
 

Electromagnetic mathematical modeling of 3D supershaped
dielectric lens antennas
Citation for published version (APA):
Mescia, L., Bia, P., Caratelli, D., Chiapperino, M. A., Stukach, O., & Gielis, J. (2016). Electromagnetic
mathematical modeling of 3D supershaped dielectric lens antennas. Mathematical Problems in Engineering,
2016, Article 8130160. https://doi.org/10.1155/2016/8130160

DOI:
10.1155/2016/8130160

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1155/2016/8130160
https://doi.org/10.1155/2016/8130160
https://research.tue.nl/en/publications/5bb8981f-4bb2-413b-92c7-c4e167a4b39c


Research Article
Electromagnetic Mathematical Modeling of
3D Supershaped Dielectric Lens Antennas

L. Mescia,1 P. Bia,2 D. Caratelli,3,4 M. A. Chiapperino,1 O. Stukach,4 and J. Gielis5

1Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Edoardo Orabona 4, 70125 Bari, Italy
2EmTeSys S.R.L, 70122 Bari, Italy
3The Antenna Company Nederland B.V., High Tech Campus, 5656 AE Eindhoven, Netherlands
4Institute of Cybernetics, Tomsk Polytechnic University, 84/3 Sovetskaya Street, Tomsk 634050, Russia
5University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

Correspondence should be addressed to L. Mescia; luciano.mescia@poliba.it

Received 1 October 2015; Revised 14 January 2016; Accepted 7 February 2016

Academic Editor: Thierry Floquet

Copyright © 2016 L. Mescia et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas
has a geometrical shape defined by the three-dimensional extension of Gielis’ formula. The analytical description of the lens shape
allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical
optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.

1. Introduction

During the last years, lens antennas have attracted the
attention of various researchers and companies because of
their potential use in several application fields such as high
frequency wireless communication systems [1, 2], millimeter
wave imaging [3], space [4], smart antennas [5], radio-
astronomy [6], and radar systems [1]. In particular, in
[1] a flat-top radiation pattern at 60GHz is achieved by
considering a 2D arbitrary shape lens antenna close in two
metal half disks useful for high speedWi-Fi 802.11ad devices.
Another application of such class of antennas is illustrated
in [3] where the authors presented a lens-coupled patch
antenna array for imaging applications. This architecture
consists of a two-dimensional array featuring a monolithic
microwave integrated circuit (MMIC) front-end. In [1] the
authors presented a fully polarimetric integrated monopulse
receiver working in W-band frequency range. The proposed
structure is composed by 2 × 2 array of slot-ring antennas
covered by a hemispherical dielectric lens.

Lens antennas can be easily integrated in electronic cir-
cuits thanks to the relevant mechanical and thermal stability
combined with the possibility of shaping the radiated beam

by changing the lens geometry. During the last years, many
research activities have been devoted to the development
of 3D dielectric lenses characterized by canonical or axial-
symmetrical geometry [7, 8] and only a few scientific stud-
ies have been dedicated to the analysis of more complex
geometries [9–11]. In particular, in [10] the authors present
a compact lens antenna with arbitrary shape working in
millimeter wave frequency band, the design being carried
out while neglecting the internal reflections occurring within
the lens. However, in order to enhance the accuracy of the
theoretical model based on geometrical optic (GO), it is
essential to consider the effects of the internal reflections
especially when high values of electric permittivity have to
be used. To this end, in [12, 13] an accurate mathematical
model is illustrated implementing the effects of the second-
order internal reflections for canonical lens geometry.

The aim of this work is to present, in detail, a semiana-
lytical model to design a new class of shaped dielectric lens
antennas whose geometry is described by Gielis’ superfor-
mula [14, 15]. The developed mathematical model is based
on the tube tracing approximation [16]. The electromagnetic
field inside the lens is evaluated by using the GO approxi-
mation and considering the effect of the internal reflections.
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Figure 1: Geometrical structure of the electromagnetic system
based on dielectric lens antenna.

In this way, an improvement of the numerical accuracy can
be obtained. Moreover, the evaluation of the electromagnetic
field radiated from the lens has been carried out applying the
physical optics (PO) approximation. In particular, according
to the equivalence principle, the radiation outgoing the lens
is evaluated by the radiation of the equivalent electric and
magnetic currents on the lens surface. The current distribu-
tion is calculated by making use of the Fresnel transmission
coefficient on the lens surface in accordance with the GO
procedure.

Thanks to Gielis’ formulation it is possible to generate a
wide range of 3D shapes in a simple and analytical way by
changing a reduced number of parameters. The use of this
formulation allows, also, an easy description of the geometri-
cal characteristic of the antenna in terms of lens volume, area,
curvature radius, and aspect ratio. Moreover, the analytical
representation of the lens shape provides a number of benefits
pertaining to the evaluation of the main physical quantities
involved in the electromagnetic propagation equations. In
this way, a reduced computation effort is required and more
accurate results can be obtained.

2. Mathematical Model

The geometrical structure considered in the proposed elec-
tromagneticmodel consists of a dielectric lens antenna placed
on a perfectly electric conductor (PEC) circular plate having
radius 𝑟𝑑 (see Figure 1).

The metal plate, acts as a ground plane and mechan-
ical support of the radiating structure while reducing the
backscattered radiation level. The lens is illuminated by the
electromagnetic field emitted by a primary radio source such
as open ended waveguide, patch antenna, horn antenna,
or a coaxial probe integrated in the metal plate. The tube
tracing approach based on the GO approximation is used to
model the electromagnetic propagation inside the homoge-
neous dielectric lens.This approximation, allows a significant
simplification of the mathematical model since it makes it
possible to reduce the solution of Maxwell’s equations to
a geometrical problem. As a result, the adoption of such
method allows the simulation of electrically large structures
with a lower computational effort in comparison to full-wave
numerical methods such as Finite-Difference-Time-Domain
(FDTD) and Finite-Element-Method (FEM).
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Figure 2: Area changes, from𝐴𝑚−1 to𝐴𝑚, of the tube surface during
the propagation inside the lens.

The applicability condition of such method requires that
the lens surface is placed within the far field zone of the
feeding source and that the geometrical shape of the lens has a
curvature radius larger than the operating wavelength. In this
way, the travelling electromagneticwave can be approximated
by a set of tubes propagating over a rectilinear path inside
the lens. Each tube has a triangular cross section with given
surface area and is defined by three rays departing from each
of the triangle vertices. The reflected and transmitted ray
tubes are determined by using GO principles. As a result, the
propagation path determines a change of the triangle area
that leads a variation of the electromagnetic field amplitude in
accordance with the power conservation law. In Figure 2, the
geometrical change of the tube during the propagation inside
the lens is illustrated. In particular, the surface area variation
from 𝐴𝑚−1 to 𝐴𝑚 is given by triangle vertices intersection
with the lens surface in points 𝑃𝐴, 𝑃𝐵, and 𝑃𝐶.

The surface area of each tube is evaluated by considering
the overlap between the triangular surface, with vertices 𝑃

𝑚

𝐴
,

𝑃
𝑚

𝐵
, and 𝑃

𝑚

𝐶
, and the elements of the tessellation of the lens

surface. The amplitude of the electromagnetic field inside
the tube surface is evaluated by using the Inverse Distance
Weighting (IDW) algorithm. In particular, considering point
𝑃 inside of the triangle on the lens surface, the electric field
amplitude is given by

E𝑚
𝑖

(𝑃) =

E𝑚
𝑖

(𝑃
𝑚

𝐴
) 𝑢𝐴 + E𝑚

𝑖
(𝑃
𝑚

𝐵
) 𝑢𝐵 + E𝑚

𝑖
(𝑃
𝑚

𝐶
) 𝑢𝐶

𝑢𝐴 + 𝑢𝐵 + 𝑢𝐶

, (1)

where

E𝑚
𝑖

(𝑃
𝑚

𝑘
) = √

𝐴𝑚

𝐴𝑚−1

E𝑚−1
𝑖

(𝑃
𝑚−1

𝑘
) 𝑘 = 𝐴, 𝐵, 𝐶. (2)

𝐴𝑚−1 and 𝐴𝑚 denote the area of the triangular section
of the tube on the lens surface referring to (𝑚 − 1)th
and 𝑚th reflection order, respectively. However, in order to
account for the changes of the tube cross section surface
and to enforce the energy conservation law, the correction
coefficient √𝐴𝑚/𝐴𝑚−1 is introduced. In (1), 𝑃

𝑚

𝐴
, 𝑃
𝑚

𝐵
, and

𝑃
𝑚

𝐶
denote the vertices of the surface intersected by the
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tube on the lens surface corresponding to 𝑚th reflection
order. The coefficients 𝑢𝐴, 𝑢𝐵, and 𝑢𝐶 are the inverse of the
Euclidean distance between point 𝑃 and points 𝑃

𝑚

𝐴
, 𝑃𝑚
𝐵
, and

𝑃
𝑚

𝐶
, respectively.
According to the GO approach, the electric field trans-

mitted outside the lens due to the direct ray and the internal
reflections occurring inside the lens is given by the following
equation:

E𝑡 = ∑

𝑚

E𝑚
𝑡
, (3)

where the transmitted field outside the lens due to the 𝑚th
order internal reflection is

E𝑚
𝑡

= 𝐸
𝑚

𝑡‖

(n̂ ×
̂k
𝑚

𝑡
) ×

̂k
𝑚

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
(n̂ ×

̂k
𝑚

𝑡
) ×

̂k
𝑚

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝐸
𝑚

𝑡⊥

n̂ ×
̂k
𝑚

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
n̂ ×

̂k
𝑚

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

. (4)

In (4) n̂ is the unit vector normal to the lens surface,
̂k
𝑚

𝑡
= k𝑚
𝑡
/‖k𝑚
𝑡
‖ is the transmitted unit wave vector due to

the 𝑚th internal reflection with ‖k𝑚
𝑡
‖ = 2𝜋𝑛0/𝜆0, where

𝑛0 is the refractive index of the external medium, and
𝜆0 is the free space wavelength. The orthogonal 𝐸

𝑚

𝑡⊥
and

parallel components 𝐸
𝑚

𝑡‖
of the transmitted electric field are

determined bymultiplying the orthogonal𝐸𝑚
𝑖⊥
and parallel𝐸𝑚

𝑖‖

components of the incident electric field E𝑚
𝑖
in such point by

the proper Fresnel transmission coefficient.The evaluation of
the incident components of the electric field is carried out by
means of the following equations:

𝐸
𝑚

𝑖⊥
= E𝑚
𝑖

⋅

n̂ ×
̂k
𝑚

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
n̂ ×

̂k
𝑚

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

, (5)

𝐸
𝑚

𝑖‖
= E𝑚
𝑖

⋅

(n̂ ×
̂k
𝑚

𝑖
) ×

̂k
𝑚

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
(n̂ ×

̂k
𝑚

𝑖
) ×

̂k
𝑚

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

, (6)

where ̂k
𝑚

𝑖
= k𝑚
𝑖
/‖k𝑚
𝑖
‖ is the incident unit wave vector due

to 𝑚th internal reflection with ‖k𝑚
𝑖
‖ = 2𝜋𝑛𝑑/𝜆0, where 𝑛𝑑 is

the refractive index of the homogeneous dielectric material
forming the lens.

In case of direct tube, 𝑚 = 1, the incident field E𝑚
𝑖
(𝑃𝑚) at

point 𝑃𝑚 is calculated using the far field pattern of the source
and instead, for 𝑚 > 1, E𝑚

𝑖
(𝑃𝑚) is derived from (𝑚 − 1)th

reflected wave contribution as

E𝑚
𝑖

(𝑃𝑚) = E𝑚−1
𝑟

(𝑃𝑚−1) 𝑒
𝑗‖k𝑚
𝑖
‖𝑑
𝑚

, (7)

where 𝑑𝑚 is the path length between observation point 𝑃𝑚

and point𝑃𝑚−1, where the reflection takes place.The reflected
field E𝑚−1

𝑟
(𝑃𝑚−1) appearing in (7) is given by the following

equation

E𝑚−1
𝑟

(𝑃𝑚−1) = 𝐸
𝑚−1

𝑟‖

[
̂k
𝑚−1

𝑟
× (−n̂)] ×

̂k
𝑚−1

𝑟

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
[
̂k
𝑚−1

𝑟
× (−n̂)] ×

̂k
𝑚−1

𝑟

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝐸
𝑚−1

𝑟⊥

̂k
𝑚−1

𝑟
× (−n̂)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

̂k
𝑚−1

𝑟
× (−n̂)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

,

(8)

where parallel 𝐸
𝑚−1

𝑟‖
and orthogonal 𝐸

𝑚−1

𝑟⊥
electric field

components of (𝑚 − 1)th reflected wave are obtained by
multiplying the corresponding components with the Fresnel
reflection coefficient. ̂k

𝑚

𝑖
= k𝑚
𝑖
/‖k𝑚
𝑖
‖ term is the reflected unit

vector referring to (𝑚−1)th internal reflection at point 𝑃𝑚−1.
In order to evaluate the transmitted and reflected unit

wave vector, Snell’s law at the interface between the dielectric
lens and the outside medium has to be considered. In
particular, the transmission and reflection phenomena are
modeled by the following relations:

𝑛𝑑
̂k𝑖 × n̂ = 𝑛0

̂k𝑡 × n̂,

̂k𝑖 × n̂ =
̂k𝑟 × (−n̂) ,

(9)

where the transmitted unit wave vector ̂k𝑡, the reflected unit
wave vector ̂k𝑟, the tangential unit vector t̂, and the normal
unit vector n̂ to the lens surface are given by

̂k𝑡 (𝜃, 𝜙) = cos (𝜃𝑡) n̂ + sin (𝜃𝑡) t̂

= [cos (𝜃𝑡) 𝑛𝑟 + sin (𝜃𝑡) 𝑡𝑟] r̂

+ [cos (𝜃𝑡) 𝑛𝜃 + sin (𝜃𝑡) 𝑡𝜃]
̂𝜃

+ [cos (𝜃𝑡) 𝑛𝜑 + sin (𝜃𝑡) 𝑡𝜑] 𝜑̂,

(10)

̂k𝑟 × n̂ = (sin 𝜃𝑖 − cos 𝜃𝑖) n̂, (11)

t̂ =

−n̂ × (n̂ ×
̂k𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
n̂ × (n̂ ×

̂k𝑖)
󵄩
󵄩
󵄩
󵄩
󵄩

, (12)

n̂ =

𝜕r/𝜕𝜃 × 𝜕r/𝜕𝜑
󵄩
󵄩
󵄩
󵄩
𝜕r/𝜕𝜃 × 𝜕r/𝜕𝜑󵄩

󵄩
󵄩
󵄩

, (13)

where the normal unit vector n̂ = 𝑛𝑟r̂ + 𝑛𝜃
̂𝜃 + 𝑛𝜑𝜑̂ and

tangential unit vector t̂ = 𝑡𝑟r̂ + 𝑡𝜃
̂𝜃 + 𝑡𝜑𝜑̂ to the lens surface

in spherical coordinates are introduced. The terms 𝜃𝑡 and 𝜃𝑖

denote the transmitted and incident angle formed by thewave
propagation vector and the normal unit vector to the surface
in a given point, respectively:

𝜃𝑖 = tan−1 (
̂k𝑖 ⋅ t̂
̂k𝑖 ⋅ n̂

) ,

𝜃𝑡 = sin−1 (𝑛𝑑 sin 𝜃𝑖) .

(14)

Once the transmitted and incident angles are computed, the
Fresnel coefficients for the transmitted wave component can
be evaluated as

𝑡⊥ =

2𝑛𝑑 cos 𝜃𝑖
𝑛𝑑 cos 𝜃𝑖 + 𝑛0 cos 𝜃𝑡

,

𝑡‖ =

2𝑛𝑑 cos 𝜃𝑖
𝑛𝑑 cos 𝜃𝑡 + 𝑛0 cos 𝜃𝑖

(15)
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and the reflected component of the electric field is

𝑟⊥ =

𝑛𝑑 cos 𝜃𝑡 − 𝑛0 cos 𝜃𝑖
𝑛𝑑 cos 𝜃𝑡 + 𝑛0 cos 𝜃𝑡

,

𝑟‖ =

𝑛𝑑 cos 𝜃𝑖 − 𝑛0 cos 𝜃𝑡
𝑛𝑑 cos 𝜃𝑖 + 𝑛0 cos 𝜃𝑡

.

(16)

Vector r = 𝑟r̂ appearing in (13) is the radius vector describing
the lens surface defined byGielis’ superformula as follows [17,
18]:

r = r̂√𝑧
2
+ 𝑦
2
+ 𝑥
2 (17)

with

𝑥 (𝜓, 𝜁) = 𝑅𝜓 cos (𝜓) 𝑅𝜁 cos (𝜁) ,

𝑦 (𝜓, 𝜁) = 𝑅𝜓 sin (𝜓) 𝑅𝜁 cos (𝜁) ,

𝑧 (𝜓, 𝜁) = 𝑅𝜁 sin (𝜁) ,

𝑅𝜓 = [

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚1𝜓/4)

𝑎1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
1

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚2𝜓/4)

𝑎2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
2

]

−1/𝑏
1

,

𝑅𝜁 = [

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚3𝜁/4)
𝑎3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
3

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚4𝜁/4)

𝑎4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
4

]

−1/𝑏
2

,

(18)

where 𝑛𝑝, 𝑎𝑝, 𝑚𝑝, 𝑝 = 1 ⋅ ⋅ ⋅ 4, and 𝑏𝑞, 𝑞 = 1, 2, are real-valued
parameters selected in such a way that the surface of the lens
is actually closed and characterized, at any point, by curvature
radius larger than theworkingwavelength in accordancewith
the GO approximation. The parameters 𝜁 ∈ [0, 𝜋/2] and 𝜓 ∈

[−𝜋, 𝜋] denote real-valued parameters appearing in Gielis’
formula, whereas the spherical angles 𝜃 and 𝜑 are obtained
by means of the following relations:

𝜃 = cos−1 (𝑧

𝑟

) ,

𝜑 = tan−1 (
𝑦

𝑥

) .

(19)

The derivatives of the radius vector r appearing in (13) are
given by

𝜕r
𝜕𝜃

=

𝜕𝑟

𝜕𝜃

r̂ + 𝑟
̂𝜃,

𝜕r
𝜕𝜑

=

𝜕𝑟

𝜕𝜑

r̂ + 𝑟 sin (𝜃) 𝜑̂,

(20)

where

𝜕𝑟

𝜕𝜃

=

𝜕𝑟

𝜕𝜁

𝜕𝜁

𝜕𝜃

, (21)

𝜕𝑟

𝜕𝜑

=

𝜕𝑟

𝜕𝜓

− tan 𝛾

𝜕𝑟

𝜕𝜃

, (22)

𝛾 = tan−1 ( 𝜕𝜃

𝜕𝜓

) . (23)

According to Gielis’ description of the lens surface, the
derivatives of r with respect to 𝜁 appearing in (21) can be
evaluated as follows:

𝜕𝑟
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=

1
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(𝑥
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+ 𝑦
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+ 𝑧
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𝜕𝜁

) ,
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=
[
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[

𝑟 (𝑑𝑧/𝑑𝜁) − 𝑧 (𝑑𝑟/𝑑𝜁)

𝑟
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2

]
]

]

−1 (24)

with

𝑑𝑧

𝑑𝜁

=

𝑑𝑅𝜁

𝑑𝜁

sin 𝜁 + 𝑅𝜁 cos 𝜁,

𝑑𝑦

𝑑𝜁

= 𝑅𝜓

𝑑𝑅𝜁

𝑑𝜁

cos 𝜁 sin𝜓 − 𝑅𝜓𝑅𝜁 sin 𝜁 sin𝜓,

𝑑𝑥

𝑑𝜁

= 𝑅𝜓

𝑑𝑅𝜁

𝑑𝜁

cos 𝜁 cos𝜓 − 𝑅𝜓𝑅𝜁 sin 𝜁 cos𝜓,

𝜕𝑅𝜁

𝜕𝜁

= −

1

𝑏2

[

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚3𝜁/4)
𝑎3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
3

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚4𝜁/4)

𝑎4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
4

]

−(1+𝑏
2
)/𝑏
2

⋅ [𝑛3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚3𝜁/4)
𝑎3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
3
−1

𝜕

𝜕𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚3𝜁/4)
𝑎3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑛4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚4𝜁/4)

𝑎4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
4
−1

𝜕

𝜕𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚4𝜁/4)

𝑎4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ,

𝜕

𝜕𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos (𝑚3𝜁/4)
𝑎3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= −

𝑚3

4𝑎3

sin(

𝑚3𝜁

4

) [2𝐻 (𝑎3) − 1]

⋅ [2𝐻(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚3𝜁

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨2𝜋

−

3

4

𝜋) − 2𝐻(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚3𝜁

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨2𝜋

−

𝜋

2

)

+ 1] ,

𝜕

𝜕𝜁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝑚4𝜁/4)

𝑎4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑚4

4𝑎4

cos(𝑚4𝜁

4

) [2𝐻 (𝑎4) − 1] [1

− 2𝐻(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚4𝜁

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨2𝜋

− 𝜋)] ,

(25)

where 𝐻(⋅) denotes the Heaviside function.
The derivative of rwith respect to𝜓 appearing in (22) can

be evaluated as follows:

𝜕𝑟

𝜕𝜓

=

1

𝑟

(𝑥

𝜕𝑥

𝜕𝜓

+ 𝑦
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) , (26)
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Figure 3: Densities current distribution on the lens surface considering 𝑚 = 2 internal reflections: (a) prospective view, (b) top view, and (c,
d) lateral views.

where
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(27)

Once the contribution of all internal reflections has been
evaluated by the GO method, the equivalent electric J𝑠 and
magnetic M𝑠 current densities excited along the surface of
the lens can be easily determined. According to the PO



6 Mathematical Problems in Engineering

20

200
0

−20
−20

y

x

z

−10

0

10

20

30

−20

−15

−10

−5

0

5

10

D
ire

ct
iv

ity
 (d

Bi
)

(a)

01020

30

210

60

240

90

270

120

300

150

330

180 0
−10

100∘

𝜃

𝜙 = 0∘

𝜙 = 90∘

(b)

Figure 4: Radiation solid (a) and polar sections (b) with 𝜙 = 0
∘ solid line and 𝜙 = 90

∘ dashed line of the considered lens antenna.
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Figure 5: Densities current distribution on the lens surface considering 𝑚 = 3 internal reflection: (a) prospective view, (b) top view, and (c,
d) lateral views.

approximation, the electromagnetic field radiated in the
spatial domain outside the lens at the general observation
point 𝑃FF = (rFF, 𝜃FF, 𝜑FF) can be computed by the following
integral expression:

EFF (𝑃FF)

= j 𝑒
−j𝑘
0
rFF

2𝜆0rFF
∫

𝑆

[𝜂0J𝑆 × û0 − M𝑆] × û0𝑒
j𝑘
0
r
0
⋅û
0

𝑑𝑆,

(28)
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Figure 6: (a) Radiation solid, (b) polar sections with 𝜙 = 0
∘ (solid line) and 𝜙 = 90

∘ (dashed line), and (c) polar sections of the three main
lobes in 𝜙 = 0

∘ (solid line), 𝜙 = 60
∘ (dashed line), and 𝜙 = 120

∘ (dotted line).

where r0 is the vector pointing from point 𝑃 on the lens
surface and observation point 𝑃FF, 𝜂0 is the characteristic
impedance of the vacuum, rFF is the distance vector between
the origin of the coordinate system and observation point𝑃FF,
and û0 is the unit vector corresponding to r. In such way, the
directivity of the antenna can be obtained by the following
expression:

ℎ (𝜃FF, 𝜑FF) =

4𝜋r2FF
󵄩
󵄩
󵄩
󵄩
EFF

󵄩
󵄩
󵄩
󵄩

2

𝜂0𝑃tot
, (29)

where 𝑃tot is the total electromagnetic power radiated by the
lens.

3. Numerical Results

Gielis’ formulation allows the design of the proper lens
shape by changing a few equation parameters. In this way,
it is possible to analytically define the lens geometry useful
for meeting size constraints due to the packaging, round-
ness, aspect ratio, or any sort of shape-related requirement.
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Figure 7: Comparison between the normalized directivity of the #LA1 lens antenna: polar sections with (a) 𝜙 = 0
∘ and (b) 𝜙 = 90

∘.

Furthermore, the electromagnetic radiation properties can be
tuned by changing the lens parameters in order to synthesize
a desired radiation pattern. Moreover, Gielis’ superformula
is useful for defining analytically all the physical quantities
involved in the electromagnetic problem. This in turn is
beneficial for enhancing the accuracy of the results and, at the
same time, reducing the computational cost of the analysis in
comparison to a brute-force numerical approach.

The developedmodeling technique is adopted to design a
particular lens antenna showing a flat-top radiating pattern
at frequency 𝑓 = 60GHz. This type of antenna could
be integrated in communication systems covering a wide
area. The proposed lens (#LA1) is made out of a dielectric
material with refractive index equal to 𝑛𝑑 = 1.42, having
a minimum radius of 𝑟min = 25mm and described by
the following parameters of Gielis’ superformula: 𝑛𝑖 = 4,
𝑎𝑖 = 1, 𝑚𝑖 = 2, 𝑖 = 1 ⋅ ⋅ ⋅ 4, and 𝑏1 = 𝑏2 = 1. The
selected Gielis’ parameters ensure a curvature radius of the
lens larger than the operating wavelength in all the points
along the lens surface, in accordance with the applicability
restrictions of the GO approximation. The lens is placed on
a metal disk plate with radius 𝑟𝑑 = 100mm and fed by an
open ended circular waveguide with diameter 𝑎𝑔 = 2.3mm,
filled up by the same dielectric material forming the lens and
positioned at center of such metallic plate. The numerical
simulation has been performed considering a lens surface
tessellation composed by 160 × 160 elements and 𝑚 = 2

internal reflections. Figure 3 shows the equivalent electric
current densities distribution on the lens surface considering
the internal reflection contribution.

Figure 4 illustrates (a) the radiation solids (far field
pattern) and (b) the polar sections generated by the densities
current pattern illustrated in Figure 3. It is worth noting that
the antennamain lobe is characterized by an angular aperture

at −3 dB of about 100 degrees with a peak directivity value of
about 13 dBi.

Another numerical example relevant to the design of a
lens antenna characterized by a triple radiation beam pattern
at frequency 𝑓 = 60GHz is here reported. This type of
antenna could be adopted in communication systems imple-
menting a spatial-division multiplexing useful for increasing
the channel capacity where the position of the receiver is
known. In this case, the proposed lens (#LA2) is made out of
a dielectric material with refractive index equal to 𝑛𝑑 = 1.42,
having a minimum radius of 𝑟min = 25mm and described by
the following Gielis’ parameters: 𝑛1 = 𝑛2 = 4, 𝑛3 = 3, 𝑛4 = 1,
𝑎𝑖 = 1, and 𝑚𝑖 = 3 (𝑖 = 1 ⋅ ⋅ ⋅ 4). Also in this case, the selected
Gielis’ parameters ensure a minimum curvature radius of
the lens surface that satisfies the applicability conditions of
the GO approximation. A metal disk plate with radius 𝑟𝑑 =

100mm is also considered and the feeding source consists
of an open ended circular waveguide having diameter 𝑎𝑔 =

2.7mm and filled up by the same dielectric material forming
the lens. Also, in this case, the lens surface tessellation is
composed by 160 × 160 elements and 𝑚 = 3 internal
reflections have been taken into account. In Figure 5 the
distribution of the equivalent electric current densities on the
lens surface is shown. The internal reflections are properly
taken into account.

Figure 6 shows (a) the radiation solids and ((b), (c))
polar sections, generated by the current density distribution
illustrated in Figure 5. It is possible to observe three main
lobes having an angular aperture at −3 dB of about 70 degrees
pointing in three different directions 𝜙 = 0

∘, 𝜙 = 120
∘, and

𝜙 = 240
∘ with a directivity of about 11 dBi and an elevation

angle of 𝜃 = 45
∘.

Both the illustrated lens antenna structures feature spe-
cific properties in terms of radiation pattern that can be
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Figure 8: Comparison between the normalized directivity of the #LA2 lens antenna: polar sections with (a) 𝜙 = 0
∘, (b) 𝜙 = 60

∘, and (c)
𝜙 = 120.

beneficial for the newly introducedWi-Fi 802.11ad communi-
cation protocol working at frequency𝑓 = 60GHz.Moreover,
the obtained numerical results confirm the feasibility of the
proposed mathematical model to study the special class of
lens antennas defined by Gielis’ superformula.

4. Model Validation

In order to validate the developed modeling approach, a
comparison with a commercially available full-wave electro-
magnetic solver CSTMicrowave Studio has been carried out.

Figures 7 and 8 show the normalized directivity of the lens
antennas #LA1 and #LA2, respectively, as computed by the
developed GO/PO asymptotic approach and the commercial
software. It is worthwhile to note that, within the angular
width of the main lobe (antenna beam width or half-power
beam width, more important for antenna design), a closer
agreement between the full-wave and GO-PO numerical
results has been obtained. Outside such angular region (less
important for antenna design), an accuracy decrease of the
GO-PO results can be observed. This occurrence, can be
explained taking into account that the source field used in
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GO-PO approach is slightly different from that resulting
from the full-wave method. In fact, in GO-PO approach
the incident electromagnetic field on the lens surface corre-
sponds to the far field pattern from a circular aperture on
an infinite metallic plate. Instead, in the full-wave method
the calculation of the incident electromagnetic field takes
into account the finite size of the metallic plate. However,
the full-wave analysis requires more computational resources
in terms of memory occupation and simulation time. As a
matter of fact, using aworkstationwith dual Intel Xeon E5645
processor, frequency of 2.4GHz, the computational time and
memory allocation required by the full-wave solver are about
15 hr and 22GBytes, respectively, for lens #LA1 and about
10 hr and 15GBytes, respectively, for lens #LA2. On the other
hand, the developed GO-PO procedure is characterized by a
computational time andmemory allocation of about 3 hr and
2.5GBytes, on the same workstation.

5. Conclusion

A novel mathematical procedure based on GO/PO tube trac-
ing approach for modeling the electromagnetic propagation
inside the lens antenna has been illustrated. The proposed
model is applied to a special class of lens antennas having
the three-dimensional shape defined by Gielis’ superformula.
The analytical expression of the lens surface reduces the
drawbacks due to various numerical approximations while
ensuring more accurate results. The applicability of the
proposedmodel could be extended to design complex shaped
lens antennas for a wide range of applications covering both
the microwave and optical frequency band. A proper selec-
tion of Gielis’ shape allows the performance improvement
of the antenna in terms of directivity, multibeam radiating
shape, beam-steering angle, beam stability, wide beam angle,
and radiating efficiency.
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