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Pulmonary CT Registration through Supervised
Learning with Convolutional Neural Networks

Koen A.J. Eppenhof, Josien P.W. Pluim, Fellow, IEEE

Abstract—Deformable image registration can be time con-
suming and often needs extensive parameterization to perform
well on a specific application. We present a deformable reg-
istration method based on a three-dimensional convolutional
neural network, together with a framework for training such
a network. The network directly learns transformations between
pairs of three-dimensional images. The network is trained on
synthetic random transformations, which are applied to a small
set of representative images for the desired application. Training
therefore does not require manually annotated ground truth
information on the deformation. The framework for the genera-
tion of transformations for training uses a sequence of multiple
transformations at different scales that are applied to the image.
This way, complex transformations with large displacements can
be modeled without folding or tearing images. The methodology
is demonstrated on public data sets of inhale-exhale lung CT
image pairs, which come with landmarks for evaluation of the
registration quality. We show that a small training set can be
used to train the network, while still allowing generalization
to a separate pulmonary CT data set containing data from a
different patient group, acquired using a different scanner and
scan protocol. This approach results in an accurate and very
fast deformable registration method, without a requirement for
parameterization at test time, or manually annotated data for
training.

Index Terms—deformable image registration, pulmonary CT
images, convolutional neural networks, machine learning

I. INTRODUCTION

A large class of deformable image registration problems is
solved using algorithms that maximize an image similar-

ity function defined on the space of transformation parameters
[1]. Optimization-based methods usually result in very good
registration accuracy, but suffer from being computationally
expensive, especially for complex transformations and high
resolution images. This results in these algorithms having long
runtimes, which makes them unfit for clinical applications in
which realtime registration is desired, such as image-guided
surgery and radiation treatment where fast registration methods
can contribute to better correction for the patient’s movement.
Optimization based methods require different parameteriza-
tions of the registration algorithm for different applications
(e.g. anatomy, modality, patient population), for example the
choice of similarity metric and optimization method. These
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registration parameters need to be tuned manually, and it can
take many experiments to determine parameters that result in
a robust registration for the desired application. In medical
image registration, the similarity function is not necessarily
convex and can have many local maxima at points where the
transformation causes similar – but not the same – structures
to overlap.

To address these issues, we propose a fast deformable image
registration framework based on a convolutional neural net-
work (CNN). Although the computational expense of training
the network is large, the use of the network for new images
only requires one forward-pass through the network, which can
be performed in much less time than the more conventional
optimization-based methods. Because the network is trained
to perform registration for a specific population, it is not
necessary to manually optimize any registration parameters.
Rather than optimizing a similarity metric, the network is
explicitly trained to reduce registration errors.

A. Related work

Deep learning methods have proven very successful in a
variety of tasks in medical image analysis [2]. Applications of
deep learning to deformable image registration have emerged
recently. These methods vary in their objectives, ranging
from aiding conventional registration methods, to estimating a
transformation model or deformation field directly.

Methods that aid the optimization of the transformation for
example learn similarity metrics for multimodal image regis-
tration, the initialization of the optimization, or an optimization
update. Simonovsky et al. created a supervised method that can
learn similarity metrics from patches of already aligned multi-
modal three-dimensional T1 and T2 brain MRI images [3].
Wu et al. used feature maps learned by an unsupervised auto-
encoder as features for deformable registration of brain MRIs
[4]. Gutiérrez-Becker et al. developed a supervised method
that can predict optimization steps when optimizing rigid and
deformable two-dimensional transformations. Their method
was trained and applied on intravascular ultrasound and his-
tology images [5]. Yang et al. proposed a supervised method
that estimates the momentum parameterization for LDDMM
shooting from image patches, which was demonstrated for
registration of brain MR images [6].

Methods that predict registration models directly can be
divided into supervised and unsupervised methods. One of
the earliest publications on estimating deformations directly
from two input images using supervised CNNs attempted
to learn optical flow in 2D natural images [7]. The authors
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generated their own ground truth training set by applying
affine transformations to parts of images. In a similar way
this has been applied to medical images, but for estimating
deformable transformations using patch-based CNNs [8], [9].
Cao et al. used a similar technique but informed the neural
network with a patch similarity map [10]. Rohé et al. used a
fully convolutional neural network to perform direct estimation
of a Stationary Velocity Field transformation model, trained on
previously registered cardiac images [11]. Spatial transformer
networks ([12]) have been used to learn transformation models
for unsupervised image registration of 2D medical images by
De Vos et al. [13]. They trained the network by backpropagat-
ing a similarity metric between the transformed moving image
and the fixed image.

In this paper, we substantially extend the supervised de-
formable image registration approach we presented in previous
work [14], in which a convolutional neural network is used
to perform fast image registration of 3D pulmonary CT im-
ages. This paper significantly improves the complexity of the
transformations used in the training set. Compared to existing
deep-learning based registration applications, pulmonary CT
registration requires a fine-grained or local deformation field
combined with relatively large displacements. For this kind
of deformation we propose a training method that combines
multiple random transformations to generate a large training
set. The network is not trained to optimize similarity but to
minimize the registration error directly. Furthermore, we show
that the proposed network performs fast image registration
compared to existing methods, without sacrificing registration
accuracy.

II. MATERIALS

To train and test the convolutional neural network, we use
two separate sets of publicly available thoracic computed to-
mography scans. The sets were acquired at different hospitals,
using different scanners and protocols. Each instance in the
set consists of a pair of inspiration/expiration scans of the
same patient. During training, we use both the inspiration and
expiration images of the CREATIS dataset and POPI model
[15], [16]. This set consists of 4D CTs showing a full breathing
cycle, acquired for the purpose of radiotherapy planning on a
Philips 16-slice Brilliance Big Bore Oncology Configuration
(Philips Medical Systems, Cleveland, Ohio, USA) gated by a
respiratory surrogate signal form the Pneumo Chest pressure
belt (Lafayette Instrument, Lafayette, Indiana, USA). From
this set, we used seven pairs of images at inspiration and
expiration to train the network. The images have voxel sizes
ranging from 0.78 × 0.78 × 2.00 to 1.17 × 1.17 × 2.00 mm3

and a 482 × 360 × 139 to 512 × 512 × 187 voxel dimensions.
To validate our methodology and test generalization to

different data, we use the trained network to register expiration
images (moving) to inspiration images (fixed) from a separate
set of test data, the DIR-Lab dataset [17], [18]. This data
set consists of ten pairs of inspiration/expiration thoracic CT
images of patients treated for thoracic malignancies. The
scans were acquired on a Discovery ST PET/CT scanner
(GE Medical Systems, Waukesha, Wisconsin, USA), gated by

using the respiratory signal from the Real-Time Position Man-
agement Respiratory Gatin System (Varian Medical Systems,
Palo Alto, California, USA). The pairs of images come with
expert-annotated corresponding landmarks, showing an initial
misregistration error of 8.46 mm. Each pair of images has 300
landmarks expressed in voxel indices that have been annotated
by a single observer, but are partly annotated by two additional
observers to measure the inter-observer reproducibility which
ranged from 0.70±1.01 to 1.13±1.27. The images have voxel
sizes ranging from 0.97×0.97×2.5 to 1.16×1.16×2.5 mm3 and
voxel dimensions ranging from 256×256×94 to 512×512×136.

III. METHODS

Let IF : ΩF → R and IM : ΩM → R be two images
sampled on their own d-dimensional domains ΩF,ΩM ⊂ R

d .
Registration aims to find the transformation T : ΩF → ΩM :
x 7→ x + u(x). In this paper we assume the images are pre-
registered using an affine transformation T(x) = Ax + b.
The task at hand is to estimate the remaining deformable
transformation from the affinely registered images.

The vector field u(x) is estimated from two three-
dimensional images using a convolutional neural network. The
network’s output is the three-dimensional displacement vector
field u(x) represented as three maps ux (x), uy (x), uz (x) for
the displacement in all three dimensions. These maps cover
the full fixed image domain, with the network returning a
displacement vector for every voxel.

A. Data preparation

The network accepts 128× 128× 128 images in the current
implementation, limited by the available GPU RAM required
to keep the full network in memory. Therefore, all images
are resized and cropped by removing the outer border of
the images. We determine this border using lung masks,
which were created by segmenting voxels with Hounsfield
units below -250, resulting in a rough segmentation of voxels
corresponding to low density, i.e. the lungs and the exterior of
the patient. After setting the largest morphological component
(the patient’s exterior) to zero we obtain a rough segmentation
of the lungs. Subsequently, the resulting images were resized
to a 128 × 128 × 128 resolution using fourth-order B-spline
interpolation and the landmarks are translated to compensate
for the border removal, and scaled to compensate for the
resizing.

B. End-to-end training

The network is trained end-to-end: two full images are used
as input, and the output is a displacement vector field for
the full image domain. This is in contrast with patch-based
methods (e.g. [8], [9], [6]) that estimate the deformation from
small patches from the pair of images. Another disadvantage of
patch-based networks is that the displacements in the images
can only be learned if they are significantly smaller than
the patch, i.e. the displacement should ’fit’ inside the patch
but also leave enough context for the network to base its
estimate on. In end-to-end architectures this restriction does
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not exist. A possible disadvantage to learning end-to-end
is that the amount of data available for training is smaller
compared to patch-based methods, which can be trained on
many patches extracted from very few images. To compensate
for this reduction in available training data, we use elaborate
data augmentation techniques.

C. Training set construction

A common issue in image registration is that ground truth
transformations generally do not exist for pairs of clinical
images. Therefore, we train the network on synthetically
deformed clinical images for which we know the deformation
field, as we have done in previous work ([8], [19], [14]).
In addition to this learned transformation Tlearned, we use
deformable transformations to augment the training data set,
which we call the augmentation transformation Taugm in the
remainder of the paper. For each iteration of training, an image
from the CREATIS data set is selected, to which a random
augmentation transformation Taugm and the combination of
a learned and augmentation transformation Taugm ◦ Tlearned
are applied. This results in two images I (Taugm(x)) and
I ((Taugm ◦ Tlearned)(x)), from which the network is trained
to estimate the deformation field of Tlearned. These images
simulate a moving and fixed image of a registration problem
respectively, as is shown in Figure 1. The training process can
be divided into the following steps:

a) Augmentation transformations: To increase the size
of the training set we use deformable transformations to make
variations on the training set’s images. By doing this every
iteration, the images in the CREATIS training set that we
started with will be spatially transformed thousands of times
during training. This aids the generalization of the network
to new data. The deformable transformation is defined on a
coarse B-spline grid of 2× 2× 2 grid points, to which random
displacements are assigned from a uniform distribution. These
distributions have different ranges for each component of the
displacement vectors, which are displayed in Table I. The
augmentation transformation is also used to deform masks of
the lungs that are used for computing the loss function (see
Section III-D).

b) Learned transformations: To model large transforma-
tions such as the inspiration-to-expiration transformation, it
is necessary to combine multiple transformations to prevent
folding and tearing of the images. Large displacements are
modeled on a coarse grid, and smaller displacements on
fine grids. Combining them, both the large transformation
that moves and scales the lungs in the axial dimensions, as
well as the smaller transformations that register the lungs at
a finer scale, can be modeled. The learned transformation
therefore consists of a concatenation of a course and finer
deformation, to form a realistic large deformation: Tlearned =

Tcoarse
learned ◦Tfine

learned. Both of these transformations are defined on
B-spline grids with 4×4×4 and 8×8×8 grid points respectively.
The displacements on these grids are again sampled from
uniform distributions, with different ranges of displacements
(Table I).

c) Interpolation: The transformations are applied to the
images in such a way that each image is only interpo-
lated once. Hence, for the simulated fixed image I ((Taugm ◦

Tlearned)(x)) the transformations are first concatenated, and
then applied to the image. For all interpolation operations on
images we use third-order B-spline interpolation. For the lung
masks, nearest neighbor interpolation is used.

d) Intensity-based data augmentation: We also apply a
gray-value transformation using the gamma transform I (x) ←
I (x)a where a follows a uniform distribution between 0.5
and 1.5, to increase the range of gray-values the network
can operate on and aid generalization to new data. These
random gamma transforms are applied to both input images
independently after interpolation.

D. Training procedure

The network is trained by minimizing the average of the
L1-norm of the difference between the network’s estimate of
the vector field û and the true vector field u. Because the
relevant part of the transformation only takes place inside the
lungs, we use a binary lung segmentation M to mask the lungs
during training. Masking the lungs is a common strategy in
intensity-based lung registration, where it is used to mask the
similarity metric. The augmentation transformation is applied
to the mask, such that it masks the relevant region of the
image pair. The loss is weighted by the transformed mask
M (Taugm(x)) and defined as

L =
∑

x∈ΩF M (Taugm(x)) |u(x) − û(x) |∑
x∈ΩF M (Taugm(x))

(1)

where M (x) is 0 or 1. The lung masks were the same lung
masks that we used for cropping and resizing the images in
Section II. Note that the masks are only used to compute the
loss during training. At test time the mask is not required for
the registration of the lungs. The loss function (1) is optimized
using the Adagrad optimizer [20], which decreases the learning
rate as a function of training iteration by

ηt, i =
η0√∑t

τ=1 g
2
τ, i + ε

(2)

with η0 = 10−2, gt, i the gradient for weight i at iteration t,
and ε = 10−8 a constant for numerical stability.

TABLE I
PARAMETERS FOR THE B-SPLINE TRANSFORMATIONS IN THE TRAINING
SET. THE GRID SIZE INDICATES THE NUMBER OF GRID POINTS IN EACH

DIMENSION. THE DISPLACEMENTS ARE SAMPLED FROM UNIFORM
DISTRIBUTIONS IN THE GIVEN RANGES.

Grid point displacement ranges (voxels)

T Grid size x y z

Taugm 2 × 2 × 2 [−3.2, 3.2] [−6.4, 6.4] [−12.8, 12.8]

Tcoarse
learned 4 × 4 × 4 [−3.2, 3.2] [−6.4, 6.4] [−12.8, 12.8]

Tfine
learned 8 × 8 × 8 [−3.2, 3.2] [−3.2, 3.2] [−3.2, 3.2]
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Fig. 1. Schematic explaining the on-the-fly training set construction. From the CREATIS data set, fourteen images are used for training the neural network.
Each iteration of training an image is selected and randomly deformed using the augmentation transformation, which serves to augment the training set. This
image is again deformed, using the learned transformation (deformation field shown in blue and red for positive and negative displacements).

Fig. 2. The network architecture. The network takes two images as input, and outputs three maps: one for each vector field component.

E. Network architecture

The end-to-end architecture used in this paper is the fully-
convolutional neural network by Ronneberger et al., and
popularized as the U-net architecture which was first used for
end-to-end learning of segmentations of 2D and 3D medical
images [21], [22]. To adapt the 3D U-net architecture in Çiçek
et al. [22] to the registration problem, the input layer was
changed to have two channels, one for the fixed image and one
for the moving image (Figure 2). The output layer was changed
to have three channels, one for each vector field component. To
enable real-valued estimates, the output layer has no activation
function. In addition, we deepened the network by adding one
more level of pooling, convolutions, and up-sampling. Lastly,
all activation functions were changed to leaky rectified linear
units parameterized as φ(x) = max(x, 0.01x), which prevents
dying neurons that occurred using the regular rectified linear
units (ReLU) [23]. A batch size of one was used to limit
the amount of memory required during training. Even with
single-instance batches, it can be useful to use a form of
batch normalization, which we applied to all convolutional
layers. Instead of measuring the mean and standard devia-
tions of layer inputs over a batch, we update the mean and
standard deviations using an exponential running average,
as proposed by [24]. At iteration t the mean and standard

deviation are defined by µ̄t = α ∗ µ̄t−1 + (1 − α) ∗ µ̂t−1 and
τ̄t = α ∗ τ̄t−1 + (1 − α) ∗ τ̂t−1 with τk = (σ2

k
+ ε )−1, where

µ̄t and τ̄t are the batch mean and inverse of the variance at
iteration t, ε = 10−4 is a constant for numerical stability, and
α was set to 0.1. In the current implementation the network
accepts images of 128 × 128 × 128, and outputs vector fields
of the same size, resulting in about 1.3 billion weights for the
entire network.

IV. EXPERIMENTS

A. Elastix registration algorithm

We compare the network’s performance on the ten DIR-
Lab registration pairs with the state-of-the art Elastix image
registration software [25]. We objectively determine the perfor-
mance using the landmark sets included in the DIR-Lab data
set. For the Elastix registration we used the Elastix parameters
published by Staring et al. [26] which was a contender in the
EMPIRE registration challenge [27]. This algorithm consists
of three stages: an affine transformation and two B-spline
transformations. The affine stage is both used for the Elastix
algorithm that we compare against and for the pre-registration
that we apply before applying the network. Consequently,
we compare Elastix’ B-spline registrations with the network’s
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registration result starting from the affine registration. We give
a short description of each stage:

a) Affine registration: The affine transformation is op-
timized by maximizing the normalized correlation similarity
metric using adaptive stochastic gradient descent [25]. The
optimization is made more robust by using a multi-resolution
approach that starts the registration at a lower-resolution
version of 1

16 the size of the original images and runs the
optimization consecutively at fractions 1

8 , 1
4 , 1

2 , and 1 of the
original resolution. At every resolution the optimization takes
1000 iterations. Every iteration the normalized correlation is
computed for 2000 randomly sampled spatial coordinates.

b) Coarse B-Spline: The second stage starts from the
affine registration’s result and uses the same optimization
techniques (optimizer, multi-resolution strategy, sampling, and
number of iterations) to optimize the normalized correlation.
The B-spline transformation is defined on a grid that has an
isotropic grid spacing of 80 mm for the first two resolutions
and is isotropically scaled down with factors of two for every
next resolution to 10 mm.

c) Finer B-Spline: The third stage follows the same
approach as the second stage, but only measures the metric
inside the lung mask of the fixed image. The optimization
runs for 2000 iterations at every resolution, and the multi-
resolution pyramid in this actions of 1

4 , 1
3 , 1

2 , 1, and 1. The
B-spline grid spacing starts from 80 mm and is isotropically
scaled down with factors of two for every resolution to 10 mm
for the final resolution. The implementation is equal to that of
Staring et al. [26] with the exception of the sampler, which
we changed to Elastix’ random sparse mask sampler to reduce
the time spent on finding enough samples within the lungs.

For every stage the moving image is interpolated using first-
order B-spline interpolation during optimization, and third-
order B-spline interpolation to sample the final image. Before
registration, the images were resized to the 128 × 128 × 128
input size for fair comparison to the network. Because the
network does not require lung masks at test time, we also
compared to running the Elastix pipeline described above
without using lung masks.

B. Landmark errors

The network was trained for 96,700 iterations. During
training, the snapshots of the weights were saved every 50
iterations. After training, we averaged the weights in the
past 200 snapshots to regularize the final result. The network
was applied to the affinely registered images of the DIR-
Lab dataset. The affine transformation was applied to the
moving (expiration) images, resulting in pairs Iinsp(x) and
Iexp(Taffine(x)). The network was applied to this pair of
images. The resulting displacement field and affine transfor-
mation were applied to the the expiration image, resulting in
Iexp(x + û(Taffine(x) + x)). To evaluate we compute the target
registration error for every fixed landmark xF , by finding the
associated displacement for that point û(xF ) and measuring
the L2 norm of the difference with the true displacement
xM − xF , i.e. TRE(x) = ‖xF + û(xF ) − xM ‖.

V. RESULTS

A. Quantitative evaluation

The TRE values for our method, Elastix, and five methods
from literature that also validate on the DIR-Lab data set
([28], [29], [30], [31], [32]) are shown Table II. Note that
the methods in [28], [30], [31], [32] have been specifically
optimized for the sliding motion of the lungs against the ribs,
which our method does not model explicitly.

Because our method requires resizing the images, we di-
vide Table II into two parts: results from registrations on
the original images are shown on the left, and results from
registrations on the cropped and resized images are shown on
the right. To show the influence of the resizing and cropping
on optimization-based registration methods, we applied Elastix
to both resolutions. In addition, we show the TRE values for
running Elastix without the aid of a lung mask, because our
method does not require a mask at test time. Our method
results in similar TRE values on average (2.17 ± 1.89 mm
versus 2.17 ± 3.22 mm for Elastix), but the results are more
consistent compared to running Elastix without a mask: the
standard deviation for Elastix is substantially higher.

Adding the lung mask to Elastix improves the registration
result. Resizing and cropping the images has no effect on
Elastix’ performance: on average the TRE values are similar
for the resized and original images (1.32 ± 1.24 mm vs.
1.31 ± 1.06 mm).

To show the effect of training on a more similar training set,
we also trained the network on seven pairs of images of the
DIR-Lab data set, keeping the training set the same size as in
the original experiment. We use the other three DIR-Lab pairs
(2, 4, and 9) as test set. Because the images in the training and
testing sets are now from the same population and the same
scanner, a better performance is expected. The results show
that the performance improves marginally over training on the
CREATIS data set. The average TRE for images 2, 4, and 9
is 1.86± 1.17 when training on CREATIS, versus 1.52± 0.85
for training on DIR-Lab.

Figure 3 shows the correlation plots for the displacement
in x-, y-, and z-direction. The plots show that both Elastix
and our network have high correlations with the ground truth
displacements, and that our method has fewer outliers than
Elastix without lung masks. Boxplots for the errors for these
displacements as well as the TRE are shown in Figure 4.

B. Registered images and folding

We computed the registered images and determined folding
by examining values of the deformation field’s Jacobian deter-
minant below zero. Registered images were interpolated using
a third-order B-spline grid, with 128 × 128 × 128 grid points.
To give an indication of the registration results, we show the
overlap between the fixed and registered image for the center
frontal slice in overlap plots (Figure 5).

The Jacobian determinant was determined on the same B-
spline grid. In these plots, each of the images is color coded:
green for the registered image and purple for the fixed image.
For 1.28% of voxel positions in the images the deformation
field showed folding, measured as those voxels for which the
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TABLE II
TRE VALUES (MM, µ ±σ) FOR AFFINE REGISTRATION, ELASTIX’ REGISTRATION, AND OUR METHOD, FOR EACH OF THE DIR-LAB IMAGES (N = 300
PER IMAGE), WITH COMPARISON TO FIVE EXISTING METHODS. THE LEFT-MOST COLUMNS SHOW TRE VALUES COMPUTED AFTER REGISTRATION OF
THE ORIGINAL IMAGES. THE RIGHT-MOST COLUMNS SHOW TRE VALUES COMPUTED AFTER REGISTRATION OF THE CROPPED AND RESIZED IMAGES.

Evaluated on original image size Evaluated on 128 × 128 × 128 size

Schmidt- Heinrich Vandemeu- Delmon Berendsen Elastix Network Network
Before Richberg et al. lebroucke et al. et al. Elastix Elastix without trained on trained on

Set registration et al. [28] [29] et al. [30] [31] [32] [26] [26] mask [26] CREATIS DIR-Lab1

1 3.89±2.78 1.22±0.64 0.97±0.5 1.52±0.92 1.2±0.6 1.00±0.52 0.99±0.57 1.05±0.53 1.04±0.51 1.45±1.06 –
2 4.34±3.90 1.14±0.65 0.96±0.5 1.30±1.03 1.1±0.6 1.02±0.57 0.94±0.53 1.00±0.56 1.20±0.96 1.46±0.76 1.24±0.61
3 6.94±4.05 1.36±0.81 1.21±0.7 1.69±1.12 1.6±0.9 1.14±0.89 1.13±0.64 1.20±0.64 1.76±1.49 1.57±1.10 –
4 9.83±4.85 2.68±2.79 1.39±1.0 1.82±1.14 1.6±1.1 1.46±0.96 1.49±1.01 1.52±1.03 1.73±1.57 1.95±1.32 1.70±1.00
5 7.48±5.50 1.57±1.23 1.72±1.6 2.75±2.45 2.0±1.6 1.61±1.48 1.77±1.53 1.42±1.27 2.42±2.74 2.07±1.59 –
6 10.89±6.96 2.21±1.66 1.49±1.0 2.01±1.16 1.7±1.0 1.42±0.89 1.29±0.85 1.47±0.98 1.98±1.59 3.04±2.73 –
7 11.03±7.42 3.81±3.06 1.58±1.2 2.15±1.59 1.9±1.2 1.49±1.06 1.26±1.09 1.43±1.49 2.90±3.68 3.41±2.75 –
8 14.99±9.00 3.42±4.25 2.11±2.4 2.11±1.79 2.2±2.3 1.62±1.71 1.87±2.57 1.42±1.42 5.10±7.48 2.80±2.46 –
9 7.92±3.97 1.83±1.19 1.36±0.7 2.05±1.20 1.6±0.9 1.30±0.76 1.33±0.98 1.42±1.17 1.81±1.51 2.18±1.24 1.61±0.82

10 7.30±6.34 2.06±1.92 1.43±1.6 2.12±1.66 1.7±1.2 1.50±1.31 1.14±0.89 1.19±0.76 1.79±1.95 1.83±1.36 –

All 8.46±6.58 2.13±1.82 1.43±1.3 1.95±1.47 1.66±1.14 1.36±1.01 1.32±1.24 1.31±1.06 2.17±3.22 2.17±1.89 1.52±0.85

1) Only values for images not present in the training set shown. Average TRE for all images computed exclusively on these three images.

deformation field has a Jacobian determinant smaller than zero.
These voxels occur mostly close to the edge of the lungs where
there is a transition between the lungs and surrounding tissue.

C. Runtime

As an indication of speed, we measured the runtime of
the network and Elastix for ten registrations. For Elastix, this
was measured as the time to start the Elastix command with
the two images and the mask as arguments, and obtain the
transformation model. For the network we measured the time
of one forward pass through the network. Both measurements
were run on a system with an Intel Xeon CPU E5-2640 v4, 512
GB of memory and an Nvidia Titan XP graphics card with 12
GB of GPU memory. The neural network was implemented in
Lasagne [33] and Theano [34], and used the Nvidia CUDA and
CUDNN toolboxes. For the network this resulted in 0.58±0.07
seconds per registration of an image pair, while Elastix took
13.8 ± 5.7 minutes (Table III).

VI. DISCUSSION

In this paper we have proposed a supervised registration
algorithm based on a convolutional neural network, which
learns from artificial deformations of a small set of images.
No manual labeling of the deformation is required for training
the network, as synthetic geometric transformations of the
training images are generated during training. The network’s
end-to-end architecture allows the estimation of a deformable
transformation for the full image domain, with a displacement
vector for every voxel, in less than a second. This is substan-
tially faster than comparable algorithms, which require many
minutes.

We have validated this approach on pulmonary CT scans,
and show that the network can perform accurate registration
between expiration and inspiration images, given an affine pre-
registration of the images. We show that a network trained on
a small set of CT scans can generalize to a set of pulmonary
CT images of a different patient group, acquired on a different
scanner setup. Furthermore, this shows that the network can

generalize from artificial transformations in the training to real
deformations of the lungs at test time. Training on more similar
images (i.e. same scanner, hospital, but different patient) can
improve the results (Table II).

Based on the TRE values in Table II, the proposed method
performs similar to the Elastix algorithm (2.17 ± 1.89 mm
versus 2.17 ± 3.22 mm for Elastix without mask). Without
using lung masks, Elastix has a much higher standard deviation
in the TRE values compared to our method, indicating a less
consistent result than our method. When comparing the TRE
values for our method with existing methods that explicitly
model sliding motion [28], [31], [30] and [32] we see that
two of the existing methods perform better on average, but our
method results in very similar TRE values to those of Schmidt-
Richberg et al. [28]. It should be noted that the computation
times for the methods (when they are reported) are slower than
our method (Table III). Four of the methods ([28], [31], [30],
[32]) also require a lung mask, while our method only requires
crude lung masks for the training set but does not require a
lung mask at test time.

The current methodology has two benefits over
optimization-based registration methods. First, it enables
near-instantaneous estimation of the deformation at test time,
having done any time consuming optimization during training.
This is an advantage that is clinically relevant, for example
in radiation treatment when fast registration is necessary to
register a pre-operative planning scan to an inter- or intra-
fractional scan. Conventional methods usually take minutes
to optimize a deformable transformation. Second, most
registration algorithms require elaborate parameterization that
is application specific, that are not required in the current
methodology because the network learns from the images
directly.

No expert-annotated data is required to train the network,
because the training methodology uses artificial transformation
applied to a small representative set of images to create the
training set. This also means that the network can directly learn
relevant image features for registration, requiring no choice
for feature selection or similarity metric. Features that are
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Registration
without mask

in Elastix

Registration
with mask in

Elastix

Proposed
network

Fig. 3. Correlation plots for the estimated displacement against true displacement between the moving and fixed image for x-, y-, and z-direction for all three
methods. Every point is one landmark (N = 3000). Darker colors indicate higher densities of points. The distributions for the true and estimated displacements
are shown along the axes.

useful for the estimation of the transformation are learned
implicitly from the data. The fact that the network is not
trained to optimize similarity between images means it cannot
get stuck in local minima of a similarity metric. In similarity-
based methods this can occur with repeating structures in the
images, a common example being the rib cage. It is important
to note that the network can generalize from the training set
(the CREATIS set) to a completely separate testing set (the
DIR-Lab set) created in a different hospital, using a different
scanner. The experiment in which we trained on seven pairs
of DIR-Lab images, and tested on the other three, shows only
a small improvement in TRE compared to training on the
CREATIS data set, which is further indication that the network
can generalize well to other data.

Another important point is that realistic transformations
need to be generated for training the network. This is poten-

tially the part of the methodology requiring most attention
when applying the methodology to other kinds of images.
In lung registration, this is especially important because the
deformation is complex. To model the lung deformation, a syn-
thetic deformable transformation on a fine grid is required, but
generating random displacements that are large enough will
lead to unrealistic transformations. In this paper, a sequence of
transformations was used because this provides the opportunity
to construct transformations at a fine scale (a fine grid spacing)
without improper (tearing and folding) transformations. The
ranges of the transformations were chosen to be close to
the expected displacements in the lungs, which are larger in
the out-of-plane (superior to inferior) direction, compared to
the in-plane displacements. Ideally, this kind of training set
construction would require very little parameterization, but we
found that a much better result can be obtained if these are
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Fig. 4. Boxplots of absolute errors made by the affine registration, the
Elastix registration, and our own method for x-, y-, and z-displacement as
well as TRE. Diamonds signify outliers.

Fig. 5. Example of registration methods in overlap plots, with the (registered)
moving image in pink and the fixed image in green. Note that the network
only acts on the lung field, and that errors at the lung boundaries are
expected.

TABLE III
AVERAGE COMPUTATION TIMES (µ ±σ) FOR METHODS IN LITERATURE (WHEN REPORTED) AND OUR METHOD.

Evaluated on Evaluated on
original image size 128 × 128 × 128 size

Heinrich Delmon et
et al. [29] al. [31] Elastix [26] Proposed

Total registration 7.97 min. 58 min. – –
Affine part – – 2.7±1.1 min. 2.7±1.1 min.

Deformable part – – 13.8±5.7 min. 0.58±0.07 sec.

chosen such that they reflect reality. In our experience, the
composition of multiple transformations when synthesizing
data contributes significantly to learning the complex defor-
mation of the lungs compared to simpler transformations.

The network is trained on well-posed B-spline transforma-
tions, which means that the resulting deformation fields are
relatively well-posed as well, without any additional constraint
during training. The deformation fields did display folding
close to the edge of the lungs, which is to be expected in
a method that is optimized only inside the lungs. A point for
future work is the inclusion of such a regularization constraint
in the network’s loss function, for example a bending energy
penalty computed on the deformation field, or a regularization
term that explicitly penalizes any sub-zero values of the
deformation’s Jacobian determinant.

The network’s U-net architecture enables end-to-end estima-
tion of the displacement field. The choice for this architecture
stems from the fact that it allows many layers in the network
while at the same time being memory efficient: the pooling
layers give lower-resolution representations of the same in-
formation which saves a significant amount of memory. The
pooling layers also force the network to use multi-resolution
information during optimization. For the current implementa-
tion we chose an input-size of 128×128×128 voxels, balancing
the required computational resources and registration accuracy.
Besides improvements in GPU hardware, options to solve this
problem include scaling the images to a larger size closer
to the original size and training and running the network on

multiple patches at the expense of computational cost. Another
disadvantage of patch-based methods is that the patches need
to be large enough to capture the range of displacements,
while leaving enough contextual information to estimate the
displacements [14]. In addition, patch-based systems only
use local information, which means that any anatomical or
positional information is lost, while the proposed architecture
is trained on a specific anatomy, namely the lungs, and can
optimize parts of the network for specific anatomical features.

In this paper we have have applied the proposed method
to pulmonary CT images. However, we consider this a
generic method for supervised deformable image registration
of monomodal image. The method can be adapted to other data
by retraining the network. In the current implementation the
network estimates the deformable part of the transformation,
requiring an affine pre-registration to be able to perform well.
In experiments we found the network unable to estimate large
displacements, corresponding to those found in the affine
stage. In most lung registration algorithms a multi-resolution
strategy is applied, and in fact the Elastix algorithm that we
have used for comparison uses both a multi-resolution strategy
as well as a multi-stage approach in which affine and B-spline
components are combined. A topic for future research is to
explore a fully trainable registration algorithm that eliminates
the need for pre-registration altogether, by using multiple
stages or resolutions.
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VII. CONCLUSION

A supervised algorithm for pulmonary CT image registra-
tion has been presented. The algorithm is based on a convo-
lutional neural network that is trained to estimate deformable
transformations from a very small set of images that are arti-
ficially deformed. The artificial deformations that are applied
to the images use transformations at multiple scales, which in
our experience is crucial for successful learning of realistic
transformations. Combined with affine pre-registration, the
algorithm is shown accurately register images in the DIR-Lab
data set of pulmonary CT images, even when trained on a
deviating set of pulmonary CT images. Major advantages of
this algorithm are the very short time required to estimate the
deformable transformation, and the fact that at test time no
manual optimization of registration parameters is required.
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