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Abstract
We introduce a new class of irreducible pentanomials over F2 of the form f (x) = x2b+c+xb+c+xb+xc+1. Letm = 2b+c
and use f to define the finite field extension of degree m. We give the exact number of operations required for computing the
reductionmodulo f .We also provide amultiplier based onKaratsuba algorithm inF2[x] combinedwith our reduction process.
We give the total cost of the multiplier and found that the bit-parallel multiplier defined by this new class of polynomials has
improved XOR and AND complexity. Our multiplier has comparable time delay when compared to other multipliers based
on Karatsuba algorithm.

Keywords Irreducible pentanomials · Polynomial multiplication · Modular reduction · Finite fields

1 Introduction

Finite field extensions F2m of the binary field F2 play a cen-
tral role in many engineering applications and areas such as
cryptography. Elements in these extensions are commonly
represented using polynomial or normal bases. We center in
this paper on polynomial bases for bit-parallel multipliers.

When using polynomial bases, sinceF2m ∼= F2[x]/( f ) for
an irreducible polynomial f over F2 of degree m, we write
elements in F2m as polynomials over F2 of degree smaller
than m. When multiplying with elements in F2m , a polyno-
mial of degree up to 2m−2may arise. In this case, a modular
reduction is necessary to bring the resulting element back to
F2m .Mathematically, any irreducible polynomial can be used
to define the extension. In practice, however, the choice of
the irreducible f is crucial for fast and efficient field multi-
plication.
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There are two types of multipliers in F2m : one-step algo-
rithms and two-step algorithms. Algorithms of the first type
performmodular reductionwhile the elements are beingmul-
tiplied. In this paper,we are interested in two-step algorithms,
that is, in the first step the multiplication of the elements
is performed, and in the second step the modular reduction
is executed. Many algorithms have been proposed for both
types. An interesting application of two-step algorithms is
in several cryptographic implementations that use the lazy
reduction method [2,23]. For example, in [15] it is shown
the impact of lazy reduction in operations for binary elliptic
curves. An important application of the second part of our
algorithm, the reduction process, is to side-channel attacks.
Indeed, we prove that our modular reduction requires a con-
stant number of arithmetic operations, and as a consequence,
it prevents side-channel attacks.

The complexity of hardware circuits for finite field arith-
metic in F2m is related to the amount of space and the
time delay needed to perform the operations. Normally, the
number of exclusive-or (XOR) and AND gates is a good esti-
mation of the space complexity. The time complexity is the
delay due to the use of these gates.

Several special types of irreducible polynomials have
been considered before, including polynomials with few
nonzero terms like trinomials and pentanomials (three and
five nonzero terms, respectively), equally spaced polynomi-
als, all-one polynomials [7,12,19], and other special families
of polynomials [27]. In general, trinomials are preferred, but
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for degrees where there are no irreducible trinomials, pen-
tanomials are considered.

The analysis of the complexity using trinomials is known
[26]. However, there is no general complexity analysis of
a generic pentanomial in the literature. Previous results (see
[5] for details) have focus on special classes of pentanomials,
including:

– xm + xb+1 + xb + xb−1 + 1, where 2 ≤ b ≤ m/2 − 1
[9,11,18,20,28];

– xm + xb+1+ xb + x+1, where 1 < b < m−1 [9,10,18–
20,28];

– xm + xm−c + xb + xc + 1, where 1 ≤ c < b < m − c
[3];

– xm + xa + xb + xc + 1, where 1 ≤ c < b < a ≤ m/2
[19];

– xm + xm−s + xm−2s + xm−3s + 1, where (m − 1)/8 ≤
s ≤ (m − 1)/3 [19];

– x4c + x3c + x2c + xc + 1, where c = 5i and i ≥ 0 [7,8].

Like our family, these previous families focus on bit oper-
ations, i.e., operations that use only AND and XOR gates. In
the literature, it is possible to find studies that use computer
words to perform the operations [17,21], but this is not the
focus of our work.

1.1 Contributions of this paper

In this paper, we introduce a new class of irreducible pen-
tanomials with the following format:

f (x) = x2b+c + xb+c + xb + xc + 1, b > c > 0. (1)

We compare our pentanomial with the first two families from
the list above. The reason to choose these two family is that
[18] presents a multiplier considering these families with
complexity 25% smaller than the other existing works in the
literature using quadratic algorithms. Since our multiplier is
based onKaratsuba’s algorithm,we also compare ourmethod
with Karatsuba type algorithms.

An important reference for previously used polynomials
and their complexities is the recent survey on bit-parallel
multipliers by Fan and Hasan [5]. Moreover, we observe that
all finite fields results used in this paper can be found in the
classical textbook by Lidl and Niederreiter [13]; see [14] for
recent research in finite fields.

We prove that the complexity of the reduction depends on
the exponents b and c of the pentanomial. A consequence
of our result is that for a given degree m = 2b + c, for any
positive integers b > c > 0, all irreducible polynomials in
our family have the same space and time complexity. We
provide the exact number of XORs and gate delay required
for the reduction of a polynomial of degree 2m − 2 by our

pentanomials. The number of XORs needed is 3m − 2 =
6b+3c−2whenb �= 2c; forb = 2c this number is 12

5 m−1 =
12c − 1. We also show that AND gates are not required in
the reduction process. It is easy to verify that our reduction
algorithm is “constant-time” since it runs the same amount
of operations independent of the inputs and it avoids timing
side-channel attacks [6].

For comparison purposes with other pentanomials pro-
posed in the literature, since the operation considered in those
papers is the product of elements inF2m , we also consider the
number of ANDs and XORs used in the multiplication prior
to the reduction. In the literature, one can find works that use
the standard product or use some more efficient method of
multiplication, such as Karatsuba, and then add the complex-
ity of the reduction.

In this paper, we use a Karatsuba multiplier combined
with our fast reduction method. The total cost is then
Cmlog2 3 + 3m − 2 or Cmlog2 3 + 12

5 m − 1, depending on
b �= 2c or b = 2c, respectively. The constant C of the
Karatsuba multiplier depends on the implementation. In our
experiments,C is strictly less than 6 for all practical degrees,
up to degrees 1024. For the reduction,we give algorithms that
achieve the above number of operations using any irreducible
pentanomial in our family.We compare the complexity of the
Karatsubamultiplier with our reductionwith themethod pro-
posed by Park et al. [18], as well as, with Karatsuba variants
given in [5].

1.2 Structure of the paper

The structure of this paper is as follows. In Sect. 2,we give the
number of required reduction stepswhenusing a pentanomial
f from our family. We show that for our pentanomials this
number is 2 or 3. This fact is crucial since such a low number
of required reduction steps of our family allows for not only
an exact count of the XOR operations but also for a reduced
time delay. Our strategy for that consists in describing the
reduction process throughout equations, cleaning the redun-
dant operations and presenting the final optimized algorithm.
Section 3 provides the first component of our strategy. In this
section, we simply reduce a polynomial of degree at most
or exactly 2m − 2 to a polynomial of degree smaller than
m. The second component of our strategy is more delicate,
and it allows us to derive the exact number of operations
involved when our pentanomial f is used to define F2m . Sec-
tions 4 and 5 provide those analyses for the cases when two
and three steps of reduction are needed, that is, when c = 1
and c > 1, respectively. We give algorithms and exact esti-
mates for the space and time complexities in those cases.
Also, we describe a Karatsuba multiplier implementation
combined with our reduction. In Sect. 6, based on our imple-
mentation, we show that the number of XOR and AND gates
is better than the known space complexity in the literature.On
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the other hand, the time complexity (delay) in our implemen-
tation is worse than quadratic methods but comparable with
Karatsuba implementations. Hence, our multiplier would be
preferable in situations where space complexity and saving
energy are more relevant than time complexity. We demon-
strate that our family contains many polynomials, including
degrees where pentanomials are suggested by NIST. Conclu-
sions are given in Sect. 7.

2 The number of required reductions

When operating with two elements in F2m , represented by
polynomials, we obtain a polynomial of degree at most 2m−
2. In order to obtain the corresponding element in F2m , a
further division with remainder by an irreducible polynomial
f of degree m is required. We can see this reduction as a
process to bring the coefficient in interval [2m − 2,m] to
a position less than m. This is done in steps. In each step,
the coefficients in interval [2m − 2,m] of the polynomial is
substituted by the equivalent bits following the congruence
xm ≡ xa + xb + xc + 1. Once the coefficient in position
2m − 2 is brought to a position less than m, the reduction is
completed.

In this section, we carefully look into the number of steps
needed to reduce the polynomial by our polynomial f given
in Eq. (1). The most important result of this section is that
we need at most 3 steps of this reduction process using our
polynomials. This information is used in the next sections
to give the exact number of operations when the irreducible
pentanomial given in Equation (1) is employed. This compu-
tation was possible because our family has a small number
of required reduction steps.

Let D0(x) = ∑2m−2
i=0 di xi be a polynomial over F2. We

want to compute Dred , the remainder of the division of D0 by
f , where f has the form f (x) = x2b+c + xb+c + xb + xc +1
with 2b + c = m and b > c > 0. The maximum number ka
of reduction steps for a pentanomial xm + xa + xb + xc + 1
in terms of the exponent a is given by Sunar and Koç [22]

ka =
⌊
m − 2

m − a

⌋

+ 1.

In our case m = 2b + c and a = b + c, thus

kb+c =
⌊

2b + c − 2

2b + c − b − c

⌋

+ 1 =
⌊
c − 2

b

⌋

+ 3

=
{
2 if c = 1,

3 if c > 1.
(2)

Using the same method as in [22], we can derive the number
of steps required associated to the exponents b and c. These
numbers are needed in Sect. 3. We get

kb =
⌊
2b + c − 2

2b + c − b

⌋

+ 1 =
⌊
b − 2

b + c

⌋

+ 2 = 2, (3)

and

kc =
⌊
2b + c − 2

2b + c − c

⌋

+ 1 =
⌊
c − 2

2b

⌋

+ 2

=
{
1 if c = 1,

2 if c > 1.
(4)

Thus, the reduction process for our family of pentanomials
involves at most three steps. This is a special property that
our family enjoys.

The general process for the reduction proposed in this
paper is given in the next section. The special case c = 1,
that is when our polynomials have the form f (x) = x2b+1 +
xb+1 + xb + x + 1, requires two steps. This family is treated
in detail in Sect. 4. The general case of our family f (x) =
x2b+c + xb+c + xb + xc + 1 for c > 1 involves three steps
and is treated in Sect. 5.

3 The general reduction process

The general process that we follow to get the original polyno-
mial D0 reduced to a polynomial of degree smaller thanm is
depicted in Fig. 1.Without loss of generality, we consider the
polynomial to be reduced as always having degree 2m − 2.
Indeed, the cost to determine the degree of the polynomial to
be reduced is equivalent to checking if the leading coefficient
is zero.

The polynomial D0 to be reduced is split into two parts:
A0 is the piece of the original polynomial with degree at least
m and hence that requires extra work, while B0 is formed by
the terms of D0 with exponents smaller than m and so that
it does not require to be reduced. Dividing the leading term
of A0 by f with remainder we obtain D1. In the same way

Fig. 1 Tree representing the general reduction strategy
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as before, we split D1 in two parts A1 and B1 and repeat the
process obtaining the tree of Fig. 1.

3.1 Determining A0 and B0

We trivially have

D0(x) = A0(x) + B0(x) =
2m−2∑

i=m

di x
i +

m−1∑

i=0

di x
i ,

and hence

A0 =
2m−2∑

i=m

di x
i and B0 =

m−1∑

i=0

di x
i . (5)

3.2 Determining A1 and B1

Using for clarity the generic form of a pentanomial over F2,
f (x) = xm + xa + xb + xc + 1, dividing the leading term
of A0 by f and taking the remainder, we get

D1 =
m−2∑

i=0

di+mx
i+a +

m−2∑

i=0

di+mx
i+b

+
m−2∑

i=0

di+mx
i+c +

m−2∑

i=0

di+mx
i .

Separating the already reduced part of D1 from the piece
of D1 that still requires more work, we obtain

A1 =
m+a−2∑

i=m

di+(m−a)x
i +

m+b−2∑

i=m

di+(m−b)x
i

+
m+c−2∑

i=m

di+(m−c)x
i , (6)

and

B1 =
m−1∑

i=a

di+(m−a)x
i +

m−1∑

i=b

di+(m−b)x
i

+
m−1∑

i=c

di+(m−c)x
i +

m−2∑

i=0

di+mx
i .

Since m = 2b + c and a = b + c, we have

A1 =
3b+2c−2∑

i=2b+c

di+bx
i +

3b+c−2∑

i=2b+c

di+b+cx
i +

2b+2c−2∑

i=2b+c

di+2bx
i ,

B1 =
2b+c−1∑

i=b+c

di+bx
i +

2b+c−1∑

i=b

di+b+cx
i

+
2b+c−1∑

i=c

di+2bx
i +

2b+c−2∑

i=0

di+2b+cx
i . (7)

3.3 Determining A2 and B2

As before, we divide the leading term of A1 by f and we
obtain the remainder D2. We get D2 = D2a + D2b + D2c ,
where D2a , D2b and D2c refer to the reductions of the sums
in Eq. (6).

We start with D2a :

D2a =
a−2∑

i=0

di+2m−ax
i (xa + xb + xc + 1).

Separating D2a in the pieces A2a and B2a , we get A2a =∑2a−2
i=m di+2m−2axi since b + a − 2 < m, and

B2a =
m−1∑

i=a

di+2m−2ax
i +

a+b−2∑

i=b

di+2m−a−bx
i

+
a+c−2∑

i=c

di+2m−a−cx
i +

a−2∑

i=0

di+2m−ax
i .

Substituting m = 2b + c and a = b + c, we get A2a =
∑2b+2c−2

i=2b+c di+2bxi , and

B2a =
2b+c−1∑

i=b+c

di+2bx
i +

2b+c−2∑

i=b

di+2b+cx
i

+
b+2c−2∑

i=c

di+3bx
i +

b+c−2∑

i=0

di+3b+cx
i .

Proceeding with the reduction now of the second sum in
Eq. (6), we obtain

D2b =
a+b−2∑

i=a

di+2m−a−bx
i +

2b−2∑

i=b

di+2m−2bx
i

+
b+c−2∑

i=c

di+2m−b−cx
i +

b−2∑

i=0

di+2m−bx
i .

Clearly, D2b is already reduced, and thus A2b = 0, and

B2b =
2b+c−2∑

i=b+c

di+2b+cx
i +

2b−2∑

i=b

di+2b+2cx
i

+
b+c−2∑

i=c

di+3b+cx
i +

b−2∑

i=0

di+3b+2cx
i .
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We finally reduce the third and last sum in Eq. (6):

D2c =
a+c−2∑

i=a

di+2m−a−cx
i +

b+c−2∑

i=b

di+2m−b−cx
i

+
2c−2∑

i=c

di+2m−2cx
i +

c−2∑

i=0

di+2m−cx
i .

Again, we easily check that D2c is reduced and so A2c = 0,
and

B2c =
b+2c−2∑

i=b+c

di+3bx
i +

b+c−2∑

i=b

di+3b+cx
i

+
2c−2∑

i=c

di+4bx
i +

c−2∑

i=0

di+4b+cx
i .

Concluding, A2 is given by

A2 = A2a + A2b + A2c =
2a−2∑

i=m

di+2m−2ax
i , (8)

and B2 = B2a + B2b + B2c is

B2 =
2b+c−1∑

i=b+c

di+2bx
i +

b+2c−2∑

i=c

di+3bx
i +

b+2c−2∑

i=b+c

di+3bx
i

+
2c−2∑

i=c

di+4bx
i +

2b+c−2∑

i=b

di+2b+cx
i +

2b+c−2∑

i=b+c

di+2b+cx
i

+
2b−2∑

i=b

di+2b+2cx
i +

b+c−2∑

i=0

di+3b+cx
i +

b+c−2∑

i=c

di+3b+cx
i

+
b+c−2∑

i=b

di+3b+cx
i +

b−2∑

i=0

di+3b+2cx
i +

c−2∑

i=0

di+4b+cx
i .

(9)

3.4 Determining A3 and B3

Dividing the leading term of A2 in Eq. (8) by f , we have

D3 =
b+2c−2∑

i=b+c

di+3bx
i +

b+c−2∑

i=b

di+3b+cx
i +

2c−2∑

i=c

di+4bx
i

+
c−2∑

i=0

di+4b+cx
i .

We have that D3 is reduced so A3 = 0 and

B3 =
b+2c−2∑

i=b+c

di+3bx
i +

b+c−2∑

i=b

di+3b+cx
i +

2c−2∑

i=c

di+4bx
i

+
c−2∑

i=0

di+4b+cx
i . (10)

3.5 The number of terms in Ar and Br

Let G(i) = 1 if i > 0 and G(i) = 0 if i ≤ 0. Let r be
a reduction step. It is clear now that the precise number of
terms for Ar and Br , for r ≥ 0, can be obtained using kb+c,
kb and kc given in Eqs. (2), (3) and (4). We have:

(i) The number of terms of A0 and B0 is 1.
(ii) For r > 0, the number of terms of Ar is G(kb+c − r) +

G(kb − r)+G(kc − r), while the number of terms of Br
is 4 times the number of terms of Ar−1.

4 The family of polynomials
f (x) = x2b+1 + xb+1 + xb + x + 1

In this section, we consider the case when c = 1, that is,
when kb+c = 2, as given in Eq. (2). The polynomials in this
subfamily have the form f (x) = x2b+1+ xb+1+ xb + x +1.
For the subfamily treated in this section, since kb+c = 2, we
immediately get A2 = 0 and the expressions in the previous
section simplify. As a consequence, the desired reduction is
given by

Dred = B0 + B1 + B2.

Using Eqs. (5), (7) and (9), we obtain

Dred =
2b∑

i=0

di x
i +

2b∑

i=b+1

di+bx
i +

b∑

i=1

di+2bx
i

+
b∑

i=1

di+3bx
i +

2b∑

i=b

di+b+1x
i

+
b−1∑

i=0

di+2b+1x
i +

2b−1∑

i=b+1

di+2b+1x
i

+
2b−2∑

i=b

di+2b+2x
i +

b−2∑

i=0

di+3b+2x
i + d3b+1.

(11)

A crucial issue that allows us to give improved results for
our family of pentanomials is the fact that redundancies occur
for Dred in Eq. (11). Let

T1( j) =
b−2∑

i=0

(di+2b+1 + di+3b+2)x
i+ j , T2( j) = d3bx

j ,

T3( j) = d3b+1x
j , T4( j) =

b−1∑

i=0

(di+2b+1 + di+3b+1)x
i+ j .

A careful analysis of Eq. (11) reveals that T1, T2 and T3
are used more than once, and hence, savings can occur. We
rewrite Eq. (11) as
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Fig. 2 Representation of the reduction by f (x) = x2b+1 + xb+1 + xb + x + 1

Dred = B0 + T1(0) + T1(b) + T1(b + 1) + T2(b − 1)

+ T2(2b − 1) + T2(2b) + T3(0) + T3(2b) + T4(1).

(12)

One can check that by plugging T1, T2, T3 and T4 in Eq. (12)
we recover Eq. (11). Figure 2 shows these operations. We
remark that even though the first row in this figure is B0, the
following two rows are not B1 and B2. Indeed, those rows
are obtained from B1 and B2 together with the optimizations
provided by T1, T2, T3 and T4.

Using Eq. (12), the number N⊕ of XOR operations is

N⊕ = 6b + 1 = 3m − 2.

It is also easy to see from Fig. 2 that the time delay is 3TX ,
where TX is the delay of one 2-input XOR gate.

We are now ready to provide Algorithm 1 for computing
Dred given in Eq. (12), and as explained in Fig. 2, for the
pentanomials f (x) = x2b+1 + xb+1 + xb + x + 1.

Putting all pieces together, we give next the main result of
this section.

Theorem 1 Algorithm 1 correctly gives the reduction of a
polynomial of degree at most 2m − 2 over F2 by f (x) =
x2b+1+ xb+1+ xb + x+1 involving N⊕ = 3m−2 = 6b+1
number of XORs operations and a time delay of 3TX .

5 Family
f (x) = x2b+c + xb+c + xb + xc + 1, c > 1

For polynomials of the form f (x) = x2b+c + xb+c + xb +
xc + 1, c > 1, we have that kb+c = 3, implying that A3 = 0.
The reduction is given by

Dred = B0 + B1 + B2 + B3.

Algorithm 1Computing Dred when f (x) = x2b+1+xb+1+
xb + x + 1.
input : D0 = d[4b . . . 0] bits vector of length 4b + 1
output: Dred
for i ← 0 to b − 2 do

T1[i] ← d[i + 2b + 1] ⊕ d[i + 3b + 2]; 	 Definition of T1
end
for i ← 0 to b − 1 do

T4[i] ← d[i + 2b + 1] ⊕ d[i + 3b + 1]; 	 Definition of T4
end
Dred [0] ← d[0] ⊕ T1[0] ⊕ d[3b + 1]; 	 Column 0 of Fig. 2
for i ← 1 to b − 2 do

Dred [i] ← d[i] ⊕ T1[i] ⊕ T4[i − 1]; 	 Columns 1 to b − 2 of
Fig. 2

end
Dred [b − 1] ← d[b − 1] ⊕ d[3b] ⊕ T4[b − 2]
Dred [b] ← d[b] ⊕ T1[0] ⊕ T4[b − 1]
for i ← b + 1 to 2b − 2 do

Dred [i] ← d[i] ⊕ T1[i − b] ⊕ T1[i − b − 1]; 	 Columns b + 1
to 2b − 2 of Fig. 2

end
Dred [2b − 1] ← d[2b − 1] ⊕ d[3b] ⊕ T1[b − 2]
Dred [2b] ← d[2b] ⊕ d[3b + 1] ⊕ d[3b]
return Dred

Using Eqs. (5), (7), (9) and (10), we have that Dred satisfies

Dred =
2b+c−1∑

i=0

di x
i +

2b+c−1∑

i=b+c

di+bx
i

+
b+c−1∑

i=c

di+2bx
i +

b+2c−2∑

i=c

di+3bx
i

+
2b+c−1∑

i=b

di+b+cx
i +

b−1∑

i=0

di+2b+cx
i

+
2b+c−2∑

i=b+c

di+2b+cx
i +

2b−2∑

i=b

di+2b+2cx
i

+
c−1∑

i=0

di+3b+cx
i +

b−2∑

i=0

di+3b+2cx
i .

(13)
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Fig. 3 Representation of the reduction by f (x) = x2b+c + xb+c + xb + xc + 1, c > 1

Let

T1( j) =
b−2∑

i=0

(di+2b+c + di+3b+2c)x
i+ j , T2( j) = d3b+c−1x

j ,

T3( j) =
c−1∑

i=0

di+3b+cx
i+ j , T4( j) =

b−2∑

i=0

di+2b+cx
i+ j ,

T5( j) =
b−2∑

i=0

di+3b+2cx
i+ j .

Again, a careful analysis of Eq. (13) shows that T1, T2 and
T3 are used more than once. Thus, we can rewrite Eq. (13)
for Dred as

Dred =B0 + T1(0) + T1(b) + T1(b + c)

+ T2(b − 1) + T2(b + c − 1)

+ T2(2b − 1) + T2(2b + c − 1)

+ T3(0) + T3(c) + T3(2b) + T4(c) + T5(2c).

(14)

Figure 3 depicts these operations. Using Eq. (14) and Fig. 3,
we have Algorithm 2. For code efficiency reasons, in contrast
toAlgorithm1, inAlgorithm2we separate the last line before
the equality in Fig. 3. The additions of this last line are done
in lines 17 to 20 of Algorithm 2. As a consequence, lines 3
to 16 of Algorithm 2 include only the additions per column
from 0 to 2b + c − 1 of the first three lines in Fig. 3.

The time delay is 3TX ; after removal of redundancies and
not counting repeated terms, we obtain that the number N⊕
of XORs is

N⊕ = 6b + 3c − 2 = 3m − 2.

Theorem 2 Algorithm 2 correctly gives the reduction of a
polynomial of degree at most 2m − 2 over F2 by f (x) =
x2b+c + xb+c + xb + xc + 1 involving N⊕ = 3m − 2 =
6b+ 3c− 2 number of XORs operations and a time delay of
3TX .

Algorithm 2 Computing Dred for f (x) = x2b+c + xb+c +
xb + xc + 1.
input : D0 = d[2b + c − 1 . . . 0] bits vector of length 2b + c
output: Dred
for i ← 0 to b − 2 do

T1[i] ← d[i + 2b + 1] ⊕ d[i + 3b + 2c]; 	 Definition of T1
end
for i ← 0 to c − 1 do

Dred [i] ← d[i] ⊕ T1[i]; 	 Columns 0 to c − 1 of the first three
lines of Fig. 3

end
for i ← c to b − 2 do

Dred [i] ← d[i] ⊕ T1[i] ⊕ d[i + 2b]
end
Dred [b − 1] ← d[b − 1] ⊕ d[3b + c − 1] ⊕ d[3b − 1] for i ← b to
b + c − 2 do

Dred [i] ← d[i] ⊕ T1[i − b] ⊕ d[i + 2b]
end
Dred [b + c − 1] ← d[b + c − 1] ⊕ d[3b + c − 1] ⊕ T1[c − 1] for
i ← b + c to 2b − 2 do

Dred [i] ← d[i] ⊕ T1[i − b] ⊕ T1[i − b − c]
end
Dred [2b−1] ← d[2b−1]⊕d[3b+c−1]⊕T1[b−c−1] for i ← 2b
to 2b + c − 2 do

Dred [i] ← d[i] ⊕ T1[i − b − c] ⊕ d[i + b + c]
end
Dred [2b + c − 1] ← d[2b + c − 1] ⊕ d[3b + c − 1] ⊕ d[3b − 1] for
i ← 0 to c − 1 do

Dred [i] ← Dred [i] ⊕ d[i + 3b + c]; 	 Columns 0 to c − 1 of
the 4th line of Fig. 3

end
for i ← c to b + 2c − 2 do

Dred [i] ← Dred [i] ⊕ d[i + 3b]; 	 Cols c to b + 2c − 2 of the
4th line of Fig. 3

end
return Dred

5.1 Almost equally spaced pentanomials: the special
case b = 2c

Consider the special case b = 2c. In this case, we obtain
the almost equally spaced polynomials f (x) = x5c + x3c +
x2c + xc + 1. Our previous analysis when applied to these
polynomials entails

123



366 Journal of Cryptographic Engineering (2019) 9:359–373

Fig. 4 Representation of the reduction by the almost equally spaced pentanomials (the special case b = 2c)

Dred =
5c−1∑

i=0

di x
i +

5c−1∑

i=3c

di+2cx
i +

3c−1∑

i=c

di+4cx
i

+
4c−2∑

i=c

di+6cx
i +

5c−1∑

i=2c

di+3cx
i

+
2c−1∑

i=0

di+5cx
i +

5c−2∑

i=3c

di+5cx
i +

4c−2∑

i=2c

di+6cx
i

+
c−1∑

i=0

di+7cx
i +

2c−2∑

i=0

di+8cx
i .

(15)

Let

T1( j) =
2c−2∑

i=c

(di+5c + di+4c)x
i+ j ,

T2( j) =
2c−2∑

i=c

(di+8c + di+6c)x
i+ j ,

T3( j) = d8c−1x
j , T4( j) =

c−1∑

i=0

di+8cx
i+ j ,

T5( j) =
c−1∑

i=0

di+5cx
i+ j ,

T6( j) =
c−2∑

i=0

di+7cx
i+ j , T7( j) =

5c−1∑

i=4c

di+2cx
i+ j .

In the computation of Dred , T1, T2, T3 and T4 are used
more than once. Figure 4 shows, graphically, these oper-
ations. After removal of redundancies, the number N⊕ of

XORs is N⊕ = 12c−1 = 12

5
m−1.This number of XORs is

close to 2.4m providing a saving of about 20%with respect to
the other pentanomials in our family. Irreducible pentanomi-
als of this form are rare but they do exist, for example, for

degrees 5, 155 and 4805. We observe that the extension 155
is used in [1].

Using Eq. (15) and Fig. 4, we naturally have Algorithm 3.

Algorithm 3Computing Dred for f (x) = x5c + x3c + x2c +
xc + 1.
input : D0 = d[5c − 1 . . . 0] bits vector of length 5c
output: Dred
for i ← 0 to c − 2 do

T1[i] ← d[i + 6c] ⊕ d[i + 5c] 	 Definition of T1
end
for i ← 0 to c − 2 do

T2[i] ← d[i + 9c] ⊕ d[i + 7c] 	 Definition of T2
end
for i ← 0 to c − 2 do

Dred [i] ← d[i] ⊕ d[i + 8c] ⊕ d[i + 5c] ⊕ d[i + 7c]
end
Dred [c − 1] ← d[c − 1] ⊕ d[9c − 1] ⊕ d[6c − 1]
for i ← c to 2c − 2 do

Dred [i] ← d[i] ⊕ T1[i − c] ⊕ T2[i − c]
end
Dred [2c − 1] ← d[2c − 1] ⊕ d[8c − 1] ⊕ T1[c − 1]
for i ← 2c to 3c − 1 do

Dred [i] ← d[i] ⊕ T1[i − 2c]
end
for i ← 3c to 4c − 1 do

Dred [i] ← d[i] ⊕ T1[i − 3c] ⊕ d[i + 5c]
end
for i ← 4c to 5c − 2 do

Dred [i] ← d[i] ⊕ T2[i − 4c] ⊕ d[i + 2c]
end
Dred [5c − 1] ← d[5c − 1] ⊕ d[8c − 1] ⊕ d[7c − 1]
return Dred

6 Multiplier in F2[x], complexity analysis and
comparison

So far, we have focused on the second step of the algorithm,
that is, on the reduction part. For the first step, the multi-

123



Journal of Cryptographic Engineering (2019) 9:359–373 367

plication part, we simply use a standard Karatsuba recursive
algorithm implementation; see Algorithm 4.

Recursivity in hardware can be an issue; see [24] and [4],
for example, for efficient hardware implementations of poly-
nomial multiplication in finite fields using Karatsuba’s type
algorithms.

Algorithm 4 Karatsuba Algorithm for F2m

input : A(x) = ∑m−1
i=0 ai xi and B(x) = ∑m−1

i=0 bi xi

output: C(x) = A(x)B(x) = ∑2m−2
i=0 ci xi

Function Karatsuba(A, B):
m ← maxDegree(A, B) 	 compute the larger degree between
polynomials A and B
if m = 0 then

return (A & B) 	 & is a bitwise AND operator
end
m2 = f loor(m/2) 	 split A and B
higha, lowa ← spli t(A,m2)
highb, lowb ← spli t(B,m2)
d0 ← Karatsuba(lowa, lowb) 	 recursive call of Karatsuba
d1 ← Karatsuba((lowa ⊕ higha), (lowb ⊕ highb)) 	 recursive
call of Karatsuba
d2 ← Karatsuba(higha, highb) 	 recursive call of Karatsuba
c ← d2xm ⊕ (d1 ⊕ d2 ⊕ d0)xm2 ⊕ d0
return c

End Function

As can be seen our multiplier consists of two steps. The
first is the multiplication itself using Karatsuba arithmetic
or, if necessary, the school book method, and the second is
the reduction described in the previous sections. The choice
of the first step method will basically depend on whether
the application requirement is to minimize area (Karatsuba),
i.e., the number of ANDs andXORs gates, or tominimize the
arithmetic delay (School book); see [5] for several variants of
both the schoolbook and Karatsuba algorithms. Minimizing
the area is interesting in applications that need to save power
at the expense of a longer runtime.

We chose theKaratsubamultiplier since our goal is tomin-
imize the area, i.e., to minimize the number of gates AND
and XOR. A summary of our results compared with related
works is given in Tables 1 and 2. Table 1 presents comparison
costs among multipliers that perform two steps for the multi-
plication, that is, they execute a multiplication followed by a
reduction. The table shows the multiplication algorithm used
in each case. Table 2 gives a comparison among the state-of-
the-art bit multipliers in the literature. The main target for
us is [18] since it presents the smallest area in the litera-
ture. However, Type 3 polynomials are also considered; this
is another practically relevant family of polynomials. With
respect to Karatsuba variants, Table 3 of survey [5] shows
asymptotic complexities of several Karatsuba multiplication
algorithms without reduction.

For each entry in Table 1, we give the multiplication algo-
rithm and the amount of gates AND, XOR as well its delay.

We point that for [19] and [25], their multipliers are general
for any pentanomial with a ≤ m

2 instead of for a specific
family such as [20]. In the case of our family, in addition to
the number of XORs for the reduction, we include the cost
for the multiplication due to the recursive Karatsuba imple-
mentation multiplier, that is, the XOR count is formed by the
sum of the XORs of the Karatsuba multiplier and the ones
of the reduction part. In our implementation, the constant of
Karatsuba is strictly less than 6; see Fig. 5 for degrees up
to 1024. As can be seen, for degrees powers of 2 minus 1
(2k − 1, k ≥ 1), the constant achieves local minimum. For
the number of AND gates, we provide an interval. The actual
number of AND gates depends on the value of m; it only
reaches a maximum when m = 2k − 1, for k ≥ 1.

In Table 2, we provide the number of XORs and ANDs
gates forType1 andType2 families in [18] and [20], Type3 in
[19] and our family of pentanomials.We point out that in [18]
the authors compute multiplication and reduction as a unique
block with a divide-and-conquer approach using squaring. In
contrast, we separate these two parts and use Karatsuba for
the multiplier followed by our reduction algorithm.

The costs for using our pentanomials for degrees proposed
by NIST can be found in Table 3. The amount of XOR and
AND gates are the exact value obtained from Table 1. The
delay costs can be separated in TA and TX , delay for AND
gates and XOR gates, respectively. The delay for AND gates
is due to only 1 AND gate at the lowest level of the Karatsuba
recursion. The delay for the XOR gates in the Karatsuba
multiplier is 3
log2 (m − 1)� since there are 3 delay XORs
per level of the Karatsuba recursion. For the reduction part,
we only have 3 delayXORs. Hence, the total number of XOR
delays is 3
log2 (m − 1)� + 3.

Table 4 shows the number of irreducible pentanomials of
degrees 163, 283 and 571 for the families considered since
those are NIST degrees where pentanomials have been rec-
ommended [16]. Analyzing the table, we have that family
Type 1 has the most irreducible pentanomials, but few of
them have degrees recommended by NIST [16]. The first
family of Type 2, proposed in [18], has restrictions in the
range of c; this family presents the highest number of repre-
sentatives with NIST degrees of interest. The second family
of Type 2, proposed in [20], has no restrictions for c; this
family presents the largest number of irreducible polyno-
mials. Type 3 is the special case from [19]. Our family for
b �= 2c has less irreducible polynomials, and it has no irre-
ducible polynomials with degrees 163, 283 and 571. In the
other side, when b �= 2c our family has 730 polynomials of
degrees up to 1024 and it presents 5 pentanomials of NIST
degrees.

In the following,we comment on the density of irreducible
pentanomials in our family. Table 5 lists all irreducible pen-
tanomials of our family for degrees up to 1024; N⊕ is the
number of XORs required for the reduction. We leave as an
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Table 1 Two steps multipliers cost comparison for different family of pentanomials

xm + xa + xb + xc + 1 [20,25], Multiplication algorithm: Schoolbook.

Costs #AND #XOR Delay

Reduction 0 4(m − 1) 3TX

Multiplication m2 (m − 1)2 TA + (
log2 m�)TX
Multiplier m2 m2 + 2m − 3 TA + (3 + 
log2 m�)TX
Type I - xm + xn+1 + xn + x + 1 [20], Multiplication algorithm: Mastrovito-like Multiplier.

Costs #AND #XOR Delay

Reduction 0 3m + 2n − 1 3TX

Multiplication m2 m2 − 2m + 1 TA + (
log2 m�)TX
Multiplier m2 m2 + m + 2n TA + (3 + 
log2 m�)TX
Type I - xm + xn+1 + xn + x + 1 [19], Multiplication algorithm: Mastrovito-like Multiplier.

Costs #AND #XOR Delay

Reduction 0 3m − 2 3TX

Multiplication m2 m2 − 2m + 1 TA + (
log2 (m − 1)�)TX
Multiplier m2 m2 + m† TA + (3 + 
log2 (m − 1)�)TX
Type I I - xm + xn+2 + xn+1 + xn + 1 [20], Multiplication algorithm: Dual basis.

Costs #AND #XOR Delay

Reduction 0 3m − 
(m − 2)/2� + 3n − 4 3TX

Multiplication m2 m2 − m TA + (
log2 m�)TX
Multiplier m2 m2 + 2m − 
(m − 2)/2� + 3n − 4 TA + (3 + 
log2 m�)TX
xm + xa + xb + xc + 1, c > 1 [19], Multiplication algorithm: Mastrovito-like Multiplier.

Costs #AND #XOR Delay

Reduction 0 4m − 4 4TX

Multiplication m2 m2 − 2m + 1 TA + (
log2 (m − 1)�)TX
Multiplier m2 m2 + 2m − 3 TA + (4 + 
log2 (m − 1)�)TX
Ours - x2b+c + xb+c + xb + xc + 1, Multiplication algorithm: Karatsuba.

Costs #AND #XOR Delay

Reduction 0 3m − 2 3TX

Multiplication (3�log2 m
, 3�log2 m
+1] < 6mlog2 3 TA + 3
log2 (m − 1)�TX
Multiplier (3�log2 m
, 3�log2 m
+1] < 6mlog2 3 + 3m − 2 TA + 3(
log2 (m − 1)� + 1)TX

Ours - x5c + x3c + x2c + xc + 1, Multiplication algorithm: Karatsuba.

Costs #AND #XOR Delay

Reduction 0 (12/5)m − 1 3TX

Multiplication (3�log2 m
, 3�log2 m
+1] < 6mlog2 3 TA + 3
log2 (m − 1)�TX
Multiplier (3�log2 m
, 3�log2 m
+1] < 6mlog2 3 + (12/5)m − 1 TA + 3(
log2 (m − 1)� + 1)TX

† There is an additional XOR to reduce the time delay; see [19, p. 955]

open problem to mathematically characterize under which
conditions our pentanomials are irreducible.

7 Conclusions

In this paper, we present a new class of pentanomials over
F2, defined by x2b+c+ xb+c+ xb+ xc+1.We give the exact
number of XORs in the reduction process; we note that in
the reduction process no ANDs are required.

It is interesting to point out that even though the cases
c = 1 and c > 1, as shown in Figs. 2 and 3, are quite
different, the final result in terms of number of XORs is the
same. We also consider a special case when b = 2c where
further reductions are possible.

There are irreducible pentanomials of this shape for sev-
eral degree extensions of practical interest. We provide a
detailed analysis of the space and time complexity involved
in the reduction using the pentanomials in our family. For the
multiplication process, we simply use the standardKaratsuba
algorithm.
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Table 2 Space and time complexities of state-of-the-art bit multipliers

Type # XOR # AND Delay

Type 1 xm + xb+1 + xb + x + 1, 1 < b ≤ m
2 − 1

[18] b is odd
3m2 + 24m + 8b + 21

4

3m2 + 2m − 1

4
TA + (3 + 
log2(m + 1)�)Tx

[18] b is even
3m2 + 24m + 8b + 17

4

3m2 + 2m − 1

4
TA + (3 + 
log2(m + 1)�)Tx

Type 2 xm + xc+2 + xc+1 + xc + 1

[18] c is odd, c ≤ 3
8 (m − 7)

3m2 + 24m + 14c + 35

4

3m2 + 2m − 1

4
TA + (3 + 
log(m + 1)�)Tx

[18] c is even, c ≤ m
2 − 1

3m2 + 24m + 14c + 45

4

3m2 + 2m − 1

4
TA + (3 + 
log(m + 1)�)Tx

[20] c > 1 m2 + 2m − 
(m − 2)/2� + 3n − 4 m2 TA + (3 + 
log(m − 1)�)Tx
[20] c = 1 m2 + m − 2 m2 TA + (3 + 
log2(m − 1)�)Tx
Type 3 xm + xm−c + xm−2c + xm−3c + 1

[19] m−1
4 ≤ c ≤ m−1

3 m2 + m − c − 1 m2 TA + (3 + 
log2(m − 1)�)Tx
[19] m−1

5 ≤ c < m−1
4 m2 + 2m − 5c − 2 m2 TA + (3 + 
log2(m − 1)�)Tx

[19] m−1
8 ≤ c < m−1

5 m2 + m − 2 m2 TA + (3 + 
log2(m − 1)� + 1)Tx

Ours x2b+c + xb+c + xb + xc + 1

Ours c ≥ 1, b �= 2c < 6mlog2 3 + 3m − 2 (3�log2 m
, 3�log2 m
+1] TA + 3(
log2 (m − 1)�)Tx
Ours c ≥ 1, b = 2c < 6mlog2 3 + 12

5 m − 1 (3�log2 m
, 3�log2 m
+1] TA + 3(
log2 (m − 1)� + 1)Tx

Table 3 Costs for fixed degree
pentanomials proposed by NIST

Degree XORs ANDs Delay
Karatsuba Reduction Total

163 17,944 487 18,431 4,419 TA + 27TX
283 43,162 847 44,009 10,305 TA + 30TX
571 132,280 1711 133,991 31,203 TA + 33TX

Fig. 5 Karatsuba constant for
degrees up to 1024
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The proved complexity analysis of the multiplier and
reduction considering the family proposed in this paper,
as well as our analysis suggests that these pentanomi-
als are as good as or possibly better to the ones already
proposed.

We leave for future work to produce a one-step algorithm
using our pentanomials, that is, a multiplier that performs
multiplication and reduction in a single step using our fam-
ily of polynomials, as well as a detailed study of the delay
obtained using this algorithm.
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Table 4 Number of irreducible
pentanomials for NIST degrees

Type #I rred. 163 283 571

Type 1 [18] 2025 1 2 0

Type 2 [18] 1676 3 2 2

Type 2 [20] 3430 6 4 4

Type 3 [19] 539 0 0 0

Ours, b �= 2c 728 2 2 1

Ours, b = 2c 2 0 0 0

Table 5 Our family of
irreducible pentanomials and
their number of XORs
(b, c, N⊕), 2b �= c

2, 1, 11 3, 2, 22 4, 1, 25 5, 1, 31 5, 2, 34

6, 1, 37 5, 3, 37 7, 2, 46 9, 5, 67 8, 7, 67

9, 6, 70 12, 1, 73 11, 3, 73 10, 7, 79 13, 3, 85

10, 9, 85 13, 4, 88 15, 6, 106 14, 9, 109 19, 2, 118

17, 6, 118 15, 10, 118 17, 11, 133 17, 12, 136 21, 5, 139

20, 7, 139 16, 15, 139 21, 6, 142 23, 5, 151 22, 7, 151

25, 2, 154 21, 11, 157 21, 13, 163 27, 5, 175 23, 13, 175

29, 2, 178 25, 10, 178 23, 14, 178 25, 12, 184 28, 7, 187

32, 1, 193 28, 9, 193 31, 4, 196 23, 20, 196 30, 7, 199

28, 15, 211 27, 18, 214 35, 3, 217 31, 11, 217 27, 22, 226

29, 20, 232 35, 10, 238 31, 19, 241 38, 7, 247 31, 21, 247

41, 3, 253 38, 9, 253 37, 12, 256 35, 19, 265 39, 12, 268

34, 25, 277 45, 4, 280 33, 29, 283 47, 2, 286 40, 17, 289

38, 23, 295 48, 7, 307 40, 23, 307 46, 15, 319 42, 23, 319

53, 2, 322 45, 18, 322 41, 26, 322 45, 19, 325 38, 33, 325

41, 28, 328 52, 7, 331 41, 29, 331 47, 20, 340 45, 26, 346

43, 30, 346 49, 19, 349 41, 35, 349 45, 28, 352 57, 6, 358

51, 18, 358 45, 30, 358 46, 31, 367 55, 14, 370 52, 25, 385

63, 4, 388 62, 7, 391 45, 44, 400 51, 34, 406 59, 19, 409

50, 41, 421 63, 18, 430 68, 9, 433 63, 19, 433 59, 27, 433

56, 33, 433 67, 12, 436 69, 11, 445 60, 31, 451 75, 2, 454

56, 41, 457 63, 29, 463 62, 31, 371 59, 37, 463 75, 6, 466

71, 14, 466 65, 26, 466 61, 36, 472 77, 5, 475 74, 15, 487

63, 37, 487 67, 30, 490 65, 34, 490 73, 19, 493 71, 30, 514

87, 2, 526 87, 6, 538 75, 30, 538 69, 42, 538 82, 17, 541

71, 46, 562 70, 49, 565 81, 28, 568 77, 36, 568 85, 21, 571

65, 61, 571 83, 28, 580 95, 10, 598 85, 30, 598 75, 50, 598

95, 12, 604 98, 9, 613 86, 33, 613 81, 43, 613 78, 49, 613

77, 51, 613 103, 3, 625 91, 28, 628 87, 37, 631 78, 55, 631

101, 11, 637 74, 65, 637 104, 7, 643 81, 54, 646 79, 60, 652

79, 61, 655 101, 18, 658 85, 53, 667 112, 1, 673 91, 44, 676

90, 47, 679 79, 69, 679 81, 66, 682 105, 19, 685 90, 49, 685

95, 43, 697 79, 75, 697 102, 31, 703 99, 37, 703 91, 53, 703

97, 42, 706 94, 49, 709 104, 31, 715 119, 2, 718 105, 30, 718

110, 23, 727 103, 37, 727 105, 34, 730 99, 46, 730 88, 73, 745

99, 52, 748 118, 15, 751 103, 45, 751 95, 61, 751 115, 23, 757

105, 43, 757 93, 67, 757 125, 4, 760 93, 68, 760 127, 2, 766

87, 83, 769 123, 14, 778 130, 1, 781 97, 67, 781 128, 7, 787

108, 47, 787 103, 59, 793 92, 81, 793 119, 30, 802 99, 70, 802

117, 36, 808 120, 31, 811 105, 61, 811 119, 34, 814 106, 63, 823
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131, 14, 826 133, 13, 835 140, 1, 841 95, 91, 841 123, 37, 847

111, 61, 847 115, 54, 850 118, 49, 853 113, 59, 853 141, 6, 862

107, 76, 868 130, 31, 871 125, 42, 874 125, 43, 877 142, 15, 895

139, 22, 898 125, 50, 898 115, 70, 898 131, 43, 913 154, 1, 925

142, 25, 925 155, 3, 937 107, 102, 946 154, 9, 949 114, 89, 949

109, 99, 949 145, 34, 970 137, 50, 970 135, 54, 970 123, 78, 970

146, 33, 973 145, 36, 976 133, 60, 976 121, 85, 979 161, 6, 982

143, 44, 988 123, 84, 988 129, 74, 994 153, 29, 1.003 156, 25, 1009

115, 107, 1.009 118, 105, 1.021 169, 4, 1.024 145, 52, 1.024 137, 68, 1024

125, 92, 1.024 139, 67, 1.033 135, 78, 1.042 129, 90, 1.042 129, 91, 1045

135, 84, 1.060 174, 7, 1.063 126, 103, 1.063 157, 42, 1.066 161, 35, 1069

154, 49, 1.069 133, 93, 1.075 171, 18, 1.078 153, 54, 1.078 135, 90, 1078

179, 5, 1.087 130, 103, 1.087 169, 27, 1.093 162, 41, 1.093 142, 81, 1093

133, 99, 1.093 122, 121, 1.093 124, 121, 1.105 130, 113, 1.117 173, 29, 1123

167, 43, 1.129 144, 89, 1.129 189, 4, 1.144 177, 28, 1.144 161, 60, 1144

163, 62, 1.162 133, 123, 1.165 140, 111, 1.171 147, 101, 1.183 193, 10, 1186

185, 27, 1.189 189, 20, 1.192 197, 6, 1.198 175, 50, 1.198 160, 81, 1201

135, 132, 1.204 170, 63, 1.207 166, 71, 1.207 149, 109, 1.219 153, 102, 1222

191, 28, 1.228 189, 37, 1.243 161, 93, 1.243 159, 100, 1.252 179, 61, 1255

155, 109, 1.255 203, 14, 1.258 161, 98, 1.258 198, 25, 1.261 170, 81, 1261

150, 121, 1.261 149, 132, 1.288 205, 21, 1.291 189, 54, 1.294 163, 109, 1303

151, 134, 1.306 173, 93, 1.315 148, 143, 1.315 209, 22, 1.318 187, 66, 1318

196, 49, 1.321 190, 63, 1.327 183, 77, 1.327 194, 57, 1.333 172, 105, 1345

223, 4, 1.348 173, 108, 1.360 225, 6, 1.366 204, 49, 1.369 155, 149, 1375

162, 137, 1.381 161, 140, 1.384 204, 55, 1.387 193, 77, 1.387 199, 69, 1399

225, 18, 1.402 213, 42, 1.402 195, 78, 1.402 197, 76, 1.408 183, 108, 1420

234, 7, 1.423 203, 69, 1.423 209, 59, 1.429 161, 155, 1.429 235, 10, 1438

235, 12, 1.444 179, 124, 1.444 218, 49, 1.453 169, 147, 1.453 201, 90, 1474

225, 44, 1.480 173, 148, 1.480 220, 63, 1.507 248, 9, 1.513 247, 12, 1516

254, 1, 1.525 213, 90, 1.546 217, 83, 1.549 201, 115, 1.549 224, 71, 1555

238, 47, 1.567 261, 6, 1.582 183, 163, 1.585 227, 76, 1.588 218, 95, 1591

178, 175, 1.591 265, 4, 1.600 241, 53, 1.603 196, 143, 1.603 267, 2, 1606

269, 2, 1.618 265, 10, 1.618 261, 18, 1.618 241, 58, 1.618 225, 90, 1618

221, 98, 1.618 207, 126, 1.618 205, 130, 1.618 246, 49, 1.621 272, 1, 1633

196, 153, 1.633 192, 161, 1.633 203, 140, 1.636 254, 39, 1.639 194, 161, 1645

257, 37, 1.651 212, 127, 1.651 239, 77, 1.663 255, 46, 1.666 227, 102, 1666

245, 67, 1.669 234, 89, 1.669 197, 163, 1.669 209, 140, 1.672 244, 71, 1675

247, 68, 1.684 195, 172, 1.684 195, 173, 1.687 213, 138, 1.690 274, 17, 1693

193, 180, 1.696 280, 9, 1.705 215, 139, 1.705 243, 84, 1.708 218, 135, 1711

239, 94, 1.714 219, 134, 1.714 241, 91, 1.717 216, 145, 1.729 225, 130, 1738

223, 134, 1.738 215, 150, 1.738 249, 84, 1.744 256, 71, 1.747 208, 167, 1747

211, 163, 1.753 231, 124, 1.756 255, 77, 1.759 199, 189, 1.759 230, 129, 1765

213, 163, 1.765 249, 92, 1.768 295, 2, 1.774 265, 66, 1.786 255, 86, 1786

286, 25, 1.789 285, 30, 1.798 255, 90, 1.798 225, 150, 1.798 267, 67, 1801

263, 75, 1.801 211, 181, 1.807 293, 18, 1.810 285, 36, 1.816 247, 116, 1828

259, 94, 1.834 266, 81, 1.837 253, 107, 1.837 221, 171, 1.837 285, 44, 1840

300, 17, 1.849 252, 113, 1.849 279, 61, 1.855 265, 91, 1.861 249, 124, 1864

244, 137, 1.873 227, 172, 1.876 273, 84, 1.888 252, 127, 1.891 311, 13, 1903

271, 93, 1.903 266, 103, 1.903 259, 117, 1.903 265, 109, 1.915 255, 131, 1921
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252, 137, 1.921 215, 212, 1.924 298, 47, 1.927 231, 181, 1.927 305, 36, 1936

245, 157, 1.939 323, 2, 1.942 243, 162, 1.942 259, 131, 1.945 223, 203, 1945

279, 92, 1.948 238, 175, 1.951 274, 105, 1.957 325, 6, 1.966 292, 73, 1969

322, 15, 1.975 319, 22, 1.978 303, 54, 1.978 253, 154, 1.978 310, 47, 1999

329, 14, 2.014 314, 47, 2.023 323, 30, 2.026 257, 162, 2.026 314, 49, 2029

323, 34, 2.038 289, 102, 2.038 255, 170, 2.038 307, 68, 2.044 243, 198, 2050

329, 27, 2.053 253, 179, 2.053 237, 211, 2.053 256, 175, 2.059 339, 11, 2065

308, 73, 2.065 303, 83, 2.065 243, 203, 2.065 287, 116, 2.068 243, 205, 2071

266, 161, 2.077 305, 91, 2.101 320, 63, 2.107 301, 101, 2.107 343, 19, 2113

243, 220, 2.116 293, 122, 2.122 349, 11, 2.125 285, 139, 2.125 253, 203, 2125

266, 183, 2.143 254, 207, 2.143 307, 102, 2.146 325, 69, 2.155 357, 6, 2158

315, 90, 2.158 349, 26, 2.170 329, 67, 2.173 340, 49, 2.185 347, 37, 2191

341, 50, 2.194 297, 138, 2.194 285, 164, 2.200 283, 173, 2.215 270, 199, 2215

349, 42, 2.218 301, 139, 2.221 301, 141, 2.227 261, 221, 2.227 365, 18, 2242

297, 156, 2.248 365, 21, 2.251 268, 217, 2.257 371, 13, 2.263 371, 14, 2266

287, 182, 2.266 374, 9, 2.269 361, 36, 2.272 328, 103, 2.275 375, 10, 2278

260, 241, 2.281 279, 204, 2.284 313, 139, 2.293 257, 251, 2.293 297, 173, 2299

264, 239, 2.299 381, 6, 2.302 304, 161, 2.305 260, 249, 2.305 355, 62, 2314

321, 130, 2.314 372, 31, 2.323 341, 93, 2.323 293, 189, 2.323 364, 49, 2329

287, 203, 2.329 351, 76, 2.332 377, 26, 2.338 369, 42, 2.338 325, 130, 2338

299, 182, 2.338 378, 25, 2.341 321, 140, 2.344 347, 91, 2.353 332, 121, 2353

361, 66, 2.362 303, 182, 2.362 278, 233, 2.365 305, 187, 2.389 392, 15, 2395

311, 180, 2.404 386, 31, 2.407 271, 261, 2.407 395, 14, 2.410 307, 190, 2410

297, 210, 2.410 320, 169, 2.425 351, 108, 2.428 389, 35, 2.437 361, 93, 2443

357, 102, 2.446 404, 9, 2.449 343, 133, 2.455 287, 245, 2.455 403, 14, 2458

335, 150, 2.458 325, 170, 2.458 293, 234, 2.458 397, 27, 2.461 286, 255, 2479

393, 42, 2.482 365, 101, 2.491 395, 44, 2.500 411, 14, 2.506 283, 270, 2506

381, 76, 2.512 397, 45, 2.515 285, 269, 2.515 321, 203, 2.533 407, 38, 2554

299, 254, 2.554 321, 211, 2.557 336, 185, 2.569 320, 217, 2.569 411, 38, 2578

403, 54, 2.578 355, 150, 2.578 339, 182, 2.578 322, 217, 2.581 423, 18, 2590

403, 59, 2.593 389, 91, 2.605 358, 153, 2.605 321, 228, 2.608 320, 231, 2611

379, 115, 2.617 425, 27, 2.629 389, 99, 2.629 353, 173, 2.635 435, 10, 2638

400, 81, 2.641 396, 89, 2.641 351, 181, 2.647 326, 231, 2.647 295, 294, 2650

422, 41, 2.653 382, 121, 2.653 363, 164, 2.668 319, 252, 2.668 303, 284, 2668

311, 270, 2.674 401, 91, 2.677 325, 243, 2.677 373, 148, 2.680 443, 14, 2698

417, 66, 2.698 413, 74, 2.698 375, 150, 2.698 345, 210, 2.698 301, 298, 2698

362, 177, 2.701 381, 140, 2.704 364, 175, 2.707 443, 19, 2.713 367, 173, 2719

405, 98, 2.722 448, 17, 2.737 375, 163, 2.737 407, 102, 2.746 405, 106, 2746

377, 162, 2.746 427, 67, 2.761 316, 289, 2.761 439, 45, 2.767 339, 245, 2767

318, 287, 2.767 461, 4, 2.776 393, 140, 2.776 457, 13, 2.779 445, 37, 2779

423, 83, 2.785 403, 124, 2.788 335, 262, 2.794 413, 107, 2.797 392, 151, 2803

344, 249, 2.809 387, 166, 2.818 355, 230, 2.818 389, 164, 2.824 466, 15, 2839

362, 223, 2.839 321, 306, 2.842 353, 243, 2.845 462, 31, 2.863 411, 133, 2863

394, 169, 2.869 441, 76, 2.872 436, 89, 2.881 338, 287, 2.887 443, 78, 2890

373, 218, 2.890 421, 123, 2.893 480, 7, 2.899 380, 207, 2.899 435, 102, 2914

411, 150, 2.914 405, 162, 2.914 369, 234, 2.914 376, 223, 2.923 420, 137, 2929

435, 108, 2.932 399, 180, 2.932 458, 63, 2.935 445, 89, 2.935 354, 271, 2935
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437, 107, 2.941 401, 179, 2.941 425, 133, 2.947 483, 18, 2.950 350, 287, 2959

429, 132, 2.968 369, 252, 2.968 397, 197, 2.971 392, 207, 2.971 364, 265, 2977

494, 7, 2.983 387, 222, 2.986 494, 9, 2.989 429, 139, 2.989 475, 50, 2998

425, 150, 2.998 375, 250, 2.998 431, 140, 3.004 466, 71, 3.007 419, 165, 3007

337, 332, 3.016 427, 156, 3.028 407, 196, 3.028 347, 316, 3.028 487, 37, 3031

457, 98, 3.034 355, 302, 3.034 485, 43, 3.037 365, 284, 3.040 415, 187, 3049

418, 183, 3.055
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