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Abstract
This research study reports the assessment of complementary split ring resonators
based on Gielis transformation as basic elements for the design of high-performance
microwave components in printed technology. From the electromagnetic simulation
of said structures, suitable equivalent circuit models are extracted and analyzed.
Physical prototypes are fabricated and tested for design validation. The obtained
results confirm that the adoption of supershaped geometries enables the synthesis of
very compact scalable microwave filters.
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1 | INTRODUCTION

Split ring resonators (SRRs) have been originally proposed as
metamaterial structures featuring double negative medium
properties,1–3 whereas their complementary variant comple-
mentary split ring resonators (CSRRs) are typically utilized as
negative-permittivity components in planar left-handed struc-
tures for synthesis of artificial transmission lines and complex
microwave passive components such as multiband impedance
inverters.4,5 In particular, the use of SRRs and CSRRs as
basic resonant units in planar microwave filters has gained a
progressively growing interest thanks to their electrically
small size when compared to conventional resonators, this
enabling the realization of semilumped filtering structures
with high performance and controllable characteristics.6–11

Canonical circular or square geometries are commonly
adopted for the design of the considered class of resonators.
More recently, Sierpinsky fractal geometries have been proposed
for the realization of miniaturized CSRRs still with a square-like
form factor.12 It is to be noticed that squares and circles may be

regarded as special cases of the Gielis equation,13 so the question
arises whether higher-order supershaped geometries could pro-
vide benefits or additional degrees of freedom in the synthesis of
highly compact planar microwave filters. The goal of this study
is therefore to analyze the performance of bandpass CSRR filters
whose geometry is based on Gielis formula.

The article is organized as follows. A detailed descrip-
tion of the geometry of the considered CSRR unit cells, as
well as of the equivalent circuit models used to investigate
the relevant electromagnetic properties is given in section 2.
Measurement results are presented and discussed in
section 3. Finally, the concluding remarks and outline of
future work are summarized in section 4.

2 | SUPERSHAPED CSRR

2.1 | Geometrical foundation of the design

Gielis formula is a generalization of Lamé equation that can
be used to describe a wide variety of complex shapes found
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in Nature. Its general expression is reported in Ref. 13. In
this study, we are making use of the following particu-
lar case:
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with ρ and φ denoting the usual polar coordinates defined
with respect to a background Cartesian reference frame Oxy,
and where m is a positive integer parameter which defines
the number of pseudovertices featured by the general closed
curve Cm described by (1).

It is known from the basic theory of differential geome-
try that the length and area of Cm are given, respectively, by:
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By making use of (2) and (3), it can be found out, after
simple algebra, that the considered class of supershaped
curves is characterized by unitary area Am = 1 for m > 0,
whereas the length can be computed as:
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with F(� | �) and E(� | �) being the elliptic integral of the first
and second kind, respectively. It is apparent from (4) that ℓm
increases asymptotically with linear law, namely ℓm /ffiffiffi

2
p

−1

 �

m as m ! + ∞ (see Figure 1).

2.2 | Physical implementation

The microwave filters investigated in this study consist of a
microstrip transmission line loaded with a supershaped
CSRR of general Gielis order m etched in the relevant
ground plane, as shown in Figure 2A.

The considered structure is realized on dielectric lami-
nate having relative permittivity εr = 3.78, and loss tangent
tanδ = 0.025, the thickness of the metal layers being

(A)

(B)

FIGURE 1 Supershaped closed curves Cm (A) and relevant length ℓm and
area Am (B) for different values of the Gielis order m

(A)

(B)

FIGURE 2 Topology (A) and physical prototypes (B) of supershaped
complementary split ring resonators-based stop-band filters realized in
microstrip technology
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t = 35 μm. The two concentric ring slots forming the CSRR
unit are separated by distance s, and are characterized by
width d and gap g. Conversely, the microstrip line printed
on the circuit substrate features a width w = 1.835 mm,
which is selected in such a way as to achieve a nearly 50 Ω
characteristic impedance.

The design and full-wave analysis of the complete
assembly has been carried out by making use of the com-
mercially available electromagnetic solver CST Microwave
Studio.14 In this way, the characteristics of the structure in

terms of stop-band frequency fz and peak insertion loss
(ILmax = −20 log |S21(fz)|) have been evaluated as a func-
tion of the geometrical parameters s, d, g, and m.

From the visual inspection of Figure 3, it is apparent that
fz is decreasing as s, d, g become smaller, and the Gielis
order m increases. Conversely, under the same conditions,
ILmax tends to decrease. It is worth noting here that the gen-
eral supershaped CSRR as described by (1) degenerates in
the conventional circular and square one for m ! 0 and
m = 4, respectively.

(A) (B)

(C) (D)

(E) (F)

FIGURE 3 Stop-band frequency fz and peak insertion loss ILmax of supershaped complementary split ring resonators-based filters as a function of the Gielis
parameter m and the geometrical parameters s, d, g as shown in Figure 2
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Following the design stage, several physical demonstra-
tors of the considered filtering structures (see Figure 2A),
with s = d = g = 0.75 mm and m ranging from 5 to 10,
have been fabricated. As it can be noticed in Figure 2B,
SMA adapters are soldered at both ports of the device, and
adopted as connector interface to external coaxial cables for
S-parameter measurements.

2.3 | Equivalent circuit models

Thanks to the small electrical size of CSRRs at the reso-
nance (~λ/10), the considered structures can be conveniently
described by means of suitable lumped-element equivalent
circuits. Several models have been proposed in the scientific
literature. In this respect, Baena et al. proposed the circuit
topology shown in Figure 4A,6 where the CSRR unit is
modeled as a parallel resonant tank with inductance Lc and
capacitance Cc and, therefore, characterized by resonant
frequency:

f0 ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffi
LcCc

p : ð5Þ

In said schematic, the capacitance C models the coupling
between the CSRR and the microstrip line which, in turn, is
characterized by inductance L. It is worth mentioning that
the inductance Lc is mainly dependent on the length ℓm of
the CSRR embedded in the design, whereas the capacitance
C is largely affected by the relevant area which, for the pro-
posed class of structures, is an invariant.

At frequency f0, the shunt admittance is zero and, there-
fore, the impedance measured at the any port of the network
is set by the host line inductance L which, in turn, can be
readily estimated by using well-known computer-aided design
(CAD) formulas available in the scientific literature. Con-
versely, the transmission-zero frequency of the filter, at which
the condition S21 = 0 holds true, is readily found to be:

fz ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lc C+Ccð Þp : ð6Þ

Finally, upon denoting the series and shunt impedances
of the equivalent T-network of the structure as Z1 and Z2,
respectively, one can verify, after simple mathematical
manipulations, that:

Z1 fπ=2

 �

+ Z2 fπ=2

 �¼ 0, ð7Þ

with fπ/2 being the frequency where the phase of the trans-
mission coefficient S21 is equal to zero. By combining
(5) and (6) with (7), the parameters of the circuit model in
Figure 4A can be extracted from the numerically simulated
S-parameter data.

Li et al. proposed, for the considered structure, the alter-
native equivalent circuit topology shown in Figure 4B,7 that
consists of a series LC resonator (L1, C1) with a capacitance
C2 connected in parallel, as well as two sections of 50 Ω
transmission lines having length l at both sides. This model
is characterized by a higher degree of accuracy over a
broader frequency band of operation, though it relies on a
negative-value parameter as outlined hereinafter.

Three independent equations are needed for the synthesis
of the circuit in Figure 4B. The first one is given by the reso-
nant condition of the whole shunt branch of the equivalent
T-network that reflects in the zero of the input reflection

(A)

(B)

FIGURE 4 Lumped-element equivalent circuit models of a
complementary split ring resonators-loaded microstrip line (see Figure 2) as
proposed by Baena et al. (A) and Li et al. (B)

FIGURE 5 Insertion loss of a microstrip transmission line loaded with a
supershaped complementary split ring resonators of Gielis
order m 2 [5, 10]

TABLE 1 Equivalent circuit parameters of supershaped complementary
split ring resonators as a function of the relevant Gielis order m (Cx in pF, Lx
in nH)

m L C Lc Cc L1 C1 C2

5 3.85 0.95 5.59 0.27 8.31 0.83 −2.51

6 3.54 1.06 5.62 0.22 7.98 0.90 −2.51

7 4.18 0.91 6.38 0.28 9.44 0.80 −2.51

8 4.33 0.87 6.70 0.30 10.28 0.76 −2.53

9 4.45 0.89 6.98 0.31 10.35 0.81 −2.63

10 4.37 0.86 7.92 0.27 11.58 0.78 −2.59
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coefficient S11 at frequency f1. The second equation is
related to the resonance condition of the series LC tank
(L1, C1), that corresponds to the zero of the transmission
coefficient S21 at frequency f2. The third condition is derived
by enforcing the 3 dB insertion loss level at frequency f3. In
this way, one can verify that7:

C2 ¼ Y0
πf3

f 22 − f 23
f 21 − f 23

, ð8Þ

C1 ¼ f1
f2

� 	2

−1

" #
C1, ð9Þ

L1 ¼ 1

2πf2ð Þ2C1
, ð10Þ

where Y0 is the characteristic admittance of the input lines. It
is apparent from (10) that the C2 is negative as f1 < f3 < f2.
Finally, the length l of the microstrip line sections embedded
in the series branches of the equivalent circuit is determined
by fitting the phase of the scattering parameters.

As it appears in Figure 4, the considered equivalent cir-
cuit networks do not account for loss mechanisms occurring
in the corresponding physical structure. However, this noni-
deality can be easily addressed by integrating resistive ele-
ments in the resonant LC tanks included in both models.

3 | NUMERICAL RESULTS AND
MEASUREMENTS

Following the procedure described in section 2, equivalent
circuit models of the considered supershaped CSRR filters
have been extracted starting from the numerical simulation
data. The circuit parameters are given in Table 1 as a

function of the Gielis order m. It is worth noting that, in Bae-
na's model, the inductance Lc increases with the length of
the CSRR, whereas the capacitance Cc is nearly constant
with a slow variation around the average value of about
0.275 pF. As for Li's model, one can notice that the equiva-
lent capacitance C2 is negative, though that can be easily off-
set by using the same approach suggested in Ref. 7

Figure 5 shows the simulated and measured insertion loss
versus frequency of the designed structures for different
values of the order m. As it appears from Table 2, the
transmission-zero frequency fz of the considered class of
CSRRs decreases, with a nearly linear progression, as m
becomes larger. A good agreement between numerical and
experimental results can be noticed in Figure 5 and Table 2.
However, from the visual inspection of Figure 5, it is apparent
that a deviation occurs in terms of simulated and measured
insertion-loss bandwidth, this being attributable to a mismatch
between the actual loss tangent featured by the dielectric lami-
nate used for the manufacturing of the filter prototypes (see
Figure 2B) and the nominal value adopted in the numerically
based electromagnetic model of the various structures.

As an example, Figure 6 shows the frequency-domain
behavior of the magnitude of the coupling coefficient |S21|
and input reflection coefficient |S11| of the supershaped
CSRR of order m = 9, as simulated with CST Microwave
Studio, measured on physical prototypes, and evaluated
using the equivalent circuits shown in Figure 4. The agree-
ment between numerical and experimental results is pretty
good, minor discrepancies in return loss being attributed to
tolerances in the fabrication process and parasitic effects
associated with the microstrip-line-connector transition
which is responsible for an unwanted impedance deviation.

As for the equivalent circuits, both proposed models can
predict the stop-band behavior of supershaped CSRRs with a
reasonable accuracy, though Li's equivalent circuit shows a
better agreement with simulated data across a broader range
of frequencies, this being beneficial for a more effective
design process of microwave systems by means of CAD
software applications. This is however achieved at the
expense of a higher complexity level associated with the
integration of microstrip line sections and, possibly, a nega-
tive capacitor (see Table 1) in the network. Conversely, Bae-
na's circuit provides a useful physical insight in terms of the
equivalent intrinsic inductance and capacitance of CSRRs.

4 | CONCLUSIONS

A new class of supershaped CSRR filters has been presented,
and the relevant circuital behavior studied extensively. It has
been demonstrated that the transmission-zero frequency of the
considered structures can be easily tuned by properly select-
ing their Gielis order, while keeping other characteristics
nearly unchanged. Novel designs based on the periodic or

FIGURE 6 Magnitude of the scattering parameters of the supershaped
complementary split ring resonator of order m = 9 as simulated
numerically, measured on a physical prototype, and evaluated by using the
equivalent circuits in Figure 4

TABLE 2 Transmission-zero frequency of supershaped complementary
split ring resonators as a function of the relevant Gielis order m (fz in GHz)

m 5 6 7 8 9 10

fz (EM simulation) 1.918 1.877 1.827 1.798 1.738 1.679

fz (measurements) 1.910 1.850 1.820 1.780 1.740 1.690
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aperiodic clustering of supershaped CSRRs are being investi-
gated to synthesize high-performance filter structures.
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