

Designing energy efficient approximate multipliers for neural
acceleration
Citation for published version (APA):
De, S., Huisken, J., & Corporaal, H. (2018). Designing energy efficient approximate multipliers for neural
acceleration. In N. Konofaos, M. Novotny, & A. Skavhaug (Eds.), Proceedings - 21st Euromicro Conference on
Digital System Design, DSD 2018 (pp. 288-295). Article 8491830 Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/DSD.2018.00059

Document license:
CC BY-ND

DOI:
10.1109/DSD.2018.00059

Document status and date:
Published: 12/10/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1109/DSD.2018.00059
https://doi.org/10.1109/DSD.2018.00059
https://research.tue.nl/en/publications/878b4913-0132-4244-8225-3e7f08660df4

Designing Energy Efficient Approximate Multipliers
for Neural Acceleration

Sayandip De, Jos Huisken and Henk Corporaal
Department of Electrical Engineering, Eindhoven University of Technology

Postbus 513, 5600 MB Eindhoven, The Netherlands
Email: {sayandip.de, j.a.huisken, h.corporaal}@tue.nl

Abstract—Many error resilient applications can be
approximated using multi-layer perceptrons (MLPs) with
insignificant degradation in output quality. Faster and energy
efficient execution of such an application is achieved using a
neural accelerator (NA). This work exploits the error resilience
characteristics of a MLP by approximating the accelerator
itself. An error resilience analysis of the MLP is performed
to obtain key constraints which are used for designing energy
efficient approximate multipliers. A systematic methodology
for the design of approximate multipliers is used. A graph
based netlist modification approach is considered. Approximate
versions of basic standard cells are generated and these are used
to replace accurate cells in the synthesized netlist in a systematic
quality controlled manner. These approximate multipliers are
further used for approximating the multiply and accumulate
(MAC) units in the neural accelerator (NA). The results are
validated by considering approximate neural replication of a
robotic application, inversek2j. System level energy savings of
upto 14% is obtained for less than 7% degradation in output
quality. Average application speedup of 24% is obtained over
accurate neural accelerator (NA). The results are compared
with state-of-the-art approximate multipliers and a comparison
with truncation (bit-wise scaling) is performed. Moreover, error
healing capability of MLPs is shown by studying the impact of
retraining on networks with approximate multipliers.

Keywords− Approximate Computing, Machine Learning,
Neural Networks, Low Power Design.

I. INTRODUCTION

Over the past 50 years, the world has experienced a
computing revolution. This is evident with the transition
from mainframe computers that filled up a room to today’s
mobile computing devices which can be fitted in a pocket.
Transistor technology scaling has been the major driving force
behind this revolution which led to exponential performance
improvements in line with Moore’s law [1] predictions. Lately,
diminishing returns from technology scaling due to the break-
ing of Dennard Scaling [2] has led to a switch from single
core to multi-core designs. However, performance gains from
continuous increase in the no. of cores are constrained by the
level of parallelism in the applications and the exponential
increase in leakage current, thus leading to the ”Dark Silicon”
[3] era. To keep up with the performance improvement trend,
as predicted by Moore’s law, in the ”Dark Silicon” era, there
is a need to focus on newer computing paradigms which are
realistic and economically viable. Approximate Computing has
been proposed as a potential solution to these challenges.

It exploits the inherent error resilience of applications and
trades-off quality of desired output for energy/performance
improvements.

Research efforts on application resilience analysis [4] show
that machine learning applications using artificial neural net-
works (ANNs) are highly error resilient. Modern computing
trends focus on implementation of ANNs on low power
embedded systems. Approximate computing can play a sig-
nificant role in designing energy efficient ANNs by trading-
off the error resiliency of learning algorithms for energy
improvements. Optimizing ANNs for energy efficiency can be
done at various levels, namely, neurons, interconnects, learning
algorithms, memory access etc [5]. In this paper, we focus on
design of well-optimized energy efficient ANNs by improving
the energy efficiency of the computation performed within the
neurons.

Recent studies have shown that error resilient applications
can be entirely or partially replaced by neural networks
for faster and energy efficient execution [6]–[8]. The neural
network model used for this neural approximation is multi-
layer perceptron (MLP). MLPs are first trained to mimic a
compute intensive and error resilient code segment in the
compilation phase. During the execution phase, this code
segment is replaced with the invocation of a low power neural
accelerator.

A MLP architecture is itself error-resilient and can tolerate
faults when the network is retrained [9]. This motivates
us to extend the neural approximation procedure from the
algorithmic level to the circuit level. The neural accelerator
is first approximated by replacing the multipliers within the
MLP with approximate ones. The approximated MLP is
then retrained to obtain energy efficient designs with little
loss of quality. Rather than manually designing approximate
multipliers, this work uses a systematic netlist modification
approach for introducing approximations. First, gate level
approximate versions of selected standard cells are generated.
These approximate cells are then used to replace the accurate
cells in the netlist of the multiplier. The replacement is guided
by error metrics which are obtained from application specific
quality constraints.

The key contributions of this work are:
• An error resilience analysis of a MLP is performed

to obtain the key constraints for designing approximate
multipliers (see section III).

• A systematic automated methodology for designing en-
ergy efficient multipliers is used. A comparative analysis
of the proposed multipliers with state-of-the-art approxi-
mate multipliers is done (see section IV & V).

• An energy efficient approximate MLP using approximate
multipliers is designed. A study of retraining on approx-
imate MLP is also shown (see section V).

• Proposed approaches are validated for execution of an
error resilient robotic application, inverse kinematics (in-
versek2j) (see section V).

The rest of the paper is organized as follows: Section II
gives a background on the basic idea of neural acceleration
and an overview on the existing neural accelerator (NA)
architectures in the literature. This section also outlines the
state-of-the-art approximate multiplier designs in the literature.
Section III provides a study on error tolerance of a MLP
trained for inversek2j. The methodology used for the design
of approximate multipliers is described in section IV. Section
V provides the results for our proposed techniques. Finally,
section VI concludes the paper with a brief summary of our
findings and a glimpse on possible future approaches.

II. PRELIMINARIES & RELATED WORK

A. Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a fully connected feed-
forward neural network model. It consists of an input layer,
an output layer and atleast one hidden layer, shown in Fig. 1.

x0

x1

x2

x3

x4

y0

y1

w30

w31

Input Output

Hidden Layer

Fig. 1: A typical multilayer perceptron (MLP).

The neurons in a MLP perform weighted sum of the inputs
x from the previous layer to produce an output y (see Eq. 1).
The weights are denoted by w and the bias is denoted by b.
The number of neuron in the previous layer is denoted by l.
This is followed by a non-linear activation function. This paper
uses a rectified linear unit (relu) as the non-linear activation
function. The mathematical representation of relu is shown in
equation 2.

yi = f(bi +

l∑
n=1

xi × win)) (1)

f(x) = { x if x ≥ 0
0 otherwise

(2)

B. Neural Acceleration and Proposed Architectures

The basic idea of neural acceleration is to mimic and replace
a compute intensive error resilient kernel of an application
by a neural network [6]. It consists of three main stages:
annotation, compilation and execution (see Fig. 2). In the
annotation phase, the source code is analysed to determine
compute intensive approximable kernels with well-defined
inputs and outputs. These kernels are annotated and corre-
sponding input/output pairs are recorded to obtain the training
dataset. A MLP is trained in the compilation phase and
proper code binaries are generated along with the configuration
for the neural accelerator (NA). In the execution phase, the
source code is executed on a closely coupled CPU and neural
accelerator (NA) pair to obtain better speed up and higher
energy efficiency over CPU only compute.

Annotate

Source Code
Compile

Train MLP CPU

Code Generation

NA

Execute

Fig. 2: Neural acceleration at a glance: source code is annotated and
corresponding input/output pairs are recorded, a MLP is trained using
the recorded input/output pairs, finally, the compiled code is executed
on a closely coupled CPU and neural accelerator (NA) pair.

Numerous different architectures have been proposed in the
literature for a neural accelerator (NA). However, most of
the existing architectures have two common implementation
styles - spatially expanded and time multiplexed [8]. Spatially
expanded neural accelerators are customized for targeted ap-
plications. For instance, Temam et al. [9] proposed a spatially
expanded MLP with 90 inputs, 10 outputs and one hidden layer
with 10 neurons. The proposed hardware is geared towards
the study defect tolerance in ANNs. Their fixed structure,
however, limits applicability to a wide range of applications.
Time multiplexed neural accelerators compute each MLP layer
successively over time. They can run different MLP topologies
and are most suited for general purpose code acceleration.

Existing time multiplexed neural accelerators like RNA
[10] address the mismatch problem between the available
computational resources on the accelerator and the size of the
MLP to be scheduled. RNA supports a scheduling framework
that assigns the best computational pattern to each MLP layer.
SNNAP [7] proposes a one-dimensional systolic array based
neural accelerator targeted towards Xilinx Zync SoC. In this
work, the architecture proposed in [7] is adopted as a baseline
for performing approximations. Fig. 3 shows the computation
of a single MLP layer (see Fig. 1) on this architecture.

Proposed work extends the neural approximation approach
from the algorithmic level to circuit level by modifying the
neural accelerator using approximate multipliers. Further fine
tuning using retraining is performed to gain added benefits.

2
3
4

0
1 	

x2 x3 x4x0 x1 f

w20

b2

w30

w40

w21

w31

w41

b3b4

cycles

2

3

4

1

Fig. 3: 1D systolic array based neural accelerator: two MAC units
followed by a relu unit.

C. State-of-the-Art Approximate Multipliers

The focus of this work is to exploit the inherent error-
resilience of MLPs by using functionally incorrect multipliers.
Previous work on approximate multiplier design, such as,
[11] shows a architectural space exploration methodology
for approximate multipliers. Approximate versions of 2x2
multiplier blocks are generated and these blocks are iteratively
used to generate multiplier of higher bitwidth. A rounding
based approximate multiplier (RoBA) is proposed in [12]
which rounds the operands to the nearest exponent of two.
EvoApprox8b [13] propose a library of approximate adders
and multipliers. These approximate designs are evolved by
a multi-objective Cartesian Genetic Programming (CGP). [5]
proposes a methodology for the design of well-optimized
power efficient ANNs with a uniform structure. Approximate
multipliers generated using CGP are used to approximate the
ANNs and the results are evaluated for classification problems
(MNIST).

This work significantly differs from the existing research ef-
forts. Proposed approach focuses on modification of the netlist
using approximate standard cells rather than modifying the
behavioural description of the multiplier. This approach can
be applied in sync, or independent of the existing approaches.

III. ERROR ANALYSIS OF MLPS

This section outlines the error tolerance analysis for a
MLP. A robotic application, inverse kinematics, is chosen
as our benchmark application for this analysis. Critical design
constraints are obtained from the application end which are
systematically translated to circuit level constraints for design-
ing approximate multipliers.

Inverse Kinematics: Inverse kinematics (inversek2j) is a
robotic application which uses kinematic equations to calculate
the angles of a 2-joint robotic arm. As shown in Fig. 4, input
dataset is the position of the target (X, Y) and the output is
the two angles of the robot-arm (THETA1, THETA2). The
length of the 2-joint robot arms are denoted by L1 and L2
respectively. For our experiments, L1 is assumed to be 10
units and L2 as 7 units. Also, THETA1 is restricted to the

THETA1 Joint 1

 Joint 2

Target Location
(X,Y)

L1

L2 THETA2

Fig. 4: Inverse kinematics for 2-joint robot arm: L1 and L2 denote the
two joint robot arms. The grey points denote the different coordinates
(X,Y) used for training the MLP.

Fig. 5: MLP topological search for inversek2j: The format for MLP
topology is (no. of inputs)-(no. of neurons in hidden layer1)-(no. of
neurons in hidden layer2)-(no. of outputs). MSE loss is the mean
squared error between MLP output and the actual training output.

range 0 to π
2 , whereas THETA2 is restricted to the range 0 to

π.
Training and Topology Selection: For generating the

training dataset, forward kinematic equations are used. Dif-
ferent valid target positions (X,Y) are generated by sweeping
THETA1 and THETA2 in steps of 0.1π across their chosen
ranges (see Fig. 4). This dataset is then used to train different
MLP topologies using Pytorch framework1. The backpropaga-
tion algorithm is used for training the MLPs. Mean squared
error (MSE) between the actual and predicted outputs is used
as the loss function. An exploration search over different MLP
topologies is performed as shown in Fig. 5. The search space
is limited by restricting the MLPs to 2 hidden layers and at
most 8 neurons per hidden layer. Proposed work considers a
time-multiplexed NA architecture which computes the results
one layer at a time. For better energy efficiency and speed up,
MLP topology [2-8-2] is chosen for all future experiments.
As shown in Fig. 5, it gives a good trade-off between MSE
loss and the number of MAC operations required per input
sample (∼1% increase in MSE loss for 4 less MAC operations

1https://github.com/pytorch/pytorch

compared to [2-6-6-2]).
Error Evaluation of MLP: In the inference stage, MLP

[2-8-2] is tested using new test datasets obtained by sweeping
THETA1 and THETA2 across their chosen ranges in random
steps. It gives a mean positional deviation2 of 4.3% when
precise 8-bit signed multipliers are used. Probing across the
precise multipliers, and plotting output distribution shows a
peak over zero (see Fig. 6(a)). This denotes that majority of
the multplier inputs are zero. The sensitivity of MLP [2-8-2] to
errors is analyzed by emulating imprecise multiplication using
a error bias δ. Three different cases are considered:
(a) bidirectional: mulapprox(a, b) = a× b ± δ
(b) overestimation: mulapprox(a, b) = a× b + δ
(c) underestimation: mulapprox(a, b) = a× b − δ

A [2-8-2] MLP has two levels of multiply and accumulate
(MAC) operation. Level 1 corresponds to generation of hidden
neurons whereas level 2 corresponds to the generation of final
outputs. A study is performed by varying the error bias δ in
the above mentioned three cases, and then introducing them
to both level1 & level2 separately as well as simultaneously.
Fig. 6(b) shows the impact of introducing bidirectional errors
on both levels of the MLP. Fig. 6(c) plots error behaviour of
the MLP for all three cases across x-axis, y-axis & diagonal
of Fig. 6(b). Y-axis shows the positional deviation normalized
with respect to the sum of lengths of the two robot arms. The
timed multiplexed 1D systolic array architecture (see Fig. 3)
adopted in this work allows only diagonal traversal along Fig.
6(b), as the multiplier units are reused over time.

Following conclusions are drawn from the error analysis:
(a) Errors in level2, which generates the output, are more

critical than errors in level1 (see Fig. 6(c)).
(b) Errors in the multipliers should be bounded within 5% of

the maximum multiplier output (22×7) to obtain tolerate
positional deviation (≤ 25%), as shown in Fig. 6(b).

(c) Inexact multipliers which perform correct multiplication
by zero needs to be chosen (see Fig. 6(a)).

(d) Approximate multipliers with bidirectional errors are more
suitable for MLP approximation as the errors are more
likely to compensate over multiple cycles of accumulation
(see Fig. 6(c)).

IV. DESIGN METHODOLOGY FOR APPROXIMATE
MULTIPLIERS

A systematic methodology for approximation of multipliers
is used which replaces and modifies the netlist of the multiplier
using approximate standard cells. The key steps involved in
the process are outlined in this section.

A. Design and characterization of approximate standard cells

The design process starts with manually building approx-
imate versions of standard cells. Approximate versions of
standard cells are designed by modifying the truth table entries
of the accurate cells. Manual creation of approximate versions

2euclidean distance between input coordinates (X,Y) and obtained coordi-
nates (X’,Y’)

(a) Output distribution of accurate multipliers.

(b) Bidirectional error response on positional deviation.

(c) Error bias versus positional deviation (corner cases).

Fig. 6: Error analysis of MLP [2-8-2].

of all the cells in the design is a tedious task. Therefore, early
design-space reduction is performed by properly analysing
the energy distribution of the accurate multiplier as shown
in Fig. 7. As evident from Fig. 7, 4-to-2 compressors and 1-
bit full adders account for more than 70% of the total energy
consumption of the 8-bit multiplier circuit. Therefore, multiple
inexact versions of these 4-to-2 compressor and 1-bit full-

5% 3%

22%

50%

4%

5%
1%

4%
6%

2-input AND

2-input NAND

4-to-2 Compressor

1-bit Full Adder

Others

1-bit Half Adder

Inverter

3-input XNOR

3-input XOR

Fig. 7: Standard cell based energy distribution for 8-bit signed
multiplier (tool synthesized using TSMC 40 nm).

AccuAdd

Add1
Add2

Add3

Add4

Add5 Add6

Add7

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 E
ne

rg
y

Cell Error Affinity

Add7Add6

Sum

Cout

Cin

A
B

Sum

Cout

Cin

A
B

AccuAdd Add1

Cin

A
B

Sum

Cout

Cin

Add4

Sum

Cout

Cin

A
B

Sum

Cout

A
B

Add3

Cin Sum

Cout

Cin

A
B

Sum

Cout

A
B

Add5

Add2

Cin

A
B

Sum

Cout

Fig. 8: Design and characterization of 1-bit full adder cells.

adder cells are generated manually. This is followed by further
pruning of inefficient cell designs in the pareto-frontier of
energy vs accuracy.

Design of Standard Cells: Fig. 8 shows different variants of
approximate full adder cell designs. Gate-level implementation
of an accurate 1-bit full-adder cell is given in AccuAdd
(see Fig. 8). Add1 - Add5 show state-of-the-art approximate
designs implemented in gate-level according to their truth
tables reported in [14] whereas Add6 & Add7 are additional
low-power designs adopted from [11]. Different gate-level
implementations of 4-to-2 compressor cells are shown in Fig.
9. Accurate compressor cell is first implemented (as shown in
AccuComp, Fig. 9). An approximate low-power compressor
cell implementation is adopted from [15] (shown in Comp1,
Fig. 9). Additionally, five new low power compressor designs
are considered (Comp2 - Comp6, Fig. 9) with variable quality
characteristics.

Characterization: For proper characterization of the above
mentioned designs, a cost function, Cell Error Affinity (CEA),
is used. It is a weighted sum of three quality metrics [11] [16]:
(a) Error Count (EC) (b) Maximum Error Distance (MaxED)
(c) Mean Error Distance (MED). The formulation of these
quality metrics is given in equations 1, 2 & 3, where M’
is the approximate result and M is the accurate result. Eq.
4 gives Cell Error Affinity (CEA) where ÊC, M̂axED &
M̂axED represent the normalized forms of the respective

AccuComp

Comp1

Comp2

Comp3
Comp4

Comp5

Comp6

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

N
or

m
al

iz
ed

 E
ne

rg
y

Cell Error Affinity

AccuComp

Sum
C

Cin

A
B

Cout

D

Carry

Comp2

Sum

C

Cin

A
B

Cout

D
Carry

Comp6

Sum

C

Cin

A
B

Cout

D
Carry

Comp3

Sum

C

Cin

A
B

Cout

D

Carry

Comp5

Sum
C

Cin

A
B

Cout

D

Carry

Comp4

C

Cin

A
B

D
Sum

Cout

Carry

Carry

Comp1

Sum

C

Cin

A
B

Cout

D

Fig. 9: Design and characterization of 4-to-2 compressor cells.

metrics (w.r.t to the worst case possible) while α, β, γ are
their corresponding weights satisfying α+ β + γ = 1.

EC =
∑ 1 if M ′ 6=M

0 otherwise
∀ val ∈ T (3)

MaxED = max{|M ′ −M | ∀ val ∈ T} (4)

MED =
1

|T |

|T |∑
n=1

|M ′ −M | (5)

where T = {val|val ∈ Z+, |val|<2input count}

CEA = α× ÊC + β × M̂axED + γ × M̂ED (6)

A weight configuration of α = 0.2, β = 0.3, γ = 0.5 is
chosen for the pareto-optimality study shown in Fig. 8 &
Fig. 9. However, any weight configuration can be selected
depending on the preferences of the designer. The cells were
synthesized using Cadence Encounter RTL Compiler and
mapped to a 40nm TSMC technology library. Design space
reduction is performed by pruning inefficient designs which
are non-optimal on the pareto-froniter as shown in Fig 8 &
Fig. 9. In case of full-adder cells, add3, add5, add6 & add7
are pruned whereas comp1 & comp6 are pruned in case of
compressor cells.

B. Replacement strategy of standard cells

A graph based systematic cell replacement strategy is used
in this work which allows controlled modulation of quality. At
first, the target multiplier design is synthesized and mapped to
a technology library to get the gate-level netlist. This gate-
level netlist is converted into a directed acyclic graph (DAG),
where the nodes represent standard cell instances and the edges
represent wires. A multiplier circuit follows a notion of bit

significance where each bit has a two times higher significance
than its previous bit, when moving from LSB to MSB.
Therefore, cell replacement is started from the LSB which
moves toward the MSB until the quality constraint is violated.
For a particular primary output bit, a backward dependency
search is done using reverse graph traversal. This extracts
the standard cell types and instance names responsible for
corresponding bit generation. Once the cell instance names are
known, they are replaced with approximate cells in the library
having the same type to give an approximate netlist. Proper
combination of approximate cells is treated as a configurable
knob which is applied to obtain different approximate versions
of the multiplier having varying accuracy.

V. EXPERIMENTAL RESULTS

The first part of this section outlines the effectiveness of
used methodology for the generation of approximate multipli-
ers. The second part focuses on approximation of the systolic
neural accelerator using proposed multipliers.

A. Approximate multipliers using netlist modification

Quality constraints obtained from the error analysis of MLP
(see section III) are used to generate approximate mutipliers.
Maximum error bound of 5% is chosen. All the multiplier
circuits under test were synthesized using Cadence Encounter
RTL Compiler at nominal operating conditions, mapped to
a 40nm TSMC technology library and functionally verified
using Cadence Incisive Enterprise Simulator.

In order to properly evaluate the designs under test, three
different quality metrics are considered, Maximum Error
Distance (MaxED), Mean Error Distance (MED) and Mean
Relative Error Distance (MRED). Equations 3-5 & 7 gives the
formulation of these quality metrics. A maximum error bound
of 5% (see section III) translates to MaxED = 819, MED = 408
and MRED = 0.25. All the approximate multipliers generated
by our proposed method adhere to these constraints. Also,
the designs were tested using actual input data obtained from
traces of inversek2j kernel.

MRED =
1

|T |

|T |∑
n=1

|M ′ −M |
M

(7)

where T = {val|val ∈ Z+, |val|<2input count}

Fig. 10 shows the energy improvements obtained for a
8-bit signed multiplier. Accurate tool synthesized multiplier
at relaxed frequency is chosen as the baseline. Multiple
approximate design points are synthesized and tested while
adhering to the mentioned quality constraints. Proposed de-
signs achieves energy savings of 2.5× with respect to the
accurate design for hardly any quality degradation (MaxED
∼ 600, MED ∼ 240 & MRED ∼ 0.22), as can be seen in Fig.
10. Comparative analysis with a state-of-the-art low power
approximate multipliers [11] shows upto 3× improvements in
energy, for almost similar qualtiy degradation (MED between
300 to 400)(see Fig. 10(b)). Similarly, a comparison with

(a) Energy versus MaxED.

(b) Energy versus MED.

(c) Energy versus MRED.

Fig. 10: Comparative analysis of proposed multipliers with state-of-
the-art multipliers.

EvoApprox8 [13]3 shows that our designs benefit by 1.7×
in terms of energy, for similar quality loss (MED ∼ 160)(see
Fig. 10(b)).

Observations: The accurate tool synthesized multiplier
chosen as baseline in this work dominates the approximate
designs proposed in [11] & [13] (see Fig. 10). This stresses
the fact that a proper baseline choice is very essential. Also,
comparison with input bit-width scaling/ truncation of the mul-
tiplier suggests that the truncated designs are pareto-dominant
compared to both the state-of-the-art designs proposed in
[11] and [13] as well as the proposed designs. The reason
behind this observation is that the quality metrics (MaxED,
MED & MRED) are calculated using absolute value of the

3the multipliers are converted to signed for proper comparison

errors and truncated designs provide a lower average absolute
error. However, for analysis on approximate neural replication
of inversek2j, we have to implement these designs in the
1D systolic MLP accelerator. Truncated designs chosen in
this study always produce underestimating error, whereas the
proposed designs produce bidirectional errors. This makes the
proposed designs more suitable for approximation of MLP as
justified in section III.

B. Approximate neural acceleration of inversek2j

A 1D systolic array architecture with 8 MAC units is
chosen as the baseline for all our experiments. The design
is synthesized using Cadence Encounter RTL Compiler at
nominal operating conditions. It is mapped to a 40nm TSMC
technology library and functionally verified using Cadence
Incisive Enterprise Simulator. A relaxed operating frequency
of 200 MHz is chosen for analysis.

Fig. 11: Neural replication of inversek2j using approximate multipli-
ers.

Fig. 11 shows the impact of using approximate multipliers
on the neural acceleration of inversek2j. X-axis gives the
positional deviation of the input co-ordinates (X, Y) due to
approximate calculation of the robot-arm angles (THETA1,
THETA2). Y-axis gives the system level energy consumption,
which includes both the MAC compute units and the control
units. Our multiplier designs dominate the state-of-the-art
implementations on the pareto-front giving better energy effi-
ciency (1.1×-1.2×) for similar positional deviation (∼ 0.12).
Also, proposed approximate designs improve upon the system
level energy consumption of the accurate design by 10.5%
for less than 7% positional deviation. A comparative analysis
with truncation shows that the proposed multipliers outperform
the truncated ones in the pareto frontier. This further justifies
the statement that designs with bidirectional error behaviour
are more suited for MLP approximation than the ones with
underestimating behaviour (see section III).

All the designs plotted in Fig. 11 are synthesized for the
same relaxed frequency of 200 MHz. The observations in
this work overlook the fact that using approximate multipliers
reduces the critical path latency of the design. This reduced
latency can be used for voltage scaling (keeping the frequency
constant), which gives potential for improved power savings.
Also, the reduced latency can be used to operate the design at

Fig. 12: Speed up obtained using approximate MLP accelerator w.r.t
to the software only execution.

higher frequencies, thus, obtaining better speed up as shown
in Fig. 12.

Retraining of approximate MLP designs: Proposed MLP
accelerator designs with approximate multipliers are retrained
to obtain lower normalized positional deviation, thus, giving
better energy versus accuracy trade off. For retraining, fixed
point training is performed on the MLP network as suggested
in [17] & [18]. Since the weights in the MLP network have
only discrete values, the challenge lies in updating the weights
after backpropagation due to limited precision. To overcome
this, updates are performed on the full precision floating point
weights, called shadow weights. These shadow weights are
further converted to fixed point during forward propagation.

Fig. 13(a) shows the improvements in the normalized posi-
tional deviation obtained with retraining of the MLP network.
On an average, 12% improvement in normalized positional
deviation is obtained for all proposed multipliers. Best case
improvement of upto 32% is obtained (see Fig. 13(a), col 6).
Fig. 13(b) shows four best case improvements obtained from
retraining (see yellow boxes). Also, Fig. 13(b) shows that our
proposed approximate designs improve upon the system level
energy efficiency of the accurate accelerator by upto 14% for
less than 7% positional deviation.

VI. CONCLUSION

Error resiliency of applications can be exploited by ap-
proximating them using multi-layer perceptrons (MLPs) with
insignificant degradation in output quality. Faster and energy
efficient execution of such an application can be achieved
using a MLP accelerator. This work approximates the MLP
accelerator by approximating the MAC compute units using
energy efficient approximate multipliers. An error resilience
analysis of the MLP is performed to obtain key constraints
which are used for designing energy efficient approximate
multipliers. A systematic methodology for the design of ap-
proximate multipliers is used. A graph based netlist mod-
ification approach is considered. Approximate versions of
basic standard cells are generated which are used to replace
accurate cells in the netlist in a systematic quality controlled
manner. On an average, 2.5× savings in energy is observed

(a) Improvements in positional deviation (normalized) with retraining
for proposed multipliers.

(b) Pareto-optimality study of retrained proposed solutions with respect
to the state-of-the-art approximate multipliers.

Fig. 13: A study of retraining on approximate MLP accelerator.

for hardly any quality degradation. Proposed approximate
multipliers are further used for approximating MLPs. The
results are validated by using approximate neural replication of
a robotic application, inversek2j. System level energy savings
of upto 14% is obtained for less the 7% degradation in
output quality. Average application speedup of 24% is obtained
over accurate MLP accelerator. The results are compared
with state-of-the-art approximate multipliers and a comparison
with truncation (bit-wise scaling) is performed. Moreover,
error healing capability of MLPs is shown by studying the
impact of retraining on networks with approximate multipliers.
Future work will aim to consider voltage scaling (keeping
the operating frequency fixed) to take advantage of the fact
that using approximate multipliers reduces the critical path
latency of the design. Also, trade off analysis in terms of
opportunities for approximation between spatially expanded
and time multiplexed MLP accelerators will be considered in
future.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under grant agreement no 674875 (oCPS).

REFERENCES

[1] C. A. MacK, “Fifty years of Moore’s law,” in IEEE Transactions on
Semiconductor Manufacturing, vol. 24, no. 2, 2011, pp. 202–207.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp.
256–268, Oct 1974.

[3] M. Shafique and S. Garg, “Computing in the dark silicon era: Current
trends and research challenges,” IEEE Design and Test, vol. 34, no. 2,
pp. 8–23, 2017.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Analysis and characterization of inherent application resilience for
approximate computing,” Proceedings of the 50th Annual Design
Automation Conference on - DAC ’13, no. i, p. 1, 2013.

[5] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design
of power-efficient approximate multipliers for approximate artificial
neural networks,” Proceedings of the 35th International Conference on
Computer-Aided Design - ICCAD ’16, pp. 1–7, 2016.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Architecture support for disciplined approximate programming,”
Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and Operating
Systems - ASPLOS ’12, p. 301, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2150976.2151008

[7] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “SNNAP: Approximate computing on programmable
SoCs via neural acceleration,” 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA 2015, pp. 603–614,
2015.

[8] F. Tu, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Reconfigurable Ar-
chitecture for Neural Approximation in Multimedia Computing,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11,
no. 4, pp. 1–14, 2018.

[9] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in 2012 39th Annual International Symposium on Com-
puter Architecture (ISCA), June 2012, pp. 356–367.

[10] F. Tu, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Neural approximating
architecture targeting multiple application domains,” in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2015,
pp. 2509–2512.

[11] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel,
“Architectural-space exploration of approximate multipliers,” in
Proceedings of the 35th International Conference on Computer-
Aided Design - ICCAD ’16, 2016, pp. 1–8.

[12] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pe-
dram, “RoBA Multiplier: A Rounding-Based Approximate Multiplier
for High-Speed yet Energy-Efficient Digital Signal Processing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 2, pp. 393–401, 2017.

[13] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapproxsb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–
261.

[14] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, Jan 2013.

[15] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions
on Computers, vol. 64, no. 4, pp. 984–994, 2015.

[16] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review,
classification, and comparative evaluation of approximate arithmetic
circuits,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, pp.
60:1–60:34, Aug. 2017.

[17] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA:
MIT Press, 2015, pp. 3123–3131.

[18] P. Gysel, “Ristretto: Hardware-oriented approximation of convolutional
neural networks,” CoRR, vol. abs/1605.06402, 2016. [Online]. Available:
http://arxiv.org/abs/1605.06402

