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The Fréchet distance is a metric to compare two curves, which is based on monotone 
matchings between these curves. We call a matching that results in the Fréchet distance 
a Fréchet matching. There are often many different Fréchet matchings and not all of 
these capture the similarity between the curves well. We propose to restrict the set of 
Fréchet matchings to “natural” matchings and to this end introduce locally correct Fréchet 
matchings. We prove that at least one such matching exists for two polygonal curves and 
give an O (N3 log N) algorithm to compute it, where N is the number of edges in both 
curves. We also present an O (N2) algorithm to compute a locally correct discrete Fréchet 
matching.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many problems ask for the comparison of two curves. Consequently, several distance measures have been proposed 
for the similarity of two curves P and Q , for example, the Hausdorff and the Fréchet distance. Such a distance measure 
simply returns a number indicating the (dis)similarity. The Hausdorff and the Fréchet distance are both based on a matching 
between the points on the curves. That is, each point on curve P is matched to a point on curve Q and vice versa. The 
distance returned is the maximum distance between any two matched points. The Fréchet distance uses monotone matchings
(and limits of these): if point p on P and q on Q are matched, then any point on P after p must be matched to q or a 
point on Q after q. The Fréchet distance is the maximal distance between two matched points, minimized over all monotone 
matchings of the curves. Restricting to monotone matchings of only the vertices results in the discrete Fréchet distance. We 
call a matching resulting in the (discrete) Fréchet distance a (discrete) Fréchet matching. More details and exact definitions 
are given in Section 2.

There are often many different Fréchet matchings for two curves. However, as the Fréchet distance is determined only by 
the maximal distance, not all of these matchings capture the similarity between the curves equally well (see Fig. 1). There 
are applications that directly use a matching, for example, to map a GPS track to a street network [3] or to morph between 
the curves [4]. In such situations a “good” matching is important. Furthermore, we believe that many applications of the 
(discrete) Fréchet distance, such as protein alignment [5] and detecting patterns in movement data [6], would benefit from 

✩ A preliminary version of this paper was presented at the European Symposium on Algorithms [1]. An extended version is included in W. Meulemans’ 
PhD thesis [2, Chapter 6]. K. Buchin and B. Speckmann are supported by the Netherlands Organisation for Scientific Research (NWO) under project 
no. 612.001.207 and project no. 639.023.208 respectively.
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Fig. 1. Two Fréchet matchings for curves P and Q . Intuitively, matching (a) describes the similarity more accurately than matching (b), as the matched 
distances tend to be lower and the bends in the polyline coincide. If we accept that the Fréchet distance is a good method for quantifying similarity, then 
difference in matching quality becomes apparent in the shaded region: the submatching in (a) is a Fréchet matching, whereas the submatching in (b) is 
not. This motivates our definition of “locally correct” Fréchet matchings.

good Fréchet matchings. Indeed, Konzack et al. [7] use and investigate the quality of matchings in sports and gull movement 
data, considering matched distances for quality.

Contributions It seems counterintuitive that a Fréchet matching is not necessarily a Fréchet matching when considering 
two of its matched subcurves. Indeed, if we assume that the Fréchet distance is an accurate way of quantifying similarity, 
then it follows that good matchings to describe similarity remain a Fréchet matching when considering subcurves. We set 
out to investigate this phenomenon by restricting the set of Fréchet matchings to such “natural” matchings. We do so by 
introducing locally correct Fréchet matchings: matchings that, when restricted to any two matched subcurves, are still a 
Fréchet matching on these subcurves.

In Section 3 we prove that there exists such a locally correct Fréchet matching for any two polygonal curves. Based on 
this proof we describe in Section 4 an algorithm to compute such a matching in O (N3 log N) time, where N is the total 
number of edges in both curves. We consider the discrete Fréchet distance in Section 5 and give an O (N2) algorithm to 
compute locally correct matchings under this metric.

Under some appropriate general position assumption (see also Section 2), the main ideas underlying the presented results 
can be distilled into simpler arguments. However, small changes to the points to ensure the general position assumption is 
met for a certain pair of curves may change Fréchet matchings. As such, we explicitly consider the degeneracy of the input 
curves and introduce terminology and results necessary to deal with these.

Related work The first algorithm to compute the Fréchet distance was given by Alt and Godau [8]; this algorithm runs in 
O (N2 log N) time. They also consider the weak (or nonmonotone) Fréchet distance; it was later remarked by Har-Peled and 
Raichel that the algorithm for the weak Fréchet distance results in a “locally correct” weak Fréchet matching [9, Remark 3.5]. 
Eiter and Mannila gave the first algorithm to compute the discrete Fréchet distance, running in O (N2) time [10]. For years, 
both Alt and Godau’s and Eiter and Mannila’s algorithm have been the best known algorithms for their respective variants in 
the general case. Only recently, the first asymptotic improvements have been achieved for both variants: Buchin et al. [11]

show how to compute the continuous Fréchet distance in O (N2
√

log N(log log N)
3
2 ) time; Agarwal et al. [12] present an 

O (N2 log log N/ log N)-time algorithm for the discrete variant.
The Fréchet distance has received significant attention in a wide range of applications and variants beyond the three 

mentioned above. Here we focus on approaches that restrict the allowed matchings. Efrat et al. [4] introduced Fréchet-like 
metrics, the geodesic width and link width, to restrict to matchings suitable for curve morphing. Their method is suitable 
only for nonintersecting polylines. Moreover, geodesic width and link width do not resolve the problem illustrated in Fig. 1: 
both matchings also have minimal geodesic width and minimal link width. Maheshwari et al. [13] studied a restriction 
by “speed limits”, which may exclude all Fréchet matchings and may cause undesirable effects near “outliers” (see Fig. 2). 
Buchin et al. [14] describe a framework for restricting Fréchet matchings, which they illustrate by restricting slope and path 
length. The former corresponds to speed limits; we briefly discuss the latter at the end of Section 4.

Since our introduction of locally correct Fréchet matchings in 2012 [1], new research has been performed in the area of 
Fréchet matchings and their quality. Rote [15] and Maheshwari et al. [16] consider what we refer to later in this paper as 
“locally optimal Fréchet matchings”: that is, the locally correct Fréchet matching that reduces matched distances as quickly 
as possible. Both algorithms run in O (N3 log N), but differ in how speed of traversal of the curves is quantified. A more 
detailed discussion regarding this extension is postponed until the end of Section 4.

Fig. 2. Two Fréchet matchings. (a) A locally correct matching. (b) Imposing speed limits may yield a matching that is not locally correct.
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Konzack et al. [7] compare Dynamic Time Warping, Edit Distance on Real Sequences and discrete locally correct Fréchet 
matchings. They conclude that Dynamic Time Warping and (discrete) locally correct Fréchet matchings work best, but that 
the latter are superior when data shows significant “delayed response”, that is, when one trajectory follows another with 
some delay. Konzack et al. also observe that our algorithm for the discrete case works with any premetric,1 but for simplicity 
of exposition, we shall restrict our attention to the Euclidean distance.

2. Preliminaries

Curves Let P be a polygonal curve with m edges, defined by m + 1 vertices p0, . . . , pm . We treat a curve as a continuous 
map P : [0, m] →R

d . In this map, P (i) is equal to pi for integer i. Furthermore, P (i +λ) is a parametrization of the (i + 1)st 
edge, that is, P (i + λ) = (1 − λ) · pi + λ · pi+1, for integer i and 0 < λ < 1. As a reparametrization σ : [0, 1] → [0, m] of a 
curve P , we allow any continuous, nondecreasing function such that σ(0) = 0 and σ(1) = m. We denote by Pσ (t) the actual 
location according to reparametrization σ : Pσ (t) = P (σ (t)). By Pσ [a, b] we denote the subcurve of P in between Pσ (a) and 
Pσ (b). In the following we are always given two polygonal curves P and Q , where Q is defined by its vertices q0, . . . , qn

and is reparametrized by θ : [0, 1] → [0, n]. The reparametrized curve is denoted by Q θ .

Fréchet matchings We are given two polygonal curves P and Q with m and n edges. A (monotone) matching μ between 
P and Q is a pair of reparametrizations (σ , θ), such that Pσ (t) matches to Q θ (t). The Euclidean distance between two 
matched points is denoted by dμ(t) = ‖Pσ (t) − Q θ (t)‖. The maximum distance over a range is denoted by dμ[a, b] =
maxa≤t≤b dμ(t). The Fréchet distance between two curves is defined as δF(P , Q ) = infμ dμ[0, 1]. A Fréchet matching is a 
matching μ that realizes the Fréchet distance, that is, μ = arg infμ dμ[0, 1] or, equivalently, dμ[0, 1] = δF(P , Q ).

Free-space diagrams Alt and Godau [8] describe an algorithm to compute the Fréchet distance based on the decision variant. 
This decision variant asks whether δF(P , Q ) ≤ ε for some given ε. We build on their work, using and extending their results 
to work with and compute locally correct Fréchet matchings. We briefly describe the important aspects here.

Alt and Godau’s algorithm uses the free-space diagram, a two-dimensional diagram on the domain [0, m] ×[0, n], capturing 
the parameter space of the two curves. Every point (x, y) in this diagram corresponds to the pair of points P (x) and Q (y); 
such a point is called free (colored white in figures) if and only if ‖P (x) − Q (y)‖ ≤ ε. The diagram has m columns and n
rows; every cell 〈c, r〉 (1 ≤ c ≤ m and 1 ≤ r ≤ n) corresponds to the edges pc−1 pc and qr−1qr . The free-space diagram for 
the two curves of Fig. 1 are illustrated in Fig. 3 for three values of ε. We use Fε(P , Q ) to denote the free-space diagram of 
two curves P and Q using ε to denote which points in the parameter space are free.

Each monotone matching between P and Q corresponds to an x- and y-monotone path from (0, 0) to (m, n) in the 
free-space diagram. The Fréchet distance is at most ε, exactly when the free space of Fε(P , Q ) contains such a (bi)monotone 
path. In other words, δF(P , Q ) ≤ ε if and only if (m, n) is reachable from (0, 0) through the free space with a monotone 
path. Alt and Godau [8] proved that the free space in a single cell is a convex region. This implies that the free space at the 
cell boundaries provide all necessary information to compute the Fréchet distance. Using the above, solving this decision 
problem can be done using a simple dynamic program over the free-space diagram.

Note that we scale every row and column in the diagram to correspond to the (relative) length of the actual edge of 
the curve instead of using unit squares for cells. The advantage of doing so is that the size of the diagram and matchings 
described by a monotone path therein are independent of sampling: adding extra vertices to P or Q that do not change 
their shape only lead to cells being split into smaller cells but otherwise do not change the free-space diagram.

To compute the Fréchet distance, one then finds the smallest ε such that there exists a monotone path from point 
(0, 0) to (m, n) in free space. To do so, we need to check only certain critical values [8]. The critical values are defined 
by critical events. These events represent a structural change in the free space: new “passages” that may permit us to reach 

Fig. 3. Free-space diagrams for the curves of Fig. 1 with three different values of ε. The locally correct Fréchet matching is shown using a green path, 
crossing the diagram from bottom-left to top-right. (We refer the reader to the online article for colored versions of the figures in this article.)

1 A nonnegative symmetric measure for which in particular the triangle inequality does not need to hold.
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Fig. 4. Schematic illustration of the three critical events. Both the curves (top) and the free-space diagram (bottom) are illustrated. (A) Endpoints can be 
matched. (B) A passage between adjacent cells opens. (C) A passage opens between nonadjacent cells. The bisector is indicated with a black line.

(with a monotone path) new parts of the free space. To define the critical events, imagine continuously increasing ε from 0
to infinity. There are three types of critical events, which are defined as follows and illustrated in Fig. 4:

(A) The distance between p0 and q0 or between pm and qn is equal to ε. The former implies that we can start a path from 
(0, 0), the latter that we can end one at (m, n).

(B) The minimal distance between vertex pi and edge q jq j+1 (or between edge pi pi+1 and vertex q j) is equal to ε. A pas-
sage opens between two horizontally (vertically) adjacent cells.

(C) The distance from two vertices pi and pk (with i < k) to the same point on edge q jq j+1 is equal to ε. In other words, 
the bisector of pi and pk intersects q jq j+1 and the distance to this intersection point is ε. A horizontal passage opens 
that spans multiple columns. Analogously, vertical passages are defined by two vertices of Q and an edge of P .

A critical value is a distance ε at which a critical event occurs. We call two events concurrent if they occur at the same 
critical value.

Degeneracy Concurrent events can be considered degenerate, as they require exactly the same distance to occur between 
different elements of the two given curves. We could thus aim for defining a general position assumption that states that 
there are no concurrent events. We note, however, that rotations do not alleviate the degeneracies and other transformations 
warp the distances, causing the potential Fréchet matchings to change.

We therefore avoid the use of such assumptions and instead explicitly deal with the concurrent events arising from 
degeneracy. For two given curves, we define the degeneracy K as the maximum number of concurrent events for any value 
of ε. The degeneracy K is naturally bounded by some cubic function, but as we show in Section 4 (page 10) in the worst 
case �(mn) of these can be relevant.

3. Locally correct Fréchet matchings

To distinguish between “good” and “bad” matchings, we introduce a new concept: locally correct Fréchet matchings. These 
require that the matching, restricted to any two matched subcurves, is again a Fréchet matching for these subcurves. This is 
formalized as follows.

Definition 1 (Local correctness). Given two polygonal curves P and Q , a matching μ = (σ , θ) is locally correct if for all a, b
with 0 ≤ a ≤ b ≤ 1

dμ[a,b] = δF(Pσ [a,b], Q θ [a,b]).

As the Fréchet distance is defined via the minimum over all matchings, dμ[a, b] ≥ δF(Pσ [a, b], Q θ [a, b]) trivially holds for 
all matchings μ and 0 ≤ a ≤ b ≤ 1. However, equality is not necessarily true: not every Fréchet matching is locally correct, 
as illustrated in Fig. 1. The question arises whether a locally correct matching always exists and if so, how to compute it. In 
this section we resolve the first question positively, by proving the following theorem.

Theorem 1. For any two polygonal curves P and Q , there exists a locally correct Fréchet matching.

Overview We prove Theorem 1 by induction on the number of edges in the curves. The overall idea is that we determine 
for two curves a crucial part of their geometries: the vertices and edges corresponding to the critical event that occurs 
precisely at ε = δF(P , Q ). We use this information to split both curves into smaller ones, such that we can apply the 
induction hypothesis. Finally, we must stitch together the locally correct Fréchet matchings for the smaller curves and show 
that this indeed yields a locally correct Fréchet matching.
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In the following, m and n denote the number of edges of P and Q , respectively. We assume m ≤ n in formulating and 
proving these statements, but since the problem is symmetric, analogous statements hold where the roles of P and Q
are reversed.

3.1. Base cases

First, we present the two base cases: one of the two curves is a point or both curves are line segments.

Observation 1. For two polygonal curves P and Q with m = 0, a locally correct matching is (σ , θ), where σ(t) = 0 and θ(t) = t · n
for 0 ≤ t ≤ 1.

Proof. Since m = 0, P is just a single point, p0. The Fréchet distance between a point and a curve is the maximal dis-
tance between the point and any point on the curve: δF(p0, Q θ [a, b]) = dμ[a, b]. This implies that the matching μ is
locally correct. �
Observation 2. For two polygonal curves P and Q with m = n = 1, a locally correct matching is (σ , θ), where σ(t) = θ(t) = t for 
0 ≤ t ≤ 1.

Proof. The free-space diagram of P and Q is a single cell and thus the free space is a convex area for any value 
of ε. Since μ = (σ , θ) is linear, we have that dμ[a, b] = max

{
dμ(a),dμ(b)

}
: if there was a t with a < t < b such 

that dμ(t) > max
{

dμ(a),dμ(b)
}

, then the free space at ε = max
{

dμ(a),dμ(b)
}

would not be convex. Since dμ[a, b] =
max

{
dμ(a),dμ(b)

} ≤ δF(Pσ [a, b], Q θ [a, b]) ≤ dμ[a, b], we conclude that μ is locally correct. �
3.2. Induction

Our induction hypothesis states that a locally correct Fréchet matching exists for any two curves P ′ and Q ′ with m′ and 
n′ edges, respectively, such that m′ + n′ < m + n. Hence, to apply the induction hypothesis, we reduce our two curves to 
two pairs of smaller curves. We do so by splitting them “on events”. It is important to choose the right events for splitting. 
Moreover, splitting on type-A events (the corners of the free-space diagram) does not reduce the complexity of the resulting 
curves. Hence, the remainder is organized as follows:

• first, we introduce some more terminology and notation to describe “the right events”;
• then, we show that type-A events indeed are of little consequence and can be largely ignored;
• subsequently, we describe in detail what it means to “split on an event”;
• finally, we complete our proof by showing how these ingredients allow us to find a locally correct Fréchet matching.

Realizing events Already taking into consideration that type-A events are of little importance, we call a free-space diagram 
Fε(P , Q ) feasible, if a monotone path exists in the free space of Fε(P , Q ) from the top or right boundary of cell 〈1, 1〉 to 
the bottom or left boundary of cell 〈m, n〉. A realizing event is a critical event (of type B or C) at the minimal value ε such 
that Fε(P , Q ) is feasible.

Consider a type-B realizing event between vertex pi and edge q jq j+1: that is, the closest point q on q jq j+1 is at precisely 
distance ε from pi ; let λ be such that q = (1 − λ)q j + λq j+1. We say that a monotone path in the free-space diagram uses
this event if it passes through the point (i, j +λ) (the green dot in Fig. 4(B)). In other words, for the corresponding matching 
μ = (σ , θ), Pσ (t) = pi and Q θ (t) = q for some t with 0 ≤ t ≤ 1.

Similarly, consider a type-C realizing event between vertices pi and pk and edge q jq j+1: that is, the intersection q
between the bisector of pi and pk and segment q jq j+1 is at precisely distance ε from pi (and pk); let λ be such that 
q = (1 −λ)q j +λq j+1. We say that a monotone path in the free-space diagram uses this event if it passes through the points 
corresponding to the pairs (i, j + λ) and (k, j + λ) (the green dots in Fig. 4(B), and by monotonicity also the green line). In 
other words, for the corresponding matching μ = (σ , θ), Pσ (t) = pi , Pσ (t′) = pk and Q θ (t) = Q θ (t′) = q for some t and t′
with 0 ≤ t ≤ t′ ≤ 1.

Let E denote the set of concurrent realizing events for two curves. A realizing set E is a subset of E such that the free 
space admits a monotone path from cell 〈1, 1〉 to cell 〈m, n〉 without using an event in E\E: in other words, using only 
the events in E is already sufficient to admit the monotone path through the free space. When E contains more than one 
realizing event, some may be insignificant: they are never required to actually make a path in the free-space diagram. A re-
alizing set is minimal if it does not contain a strict subset that is a realizing set. Such a minimal realizing set contains only 
significant events. Note that a realizing set cannot be empty and E is a trivial realizing set. This readily implies the following.

Observation 3. For two polygonal curves P and Q with m ≥ 1, n ≥ 1 and m + n > 2, there exists a minimal realizing set.
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For the above observation, we require at least three edges in total, as the case that both curves have a single edge can 
be considered degenerate: the free-space diagram is a single cell and Observation 2 handles this case.

Note that |E | ≤ K where K is the degeneracy of the two curves: if the two curves are not degenerate, K = 1 and thus 
the only event in the set is trivially a significant event.

Type-A events As mentioned above, type-A events are of little consequence, when computing the Fréchet distance. Indeed, 
type-A events do not give any choice as they correspond to the endpoints of the two curves—we must match these points 
regardless of the remainder of the curves. If we determine the lowest value of ε such that Fε(P , Q ) is feasible, we can 
combine this with the matched endpoints to determine the actual Fréchet distance. This is formalized in Lemma 2. To prove 
this statement, we first introduce the lemma below.

Lemma 1. Let μ = (σ , θ) be a matching for curves P and Q such that

(1) m ≥ 1, n ≥ 1 and m + n > 2;
(2) μ is linear in cell 〈1, 1〉 and cell 〈m, n〉;
(3) dμ(t) ≤ ε for all t with σ(t) ≥ 1 or θ(t) ≥ 1, and σ(t) ≤ m − 1 or θ(t) ≤ n − 1.

Then, it holds that

(a) dμ(t) ≤ max{ε, ‖p0 − q0‖} for all t with σ(t) ≤ 1 and θ(t) ≤ 1;
(b) dμ(t) ≤ max{ε, ‖pm − qn‖} for all t with σ(t) ≥ m − 1 and θ(t) ≥ n − 1.

Proof. We prove only claim (a); the proof of claim (b) is analogous. Let t be the lowest value for which σ(t) ≥ 1 or θ(t) ≥ 1. 
The point (σ (t), θ(t)) in the free-space diagram lies on the boundary of cell 〈1, 1〉, precisely where μ exits the strict interior 
of the cell. By (1), t meets the conditions of (3) and thus we know that dμ(t) ≤ ε. Since μ is linear in cell 〈1, 1〉 and the free 
space in a single cell is convex [8], we know that (σ (t′), θ(t′)) for t′ ≤ t lies in the free space at value max{ε, ‖p0 − q0‖}. 
Thus, we conclude that dμ(t) ≤ max{ε, ‖p0 − q0‖} for all t with σ(t) ≤ 1 and θ(t) ≤ 1, proving claim (a). �
Lemma 2. Let ε be the lowest value such that Fε(P , Q ) is feasible for curves P and Q with m ≥ 1, n ≥ 1 and m + n > 2. It holds that 
δF(P , Q ) = max{ε, ‖p0 − q0‖, ‖pm − qn‖}.

Proof. As Fε(P , Q ) is feasible, there must be some monotone path π through the free space from a point πs on the 
boundary of cell 〈1, 1〉 to a point πe on the boundary of 〈m, n〉. Consider the (monotone) path π ′ obtained by going 
straight from (0, 0) to πs , following π and finally from πe straight to (m, n). This path describes a matching, that satisfies 
the requirements for Lemma 1. Hence, we know that the maximal distance in this matching is given by max{ε, ‖p0 −
q0‖, ‖pm − qn‖}, thus providing an upper bound on δF(P , Q ). It also provides a lower bound, since ε is the lowest value 
such that Fε(P , Q ) is feasible, and both p0 and q0 as well as pm and qn are forced into any matching. �
Splitting on an event Consider a type-B realizing event between a vertex of P and an edge of Q ; the symmetric case is 
analogous. On the curves the event corresponds to a vertex pi and the closest point q on edge q jq j+1 with q = (1 − λ)q j +
λq j+1. In the free-space diagram it is a passage between the cells, represented by point (i, j + λ) on the boundary between 
cell 〈i, j + 1〉 and 〈i + 1, j + 1〉. Splitting P and Q on this event creates two pairs of curves (see Fig. 5):

1. P1 with vertices p0, . . . , pi and Q 1 with vertices q0, . . . , q j, q;
2. P2 with vertices pi, . . . , pm and Q 2 with vertices q, q j+1, . . . , qn .

In the free-space diagram, these two pairs correspond to the rectangular region spanning from (0, 0) to (i, j + λ) and from 
(i, j + λ) to (m, n) respectively.

Now, consider a type-C event between two vertices of P and an edge of Q ; the symmetric case is again analogous. On the 
curves the event corresponds to two vertices pi and pk (with i < k) and a point q on edge q jq j+1 with q = (1 −λ)q j +λq j+1. 
In the free space the passage of this event is a horizontal line segment, from (i, j + λ) to (k, j + λ). Splitting P and Q on 
this event creates the following two pairs of curves (see Fig. 6):

1. P1 with vertices p0, . . . , pi and Q 1 with vertices q0, . . . , q j, q;
2. P2 with vertices pk, . . . , pm and Q 2 with vertices q, q j+1, . . . , qn .

In the free-space diagram, these two pairs correspond to the rectangular region spanning from (0, 0) to (i, j + λ) and from 
(k, j + λ) to (m, n) respectively. Note that any vertices of P in between pi and pk do not occur in either of the pairs.



K. Buchin et al. / Computational Geometry 76 (2019) 1–18 7
Fig. 5. (a) Curves with the free-space diagram for ε = δF(P , Q ) and a critical event of type B. (b) The event splits each curve into two subcurves, creating 
two parts. The shaded areas indicate parts of the free-space diagram that are eliminated due to the split.

Fig. 6. (a) Curves with the free-space diagram for ε = δF(P , Q ) and a critical event of type C. (b) The event splits each curve into two subcurves, and drops 
a part of P . The shaded areas indicate parts of the free-space diagram that are eliminated due to the split.

Finishing the proof of Theorem 1 Lemma 3, stated and proven below, directly implies that a locally correct Fréchet matching 
always exists. Informally, it states that curves have a locally correct matching for which all matched points are within 
distance ε (except in cell 〈1, 1〉 or 〈m, n〉), if Fε(P , Q ) is feasible. Furthermore, this matching is linear inside every cell. 
The lemma is proven by splitting the curves on the events of a minimal realizing set and combining the locally correct 
matchings for the pieces in a single locally correct matching for the complete curves.

Lemma 3. If Fε(P , Q ) of two polygonal curves P and Q is feasible, then there exists a locally correct Fréchet matching μ = (σ , θ)

such that dμ(t) ≤ ε for all t with σ(t) ≥ 1 or θ(t) ≥ 1, and σ(t) ≤ m − 1 or θ(t) ≤ n − 1. Furthermore, μ is linear in every cell of the 
free-space diagram.

Proof. We prove this by induction on m +n. The base cases (m = 0, n = 0, and m = n = 1) follow from the linear matchings 
prescribed by Observation 1 and Observation 2. For the latter, the matching has no t for which δμ(t) ≤ ε must hold. For the 
former, note that there is only one matching to begin with: δμ(t) ≤ ε is trivially satisfied for the necessary values of t—there 
are none if the other curve has complexity at most 1 and otherwise, we derive this immediately from the assumption that 
Fε(P , Q ) is feasible.

For induction, we assume that m ≥ 1, n ≥ 1, and m + n > 2. By Observation 3, a minimal realizing set E exists for P
and Q , say at value εr. Since the realizing set is minimal, any monotone path from 〈1, 1〉 to 〈m, n〉 in Fεr (P , Q ) that uses 
these events must do so in a unique order: let e1, . . . , ek (k ≥ 1) denote the events of E in this order. By definition, εr ≤ ε. 
Suppose that E splits curve P into P1, . . . , Pk+1 and curve Q into Q 1, . . . , Q k+1, where Pi has mi edges, Q i has ni edges; see 
Fig. 7(a)–(b). By definition of a realizing event, none of the events in E occur on the left or bottom boundary of cell 〈1, 1〉 or 
on the right or top boundary of cell 〈m, n〉. Hence, for any i (1 ≤ i ≤ k + 1), it holds that mi ≤ m, ni ≤ n, and mi +ni < m +n. 
Since a path exists in the free-space diagram at εr through all events in E , the induction hypothesis implies that, for any i
(1 ≤ i ≤ k +1), a locally correct matching μi = (σi, θi) exists for Pi and Q i such that μi is linear in every cell and dμi (t) ≤ εr
for all t with σi(t) ≥ 1 or θi(t) ≥ 1, and σi(t) ≤ mi − 1 or θi(t) ≤ ni − 1. Fig. 7(b) illustrates such matchings, whereas Fig. 7(c) 
highlights in orange, the cells that are “ignored” by the induction hypothesis—that is, where dμi (t) ≤ εr does not necessarily 
hold. Concatenating these matchings with the passages of the events in E yields a matching μ = (σ , θ) for (P , Q ), as 
illustrated in Fig. 7(d). As we argue below, this matching satisfies the additional properties and is locally correct.
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Fig. 7. Illustrations for the proof of Lemma 3. (a) Two concurrent critical events occur for P and Q : one of type C and one of type B. (b) These split 
the curves into three pairs of subcurves; the induction hypothesis provides us with a locally correct Fréchet matching for each of the three pairs. (c) The 
induction hypothesis does not give us information about the distances inside the orange cells. (d) Concatenating the matchings of the subcurves (b) with 
those of the critical events (a) yields a locally correct Fréchet matching between P and Q .

The matching of an event corresponds to a single point (type B, Fig. 5) or a horizontal or vertical line (type C, Fig. 6) 
in the free-space diagram. By induction, μi is linear in every cell. Since all events occur on cell boundaries, the cells of the 
matchings and events are disjoint. Therefore, the matching μ is also linear inside every cell.

We must also prove that the combined matching μ only matches points within distance ε except in cell 〈1, 1〉 and 
〈m, n〉; note that the excepted cells are the leftbottom-most and topright-most orange cell in Fig. 7(c). For the parts of μ
that originate from the passages of the realizing events in E , we have dμ(t) ≤ εr ≤ ε by definition, as these passages must 
lie in the free space at εr. The induction hypothesis readily tells us that any parts that originate from some μi between 
the subcurves is also within this distance, excepting the parts in cells 〈1, 1〉 and 〈mi, ni〉 of the free-space diagrams of the 
subcurves: these are all marked in orange in Fig. 7. Since the last vertices of Pi and Q i for i > 1 as well as the first vertices 
of Pi and Q i for i < k are defined by the critical realizing events, we know that the distance between each of these pairs 
is εr. Hence, we may intuitively see that the line segments of μi in the orange cells in Fig. 7 must be within the free space 
of Fε(P , Q ). More formally, Lemma 1 tells us that dμi (t) ≤ εr, even for t with: σi(t) ≤ 1 and θi(t) ≤ 1 for all 1 < i ≤ k; and 
σi(t) ≥ mi − 1 and θi(t) ≥ ni − 1 for all 1 ≤ i < k. Thus, it must hold that dμ(t) is at most εr ≤ ε for all t with σ(t) ≥ 1 or 
θ(t) ≥ 1, and σ(t) ≤ m − 1 or θ(t) ≤ n − 1.

To show that μ is locally correct, suppose for contradiction that values a, b exist such that δF(Pσ [a, b], Q θ [a, b]) <
dμ[a, b]. If a, b are in between two consecutive events in E along the monotone path through the free space, we know that 
the submatching corresponds to one of the matchings μi . Since these are locally correct, we find that δF(Pσ [a, b], Q θ [a, b])
= dμ[a, b].

Hence, suppose that a and b are separated by at least one event of E . There are two possibilities: either dμ[a, b] = εr or 
dμ[a, b] > εr. Since dμ[a, b] includes a realizing event, dμ[a, b] < εr cannot hold.

First, assume dμ[a, b] = εr. If δF(Pσ [a, b], Q θ [a, b]) < εr, then a matching exists that does not use the events between a
and b and has a lower maximum than dμ[a, b] = εr. Hence, the free space admits a monotone path from point (σ (a), θ(a))

to point (σ (b), θ(b)) at a lower value than εr. This implies that all events between a and b can be omitted, contradicting 
that E is a minimal realizing set.

Now, assume dμ[a, b] > εr. We argue as follows, to see that the maximum value of dμ[a, b] is attained either at a or b. 
Let t′ denote the highest t for which σ(t) ≤ 1 and θ(t) ≤ 1, that is, the point at which the matching exits cell (1, 1). Sim-
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ilarly, let t′′ denote the lowest t for which σ(t) ≥ m − 1 and θ(t) ≥ n − 1. Since dμ(t) ≤ εr for any t′ ≤ t ≤ t′′ , dμ(t) > εr is 
true only for t < t′ or t > t′′ . Suppose that dμ(a) > εr. Then a < t′ and μ is linear between a and t′ . Therefore, dμ(a) > dμ(t)
for any t with a < t < t′ . Analogously, if dμ(b) > εr, then dμ(b) > dμ(t) for any t with t′′ < t < b. Hence, we may indeed 
conclude that dμ[a, b] = max

{
dμ(a),dμ(b)

}
. This maximum is a lower bound on the Fréchet distance, contradicting the 

assumption that dμ[a, b] is larger than the Fréchet distance. Matching μ is therefore locally correct. �
4. Algorithm for locally correct Fréchet matchings

The existence proof directly translates into a recursive algorithm, which is given in Algorithm 1. Fig. 1 (left), Fig. 2 (left), 
Fig. 8, Fig. 10, and Fig. 11 (left) illustrate matchings computed with our algorithm. In this section, we prove the follow-
ing theorem.

Theorem 2. Algorithm 1 computes a locally correct Fréchet matching of two polygonal curves P and Q with m and n edges in 
O ((m + n)mn logmn) time.

The main idea is to partition the curves around a significant realizing event, which is then by the proof of the previous 
section suitable to split the curves for recursion. The crucial three steps in the algorithm aim to find this significant event 
er efficiently (lines 6 to 8). First, we compute the lowest value of ε such that Fε(P , Q ) is feasible. Second, we compute a 
realizing set E . Finally, we find a significant event in E , that is, an event in some minimal realizing set. Such a significant 
event is then appropriate to split the two curves on and allow for valid recursion, analogous to the induction proof given in 
the previous section.

Below, we give details for each of these steps. We use the notation of Alt and Godau [8]: L F
i, j denotes the interval 

of free space on the left boundary Li, j of cell 〈i, j〉; LR
i, j denotes the reachable interval, that is, the subset of L F

i, j that is 
reachable from point (0, 0) with a monotone path in the free space. Analogously, B F

i, j and B R
i, j are defined for the bottom 

boundary Bi, j .

Computing feasibility (line 6) First, we compute the lowest value of ε such that Fε(P , Q ) is feasible. That is, we compute 
the minimal value of ε such that the free space admits a monotone path from cell 〈1, 1〉 to cell 〈m, n〉. This corresponds to 
computing a “modified” Fréchet distance, one in which we ignore the type-A events. To this end, we apply the algorithm by 
Alt and Godau [8]. It needs only minor modifications in the decision algorithm. LR

1,1 and B R
1,1 are set to a nonempty interval 

including the origin, (0, 0), of the free-space diagram. Essentially, this ensures that any free space on the top and right 
side of cell 〈1, 1〉 is reachable. L F

m+1,n and B F
m,n+1 are set to a nonempty interval including the destination, (m, n), of the 

free-space diagram. This ensures that (m, n) is reachable if any point on the bottom or left side of cell 〈m, n〉 is reachable. 
These changes have no effect on the asymptotic execution time of the algorithm, and thus it still runs in O (mn log n) time, 
assuming without loss of generality that m ≤ n.

Algorithm 1 ComputeLCFM(P , Q )

Input: P and Q are curves with m and n edges
Output: A locally correct Fréchet matching for P and Q

1: if m = 0 or n = 0 then
2: return (σ , θ) where σ(t) = t · m, θ(t) = t · n
3: else if m = n = 1 then
4: return (σ , θ) where σ(t) = θ(t) = t
5: else
6: Determine lowest value ε such that Fε(P , Q ) is feasible
7: Compute a realizing set E of events at value ε
8: Extract event er of a minimal realizing set contained in E
9: Split P into P1 and P2 according to er

10: Split Q into Q 1 and Q 2 according to er

11: μ1 → ComputeLCFM(P1, Q 1)

12: μ2 → ComputeLCFM(P2, Q 2)

13: return concatenation of μ1, er , and μ2

Fig. 8. Locally correct Fréchet matching produced by Algorithm 1 and the corresponding free-space diagram for ε = δF(P , Q ).
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Computing a realizing set (line 7) In this second step, we compute some (possibly nonminimal) realizing set E at the value 
of ε computed in the previous step. Recall that this is a subset of E , all concurrent realizing events at value ε, such that 
the free space admits a monotone path from cell 〈1, 1〉 to cell 〈m, n〉 without using events in E\E . We present a simple 
O (mn)-time algorithm to find a realizing set for a given value of ε. To do so, we run the decision algorithm by Alt and 
Godau [8] again with value ε, which we now modify as follows: we keep track of any realizing events that are encountered 
as the reachable space at value ε is established.

We observe that the occurrence of a singleton reachable interval—a reachable interval that contains only a single point—
corresponds directly to a realizing event. In particular, that realizing event ends at that singleton reachable interval and the 
corresponding boundary, meaning that the rightmost and upmost point in the free-space diagram of the corresponding pas-
sage (see also Fig. 4) coincides with the singleton reachable interval and thus lies on its boundary. Although not all realizing 
events in E have to correspond to a singleton reachable interval, the events that do correspond to such an interval in fact 
form a realizing set. This is formalized in the following lemma.

Lemma 4. If LR
i, j or B R

i, j is a singleton, then a realizing event ends at Li, j or Bi, j respectively. The set of all events ending at boundaries 
with a singleton reachable interval is a realizing set.

Proof. The reachable interval LR
i, j is determined by the maximum value in the free space of the boundary, L F

i, j , and the 
minimum in some reachable interval LR

i′, j with i′ ≤ i. If LR
i, j is a singleton, then this minimum and maximum coincide and 

thus this corresponds to an event of type B (i′ = i) or type C (i′ < i). The argument for a reachable interval B R
i, j is analogous.

Let π be some monotone path in the free space between the first and last cell. Path π passes through one or more 
realizing events. We are done if all these events end at a boundary for which the reachable interval is a singleton. So, 
assume that e is the last event along π that ends on boundary Li, j for which LR

i, j is not a singleton. Note that LR
i, j cannot 

be empty as π passes through it. Event e must be of type C, as type B implies that L F
i, j is a singleton and thus LR

i, j would 
be as well. Hence, we let Li′, j denote the boundary where event e starts and i′ < i. There must be some boundary Bi∗, j

such that i′ ≤ i∗ < i and B R
i, j is nonempty. This implies that there is a monotone path π ′ in the free space up through 

Bi∗, j to Li, j . In particular, π ′ does not pass through e. Hence, the concatenation of π ′ with the subpath of π starting at 
Li, j is a monotone path in the free space between the first and last cell. Moreover, any event along π ′ that does not end 
at a boundary with a singleton reachable interval must end at some boundary Lx,y or Bx,y with x < i and y < j. Hence, 
repeating the replacement above must terminate as there are only a finite number of boundaries. This proves that there 
is some monotone path between the first and last cell that passes only through events that end on a boundary with a 
singleton reachable interval. Thus these events form a realizing set. �

From the above, we learn how to compute a realizing set: we simply record occurrences of singleton intervals. However, 
this gives us only the boundary on which the event ends; we also need to know the boundary on which the event starts. 
Assume a singleton reachable interval is found on boundary Li, j . Let h < i be the largest value such that B R

h, j is nonempty: 
all bottom boundaries between h and i are not reachable. Then the singleton is caused by the maximum of the lower 
endpoints (minima) of intervals L F

g∗, j with g∗ with h < g∗ ≤ i. This means that the event that causes the singleton starts at 
Lg∗, j and ends at Li, j . We refer to g∗ as the event horizon. For each row we maintain this event horizon. After computing 
LR

i, j but before checking for a singleton, the event horizon is updated to j if either B R
i−1, j is nonempty or the minimum of 

L F
g∗, j is less than or equal to the minimum of L F

i, j . If this is not the case, g∗ maintains its value. This ensures that, if LR
i, j

is a singleton and there would be multiple events ending at this boundary, we find the event that starts at the rightmost 
column. Columns and horizontal boundaries are dealt with analogously. Maintaining the event indices incurs no asymptotic 
overhead on the basic decision algorithm. Hence, this modified algorithm that finds a realizing set also runs in O (mn) time.

Checking whether an interval of floating-point numbers is a singleton must be able to deal with imprecision, and thus 
lead to instability in an implementation: intervals may be considered singletons when they are in fact very small intervals 
and vice versa. Instead of checking whether LR

i, j is a singleton, we may compute the value of the critical event between 
Li, j and Lg∗, j directly and compare it to ε. This depends on the input coordinates directly, rather than on a sequence of 
computations that establish the lower bound of interval LR

i, j . Though still working with floating-point numbers, this tends 
to be slightly more stable.

Finding a significant event (line 8) In this last step, we find a significant event er in the realizing set E computed in the 
previous step for value ε. That is, er must be contained in some minimal realizing set.

If events end at the same boundary, then these occur in the same row (or column) and it suffices to consider only the 
event that starts at the rightmost column (or highest row). The algorithm described above for line 7 to compute E collects 
exactly those events. Hence, we may assume here that the events in E end at different cell boundaries. As a result, E has at 
most O (mn) events. Note that in degenerate cases, the size of E can be �(mn) as illustrated in Fig. 9. However, only minimal 
realizing set can have at most O (m + n) events, since a matching can visit only this many cells of the free-space diagram.



K. Buchin et al. / Computational Geometry 76 (2019) 1–18 11
Fig. 9. Two curves with �(mn) realizing events. (a) Two curves zigzagging back and forth, with coinciding vertices. The realizing events are indicated. 
(b) Conceptual view of the two curves. (c) The free-space diagram and the corresponding realizing events (green dots).

To find a significant event in E , we proceed as follows. Fix the order of events in E . Let Ek denote the first k events of E
and let ek denote the kth event. We use a binary search on E to find the r such that Er contains a realizing set, but Er−1
does not. This implies that event er is contained in a minimal realizing set. Note that r is unique due to monotonicity. What 
remains is to describe an algorithm that checks whether Ek is a realizing set.

To determine whether some Ek is a realizing set, we check whether Fε(P , Q ) remains feasible without using the events 
of E\Ek: is there still a monotone path through the free space from cell 〈1, 1〉 to cell 〈m, n〉? We again use a third (and last) 
modified version of the decision algorithm by Alt and Godau [8]. For each event, we store its index in E with the boundary 
it ends at. When LR

i, j is computed, we check whether LR
i, j is a singleton and whether an index k′ is stored with Li, j . If this is 

not the case, then no realizing event ends at Li, j or it is not required to reach it. If the reachable interval is a singleton and 
k′ exists, event ek′ is required to reach Li, j (as argued in the previous paragraph). We then check whether this event may 
be used by comparing k and k′ . If k′ ≤ k, no action is taken; otherwise, the event may not be used and LR

i, j is replaced with 
the empty interval. In this modified algorithm (m, n) is reachable if and only if Ek is a realizing set. The additional check 
takes only constant time per cell boundary. Thus, we decide in O (mn) time whether Ek is a realizing set.

As mentioned before, checking for singleton intervals may lead to numeric instability in an implementation. To remedy 
this problem, we again maintain the event horizon g∗ for each row and column. Assume that Li, j has some associated event 
e that starts on Lg, j . Event e forces LR

i, j to be a singleton if and only if g = g∗ . Therefore, we can replace checking whether 
LR

i, j is a singleton with an equality check of two integers.

Analysis Algorithm 1 follows a sequence of steps to enable valid recursion. The first and second step (lines 6 and 7) take 
O (mn log mn) time combined. The third step (line 8) performs a binary search on the realizing set and thus depends on 
its size. As argued, it contains at most O (mn) events. However, concurrent events can be considered degenerate. To nuance 
this analysis, we therefore consider the degeneracy K , that is, the maximum number of concurrent events. The third step 
then takes O (mn log K ) time. Splitting the curves P and Q according to er and concatenating the matchings can be done 
in O (m + n) time and is thus subsumed under the previous steps. Each recursion step splits the problem into two smaller 
problems, and the recursion ends when mn ≤ 1. This results in an additional factor of O (m + n). Thus the total execution 
time is O ((m + n)mn log mn).

Substituting other methods We used Alt and Godau’s method [8] to compute the Fréchet distance. However, it can be sub-
stituted by any other algorithm, provided that the modification can be made to “ignore” the first and last cell. In general, 
this leads to an algorithm that runs in O ((m + n)(T (m, n) + mn log K )) time, where T (m, n) indicates the computation time 
of the (modified) algorithm used to compute the Fréchet distance. Whereas earlier the degeneracy was subsumed under the 
computation of the Fréchet distance, it is now a relevant factor if T (m, n) = o(mn log mn).

As an example, we may substitute the algorithm by Buchin et al. [11]. Similar to Alt and Godau’s algorithm, this algorithm 
can easily be adapted by treating the four free-space intervals on cells 〈1, 1〉 and 〈m, n〉 as reachable. For very degenerate 
curves—K = (m + n)—this substitution does not lead to an improved execution time. However, there is another pitfall here: 
the improved algorithm is faster only if m = ω(n/ log n), assuming m ≤ n (see [2, Chapter 4] for details). In other words, the 
curves must be “balanced”. As we cannot control the recursion, we cannot guarantee that this is the case, even if the curves 
initially are balanced.

Vertex sampling Polygonal curves are often a discrete representation of continuous curves or motion, the vertices being 
samples of the underlying curve. Increasing the sampling rate thus leads to more vertices describing this same continuous 
curve. We observe that supersampling (introducing extra vertices) may alter the result of the algorithm, even if these 
vertices do not modify the shape itself (see Fig. 10). This implies that the algorithm depends not only on the shape of the 
curves, but also on the sampling. Increasing the sampling further and further seems to result in a matching that decreases 
the matched distance as much as possible within a cell. However, since cells are rectangles, there is a slight preference for 
taking longer diagonal paths.
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Fig. 10. Different sampling may result in different matchings being computed by the algorithm; note that all three matchings are a valid locally correct 
Fréchet matching for any of the three inputs.

Fig. 11. Two locally correct Fréchet matchings for P and Q . (a) Matching that decreases distances as quickly as possible. (b) Shortest matching.

Further restrictions Two curves may still have many locally correct Fréchet matchings: the algorithm computes just one of 
these. For most applications, we expect that it is desirable to restrict to locally correct matchings, as this builds purely on 
the assumption that the Fréchet distance is a good way of quantifying similarity. However, it is often desirable to find the 
“best” Fréchet matching, though what defines “best” likely depends on the intended application. For example, the curves in 
Fig. 11 admit two matchings, either of which may be considered better than the other: this depends on what the curves 
represent and on the purpose of the matching. Corresponding to these two examples, we mention two possible criteria to 
further restrict locally correct Fréchet matchings.

The first criterion is the “length” of the matching, measured by its path length in the free-space diagram. That is, we 
prefer the matching to progress on both curves when possible; matching a short subcurve of P to a long subcurve of Q
would be undesirable. Of course, the matching should still be locally correct to ensure that the matching doesn’t match 
far-away points unnecessarily. A slope constraint [14] indirectly restricts the length of a matching. Thus this criterion may 
also be considered for applications in which speed limits are desirable. An alternative to the shortest locally correct Fréchet 
matching would be to consider the computation of a locally correct matching that adheres to length or slope constraints.

The second criterion again considers the matched distances. Local correctness is about avoiding large distances that 
would exceed the (local) Fréchet distance, by considering subcurves that are induced by the matching. We may strengthen 
this idea by desiring that all matched distances should be kept as low as possible. These “locally optimal” Fréchet matchings 
may require a steepest descent method to find the matching. An important question is how to parameterize the descent. 
Using the L2 norm for the descent results in nonlinear matchings with possible algebraic issues. Since the initial publication 
of the results described here, Rote [15] has shown that a descent under the L∞ norm yields a linear locally optimal matching 
(referred to as a lexicographic Fréchet matching in [15]). He shows that these are computable in O (N3 log N) time assuming 
nondegenerate curves (K = 1). Using a different model to measure “speed” of a matching, Maheshwari et al. [16] process 
the result of our algorithm to reduce the matched distances, though this increases the length of the matching.

5. Locally correct discrete Fréchet matchings

Here we study the discrete variant of Fréchet matchings, one in which only the vertices of curves are matched. The 
discrete Fréchet distance can be computed in O (mn) time via dynamic programming [10]. Here, we extend this simple 
algorithm to show that a locally correct discrete Fréchet matching can also be computed in O (mn) time.

Grids Since we are interested only in matching vertices of the curves, the free-space diagram turns into a grid. Suppose 
we have two curves P and Q with m and n edges respectively. These convert into a grid G of nonnegative values with 
m + 1 columns and n + 1 rows. Every column corresponds to a vertex of P , every row to a vertex of Q . Any node of the 
grid G[i, j] corresponds to the pair of vertices (pi, q j). Its value is the distance between the vertices: G[i, j] = ‖pi − q j‖. 
Analogous to free-space diagrams, we assume that G[0, 0] is the bottomleft node and G[m, n] the topright node.

Matchings A monotone path π is a sequence of grid nodes π(1), . . . , π(k) such that every node π(i) (1 < i ≤ k) is the 
above, right, or above/right diagonal neighbor of π(i − 1). In the remainder of this section a path refers to a monotone path 
unless indicated otherwise. A monotone discrete matching of the curves corresponds to a path π such that π(1) = G[0, 0]
and π(k) = G[m, n]. A path π is called locally correct if for all 1 ≤ t1 ≤ t2 ≤ k, maxt1≤t≤t2 π(t) = minπ ′ max1≤t≤k′ π ′(t), where 
π ′ ranges over all paths starting at π ′(1) = π(t1) and ending at π ′(k′) = π(t2).

We also define a slightly stronger version, in which the common endpoints of submatchings—which may otherwise 
be the maximum—are not taken into account. Formally, a path π is strongly locally correct if for all 1 ≤ t1 ≤ t2 ≤ k, 
maxt1<t<t2 π(t) = minπ ′ max1<t<k′ π ′(t), where π ′ ranges over all paths starting at π ′(1) = π(t1) and ending at π ′(k′) =
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Algorithm 2 ComputeDiscreteLCFM(P , Q ).
Input: P and Q are curves with m and n edges
Output: A strongly locally correct discrete Fréchet matching for P and Q

1: Construct grid G for P and Q
2: Let T be a tree consisting only of the root G[0, 0]
3: for i ← 1 to m do
4: Add G[i, 0] to T
5: for j ← 1 to n do
6: Add G[0, j] to T
7: for i ← 1 to m do
8: for j ← 1 to n do
9: AddToTree(T , G, i, j)

10: return path in T between G[0, 0] and G[m, n]

Fig. 12. (a) Face of tree (gray area) with its unique sink (solid dot). A red line represents a dead path. (b) Two adjacent faces with some shortcuts indicated. 
(c) Tree with three faces. Solid dots indicate growth nodes with a growth node as parent. These nodes are incident to at most one face. All shortcuts of 
these nodes are indicated.

π(t2). Note the inequalities in the max statements are now strict inequalities. The items excluded from the domain here 
have in fact identical values, since the π ′ must start and end at the same points as the subpath of π : as a result, a strongly 
locally correct path is also locally correct.

Algorithm In order to compute a locally correct discrete Fréchet matching, we present an algorithm that in fact computes 
a strongly locally correct discrete Fréchet matching. In other words, the algorithm computes a strongly locally correct path 
from G[0, 0] to G[m, n] in a grid G of nonnegative values. To this end, the algorithm incrementally constructs a tree T on 
the grid. Tree T is rooted at G[0, 0] and each path in T is strongly locally correct. This is summarized in Algorithm 2. We 
define a growth node as a node of T that has a neighbor in the grid that is not yet part of T : a new branch may sprout from 
such a node. The growth nodes form a sequence of horizontally or vertically neighboring nodes. A living node is a node of 
T that is not a growth node but is an ancestor of a growth node. A dead node is a node of T that is neither a living nor a 
growth node, that is, it has no descendant that is a growth node; a dead path is a sequence of dead nodes and the links to 
their parents. Every pair of nodes in this tree has a lowest common ancestor (LCA). When we add a new node to T , we have 
to decide on a growth node to be its parent such that paths to the new node are locally correct. To this end, we compare the 
maximum values encountered after the LCAs of the growth nodes. We provide more details on this procedure later in this 
section. A face of T is the area enclosed by the segment between two horizontally or vertically neighboring growth nodes 
(without one being the parent of another) and the paths to their LCA. The unique sink of a face is the node of the grid that 
is in the lowest column and row of all nodes on the face. Fig. 12(a)–(b) shows some examples of faces and their sinks.

Shortcuts To avoid repeatedly walking along the tree to compute maxima, we maintain up to two shortcuts from every node 
in the tree. The segment between the node and its parent is incident to up to two faces of the tree. The node maintains 
shortcuts to the sinks of these faces: the shortcut stores the maximum value encountered on the path between the node 
and the sink (excluding the value of the sink, but including the node itself). Fig. 12(b) illustrates some shortcuts.

With these shortcuts, the maximum up to the LCA of two (potentially diagonally) neighboring growth nodes is computed 
in constant time, as the LCA is either one or two shortcuts away from the two nodes. This is done as follows (refer also to 
Fig. 12(b)). For two horizontally or vertically adjacent growth nodes, we observe that the segment connecting these nodes 
defines a unique face in the tree: the LCA of the two growth nodes is the sink of this face. Hence, the shortcuts stored with 
these two nodes provide us the information we need to decide in O (1) time which has the lower maximum value along 
the path to the LCA. For two diagonally adjacent growth nodes, we observe that they must have a common growth node 
that is horizontally adjacent to one and vertically adjacent to the other. This then defines two faces and we observe that 
the LCA we seek is the sink of one of these faces. We need at most two shortcuts to go from either growth node to the LCA 
and can thus find the maximum value along the path to the LCA in O (1) time.

Note that a node g of the tree that has a growth node as parent is incident to at most one face (see Fig. 12(c)). We need 
the “other” shortcut only when the parent of g has a living parent. Therefore, the value of this shortcut can be obtained 
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in constant time by using the shortcut of the parent. When the parent of g is no longer a growth node, then g obtains its 
own shortcut.

Extending the tree Algorithm 3 summarizes the steps required to extend the tree T with a new node. Node G[i, j] has three 
candidate parents, G[i − 1, j], G[i − 1, j − 1], and G[i, j − 1]. Each pair of these candidates has an LCA. For the actual parent 
of G[i, j], we select the candidate c such that for any other candidate c′ , the maximum value from c to their LCA is at most 
the maximum value from c′ to their LCA—both excluding the LCA itself. As explained above, the shortcuts allow us to make 
this decision in O (1) time as the candidates are neighboring growth nodes.

We must be consistent when breaking ties between candidate parents that have the same maximum value along the 
path to their LCA. To this end, we use the preference order of G[i − 1, j] � G[i − 1, j − 1] � G[i, j − 1]. Since paths in 
the tree cannot cross, this order is consistent between two paths at different stages of the algorithm. Note that a pref-
erence order that prefers G[i − 1, j − 1] over both other candidates or vice versa results in an incorrect algorithm, as 
shown in Fig. 13. The root cause is the comparison at the cells with the thick outline, at which the algorithm must de-
cide between parents with a maximum value of 6 to their LCA. With the incorrect preference order, it always selects 
the diagonal parent but for one, it is preferred over a downward parent and for the other over a leftward parent. The 
fact that this swaps from a counterclockwise to a clockwise preference causes a failure of the algorithm. This shows 
that the preference order can affect the correctness of the algorithm and we explicitly mark where we need this dur-
ing the proof.

When a dead path is removed from the tree, adjacent faces merge and a sink may change. Hence, shortcuts have to be 
extended to point toward the new sink. Fig. 14 illustrates the incoming shortcuts at a sink and the effect of removing a 
dead path on the incoming shortcuts. The algorithm does not need to remove dead paths that end in the highest row or 
rightmost column.

Finally, G[i − 1, j], G[i, j − 1], and G[i, j] receive shortcuts where necessary. G[i − 1, j] or G[i, j − 1] needs a shortcut 
only if its parent is G[i − 1, j − 1]. G[i, j] needs two shortcuts if G[i − 1, j − 1] is its parent, only one shortcut otherwise.

Algorithm 3 AddToTree(T , G, i, j).
Input: G is a grid of nonnegative values; any path in tree T is locally correct
Output: node G[i, j] is added to T and any path in T is locally correct

1: parent(G[i, j]) ← candidate parent with lowest maximum value to LCA
2: if G[i − 1, j − 1] is dead then
3: Remove the dead path ending at G[i − 1, j − 1] and extend shortcuts
4: Make shortcuts for G[i − 1, j], G[i, j − 1], and G[i, j] where necessary

Fig. 13. Example illustrating that a preference order that prefers the diagonal parent over the two orthogonal ones may lead to incorrect results. (a) The 
input curves. (b) The tree constructed by the algorithm using the incorrect order. The orange dotted path proves that the matching described by the thick 
line is not locally correct. (c)–(d) The tree constructed by the algorithm when preferring the downwards and leftward neighbor respectively.
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Fig. 14. (a) Each sink has up to four sets of shortcuts. (b)–(d) Removing a dead path (red) extends at most one set of shortcuts.

Correctness Lemma 5 below implies the correctness of Algorithm 2.

Lemma 5. Algorithm 2 maintains the following invariant: any path in T is strongly locally correct.

Proof. To prove this lemma, we strengthen the invariant to make the role and necessity of the preference order explicit.
Invariant. We are given a tree T such that every path in T is strongly locally correct. In constructing T , any ties were 

broken using the preference order.
Initialization. Tree T is initialized such that it contains two types of paths: either between grid nodes in the first column 

or in the first row. In both cases there is only one path between the endpoints of the path. Therefore, this path must be 
strongly locally correct. Since every node has only one candidate parent, T adheres to the preference order.

Maintenance. The algorithm extends T to T ′ by including node g = G[i, j]. Recall that this is done by connecting g to 
one of its candidate parents (G[i − 1, j], G[i − 1, j − 1], or G[i, j − 1]): we select one such that, compared to either other 
candidate, its maximum value along its path to the LCA is at most the maximum value along the path to the LCA from the 
other candidate. We must now prove that any path in T ′ is strongly locally correct. From the invariant, we conclude that 
only paths that end at g could falsify this statement. We prove this via contradiction.

Assuming T ′ is not strongly locally correct, there must be an invalidating path that ends at g . This path must use one 
of the candidate parents of g as its second-to-last node. We distinguish three cases on how this path is situated compared 
to T ′ . The last case, however, needs two subcases to deal with candidate parents that have the same maximum value on 
the path to their LCA. The four cases are illustrated in Fig. 15. First, we introduce some common notation.

The invalidating path must diverge from the path in T to g . For each case, we consider the path πi starting at the node 
before the first node that is different and end at a candidate parent of g in the invalidating path. Note that πi need not 
be disjoint of the paths in T ′ . Slightly abusing notation, we also use a path π ′ to denote its maximum value, excluding the 
first and last node, i.e. max1<t<k′ π ′(t). We use p to denote the parent of g in T ′ , that is, the selected candidate.

Case (a). Path πi ends at p. Path π is the path in T ′ between the first and last vertex of πi . Since (πi, g) is the invalidating 
path, we know that max{πi, g} < max{π, g}. This implies that πi < π . In particular, this means that π , a path in T , is not 
strongly locally correct: a contradiction.

Case (b). Path πi does not end at p and πi(1) is not a descendant of the LCA of p and the last node of πi . Path π1 is 
the path in T from πi(1) to this LCA. Paths π2 and π3 are paths in T that start at this LCA and end at p and the last 
node of πi respectively. Since the endpoint of π2 was chosen as parent over the endpoint of π3, we know that π2 ≤ π3. 
Furthermore, since (πi, g) is the invalidating path, we know that max{πi, g} < max{π1, π2, g}. These two inequalities imply 
max{πi, g} < max{π1, π3, g}. This in turn implies πi < max{π1, π3}. Since (π1, π3) is a path in T and the inequality implies 
that it is not strongly locally correct, we again have a contradiction.

Case (c). Path πi does not end at p and the first node of πi is a descendant of the LCA of p and the last node of πi . Let 
π1 be the path from this LCA to πi(1). Path π2 starts at πi(1) and ends at p. Path π3 starts at π1(1) and ends at the last 
node of πi . In this case, we must explicitly consider the possibility of two paths having equal values. Hence, we distinguish 
two subcases.

Case (c-i). In the first subcase, we assume that the endpoint of π2 was chosen as parent since its maximum value 
is strictly lower: max{π1, π2} < π3. Since (πi, g) is the invalidating path, we know that max{πi, g} < max{π2, g}. Since 
π2 ≤ max{π1, π2} is always true, we obtain that max{πi, g} < max{π3, g}. This in turn implies that πi < π3. Similarly, since 
π1 ≤ max{π1, π2}, we know that π1 < π3. Combining these last two inequalities yields max{π1, πi} < π3. Since π3 is a 

Fig. 15. Four cases of the invalidating path πi (in red) for the proof of Lemma 5.
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path in T and the inequality implies that it is not strongly locally correct, we again have a contradiction. (Note that with 
max{π1, π2} ≤ π3, we can at best derive max{π1, πi} ≤ π3 which is not strong enough to contradict the invariant on T .)

Case (c-ii). In the second subcase, we assume that the endpoint of π2 was chosen as parent based on the preference 
order: the maximum values are equal, thus max{π1, π2} = π3. If πi does not intersect π3 before their common last node, 
we must conclude that πi > π3: otherwise, the preference order would be violated at this common last node. In particular, 
this implies that πi cannot be an invalidating path. If πi does intersect π3 before their common last node, we proceed as 
follows. We partition πi into πia and πib: the split is based on the first node that πi and π3 have in common. At the same 
node, we also partition π3 into π3a and π3b. We now obtain two more cases, π3a < max{π1, πia} and π3a ≥ max{π1, πia}. 
In the former case, we obtain that max{π3a, πib} < max{π1, π2} and thus (π3a, πib, g) is also an invalidating path. Since 
this path starts at the LCA of π2 and π3, this is already covered by case (b). In the latter case, we have that either path 
π3a—which is in T —is not strongly locally correct (contradicting the invariant) or there is equality between the two paths 
(π1, πia) and π3a. In case of equality, we observe that (π1, πia) and π3a arrive at their endpoint in the same order as π2
and π3 arrive at g .2 Thus T does not adhere to the preference order to break ties. This contradicts the invariant.

In all cases, we find that the assumption of an invalidating path contradicts the invariant. Therefore, we conclude that 
Algorithm 2 maintains the required invariant: all paths in T are strongly locally correct. �
Execution time Most steps in the algorithm are easily done in O (1) time; the only exception is the removal of a dead path 
(Algorithm 3, line 3). When a dead path πd is removed, we may need to extend a list of incoming shortcuts at πd(1), 
the node that remains in T . Let k denote the number of nodes in πd. The lemma below relates the number of extended 
shortcuts to the size of πd. The main observation is that the path requiring extensions starts at πd(1) and ends at G[i −1, j]
or G[i, j − 1], since G[i, j] has not yet received any shortcuts.

Lemma 6. A dead path πd with k nodes results in at most 2 · k − 1 extensions.

Proof. Since πd is a path with k nodes, it spans at most k columns and k rows. When a dead path is removed, its endpoint 
is G[i − 1, j − 1]. Let πe denote the path of T that requires extensions. Both paths start at the same node: πd(1) = πe(1). 
The endpoint of πe is at either G[i − 1, j] or G[i, j − 1], since G[i, j] has not yet received shortcuts when the dead path 
is removed. If the endpoint of πe is not the parent of G[i, j], then it has at most one child; it is a growth node and thus 
any of its descendants are also growth nodes. Hence, these descendants have a parent that is a growth node and thus do 
not have shortcuts that need to be extended. Fig. 16 illustrates these situations. Hence, we know that πe spans either k + 1
columns and k rows or vice versa. Therefore, the maximum number of nodes in πe is 2 ·k, since it must be monotone. Since 
πe(1) does not have a shortcut to itself, there are at most 2 · k − 1 incoming shortcuts from πe at πd(1). �

Fig. 16. (a) A dead path πd and the corresponding path πe in which shortcuts that need extension must start. (b) Endpoint of πe has one child. None of 
its descendants has a shortcut to πe(1).

Hence, we can charge every extension to one of the k − 1 dead nodes (all but πd(1)). Since these nodes are removed 
from T , a node gets at most 3 charges. Due to the existing shortcuts, each extension can be done in constant time. Thus the 
total execution time of the algorithm is O (mn).

The dynamic program to compute the discrete Fréchet distance can be processed on a per-row or per-column basis, thus 
requiring only O (min{m, n}) additional memory. This can also be done in our algorithm to compute a locally correct discrete 
Fréchet matching. However, we maintain tree T to store the locally correct paths. Naively speaking, this tree spans the entire 
grid, thus requiring O (mn) space. By appropriately choosing per-row or per-column processing, T has at most O (min{m, n})
growth nodes: any leaves that do not have an unprocessed neighbor are part of a dead branch and are thus removed from T . 
Any living node with exactly one child is never used, as it cannot be the sink of a face, nor is it ever the root of a dead 
branch. Therefore, such nodes can easily be removed without additional overhead: this yields a compressed tree T in which 

2 This is the reason why a preference order, that prefers G[i − 1, j − 1] over both other candidates or vice versa, does not work: the cyclic order of the 
paths arriving at the vertices may be the same, but the preference order can be different.
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all living nodes (that are not growth nodes) have at least two children. Thus we conclude that the compressed tree contains 
at most O (min{m, n}) nodes.

We summarize the findings of this section in the following theorem.

Theorem 3. Algorithm 2 computes a locally correct discrete Fréchet matching of two polygonal curves P and Q with m and n edges in 
O (mn) time and O (min{m, n}) additional space.

Further restrictions As in the continuous case, we may think of further restrictions such minimizing the number of matched 
pairs (length in the continuous case) or keeping low distances (local optimality).

It would be comparatively easy to augment the tree with additional information such as the number of diagonals to the 
root, which would allow of assessing the length of two discrete matchings. However, if we come across a tie, we must use 
the preference order, otherwise the computation may be faulty; as a result, we cannot use such augmented information to 
break the tie differently. Indeed, this would lead to the wrong conclusion as shown in Fig. 13.

For locally optimal Fréchet matchings (also called lexicographic matchings [15]), intuitively speaking, we need to min-
imize the use of large values. As the computed discrete matching is strongly locally correct, the maximum value in the 
definition does not consider common endpoints between compared subpaths. This hints at decreasing distances as fast as 
possible, but this is done very locally and in so far that the preference order permits this. That is, no distinction is made be-
tween paths between two grid nodes, depending on how often the maximal distance along the path is attained—this would 
be necessary for a locally optimal Fréchet matching. If we were to augment the tree with such information, this would again 
lead to breaking ties differently and thus an incorrect algorithm. Note that, if all distances in the grid are unique, then our 
algorithm indeed computes a locally optimal discrete Fréchet matching.

6. Conclusion

We set out to find “good” matchings between two curves. To this end we introduced the local correctness criterion for 
Fréchet matchings. We have proven that there always exists at least one locally correct Fréchet matching between any two 
polygonal curves. We translated this proof into an O (N3 log N) algorithm, where N is the total number of edges in the two 
curves. Furthermore, we considered computing a locally correct matching using the discrete Fréchet distance. By maintaining 
a tree with shortcuts to encode locally correct partial matchings, we have shown how to compute such a matching in O (N2)

time. In other words, the overhead is subpolynomial compared to the best known algorithm [12] and there is no asymptotic 
overhead with the standard dynamic program to compute the discrete Fréchet distance. Throughout, we paid particular 
attention to dealing with degeneracy of the input curves that cause multiple events to coincide at the same value of ε in 
the continuous case and at equal distances between pairs of vertices in the discrete case.

Future work Computing a locally correct discrete Fréchet matching with our algorithm takes O (N2) time, just like the basic 
dynamic program to compute only the discrete Fréchet distance. Recently, Agarwal et al. [12] have shown how to compute 
the discrete Fréchet distance in O (N2 log log N/ log N) time. This raises the question whether a similar improvement can be 
made to compute a locally correct discrete Fréchet matching.

Our algorithm for computing a locally correct (continuous) Fréchet matching takes O (N3 log N) time, approximately a 
linear factor more than computing the Fréchet distance. An interesting question is whether this gap in computation can 
be reduced, as we have shown is possible for the discrete case. Our algorithm for discrete matchings constructs a tree of 
locally correct paths in a single sweep of the parameter space. This suggests that going away from the “decision-and-search” 
paradigm for the continuous case may yield improvements here. Recently, Buchin et al. [17] have given such an algorithm 
that computes the Fréchet distance in O (N2 log2 N) time. However, proceeding in the exact same way as for the discrete 
case is not feasible: much of the information in the algorithm of Buchin et al. is maintained implicitly, to be constructed 
and retrieved only when it is actually needed. Moreover, a single cell boundary does not have a unique structure for the 
locally correct Fréchet matchings end there. Rather, the matchings ending at a cell may in the worst case fall into at least 
linearly many, structurally different categories. As a result, the tree encoding the various matchings might become too big 
to maintain efficiently. On the other hand, we may be able to significantly gain in terms of speed, if we are able to avoid 
recomputing the Fréchet distance on the subcurves of the input. Buchin et al. also apply their techniques to use polyhedral 
distances and use this to approximate the Euclidean case. This leads us to pose the question whether polyhedral distances 
also simplify the computation of locally correct Fréchet matchings, and how we may approach defining and computing 
approximate locally correct Fréchet matchings.

Finally, it would be interesting to further investigate criteria of restricting matchings. On the one hand, this includes 
further restrictions to locally correct Fréchet matchings, such as length and matched-distances constraints (as discussed at 
the end of Section 4 and Section 5). For example, can we compute the locally optimal (or lexicographic) discrete Fréchet 
matching in O (N2) time, even if pairs of points have the same distance? On the other hand, this also includes the benefit 
of local correctness for other matching-based similarity measures, such as the geodesic width [4].
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