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We suggest a new variational approach for quantum spin chains, based on the stochastic behavior of
the quantization axes, which describes a chain in terms of a classical and a quantum contribution to the
free energy. For an easy-plane ferromagnetic chain with the external field in the plane it reveals that the
nonlinear excitations are predominantly described by the classical degrees of freedom. Hence it offers a
fundamental basis for the description of the elementary excitations of such systems in terms of classical
solitons and quantum spin waves, as suggested by various experiments.

PACS numbers: 05.30.Ch, 75.10.Hk, 75.10.Jm

Considerable effort has been devoted to the theoretical
description' and experimental verification of the ex-
istence of nonlinear (soliton) excitations. In this area of
research magnetic chain systems have played an impor-
tant role. In particular, chain systems with an easy-
plane anisotropy, such as CsNiF; and (C¢H; NH3)-
CuBr;,2 which are subjected to a symmetry-breaking
field, were found to be soliton bearing. Theoretically, the
description of the nonlinear excitations is based on the
mapping? of the spin dynamics on that of a sine-Gordon
model. Further research* indicated that the interpreta-
tion of the thermodynamic properties of real systems in
terms of the sine-Gordon model is generally far beyond
the validity range of the mapping, since it asserts a large
spin and an extreme easy-plane anisotropy. Several at-
tempts have been made to relax these conditions. How-
ever, the extension of the sine-Gordon model, in which
out-of-plane components are taken into account, predicts
instabilities for a single nonlinear “in-plane” excitation.’

H=3

n

The dipolar interactions are considered not to be im-
portant, and therefore the direction of the spin chain in
configuration space with respect to any preferred direc-
tion in spin space does not enter the model explicitly.
The external field which interacts with a preferred spin
component defines the spatial orientation: It relates the
directions in spin space with those in configuration space.
For a given chain all the directions are specified by the
anisotropy and the field. In a quantum treatment of the
model, the spin operators are usually written as a S7
component and ladder operators S,;7 and S,,”. It is possi-
ble to define a site-dependent z direction in spin space at

On the other hand, the inclusion of quantum corrections
seems to cancel the effect of out-of-plane components.®’
Moreover, attempts to include more than one soliton in
such an approach are faced with the ‘“‘theoretical” fact
that the solitons go equidistant and form a lattice.?

In this Letter we will present a variation approach for
the quantum spin chain, which is based on the stochastic
behavior of the quantization axis of the individual spins.
We will show that the free energy of such a system can
be separated, in a straightforward way, into a quantum
part and a classical part. For easy-plane ferromagnetic
chains, the nonlinear excitations are contained in the
classical part, whereas the quantum part contains
predominantly linear excitations.

Our starting point is the model Hamiltonian H for a
general XYZ spin chain, which contains four types of
contributions: the external field, specified by its com-
ponents B* and B?, the isotropic part of the exchange in-
teraction J, and AJ and J,, which specify an orthorhom-
bic exchange anisotropy:

‘ Ja ——— x -
~%(Sn+sn—+l+Sn—Sn++l)_(-,_AJ)S§ r§+l _?(Sn+Sn++]+Sn Sn+l)_gl~lB£2_(Sn++Sn )—gﬂBBZSIZ:

(1)

an angle (6,,6,) with the z direction in configuration
space. The model Hamiltonian can then be written in
terms of the spin operators defined with respect to the
site-dependent z axis of the spin space. In the following
we will call this axis the quantization axis. Of course,
the model Hamiltonian (1) is written in a representation
where the axis is the same for all sites. Different quanti-
zation axes at each site imply a rotation in spin space.
The unitary transformation given by U =explX,U:]
xexplX,U,], with U?=i¢,S: and U,=1%6,[S,"
—S, 1, generates this rotation. The model Hamiltonian
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in the new representation contains the angles (8,,¢,) as parameters and it is obtained using the following transforma-

tion properties:

U "' SEU ={cos8,} SZ+ ¥ sind,{S,F +S,7},

U 'S, Fexp(—ip,)U =% lcosh, +1}S," {cos6, —1}S,” 1 — {sin6,} S,,

(2)

U 'S, explig,)U = ¥ l{cos6, — 1}S," + {cosB, +1}S,” ] — {sin6,} S% .

In the following we will treat the angles (8,,0,) as
random variables (6,,®,), since preliminary calcula-
tions indicated that searching for an optimal quantiza-
tion axis per site is only useful for the calculation of the
energy and the wave function of a few low-lying excited
states. The partition function that we will consider is
given by

Z =Trexp(—BH) =E {Trexp(—p%#)},

where % =% “'H%U. The symbol E denotes the expec-
tation value over the random variables with a joint prob-
ability distribution which will optimize the free energy
and Tr denotes the trace over the quantum states. Using
the invariance of a trace operator with respect to cyclic
permutations it is easy to show that this Z is also equal
to the partition function of the spin chain described by
the Hamiltonian (1). Our aim is now to find a reason-
able approximation for the new partition function. For

Efexp(—pV)} ={Hfd¢,,d9,, }p(. 0B, dexpl—BV (. ..,0,6,,..)}.

Independent of our choice for the probability distribution
p(...,0.0,,...), the separation into a stochastic part
and a quantum part is such that the first cumulant of the
expansion of the free energy with respect to Hqm —(Hqm’
disappears and the free energy obtained from Z° is an
upper bound.”® The free energy F of the chain is then
approximated by

F< FC|+qu s
where

BFq=—InlE{exp(—pV)i1,
()
BFqm=—In[Triexp(— p{H u))}].

It is clear that all thermodynamic quantities are to the
same extent a sum of a classical part and a quantum
part. From Eq. (5) it is obvious that the introduction of
site-dependent quantization axes in a random direction
allows us to calculate an upper bound for the free energy
of the chain which consists of two contributions. The
first one is a configurational classical free energy, de-
pending on the choice of the probability distribution for
the quantization axes. The second contribution is the
free energy of a modified quantum chain, whose parame-
ters are classical averages and can be obtained from the
configurational classical free energy.

6

S =+ chains it is well known that the S? component can
be eliminated from the Hamiltonian using the kinemati-
cal relation between the z component and the ladder
operators, S:=% —S,5S,”. Doing so, we find that
# =V + Hy,, where V contains only random variables.
Defining the following average,

_ Efldexp(—=pV)}
Efexp(—pV)}

(A4) 3)

we split Hqm into (H¢m) and Hgm — (Hgm), where the last
term is treated as a perturbation. It should be noted that
(Hgm) is a quantum operator without random variables.
The zeroth-order problem is defined by # %=V +(H ).
In that case the partition function Z° equals

Z%=E{exp(—pV )} Triexp(—g{H )} ,

where

(4)

We will confine ourselves now to the case of easy-
plane anisotropy (AJ > 0, J,==0), in which the quantiza-
tion axes can be restricted to the easy plane. For con-
venience we choose a & function §(8, — /2) as the prob-
ability density for all ©, and the uniform distribution
Fo, for ¢,; F0,(¢0,)=0¢,/2n, with ¢, € [—nx +rxl.
This specific choice leads directly to the classical parti-
tion function of a discrete sine-Gordon system, if we lim-
it the expansion of cos(¢, —¢,+1) to the first two terms.
The “classical” free energy F corresponds to the follow-
ing sine-Gordon chain:

Vie=——""+-— —(¢n_¢n+l)2

JN | Iy 1
4 4% 2

X
LI
J
One should note that the present choice for the distribu-
tion F®, implies that there is no a priori correlation be-
tween the quantization axes of the spins (high-tem-
perature limit). However, the functional form of Eq. (6)
is preserved if we include some correlations between the
quantization axes by a bivariate Gaussian distribution.
The corresponding free energy, characterizing the de-
grees of freedom of the quantization axes, which are re-
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stricted to the easy plane by the choice of our distribu-
tion, has been calculated by several authors. ' In these
calculations the free energy can be split into two parts,
one originating from the classical oscillatory behavior of
the quantization axis and another one describing the tun-

gugB*

<qu> =JZ{<COS(¢n _¢n+])>+—J——

neling between the potential wells. The latter is general-
ly attributed to solitons in the so-called ideal-gas phe-
nomenology. '!

Our next step is the calculation of Fgn, related to the
partition function of the spin system defined by (Hgm).
For an easy-plane system this Hamiltonian reads

{cos(¢,)) }S,,+Sn_

- _Z_Z{<Cos(¢n ~Pn+1 »—1— —AJl }{S,,+S,,++1 +H.C.}

AJ

—%Z{(cos((bn — P+ N+ —

— I (o8 (p — 0n+1)SaT Sy St 1Sy +1 — 3 gupB (S, +S,7).

Because the averages in this equation are the same for
each site, they are related to derivatives of the free ener-
gy Fa=p"'InlE{exp(—pBV)}]. Itis easy to show that

F.
<COS(¢n_¢n+l))=—4% Wl , €))
2 0 Fcl
( n)=— —_— | = )
cos(¢ s 9B | N

The parameters for the modified quantum chain can now
be interpreted: The averaged isotropic exchange interac-
tion is given by J{cos(¢, — ¢, +1)) and the in-plane field
is modified by the average magnetization of the classical
nonlinear excitations.

A few remarks seem to be appropriate: First, our

}{S,,+S,,_+, +H.c}

@)

[

choice of the probability distribution for the angles of the
quantization axes implies that the anisotropy of the ex-
change integral only manifests itself in the pure quantum
part {Hqm). Apart from this, it is clear that in the low-
temperature limit the perfect correlation between the
quantization axes freezes out the classical degrees of
freedom, because in that limit the Gaussian distribution
becomes S-function-like. With respect to the quantum
part, one should note that the translation invariance of
(Hgm’ allows us to treat the wave number of the spin
waves as a ‘“‘good” quantum number, irrespective the
presence of nonlinear excitations.

For those thermodynamic quantities that are insensi-
tive to the contribution of the quantum excitations, the

T T T T T T T T T T -
0.y (CHNH3) CuBry - -
0.2F X q-“’}”“’% 1F fiﬁ/ : % e
g L d
— oo
x
@ 0 oB=193kGII b ©B=276kGlI b
g - eB=175kGlic IE  B=250kGlIc
- L 1 1 L L a1 1 1 1
: T T T T T T T T T T
o 0.4F 1F ¢ XY plane .
=]
0l y % 1, bm‘” i
L 11 ]
)
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¢ 9 *B-400 kG Il d & «B=550kG Il a
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FIG. 1. Excess heat capacity AC of (C¢H;NH3)CuBr; obtained by subtracting the data collected in zero field from those collect-
ed in an applied field B. Each figure panel contains the results of two measurements performed in applied fields with a different
magnitude and direction, but with the same component within the easy (XY) plane. The c axis is located within the easy plane; the
angles of this plane with the a and b axes are 65° and 25°, respectively (see inset).
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chain behaves as a classical sine-Gordon system (without
out-of-plane corrections) with the soliton mass solely de-
pending on the in-plane component of the external field.
This behavior is corroborated experimentally by mea-
surement of the excess heat capacity AC=C(B) —C(0)
of (C¢H, NH3)CuBr; for different magnetic fields B
with the same in-plane component. According to the
present approach, the free energy of these field
configurations is given by the same classical behavior of
the quantization axes and a different quantum-chain
Hamiltonian (Hm). Since it has been observed that the
contribution of linear excitations to AC is small,> we ex-
pect the results for various fields to be quantitatively
very similar. In Fig. 1 we have plotted the excess heat
capacity of (C¢H; NH3)CuBr; for various fields with
the same in-plane component. This experimental result,
hard to understand by the traditional theory, is explained
straightforwardly in our approach.

To conclude, a variety of experiments on easy-plane
ferromagnetic chain systems'? suggested that their be-
havior can be interpreted by assuming that the dominant
elementary excitations are solitons and magnons. The
success of this heuristic model, that characterizes such
spin chains by two independent types of excitations, re-
quired a reformulation of the relation between the free
energy of these spin chains and that of a sine-Gordon
chain. In this Letter this reformulation is done on the
basis of a variational approach for the distribution of the
direction of the quantization axes. It is found that in
general a simple distribution is sufficient to obtain a
theoretical free energy consisting of a classical and a
quantum part. In the case of an easy-plane system the
classical free energy is described by a sine-Gordon mod-
el, with a mass related to the in-plane component of the
external field. Secondly, the quantum free energy is de-
scribed by a modified spin-chain Hamiltonian. As far as
the magnon properties are concerned, our results show a
renormalization induced by the presence of classical ex-
citations. As a consequence, magnon excitation energies
calculated with the modified spin-chain Hamiltonian
have a term proportional to the soliton density.

The validity of the present approach is not restricted
to easy-plane ferromagnetic chains. Also for more com-

plex systems with, for example, an orthorhombic or heli-
cal symmetry, the introduction of stochastic quantization
axes may contribute to the understanding of some of the
thermodynamic properties of these quantum systems in
terms of their classical equivalent.

We thank J. T. Devreese for his current interest in this
work and acknowledge various stimulating discussions
with V. Tognetti, H. J. Mikeska, M. Steiner, and H.
Thomas on the subject of magnetic excitations.
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