

14: return true, d

Algorithm 18 Relax one edge

1: function RELAX(d ,u, v , w ,pred)
2: if d(u)+w(u, v) > d(v) then
3: d(v) = d(u)+w(u, v)
4: pred[v] = u
5: return true
6: return false

138 Bellman-Ford-Moore longest-path algorithm

A.4 Multiple sources BFM algorithm

For online problems, the running time of BFM can become a performance bot-
tleneck. The graphs in such online problems can grow arbitrarily large. For online
algorithms, we would like to reuse previously calculated distance labels to increase
the efficiency of the computations. To do so, we extend the interpretation of the
labels and the definition of feasibility.

Algorithm 19 Bellman-Ford-Moore with multiple sources

1: function BFM(Graph G(V ,E , w), subset of active vertices Va ⊂V , set of sources
Vs ⊂V , begin times for sources d ′)

2: for each a ∈Vs do
3: d [a] = d ′[a]
4: for each (a, v) ∈ E do
5: RELAX(d , a, v , w)

6: f = true // assume feasible
7: Ea = {(

x, y
) ∈ E : x ∈Va

}
8: for each i ∈ {1, . . . , |Va |−1} do
9: for all (u, v) ∈ Ea do

10: r =RELAX(d ,u, v , w)
11: if v ∈Vs ∧ r then f = false

12: for each edge u, v ∈ Ea do
13: if (RELAX(d ,u, v , w) then f = false

14: return f ,d

The algorithm starts by relaxing all the source nodes, to find the initial labels of
the active subgraph. It then determines the edges for which the subgraph needs to
be relaxed. During the relaxation of each of these edges, it is checked whether any
of the source nodes would need to be relaxed. If this is the case, then the result is
infeasible; i.e., there is no valid longest path that allows the source nodes to keep
their initial distance labels.

A.4.1 Correctness

The sources are used to find the initial distance to the active subgraph, and the
modified BFM algorithm then relaxes for each edge in the active subgraph. The al-
gorithm detects positive cycles of length |Ea | in the subgraph induced by Ea , using
the same argument as for the original BFM, except that there are multiple sources.

The timestamps of the sources are not allowed to be changed, and therefore
any relaxation that would perform that, means that there are no distance labels
possible for this active subgraph that allows the constraints of the active subgraph
to be satisfied without changes in the source labels.

A.4 Multiple sources BFM algorithm 139

The begin times of operations in jobs before the eligible operation’s job are not
allowed to be changed (Line 10 in Algorithm 19), as changing them could lead to
an infeasible schedule through a positive cycle that is outside the sub-graph.

When we consider the invariant that at the beginning of Algorithm 19 all times
for the scheduled operations were feasible, then it can detect infeasibility within
the horizon when the set of sources consists of the operations of the last-scheduled
job plus operations containing sequence-dependent set-up times into the active
vertices, and the set of active vertices consists of the operations of all jobs that
cannot be delayed indefinitely any more. The jobs that can be delayed indefinitely
are the ones starting from the insertion point, e.g., operation o4,1 in Figure 2.2. At
the end of Algorithm 19 we either find that the sequence is infeasible, or we find
feasible begin times, which can be used in the next iteration as initial estimates to
speed up convergence of the longest-path computations.

A.4.2 Time complexity

The time complexity of the algorithm is O (max(|Vs |, |Va ||Ea |)), as the first for-loop
takes O (Vs |) time, and the second for-loop takes O (|Va ||Ea |).

B

Proofs for convex polyhedra

This appendix describes some properties of convex polyhedra, and shows some
proofs related to this thesis.

B.1 Convex polyhedra

A polyhedron is an n-dimensional solid with flat surfaces.

Definition 7 (convex set). A set C is convex if and only if for each point x,y ∈C the
point tx+ (1− t)y for all t ∈ (0,1) is also a member of C .

A convex polyhedron h ⊆ Rn is a subset of an n-dimensional space, such that
for any two points x,y ∈ h =⇒ tx+ (1− t)y ∈ h for all t ∈ (0,1). That is, any point
that lies on a direct line between them is also part of the convex polyhedron. Note
that the empty set is also considered a convex set.

Definition 8 (convex hull). The convex hull of a finite set S of points is the set of all

convex combinations of its points: conv(S) =
{∑|S|

i=1γixi | (∀i : γi ≥ 0)∧∑S
i=1γi = 1

}
.

The vertices (i.e., the extreme points) of conv(S) are the points vi ∈ conv(S) in
of the convex hull that are not in the convex hull of the other points (vi ∉ conv(S \
{ vi }).

B.2 Convexity of the maximum of expressions

An affine expression e(p) = α1p1 · · ·+αd pd +αd+1 for a d-dimensional space can
be written as the inner product of a vector and the point at which it is evaluated:

[α1 . . .αd+1] · [p 1]. Given a set D ⊆ 2Rd+1 of affine expressions, let f (p) be the max-
imum of each function at any point p fmax(p) = maxe∈D .

An expression e is maximal at a point p if and only if emax (p) = e(p). The
set of points for which an expression is maximal then form a convex polyhedron
(proposition and proof adapted from [47]):

Proposition 3.
{
p ∈Rd | M(p) = e(p)

}
is a convex polyhedron for any (critical path)

expression e.

142 Proofs for convex polyhedra

Proof. Given a set of expressions D , for any expression e ∈ D the polyhedron h ={
p ∈Rn | emax(p) = e(p)

}
is a convex polyhedron if and only if for any two points

p1, p2 ∈ h, the point tp1 + (1− t)p2 ∈ h for all t ∈ (0,1). Then we need to show
that for each t ∈ (0,1), the point tp1 + (1 − t)p2 is also a member of h. That is:
e(tp1 + (1− t)p2) = maxei∈D (tp1 + (1− t)p2) or equivalently:

e(tp1 + (1− t)p2) ≥ ei (tp1 + (1− t)p2) for all ei ∈ D (B.1)

We know that if the pointp1 ∈ h, then the expression e is maximal inp1; e(p1) =
maxei∈D (ei (p1)). Similarly, for pointp2 ∈ h the same expression e is maximal. This
can be written as:

e(p1) ≥ ei (p1) for all ei ∈ D (B.2)

e(p2) ≥ ei (p2) for all ei ∈ D (B.3)

Using the linearity of the expression e in B.4 and B.6 and replacing e using the
inequalities of Equations B.2 and B.3 in B.5, we get:

e(tp1 + (1− t)p2) = te(p1)+ (1− t)e(p2) (B.4)

≥ tei (p1)+ (1− t)ei (p2) for all ei ∈ D (B.5)

= ei (tp1 + (1− t)p2) for all ei ∈ D (B.6)

Combining these results completes the proof:

e(tp1 + (1− t)p2) ≥ ei (tp1 + (1− t)p2) for all ei ∈ D (B.7)

⇐⇒ e(tp1 + (1− t)p2) = max
ei∈D

(tp1 + (1− t)p2) (B.8)

⇐⇒ (tp1 + (1− t)p2) ∈ h (B.9)

Any half-space s can be described by an affine expression e such that s(e) =
{p ∈ Rd | e(p) ≥ 0}. A convex polyhedron can also be represented as the intersec-
tion of a finite set of half-spaces, each of which is represented by an expression or
vector. I.e., a polygon can be represented by a subset h ⊂Rd+1. We lift the function
s to sets of half-spaces: s(h) =⋂

e∈h s(e). A convex polyhedron can therefore be de-
scribed by a set of expressions that correspond to half-spaces. Proposition 4 helps
to determine the feasible parameter combinations.

Proposition 4. If all corners of a convex polyhedron with half-space representation
h are feasible, then all points in s(h) are feasible.

Proof. If there would be a parameter point p in the polyhedron (with half-space
representation h) that is infeasible, then at that point a positive cycle with cumu-
lative weight V (x) = b ·x+ c must exist such that V (p) > 0. The inequality b ·x+ c
corresponds to a half-space that contains p. The half-space containing p includes
at least one corner point of h. Therefore, that corner point must be infeasible too.
This is a contradiction and therefore proves the proposition.

B.3 Transformations of convex polyhedra 143

B.3 Transformations of convex polyhedra

A convex polyhedron in the parameter space can be transformed by an affine trans-
formation T . A polyhedron can be described by a collection of half-spaces, or by
the convex hull of its extreme points [42].

Figure B.1 shows that the intersection of the transformation of the half-spaces
is not sufficient to find the corresponding polyhedron in the transformation’s tar-
get space. The polyhedron is described by the intersection of three half spaces.
Each half space in the parameter space has a corresponding transformed half space
in the cost-makespan space. Let the makespan expression of this polyhedron be
10−p −q and the cost function p +q . The points that lie in the convex hull of the
extremes in the parameter space (Figure B.1a) map to the line segment between
the two red squares in Figure B.1b. However, this line segment requires four half
spaces to intersect, otherwise points are included that do not have a counterpart
in the parameter space.

Therefore, we first convert the extremes of the polyhedron in the parameter
space to extremes of a polyhedron in the cost-makespan space.

Proposition 5. Applying an affine transformation to all points of a convex region
R1 leads to another convex region R2.

Proof. Given an affine transformation T (x) = Px+p the transformed region is
determined by:

R2 = {T (x) | x ∈ R1 } (B.10)

As R1 is a convex region, it can be described as the convex hull of its vertices S1:

R1 = conv(S1) (B.11)

Combining Equations B.10 and B.11 and expanding conv(S1) (Definition 8), we can
write:

R2 = {T (x) | x ∈ conv(S1) } (B.12)

=
{

T (x) | x ∈
{ |S1|∑

i=1
γivi | (∀i : γi ≥ 0)∧

S1∑
i=1

γi = 1

}}
(B.13)

=
{

T

(|S1|∑
i=1

γivi

)
| (∀i : γi ≥ 0)∧

S1∑
i=1

γi = 1

}
(B.14)

Then we apply the definition of affine transformation T (x) and due to linearity

144 Proofs for convex polyhedra

ofP and
∑γi

i=1p=p to obtain:

R2 =
{
P

(|S1|∑
i=1

γivi

)
+p | (∀i : γi ≥ 0)∧

S1∑
i=1

γi = 1

}
(B.15)

=
{(|S1|∑

i=1
γi (Pvi +p)

)
| (∀i : γi ≥ 0)∧

S1∑
i=1

γi = 1

}
(B.16)

=
{(|S1|∑

i=1
γi T (vi)

)
| (∀i : γi ≥ 0)∧

S1∑
i=1

γi = 1

}
(B.17)

0 1 2 3 4 5 6 7
p

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

q

(a) A convex region before applying an affine transformation.

0 2 4 6 8 10
Makespan

0

2

4

6

8

10

co
st

(b) A convex region after applying an affine transformation.

Figure B.1: Affine transformation of a convex polyhedron, from parameter space (p,q) to
(Makespan, cost).

B.3 Transformations of convex polyhedra 145

There are at most |S1| different transformed corners in the set S2. Applying
Definition 8 leads to:

R2 = conv({T (vi) | vi ∈ S1 }) (B.18)

We have therefore shown that the transformation of the convex hull of a set of
points is equal to the convex hull of the transformation of those points.

This proof also shows that it is sufficient to transform all vertices of a convex
region, to find all points in the transformed region.

Bibliography

[1] Shreya Adyanthaya, Hadi Alizadeh Ara, João Bastos, Amir Behrouzian,
Róbinson Medina Sánchez, Joost van Pinxten, Bram van der Sanden, Umar
Waqas, Twan Basten, Henk Corporaal, Raymond Frijns, Marc Geilen, Dip
Goswami, Martijn Hendriks, Sander Stuijk, Michel Reniers, and Jeroen
Voeten. xCPS: A tool to eXplore Cyber Physical Systems. ACM Special In-
terest Group on Embedded Systems (SIGBED), 2017. (Cited on page 173.)

[2] Shreya Adyanthaya, Hadi Alizadeh Ara, João Bastos, Amir Behrouzian,
Róbinson Medina Sánchez, Joost van Pinxten, Bram van der Sanden, Umar
Waqas, Twan Basten, Henk Corporaal, Raymond Frijns, Marc Geilen, Dip
Goswami, Sander Stuijk, Michel Reniers, and Jeroen Voeten. xCPS: A tool to
eXplore Cyber Physical Systems. In Proceedings of 2015 Workshop on Em-
bedded and Cyber-Physical Systems Education, pages 3:1–3:8, 2015. (Cited
on page 174.)

[3] Rajeev Alur and David Dill. A theory of timed automata. Theoretical com-
puter science, 126(2):183–235, 1994. (Cited on page 122.)

[4] Yash Aneja and Kunhiraman Nair. Bicriteria transportation problem. Man-
agement Science, 25(1):73–78, 1979. (Cited on pages 52, 53, and 55.)

[5] Eric Angel, Evripidis Bampis, and Laurent Gourvès. A dynasearch neighbor-
hood for the bicriteria traveling salesman problem. In Xavier Gandibleux,
Marc Sevaux, Kenneth Sörensen, and Vincent T’kindt, editors, Metaheuris-
tics for Multiobjective Optimisation, pages 153–176, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. (Cited on pages 49 and 51.)

[6] David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde
TSP solver, 2006. (Cited on page 50.)

[7] David Applegate, Robert Bixby, Vasek Chvatal, and William J Cook. The trav-
eling salesman problem: a computational study. Princeton university press,
2006. (Cited on page 50.)

[8] Twan Basten, Roelof Hamberg, Frans Reckers, and Jacques Verriet. Model-
based design of adaptive embedded systems. Springer, 2013. (Cited on
page 11.)

148 BIBLIOGRAPHY

[9] João Bastos, Bram van der Sanden, Olaf Donkx, Jeroen Voeten, Sander Stu-
ijk, Ramon Schiffelers, and Henk Corporaal. Identifying bottlenecks in man-
ufacturing systems using stochastic criticality analysis. In 2017 Forum on
Specification and Design Languages (FDL), pages 1–8, Sept 2017. (Cited on
page 95.)

[10] Joao Bastos, Sander Stuijk, Jeroen Voeten, Ramon Schiffelers, Johan Jacobs,
and Henk Corporaal. Modeling resource sharing using FSM-SADF. In
2015 ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE), pages 96–101, Sept 2015. (Cited on page 10.)

[11] Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika Mader. Pro-
duction scheduling by reachability analysis: a case study. In Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings. 19th IEEE International,
pages 140–142, Los Alamitos, CA, USA, 2005. IEEE. (Cited on pages 18, 41,
42, and 77.)

[12] Richard Bellman. On a routing problem. Quarterly of applied mathematics,
16(1):87–90, 1958. (Cited on pages 18, 24, and 77.)

[13] Jon Jouis Bentley. Fast algorithms for geometric traveling salesman prob-
lems. ORSA Journal on computing, 4(4):387–411, 1992. (Cited on page 60.)

[14] Enrico Bini and Giorgio Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Transactions on Computers, 53(11):1462–1473, Nov
2004. (Cited on pages 96 and 121.)

[15] Pedro Borges and Michael Hansen. A basis for future successes in mul-
tiobjective combinatorial optimization. Technical report, Department of
Mathematical Modelling, Technical University of Denmark, 1998. (Cited on
page 51.)

[16] Leo Breiman. Classification and regression trees. Routledge, 2017. (Cited on
page 122.)

[17] Jim Browne, Didier Dubois, Keith Rathmill, Suresh Sethi, and Kathryn
Stecke. Classification of flexible manufacturing systems. The FMS maga-
zine, 2(2):114–117, 1984. (Cited on page 17.)

[18] Frederico Busato and Nicola Bombieri. An efficient implementation of the
Bellman-Ford algorithm for Kepler GPU architectures. IEEE Transactions
on Parallel and Distributed Systems, 27(8):2222–2233, Aug 2016. (Cited on
page 30.)

[19] Suresh Chand, Rodney Traub, and Reha Uzsoy. Rolling horizon procedures
for the single machine deterministic total completion time scheduling prob-
lem with release dates. Annals of Operations Research, 70(0):115–125, 1997.
(Cited on pages 17, 41, and 42.)

BIBLIOGRAPHY 149

[20] Jen-Shiang Chen, Jason Chao-Hsien Pan, and Chien-Kuang Wu. Hybrid tabu
search for re-entrant permutation flow-shop scheduling problem. Expert
Systems with Applications, 34(3):1924–1930, 2008. (Cited on page 41.)

[21] Seong-Woo Choi and Yeong-Dae Kim. Minimizing makespan on a two-
machine re-entrant flowshop. Journal of the Operational Research Society,
58(7):972–981, Jul 2007. (Cited on pages 18 and 43.)

[22] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976. (Cited on page 50.)

[23] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic compu-
tation of schedulability regions using parametric timed automata. In 2008
Real-Time Systems Symposium, pages 80–89, Nov 2008. (Cited on page 96.)

[24] McKinsey & Company. The great re-make: Manufacturing for
modern times. https://www.mckinsey.com/~/media/McKinsey/
BusinessFunctions/Operations/Our%20Insights/The%20great%
20remake%20Manufacturing%20for%20modern%20times/The-great-
remake-Manufacturing-for-modern-times-full-compenium-October-
2017-final.ashx. (Cited on page 3.)

[25] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. In-
troduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill
Book Company, 2001. (Cited on pages 135 and 136.)

[26] National Research Council et al. The changing nature of work: Implications
for occupational analysis. National Academies Press, 1999. (Cited on page 3.)

[27] David Craft, Tarek Halabi, Helen Shih, and Thomas Bortfeld. Approximat-
ing convex pareto surfaces in multiobjective radiotherapy planning. Medical
physics, 33(9):3399–3407, 2006. (Cited on pages 55 and 60.)

[28] Morteza Damavandpeyma, Sander Stuijk, Marc Geilen, Twan Basten, and
Henk Corporaal. Parametric throughput analysis of scenario-aware dataflow
graphs. In 2012 IEEE 30th International Conference on Computer Design
(ICCD), pages 219–226, Sept 2012. (Cited on page 96.)

[29] Ebru Demirkol and Reha Uzsoy. Decomposition methods for reentrant
flow shops with sequence-dependent setup times. Journal of scheduling,
3(3):155–177, 2000. (Cited on pages 17, 41, and 42.)

[30] Stephen Devaux. Total project control : a practitioner’s guide to managing
projects as investments. CRC Press, Boca Raton, 2nd edition, 2015. (Cited on
page 95.)

https://www.mckinsey.com/~/media/McKinsey/Business Functions/Operations/Our%20Insights/The%20great%20remake%20Manufacturing%20for%20modern%20times/The-great-remake-Manufacturing-for-modern-times-full-compenium-October-2017-final.ashx
https://www.mckinsey.com/~/media/McKinsey/Business Functions/Operations/Our%20Insights/The%20great%20remake%20Manufacturing%20for%20modern%20times/The-great-remake-Manufacturing-for-modern-times-full-compenium-October-2017-final.ashx
https://www.mckinsey.com/~/media/McKinsey/Business Functions/Operations/Our%20Insights/The%20great%20remake%20Manufacturing%20for%20modern%20times/The-great-remake-Manufacturing-for-modern-times-full-compenium-October-2017-final.ashx
https://www.mckinsey.com/~/media/McKinsey/Business Functions/Operations/Our%20Insights/The%20great%20remake%20Manufacturing%20for%20modern%20times/The-great-remake-Manufacturing-for-modern-times-full-compenium-October-2017-final.ashx
https://www.mckinsey.com/~/media/McKinsey/Business Functions/Operations/Our%20Insights/The%20great%20remake%20Manufacturing%20for%20modern%20times/The-great-remake-Manufacturing-for-modern-times-full-compenium-October-2017-final.ashx

150 BIBLIOGRAPHY

[31] Edsger Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959. (Cited on page 135.)

[32] Joseph Ecker, Nancy Hegner, and Issoufou Kouada. Generating all maximal
efficient faces for multiple objective linear programs. Journal of Optimiza-
tion Theory and Applications, 30(3):353–381, Mar 1980. (Cited on pages 84
and 96.)

[33] Matthias Ehrgott. Approximation algorithms for combinatorial multicriteria
optimization problems. International Transactions in Operational Research,
7:5 – 31, 2000. (Cited on page 51.)

[34] Matthias Ehrgott. A Multiobjective Simplex Method, pages 171–196. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005. (Cited on page 96.)

[35] Matthias Ehrgott. Multiobjective Versions of Polynomially Solvable Problems,
pages 171–196. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. (Cited
on page 56.)

[36] Matthias Ehrgott. A discussion of scalarization techniques for multiple ob-
jective integer programming. OR, 147:343–360, 2006. (Cited on pages 54
and 59.)

[37] Salah Elmaghraby and Jerzy Kamburowski. The analysis of activity net-
works under generalized precedence relations (GPRs). Management science,
38(9):1245–1263, 1992. (Cited on pages 72, 77, 94, 95, and 96.)

[38] Paul Feautrier. Parametric integer programming. RAIRO Recherche Opèra-
tionnelle, 22(3):243–268, 1988. (Cited on pages 95 and 122.)

[39] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. A branch-and-
cut algorithm for the symmetric generalized traveling salesman problem.
Oper. Res., 45(3):378–394, 1997. (Cited on pages 49, 52, 53, 56, 57, 60, and 61.)

[40] Kostas Florios and George Mavrotas. Generation of the exact Pareto set
in multi-objective traveling salesman and set covering problems. Applied
Mathematics and Computation, 237, 2014. (Cited on pages 51 and 53.)

[41] Lester Ford Jr. Network Flow Theory. Rand Corp, Santa Monica, CA, USA,
1956. (Cited on pages 18, 24, and 77.)

[42] Komei Fukuda and Alain Prodon. Double description method revisited.
Combinatorics and Computer Science, pages 91–111, 1996. (Cited on
pages 82, 85, 110, 113, and 143.)

[43] Tomas Gal and Josef Nedoma. Multiparametric linear programming. Man-
agement Science, 18(7):406–422, 1972. (Cited on page 95.)

BIBLIOGRAPHY 151

[44] Paul Gastin, Sayan Mukherjee, and B Srivathsan. Reachability in timed au-
tomata with diagonal constraints. arXiv preprint arXiv:1806.11007, 06 2018.
(Cited on pages 121 and 122.)

[45] Marc Geilen and Twan Basten. A calculator for Pareto points. In DATE’07,
pages 1–6. IEEE, 2007. (Cited on pages 31 and 34.)

[46] Marc Geilen, Twan Basten, Bart Theelen, and Ralph Otten. An algebra of
Pareto points. In Fundamenta Informaticae, pages 88–97. IEEE Computer
Society Press, 2005. (Cited on pages 31 and 32.)

[47] Amir Ghamarian, Marc Geilen, Twan Basten, and Sander Stuijk. Parametric
throughput analysis of synchronous data flow graphs. In 2008 Design, Au-
tomation and Test in Europe, pages 116–121, March 2008. (Cited on pages 76,
78, 80, 82, 96, 122, and 141.)

[48] Józef Grabowski, Ewa Skubalska, and Czesław Smutnicki. On flow shop
scheduling with release and due dates to minimize maximum lateness. Jour-
nal of Operational Research Society, 34(7):615–620, 1983. (Cited on page 42.)

[49] Ronald Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, 1(4):132 – 133, 1972. (Cited
on page 84.)

[50] Ronald Graham, Eugene Lawler, Jan Karel Lenstra, and Alexander Rinnooy
Kan. Optimization and approximation in deterministic sequencing and
scheduling: a survey. Annals of discrete mathematics, 5:287–326, 1979. (Cited
on page 41.)

[51] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.1.2 edition, 2016. http://gmplib.
org/. (Cited on page 85.)

[52] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the gen-
eralized traveling salesman problem. Natural Computing, 9(1):47–60, 2010.
(Cited on pages 49, 52, 53, 55, and 60.)

[53] Gregory Gutin, Daniel Karapetyan, and Natalio Krasnogor. Memetic algo-
rithm for the generalized asymmetric traveling salesman problem. In Na-
ture Inspired Cooperative Strategies for Optimization (NICSO 2007), volume
129 of Studies in Computational Intelligence, pages 199–210. Springer Berlin
Heidelberg, 2008. (Cited on pages 52 and 53.)

[54] Gregory Gutin and Abraham Punnen. The traveling salesman problem and
its variations, volume 12. Springer Science & Business Media, 2006. (Cited
on page 50.)

http://gmplib.org/
http://gmplib.org/

152 BIBLIOGRAPHY

[55] Miklós Hajdu. Network scheduling techniques for construction project man-
agement, volume 16. Springer Science & Business Media, 2013. (Cited on
page 95.)

[56] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, July 1968. (Cited on page 135.)

[57] Maurice Heemels and Gerrit-Jan Muller. Boderc: model-based design of high-
tech systems : a collaborative research project for multi-disciplinary design
analysis of high-tech systems. Embedded Systems Institute, 2006. (Cited on
page 10.)

[58] Khaled Heloue, Sari Onaissi, and Farid Najm. Efficient block-based pa-
rameterized timing analysis covering all potentially critical paths. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(4):472–484, April 2012. (Cited on page 96.)

[59] Martijn Hendriks, Marc Geilen, and Twan Basten. Pareto analysis with un-
certainty. In Proceedings of the 2011 IFIP 9th International Conference on
Embedded and Ubiquitous Computing, EUC ’11, pages 189–196, Washing-
ton, DC, USA, 2011. IEEE Computer Society. (Cited on page 128.)

[60] Rob Hoogendijk and Jack Kandelaars. De knepen van de paperhan-
dling. https://bits-chips.nl/artikel/de-knepen-van-de-paperhandling-
46452.html, 2016. (Cited on page 10.)

[61] Jozef Hooman, Mooij Arjan, and Hans van Wezep. Early fault detection in
industry using models at various abstraction levels. In Integrated Formal
Methods - 9th International Conference, IFM 2012, Pisa, Italy, June 18-21,
2012. Proceedings, pages 268–282, 2012. (Cited on page 10.)

[62] Holger Hoos and Thomas Stützle. Stochastic local search: Foundations and
applications. Elsevier, 2004. (Cited on page 51.)

[63] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. Lin-
ear parametric model checking of timed automata. In Tiziana Margaria and
Wang Yi, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 189–203, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg. (Cited on pages 96 and 121.)

[64] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 2017.
(Cited on page 37.)

[65] BongJoo Jeong and Yeong-Dae Kim. Minimizing total tardiness in a two-
machine re-entrant flowshop with sequence-dependent setup times. Com-
puters and Operations Research, 47:72 – 80, 2014. (Cited on pages 41 and 43.)

https://bits-chips.nl/artikel/de-knepen-van-de-paperhandling-46452.html
https://bits-chips.nl/artikel/de-knepen-van-de-paperhandling-46452.html

BIBLIOGRAPHY 153

[66] Caixia Jing, Wanzhen Huang, and Guochun Tang. Minimizing total comple-
tion time for re-entrant flow shop scheduling problems. Theoretical Com-
puter Science, 412(48):6712 – 6719, 2011. (Cited on page 41.)

[67] David Johnson and Lyle McGeoch. The traveling salesman problem: A case
study in local optimization. Local search in combinatorial optimization,
1:215–310, 1997. (Cited on page 60.)

[68] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling sales-
man problem. Handbook in Operations Research and Management Science:
Network Models, 1995. (Cited on page 50.)

[69] Jitti Jungwattanakit, Manop Reodecha, Paveena Chaovalitwongse, and Frank
Werner. Algorithms for flexible flow shop problems with unrelated parallel
machines, setup times, and dual criteria. International Journal of Advanced
Manufacturing Technology, 37(3):354–370, 2008. (Cited on pages 41 and 42.)

[70] Daniel Karapetyan and Gregory Gutin. Efficient local search algorithms for
known and new neighborhoods for the generalized traveling salesman prob-
lem. Eur. J. of Oper. Res., 219:234–251, 2012. (Cited on page 60.)

[71] James Kelley, Jr and Morgan. Walker. Critical-path planning and schedul-
ing. In Eastern Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM
’59 (Eastern), pages 160–173, New York, NY, USA, 1959. ACM. (Cited on
pages 71 and 94.)

[72] Joep Kerbosch and Henk Schell. Network planning by the extended metra
potential method (EMPM), 1975. (Cited on pages 72, 77, and 94.)

[73] Masanori Kobayashi and Shinsuke Odagiri. Tropical geometry of pert. arXiv
preprint arXiv:1202.6457, 2012. (Cited on page 95.)

[74] Wieslaw Kubiak, Sheldon Lou, and Yingmeng Wang. Mean flow time mini-
mization in reentrant job shops with a hub. Operations Research, 44(5):764–
776, 1996. (Cited on pages 41 and 43.)

[75] Murat Köksalan and Diclehan Tezcaner Öztürk. An evolutionary approach
to generalized biobjective traveling salesperson problem. Computers & Op-
erations Research, 79:304 – 313, 2017. (Cited on page 53.)

[76] Gilbert Laporte. The vehicle routing problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(3):345
– 358, 1992. (Cited on page 47.)

[77] Eugene Lawler, Jan Karel Lenstra, Alexander Kan, and David Shmoys. The
traveling salesman problem: a guided tour of combinatorial optimization.
New York (Wiley), 1987. (Cited on pages 50 and 59.)

154 BIBLIOGRAPHY

[78] Jan Karel Lenstra, Alexander Rinnooy Kan, and Peter Brucker. Complexity
of machine scheduling problems. In P.L. Hammer, E.L. Johnson, B.H. Korte,
and G.L. Nemhauser, editors, Studies in Integer Programming, volume 1 of
Annals of Discrete Mathematics, pages 343 – 362. Elsevier, 1977. (Cited on
page 101.)

[79] Eugene Levner and Vladimir Kats. A parametric critical path problem and an
application for cyclic scheduling. Discrete Applied Mathematics, 87(1):149 –
158, 1998. (Cited on pages 82, 83, 95, and 96.)

[80] Alexis Linard, Rick Smetsers, Frits Vaandrager, Umar Waqas, Joost van Pinx-
ten, and Sicco Verwer. Learning pairwise disjoint simple languages from
positive examples. In LearnAut 2017, volume abs/1706.01663, 2017. (Cited
on page 174.)

[81] Andreas Löhne and Benjamin Weißing. Equivalence between polyhedral
projection, multiple objective linear programming and vector linear pro-
gramming. Mathematical Methods of Operations Research, 84(2):411–426,
Oct 2016. (Cited on page 96.)

[82] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman
problem: A survey and a new approach. In Advances in multi-objective na-
ture inspired computing, pages 119–141. Springer, 2010. (Cited on page 64.)

[83] Thibaut Lust and Jacques Teghem. Two-phase Pareto local search for the
biobjective traveling salesman problem. Journal of Heuristics, 16(3):475–
510, Jun 2010. (Cited on pages 49, 51, 52, 53, 54, 55, and 56.)

[84] Donald Malcolm, John Roseboom, Charles Clark, and Willard Fazar. Ap-
plication of a technique for research and development program evaluation.
Operations research, 7(5):646–669, 1959. (Cited on page 71.)

[85] Niall. McCarthy. Automation could eliminate 73 million u.s. jobs by 2030
[digital image]. https://www.statista.com/chart/12082/automation-
could-eliminate-73-million-us-jobs-by-2030/, 2017. (Cited on page 3.)

[86] Hristina Moneva, Jurjen Caarls, and Jacques Verriet. A holonic approach to
warehouse control. In Yves Demazeau, Juan Pavón, Juan M. Corchado, and
Javier Bajo, editors, 7th International Conference on Practical Applications of
Agents and Multi-Agent Systems (PAAMS 2009), pages 1–10, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg. (Cited on page 10.)

[87] Manuel Montoya Aguirre. Compositional Pareto-algebraic heuristic for
packing problems. Master’s thesis, Technische Universiteit Eindhoven, 2016.
(Cited on page 32.)

https://www.statista.com/chart/12082/automation-could-eliminate-73-million-us-jobs-by-2030/
https://www.statista.com/chart/12082/automation-could-eliminate-73-million-us-jobs-by-2030/

BIBLIOGRAPHY 155

[88] Arjan Mooij, Jozef Hooman, and Rob Albers. Early fault detection using de-
sign models for collision prevention in medical equipment. In Foundations
of Health Information Engineering and Systems - Third International Sym-
posium, FHIES 2013, Macau, China, August 21-23, 2013. Revised Selected Pa-
pers, pages 170–187, 2013. (Cited on page 10.)

[89] Marcin Mucha and Maxim Sviridenko. No-wait flowshop scheduling is as
hard as asymmetric traveling salesman problem. In Fedor V. Fomin, Rūsin, š
Freivalds, Marta Kwiatkowska, and David Peleg, editors, Automata, Lan-
guages, and Programming, pages 769–779, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. (Cited on page 47.)

[90] Klaus Neumann and Christoph Schwindt. Activity-on-node networks with
minimal and maximal time lags and their application to make-to-order pro-
duction. Operations-Research-Spektrum, 19(3):205–217, Sep 1997. (Cited on
page 71.)

[91] Océ, a Canon Company. Océ Technologies website. http://oce.com/, Au-
gust 2018. (Cited on page 8.)

[92] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM re-
view, 33(1):60–100, 1991. (Cited on page 50.)

[93] Jason Chao-Hsien Pan and Jen-Shiang Chen. Minimizing makespan in re-
entrant permutation flow-shops. Journal of the Operational Research Soci-
ety, 54(6):642–653, 2003. (Cited on page 41.)

[94] Luis Paquete, Marco Chiarandini, and Thomas Stützle. Pareto local opti-
mum sets in the biobjective traveling salesman problem: An experimental
study. In Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen, and Vincent
T’kindt, editors, Metaheuristics for Multiobjective Optimisation, pages 177–
199, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. (Cited on pages 51,
54, and 56.)

[95] Luís Paquete and Thomas Stützle. Clusters of non-dominated solutions
in multiobjective combinatorial optimization: An experimental analysis.
In Vincent Barichard, Matthias Ehrgott, Xavier Gandibleux, and Vincent
T’Kindt, editors, Multiobjective Programming and Goal Programming, pages
69–77, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. (Cited on
pages 51 and 54.)

[96] Luís Paquete and Thomas Stützle. Design and analysis of stochastic local
search for the multiobjective traveling salesman problem. Comput. Oper.
Res., 36(9):2619 – 2631, 2009. (Cited on pages 49, 51, 52, and 60.)

http://oce.com/

156 BIBLIOGRAPHY

[97] Luis Paquete and Thomas Stützle. A two-phase local search for the biob-
jective traveling salesman problem. In CarlosM. Fonseca, PeterJ. Flem-
ing, Eckart Zitzler, Lothar Thiele, and Kalyanmoy Deb, editors, Evolution-
ary Multi-Criterion Optimization, volume 2632 of Lecture Notes in Computer
Science, pages 479–493. Springer Berlin Heidelberg, 2003. (Cited on pages 51,
52, and 61.)

[98] Wen Lea Pearn, S Chung, M Yang, and K Shiao. Solution strategies for multi-
stage wafer probing scheduling problem with reentry. Journal of the Opera-
tional Research Society, 59(5):637–651, 2008. (Cited on page 18.)

[99] Gerhard Reinelt. TSPLIB A traveling salesman problem library. ORSA J. Com-
put., 1991. (Cited on pages 47 and 61.)

[100] Nieke Roos. Multidisciplinair software ontwikkelen op een virtuele printer.
https://bits-chips.nl/artikel/multidisciplinair-software-ontwikkelen-op-
een-virtuele-printer-45358.html, 2015. (Cited on page 10.)

[101] Christoph Roser, Masaru Nakano, and Minoru Tanaka. Shifting bottleneck
detection. In Proceedings of the Winter Simulation Conference, volume 2,
pages 1079–1086 vol.2, Dec 2002. (Cited on page 94.)

[102] Bernard Roy. Graphes et ordonnancement. Revue Française de Recherche
Opérationnelle, pages 323–333, 1962. (Cited on pages 77 and 94.)

[103] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-
Wesley, Boston, Massachusetts, 2011. (Cited on pages 26 and 77.)

[104] Abdulrahman Seleim and Hoda ElMaraghy. Parametric analysis of mixed-
model assembly lines using max-plus algebra. CIRP Journal of Manufactur-
ing Science and Technology, 7(4):305 – 314, 2014. (Cited on page 95.)

[105] John Shewchuk and Colin Moodie. Definition and classification of manu-
facturing flexibility types and measures. International Journal of Flexible
Manufacturing Systems, 10(4):325–349, 1998. (Cited on page 17.)

[106] Hamid Shojaei, Twan Basten, Marc Geilen, and Azadeh Davoodi. A fast
and scalable multidimensional multiple-choice knapsack heuristic. ACM
Trans. Des. Autom. Electron. Syst., 18(4):51:1–51:32, October 2013. (Cited on
pages 19, 31, 32, 34, 49, 53, 57, and 58.)

[107] Hamid Shojaei, Amir Ghamarian, Twan Basten, Marc Geilen, Sander Stuijk,
and Rob Hoes. A parameterized compositional multi-dimensional multiple-
choice knapsack heuristic for CMP run-time management. In DAC’09, pages
917–922. ACM, 2009. (Cited on page 53.)

https://bits-chips.nl/artikel/multidisciplinair-software-ontwikkelen-op-een-virtuele-printer-45358.html
https://bits-chips.nl/artikel/multidisciplinair-software-ontwikkelen-op-een-virtuele-printer-45358.html

BIBLIOGRAPHY 157

[108] Chantal Steimer, Jan Fischer, and Jan Aurich. Model-based design process
for the early phases of manufacturing system planning using sysml. Procedia
CIRP, 60:163 – 168, 2017. Complex Systems Engineering and Development
Proceedings of the 27th CIRP Design Conference Cranfield University, UK
10th – 12th May 2017. (Cited on page 11.)

[109] Thomas Stützle and Holger Hoos. Analyzing the run-time behaviour of iter-
ated local search for the TSP. In III Metaheuristics Int. Conf., 1999. (Cited on
pages 32, 49, 50, 59, and 60.)

[110] Krishnamurthy Subramani. Parametric scheduling — algorithms and com-
plexity. In Burkhard Monien, Viktor Prasanna, and Sriram Vajapeyam, edi-
tors, High Performance Computing — HiPC 2001, pages 36–46, Berlin, Hei-
delberg, 2001. Springer Berlin Heidelberg. (Cited on page 121.)

[111] Lennart Swartjes, Pascal Etman, Asia van de Mortel-Fronczak, Koos Rooda,
and Lou Somers. Simultaneous analysis and design based optimization for
paper path and timing design of a high-volume printer. Mechatronics, 41:82
– 89, 2017. (Cited on pages 9, 10, 11, 72, 85, and 89.)

[112] Bram van der Sanden, João Bastos, Jeroen Voeten, Marc Geilen, Michel Re-
niers, Twan Basten, Johan Jacobs, and Ramon Schiffelers. Compositional
specification of functionality and timing of manufacturing systems. In
2016 Forum on Specification and Design Languages, FDL, Bremen, Germany,
September 2016. (Cited on pages 72, 77, 85, and 86.)

[113] Bram van der Sanden, Joao Bastos, Jeroen Voeten, Marc Geilen, Michel Re-
niers, Twan Basten, Johan Jacobs, and Ramon Schiffelers. Compositional
specification of functionality and timing of manufacturing systems. In 2016
Forum on Specification and Design Languages (FDL), pages 1–8, Sept 2016.
(Cited on page 11.)

[114] Bram van der Sanden, Michel Reniers, Marc Geilen, Twan Basten, Johan
Jacobs, Jeroen Voeten, and Ramon Schiffelers. Modular model-based su-
pervisory controller design for wafer logistics in lithography machines. In
2015 ACM/IEEE 18th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), pages 416–425, Sept 2015. (Cited on
page 11.)

[115] Roel van der Tempel, Joost van Pinxten, Marc Geilen, and Umar Waqas. A
heuristic for variable re-entrant scheduling problems. In 2018 Euromicro
Conference on Digital System Design (DSD), 7 2018. 21st Euromicro Confer-
ence on Digital System Design (DSD 2018). (Cited on pages 21 and 174.)

[116] Roel van der Tempel, Joost van Pinxten, Marc Geilen, and Umar Waqas. A
heuristic for variable re-entrant scheduling problems. Technical Report ESR-
2005-04, Electronic Systems Group, Department of Electrical Engineering,

158 BIBLIOGRAPHY

Eindhoven University of Technology, June 2018. (Cited on pages 43, 127,
and 174.)

[117] Joost van Pinxten, Marc Geilen, and Twan Basten. Characterising parametric
schedulers. [submitted]. (Cited on pages 13 and 173.)

[118] Joost van Pinxten, Marc Geilen, Twan Basten, Umar Waqas, and Lou Somers.
Online heuristic for the multi-objective generalized traveling salesman
problem. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016, pages 822–825. IEEE, March 2016. (Cited on pages 13, 47, 50,
and 173.)

[119] Joost van Pinxten, Marc Geilen, Martijn Hendriks, and Twan Basten. Para-
metric critical path analysis for event networks with minimal and maximal
time lags. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, pages 2697 – 2708, October 2018. (Cited on pages 13, 71,
122, and 173.)

[120] Joost van Pinxten, Umar Waqas, Marc Geilen, Twan Basten, and Lou Somers.
Online scheduling of 2-re-entrant flexible manufacturing systems. ACM
Transactions on Embedded Computing Systems (TECS), 16(5s):20, October
2017. (Cited on pages 12, 17, and 173.)

[121] Umar Waqas. Scheduling and variation-aware design of self-re-entrant flow-
shops. PhD thesis, Department of Electrical Engineering, 11 2017. (Cited on
pages 10 and 127.)

[122] Umar Waqas, Marc Geilen, Jack Kandelaars, Lou Somers, Twan Basten,
Sander Stuijk, Patrick Vestjens, and Henk Corporaal. A re-entrant flowshop
heuristic for online scheduling of the paper path in a large scale printer. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015,
pages 573–578, 2015. (Cited on pages 10, 17, 18, 19, 22, 23, 27, 37, 41, 42, 43,
72, 77, and 115.)

[123] Umar Waqas, Marc Geilen, Sander Stuijk, Joost van Pinxten, Twan Basten,
Lou Somers, and Henk Corporaal. A fast estimator of performance with re-
spect to the design parameters of self re-entrant flowshops. In 2016 Euromi-
cro Conference on Digital System Design (DSD), pages 215–221, Aug 2016.
(Cited on pages 116 and 174.)

[124] Ian Wyatt and Daniel Hecker. Occupational changes during the 20th century.
Monthly Labor Review, page 35, 2006. (Cited on page 3.)

[125] Michael Yukish. Algorithms to Identify Pareto Points in Multi-dimensional
Data Sets. PhD thesis, The Pennsylvania State University, 2004. AAI3148694.
(Cited on pages 34 and 84.)

BIBLIOGRAPHY 159

[126] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The hypervolume indi-
cator revisited: On the design of Pareto-compliant indicators via weighted
integration. In Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki
Hiroyasu, and Tadahiko Murata, editors, Evolutionary Multi-Criterion Opti-
mization, pages 862–876, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg. (Cited on page 62.)

[127] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. Quality assessment of
pareto set approximations. In Multiobjective Optimization, pages 373–404.
Springer, 2008. (Cited on page 62.)

[128] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
strength Pareto evolutionary algorithm. Technical report, Swiss Federal In-
stitute of Technology (ETH) Zurich, 2001. (Cited on pages 32, 35, 36, and 58.)

Samenvatting

Optimalisatie van productstromen
in flexibele fabricagesystemen

Wafer scanners, gerobotiseerde assemblagelijnen, en industriële printers zijn
voorbeelden van flexibele fabricagesystemen (FFS) die op maat gemaakte produc-
ten kunnen produceren. Wafer scanners stellen silicium wafers bloot aan UV-licht
om computerchips te maken, en industriële printers dragen digitale afbeeldingen
over op vellen papier. Elk product kan daarbij verschillende vereisten of karakte-
ristieken hebben, wat kan leiden tot verschillende tijdsbeperkingen tussen de ope-
raties. De productiviteit van een FFS is gelimiteerd door zowel cyber-beperkingen,
zoals de rekentijd van een on-line schedulingalgoritme, alsmede fysieke beperkin-
gen, zoals restricties op het transport van een product. Zowel de interactie tus-
sen componenten in een FFS als de productiviteitseisen blijven toenemen. In dit
proefschrift worden technieken uiteengezet voor het uitvoeren van online schedu-
ling van FFS’en en voor het analyseren van de impact van systeemparameters op
de prestaties van het totaalsysteem.

FFS’en kunnen vele vormen aannemen. Wij richten ons op schedulingalgo-
ritmes voor FFS’en waarin producten tweemaal worden bewerkt door één van de
machines. Een dergelijke geval vindt men in industriële printers, waarbij een vel
(d.w.z., het product) aan twee kanten bewerkt moet worden, door tweemaal door
een afbeeldingsoverdrachtstation te gaan. Het soort medium en de uitvoervolg-
orde van de vellen zijn bepaald door de klant, en mogen niet worden gewijzigd.
Nadat een vel is bewerkt, is het mogelijk dat het afbeeldingsoverdrachtstation moet
worden omgesteld voordat het volgende vel bewerkt kan worden. De omsteltij-
den hangen typisch af van de verschillen in lengte, dikte, afwerking, en andere ka-
rakteristieken van het medium. De karakteristieken van een bepaald product, en
daarmee de omsteltijden, zijn pas enkele momenten voordat de FFS verwerkings-
instructies moet ontvangen beschikbaar. Daarom is het nodig dat een scheduler
snel efficiënte verwerkingsinstructies kan berekenen voor iedere operatie. Het is
daarbij de uitdaging om de stroom van ongeprinte vellen samen te voegen met de
stroom van terugkerende bedrukte vellen, zonder dat er botsingen ontstaan of er
omsteltijden worden geschonden, zodat de productiviteit van het systeem geopti-
maliseerd wordt. De volgorde van de producten onder het afbeeldingsoverdracht-

162 Samenvatting

station speelt een belangrijke rol in de productiviteit van industriële printers, om-
dat het de omsteltijden tussen de producten direct beïnvloedt. De prestatie wordt
dus beïnvloed door de wisselwerking van gebruikersinvoer, de fysieke parameters
van de systeemcomponenten, en de schedulingbeslissingen.

Ten eerste presenteren we een efficiënt on-line velscheduling algoritme voor
industriële printers. Het opdrachtoptimalisatie probleem is gemodelleerd als een
re-entrant flow shop met insteltijden, vervaltijden, en een vaste uitvoervolgorde.
Wanneer een bepaalde volgorde van de producten (d.w.z., een printopdracht) is
gegeven, dan bepaalt het velscheduling algoritme een uitvoerbare en efficiënte
volgorde van operaties voor de re-entrant machine (d.w.z., het afbeeldingsover-
drachtstation). De tijdsinstructies voor elk van de operaties op de vellen kan daarna
efficiënt gevonden worden. Ons heuristisch algoritme gebruikt meerdere doe-
len om tussentijdse opties in volgorde te verkennen zonder dat er keuzes terug-
gedraaid hoeven te worden. De heuristiek gebruikt verschillende eigenschappen
van het schedulingprobleem, zoals de uitvoervolgorde van de vellen, en beperkin-
gen op het aantal producten dat op enig moment gedeeltelijk bewerkt is. Voor het
type FFS dat we beschouwen ligt de uitvoervolgorde van producten binnen een
opdracht vast, maar de opdrachten moeten nog wel worden geordend.

De tweede bijdrage is een scheduling heuristiek dat de volgorde van de op-
drachten bepaalt, en gelijktijdig de systeeminstelling voor elke opdracht selecteert,
zodat Pareto-optimale productiviteit- en kwaliteitafwegingen worden gevonden.
Het optimaliseren van de invoervolgorde van de opdrachten is met name rele-
vant voor FFS’en waarvoor omsteltijden nodig zijn tussen verschillende produc-
ten, zoals industriële printers. Het probleem is gemodelleerd als een gegenerali-
seerd handelsreizigersprobleem met meerdere doelen en het orderningsalgoritme
is een online heuristiek met meerdere doelen. Het algoritme levert goede resulta-
ten in minder rekentijd dan de best bekende aanpakken.

Ten derde presenteren we een parametrisch-kritisch-pad-analyse. Gedurende
de onderwerpfase moet een ontwerper een fysiek ontwerp creëren die aan een
bepaalde topologie voldoet, d.w.z., een set machines en de relaties daartussen.
Een dergelijk ontwerp wordt beïnvloed door eisen uit vele domeinen. Zulke be-
perkingen bestaan bijvoorbeeld uit minimale en maximale opwarmtijden, mini-
male segmentlengte(s), of maximale snelheden. De ontwerper moet een realisa-
tie kiezen die gelijktijdig zowel het gedrag als de kosten van het systeem optima-
liseert. Ontwerpparameters zoals segmentlengte of transportsnelheden hebben
directe invloed op het totaalgedrag van het systeem, doordat bijvoorbeeld het ver-
werken van een product sneller of langzamer wordt. Ons parametrisch-kritisch-
pad-analyse identificeert relaties tussen fysieke parameters en de productiviteit
van een FFS. De schedulinggrafen die worden gebruikt in de velschedulingheu-
ristiek kunnen worden geannoteerd met affiene uitdrukkingen die tijdsbeperkin-
gen relateren aan ontwerpparameters. De analyse identificeert knelpunten in de
productiviteit van een FFS in termen van affiene uitdrukkingen voor verschillende
parametercombinaties. Deze analyse stelt ontwerpers in staat om te identificeren
hoe de productiviteit afhangt van de combinatie van parameters.

163

Als vierde bijdrage presenteren we een parametrische schedulerkarakterisatie
algoritme dat de impact identificieert die parameters hebben op de scheduling.
Veranderingen in de parameters kunnen ertoe leiden dat er andere scheduling-
keuzes worden geselecteerd, waardoor andere schedules ontstaan. We laten zien
dat het voor sommige klassen schedulers mogelijk is om informatie te geven over
welke schedulingkeuzes zijn gekozen voor verschillende parameter combinaties.
Deze informatie kan worden verkregen door de scheduling symbolisch uit te voe-
ren. We kunnen daarna de parametrisch-kritische-pad-analyse toepassen op elk
van de verschillende schedules. De totale systeemproductiviteit kan dan worden
onderzocht in termen van deze parameters, waarbij ook de schedulingkeuzes in
acht worden genomen.

Dit proefschrift verschaft ontwerpers en ingenieurs de hulpmiddelen om het
systeemgedrag van FFS’en te analyseren en optimaliseren. Afwegingen tussen pro-
ductiviteit en kwaliteit kunnen on-line worden gemaakt door de opdrachten in
een effectieve volgorde te zetten. De on-line velscheduler verbetert de produc-
tiviteit door een effectievere verkenning van schedulingopties voor 2-re-entrant
flow shops. De opdrachtoptimalisatie, de parametrisch-kritisch-pad analyse, en
de parametrische schedulerkarakterisatie zijn toepasbaar op systemen waarbij ge-
beurtenissen met minimale en maximale tijdsverschillen worden beschreven.

Acknowledgements

The Eindhoven University of Technology has hosted me for the better part of thir-
teen years, first as a student, and later as a PhD researcher. I am indebted to the
Dutch government and the Eindhoven University of Technology for providing me
with the education required to finish this dissertation. I thank the society for cre-
ating the inter-subjective reality1 that enabled me to pursue this career.

It takes a village to raise a child.

- African Proverb

In the same spirit, I feel that the following should become a proverb too:

It takes a society to write a dissertation.

It is interesting that these inter-subjective and subjective relations allow one to
perform research to find objective, testable ideas. During my time as a Bachelor,
Master and PhD student at Eindhoven University of Technology, many personal
relationships have influenced me, making me the person I am today. I am well-
aware that this piece of text is the piece of the dissertation that will likely be read
most often. That being said, I want to highlight several personal relationships that
have supported me throughout my studies and PhD research.

First and foremost, I want to extend my gratitude to professor Twan Basten for
being my promotor and Marc Geilen for being my co-promotor. I recognize that
you are among the few people in the world that have the intellect, experience and
interpersonal skills to educate scientific researchers without alienating yourself on
the personal level. Both of you managed to clearly separate the objective assess-
ment of the research from the quirks of the process, while also building a personal
relationship. I still feel lucky to be given the opportunity to work for and with you
for the past five years. I am grateful to the promotion committee members prof.
Sebastian Engell, prof. Frits Vaandrager, prof. Jeroen Voeten, and dr. Lou Somers
for their time and effort to read, assess and provide valuable feedback on this dis-
sertation.

I am also grateful to Umar Waqas, for extracting the academic version of the
scheduling problem at Océ, and for collaborating to improve on his scheduling al-
gorithm. His efforts have paved the way for me to continue with research on flow

1See Sapiens by Yuval Noah Harari.

166 Acknowledgements

shops in the Electronic Systems group. I have always enjoyed your inquisitive na-
ture in all things. We have discussed many different topics while car-pooling from
Eindhoven to Océ in Venlo. It was enjoyable to car-pool with you, Barath, Nick,
Savvas, Roel, Mauricio (AKA Giovanni ;-)), Waheed, Ali, and Marijn (AKA Hank);
we’ve used the travelling time for many philosophical, political, cultural, environ-
mental, and technological discussions. I thank my fellow PhD’s in the project,
Alexis and Amir, for the nice discussions, talks, presentations. Alexis, I am still
amazed by how fast you picked up the Dutch language!

The project with Océ would not have been possible without the continued ef-
forts of Lou, Twan, and ESI to form projects around the scientific questions that
tie into the development of Océ. I am grateful that NWO-TTW decided to finance
the research project. I thank Lou for handling the Intellectual Property issues that
inherently arise from joint research by industry and the university; the university
requires us to publish novel ideas and applications, while the company prefers to
keep novel ideas internal, and patent them. Walking this fine line has not made
the project any easier.

The (bi-)weekly discussions at Océ with Patrick and Jack were invaluable to
the success of my project. You both made a great effort to provide us with enough
information without immediately drowning us in the nitty-gritty details of the real-
world implementations. The discussions with Jack, Patrick, Peter, Eugen, Hristina,
Oana, Amar, Amol, and many others at Océ were very insightful and enjoyable.
I thank Michel and Rob for providing me with the use case for the third chapter
in this thesis. In the collaboration with ESI, I have enjoyed the discussions and
conversations with Jacques, Martijn, Peter, Tjerk, Roelof, Bas, Jozef, Arjan, Carmen,
Jeroen, and many others.

My fellow colleagues2 in the projects of the RCPS programme and the CPS sub-
group of the ES-group, have greatly contributed to my enjoyment of my PhD time.
Umar, Bram, Robinson, João, Amir, Hadi, Ruben, I feel that we’ve created a group
that will keep in contact for the rest of our lives. The shared experience around the
xCPS machine and the CPS meetings will never be forgotten!

Another unforgettable life experience originated from the Friday-afternoon con-
versations in Potentiaal (previously called E-hoog, now Luna) with Marcel, Ray-
mond, Luc (x2), Maurice, Martijn, Sander, Sven, Marc, Mark, Yonghui, Juan (AKA
“the Interruptor") and many others. The wide range of topics at the coffee table
never ceased to amaze me. We had many laughs over the weirdest comments. It’s
a pity that we haven’t managed to keep this show going in the new Flux building.

I thank the students who allowed me to try to instil some knowledge and skills
in them. Ali, Sethuraman (AKA Sjors), Vishnu, and Roel were the ‘slachtoffers’ for
the Océ projects. The project of Manuel, collaborating with Joost, Kostas, and Gas-
ton, allowed us to explore some of our techniques to use cases outside of Océ.
Joost, thanks for making these connections during the user committee meetings!
Many students (Konrad, Arda, David, Max, Sjoerd, Luc, Alexander, Danny, Niek,

2‘slachtoffers’ as my desk neighbour Robinson would often put it

167

Remy, Geert, Glenn, among many others) have contributed to the xCPS platform,
its software, hardware, and the Blender visualization. I’ve enjoyed the lab sessions,
exercises, assignments and the many, many reports for the Multiprocessors course.
It was hard work, but also fun, to assist in the course, and take all the oral exami-
nations together with Twan, Marc, Firew, Manil, Amir and Ruben.

One of the perks of the PhD is that you get to travel to all kinds of places,
both domestic and international. The ICT-Open and ASCI trips always turned out
nicely, with good food and nice people to talk to (and sometimes not so great, but
funny, music, right Josh?). The trip to South Korea was memorable amongst other
things due to the visit to the Trickeye Museum in Seoul, with Philip, Marco, and my
wife Zlatka. The trip to India for Shreya and Ernest’s wedding was a great excuse
for additional travelling, we had a great time with Twan, Isabelle, Anne and Marc.

I thank all my ES colleagues for the nice lunch and cake breaks, the secretaries
(Marja, Margot, Rian, Feyza) for providing the nice atmosphere in our group, and
organizing the yearly ES days. In the United Kingdom, I was generously hosted by
Louis in the YCCSA community at York, and had a great time being a part of the
jolly bunch around the University of York Computer Science geeks; Sam, Simon,
Rob, Richard, James, Ipek, Fiona, Chris, Dimitris, Kostas, Thanos, Mike, Imran,
Adolfo, Antonio, Jason, José and not to forget Miss Sarah Christmas! I hope to find
more excuses to travel to York/UK and visit you all!

Outside the academic life, the distractions from the research were plentiful,
and provided in many ways; the international pub quiz on Thursdays with Liquid
Knowledge and Solid Ignorance (Jeroen, Sjef, Lex, Silke, Gerald, Alan, Calin, Med-
hat, Amar, Alan, Zlatka, Niels, Marco, Eric, and Oana). The bi-weekly D&D sessions
GM’d by Bas were a nice way to escape reality too; Melchior, Wouter, Boudewijn
and Maarten, thanks for continuing all these years! Not to forget the many board
games we managed to play with João, Martijn, Vladimir, Jovana, Nikola, Orlando,
Nicolas, Marc, Sven, and many others! The (occasional) squash with the Quatsh
trainings, and with Cris, Sofia, Juan, Eric, Marco, and Farooq, and the bouldering
with Bram and Rose, provided some physical exercise combined with many funny
conversations. We enjoyed the theater and media-related activities due to the over-
whelming enthusiasm and energy of the van Esch family; Anita, Toine, Rosanne
and Joris.

The ex-OOTIc family (Eric, Oana, Marco, Kiki, Mite, Aleksandra, Milosh, Bog-
dan, Andreaa, Cris, Andreaa, Francisco, Alejandra, Ivana, Max, Martin, Estella, to
name a few) is a special bunch of people, with diverse international backgrounds,
but with a passion for software, good food, good company, and travelling. We have
enjoyed travelling to all kinds of places for weddings and other occasions. I hope
that we will have many more of these joint travels or activities! At least the number
of ex-OOTIc babies is growing fast, giving us ample excuses and opportunities to
interact!

Last, but not least, I thank my parents, siblings, family, cats3 and friends, in

3Timmy and Fluffy, the little purrito’s!

168 Acknowledgements

particular Vic & Joris, for supporting me through my studies and the PhD. Without
your support I am sure I would have dropped out somewhere along the line. My
lovely wife Zlatka and our beautiful daughter Kaya provide me with plenty of op-
portunities to live life to the fullest, and I enjoy every waking moment with them.
Additional thanks to Zlatka for putting up with my whimsies, whenever a deadline
was approaching. I hope that we get to spend a lot more time together.

Everyone in my environment (my society) has not only enabled me to write
this dissertation, but has also helped me shape to be the person who I am today.

Curriculum Vitae

Joost van Pinxten was born on December 13, 1986 in Sint-Michielsgestel, The Nether-
lands. In 2005 he graduated from Gymnasium Beekvliet, Sint-Michielsgestel. He
studied at the Eindhoven University of Technology, where he obtained the B.Sc.
and the M.Sc. degrees in Electrical Engineering in 2011 and 2013 respectively. As
part of his Master’s program, he did an internship at AuguSoft, Eindhoven. His
Master’s graduation project on Model Transformations for Design Space Explo-
ration was performed at the Embedded Systems Institute (ESI), in cooperation
with Océ Technologies. In 2013, he has visited York, United Kingdom, for an in-
vited summer internship to extend EuGENiA Live, a flexible meta-modelling tool,
with simulation aspects.

In 2014 Joost joined the Electronic Systems group of Eindhoven University of
Technology as a PhD candidate in the Integrated scheduling and control for cyber-
physical systems project under the NWO-TTW Perspectief programme Robust Cyber-
Pysical Systems. The project focused on analysing, designing, scheduling and con-
trolling the paper path of industrial duplex printers. The results of his research
have led, among others, to several peer-reviewed publications and the contents of
this dissertation. In 2019 he will start his new job in the Research and Development
department of Océ Technologies.

List of Publications

First author

Journal papers

• Joost van Pinxten, Marc Geilen, Martijn Hendriks, and Twan Basten. Para-
metric critical path analysis for event networks with minimal and maximal
time lags. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 2697 – 2708, October 2018

• Joost van Pinxten, Umar Waqas, Marc Geilen, Twan Basten, and Lou Somers.
Online scheduling of 2-re-entrant flexible manufacturing systems. ACM
Transactions on Embedded Computing Systems (TECS), 16(5s):20, October
2017

Conference papers

• Joost van Pinxten, Marc Geilen, and Twan Basten. Characterising parametric
schedulers. [submitted]

• Joost van Pinxten, Marc Geilen, Twan Basten, Umar Waqas, and Lou Somers.
Online heuristic for the multi-objective generalized traveling salesman prob-
lem. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2016, pages 822–825. IEEE, March 2016

Co-author

Journal papers

• Shreya Adyanthaya, Hadi Alizadeh Ara, João Bastos, Amir Behrouzian, Róbin-
son Medina Sánchez, Joost van Pinxten, Bram van der Sanden, Umar Waqas,
Twan Basten, Henk Corporaal, Raymond Frijns, Marc Geilen, Dip Goswami,
Martijn Hendriks, Sander Stuijk, Michel Reniers, and Jeroen Voeten. xCPS: A
tool to eXplore Cyber Physical Systems. ACM Special Interest Group on Em-
bedded Systems (SIGBED), 2017

Conference papers

• Roel van der Tempel, Joost van Pinxten, Marc Geilen, and Umar Waqas. A
heuristic for variable re-entrant scheduling problems. In 2018 Euromicro
Conference on Digital System Design (DSD), 7 2018. 21st Euromicro Confer-
ence on Digital System Design (DSD 2018)

• Alexis Linard, Rick Smetsers, Frits Vaandrager, Umar Waqas, Joost van Pinx-
ten, and Sicco Verwer. Learning pairwise disjoint simple languages from
positive examples. In LearnAut 2017, volume abs/1706.01663, 2017

• Umar Waqas, Marc Geilen, Sander Stuijk, Joost van Pinxten, Twan Basten,
Lou Somers, and Henk Corporaal. A fast estimator of performance with re-
spect to the design parameters of self re-entrant flowshops. In 2016 Euromi-
cro Conference on Digital System Design (DSD), pages 215–221, Aug 2016

• Shreya Adyanthaya, Hadi Alizadeh Ara, João Bastos, Amir Behrouzian, Róbin-
son Medina Sánchez, Joost van Pinxten, Bram van der Sanden, Umar Waqas,
Twan Basten, Henk Corporaal, Raymond Frijns, Marc Geilen, Dip Goswami,
Sander Stuijk, Michel Reniers, and Jeroen Voeten. xCPS: A tool to eXplore
Cyber Physical Systems. In Proceedings of 2015 Workshop on Embedded and
Cyber-Physical Systems Education, pages 3:1–3:8, 2015

Technical Reports (Non-Refereed)

• Roel van der Tempel, Joost van Pinxten, Marc Geilen, and Umar Waqas. A
heuristic for variable re-entrant scheduling problems. Technical Report ESR-
2005-04, Electronic Systems Group, Department of Electrical Engineering,
Eindhoven University of Technology, June 2018

	1 Introduction
	1.1 Manufacturing systems
	1.2 Flexible manufacturing systems
	1.3 Industrial printers
	1.4 Flexible manufacturing system challenges
	1.5 Flexible manufacturing system design trends
	1.6 Research aims and contributions

	2 Online Scheduling of Re-entrant Flexible Manufacturing Systems
	2.1 Scheduling product flows in re-entrant fms
	2.2 Problem definition
	2.3 Scheduling approach
	2.4 Exploring trade-offs in scheduling decisions
	2.5 Experimental evaluation
	2.6 Related work
	2.7 Conclusion

	3 Multi-objective Optimization of Product Batches
	3.1 Introduction
	3.2 Multi-Objective Generalized TSP
	3.3 Related work
	3.4 2PPLS for MO-GTSP
	3.5 CPMH applied to MO-GTSP
	3.6 Benchmarks and experimental evaluation
	3.7 Conclusion

	4 Parametric Critical Path Analysis
	4.1 Introduction
	4.2 Event networks
	4.3 Parametric critical path analysis
	4.4 Case studies
	4.5 Related work
	4.6 Conclusion

	5 Parametric Scheduler Characterization
	5.1 Symbolic scheduling
	5.2 Running example
	5.3 Parametrized schedulers
	5.4 Exploring parameter combinations
	5.5 Experimental evaluation
	5.6 Related work
	5.7 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	Acronyms
	Appendices
	A Bellman-Ford-Moore longest-path algorithm
	A.1 Shortest-path problem
	A.2 Longest-(simple-)path problem
	A.3 Systems of linear inequalities
	A.4 Multiple sources BFM algorithm

	B Proofs for convex polyhedra
	B.1 Convex polyhedra
	B.2 Convexity of the maximum of expressions
	B.3 Transformations of convex polyhedra

	Bibliography
	Samenvatting
	Acknowledgements
	Curriculum Vitae

