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1.1 Obesity: a global pandemic 

The global prevalence of obesity has nearly doubled in the last four decades [World Health 

Organization, 2014, 2016], and the incidence of childhood obesity has even increased ten-fold since 

1975. [NCD Risk Factor Collaboration, 2017] It is estimated that 39% of the worldwide adult population 

suffers from overweight and 13% is estimated as being obese. Obesity is a growing problem 

that is now reaching pandemic proportions, as shown in Figure 1.1. It is projected that in 2030 

over half of the worldwide population could have become obese. [Finkelstein et al., 2012] 

 

The most prominent cause of weight 

gain is a positive energy imbalance 

induced by lifestyle. The Western-style 

diet is typically high in sugar, (saturated) 

fat, and cholesterol. [Turnbaugh et al., 2009] 

Since these diets are high in energy and 

are often accompanied by a sedentary 

lifestyle with little physical activity, the 

surplus of energy is stored as fat. A 

prolonged state of a positive energy 

balance will result in weight gain. In 

addition, the development of obesity 

may be enhanced by possible genetic 

defects, use of medication, and 

hormonal imbalance. [Goldstone and Beales, 

2008; Loos and Bouchard, 2003; Ness-Abramof and 

Apovian, 2005] 

 
 

Figure 1.1 
 

  

Global prevalence of obesity in adults according to the 

World Obesity Federation. 

Obesity was defined as ≥30 kg/m2 (in China the Asia specific cut-

off of 27 kg/m2 was applied). Downloaded from 

worldobesity.org/data/map/overview-adults (accessed January 

19th, 2018) 
 

 

1.1.1 Severe health implications 

Recent evidence indicates that obesity does not always lead to adverse metabolic effects. A 

subgroup of approximately 10-30% of obese individuals is considered metabolically healthy 

despite having an excessive accumulation of body fat. [Denis and Obin, 2013] However, being 

overweight or obese is often accompanied by other (metabolic) abnormalities. Many studies 

have demonstrated that obesity imposes severe health risks and complications and increases 

the risk to develop other diseases, i.e. comorbidities. These range from cardiovascular diseases 

(CVD), type 2 diabetes mellitus (T2DM), sleep disorders, polycystic ovary syndrome (PCOS), 

non-alcoholic fatty liver disease (NAFLD), to some types of cancer. [Beltrán-Sánchez et al., 2013; Font-

Burgada et al., 2016; Vanita and Jhansi, 2011] 

 

1.1.2 Metabolic Syndrome 

To objectively consider these comorbidities, a number of specific risk factors have been 

identified, including obesity, hypertension, hyperglycemia, hypertriglyceridemia (HTG), and 

hypoalphalipoproteinemia (HALP; low high-density lipoprotein (HDL)-cholesterol levels). These 

metabolic derailments may affect each other and are possibly linked to the development of 

other abnormalities. The co-occurrence of these symptoms is referred to as the Metabolic 
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Syndrome (MetS). [Grundy et al., 2004; International Diabetes Federation, 2006; Kassi et al., 2011; Parikh and Mohan, 

2012; World Health Organization, 2014] The term “syndrome” refers to MetS being a clustering or 

constellation of health markers – i.e. a health/disease status – that together predispose a 

drastically increased risk of the development of the aforementioned comorbidities. 

 

We should also consider that obesity and MetS may manifest themselves in different clinical 

presentations. The terms “obesity” and “MetS” inevitably refer to a highly diverse population. 

However, the pathophysiology and etiology underlying MetS are incompletely understood. This 

impedes the design of adequate and patient-specific treatment options, but also that of 

preventive measures. Given that the prevalence of MetS is growing at an alarming rate, and 

the severe risks associated with MetS, we need to invest in studies to elucidate this syndrome. 

 

1.1.3 Systems biology approach 

The challenge central in this thesis is obtaining an integrative understanding of longitudinal 

MetS development. We believe that a systems biology approach offers the best prospects 

towards this objective. The research described in this thesis was hereto funded by the European 

FP7 Research Program “RESOLVE” (FP7-HEALTH-305707). This consortium aims at resolving the 

disturbed dynamics in patients with the Metabolic Syndrome by combining basic pre-clinical 

and clinical research, network analysis, and computational modelling. 

 

 

1.2 Metabolic Syndrome 

The decision to adopt a systems biology approach is closely related to the complexity of MetS. 

This complexity lies in several aspects, but the majority of obstacles and challenges in MetS 

research are associated with its slowly progressive behaviour, its multi-factorial nature, and its 

heterogeneous clinical presentation. 

 

1.2.1 Clinical definition 

The constellation of metabolic risk factors was initially named “Syndrome X”. [Reaven, 1993] In 

subsequent years, the definition shifted from a glucocentric (“insulin resistance syndrome”) 

towards a more flexible and obesity-centric definition, as described in Table 1.1. However, 

there is no unique or unifying definition as different healthcare organizations have defined 

different classification systems. These classifications differ both in specific criteria and in used 

cut-off points, but there is a general consensus as the different definitions do comprise the 

same common features: obesity, insulin resistance/hyperglycemia, high triglyceride levels, low 

HDL-cholesterol levels, and hypertension. [Kassi et al., 2011; Parikh and Mohan, 2012] As a consequence 

of the often used “three out of five” criterion, many different phenotypes can be classified 

under the terminology of MetS. [Agyemang et al., 2012; Lee et al., 2008] 

  



Chapter 1 

4 

 

Table 1.1 
 

  

Definitions for clinical diagnosis of Metabolic Syndrome according to different healthcare organizations. 
  

1998 

W
H

O
 World Health 

Organization 
[Alberti and Zimmet, 1998] 

 

☑ insulin resistance [T2DM or IFG] 
     plus any two of the following: 
☐ abdominal obesity [waist:hip ratio man≥0.9; women≥0.85, or BMI≥30 kg/m2] 
☐ HTG [≥150 mg/dL] and/or HALP [men≤40; women≤50 mg/dL] 
☐ hypertension [≥140/90 mmHg] 
☐ microalbuminuria [urinary albumin secretion rate≥20 μg/min, or 
     albumin:creatinine ratio≥30 mg/g] 
 

1999 

EG
IR

 

European Group for the 
study of Insulin 
Resistance 
[Balkau and Charles, 1999] 
 

⍟ “insulin resistance 
syndrome” 

 

☑ insulin resistance [≥75 percentile] 
     plus any two of the following: 
☐ obesity [waist circumference men≥94; women≥80cm] 
☐ HTG [≥150 mg/dL] and/or HALP [≤39 mg/dL] 
☐ hypertension [≥150 mmHg, or on antihypertensive drugs] 
☐ IFG [≥110 mg/dL] 
 

2001 

N
C

EP
:A

TP
III

 

National Cholesterol 
Education Program Adult 
Treatment Panel III 
[Expert Panel on Detection, 
Evaluation, and Treatment of 
High Blood Cholesterol in 
Adults, 2001] 

 

    any three of the following: 
☐ obesity [waist circumference men≥102; women≥88cm] 
☐ HTG [≥150 mg/dL] 

☐ HALP [men≤40; women≤50 mg/dL] 
☐ hypertension [≥100 mg/dL] 

☛ NB: IR is not considered as necessary diagnostic component! 
 

2003 

A
A

C
E American Association of 

Clinical Endocrinologists 
[Einhorn et al., 2003] 

 

☑ IGT 

    plus any of the following: 
☐ obesity [BMI≥25 kg/m2] 
☐ HTG [≥150 mg/dL] and/or HALP [men≤40; women≤50 mg/dL] 
☐ hypertension [≥130/85 mmHg] 
 

2004 

A
H

A
/N

H
LB

I American Heart 
Association/National 
Heart, Lung, and Blood 
Institute 
[Grundy et al., 2004] 

 

     any three of the following: 
☐ obesity [waist circumference men≥102; women≥88 cm] 
☐ HTG [≥150 mg/dL] 
☐ HALP [men≤40; women≤50 mg/dL] 
☐ hypertension [≥130/85 mmHg] 
☐ IFG [≥100 mg/dL] 
 

2005 ID
F 

International Diabetes 
Federation 
[International Diabetes 
Federation, 2006] 

 

☑ central obesity [waist circumference* or BMI≥30 kg/m2] 
     plus two of the following: 
☐ HTG [≥150 mg/dL] 
☐ HALP [men≤40; women≤50 mg/dL] 
☐ hypertension [≥130/85 mmHg] 
☐ IFG [≥100 mg/dL] 
 

 

 

* According to population and country-specific definitions 

BMI, body mass index; HALP, hypoalphalipoproteinemia (low HDL-C); HTG: hypertriglyceridemia; IFG, impaired fasting 
glucose; IGT, impaired glucose tolerance; IR, insulin resistance; T2DM, type 2 diabetes mellitus 
 

  

 

1.2.2 Epidemiology 

Due to the differences in clinical definitions, it is difficult to assess the worldwide prevalence of 

MetS. However, estimates are available for different continents and ethnic groups. It has been 

extrapolated that almost 40% of the adult worldwide population would meet the MetS criteria 

[Kassi et al., 2011; Cameron et al., 2004], but depending on the population studied and definition criteria, 

the prevalence may range between <10% to as much as 84%! [Moore, 2017; Moreira et al., 2014; van 

Vliet-Ostaptchouk et al., 2014; Desroches and Lamarche, 2007; Kaur, 2014; Kolovou et al., 2007] 
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It has also been shown that MetS prevalence increases with age. [Dominguez and Barbagallo, 2016; 

Bonomini et al., 2015; Nunn et al., 2009] 

 However, MetS manifests itself differently among different ethnic groups (that are in the 

same geographical area). [DeBoer, 2011; Abate and Chandalia, 2011; Tillin and Forouhi, 2011] African-Americans 

and Hispanics are more likely to exhibit obesity and insulin resistance. These groups are at 

higher risk of T2DM, but due to lower dyslipidemia rates, these groups are much less likely to 

be diagnosed with MetS. Although ethnic-specific cut-off values for obesity have been 

identified (as included in Figure 1.1 and Table 1.1), these are not yet available for the other 

MetS criteria. However, these ethnic differences strongly suggest a genetic component in the 

pathogenesis of MetS. [Song et al., 2006] 

 The incidence of MetS has been growing at an alarming rate and is rising to pandemic 

proportions. MetS in itself is not merely the problem; the danger lies within the associated 

comorbidities. Alberti et al. reported that “MetS confers a five-fold increase in the risk of T2DM 

and two-fold the risk of developing CVD over the next five to ten years. Patients with MetS are 

at two- to four-fold increased risk of stroke, a three- to four-fold increased risk of myocardial 

infarction, and two-fold the risk of dying from such an event compared with those without the 

syndrome regardless of a previous history of cardiovascular events”. [Alberti et al., 2009] Since also 

metabolically healthy [Denis and Obin, 2013], but overweight, people have a 20% increased risk of 

CVD, this proves that obesity is an independent risk factor – regardless of other metabolic risk 

factors – for cardiovascular complications. [Eckel et al., 2018] 

 

1.2.3 Pathophysiology 

But what mechanisms cause obesity to predispose such an increased disease risk? It is evident 

that MetS is a lifestyle-related disorder that has a strong multi-factorial and multi-scale nature. 

The complex interplay and crosstalk between adipose tissue, (skeletal) muscle, liver, pancreas, 

the cardiovascular system, and the brain [Symonds et al., 2009] includes a role for both genetic and 

environmental factors contributing to MetS development. 

 However, its pathophysiology and etiology go beyond overeating and an inactive lifestyle. 

There is an evident imbalance in the mechanisms controlling dietary intake, physical activity, 

glucose handling, lipid homeostasis, and autonomic control. [Rask-Madsen and Kahn, 2012] 

 Whereas on an epidemiological level there is a clear link between obesity and T2DM, its 

underlying mechanisms are not fully understood yet. However, the most commonly accepted 

pathogenic scheme comprises the adipose tissue expandability hypothesis to explain the 

obesity-driven development of MetS. Adipose tissue (AT) is the dedicated depot for storage of 

(excess) energy in the form of triglycerides. A positive energy balance and metabolic overload 

demand plasticity of the AT. This involves both the formation of new adipocytes and 

hypertrophy of existing cells; the latter leading to increased production and secretion of pro-

inflammatory cytokines. This indicates dysfunctional AT. [Goossens and Blaak, 2015] 

 AT can take up excess energy, but only up until a certain threshold. Consequently, 

dysfunctional AT causes lipid spillover into the circulation. Ectopic lipid accumulation in non-

adipocyte cells leads to lipotoxicity and promotes systemic inflammation. [Virtue and Vidal-Puig, 2010] 

Macrophage infiltration of AT [Neels and Olefsky, 2006], excess reactive oxygen species, and 

mitochondrial oxidative stress [Bonomini et al., 2015; Frisard and Ravussin, 2006] also play a role in this 

inflammatory response. In addition, ectopic fat and increasing levels of circulating free fatty 
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acids lead to a decrease of insulin sensitivity in various tissues and organs. Insulin sensitivity is 

further exacerbated by cytokines that are released from AT. [Grundy et al., 2004; Rask-Madsen and Kahn, 

2012] 

 

1.2.4 Heterogeneity 

However, these proposed mechanisms remain debatable and inconclusive to explain in detail 

the metabolic derailments during MetS development. This lack of knowledge of the underlying 

pathophysiology may be precluded by the heterogeneous clinical presentation of MetS. [Lee et 

al., 2008; Agyemang et al., 2012] On the one hand, this variability is inherent to the definition of MetS, 

where different combinations of features may be included. Whereas on the other hand, 

metabolic profiling seems to depend on sex and ethnicity. Nevertheless, even within specific 

cohorts, the heterogeneity in MetS presentation remains apparent. We presume that particular 

combinations of MetS components may have different underlying mechanisms of derailment. 

It is important to recognize this heterogeneity in the design of adequate treatment strategies 

for different MetS patients. [Matfin, 2010] 

 

1.2.5 Treatment strategies 

Lifestyle modification (involving nutritional management and exercise programmes) still 

remains the fundamental treatment strategy for MetS. [Bassi et al., 2014; Grave et al., 2010] Although 

this generic approach may be the most economical method, it may not be the most effective 

in combating disease risk. The first line of treatment of MetS is dietary and lifestyle 

modification, but it only has the potential to succeed if executed in an early stage of MetS. 

[Kataria et al., 2013] Treatment may also be combined with pharmacotherapy of singular MetS 

aspects. Metformin is often used as an anti-diabetic drug, statins as lipid-lowering drugs, and 

fibrates as cholesterol-lowering agents. These are also often prescribed in combination 

therapy. [van Stee et al., 2018] Although several pharmacotherapeutic options for weight loss are 

available that may contribute to lose more weight and maintain weight loss, these also have 

many adverse side-effects. [Apovian et al., 2015] 

 Whereas intensive lifestyle intervention is considered appropriate for all obese patients, 

pharmacotherapy and bariatric surgery are generally reserved for patients with a more severe 

phenotype. Roux-en-Y gastric bypass (RYGB) [Wittgrove et al., 1994] has been shown very effective 

for weight loss and improving glucose metabolism in MetS patients. [Nassour et al., 2017; Batsis et al., 

2008; Cazzo et al., 2014] It causes weight loss by restricting the amount of food the stomach can hold, 

and, moreover, causes malabsorption of nutrients. However, surgery is highly invasive and does 

not fill the gap of current treatment strategies being inadequate to deal with the growing rate 

of metabolic disorders. 

 Recently there has been tremendous interest in Brown Adipose Tissue (BAT) as potential 

anti-obesity target, owing to the vast capacity of BAT for burning energy in the process of 

thermogenesis. [Bartelt and Heeren, 2014; Chechi et al., 2014; Yoneshiro et al., 2013; Mukherjee et al., 2016; Nedergaard 

and Cannon, 2010; Lidell et al., 2014] Activation of BAT could contribute to (partially) solving the positive 

energy imbalance that is central to obesity and MetS development. Studies targeting BAT have 

demonstrated its beneficial effects for improving glucose metabolism, lipid handling, and 

inducing weight loss. [Wang et al., 2015; Gao et al., 2009; Berbée et al., 2015; Seale and Lazar, 2009] This indicates 
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that BAT could play a significant role in the design of new therapeutic interventions and 

prevention strategies. 

 

1.2.6 Challenges associated with MetS research 

As of yet, no patient-specific treatment can be provided for the MetS population. This would 

require a deeper understanding of the complex interplay of the mechanisms underlying MetS 

onset and development. The main challenges in MetS research remain its multi-factorial 

complexity (simultaneous derailment of various physiological processes), heterogeneity, and 

progressive yet slowly changing behaviour over inherently long timescales. It has been shown 

to be challenging to monitor the longitudinal aspects of such metabolic diseases. [Enrique Caballero, 

2017; Muzio et al., 2005; Karas et al., 2008] Because of its complexity, in vivo studies alone will not provide 

the quantitative and mechanistic insight we are looking for. The many challenges associated 

with the complexity of MetS make it, therefore, a strong case for the adoption of a systems 

biology approach. 

 

 

1.3 Systems biology 

Systems biology is a holistic approach that aims to improve understanding of complex biological 

systems as a whole. [Sauer et al., 2007] It explores how the overall system’s behaviour emerges 

from the collective behaviour of individual components. Systems biology is highly 

interdisciplinary: it is on the interface between engineering and biology and combines 

techniques from, amongst others, mathematics, computer science, control theory, and 

biostatistics with fundamentals from biology and medicine. 

 Models are essential in systems biology. A model is an abstraction of a complex system 

intended to gain a deeper understanding of biological phenomena. This terminology applies to 

experimental, conceptual, mathematical, and computational models. In view of this thesis, the 

experimental model consists of an in vivo preclinical animal model that embodies MetS 

development. The conceptual model can be regarded as a “thought experiment” to delineate 

the most important concepts from prior knowledge on metabolic regulation. The key challenge 

is to determine consistent and physiologically realistic mathematical descriptions of these 

processes for translation into a mathematical model. [Brodland, 2015] A computational model is 

obtained by combining the mathematical representation of the system with observations (data) 

from the experimental model. This computational model can subsequently be used to generate 

quantitative simulations of the system. 

 

1.3.1 Computational models 

A long history of computational models has provided extensive knowledge on the regulatory 

networks that compose the metabolic system. [Nyman et al., 2016] Model development is 

continuously evolving, as can for example be seen in the Biomodels Database. [Chelliah et al., 2013] 

Such modelling approaches can roughly be divided into network-based and constraint-based 

modelling. [van Riel, 2006] The first category comprises genome-scale metabolic models (GSMM), 

such as Recon2 (and the more recently updated Recon2.2 and Recon3D) being a “consensus 

metabolic reconstruction” and allegedly the most comprehensive representation available of 



Chapter 1 

8 

the human metabolic system. [Thiele et al., 2013; Swainston et al., 2016; Brunk et al., 2018] On the other hand, 

constraint-based models adopt a more data-driven approach. Dedicated dynamic and 

“minimal” models have contributed to a deeper understanding of the regulatory mechanisms 

involved in the metabolic system. Recent advances have for example proven insightful for the 

glucose-insulin system [Ajmera et al., 2013; Dalla Man et al., 2007; Rozendaal et al., 2018a] and for systemic lipid 

metabolism. [Jelic et al., 2009; Roy and Parker, 2006; de Graaf et al., 2009; Sips et al., 2015] 

 

1.3.2 Metabolic Syndrome models 

Although these models are relevant to study isolated aspects of MetS, the underlying pathways 

are cross-linked and especially the interplay between the MetS components is highly important. 

[Hallgreen, 2009] Therefore, increasing emphasis is being put on system-based approaches to 

further understanding of MetS as a whole. [Orešič and Vidal-Puig, 2014; Dumas et al., 2014; Lusis et al., 2008] 

The big data community has contributed with a data-driven approach using genome-wide 

association studies (GWAS), showing different “metabolic signatures” in MetS. [Karns et al., 2013; 

Khoo et al., 2013] However, we do not follow this approach. We are specifically interested in the 

phenotypic and pathophysiological consequence of lifestyle and genetic factors, i.e. the 

dynamics of longitudinal disease progression of MetS. Since a cohesive model describing the 

multitude of MetS abnormalities was not available, in this thesis, we develop a comprehensive 

model describing the full metabolic complexity of MetS during disease progression. 

 

1.3.3 Modelling methodology 

In contrast to steady state modelling describing time-stationary processes, dynamic modelling 

approaches describe nonstationary processes and express the kinetic behaviour of a system 

over time. The evolution of a dynamic system over time can be described using differential 

equations. From a mathematical point of view, differential equations describe the relationship 

between a function and the function’s derivative; i.e. represent the rate of change. In the 

context of MetS, we are interested in how species involved in both carbohydrate and lipid 

regulation behave over time. The change in concentration of these metabolites can be 

expressed in ordinary differential equations (ODEs) based on the underlying metabolic fluxes. 

These fluxes describe processes involved in the regulation, transformation, and transport of 

these species among different compartments (organs and tissues). The model comprises a 

system of coupled nonlinear ODEs, allowing for interaction between the different pathways and 

metabolites. 

The actual mathematical expressions composing the ODEs can be based on different kinetics, 

such as mass action [Guldberg and Waage, 1864; Voit et al., 2015] (used for chemical reactions in which 

the reaction speed depends on the concentration of reactants) or Michaelis-Menten kinetics 

[Michaelis and Menten, 1913; Johnson and Goody, 2011] (often used for simple enzymatic reactions). These 

techniques may be combined with compartmentalized modelling to take spatial distribution 

into account (e.g. transport between organs). On the other hand, pharmacokinetic-

pharmacodynamic (PK-PD) models [Sheiner et al., 1972, 1977] are designed to study exposure-

response relationships, i.e. the immediate effects of a drug after administration and for dose 

response analysis. Chapter 3 outlines the development of a comprehensive, macroscopic and 

systemic (whole-body level) MetS model. 
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To apply this model to generate quantitative simulations, information on parameters and initial 

conditions (starting point of the model simulations; i.e. the situation of the variables at t=0) of 

the ODE system is required. However, the parameter vector is typically unknown. To 

parameterize the model, quantitative information is presented in the form of experimentally 

measured data that can (directly) be linked to specific states or fluxes in the network. Typically, 

this data provides only a partial observation of the system: measurements are performed on a 

subset of the states described in the model. Moreover, these differential equations are too 

complex to be solved exactly and analytically. Therefore, these are approximated via numerical 

integration. Parameter estimation is a technique to calibrate a model using such experimental 

data. Subsequent simulation of the model yields predictions of the unknown and unobserved 

processes (fluxes, species, and time points). However, since the system is only partially 

observed and biological measurements are hampered by noise, the solution of the system will 

be non-unique: simulations using different parameter vectors may represent the observed data 

equally well. We therefore perform simulations and optimizations iteratively, yielding not a 

single, unique model simulation as output, but a large set (distribution) of results. This in silico 

set can be regarded as a virtual population, i.e. a set of model simulations representing 

different phenotypic presentations of MetS. [Kononowicz et al., 2015] 

 

1.3.4 Data acquisition: essential yet challenging 

Longitudinal, quantitative data is essential in order to parameterize the model. Biomarker data 

is often used for model calibration. A biomarker is an objective measure that gives an indication 

of the medical state of the patient. Commonly used biomarkers are for example metabolite 

concentrations measured from blood plasma or urine. However, a key issue at hand is 

determining the relationship between measurable biomarkers and relevant clinical endpoints. 

[Strimbu and Tavel, 2010] Computational models provide an objective way to do this. By integration 

with these data, the model provides insight into the dynamics of the underlying, unobserved 

processes, i.e. of which no data is or can experimentally be measured. 

 When studying chronic and progressive diseases such as MetS, longitudinal data is required. 

However, acquiring longitudinal data during disease development is complicated. It would 

involve a timespan of at least a couple of years, but possibly (much) longer. Moreover, there is 

no clear point of disease onset to be identified. 

Although such longitudinal experiments are not feasible for the human situation, dedicated 

preclinical disease models in the form of genetically engineered animals offer a solution. [Softic 

et al., 2017] The APOE*3-Leiden(E3L).CETP mouse has been shown to be a good experimental 

surrogate to study diet-induced MetS development. [van den Hoek et al., 2014; Westerterp et al., 2006] 

Upon feeding a high-fat, high-cholesterol diet, the healthy phenotype evolves into a fully 

developed MetS phenotype within several months. This much faster timeline accommodates 

measurement of biomarkers at regular intervals in time and thereby provides insight into the 

progressive adaptations during disease development. 
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1.4 Thesis outline 

The aim of this thesis is to study how MetS develops over time using in vivo and in silico 

modelling. The work is divided into the following chapters as outlined in Figure 1.2. In chapter 

2 we explore methodologies for long-term disease progression modelling and how to deal with 

challenges associated with integrating biomarker data in computational models. In chapter 3 

we develop a mathematical model which network topology describes the metabolic system for 

both healthy and MetS phenotypes. Chapter 4 first describes a preclinical in vivo study of diet-

induced MetS. The mathematical model of chapter 3 is then integrated with this in vivo data. 

An in silico database is yielded that comprises different virtual populations, i.e. sets of model 

simulations representing different MetS phenotypes. 

 In chapter 5 the in vivo experiment was repeated using a set-up with longer timespans and 

a larger population to verify the MetS phenotypes found in the previous chapter. Differences 

among these in vivo studies are outlined in terms of heterogeneity in the degree of dyslipidemia 

(DLP) attained during MetS development. 

 The large in silico population obtained in chapter 4 is further stratified in chapter 6 based on 

energy handling. Also, short-term perturbations of energy expenditure are applied to test the 

robustness of the metabolic system to changes in energy balance – providing a possible target 

for therapeutic interventions. Chapter 7 concludes this thesis and discusses the main 

contributions and provides an outlook on the possible future perspectives of this line of 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2 
 

  

Graphical guide through the chapters of this thesis. 

Different MetS phenotypes (highlighted in purple) are denoted in terms of the degree of dyslipidemia (DLP). 
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Progression of chronic diseases is a complex, multifactorial phenomenon that occurs slowly 

over long timescales. Computational modelling can provide insight into the dynamics with 

which phenotypes change over time and identify which underlying processes are adapting 

simultaneously. We discuss several existing longitudinal models describing metabolic changes 

involved in ageing, disease progression, and treatment interventions. However, these models 

all have a very specific application and make a priori assumptions on the dynamics with which 

the disease progresses. We suggest ADAPT as a generic computational, data-driven technique 

to describe the long-term timespan using time-dependent model parameters. We highlight its 

use by comparing its predictions with a mechanism-based disease progression model for type 

2 diabetes. 

 

 

2.1 Studying long-term dynamics of phenotype transition 

Computational models are widely used to study the underlying mechanisms of 

(patho)physiological phenomena. In the field of metabolic research, most kinetic models 

describe either glucose [Ajmera et al., 2013; Bergman et al., 1979; Cobelli et al., 2014; Dalla Man et al., 2007; Kim et 

al., 2007; König et al., 2012; Maas et al., 2015; Palumbo et al., 2013; Salinari et al., 2011; Xu et al., 2011; Rozendaal et al., 

2018a] or lipid [Jelic et al., 2009; Lu et al., 2014; Paalvast et al., 2015; van de Pas et al., 2012] regulation. Some 

models include interactions between carbohydrate and lipid metabolism [Chalhoub et al., 2007a, 

2007b; Roy and Parker, 2006; Sips et al., 2015], in either specific organs [Micheloni et al., 2014; Orsi et al., 2011] or 

in a whole-body perspective. [Nyman et al., 2011; Xu et al., 2011] These models generally focus on short-

term behaviour, e.g. in response to a meal or challenge test, and integrate observed time 

course data with a timescale ranging from minutes to hours. Depending on which data and 

which assumptions are used, the model can describe different conditions and provides a 

comparison between healthy and diseased phenotype, or diseased versus treated individuals. 

 

2.1.1 Phenotype transition is a dynamic process 

However, the difference between a healthy and a diseased state is not static. Usually, there is 

not a single healthy phenotype and not only one single diseased phenotype. A clear tipping 

point cannot be identified. Disease development, especially of chronic cardiometabolic 

diseases, is a dynamic process and computational analysis should also treat it as such. 

Phenotypes change slowly in time and go through different degrees or stages of disease 

development as depicted in Figure 2.1. 

 

 
 

Figure 2.1 
 

  

Phenotype transition over time: from onset to fully matured chronic metabolic disease. 
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2.1.2 Phenotype transition involves multiple timescales 

Moreover, the timescales on which these adaptations take place shift towards the long-term 

perspective when studying the effects of ageing, natural or induced disease progression, or the 

effects of treatment interventions. For example in the development of cardiovascular diseases 

(CVD): people may suffer from elevated lipid levels in the plasma for years, but it may take 

decades before an actual cardiovascular event takes place. Monitoring of intermediate stages 

in time may attribute to early identification and adequate treatment planning to reduce the 

risk of CVD. 

 

2.1.3 Multiple spatial levels are involved in phenotype transition 

These progressive changes occur slowly over a long period of time and involve a complex 

network of regulatory processes. Phenotype transition is typically monitored using a snapshot 

read-out of circulating (plasma) biomarkers that reflect the metabolic status at that current 

point in time. However, the concentrations of plasma metabolites naturally fluctuate during 

the course of a day, e.g. upon fasting/feeding and hormonal control. These read-outs should, 

therefore, be standardized to provide an accurate, comparable, and representative snapshot 

of the metabolic status. This also allows separation of daily fluctuations from the slow changes 

in body composition and physiology that occur over longer timescales. Furthermore, whereas 

the disease manifests itself on organ and tissue level, the underlying adaptations that are 

responsible for the observed macroscopic changes occur on a molecular level. Although data is 

mostly acquired at plasma level, disease-modulating mechanisms are presumed to occur in the 

underlying proteome and transcriptome. [Dunn et al., 2011] 

 

2.1.4 Longitudinal data should be quantitative and time course 

In order to get insight into the complex, multi-scale, and multi-factorial nature of disease 

progression using computational approaches, it is important to acquire quantitative, time 

course data from different tissues and spatial levels. This data should at least comprise (plasma) 

biomarkers, and – if possible – additional measurements in tissues, flux measurements, or 

transcriptomics (gene expression). 

 The timing with which these data are measured should be chosen carefully. Prospective 

studies only consist of a pre/post set-up and comprise a collection of single baseline 

measurements, followed by an intervention and a single follow-up measurement. However, 

data should be observed at multiple points in time to gain information about the actual 

dynamical behaviour and to enable ranking of observed effects in time. 

 

 

2.2 Longitudinal modelling approaches 

Literature reports on a considerable amount of disease progression models, but these mainly 

focus on the effects of ageing in fields such as cardiovascular diseases [Weinberg et al., 2009], chronic 

obstructive pulmonary disease [Wang et al., 2014b] and neurological disorders such as Alzheimer. 

[Cook and Bies, 2016; Fonteijn et al., 2011; Samtani et al., 2013] However, studying the long-term process of 

disease progression in chronic metabolic disorders requires a different approach that should 
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provide quantitative and dynamic predictions. Since metabolic disorders are often multi-

factorial, the longitudinal modelling approach should be able to comprise multiple types of data 

and should not focus on only one isolated aspect of the disorder since we aim at analysing it 

from a systems perspective. 

 

2.2.1 Long-term model of beta-cell deterioration 

There are only a few computational disease progression models available in the literature that 

focus on metabolic (dys)regulation. Bagust et al. studied long-term beta-cell deterioration in 

type 2 diabetics. [Bagust and Beale, 2003] They make use of both a simple exponential model and a 

more sophisticated model consisting of time-displacement parameters and two exponential 

decaying functions to describe the trend in HOMA (Homeostatic Model Assessment) [Wallace et 

al., 2004] beta-cell function over a time course of six years. However, this approach only tests the 

fit of pre-defined, hypothetical profiles based on the HOMA index. 

 

2.2.2 Long-term model of anti-diabetic treatment 

In the field of type 2 diabetes, a long-term model addressing multiple metabolic read-out 

parameters (biomarkers) is presented by de Winter et al. [de Winter et al., 2006] This mechanism-

based disease progression model aims to compare long-term treatment effects among 

different anti-diabetic compounds. Longitudinal data on plasma glucose, insulin, and 

glycosylated hemoglobin A1c (HbA1c) have been integrated into a simple ODE-based model that 

is driven by asymptotically declining functions that represent decreasing beta-cell function and 

increasing insulin resistance upon natural disease progression, whilst taking into account the 

effect of the anti-diabetic treatment on these factors. This model is explored and evaluated in 

detail in section 2.4. However, the time-dependent profiles are imposed on both beta-cell 

function and insulin resistance, although these are not a priori known. 

 

2.2.3 Long-term model of cholesterol metabolism during ageing 

Efforts of long-term modelling have also been accomplished in the field of cholesterol 

metabolism. Mc Auley et al. developed a whole-body mathematical model of the complex 

interplay of cholesterol metabolism and its age-associated dysregulation on a timescale 

between 20 and 65 years of age. [Mc Auley et al., 2012] The model considers different classes of 

lipoproteins carrying cholesterol in the plasma, intestine, liver, and periphery, but mainly 

evaluates the effects of ageing based on low-density lipoprotein cholesterol (LDL-C) levels in 

the plasma. They have shown to reproduce elevated LDL-C levels with ageing due to an 

increasing rate of intestinal cholesterol absorption whilst gradually decreasing the rate of 

hepatic clearance of LDL-C. 

 In contrast to the above-mentioned models, the Mc Auley et al. model integrates long-term 

data from different sources as well as uses a whole-body perspective since it considers 

metabolic status in different metabolically active tissues. Although some parameters are 

estimated based on observed LDL-C data, many of the parameter values are taken directly from 

literature. However, uncertainty on these assumptions is not taken into account. 
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2.2.4 The need for a generic approach for long-term modelling 

Although the discussed long-term models have proven their functionality, these are only 

applicable in the limited area directly related to the scope of that specific research field. We 

pursue a more generic approach to study long-term metabolic adaptations using 

computational modelling. 

 A fundamental framework offering a longitudinal modelling approach is provided by the 

method for Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT). [Tiemann et al., 

2011, 2013; van Riel et al., 2013] In contrast to the above-mentioned studies, ADAPT is a universally 

applicable method and does not limit its use to one specific ODE model. It is based on the time-

dependency of the model parameters to study the long-term behaviour of the biological 

system, but does not require a priori assumptions on how the parameters change with time. 

Moreover, the ADAPT methodology accounts for experimental and methodological variability 

in its predictions, as is explained in detail in the following section. 

 

 

2.3 Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT) 

Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT) is a generic computational 

approach to study long-term adaptations in a biological system. [Tiemann et al., 2011, 2013; van Riel et 

al., 2013] Whereas classical modelling approaches assume that the parameters are constant in 

time, this is typically not the case in long-term studies following phenotype transition due to (a 

combination of) disease progression or (pharmacological) treatment interventions. Typically, 

measurements are performed on a macroscopic level, whereas adaptations usually occur on 

lower levels. [Dunn et al., 2011] ADAPT integrates experimental data on metabolic pools and fluxes 

obtained at different points in time with a mathematical model of choice of the biological 

system that is studied. ADAPT is a highly data-driven approach and requires large amounts of 

data to span the model. In general, the majority of metabolic states in the model should be 

observed throughout time, and the more fluxes that have been measured, the more 

constrained the model becomes. [van Diepen, 2014] 

 Although mathematical models alone can describe the mechanisms that we already know, 

these models will not discover any new biology. Since ADAPT is highly data-driven, it offers a 

method to make new discoveries embedded in existing knowledge. The mathematical model 

itself will describe the known network topology, whereas the time-dependent parameters 

capture the dynamics of disease progression and phenotype transition. The time-dependent 

evolution of the model parameters is referred to as parameter trajectories. To describe 

phenotype transition, ADAPT identifies trajectories of parameter adaptations that are essential 

for the phenotypic changes observed in the experimental data. Unobserved fluxes and 

metabolite concentrations are inferred, whereby the ADAPT framework provides additional 

insight into the affected underlying biological system. 

 

ADAPT was originally conceived from the fields of model learning, parameter identification, and 

(non-)identifiability. [Gábor and Banga, 2015] ADAPT combines concepts from maximum likelihood 

estimation (MLE), Bayesian inference, and (prediction) uncertainty analysis. [Vanlier et al., 2013] 

Hence, the ADAPT pipeline (Figure 2.2) comprises different algorithms arising from each of 
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Figure 2.2 
 

  

Schematic workflow of the ADAPT methodology. 

 

these fields.  The data pre-processing and parameter sampling branches consecutively 

converge towards the heart of ADAPT: the repeated simulation and optimization in the 

parameter estimation protocol, yielding a collection of Nx parameter trajectories. 

 ADAPT is particularly useful to study biological systems from which the network topology is 

relatively well-known, such as the mass fluxes in metabolic pathways. The modulating effects 

on these pathways via interactions with the proteome and transcriptome – which are less well 

understood – are captured by the time-dependent descriptions of the parameters. Hence, 

pathway adaptations can be described without the necessity to develop detailed kinetic models 

of the modulating mechanisms. 

 

2.3.1 Pre-processing of experimental data 

During the long-term dynamics of phenotype transition, quantitative data should hereto be 

measured at multiple points in time. These data typically contain information about changes in 

metabolite concentration in plasma and tissue compartments, but could also comprise 

metabolic flux measurements. These data describe phenotypic snapshots that are linked in 

time. Some data pre-processing is required to describe the metabolic status at any given point 

in the studied timeframe. This is approximated by discretization of the timespan using a finite 

amount of time segments. Piecewise polynomial (cubic smoothing) splines are used to describe 

the dynamic trend of the experimental data, as illustrated in Figure 2.3B. This is regarded the 

preferred interpolation scheme in cases of noisy observations. [Craven and Wahba, 1978] 
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x[i] = xsim[end] and p[i] = psim[end] repeat Nx times
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Figure 2.3 
 

  

Pre-processing of experimental data for ADAPT. 

The experimental data generally consists of time course, longitudinal data obtained at multiple points in time, describing the 

transition from phenotype A (e.g. untreated or healthy phenotype) to phenotype B (e.g. diseased or treated phenotype). In 

panel A, the black error bars represent mean and standard deviation at each point in time. To account for experimental and 

biological uncertainties, a Monte Carlo approach is employed. Hereto the data is randomly sampled (A; blue circles) and a cubic 

smoothing spline (B; green line) is fitted through these samples to obtain a continuous description over time. This process is 

iteratively repeated, obtaining a collection of splines (C). 

 

To account for experimental and biological uncertainty, and to determine the propagation of 

data uncertainty through model predictions [Vanlier et al., 2012], ADAPT employs a Monte Carlo 

approach. Given that the experimental data comprise multiple measurements at each point in 

time (either obtained from different individuals or from repeated measurements from the 

same person), random samples (replicates) can be generated from the experimental data. The 

data is sampled assuming that the data is Gaussian distributed with mean and standard 

deviation of the data (Figure 2.3A). Consecutively these samples are interpolated, yielding a 

collection of data spline interpolants (Figure 2.3C) as input data for the parameter estimation 

protocol. This collection is the same size Nx as the desired amount of parameter trajectories to 

be calculated. The sampling of replicates of experimental data and their subsequent utilization 

in parameter estimation is a common approach to assess prediction uncertainty, and is also 

referred to as “bootstrapping”. [Cedersund and Roll, 2009] 

 

2.3.2 Mathematical model description of the biological system 

Since ADAPT is a generic computational approach, it can be used with a mathematical model 

of choice, depending on the studied biological system and amount and type of observed data. 

A priori information is combined into a network topology with reaction kinetics, which is 

translated into an ordinary differential equation (ODE) model (2.1) with kinetic parameters θ⃗  

that describe how the fluxes are related to metabolite concentrations: 
dx 

dt
 = Nf (x (t),θ⃗ ) (2.1) 

y (t) = g⃗ (x (t),θ⃗ ) (2.2) 

x (t0) = x0⃗⃗  ⃗ (2.3) 

in which 
dx 

dt
 represents the vector of first derivatives of modelled species (states) x , given by the 

topology of the network (matrix N), and a set of functions f . The model parameters typically 

represent reaction rate constants but could be any other quantity expressible in a 

mathematical model. The vector g⃗  maps the model components (e.g. states or fluxes) to the 

desired output quantities y , given initial conditions x0⃗⃗  ⃗. 
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Discretization of the timespan. 

The original raw experimental data are depicted by black 

error bars. For each of the time segments, one example of a 

data interpolant (see Figure 2.3B) is depicted by green dots. 

The model (red) is fitted to these data interpolants per time 

segment. These piecewise model trajectories (red) become 

a fully continuous, smooth curve (orange) through ODE 

integration. 
 

Figure 2.4 
 

  

 

2.3.3 Discretization: new equations with time-dependent parameters 

Discretization of the system is applied as follows: 

X⃗ [n] = x (∆t,θ⃗ [n]) (2.4) 

Y⃗ [n] = g⃗ (X⃗ [n],θ⃗ [n]) (2.5) 

X⃗ [0] = xss⃗⃗⃗⃗ (θ⃗ [0]) (2.6) 

in which X⃗  and Y⃗  are the discretized quantities of x  (2.1) and y  (2.2) respectively. The total 

simulated timespan Nt·Δt is represented by 0<n<Nt. 

 

Hereto, the total simulation is divided into Nt segments with time step Δt, which is graphically 

illustrated in Figure 2.4 using hypothetical data and a model simulation with n=10 segments in 

time. Note that in real cases, the Δt is chosen much smaller than in this hypothetical example, 

such that the obtained model trajectory is much smoother than the one illustrated in Figure 

2.4. 

 

2.3.4 Parameter sampling 

Prior to entering the simulation and optimization branch – the data now having been pre-

processed – the last initialization step involves the sampling of initial model parameters from a 

log-uniform distribution ranging twelve orders of magnitude (10-6 - 106). This yields a widely 

dispersed range of parameter sets that are used to calculate the initial conditions of the model 

with. From this initial run, Nx acceptable sets are selected to be optimized to the t=0 conditions 

of the system. 

 

2.3.5 Model optimization 

For each acceptable parameter set θx, a parameter adaptation trajectory is identified according 

to the following protocol. 

 The initial phenotype (t=0 state) is simulated with the initial parameter set θx provided by 

the previous step. This parameter set is optimized to the interpolated spline data (sample x) by 

simulating the model with parameters θx, and comparing the steady-state values with the data 

sample. In a classical optimization approach, this objective function would be: 

χt
2(θ⃗ ) = ∑(

yss,i(θ⃗ )-di(t)

σi(t)
)

2Ny

i=1

 (2.7) 

θt
⃗⃗⃗   
̂

= arg min
θ⃗ 

χt
2(θ⃗ ) (2.8) 
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To fit the model to the observed data, the difference between the model observables y (2.2) 

and corresponding data is evaluated. The model parameters are estimated using Maximum 

Likelihood Estimation (MLE) during which the weighted squared error (2.7) is minimized (2.8). 

The objective function is repeatedly evaluated over Ny model-data pairs, in which di(t) 

represents the data interpolant of the experimental data at time t, and σi(t) the corresponding 

standard deviation at time t. The optimized set of parameters θt
⃗⃗⃗   
̂

 is obtained when the weighted 

least squared error χt
2 is minimized. 

 

With the discretized timespan, the objective function becomes: 

χd
2(θ⃗ [n]) = ∑(

Yi[n]-di(n∆t)

σi(n∆t)
)

2
Ny

i=1

 (2.9) 

 

Subsequently, the full trajectory (t>0) can be determined, which yields a distribution of 

piecewise constant parameter trajectories. ADAPT iterates over the time segments (t=Δt; 

t=2·Δt; … ; t=Nt·Δt). The simulation is initiated with the steady-state values xss⃗⃗⃗⃗  obtained with 

the parameter set θ⃗ [0] for the initial (untreated or healthy) phenotype. 

 For each step n>0, the model is simulated for a time period of Δt using the final steady-state 

values of the model states of the previous step (n-1) as initial conditions. The parameter set 

θx[n] is optimized according to the squared differences of the data interpolant and the model 

at the corresponding time segment (i.e. objective function (2.9)). 

 This parameter estimation protocol is performed iteratively over the Nx initial parameter 

sets and Nx data interpolants, yielding a collection of Nx parameter trajectories as well as Nx 

corresponding trajectories describing metabolite concentrations and metabolic fluxes. 

 

2.3.6 Regularisation: minimizing fluctuations in parameter trajectories 

ADAPT identifies necessary dynamic changes in the model parameters to describe the 

phenotypic changes in the observed data, whilst being constraint by the network topology and 

kinetic equations of the biological system. It is assumed that the induced adaptations are 

minimal and proceed progressively in time. Moreover, it is a priori not known which parameters 

need to change with time to induce phenotype transition. Highly fluctuating parameter 

trajectories are considered to be non-physiological. To prevent the occurrence of such 

behaviour, to ensure smooth curves, and to minimize the occurrence of unnecessary changes 

of parameters with time, regularisation of the parameter trajectories is imposed during the 

optimization procedure. The derivatives of the parameter trajectories are regulated by 

extending the objective function with a regularisation term: 

θ⃗ [n] = arg min
θ⃗ [n]

(χd
2(θ⃗ [n])+λr·χr

2(θ⃗ [n])) (2.10) 

in which χd
2 represents the weighted squared difference between data interpolant and model 

entities (2.9), and χr
2 the regularisation objective function given by the sum of squared 

derivatives of the normalized parameter values: 

χr
2(θ⃗ [n])= ∑(

θi[n]-θi[n-1]

∆t
 · 

1

θi[0]
)

2
Np

i=1

 (2.11) 
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in which Np represents the number of parameters and λr the regularisation strength. Hence, 

changing a parameter is costly, and is, therefore, avoided if this is not required to describe the 

data. The regularisation strength λr should be chosen carefully. It is preferred to bias data fitting 

as little as possible and therefore a minimal value for λr, while still being effective, should be 

selected. Figure 2.5 illustrates that if too large a value for λr (to the right on the horizontal axis) 

is chosen, the regularisation term becomes dominant and the model will not describe the data 

accurately anymore (χd
2 increases drastically). The priority in the optimization algorithm should 

always be at fitting the data (i.e. low χd
2). A small value for λr should already be sufficient to 

minimize parameter changes and fluctuations (reduced χr
2), whilst still describing the 

experimental data accurately (trade-off being a small increase in χd
2). It should be noted that 

the tuning of λr highly depends on the model and data at hand, and therefore will vary on a 

case-by-case basis. 

 

2.3.7 Implementation details 

The ADAPT methodology is implemented in MATLAB (2013b, The Mathworks, Natick, 

Massachusetts). Ordinary differential equations are solved with compiled MEX files using 

numerical integrators from the SUNDIALS CVode package (2.6.0, Lawrence Livermore National 

Laboratory, Livermore, California). [Hindmarsh et al., 2005] An absolute and relative tolerance of 10-

6 is used. The MATLAB nonlinear least-squares solver lsqnonlin (from the Optimization Toolbox), 

which uses an inferior reflective Newton method, is used to estimate model parameters. 

[Coleman and Li, 1996] The termination tolerances for the objective function and the parameter 

estimates were set to 10-8, the maximum number of iterations allowed is set to 103 and the 

maximum number of function evaluations allowed to 105. The MATLAB csaps function (from 

the Curve Fitting Toolbox) is used to calculate cubic smoothing splines using the default 

smoothness setting (=1) and the roughness dependent on the variation in the data: (1/std)2. 

 

 

Determination of regularisation 

strength coefficient λr. 

Trade-off between fitting the data as 

closely as possible (red line; to the left on 

the horizontal axis) and enforcing smooth 

parameters (red line; to the right on the 

horizontal axis). 
 

Figure 2.5 
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2.4 Case study 

Long-term prediction of beta-cell function and insulin sensitivity – 

a mechanism-based approach compared to ADAPT 

We demonstrate the use of ADAPT by comparing it to a mechanistic model description of 

disease progression of type 2 diabetes. De Winter et al. [de Winter et al., 2006] published a 

mechanism-based population pharmacodynamic (PD) disease progression approach in type 2 

diabetes mellitus (T2DM) patients undergoing different anti-diabetic treatments over the time 

course of a year. PD modelling can quantitatively interpret disease progression and assess drug 

effects in a mechanistic manner. [Atkinson and Lalonde, 2007] The de Winter et al. model is a 

descriptive model to simulate the impact of chronic loss of glycemic control on the initial 

improvement of glucose control induced by pharmacotherapy over one year. It quantifies the 

time course effects of different pharmacological agents on plasma glucose, insulin, and HbA1c 

levels over time using mechanistic descriptions for the beta-cell function and hepatic insulin 

sensitivity. 

 

2.4.1 Biomarker data 

Glycosylated hemoglobin A1c (HbA1c) is the primary glycemic biomarker for measuring long-

term glycemic control since it provides an estimate of overall control of blood glucose levels in 

the preceding eight to twelve weeks. [Nathan et al., 2007] Secondary biomarkers include fasting 

plasma glucose (FPG) and fasting serum insulin (FSI), which are more responsive to changes in 

glycemic control in the short-term. 

 Over the time course of one year of anti-hyperglycemic treatment, these biomarkers were 

repeatedly assessed at ten observations in time (nine for insulin). Data originates from two 

multi-centre, randomized, double-blind, double-dummy, parallel-group studies that compared 

the long-term effects of pioglitazone, metformin, and gliclazide monotherapy on FSI, FPG, and 

HbA1c. [Charbonnel et al., 2005; Schernthaner et al., 2004] The population comprised in total 2,408 newly 

diagnosed T2DM patients that were naïve to antidiabetic medication and were inadequately 

controlled by diet alone. 

 The included pharmacological agents achieve their anti-hyperglycemic effects through 

different physiological mechanisms. Pioglitazone and metformin are classified as insulin-

sensitizing agents [Inzucchi, 2002], whereas gliclazide acts as an insulin secretagogue. Pioglitazone 

affects insulin resistance by increasing insulin sensitivity in the liver, muscle, and adipose tissue 

[Aronoff et al., 2000; Olefsky, 2000] and thereby enhances peripheral glucose uptake as well as reduces 

hepatic glucose production. Metformin acts primarily by decreasing hepatic glucose 

production. [DeFronzo, 1999; Inzucchi, 2002; Matthaei et al., 2000] Gliclazide stimulates insulin secretion by 

the pancreatic beta-cells. [DeFronzo, 1999; Inzucchi, 2002; Matthaei et al., 2000] 

 

2.4.2 Mechanism-based disease progression model describing the progression of T2DM 

The mechanism-based population PD disease progression model by de Winter et al. aims to 

integrate information on the time course of the disease available in data on FPG, FSI, and HbA1c 

into a single comprehensive, physiologically meaningful model structure. It incorporates 

mechanism-based representations of the homeostatic feedback relationships between FPG 
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and FSI, and the physiological feed-forward relationship between FPG and HbA1c, which are 

implemented as two linked turn-over models. [Dayneka et al., 1993] The mechanism-based 

representation of the glucose-insulin homeostasis should allow the model to describe T2DM 

progression in terms of loss of beta-cell function and insulin sensitivity over time, and to 

represent the effects of different treatments at their specific sites of action. The model aims to 

differentiate the immediate effects of a treatment on glycemic control from its long-term, 

disease-modifying effects on the chronic loss of beta-cell function and insulin sensitivity. 

 

The de Winter et al. model (Figure 2.6) consists of a system of three Ordinary Differential 

Equations (ODEs), six model parameters, two treatment-specific factors, and two coefficients 

representing disease status. These coefficients represent disease status in terms of the fraction 

of remaining beta-cell function (B) and of hepatic insulin sensitivity (S) relative to, respectively, 

normal functionality and sensitivity in healthy persons. Since disease progression in T2DM is 

caused by a chronic loss of both beta-cell function and decreased insulin sensitivity, the 

coefficients B and S should be allowed to decrease as a function of time, whilst taking into 

account the disease history of patients at baseline. Hereto, the coefficients B and S are 

implemented to decline as asymptotic functions over time and range between one (full, normal 

functionality) and zero (complete loss of functionality). The model equations and parameter 

values are given in Appendix 2.6. It should be noted that the implied trend in time course of 

the coefficients B and S are biologically unknown and may vary among patients, and that the 

asymptotic equations for B and S are hypothetically imposed in the original paper. 

 

2.4.3 Simulating the effects of different anti-diabetic treatments over the time course of 

a year in terms of biomarkers and disease progression curves 

Figures 2.7A-C presents the simulated profiles for FSI, FPG, and HbA1c over time by the de 

Winter et al. model, including the mean observed data on these biomarkers for treatment with 

gliclazide (red), pioglitazone (green), and metformin (blue). The trend in fasting plasma glucose 

(Figure 2.7B) and HbA1c (Figure 2.7C) are adequately described by the simulated profiles. 

Although the model was developed and calibrated onto these biomarker data, the trend in 

fasting serum insulin (Figure 2.7A) is only described adequately for pioglitazone treatment, but 

not for gliclazide and metformin treatments. 

 The model equations are driven by disease progression (chronic loss of both beta-cell 

function and insulin sensitivity), but also by the stimulatory effect on the beta-cell function by  

 

 

Schematic overview of the mechanism-

based population PD disease progression 

model proposed by de Winter et al. 

FSI: fasting serum insulin; FPG: fasting plasma 

glucose; HBA1c: glycosylated hemoglobin A1c  
 

Figure 2.6 
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Figure 2.7 
 

  

Experimental observations (crosses representing the mean value of 2,408 subjects) and simulated profiles (dotted 

lines) by the de Winter et al. model in plasma biomarkers (A-C). 

Plasma markers are assessed given the changes in beta-cell function B (D) and insulin sensitivity S (E) imposed by 

the de Winter et al. model for treatment with either gliclazide (red), pioglitazone (green), or metformin (blue). 

 

gliclazide treatment or by enhanced insulin sensitizing upon pioglitazone and metformin 

biomarker profiles in panels A-C. Although B and S are defined as asymptotically declining 

functions, the model reveals linear functions over a timespan of one year. Note that the disease 

history has been taken into account: baseline disease status is reflected by a lower residual 

functionality and sensitivity at t=0. This shows that the “classical” approach of fitting all model 

parameters (Table 2.1 in Appendix 2.6) as being constant over the complete time period (one 

year) is insufficient to yield an adequate model fit of all biomarkers over time. 

 

2.4.4 Inferring beta-cell function and insulin sensitivity using ADAPT 

Since the trend in disease progression is not a priori known, these pre-defined decaying profiles 

for how beta-cell function and insulin sensitivity change over time may not be physiologically 

correct. Although these entities could indirectly be assessed using demanding clamp studies 

[DeFronzo et al., 1979; Matsuda and DeFronzo, 1999], we use a different approach in which we pair the basic 

ODEs from the de Winter et al. model with our ADAPT approach to infer B and S from the 

available biomarker data. In this way, the model could serve as an “observer system” that 

integrates and translates biological data into clinically relevant information. The beta-cell 

function and insulin sensitivity are treated as time-dependent parameters and fitted to the time 

course data on the observed FSI, FPG, and HbA1c levels. These parameters represent natural 

disease progression simultaneously with the effect of the anti-diabetic treatment. Figure 2.8 

shows that without predefining how the beta-cell function and insulin sensitivity are expected 

to change over time, the ADAPT predictions resemble the clinical read-out parameters (FSI,  
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Figure 2.8 
 

  

Predicted trajectories for the plasma biomarkers (A-C, solid lines) with beta-cell function (D) and insulin sensitivity 

(E) inferred using ADAPT. 

In each panel, ten of the best-found trajectories are depicted (solid lines) with respect to the experimental observations 

(crosses) during treatment with gliclazide (red), pioglitazone (green), and metformin (blue). 

 

FPG, and HbA1c) more closely than the original model. Furthermore, whereas the changes over 

time in B and S as proposed for the original model (Figures 2.7D-E) are linear over time (despite 

the assumption that they should decrease in an asymptotic manner), the parameter 

trajectories inferred by ADAPT (Figures 2.8D-E) show more dynamic behaviour. The clinically 

observed biomarker data suggest changes in the underlying physiology to occur mostly at the 

beginning of the study, reaching a plateau after around 200 days. This hypothesis matches the 

predicted trend in beta-cell function and insulin sensitivity by ADAPT. Presumably, this dynamic 

behaviour inferred by ADAPT reflects the physiological changes to different anti-diabetic 

treatments better than the original mechanism-based disease progression model. 

 Furthermore, ADAPT infers an increase in both B and S for virtually all treatment arms when 

comparing one-year treatment effect with baseline values. As expected, gliclazide being an 

insulin secretagogue yields the largest improvement in B. However, gliclazide appears to have 

a strong effect in the first ~80 days but reaches a plateau after that. It has little to no effect on 

S. The insulin sensitizers pioglitazone and metformin do improve S, but according to different 

trends in time. Both these insulin sensitizers beneficially affect B, which is in line with previous 

observations. [Rasouli et al., 2007] 
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2.5 Discussion 

2.5.1 Requirements for modelling long-term dynamics 

Disease progression and phenotype transition involve longitudinal timescales. The complex 

long-term phenomena involved introduce an inherent complexity. Computational modelling 

offers a quantitative approach to model long-term dynamics, but should consider to: 

 describe phenotype transition over time; 

 handle longitudinal data; 

 integrate different (types of) data; 

 deal with heterogeneity and variability in data; 

 provide quantitative predictions; 

 account for different spatial levels; 

 not require any a priori assumptions about adaptations (which processes do change and 

how). 

The limited availability of longitudinal computational models describing metabolic regulation 

has also shown to be very specifical in scope. [Mc Auley and Mooney, 2014] In contrast to such models, 

ADAPT is not a hypothesis-driven but a data-driven approach and enables discovery. Moreover, 

ADAPT is a generic approach that incorporates the time-dependency and does not limit itself 

to one specific model or study objective. Uncertainty in data, e.g. due to imperfect data, missing 

data, or a more heterogeneous response than expected, may bias model predictions. ADAPT, 

on the other hand, improves identifiability by taking both experimental and methodological 

variability into account by employing its Monte Carlo approach in both data handling and 

parameter sampling. [Vanlier et al., 2013] 

 

2.5.2 ADAPT applications 

ADAPT has shown to be applicable to models of different sizes, using data from different 

organisms, considering models with different metabolic pathways, and simulating different 

timespans. Regardless of what type of phenotype transition (natural/induced disease 

development versus treatment intervention) takes place, ADAPT has proven its functionality. 

 

ADAPT was initially used with a murine lipid metabolism model and has shown to identify 

dynamic adaptations induced by a three-week pharmacological treatment intervention of the 

liver X receptor in C57BL/6J mice. [Tiemann et al., 2013] 

 Using a much smaller toy model, ADAPT has proven its ability to identify and reproduce the 

single, underlying cause of phenotype adaptation upon an externally applied intervention to a 

toy model. [van Riel et al., 2013] 

 Switching to models of carbohydrate metabolism rather than lipid metabolism, we have 

shown here that ADAPT can be applied using datasets measured in human subjects. [Nyman et al., 

2016] In addition, not all model parameters have to become time-dependent in order to show 

ADAPT’s functionality. Using a minimal glucose model with the rate of appearance being time-

dependent has shown to explain the implications of the Roux-en-Y gastric bypass on glucose 

homeostasis and T2DM. [Snel, 2015] 
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2.5.3 Extending the ADAPT methodology 

ADAPT can be extended such that while inferring parameter trajectories, these can be 

regulated by time course data on gene expression. This extended version of ADAPT has shown 

to provide more constraint predictions. [Hijmans et al., 2015] 

 The dynamic parameters predicted by ADAPT can also be applied to identify missing 

regulations, as shown by identifying modulation points of the insulin signalling pathway. 
[Çölmekçi, 2015] 

 

2.5.4 Conclusion 

ADAPT is a generic approach that accommodates both modelling of the dynamics of phenotype 

transition in response to treatment interventions, but also to long-term disease development 

and progression. 

 

 

2.6 Appendix: Model description of the mechanism-based disease 

progression model for T2DM by de Winter et al. 

The change in biomarker levels for fasting serum insulin (FSI), fasting plasma glucose (FPG), and 

glycosylated hemoglobin (HbA1c) is modelled as: 
dFSI

dt
= EFB·B·(FPG-th)·kin,FSI − FSI·kout,FSI (2.12) 

dFPG

dt
=

kin,FPG

EFS·S·FSI
− FPG·kout,FPG (2.13) 

dHbA1c

dt
= FPG·kin,HbA1c

− HbA1c·kout,HbA1c
 (2.14) 

in which EFB and EFS represent the treatment effect on either beta-cell function (B) or insulin 

sensitivity (S) respectively. See Table 2.1 for a description of the model parameters and their 

corresponding values. 

 

In the original de Winter et al. model, the disease status (progression) in terms of beta-cell 

function (B) and insulin sensitivity (S) is described as: 

B =
1

1+exp (b0+rB·t)
 (2.15) 

S =
1

1+exp (s0+rs·t)
 (2.16) 

in which b0 and s0 represent the shift of the disease progression curves over the time axis, and 

rB and rS represent the slope of the disease progression curves (and hence the rate of change 

over time in B and S respectively). 

 

Note that for ADAPT, both B and S are converted to time-dependent model parameters; 

equations (2.15) and (2.16) are omitted. 
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Table 2.1 
 

  

 Values of all model coefficients in the de Winter et al. model.  
   

 coefficient value unit description  

 kout,FSI 1 day-1 efflux rate constant of FSI  

 kout,FPG 0.021 day-1 efflux rate constant of FPG  

 kout,HbA1c
 0.0272 day-1 efflux rate constant of HbA1c  

      

 kin,FSI = 5 · kout,FSI  day-1 influx rate constant of FSI  

 kin,FPG = 22.5 · kout,FPG day-1 influx rate constant of FPG  

 kin,HbA1c
 = frHbA0

·  kout,HbA0
 day-1 influx rate constant of HbA1c  

      

 b0 0.635 - shift of disease progression curve over time  

 s0 1.38 - shift of disease progression curve over time  
      

 th 3.5 mmol/L threshold of FPG stimulated FSI production  

 frHbA0
 0.82 - fraction HbA0/FPG0  

      

 EFB 

gliclazide 2.115 
(111.5% increase) 

day-1 

treatment effect on beta-cell function: 

 =1 

 0-1 

 >1 

untreated 

loss of beta-cell function 

stimulatory effect of insulin secretagogues on 

beta-cells 
 

 

metformin 1  

pioglitazone 1 
 

       

 EFS 

gliclazide 1 

day-1 

treatment effect on insulin sensitivity: 

 =1 

 0-1 

 >1 

untreated 

loss of hepatic insulin sensitivity 

increased insulin sensitivity upon suppressing 

effect of EGP by insulin sensitizers 
 

 

metformin 1.699 
(69.9% increase) 

 

pioglitazone 1.649 
(64.9% increase)  

       

 rB 

gliclazide 0.178/365 

day-1 
slope of disease progression curve/rate of change over 

time 
 metformin =-2.82·(0.178/365) 

(-282% of gliclazide reference) 

pioglitazone =-2.24·(0.178/365) 
(-224% of gliclazide reference) 

       

 rS 

gliclazide 0.245/365 

day-1 
slope of disease progression curve/rate of change over 

time 

 

metformin =1.01·(0.245/365) 
(101% of gliclazide reference) 

 

pioglitazone =0.567·(0.245/365) 
(56.7% of gliclazide reference) 
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The Model INtegrating Glucose and Lipid Dynamics (MINGLeD) is a novel dynamic and 

computational model describing whole-body carbohydrate and lipid metabolism. It is 

composed of a system of coupled, nonlinear ordinary differential equations (ODEs). The steady 

state of the ODE model represents a snapshot of the metabolic state and describes the mass 

balance of the metabolite pools and flux rates for carbohydrate, lipid, and cholesterol species 

in the plasma, liver, intestinal lumen, and periphery. The model aims to describe the metabolic 

system in a whole-body perspective under healthy conditions as well as at different stages 

during Metabolic Syndrome development. 

 MINGLeD describes metabolite pools originating from carbohydrate substrates (glucose, 

glucose-6-phosphate, acetyl-Coenzyme A), lipid species (free fatty acids, triglycerides, various 

lipoproteins), and cholesterol (free cholesterol, cholesteryl esters, bile acids). The metabolic 

pathways that define the interactions between these metabolites include the uptake of dietary 

macronutrients, glycolysis, hepatic gluconeogenesis, lipoprotein assembly and (remnant) 

uptake, cholesteryl ester transfer between lipoproteins (CETP action), transintestinal 

cholesterol excretion (TICE), exchange between free cholesterol and cholesteryl esters (via 

ACAT and CEH) in hepatic tissue, hepatic fatty acid uptake, peripheral lipolysis, β-oxidation, de 

novo lipogenesis (DNL), cholesterol biosynthesis, bile acid synthesis, biliary bile acid and 

cholesterol excretion, enterohepatic reuptake, fecal excretion of bile acids and cholesterol, and 

respiration of acetyl-Coenzyme A in hepatic and peripheral tissues. 

 

 

3.1 Introducing MINGLeD 

MINGLeD (Model Integrating Glucose and Lipid Dynamics) is a physiology-based computational 

model that describes the metabolic status on a systemic level for both healthy and 

metabolically derailed phenotypes. It comprises the pathways that are necessary to describe 

energy metabolism from dietary intake to storage and exchange between tissues. Metabolite 

pools have been lumped to obtain a comprehensive model that has sufficient level of detail to 

describe the interactions and regulations occurring in a healthy metabolic system, but also in 

different Metabolic Syndrome phenotypes. A conceptual scheme of the metabolite pools and 

fluxes is given in Figure 3.1. MINGLeD uses a whole body approach and includes metabolically 

active tissues. The multi-compartmental design comprises the plasma, liver, intestinal lumen, 

and peripheral tissues. The main contributors to the metabolic pathways in the periphery are 

considered to be adipose tissue and skeletal muscle. 

 MINGLeD includes pathways for carbohydrate, lipid, and cholesterol metabolism, and 

computes pool sizes (concentrations) of various metabolites present in these systems. Table 

3.1 in Appendix 3.4.1 lists which metabolites are included in MINGLeD in each of the 

metabolically active tissues. Acetyl-Coenzyme A (ACoA) is the central intermediate metabolite 

interconnecting the carbohydrate and lipid metabolic pathways. The metabolic fluxes are based 

on first order mass action kinetics and listed in Table 3.2 in Appendix 3.4.2. This type of 

equations is similar to those used in previous ADAPT studies. [Tiemann et al., 2013, 2011; van Riel et al., 

2013; Hijmans et al., 2015] 

 These lumped flux and reaction equations were derived using previous (biological) 

knowledge about the processes we are modelling. Since the underlying regulation is often 
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Figure 3.1 
 

  

Schematic overview of the computational model MINGLeD. 

This multi-compartment framework encompasses pathways in dietary absorption, hepatic, peripheral, and intestinal lipid 

metabolism, hepatic, and plasma lipoprotein metabolism and plasma, hepatic, and peripheral carbohydrate metabolism. The 

metabolite pools in the different tissue compartments are displayed in the black frames; the corresponding metabolic fluxes 

are represented using the arrows. The grey fluxes represent the dietary inflow in terms of the different macronutrients derived 

from the experimental data. See Tables 3.1 and 3.2 for a description of the metabolic states and fluxes: AA, amino acid; ACAT, 

Acyl-coenzyme A:cholesterol acyltransferase; ACoA, acetyl-Coenzyme A; BA, bile acid; C, cholesterol; CE, cholesteryl ester; CEH, 

cholesterol ester hydrolase; CETP, cholesteryl ester transfer protein; CM, chylomicron; DNL, de novo lipogenesis; (F)C, (free) 

cholesterol; (F)FA, (free) fatty acid; G, glucose; G6P, glucose-6-phosphate; GNG, gluconeogenesis; HDL, high density 

lipoprotein; TG, triglyceride; TICE, transintestinal cholesterol absorption; (V)LDL, (very) low density lipoprotein. 

 

unknown (especially for lipid species), we refrained from composing our flux equations using 

stoichiometry coefficients. Therefore the underlying regulation is not explicatively modelled 

but is inferred by the time-dependent parameters using ADAPT. 

 MINGLeD aims to describe the metabolic pathways of the day’s average; a metabolic 

snapshot. Therefore, specific (detailed) pathways for neither the postprandial phase nor the 

fasting state have been included. The overall metabolic fluxes are able to describe the day’s 
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average in a consistent manner and describe both healthy metabolic states and various stages 

of metabolic derailment of the system as is present in the Metabolic Syndrome. Note that 

insulin has not been included since insulin synthesis, secretion, and action are on a much 

shorter timescale (minutes) than we use the model for (day’s average). 

 

 

3.2 Model derivation 

Below we provide a detailed description of the modelled metabolites, how they are biologically 

regulated, the motivation to include these in the computational model, and how these 

interactions and pathways have been implemented in a system of Ordinary Differential 

Equations (ODEs) to describe mass balance during steady state. 

 

3.2.1 Macronutrient intake 

Dietary intake is specified in the form of carbohydrates (in MINGLeD referred to as glucose 

substrates), fat (in MINGLeD referred to as triglycerides substrates), cholesterol, and proteins. 

All these macronutrients are included such that the energy intake of the complete diet is taken 

into account. 

 

In the model, glucose is taken up into the plasma from the dietary glucose directly. Fat and 

cholesterol are packed into chylomicrons (CM). These undergo triglyceride hydrolysis and are 

delivered to the hepatic and peripheral tissues; the chylomicron remnants that contain 

cholesterol are delivered to the liver. Note that chylomicrons are not explicitly included in 

MINGLeD since we do not aim to create a specific model describing the postprandial phase. 

Including the chylomicron particles would not improve the ability of the model to describe the 

available experimental data. 

 Although the metabolic pathways of amino acid metabolism have not been included in 

MINGLeD, we do take dietary protein intake into account since 20% of the energy of the diet is 

derived from protein sources. The amino acids (AA) are taken up by the liver and the periphery, 

and in each of these tissues, they can undergo either glucogenic or ketogenic uptake. 

 

3.2.2 Glucose metabolism 

Plasma glucose metabolism is controlled by glucose inflow from the diet, consecutive glucose 

uptake by liver and periphery, and gluconeogenesis (GNG) in the liver (3.1). Insulin-

independent, glucose-concentration-independent glucose uptake by the brain and 

erythrocytes was not taken into account since these tissues were not explicitly specified, and 

no experimental data on these fluxes is available. Instead, the brain and erythrocytes can be 

considered part of the periphery since this compartment comprises all other tissues apart from 

the liver, intestine, and plasma. 

 Glucose is trapped in the form of glucose-6-phosphate (G6P) and can be retrieved in the 

plasma through GNG in the liver. Glycogen pools were omitted since glycogenolysis and 

glycogenesis would both be connected to G6P, and on a day’s average basis would not be 

separable (only the net effect is modelled). 
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The amino acids (AA) of which the dietary protein is composed of are converted to G6P via the 

glucogenic pathway and to acetyl-Coenzyme A (ACoA) via the ketogenic pathway in both liver 

and periphery. We impose that both pathways contribute equally to the metabolism of the 

dietary protein uptake (j10-j13). 
dGpl

dt
 =   jdiet

G + jGNG,hep
G − jupt,hep

G − jupt,per
G  (

dx1

dt
) (3.1) 

dG6Phep

dt
 =   jupt,hep

G + jglc.upt,hep
AA − jglycolysis,hep

G − jGNG,hep
G  (

dx9

dt
) (3.2) 

dG6Pper

dt
 =   jupt,per

G + jglc.upt,per
AA − jglycolysis,per

G  (
dx14

dt
) (3.3) 

 

It is worth mentioning that all these pathways have been lumped and therefore no 

intermediates in e.g. the glycolysis pathway have been included. This yields a compact model 

of which the majority of the modelled variables can be estimated from the data with accuracy. 

If we would include detailed pathways with many intermediates (which cannot be coupled to 

experimental data) an identifiable model cannot be obtained, i.e. these intermediate 

metabolites and fluxes do not provide accurate predictions and may present non-physiological 

behaviour. 

 

3.2.3 Plasma lipid metabolism 

Free fatty acids (FFA) – also called non-esterified fatty acids – are carboxylic acids with long 

hydrocarbon chains. These FFAs differ by length and saturation, ranging from short-chain (≤5 

carbons) up to very long chain fatty acids (≥22 carbons). We do not consider these different 

chain lengths as different species; we have lumped the fatty acids to be one pool that inherently 

comprises all these different types of fatty acids. 

 Circulating free fatty acids originate after lipolysis of peripheral triglycerides through 

lipoprotein lipase (LPL) activity. Fatty acids are taken up from the plasma by the liver, where 

they are stored in the form of triglycerides (TG). 
dFFApl

dt
 =  3 · jlipolysis

TG − jupt,hep
FA  (

dx2

dt
) (3.4) 

 

3.2.4 Plasma lipoprotein metabolism 

Lipoproteins are particles that have a hydrophobic core with a surrounding hydrophilic layer. 

This makes them ideal for the transport of triglycerides and cholesterol through the circulation. 

They are traditionally classified based on density, size, apolipoprotein composition, and origin 

of synthesis. The density of a lipoprotein is determined by the amount of protein and lipid the 

particle contains. A higher density indicates that the lipoprotein has a higher ratio of protein to 

lipid content. High-density lipoproteins (HDL) are the smallest and most dense particles. 

Commonly, a distinction into five classes is made: chylomicrons (CM), very low-density 

lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and 

high-density lipoproteins (HDL). In MINGLeD we distinguish between high-density lipoproteins 

that carry cholesterol (HDL-C) and (very) low-density lipoproteins that carry both cholesterol 

((V)LDL-C) and triglycerides ((V)LDL-TG). All endogenously derived triglyceride-rich lipoproteins 

(TRL) have been packed under the name of (V)LDL, but inherently comprise VLDL, IDL, and LDL. 
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Note that HDL-TG has not been included since it is generally known that the majority of the 

molecules within HDL can be contributed to cholesterol particles and the TG content is 

negligible. Furthermore, the ratio between TG and cholesterol in HDL is not known. 

 

HDL-C is formed from pre-HDL which originates from the periphery and is packed with 

cholesterol that has been esterified through lecithin-cholesterol acyltransferase (LCAT). Plasma 

HDL-C is subjected to plasma lipid transfer upon the action of the cholesteryl ester transfer 

protein (CETP), and the remaining remnant particles are taken up by the liver via scavenger 

receptor class B1 (SR-B1). CETP collects triglycerides from TRL in exchange for cholesteryl esters 

from HDL and vice versa. However, since we did not include HDL-TG, MINGLeD only considers 

the cholesterol transfer from HDL-C to (V)LDL-C. Note that the rate equation for CETP (j27) was 

chosen to be dependent on plasma TG pools since this is generally considered to be the driver 

behind CETP action. 

 HDL-C also plays an important role in the reverse cholesterol transport (RCT) pathway: the 

transport of cholesterol from the peripheral tissues back to the liver, after which cholesterol 

can be secreted via the bile into the feces. The pathways in MINGLeD allow for this reverse 

cholesterol transport to take place. 
dHDL-Cpl

dt
 =   jform

HDL-C − jCETP − jremn.upt
HDL-C  (

dx3

dt
) (3.5) 

 

(V)LDL is assembled in the liver from the hepatic triglyceride and cholesteryl ester pool and 

then secreted into the plasma. Circulating (V)LDL is being lipolyzed and thereby delivers 

triglycerides and cholesterol to peripheral tissues. The remaining remnant particles are TG 

depleted and are taken up by LDL receptor-mediated uptake by the liver, where they are 

recycled into the cholesteryl ester pool. 

 (V)LDL can also undergo transport to the intestinal lumen through transintestinal cholesterol 

excretion (TICE). The TICE rate equation (j26) was chosen to be dependent on the VLDL-C pool. 

The plasma compartments contributing to TICE are not completely known and may be coming 

from both ApoB-containing lipoproteins and erythrocytes. It was therefore decided to make it 

dependent on VLDL-C only since erythrocytes are not included in the model. 
d(V)LDL-Cpl

dt
 =   jform

(V)LDL-C + jCETP − jremn.upt,hep
(V)LDL-C − jupt,per

(V)LDL-C − jTICE (
dx4

dt
) (3.6) 

d(V)LDL-TGpl

dt
 =   jform

(V)LDL-TG − jupt
(V)LDL-TG (

dx5

dt
) (3.7) 

 

3.2.5 Hepatic lipid metabolism 

The hepatic triglyceride pool is supplied by chylomicron remnant uptake, fatty acid uptake from 

the plasma, and de novo lipogenesis (DNL; synthesis of triglycerides from ACoA substrates). 

Details about the reaction stoichiometry can be found in Table 3.2. The triglyceride pool is 

drained by β-oxidation and for the assembly of (V)LDL particles. 

Acetyl-Coenzyme A is a species that participates in many different metabolic processes. It plays 

a role in carbohydrate, lipid, and cholesterol metabolism. It originates from the breakdown of 

carbohydrate substrates (glycolysis) and from the breakdown of fatty acids (β-oxidation). It is 

used as a substrate for de novo lipogenesis of triglycerides and for the biosynthesis of 
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cholesterol (through the mevalonate pathway). It can also be oxidized via the citric acid cycle, 

yielding ATP. 

dTGhep

dt
 =   jremn.upt,hep

CM-TG +
jupt,hep
FA

3
+

jDNL,hep
TG

21.4
− jβ-ox,hep

TG − jform
(V)LDL-TG (

dx6

dt
) (3.8) 

dACoAhep

dt
=  jket.upt,hep

AA + 2·jglycolysis,hep
G + 21.4·jβ-ox,hep

TG − jDNL,hep
TG − jbiosyn,hep

C  

dACoAhep

dt
= −jresp,hep

ACoA  

(
dx10

dt
) (3.9) 

 

3.2.6 Hepatic cholesterol metabolism 

We distinguish between free cholesterol (FC) and cholesteryl ester (CE) as pools of cholesterol 

present in the liver. The hepatic free cholesterol pool is supplied by chylomicron remnant 

uptake, cholesterol biosynthesis, and cholesteryl ester hydrolase (CEH; hydrolysis of CE to FC). 

The FC pool is drained by Acyl-coenzyme A:cholesterol acyltransferase (ACAT; esterification of 

FC to CE) and biliary cholesterol excretion. Hepatic free cholesterol is also a precursor for bile 

acid synthesis. 

dFChep

dt
 =   jremn.upt

CM-C +
jbiosyn,hep
C

13.5
+  jCEH

C − jACAT
C − jsyn

BA − jexcr,bil
C  (

dx7

dt
) (3.10) 

 

The hepatic cholesteryl ester pool is supplied by (V)LDL-C and HDL-C remnant uptake and 

esterification of free cholesterol through ACAT. Cholesteryl esters are drained from the liver for 

(V)LDL-C assembly and by hydrolysis through CEH. 
dCEhep

dt
 =   jremn.upt,hep

(V)LDL-C + jremn.upt,hep
HDL-C + jACAT

C − jform
(V)LDL-C − jCEH

C  (
dx8

dt
) (3.11) 

 

3.2.7 Hepatic bile acid metabolism 

Bile acids are synthesized in the liver from endogenous cholesterol and can be secreted into 

the lumen of the intestine. Because of their amphipathic properties, they are able to emulsify 

dietary lipids and they thereby facilitate lipid absorption. The majority of the intestinal bile acids 

are recycled by the enterohepatic circulation. The bile acids can be taken up into the circulation, 

return to the liver, and be re-secreted. 
dBAhep

dt
 =   jsynt,hep

BA + jrecycl
BA − jexcr,bil

BA  (
dx11

dt
) (3.12) 

 

3.2.8 Peripheral lipid metabolism 

Many pathways in peripheral lipid metabolism resemble those of hepatic lipid metabolism. 

Triglycerides enter the peripheral compartment by chylomicron remnant uptake, TG uptake 

resulting from lipolyzed (V)LDL and de novo lipogenesis. When triglycerides undergo lipolysis – 

by the activity of lipoprotein lipase (LPL) – they are released into the plasma in the form of free 

fatty acids. Triglycerides are also removed from the peripheral TG pool by β-oxidation. 

dTGper

dt
 =   jremn.upt,per

CM-TG + jupt
(V)LDL-TG +

jDNL,per
TG

21.4
− jlipolysis

TG − jβ-ox,per
TG  (

dx12

dt
) (3.13) 

 

The peripheral ACoA pool is determined by many processes that yield ACoA particles: the 

ketogenic uptake of dietary proteins, from carbohydrate substrates originating after glycolysis, 
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and from lipid substrates originating after the β-oxidation of triglycerides. ACoA is a substrate 

for both lipid production (DNL) and for cholesterol production (biosynthesis). It can also be 

oxidized to generate energy. 
dACoAper

dt
 =   jket.upt,per

AA + 2·jglycolysis,per
G + 21.4·jβ-ox,per

TG − jDNL,per
TG − jbiosyn,per

C − jresp,per
ACoA  (

dx15

dt
) (3.14) 

 

3.2.9 Peripheral cholesterol metabolism 

In the peripheral compartment, MINGLeD does not discriminate between free cholesterol and 

cholesteryl ester particles as no experimental data on the cholesterol pools in these tissues is 

available. Therefore we consider the peripheral cholesterol pool to be referred to as the total 

cholesterol content present in the periphery. 

 The cholesterol present in the HDL-C particles is retrieved from the peripheral cholesterol 

pool. The cholesterol pool is replenished by (V)LDL-C uptake and cholesterol biosynthesis from 

ACoA. ACoA is the common precursor that links TG and cholesterol synthesis and exists not only 

in the liver but in every tissue (adipose tissue also expresses HMG-CoA reductase, which is the 

limiting step in cholesterol biosynthesis). 

dCper

dt
 =   jupt,per

(V)LDL-C +
jbiosyn,per
C

13.5
− jform

HDL-C (
dx13

dt
) (3.15) 

 

3.2.10  Intestinal metabolism 

In the intestinal lumen, MINGLeD distinguishes between triglycerides, cholesterol, and bile 

acids. Triglycerides and cholesterol originating from the diet are packed into chylomicrons that 

deliver these species to the liver and peripheral tissues. Biliary excretion from the liver delivers 

cholesterol and bile acids to the luminal compartment. Bile acids can be re-absorbed into the 

liver. Additional cholesterol originating from (V)LDL enters the intestine through transintestinal 

cholesterol excretion (TICE). Both bile acids and cholesterol can be eliminated from the system 

through fecal excretion. 

dTGint

dt
 =   jdiet

TG − jremn.upt,hep
CM-TG − jremn.upt,per

CM-TG  (
dx16

dt
) (3.16) 

dCint

dt
 =   jdiet

C +  jexcr,bil
C +  jTICE − jremn.upt

CM-C − jexcr,fec
C  (

dx17

dt
) (3.17) 

dBAint

dt
 =  jexcr,bil

BA − jexcr,fec
BA − jrecycl

BA  (
dx18

dt
) (3.18) 

 

  



A model of the integration of glucose and lipid dynamics (MINGLeD) 

37 

3.3 Implementation details 

The mathematical model and optimization procedures are implemented in MATLAB (2013b, 

The Mathworks, Natick, Massachusetts). The ordinary differential equations are solved with 

compiled MEX files using numerical integrators from the SUNDIALS CVode package (2.6.0, 

Lawrence Livermore National Laboratory, Livermore, California). [Hindmarsh et al., 2005] An absolute 

and relative tolerance of 10-6 is used. The MATLAB nonlinear least-squares solver lsqnonlin 

(from the Optimization Toolbox), which uses an inferior reflective Newton method, is used to 

estimate model parameters. [Coleman and Li, 1996] The termination tolerances for the objective 

function and the parameter estimates are set to 10-8, the maximum number of iterations 

allowed is set to 103 and the maximum number of function evaluations allowed to 105. 

 

 

3.4 Appendix 

3.4.1 Metabolite pools in MINGLeD 
 

Table 3.1 
 

  

Metabolite pools as modelled states described in MINGLeD. 

All metabolite pools in MINGLeD are expressed in μmol. 
 

Gpl plasma glucose (x1) 

FFApl plasma free fatty acids (x2) 

HDL-Cpl plasma HDL-C (x3) 

(V)LDL-Cpl plasma (V)LDL-C (x4) 

(V)LDL-TGpl plasma (V)LDL-TG (x5) 

TGhep hepatic triglycerides (x6) 

FChep hepatic free cholesterol (x7) 

CEhep hepatic cholesterol ester (x8) 

G6Phep hepatic glucose-6-phosphate (x9) 

ACoAhep hepatic acetyl-Coenzyme A (x10) 

BAhep hepatic bile acids (x11) 

TGper peripheral triglycerides (x12) 

Cper peripheral cholesterol (x13) 

G6Pper peripheral glucose-6-phosphate (x14) 

ACoAper peripheral acetyl-Coenzyme A (x15) 

TGint intestinal triglycerides (x16) 

Cint intestinal cholesterol (x17) 

BAint intestinal bile acids (x18) 
 

 

 

  



Chapter 3 

38 

3.4.2 Flux pathways in MINGLeD 
 

Table 3.2 
 

  

List of included flux pathways in MINGLeD. 

All fluxes in MINGLeD are expressed in μmol/day. 
 

Dietary fluxes    

jdiet
G  Gdiet → Gpl  dietary glucose intake flux * (j1) 

jdiet
TG  TGdiet

  → TGint dietary triglyceride intake flux * (j2) 

jdiet
C  Cdiet → Cint dietary cholesterol intake flux * (j3) 

jdiet
AA  AAdiet → AAhep + AAper dietary protein intake flux * (j4) 

    

Macronutrient uptake fluxes    

jremn.upt,hep
CM-TG  =  kremn.upt,hep

CM-TG · TGint TGint → TGhep hepatic chylomicron remnant uptake (j5) 

jremn.upt,per
CM-TG  =  kremn.upt,per

CM-TG · TGint TGint → TGper peripheral chylomicron remnant uptake (j6) 

jremn.upt,hep
CM-C  =  kremn.upt,hep

CM-C · Cint Cint → FChep hepatic chylomicron remnant uptake (j7) 

jupt,hep
AA  =  kupt,hep

AA · jdiet
AA  AAdiet → AAhep hepatic protein uptake (j8) 

jupt,per
AA  =  kupt,per

AA · jdiet
AA  AAdiet → AAper peripheral protein uptake (j9) 

jglc.upt,hep
AA  = 0.5 · jupt,hep

AA  # AAhep → G6Phep hepatic glucogenic protein uptake (j10) 

jglc.upt,per
AA  = 0.5 · jupt,per

AA  # AAper → G6Pper peripheral glucogenic protein uptake (j11) 

jket.upt,hep
AA  = 0.5 · jupt,hep

AA  # AAhep → ACoAhep hepatic ketogenic protein uptake (j12) 

jket.upt,per
AA  = 0.5 · jupt,per

AA  # AAper→ACoAper peripheral ketogenic protein uptake (j13) 

jupt,hep
G  =  kupt,hep

G · Gpl  Gpl  → G6Phep hepatic glucose uptake (j14) 

jupt,per
G  =  kupt,per

G · Gpl  Gpl  → G6Pper peripheral glucose uptake (j15) 

    

Carbohydrate fluxes    

jglycolysis,hep
G  =  kglycolysis,hep

G · G6Phep 1·G6Phep → 2·ACoAhep
 (a) hepatic glycolysis (j16) 

jGNG,hep
G  =  kGNG,hep

G · G6Phep G6Phep → Gpl  gluconeogenesis (j17) 

jglycolysis,per
G  =  kglycolysis,per

G · G6Pper 1·G6Pper → 2·ACoAper
 (a) peripheral glycolysis (j18) 

    

Lipoprotein fluxes    

jupt
(V)LDL-TG =  kupt

(V)LDL-TG· (V)LDL-TGpl  (V)LDL-TGpl  → TGper peripheral (V)LDL-TG uptake (j19) 

jupt,per
(V)LDL-C =  kupt,per

(V)LDL-C· (V)LDL-Cpl  (V)LDL-Cpl  → Cper peripheral (V)LDL-C uptake (j20) 

jremn.upt,per
(V)LDL-C  =  kremn.upt,per

(V)LDL-C · (V)LDL-Cpl  (V)LDL-Cpl  → CEhep hepatic (V)LDL-C remnant uptake (j21) 

jform
(V)LDL-TG =  kform

(V)LDL-TG
· TGhep TGhep → (V)LDL-TGpl   recruitment of triglycerides for (V)LDL assembly (j22) 

jform
(V)LDL-C =  kform

(V)LDL-C
· CEhep CEhep → (V)LDL-Cpl  

recruitment of cholesterol particles for (V)LDL 

assembly 
(j23) 

jform
HDL-C =  kform

HDL-C· CEper Cper → HDL-Cpl  HDL-C formation (j24) 

jremn.upt
HDL-C  =  kremn.upt

HDL-C · HDL-Cpl  HDL-Cpl  → CEhep hepatic HDL-C remnant uptake (j25) 

jTICE =  kTICE· (V)LDL-TGpl  (V)LDL-Cpl  → Cint transintestinal cholesterol excretion (j26) 

jCETP =  kCETP· (V)LDL-TGpl  HDL-Cpl  → (V)LDL-Cpl  
cholesterol ester transfer protein flux: exchange 

of cholesterol derived from HDL to (V)LDL 
(j27) 
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Lipid fluxes    

jupt,hep
FA  =  kupt,hep

FA · FFApl  3·FFApl  → 1·TGhep
 (b) hepatic fatty acid uptake (j28) 

jβ-ox,hep
TG  =  kβ-ox,hep· TGhep 1·TGhep → 21.4·ACoAhep

 (c) hepatic β-oxidation (j29) 

jbiosyn,hep
C  =  kbiosyn,hep· ACoAhep 13.5·ACoAhep → 1·FChep

 (d) hepatic cholesterol biosynthesis (j30) 

jDNL,hep
TG  =  kDNL,hep· ACoAhep 21.4·ACoAhep → 1·TGhep

 (c) hepatic de novo lipogenesis (j31) 

jlipolysis
TG  =  kLPL· TGper 1·TGper → 3·FFApl

 (b) peripheral lipolysis (j32) 

jβ-ox,per
TG  =  kβ-ox,per· TGper 1·TGper → 21.4·ACoAper

 (c) peripheral β-oxidation (j33) 

jbiosyn,per
C  =  kbiosyn,per· ACoAper 13.5·ACoAper → 1·Cper

 (d) peripheral cholesterol biosynthesis  (j34) 

jDNL,per
TG  =  kDNL,per· ACoAper 21.4·ACoAper → 1·TGper

 (c) peripheral de novo lipogenesis (j35) 

    

Cholesterol fluxes    

jACAT
C  =  kACAT· FChep FChep → CEhep hepatic cholesterol storage (j36) 

jCEH
C  =  kCEH· CEhep CEhep → FChep hepatic cholesterol release (j37) 

jsyn
BA  =  ksyn

BA · FChep FChep → BAhep bile acid synthesis (j38) 

jexcr,bil
BA  =  kexcr,bil

BA · BAhep BAhep → BAint biliary bile acid excretion (j39) 

jrecycl
BA  =  krecycl

BA · BAint BAint → BAhep bile acid recycling (j40) 

jexcr,bil
C  =  kexcr,bil

C · FChep FChep → Cint biliary cholesterol excretion (j41) 

    

Removal fluxes    

jexcr,fec
C  =  kexcr,fec

C · Cint Cint → ∅ 
  fecal cholesterol excretion (j42) 

jexcr,fec
BA  =  kexcr,fec

BA · BAint BAint → ∅ 
  fecal bile acid excretion (j43) 

jresp,hep
ACoA  =  kresp,hep· ACoAhep ACoAhep → ∅ 

  hepatic ACoA respiration (j44) 

jresp,per
ACoA  =  kresp,per· ACoAper ACoAper → ∅ 

  peripheral ACoA respiration (j45) 
 

* The dietary fluxes are considered as inputs from the experimental dataset. 
# The factor 0.5 originates from our assumption that both the glucogenic and ketogenic pathway contribute equally to the 

metabolism of the dietary protein uptake. 
 

The flux equations are derived using stoichiometry rules: 
(a) The breakdown of one molecule of glucose results in two molecules of ACoA: 2·G6P ↔ 1·ACoA 
(b) Triglycerides are esters derived from glycerol and three fatty acids per particle: 3·FFA ↔ 1·TG 
(c) The composition of triglycerides depends on the length and saturation of the fatty acid chains of which it is composed. The 

conversion of TG to ACoA is therefore derived based on energy content. We adjust the number of ACoA molecules derived 

from TG assuming that the energy density of body fat equals the energy density of the consumed food. This results in: 1·TG 

↔ 21.4·ACoA 
(d) ACoA (CH3COSCoa) is a two-carbon compound; cholesterol (C27H46O) has 27 carbon units: 1·(F)C ↔ 13.5·ACoA 
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The Metabolic Syndrome (MetS) is a complex, multi-factorial disorder that develops slowly over 

time presenting itself with large differences among MetS patients. We applied a systems 

biology approach to describe and predict the onset and progressive development of MetS, in a 

study that combined in vivo and in silico models. The new data-driven, physiological model 

(MINGLeD: Model INtegrating Glucose and Lipid Dynamics) was developed, describing glucose, 

lipid, and cholesterol metabolism. Since classic kinetic models cannot describe slowly 

progressing disorders, the simulation method ADAPT was used to describe longitudinal 

dynamics and to predict metabolic concentrations and fluxes. This approach yielded a novel 

model that can describe long-term MetS development and progression. This model was 

integrated with longitudinal in vivo data that was obtained from male APOE*3-Leiden.CETP 

mice fed a high-fat, high-cholesterol diet for three months and that developed MetS as 

reflected by classical symptoms including obesity and glucose intolerance. Two distinct 

subgroups were identified: those who developed dyslipidemia, and those who did not. The 

combination of MINGLeD with ADAPT could correctly predict both phenotypes, without making 

any prior assumptions about changes in kinetic rates or metabolic regulation. Modelling and 

flux trajectory analysis revealed that differences in liver fluxes and dietary cholesterol 

absorption could explain this occurrence of the two different phenotypes. In individual mice 

with dyslipidemia, dietary cholesterol absorption and hepatic turnover of metabolites, 

including lipid fluxes, were higher compared to those without dyslipidemia. Predicted 

differences were also observed in gene expression data, and consistent with the emergence of 

insulin resistance and hepatic steatosis, two well-known MetS comorbidities. Whereas 

MINGLeD specifically models the metabolic derangements underlying MetS, the simulation 

method ADAPT is generic and can be applied to other diseases where dynamic modelling and 

longitudinal data are available. 

 

 

4.1 Introduction 

The simultaneous presentation of obesity, dyslipidemia, insulin resistance, and hypertension is 

generally referred to as the Metabolic Syndrome (MetS). [Grundy et al., 2004; International Diabetes 

Federation, 2006; Kassi et al., 2011; World Health Organization, 2014; Parikh and Mohan, 2012] Together, these factors 

impose an increased risk of the development of comorbidities including cardiovascular 

diseases, type 2 diabetes, and non-alcoholic fatty liver disease. [Beltrán-Sánchez et al., 2013; Vanita and 

Jhansi, 2011] MetS is considered to be the result of an imbalance in the mechanisms controlling 

dietary intake, energy expenditure, glucose handling, and lipid homeostasis. [Rask-Madsen and Kahn, 

2012; Han and Lean, 2016; Kaur, 2014] The high prevalence of obesity and MetS [Finkelstein et al., 2012; NCD 

Risk Factor Collaboration, 2017; van Vliet-Ostaptchouk et al., 2014; Moore, 2017; Moreira et al., 2014], in combination 

with the heterogeneous presentation of MetS patients [Agyemang et al., 2012; Lee et al., 2008], asks for 

the design of adequate treatment and prevention strategies. Clinical research on MetS is mostly 

cross-sectional in nature and tends to focus on either lipid or glucose metabolism, while both 

makeup MetS. Knowledge on the interplay between these different metabolic components 

during the relatively slow progression into disease is therefore limited, but which a systems 

biology approach could provide. 
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Modelling efforts in the past have shown that systems biology can be a powerful approach to 

gain both qualitative and quantitative insight into the inherently complex systems that drive 

the development of MetS. For example, Lu et al. [Lu et al., 2014] demonstrated how HDL raising 

modulators fail to reduce cardiovascular diseases by elucidating the effects on the reverse 

cholesterol transport pathway. Likewise, Topp et al. [Topp et al., 2000] have identified different 

response pathways and physiological outcomes during prolonged hyperglycemia. 

 However, these computational models were designed to model the healthy [Cobelli et al., 2014; 

Dalla Man et al., 2006; Jelic et al., 2009; Kim et al., 2007; König et al., 2012; Lu et al., 2014; Nyman et al., 2011; Roy and Parker, 

2006; Sips et al., 2015; Xu et al., 2011; Chalhoub et al., 2007b] or diseased state exclusively. [Toghaw et al., 2012; 

Topp et al., 2000] Furthermore, these models only describe short-term dynamics (e.g. the 

postprandial response period) and do not take into account long-term dynamics that may be 

expected to occur in progressive diseases such as MetS. Moreover, models that do explicitly 

study the gradual phenotype transition into a diseased state, have only considered either the 

lipid component [Mc Auley et al., 2012] or the glucose component [Bagust and Beale, 2003; de Winter et al., 

2006; Ha et al., 2016; Sarkar et al., 2018] of MetS. 

 The long-term simulation method “Analysis of Dynamic Adaptations in Parameter 

Trajectories” (ADAPT; chapter 2) [Tiemann et al., 2011, 2013; van Riel et al., 2013] provides a method to 

describe long-term dynamics. It infers time-varying parameters that gradually change over 

time, reflecting the slow change in the regulation of metabolic processes during disease 

development. Therefore, ADAPT is a very powerful approach to study the longitudinal 

development of diseases and therapeutic interventions and uses experimental data to infer 

adaptations in the system. [Hijmans et al., 2015; Nyman et al., 2016; Tiemann et al., 2011, 2013] In previous 

studies, ADAPT has been applied to study hepatic steatosis [Hijmans et al., 2015; Tiemann et al., 2013], 

and treatment of T2DM [Nyman et al., 2016] (chapter 2), but has not yet been applied to study the 

full metabolic complexity of MetS. 

 Therefore, we aimed to design a computational, data-driven approach to study the 

longitudinal and progressive dynamics of the majority of metabolic alterations of MetS, i.e. 

obesity, glucose intolerance, insulin resistance, and dyslipidemia. We employed a systems 

biology methodology that integrates three main concepts to infer metabolic adaptations during 

MetS development: 1) the long-term simulation method ADAPT, combined with 2) the newly 

developed in silico MetS model (from chapter 3) that describes the metabolic processes 

involved in whole-body carbohydrate and lipid metabolism, and integrated with 3) time-series 

data obtained from an in vivo MetS model. The APOE*3-Leiden(E3L).CETP mouse [Westerterp et 

al., 2006; Leiden Metabolic Research Services, 2016] is a preclinical animal model for human MetS that 

develops diet-induced dyslipidemia and is prone to develop obesity and insulin resistance. It 

has been used in cross-sectional studies addressing different metabolic facets of MetS. [Auvinen 

et al., 2013; de Haan et al., 2008; Kleemann et al., 2003; Kooistra et al., 2006; Li et al., 2012; van den Hoek et al., 2014; van der 

Hoorn et al., 2009; Wang et al., 2014a; Zadelaar et al., 2007; Westerterp et al., 2006] We made use of this in vivo 

model to study the development of diet-induced MetS in a longitudinal setting [van den Hoek et al., 

2014; van Dam et al., 2015] by collecting measurements in the same animals within a three-month 

period and at multiple intermediate time points. 
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Our in silico modelling quantitatively analyses and integrates the experimental data and 

provides estimates of metabolite concentrations and fluxes that were experimentally not 

measured. With this modelling approach, we demonstrate when and how the onset and 

development of MetS occurs. Although we expected to find a homogeneous population, our 

modelling approach shows the emergence of different phenotypes of MetS. This heterogeneity 

is associated with differences in intestinal and hepatic metabolic fluxes. 

 

 

4.2 E3L.CETP mice on a high-fat diet with cholesterol develop obesity, 

glucose intolerance, and dyslipidemia 

We combined data-driven and physiology-based modelling. Hereto we integrated prior 

knowledge on the complex metabolic systems that underlie the pathophysiology of MetS with 

experimental observations on the actual metabolic status over time: in vivo data on the onset 

and progressive development of MetS have been collected from eleven-week-old male 

E3L.CETP mice that were fed diets differing in fat and cholesterol content and were followed 

for three months. These diets comprised a low-fat diet (LFD; 20% of energy from fat; n=8), high-

fat diet (HFD; 60% of energy from fat; n=12), and a high-fat diet with additional dietary 

cholesterol (HFD+C; 0.25% cholesterol; n=8). For each diet group, longitudinal data was 

obtained throughout the time course of the study: body weight was monitored weekly, plasma 

markers were measured monthly, and liver lipids were assessed after three months. Appendix 

4.10 provides a detailed overview of the experimental set-up and measurement details. 

 

Figure 4.1 presents the results of feeding LFD, HFD, and HFD+C as average (left) and individually 

(right) for HFD+C feeding; the latter is discussed in the next section. As compared with LFD 

feeding, increased fat intake (HFD) resulted in increased weight gain (Figure 4.1A) reflected by 

a marked increase in fat mass (Figure 4.1B) with no changes in lean mass (Figure 4.1C). HFD 

feeding also significantly increased fasting plasma glucose (Figure 4.1D) and insulin (Figure 

4.1E) levels. Although HFD did not affect the plasma total cholesterol level (TC; Figure 4.1G), a 

shift in the lipoprotein ratio was observed, reflected by increased plasma HDL-cholesterol (HDL-

C) levels (Figure 4.1H) upon feeding a high-fat diet. 

 As compared to the HFD alone, obesity development was slightly increased by cholesterol 

feeding (Figures 4.1A-B), as monitored by increased fat mass at three months after starting the 

diet, even though the daily food intake did not increase (data not shown). Although the 

additional dietary cholesterol did not affect plasma glucose and insulin levels (Figures 4.1D-E), 

it did impair glucose tolerance in the oral glucose tolerance test (Figure 4.6 in Appendix 4.10.9), 

indicating that dietary cholesterol increased insulin resistance. 

 As compared to HFD, plasma triglyceride (TG) levels were significantly increased after three 

months of feeding HFD with cholesterol (Figure 4.1F). Cholesterol feeding did not seem to have 

an effect on circulating TC levels until the second month of the dietary induction (Figure 4.1G). 

Plasma HDL-C level (Figure 4.1H), on the other hand, was increased after starting the diet (HFD 

and HFD+C) over the first two months. 
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Figure 4.1 
 

  

In vivo development of the Metabolic Syndrome results in different phenotypes. 

Experimentally observed metabolic parameters upon dietary induction in male E3L.CETP mice over the time course of three 

months is displayed in two ways: in the left panels the data are expressed as mean ± standard deviation (error bars) for the 

low-fat diet (LFD; n=8; light blue), high-fat diet (HFD; n=12 (pooled from two groups n=7 for the full time period, n=5 until two 

months of dietary induction; dark blue) and high-fat diet with 0.25% cholesterol (HFD+C; n=8; green) groups, whereas in the 

right panels the data of the animals on HFD+C are depicted for each animal individually. Individuals in this cohort were 

subdivided into two groups based on the plasma triglyceride (TG; panel F) and plasma total cholesterol (TC; panel G) levels. 

The dyslipidemic Metabolic Syndrome phenotypes are depicted in red (MetSDLP; mice with high plasma TG and simultaneous 

high plasma TC at three months) and the non-dyslipidemic Metabolic Syndrome phenotypes in grey (MetSnon-DLP; mice with low 

plasma TG and simultaneous low plasma TC at three months). 

Differences between groups were determined using a one-way ANOVA test. When significant differences were found, Fisher’s 

LSD test was used as a post hoc test to determine the differences between two independent groups: 

* P<0.05; ** P<0.01; *** P<0.001 HFD as compared to LFD 
# P<0.05; ## P<0.01; ### P<0.001 HFD+C as compared to HFD 

 

 

4.3 E3L.CETP mice respond bimodally to cholesterol feeding suggesting 

the presence of two distinct Metabolic Syndrome phenotypes 

Male E3L.CETP mice developed HFD-induced obesity, glucose intolerance, and dyslipidemia, 

mimicking the classical symptoms seen in human MetS. However, the high variability in both 

triglyceride and cholesterol levels complicated the interpretation of the dyslipidemic 

component. Therefore, we also presented the data of mice fed with the HFD+C individually in 
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the right-hand side panels of Figure 4.1. When inspecting the levels of plasma TG (Figure 4.1F) 

and plasma TC (Figure 4.1G) at the three months’ time point, the data reveal clear differences 

among the individual mice: while some develop dyslipidemia upon feeding HFD+C (shown in 

red), others do not (shown in grey), suggesting a bimodal distribution. With this insight, we 

divided the HFD+C cohort into two subgroups: the mode with high plasma TG and high plasma 

TC levels after three months of HFD+C is referred to as the dyslipidemic Metabolic Syndrome 

phenotypes (MetSDLP; n=3) and the other mode as the non-dyslipidemic Metabolic Syndrome 

phenotypes (MetSnon-DLP; n=5). This subdivision shows a consistent pattern in both TG and TC 

at the three months’ time point but is already present earlier in time. In fact, the onset of 

dyslipidemia is already noticeable after two months of the diet and progresses further towards 

the three months’ time period. Note that the subdivision in phenotype development is a result 

of the HFD+C diet; no baseline differences are observed (t=0 months in this dataset), and these 

observations are limited to the HFD+C group and not present in HFD. 

 This separation into two phenotypes is clearly present in the lipid trait, but it is also reflected 

in markers of carbohydrate metabolism. Although the individual mice cannot be separated 

based on the fasting plasma glucose (Figure 4.1D) data, the fasting plasma insulin (Figure 4.1E) 

indicates that the MetSDLP individuals are significantly more insulin resistant than the MetSnon-

DLP individuals at the three months’ time point. This trend is even more profound in the insulin 

dynamics in response to a glucose challenge test (Figure 4.6 in Appendix 4.10.9): MetSDLP 

individuals show a markedly higher insulin peak that also lasts longer than the MetSnon-DLP 

individuals. This indicates that dyslipidemia and glucose intolerance develop in parallel, but it 

is unclear how these are causally related. 

 

 

4.4 MINGLeD describes metabolic snapshots accurately 

MINGLeD was integrated with the in vivo data whilst considering four subgroups: the LFD 

group, HFD group, MetSnon-DLP phenotypes, and MetSDLP phenotypes. For each subgroup, 

MINGLeD was fitted to the data of each of the four snapshots in time separately. The resulting 

sixteen models differ in the values for their estimated parameters. For each model, the 

parameter estimation procedure was repeated with 500 different initial parameter sets using 

multi-start optimization. Figure 4.2 displays that MINGLeD accurately fits the metabolic 

snapshots over time for each of these groups. This shows that MINGLeD is capable of describing 

different metabolic phenotypes upon varying dietary intake and at different metabolic stages 

in time. 

 

 

4.5 MINGLeD with ADAPT describes dyslipidemic and non-dyslipidemic 

Metabolic Syndrome progression 

Calibration of MINGLeD yielded separate models for each subgroup (LFD, HFD, MetSnon-DLP, and 

MetSDLP). However, this ignores the fact that the phenotypes represented by each of those four 

models are causally connected in time. MINGLeD describes metabolic fluxes and 

concentrations but does not explicitly include the multiple pathways that regulate and 
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Figure 4.2 
 

  

MINGLeD describes metabolic phenotypes of male E3L.CETP mice on different diets and time points. 

The metabolic phenotypes are depicted for three different diets (with HFD+C composed of two subgroups that emerged after 

two months of dietary induction) at four different time points. Model fits (coloured error bars: mean ± standard deviation) of 

MINGLeD calibrated to the phenotype snapshots (raw, individual mouse data shown in grey) separately. Only acceptable model 

simulations were included, which was classified as having a weighted sum of squared errors (see equation (4.1) in Appendix 

4.11) below 100. 

 

modulate metabolism over a three months’ time period (such as changes in gene expression 

and protein activity). Both limitations were overcome by combining MINGLeD with a dedicated 

approach for longitudinal modelling of biological systems: “Analysis of Dynamic Adaptations of 

Parameter Trajectories” (ADAPT). [Tiemann et al., 2011, 2013; van Riel et al., 2013] ADAPT uses the 

experimental data to infer adaptations in the system, which is implemented by introducing 

time-varying model parameters. Model parameters are iteratively re-estimated over the time 

course of the simulation, yielding parameter trajectories that govern the time-dependent 

evolution of the modelled state variables and fluxes. Combining MINGLeD with ADAPT and the 

experimental data resulted in a dynamic, continuous model of MetS development and 

progression. ADAPT uses ensemble-based simulation to account for both methodological and 
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Figure 4.3 
 

  

Onset and development of the Metabolic Syndrome reveal two distinct phenotypes of dyslipidemic status. 

The classical hallmarks of MetS are depicted by simulations of the individual trajectories (the top 10% best were selected from 

n=1,000) for the low-fat diet (LFD) are shown in light blue; high-fat diet (HFD) in dark blue, the non-dyslipidemic Metabolic 

Syndrome phenotypes (MetSnon-DLP) in grey and the dyslipidemic Metabolic Syndrome phenotypes (MetSDLP) in red. The colour 

intensity reflects the density of the trajectories: the darker, the more probable the simulated solution. Experimental in vivo 

data are shown as black error bars that represent the mean ± standard deviation. The 5th column shows an overlay of the mean 

of the trajectories for each of the subgroups showing the development of increased triglycerides and cholesterol levels in the 

plasma in the dyslipidemic MetS phenotypes between two and three months. 

 

and experimental uncertainty resulting from biological variability and relatively low power in 

the HFD+C subgroups. By repeated Monte Carlo sampling of the in vivo data, sampled datasets 

are generated and for each sampled dataset a parameter trajectory was estimated. This was 

repeated resulting in a set of 1,000 simulated models yielding a database comprising of in silico 

populations of 1,000 virtual individuals for each subgroup. Each simulation describes the 

experimental data adequately, though with variation in parameter trajectories yielding 

differences in fluxes and concentrations, especially for model variables that are not 

experimentally observed. 

 Figure 4.3 shows that the simulated trajectories for the plasma metabolites fit the in vivo 

data points accurately and provide a continuous description of the dynamics with which the 

system behaves over time, illustrating the different trajectories for the different subgroups. 

Note that ADAPT did not yield one single simulation but provided ensembles of state and flux 

trajectories. Each line in Figure 4.3 is one trajectory solution, where a darker colour represents 

more overlap (higher density) of trajectory solutions in that region. These density plots cover 
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the solution space for each of the modelled components. To aid visual analysis, the mean of 

the trajectory distributions for each of the subgroups is depicted in the panels to the far-right. 

These trajectories illustrate the clear distinction that can be made between the dyslipidemic (in 

red) and non-dyslipidemic (in grey) MetS phenotypes. 

 

 

4.6 Flux trajectory analysis identifies distinct differences in dietary 

cholesterol absorption and hepatic metabolism during dyslipidemia 

We showed that the in silico model accurately captures the trends as observed in the in vivo 

data. The ensembles of simulated concentration and flux trajectories provide insight into how 

the underlying metabolic network is affected by the emergence of the two different MetS 

phenotypes. Figure 4.4 displays the median with 10% range of the collection of trajectories for 

several metabolic fluxes. Clear differences between the dyslipidemic and non-dyslipidemic 

MetS phenotypes can be observed. A complete overview of all model state trajectories and 

metabolic flux trajectories is documented in Appendix 4.12. 

 Despite equal intake of food and thus cholesterol, dietary cholesterol absorption from the 

intestinal lumen was markedly higher in the dyslipidemic compared to the non-dyslipidemic 

MetS group (Figure 4.4A), which may have promoted the development of dyslipidemia. The 

modelling also predicted that within the dyslipidemic phenotype, rates of lipid shuttling 

towards (V)LDL-TG uptake (Figure 4.4B; see also Figures 4.8K-L in Appendix 4.12) were 

increased, as higher rates of hepatic fatty acid uptake (Figure 4.4C) and lipogenesis (Figure 4.4E) 

were observed accompanied by a lower rate of hepatic β-oxidation (Figure 4.4F). 

 We observed similar changes if we analyse the gene expression data (Table 4.3 in Appendix 

4.10.10) from the same animals: we could qualitatively relate our flux predictions with the gene 

expression profiles of the fully developed MetS phenotype after three months of dietary 

induction. We found, as compared to LFD, an upregulation of hepatic fatty acid uptake in the 

HFD, HFD+C (MetSnon-DLP) and HFD+C (MetSDLP) groups (Figure 4.4C). 

 Figure 4.4D shows that hepatic bile acid synthesis is predicted to be higher in the MetSDLP 

phenotype. This aspect could also be observed in the gene expression data: the expression of 

bile acid synthesis genes nuclear farnesoid X receptor (Fxr) and cholesterol 7 alpha-hydroxylase 

(Cyp7a1) was largely upregulated, as compared to HFD alone. Hepatic de novo lipogenesis 

(Figure 4.4E; DNL) is predicted to be higher in the dyslipidemic phenotype, for which data at 

the three months’ time point was available and was used in the model fitting. Genes related to 

DNL, including fatty acid synthase (Fasn), acetyl-CoA carboxylase 2 (Acc2), acyl-

CoA:diacylglycerol acyltransferase 2 (Dgat2), and sterol regulatory element binding protein 1c 

(Srebp1c) were all largely downregulated probably as a compensatory mechanism. 

 In addition, the hepatic β-oxidation (Figure 4.4F) is predicted to be lower in the dyslipidemic 

group. This could be linked to a compensatory upregulation of genes related to fatty acid β-

oxidation such as peroxisome proliferator-activated receptor α (Pparα), peroxisomal acyl-

coenzyme A oxidase 1 (Acox1), and carnitine palmitoyltransferase 1a (Cpt1a). Collectively, 

these predictions suggest more lipid accumulation in the liver of the dyslipidemic mice. 
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Figure 4.4 
 

  

Metabolic flux trajectory analysis depicts differences among phenotypes and dyslipidemia development. 

Trajectory analysis reveals decreased dietary cholesterol absorption from the intestinal lumen in the non-dyslipidemic 

Metabolic Syndrome phenotype (A) and increased hepatic activity in the dyslipidemia Metabolic Syndrome phenotype (B-F). 

The median metabolic flux trajectories (calculated from the top 10% best trajectories from n=1,000) are depicted with a solid 

line for the hepatic dietary cholesterol absorption from the intestinal lumen (A), hepatic (V)LDL-TG uptake from the plasma (B), 

hepatic fatty acid uptake from the plasma (C), hepatic bile acid synthesis from cholesterol (D), hepatic de novo lipogenesis (E), 

and hepatic β-oxidation (F). The shaded area depicts the 10% range of trajectories around the median. The low-fat diet cohort 

is depicted in light blue; the high-fat cohort in dark blue; the non-dyslipidemic Metabolic Syndrome phenotype in grey and the 

dyslipidemic Metabolic Syndrome phenotype in red. The experimental hepatic de novo lipogenesis (E) data are shown as black 

error bars that represent the mean ± standard deviation. 

 

 

4.7 Both Metabolic Syndrome phenotypes develop hepatic steatosis 

MINGLeD with ADAPT predicted the trajectories of the liver lipid profiles and calculated the 

hepatic lipid pool sizes over the entire time course of three months. Next, we measured lipid 

turnover and the lipid content in livers from individual mice after three months of dietary 

induction to verify these in silico predictions at the last time point. Indeed, the addition of 

cholesterol did lead to an increase in lipid turnover and the hepatic lipid pool sizes as compared 

to the high-fat diet without cholesterol, both in the dyslipidemic and non- dyslipidemic 

phenotype (Figure 4.5). Moreover, this accumulation of lipids in the liver – in particular that of 

cholesterol components – was more profound in MetSDLP mice. 
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Figure 4.5 
 

  

Metabolic Syndrome development is associated with hepatic steatosis in both dyslipidemic and non-dyslipidemic 

phenotypes. 

The mean trajectories of the liver lipid profiles (calculated from the top 10% best trajectories from n=1,000) are depicted for 

the hepatic triglyceride pool (A), hepatic free cholesterol pool (B) and the hepatic cholesteryl ester pool (C). Experimental data 

was obtained at the end of the study and is depicted by the black error bars representing the mean ± standard deviation for 

each of the groups. The data from the LFD cohort is used as the initial value, assuming no hepatic lipid accumulation to have 

occurred in this control group. 

Differences between groups were determined using a one-way ANOVA test. When significant differences were found, Fisher’s 

LSD test was used as a post hoc test to determine the differences between two independent groups: 

* P<0.05; ** P<0.01; *** P<0.001 as compared to LFD 
# P<0.05; ## P<0.01; ### P<0.001 as compared to HFD 
$ P<0.05; $$ P<0.01; $$$ P<0.001 as compared to HFD+C (MetSnon-DLP) 

 

Flux trajectory analysis revealed substantial differences in hepatic fluxes between the non-

dyslipidemic and the dyslipidemic MetS phenotypes. In terms of plasma metabolite levels (see 

Figures 4.3A-E), MetSnon-DLP mice closely resemble the mouse population fed the HFD without 

cholesterol, and intriguingly, appears not to be affected by the additional dietary cholesterol 

load. MINGLeD with ADAPT predicted that this may be due to reduced dietary cholesterol 

absorption (Figure 4.4A) in the non-dyslipidemic phenotype. 

 Furthermore, the predicted lipid pool sizes were in agreement with liver histology data 

(Figure 4.7 in Appendix 4.10.8), which showed the establishment of microvesicular steatosis 

upon HFD feeding. In contrast, steatosis was exacerbated in MetSDLP mice, as was revealed by 

a more severe type of macrovesicular steatosis. 

 

 

4.8 Discussion 

Our goal was to design an approach to study the longitudinal and progressive dynamics of 

metabolic alterations of MetS. Not only do the results show that our systems biology approach 

successfully describes the multitude of the metabolic changes, our modelling approach also 

describes the development of clinically relevant pathophysiological symptoms, including liver 

lipid accumulation (hepatic steatosis) and reduced insulin sensitivity (pre-diabetes). This 

demonstrates that our modelling approach can be used to study the onset and progression of 

MetS as well as its comorbidities. From the heterogeneous dataset, our model identified 

differences among tested individual mice. Unexpectedly, the existence of two different 

phenotypes in MetS development was predicted. 

 

4.8.1 Heterogeneity in phenotype development 

The clinical presentation of MetS in humans is highly heterogeneous and spans over decades. 

Male E3L.CETP mice fed a high-fat diet supplemented with cholesterol develop MetS within a 
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timescale of several months. Although all of these animals have the same genetic background, 

received the same diet, and were kept and monitored in a controlled, standardized 

environment, this in vivo model did show heterogeneity in its phenotypic presentation. In 

addition, the manifestation of the full repertoire of metabolic alterations associated with MetS 

makes this a useful in vivo model, whereas other animal models only describe one or partial 

metabolic aspects of MetS. [Roberts et al., 2013; Yanai et al., 2008; Mendizábal et al., 2013; Adiels et al., 2008; Kolovou 

et al., 2005; Redinger, 2007; Lutz and Woods, 2012] 

 Using a traditional statistical approach, both this heterogeneity and limited datasets 

comprising of a low number of animals are problematic. Moreover, the time-dependency of 

the data – i.e. individual data of consecutive points in time are interrelated and therefore not 

independent samples – would further complicate analysis. Our computational modelling 

approach tackles these problems by combining MINGLeD with ADAPT. Contrary to other 

computational models, MINGLeD integrates both glucose and lipid species at a whole-body 

level. Both carbohydrates and fat are of importance in MetS and MINGLeD allows for a 

simultaneous description of these key components in terms of both metabolite pool sizes 

(concentrations) and metabolic fluxes. 

 Complexity and detail in model equations were considered in close relation to what is 

experimentally feasible to measure throughout long-term MetS development. Therefore, 

MINGLeD’s data-driven and physiological design allows for describing both flux and 

concentration data on a whole-body level. MINGLeD per se can be simulated to describe 

metabolic snapshots, whereas the long-term dynamics are captured by using MINGLeD in 

conjunction with ADAPT. ADAPT has been designed to work with this kind of data and makes 

use of the time-dependent observations and simultaneously assesses uncertainty based on the 

variability in the data. The strength of the ADAPT methodology in dealing with heterogeneity 

became evident with the identification of two distinctly different phenotypes despite the 

limited number of animals that were studied. These two phenotypes mainly differ in terms of 

dyslipidemia, and flux trajectory analysis pinpointed differences in 1) hepatic turnover of 

metabolites, including lipid fluxes and 2) the intestinal cholesterol absorption. This appears to 

mimic the observation in humans showing that levels of cholesterol absorption efficiency can 

vary greatly among individuals. [Bosner et al., 1999; Kesäniemi and Miettinen, 1987] These model 

predictions are open for further experimental validation. 

 

4.8.2 Future perspectives 

The methodology of integrating in vivo and in silico information allows to combine pre-existing 

knowledge with experimental quantitative data and can, therefore, be applied to study other 

multi-factorial, progressive diseases where longitudinal data are available. A future application 

of the model is to quantify energy intake and energy expenditure and analyse the energy 

balance over time for the development of obesity and MetS. 

 

4.8.3 Conclusion 

In conclusion, we combined data from animal experiments with a computer model and 

computer simulations to study the development of MetS. The new model predicted which 

changes in the underlying metabolic processes could explain the MetS symptoms. Two different 
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subgroups were identified: those with high cholesterol and high triglycerides, and those 

without. The computer model found that in those who develop lipid abnormalities, both dietary 

cholesterol absorption and hepatic liver fluxes were higher. 

 

 

4.9 Methods 

4.9.1 Ethics statement 

All animal experiments were performed in accordance with the regulations of Dutch law on 

animal welfare, and the Animal Ethics Committee of the Leiden University Medical Centre, 

Leiden, The Netherlands. Animals were sacrificed by CO2 inhalation. 

 

4.9.2 In vivo model of Metabolic Syndrome development 

The first step of our systems approach involved the gathering of in vivo data at different stages 

during the development of the Metabolic Syndrome. To this end, we used male APOE*3-

Leiden(E3L).CETP transgenic mice as diet-induced in vivo model to study the metabolic 

adaptations that occur over time. 

 Male E3L.CETP transgenic mice were housed under standard conditions with a twelve-hour 

light/dark cycle (7AM-7PM), housed with one to two animals per conventional cage with free 

access to chow diet and water; unless indicated otherwise. At the age of eleven weeks, 

randomized according to body weight and plasma lipids (total cholesterol and triglycerides) and 

glucose, mice were divided into three groups: mice were fed either a low-fat diet (LFD; n=8), 

high-fat diet (HFD; n=12), or an HFD with additional cholesterol (HFD+C; 0.25%, w/w; Sigma) 

(HFD+C; n=8) for three months. The LFD has a 20% energy content derived from lard and 

contains 3.8 kcal/g diet; the HFD and HFD+C have a 60% energy content derived from lard and 

contain 5.2 kcal/g diet (OpenSource Diets, Research Diets, Inc. New Brunswick, USA). The 

specific composition of each diet is listed in Table 4.1 in Appendix 4.10.3. 

 During the study, body weight and food intake were measured weekly, body composition 

(lean and fat mass) every other week. Blood samples were taken monthly and analysed for 

glucose, insulin, free fatty acids, total cholesterol, HDL-cholesterol, and triglycerides. At the end 

of the three months dietary induction experiment, animals were sacrificed. Livers were isolated 

for measuring lipid metabolites and gene expression, and the hepatic de novo lipogenesis was 

determined by using an isotope tracer. For further details on the experimental set-up, the 

reader is referred to Appendix 4.10. 

 

4.9.3 Modelling metabolic snapshots of different phenotypes 

To validate the proposed structure of the in silico model, we calibrate MINGLeD to the in vivo 

data of the different metabolic snapshots. The experimentally measured metabolites are 

closely related to many of the variables in the computational model, such that an identifiable 

model is achieved of which the model parameters can be determined using parameter 

estimation. For each of the diet cohorts, MINGLeD is fitted separately to the phenotype 

snapshot determined at each month during the dietary induction period. For each snapshot, 

we compute the average and standard deviation of the measured data at this time point and 
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use this data to fit the model to using maximum likelihood estimation. Appendix 4.11 describes 

how we relate the experimentally observed data to the specific model outputs and equations 

using the weighted sum of squares as the error measure to be minimized. A Monte Carlo 

approach is employed to account for methodological and experimental uncertainties. The 

optimization procedure is repeated 500 times using a widely dispersed range of initial 

parameter values (10-1 - 101) to accommodate multi-start optimization. The implementation 

details can be found in section 3.3. Once optimized, MINGLeD predicts unobserved species and 

fluxes and is used to make predictions on the underlying differences between phenotype 

snapshots. 

 

4.9.4 Modelling phenotype transition: modelling the onset and progressive behaviour 

over time 

The next step in our systems approach is to couple the phenotype snapshots in time. Hereto 

we make use of the computational technique entitled “Analysis of Dynamic Adaptations of 

Parameter Trajectories” (ADAPT). [Tiemann et al., 2011, 2013; van Riel et al., 2013] By employing this 

concept of the time-dependent evolution of model parameters (see section 2.3), dynamic 

disease trajectories are obtained from which the onset and progression of MetS symptoms and 

comorbidities can be studied. The progression of these adaptations is predicted by identifying 

necessary dynamic changes in the model parameters to describe the transition between 

experimental data observed at different points in time during the dietary induction. 

 Since it is a priori unknown which model parameters change with time, it is not possible to 

perform a dynamic simulation of the entire timespan in one go. Therefore we discretize the 

timespan into 90 segments, each representing one day. ADAPT interpolates between the 

individual snapshots in time (at which experimental data was obtained) and simulates every 

day in between these time points. To facilitate this, some pre-processing steps are required. 

Since the quantitative experimental data is discrete and only available at four points in time, 

the data is interpolated using cubic smoothing splines to obtain continuous dynamic 

descriptions of the experimentally observed metabolite pools and fluxes. To account for 

experimental and biological uncertainties, a collection of 1,000 splines is calculated using a 

Monte Carlo approach: different random samples of the experimental data are generated 

assuming Gaussian distributions with means and standard deviations of the data. Subsequently, 

for each generated sample, a cubic smoothing spline is calculated. This bootstrapping approach 

yields samples of data replicates which are subsequently utilized in parameter estimation. 

[Vanlier et al., 2013] By combining bootstrapping of data, sampling of parameters, and a robust 

optimization of model simulations, ADAPT provides feedback about uncertainty in model 

predictions accounting for uncertainty in both experimental measurements and fitting 

procedures. 

 The system is first simulated for the phenotype prior to the dietary induction by optimization 

to the t=0 data. For each step in time, the system is simulated using the final values of the 

model states of the previous time step as initial conditions. Since we consider the parameters 

to be time-varying, the model parameters are re-optimized for each time step by minimizing 

the difference between the (sampled and interpolated) experimental data and the 

corresponding model outputs. The estimated parameter set from the previous time point is 
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used as the initial set for the optimization procedure. It is assumed that the induced adaptations 

are minimal and proceed progressively in time. Therefore, highly fluctuating parameter 

trajectories are considered to be non-physiological. To prevent the occurrence of such 

behaviour, the parameter estimation protocol is extended to prevent unnecessary change of 

parameters and to identify minimal parameter adaptations that are required to describe 

phenotype transition. The cost function is extended with a regularisation term (see (4.2) in 

Appendix 4.11), given by the sum of squared derivatives of the normalized parameter values. 

Hence, changing a parameter is costly, and is, therefore, avoided if this is not required to 

describe the experimental data. The constant λ that determines the strength of this 

regularisation term, should be chosen carefully such that the data fitting is biased as little as 

possible. If too large a value for λ is chosen, the regularisation term becomes dominant and the 

model will not describe the experimental data accurately anymore. Since a small λ is already 

sufficient to minimize parameter changes and fluctuations, whilst still describing the 

experimental data accurately, λ was set to 0.1 in this study. 

 All simulation code and in silico data files are available on GitHub (via 

github.com/yvonnerozendaal/MINGLeD). 

 ADAPT yields a collection of parameter sets that describe the dynamics of the onset and 

development of MetS over time. The obtained trajectories for the model parameters, but also 

for the fluxes and pool sizes provide insight into the affected underlying biological system. This 

provides information about the adaptations that have taken place during the dietary induction, 

and these model-based predictions are compared to the gene expression data that is measured 

at the end of the dietary induction study. 

 

 

4.10  Appendix: Experimental set-up 

In this study, we used male APOE*3-Leiden.CETP mice on a high-fat, cholesterol-containing diet 

to study the onset and development of diet-induced Metabolic Syndrome. 

 

4.10.1  Choice of animal model 

The APOE*3-Leiden.CETP mouse is a double transgenic animal. Through the genetic APOE*3-

Leiden (E3L) mutation, E3L mice have a defective triglyceride-rich lipoprotein (TRL) clearance, 

which mimics the lower TRL clearance in humans. The E3L mice display an elevated basal 

cholesterol level and exhibit a human-like lipoprotein profile, develop atherosclerosis upon 

saturated fat and cholesterol feeding [Westerterp et al., 2006; Zadelaar et al., 2007] and also respond in a 

human-like manner to drugs used in the treatment of cardiovascular diseases. [Delsing et al., 2001; 

van der Hoorn et al., 2007; Kleemann et al., 2003; Kooistra et al., 2006] 

 

Another important difference between the murine and human lipoprotein metabolic system is 

the exchange and transfer of cholesteryl esters (CE) and triglycerides (TG) between HDL and 

(V)LDL particles through the cholesteryl ester transfer protein (CETP). Mice do not naturally 

possess the CETP gene and do therefore not respond to HDL-modulating interventions. By 

cross-breeding the E3L mice to mice expressing the human CETP gene [Jiang et al., 1992], E3L.CETP 

mice show an even more human-like lipoprotein metabolism. The expression of the human 

https://github.com/yvonnerozendaal/MINGLeD
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CETP gene shifts the distribution of cholesterol from HDL towards (V)LDL. [Rensen and Havekes, 2006; 

Westerterp et al., 2006] E3L.CETP mice have the ability to reproduce obesity, diabetes, dyslipidemia, 

and atherosclerosis and they respond to both lipid-lowering and HDL-raising interventions. [de 

Haan et al., 2008; van den Hoek et al., 2014; van der Hoogt et al., 2007; van der Hoorn et al., 2008] 

 

Previous studies using E3L.CETP mice revealed that male E3L.CETP mice upon feeding a high-

fat diet develop obesity and diabetes. [van den Hoek et al., 2014; van Dam et al., 2015] Female E3L.CETP 

mice that are fed with a high-fat, high-cholesterol diet (the so-called “Western-type diet”) 

develop dyslipidemia and atherosclerosis. [Auvinen et al., 2013; Berbée et al., 2015; de Haan et al., 2008; van 

der Hoorn et al., 2008, 2009; Kühnast et al., 2015; Li et al., 2012; Wang et al., 2011, 2014a; Westerterp et al., 2006; van der 

Tuin et al., 2013] 

 The E3L.CETP mouse model can be used to study the associated processes in MetS in more 

depth. We expected this animal model to develop obesity, diabetes, and dyslipidemia upon 

feeding male E3L.CETP mice a high-fat, high-cholesterol diet. 

 

4.10.2  Study outline 

All animal experiments were performed in accordance with the regulations of Dutch law on 

animal welfare, and the Animal Ethics Committee of the Leiden University Medical Centre, 

Leiden, The Netherlands. Homozygous CETP transgenic mice expressing the human CETP gene 

under the control of its natural flanking regions (Jackson Laboratory, Bar Harbor, Maine, USA) 

[Jiang et al., 1992] were crossbred with heterozygous APOE*3-Leiden (E3L) mice [van den Maagdenberg 

et al., 1993] to obtain E3L.CETP mice in our own animal facility. 

 

4.10.3  Dietary induction protocol 

In this study, we used male E3L.CETP transgenic mice that were housed under standard 

conditions with a twelve-hour light/dark cycle (7AM-7PM), co-housed with one to four animals 

in conventional cages with free access to food and water, unless indicated otherwise. Animals 

were housed in a temperature-controlled environment (21 °C). At the age of 10.8 ± 2.2 weeks, 

randomized according to body weight and plasma lipids (total cholesterol and triglyceride) and 

glucose level, mice were divided into three groups: mice were fed a low-fat diet (LFD; n=8), 

high-fat diet (HFD; n=12) or a high-fat diet with supplemental cholesterol (Sigma, 0.25 gm%) 

(HFD+C; n=8) for twelve weeks. The low-fat diet has a 20% energy content derived from lard 

and contains 3.8 kcal/g diet; the high-fat diets have a 60% energy content derived from lard 

and contains 5.2 kcal/g diet (OpenSource Diets, Research Diets, Inc. New Brunswick, USA). The 

specific composition of each diet is listed in Table 4.1. 
 

 
 

Table 4.1 
 

  

Composition of the low-fat, high-fat and high-fat with cholesterol diets. 
 

 LFD   HFD   HFD+C 

 gm% kcal%   gm% kcal%   gm% kcal% 

protein 19 20   26 20   26 20 

carbohydrates 67 70   26 20   26 20 

fat 4 10   35 60   35 60 

cholesterol 0 0   0.028 0   0.25 0 

kcal/g 3.8   5.2   5.2 
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4.10.4  Responders and non-responders 

Only animals correctly expressing the genotype and responding to the high-fat diet (if 

applicable) were included in this study. We used the following selection criteria: 1) correct 

animal genotype (expressing the APOE*3-Leiden and CETP genes) and phenotype: baseline 

measurement (animals on chow-diet, hence before the start of the dietary induction) of plasma 

triglycerides ≥1 mM and plasma total cholesterol ≥2 mM; and 2) responding to dietary 

induction: bodyweight ≥35 g after eight weeks of HFD. 
 

4.10.5  Experimental details of the measurement protocol 

During the study, body weight and food intake were measured weekly (Figures 4.1A-C). Body 

composition (lean and fat mass) was determined in conscious mice using an EchoMRI-100 

(EchoMRI, Houston, Texas, USA) every other week. 

 Before (0) and four, eight, and twelve weeks after dietary induction, blood samples were 

taken by tail vein bleeding into heparin and paraoxon (to inhibit lipase activity) coated capillary 

tubes, after five hours of fasting with food withdrawn at 8AM. The tubes were placed on ice 

and centrifuged, and the obtained plasma was snap frozen in liquid nitrogen and stored at -

20°C until further measurements. Plasma was analysed for cholesterol, triglycerides, 

lipoproteins, glucose, and insulin (Figures 4.1D-H). 
 

4.10.6  Plasma metabolites 

Blood plasma was assessed for glucose using Glucose reagent 1 and 2 (start reagent) 

(Instruchemie, Delfzijl, The Netherlands) with a 1 mg/mL glucose standard (Sigma-Aldrich, Saint 

Louis, Missouri, USA). Insulin was measured using the Ultra Sensitive Mouse Insulin ELISA Kit 

(Crystal Chem, Downers Grove, Illinois, USA). 

 Besides the monthly five-hour fasting values, also oral glucose tolerance tests (OGTT) have 

been performed before (0) and after six and eleven weeks of dietary induction in overnight 

fasted mice (7PM-9AM). The glucose (Figures 4.6A-C) and insulin (Figures 4.6D-F) responses 

were measured at 0, 5, 18, 35, 60 and 120 minutes after oral gavage (1 g glucose per kg body 

 

 
 

Figure 4.6 
 

  

Glucose (A-C) and insulin (D-F) response profiles to an Oral Glucose Tolerance Test (OGTT) after zero (A;D), six (B;E) 

and eleven (C;F) weeks of dietary induction. 

The data are depicted using error bars representing the mean ± standard deviation for each subgroup separately. 
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weight). Blood glucose is determined by tail bleeding using a portable glucometer (2 μL) and a 

half of capillary of blood (30 μL) is collected by tail bleeding for insulin measurements. 

 

Circulating lipid species were also assessed monthly after five hours of fasting. Plasma 

triglycerides (TG) were measured using a total triglyceride set (Roche Diagnostics) using 

precimat glycerol of 2.29 mM. Plasma free fatty acids were measured using the NEFA-HR(2) kit 

from Wako Diagnostics (Instruchemie, Delfzijl, The Netherlands). Plasma total cholesterol (TC) 

was measured using a total cholesterol set (Roche Diagnostics) using a cholesterol calibrator of 

200 mg/dL (Instruchemie, Delfzijl, The Netherlands). Plasma HDL cholesterol was measured 

using precipitation of ApoB-containing lipoproteins with PEG 6000#. 

 

4.10.7  Hepatic de novo lipogenesis 

Hepatic de novo lipogenesis (DNL) was assessed at the three months’ time point using a labelled 

acetate tracer experiment (Figure 4.4D). Animals receive drinking water containing sodium-1-
13C-acetate (2%) during the final 24 hours of the study (started at 8AM). To subject the animals 

to a postprandial fast, food was removed the next morning at 8AM while the acetate containing 

drinking water remained available. At 10AM the animals were sacrificed by CO2 inhalation and 

livers were quickly exercised and stored for further lipid analysis. 

 

4.10.8  Liver histology score 

Paraffin-embedded liver sections were stained with hematoxylin and eosin (H&E). According to 

the histological NAFLD (non-alcoholic fatty liver disease) scoring system for rodent models of 

Liang et al. [Liang et al., 2014] the two key features of NASH (non-alcoholic steatotic hepatitis) –  

steatosis and inflammation – were determined. Briefly, steatosis was scored by hepatocellular 

vesicular steatosis, i.e. macrovesicular steatosis and microvesicular steatosis fractions 

separately. Inflammation was scored by analysing the number of inflammatory cell aggregates 

per field using a 100x magnification (view size of 1.46 mm2) (Figure 4.7). 

 

4.10.9  Liver metabolites 

At the end of the three months’ dietary induction experiment, mice were sacrificed and 

perfused with ice-cold saline via the heart. The livers were isolated and the liver weight was 

assessed. Liver lipids were extracted according to a modified protocol from Bligh and Dyer. [Bligh 

and Dyer, 1959] Briefly, small liver pieces were homogenized in ice-cold methanol. After 

centrifugation, lipids were extracted after addition of 1800 µl CH3OH:CHCl3 (1:3 v/v) to 45 µl 

homogenate, followed by vigorous vortexing and phase separation by centrifugation (5 minutes 

at 2,000 rpm). The CHCl3 phase was dried and dissolved in 2% Triton X-100. TG and TC 

concentrations were measured as described above. Free cholesterol (FC) and cholesteryl ester 

(CE) concentrations were measured using a commercial kit (Cholesterol/Cholesteryl Ester 

Quantitation Kit, BioVision, USA). Liver lipids (Figure 4.5) were expressed as nmol/mg liver 

tissue. 
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4.10.10 Hepatic gene expression analysis 

Total RNA was extracted from liver pieces using TriPure isolation reagent (Roche Applied 

Science, Indianapolis, IN, USA) according to the manufacturer’s instructions. RNA quality was 

examined by the lab-on-a-chip method using Experion Std Sens analysis kit (Biorad, Hercules, 

CA, USA) and RNA concentration was determined by Nanodrop 1000 spectrophotometer 

(Thermo-Fischer Scientific). Subsequently, total RNA was reverse-transcribed with RevertAidTM 

M-MuLV Reverse Transcriptase (Promega, Madison, WI, USA). Quantitative real-time PCR was 

performed on a CFX96 machine (Bio-Rad, California), the reaction mixture consisting of SYBR-

Green Sensimix (QT615, GC Biotech), cDNA, primers (Biolegio, Nijmegen, The Netherlands; see 

Table 4.2 for primer sequences), and nuclease-free water in a total reaction volume of 10 µl. 

Expression of the selected transcripts was normalized to mRNA levels of hypoxanthine 

ribosyltransferase (Hprt) and cyclophilin (Cyclo). Data were calculated as fold difference as 

compared with the LFD group and are presented in Table 4.3. 

 

 
 

Table 4.2 
 

  

Primer sequences used for RT-qPCR. 
 

gene forward primer reverse primer 

Acc2 AGATGGCCGATCAGTACGTC GGGGACCTAGGAAAGCAATC 

Acox1 TATGGGATCAGCCAGAAAGG ACAGAGCCAAGGGTCACATC 

Ctp1a GAGACTTCCAACGCATGACA ATGGGTTGGGGTGATGTAGA 

Cyclo CAAATGCTGGACCAAACACAA GCCATCCAGCCATTCAGTCT 

Cyp7a1 CAGGGAGATGCTCTGTGTTCA AGGCATACATCCCTTCCGTGA 

Cyp27a1 TCTGGCTACCTGCACTTCCT CTGGATCTCTGGGCTCTTTG 

Dgat2 TCGCGAGTACCTGATGTCTG CTTCAGGGTGACTGCGTTCT 

Fasn GCGCTCCTCGCTTGTCGTCT TAGAGCCCAGCCTTCCATCTCCTG 

Fxr GGCCTCTGGGTACCACTACA ACATCCCCATCTCTTTGCAC 

Hprt TTGCTCGAGATGTCATGAAGGA AGCAGGTCAGCAAAGAACTTATAG 

Pparα ATGCCAGTACTGCCGTTTTC GGCCTTGACCTTGTTCATGT 

Srebp1c AGCCGTGGTGAGAAGCGCAC ACACCAGGTCCTTCAGTGATTTGCT 
 

 

 

 

  

 
 

Figure 4.7 
 

  

Liver histology data on steatosis (A-B) and inflammation markers (C). 

The data are depicted using error bars representing the mean ± standard deviation for each subgroup separately. 

Differences between groups were determined using a one-way ANOVA test. When significant differences were found, Fisher’s 

LSD test was used as a post hoc test to determine the differences between two independent groups: 

* P<0.05; ** P<0.01; *** P<0.001 as compared to LFD 
# P<0.05; ## P<0.01; ### P<0.001 as compared to HFD 
$ P<0.05; $$ P<0.01; $$$ P<0.001 as compared to HFD+C (MetSnon-DLP) 
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Table 4.3 
 

  

Relative mRNA expression. 

Values are presented as the mean value ± standard deviation and have been calculated as fold difference with respect to the 

mean expression value of the LFD group. 

Differences between groups were determined using a one-way ANOVA test. When significant differences were found, Fisher’s 

LSD test was used as a post hoc test to determine the differences between two independent groups: 

* P<0.05; ** P<0.01; *** P<0.001 as compared to LFD 
# P<0.05; ## P<0.01; ### P<0.001 as compared to HFD 
$ P<0.05; $$ P<0.01; $$$ P<0.001 as compared to HFD+C (MetSnon-DLP) 
 

Processes/fluxes genes  LFD  HFD  HFD+C (MetSnon-DLP)  HFD+C (MetSDLP) 

bile acid synthesis 
Cyp7a1  1 ± 0.50  4.41 ± 2.07*  6.08 ± 2.76**  8.20 ± 5.25***,# 

Cyp27a1  1 ± 0.20  1.19 ± 0.11  1.07 ± 0.24  0.80 ± 0.23# 

de novo lipogenesis 

Fasn  1 ± 0.62  0.49 ± 0.13  0.46 ± 0.36*  0.76 ± 0.36 

Acc2  1 ± 0.42  0.80 ± 0.22  0.52 ± 0.23*  0.81 ± 0.21 

Dgat2  1 ± 0.09  1.21 ± 0.37  0.23 ± 0.05***,###  0.20 ± 0.08***,### 

fatty acid β-oxidation 
Acox1  1 ± 0.20  1.24 ± 0.39  1.43 ± 0.48*  1.41 ± 0.39 

Cpt1a  1 ± 0.29  2.16 ± 0.67**  2.24 ± 0.94**  2.19 ± 0.69* 

nuclear transcript factors 

FXR  1 ± 0.21  1.48 ± 0.39*  1.62 ± 0.41**  1.67 ± 0.46* 

Srebp1c  1 ± 0.29  0.99 ± 0.30  1.11 ± 0.48  0.84 ± 0.03 

Pparα  1 ± 0.21  1.95 ± 0.37***  2.05 ± 0.39***  2.30 ± 0.70*** 
 

 

 

4.11  Appendix: Model fitting to experimental data 

Parameters for MINGLeD are estimated to calibrate the model by fitting to experimentally 

observed data. Maximum likelihood estimation is used to minimize the difference between 

model output and data. This error is referred to as the cost function and consists of the 

weighted sum of squared errors (WSSE) between model outputs and data. Table 4.4 describes 

which model outputs are constraint to which data. When fitting MINGLeD to separate 

phenotype snapshots, the cost function is as follows: 

χj
2 = ∑(

yi(θ,tj)-μi,j

σi,j

)

2Ni

i=1

 (4.1)  

with χj
2 representing the WSSE at time point j. It evaluates model outputs yi (listed in Table 4.4) 

as predicted by the parameter set θ in comparison to the mean (μi,j) and standard deviation 

(σi,j) of the corresponding experimentally observed data on metabolite i at time j. 

 

When MINGLeD is fitted over the complete timespan using the ADAPT methodology, the cost 

function is as follows: 
χADAPT

2 = χ2 + χreg
2  

χADAPT
2 = ∑∑(

yi(θ,tj) − μi,j

σi,j

)

2

+ λ·

Nt

j=1

Ni

i=1

∑(
θj,k − θj,k-1

θ0,k

)

2
Np

k=1

 
(4.2)  

The WSSE (χ2) was extended and is now evaluated over the complete timespan. Note that the 

cost function was also extended with a regularisation term, weighted by the regularisation 

coefficient λ (which was set to 0.1 in this study) in which Np is the number of parameters and 

θj,k the parameter k at time j and θ0,k the initial value of parameter k. 
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Table 4.4 
 

  

List of SSE components. 
 

observable model output respective data component unit 

y1 x1 Gpl plasma glucose [mM] · estimated plasma volume [mL] (a) μmol 

y2 x2 FFApl plasma FFA data [mM] · estimated plasma volume [mL] 
(a) μmol 

y3 x3 HDLCpl plasma HDL-C data [mM] · estimated plasma volume [mL] 
(a) μmol 

y4 x5 (V)LDL-TGpl plasma TG data [mM] · estimated plasma volume [mL] 
(a) μmol 

y5 x4 (V)LDL-Cpl 
(plasma total cholesterol data [mM] - plasma HDL-C data [mM] ) · 

estimated plasma volume [mL] 
(a) 

μmol 

y6 x6 TGhep hepatic TG data [μmol] μmol 

y7 x7 FChep hepatic FC data [μmol] μmol 

y8 x8 CEhep hepatic TC data [μmol] - hepatic FC data [μmol] μmol 

y9 j31 jDNL,hep
TG  

DNLC16:0 data + DNLC18:0 data + DNLC18:1 data + 1/9·CEC18:0 data + 
1/9·CEC18:1 data [μmol/g liver] · liver weight data [g] (b) 

μmol/day 

y10 x12 TGper (fat mass data [mg] / molar mass of TG(c) ) ·106 μmol 

y11 j8+ j9 jupt,hep
AA + jupt,per

AA  dietary protein intake data(d) μmol/day 
 

 

(a) the plasma volume is approximated by Vpl = 0.7704 + 0.0117 · BW [Yen et al., 1970] 
(b) chain elongation is accounted for as 1/9

th of a newly synthesized fatty acid 
(c) the molar mass of an average triglyceride molecule was assumed to be 853 g/mol [Desilva, 2007] 
(d) the daily dietary protein intake was calculated in terms of glucose equivalent particles, taking into account the 20% of the 

energy content of the diet is derived from protein, and glucose having an energy density of 4.18 kcal/g and a molar mass of 

180 g/mol [Desilva, 2007] 
 

 

 

 

4.12  Appendix: Predicted metabolite pools and flux trajectories 

A – Plasma metabolite pools 
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B – Hepatic metabolite pools 

 
 

C – Peripheral metabolite pools 

 
 

D – Metabolite pools in the intestinal lumen 

 
 

E – Dietary intake in terms of macronutrients 
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F – Dietary triglyceride and cholesterol uptake 

 
 

G – Dietary amino acid uptake fluxes 

 
 

H – Amino acid uptake via the glucogenic (50%) and ketogenic (50%) pathway in liver and periphery 

 
 

I – Dietary carbohydrate uptake fluxes 

 
 

J – Carbohydrate metabolic fluxes 

 
 

  



Chapter 4 

64 

K – Lipoprotein formation fluxes 

 
 

L – Lipoprotein (remnant) uptake fluxes 

 
 

M – Lipoprotein metabolism fluxes 

 
 

N – Fatty acid uptake flux 

 
 

O – Hepatic metabolic fluxes 
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P– Peripheral metabolic fluxes 

 
 

Q – Hepatic cholesterol storage and release fluxes 

 
 

R – Bile acid fluxes 

 
 

S – Intestinal metabolic fluxes 

 
 

T – Respiratory fluxes 

 
 

Figure 4.8 
 

  

Predicted metabolite pools and flux trajectories. 

Panels A-B display the dynamics in metabolite pools over time and panels E-T display the corresponding flux trajectories. We 

selected the n=100 best trajectories (top 10% based on WSSE). The 10% range around the median trajectory is depicted by the 

shaded area and the median trajectory for each model component is depicted by the solid line for the low-fat diet group (light 

blue), high-fat diet group (dark blue), non-dyslipidemic Metabolic Syndrome phenotype (grey) and the dyslipidemic Metabolic 

Syndrome phenotype (red) respectively. Experimental data is represented by the black error bars (mean ± standard deviation). 
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Heterogeneity and variability in the 
long-term development of Metabolic 

Syndrome 
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Male E3L.CETP mice develop Metabolic Syndrome after being fed with a high-fat, high-

cholesterol diet for at least three months. Here we repeated this diet induction study using a 

larger population and for up to six months and found that the development of Metabolic 

Syndrome symptoms occurs mainly in the first three months of the diet induction and stabilizes 

in the later months in a time window up to six months. The degree to which these animals 

develop dyslipidemia is highly heterogeneous. Hereto we have identified three different 

subpopulations that develop dyslipidemia to different degrees (relatively low, intermediate, 

and relatively high) using k-means clustering based on the three-month plasma triglyceride and 

plasma total cholesterol levels. 

 

 

5.1 Introduction 

In the previous chapter, we have shown that male E3L.CETP mice develop Metabolic Syndrome 

(MetS) symptoms after feeding a high-fat, high-cholesterol diet for three months. [Rozendaal et al., 

2018b] In addition, we identified two different phenotypic outcomes: dyslipidemic (MetSDLP) and 

non-dyslipidemic (MetSnon-DLP) Metabolic Syndrome. Due to the limited population size 

(MetSDLP, n=3; MetSnon-DLP, n=5), a follow-up study was required and performed using a much 

larger cohort of animals that were followed for a longer period of time. [Paalvast et al., 2017] 

 Isolated diet-induced MetS aspects have been shown to be reproducible in male E3L.CETP 

mice. [Auvinen et al., 2013; de Haan et al., 2008; Kleemann et al., 2003; Kooistra et al., 2006; Li et al., 2012; van den Hoek et 

al., 2014; van der Hoorn et al., 2009; Wang et al., 2014a; Zadelaar et al., 2007; Westerterp et al., 2006] In this chapter, 

we investigate whether the previously found multitude of MetS symptoms is reproducible, and 

more precisely, whether the distinct dyslipidemic phenotypes are a coherent feature of MetS. 

 

The multi-laboratory set-up of RESOLVE is centred around different partners conducting 

experiments on the same preclinical animal model (male E3L.CETP fed an HFD+C). Since the 

E3L.CETP transgenic mouse model was originally constructed by the group of prof. Havekes 

(TNO; Leiden University Medical Centre), all mice were bred in the Leiden facilities and 

subsequently distributed to the RESOLVE partners. Animals were held in established and 

approved animal housing facilities of each of the respective partners. In order to obtain 

comparable data, pre-defined standard operation procedures (SOPs) were established which 

include standardized protocols for the acquisition, storage, and shipment of plasma and tissue 

samples. 

 However, prior to study design and analysis, we have to consider that the multi-laboratory 

set-up may induce uncontrollable variation. [Crabbe et al., 1999; Wahlsten et al., 2003] Inference from 

environmental factors, such as the location of a mouse’s cage within the lab that may introduce 

additional light, noise, or odours, can cause behaviour-changing anxiety. Especially stress is 

known to have confounding metabolic consequences. [Bartolomucci et al., 2009; Ghosal et al., 2015] We, 

therefore, tried to standardize the set-up of this follow-up study [Paalvast et al., 2017] to resemble 

the set-up as described in the previous chapter [Rozendaal et al., 2018b] as closely as possible. We 

investigate whether on the long-term male E3L.CETP mice on a high-fat, high-cholesterol diet 

develop MetS consistently. Also, we explore the heterogeneity and variability involved in the 
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long-term development of MetS. Lastly, we study the subdivision of the population in 

subgroups describing different degrees of dyslipidemia development. 

 

 

5.2 Study design 

The six-month diet induction study was performed at the University Medical Centre Groningen 

(UMCG) and was set up similarly as the three-month diet induction study that was performed 

at the Leiden University Medical Centre (LUMC). Male E3L.CETP mice were housed under 

standard conditions with a twelve-hour light/dark cycle (7AM-7PM) and housed individually. At 

the age of four months, mice were divided into five separate cohorts (see Table 5.1) and all fed 

a high-fat (60% energy), high-cholesterol (0.25% w/w; Sigma) diet (OpenSource Diets, Research 

Diets, Inc. New Brunswick, USA) for up to four (n=20), ten (n=19), thirteen (n=20), and 28 (n=30 

and n=16) weeks. 

 Body weight and food intake were measured weekly throughout the experiment. Blood 

samples were taken monthly (after four-hour fasting) and analysed for glucose, insulin, 

triglycerides (TG), total cholesterol (TC), and HDL-cholesterol. At the end of the study, mice in 

the respective cohorts were distributed evenly in two groups, where one group underwent 

VLDL-TG production measurement and the other hepatic de novo lipogenesis (DNL) 

measurement (data reported in [Paalvast et al., 2017]). 

 

Animals were classified as responders (see Table 5.1 and section 4.10.4) to the genetic 

intervention when showing a plasma triglyceride (TG) level ≥1 mM and plasma total 

cholesterol (TC) level ≥2 mM prior to 

start of the diet induction scheme (i.e. 

t=0 in this experiment). Responders to 

the high-fat, high-cholesterol diet 

were identified as having a body 

weight of at least 35 grams after eight 

weeks of the diet. This yielded a total 

population of 84 animals being 

classified as responders. 

 

Table 5.1 

 

  

Cohort sizes in the six-month diet induction study. 
 

   #total #responders 

6M cohort cohort 1 28w 30 23 

 cohort 2 28w 16 13 

 

cohort 3 13w 20 18 

cohort 4 10w 19 15 

cohort 5 4w 20 15 

 total 105 84 
 

 

 

 

 

The experimental data presented in this chapter are courtesy of our RESOLVE partners at the University Medical 

Centre Groningen and have been published in: 
 

Paalvast Y, Gerding A, Wang Y, Bloks VW, van Dijk TH, Havinga R, Willems van Dijk K, Rensen PCN, Bakker BM, 

Kuivenhoven JA, Groen AK. Male APOE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic 

dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiol. Rep., 2017, 

5(19):e13376 doi.org/10.14814/phy2.13376 
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5.3 The effects of long-term feeding of a high-fat, high-cholesterol diet 

We first performed explorative data analysis and compared the data obtained in the six-month 

diet induction study [Paalvast et al., 2017] to the data obtained in the three-month diet induction 

study. [Rozendaal et al., 2018b] 

 

5.3.1 Obesity development 

Body weight (Figure 5.1A) rapidly increases in response to the high-fat, high-cholesterol diet, 

following the same trend as the three-month study and plateaus after around three months. 

Baseline body weight is generally higher in the six-month study, which could be attributed to 

the fact that these animals are roughly one month older at the start of the diet induction than 

those in the three-month study. More importantly, the weight gain (Figure 5.1B) is comparable 

to that in the three-month study, as is the variability in weight gain. 

 Information about change in body weight provides important information on the overall 

health status of the animal. A sudden decrease in body weight may indicate that the health of 

the animal is impaired. Cases of tumour development have shown to coincide with large drops 

in body weight, and these animals were sacrificed prematurely. 

 

 
 

Figure 5.1 
 

  

Body weight (A) and weight gain (B) in male E3L.CETP mice on a high-fat, high-cholesterol diet over time. 

The left panels display individual data (dots connected with lines originate from the same individual), the right panels display 

the average longitudinal trend with the mean ± standard deviation for each point in time per cohort; the light blue shaded area 

depicts the mean ± standard deviation for when the cohorts are pooled. Data are colour-coded per study: cohorts from the 

six-month diet induction study are depicted in blue; dyslipidemic mice from the three-month diet induction study in red and 

the non-dyslipidemic mice in grey. 
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5.3.2 Plasma glucose and insulin 

Whole blood glucose (Figure 5.2A) initially increases in response to the high-fat, high-

cholesterol diet and then decreases after around three months to the baseline level in the six-

month study. This is not found in the three-month study which shows a plateauing of plasma 

glucose after two months. 

 Although the plasma insulin (Figure 5.2B) profiles are a bit more difficult to interpret due to 

the large variation, glucose appears to peaks earlier (around one month after diet induction) 

than insulin (between two and three months after diet induction). 

 

The right-hand side panels of Figure 5.2 depict the average glucose and insulin levels over time. 

For all five cohorts, the glucose profiles are quite similar overall. However, for insulin, this is not 

the case. Especially cohort 3 (with a follow-up to thirteen weeks) shows a major increase in 

insulin that is not reflected in the other cohorts. This explains the unexpected peak in insulin 

when considering all cohorts of this study at the same time (blue shaded area). If we would 

leave out this point in time, we can still agree that the average, overall insulin profile peaks later 

than seen in the glucose profile. 

 

 
 

Figure 5.2 
 

  

Whole blood glucose (A) and plasma insulin (B) levels in male E3L.CETP mice on a high-fat, high-cholesterol diet over 

time. 

The left panels display individual data (dots connected with lines originate from the same individual), the right panels display 

the average longitudinal trend with the mean ± standard deviation for each point in time per cohort; the light blue shaded area 

depicts the mean ± standard deviation for when the cohorts are pooled. Data are colour-coded per study: cohorts from the 

six-month diet induction study are depicted in blue; dyslipidemic mice from the three-month diet induction study in red and 

the non-dyslipidemic mice in grey. 
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5.3.3 Plasma lipid pools 

Whereas changes in the glucose and insulin domain are already apparent after one month of 

HFD+C, the response in circulating lipids appears later (Figure 5.3A) and plasma total 

cholesterol (TC; Figure 5.3B) increases drastically after three months of high-fat, high-

cholesterol feeding. Plasma HDL-cholesterol (Figure 5.3C) fluctuates more and lacks a coherent 

pattern among the separate cohorts due to its large variability. 

 Interestingly, the variation in plasma lipid measurements is largest after four months of diet. 

If we would omit the variance when analysing the overall trend (light blue shaded area in the 

right-hand side panels of Figure 5.3), the concentrations of TG, TC, and HDL-C in the plasma 

appear to plateau after around three months up and remain at the same level up to six months. 

 

 
 

Figure 5.3 
 

  

Plasma triglycerides (A), plasma total cholesterol (B) and plasma HDL-cholesterol (C) in male E3L.CETP mice on a 

high-fat, high-cholesterol diet over time. 

The left panels display individual data (dots connected with lines originate from the same individual), the right panels display 

the average longitudinal trend with the mean ± standard deviation for each point in time per cohort; the light blue shaded area 

depicts the mean ± standard deviation for when the cohorts are pooled. Data are colour-coded per study: cohorts from the 

six-month diet induction study are depicted in blue; dyslipidemic mice from the three-month diet induction study in red and 

the non-dyslipidemic mice in grey. 
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5.3.4 Hepatic lipid pools 

In contrast to plasma pools which could be assessed throughout the experiment, hepatic lipids 

were only available at the end of each respective cohort as depicted in Figure 5.4. A consistent 

incremental trend in the accumulation of both total (Figure 5.4B) and free cholesterol (FC; 

Figure 5.4C) is observed. On the contrary, considering the large variation, the hepatic TG pool 

(Figure 5.4A) remains stable over time. 

 
 

Figure 5.4 
 

  

Hepatic triglycerides (A), hepatic total cholesterol (B), hepatic free cholesterol (C) and liver weight (D) in male 

E3L.CETP mice on a high-fat, high-cholesterol diet over time. 

The left panels display individual data, the right panels display the average longitudinal trend with the mean ± standard 

deviation for each point in time per cohort. Data are colour-coded per study: cohorts from the six-month diet induction study 

are depicted in blue; dyslipidemic mice from the three-month diet induction study in red and the non-dyslipidemic mice in 

grey. 
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5.4 Phenotypic outcome in terms of dyslipidemic status after three 

months of diet induction 

In the previous chapter, we have shown the identification and classification of 

(non)dyslipidemic status after three months of diet induction. The three-month study 

suggested a bimodal distribution in plasma TG versus plasma TC levels after three months of 

diet induction, whereby we classified the dyslipidemic (MetSDLP) and non-dyslipidemic (MetSnon-

DLP) phenotypes. Since the distinction in both plasma TG and plasma TC was very clear, and 

possibly as a result of the small population size, we could separate the animals manually into 

dyslipidemic (high TG and high TC) and non-dyslipidemic individuals (low TG and low TC). 

 Here we examine the distribution in plasma TG and plasma TC levels obtained from the six-

month diet induction study. We assess whether the data from the six-month study can be 

classified using the MetSDLP and MetSnon-DLP definitions. Figure 5.5 demonstrates that the much 

larger population of the six-month study shows a more continuous distribution than the 

bimodal outcome suggested by the three-month study. While appreciating the measurement 

accuracy of 1.5 CV% (coefficient of variation) for plasma TG and 0.8 CV% for cholesterol, it can 

be observed that the plasma TG levels are significantly lower than those in the three-month 

MetSDLP cohort (see Table 5.2), but not significantly different from those in the three-month 

MetSnon-DLP cohort: the histogram of Figure 5.5C demonstrates that the majority of data points 

lies within the three-month MetSnon-DLP range (mean ± standard deviation, i.e. 68% 

 

 
 

Figure 5.5 
 

  

Scatter plot (panel B) of plasma triglyceride (TG) 

levels versus plasma total cholesterol (TC) levels 

after three months of diet induction. 

Data from three-month study classified as MetSDLP is 

depicted in red; MetSnon-DLP in grey, and unclassified 

data from the six-month study in blue. The linear 

regression line (through all 60 data points) is denoted 

by the dashed blue line. Panel A depicts the distribution 

in plasma TC levels; panel C the distribution in plasma 

TG levels for the six-month study. The error bars 

represent the mean ± standard deviation of the 

phenotypes obtained from the three-month study. 
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Table 5.2 
 

  

Plasma triglyceride (TG) and total cholesterol (TC) levels after three months of dietary induction expressed as the 

mean ± standard deviation. 
 

 plasma TG [mM] plasma TC [mM] 

MetSDLP 7.0 ± 1.3 §§§ 15.1 ± 0.4 §§§ 

MetSnon-DLP 1.9 ± 0.7 §§§ 6.4 ± 0.8 §§§ 

M6 (pooled) 3.7 ± 2.2 * 11.9 ± 3.4 ### 

M6-1 3.9 ± 2.1 ***,## 11.0 ± 3.6 # 

M6-2 3.7 ± 3.1 *** 13.2 ± 3.7 ### 

M6-3 3.6 ± 1.5 *** 12.1 ± 2.7 ### 
M6-4 NA1 NA1 

M6-5 NA2 NA2 
 

Statistical significance levels obtained using a one-way 

ANOVA are depicted as: 
§ P<0.05; §§ P<0.01; §§§ P<0.001 MetSDLP vs. MetSnon-DLP 

* P<0.05; ** P<0.01; *** P<0.001 vs. MetSDLP 
# P<0.05; ## P<0.01; ### P<0.001 vs. MetSnon-DLP 
 

1 no data available; this cohort ends after ten weeks. 

2 no data available; this cohort ends after one month. 

 

confidence interval) and a little above. On the other hand, plasma TC levels are significantly 

higher than those in the three-month MetSnon-DLP group (see the histogram in Figure 5.5A) and 

characterised by a broader range, of which the majority lies in between the three-month 

MetSDLP and MetSnon-DLP ranges. 

 In conclusion, the data from the six-month cohort cannot be classified using the previously 

made definitions in MetSDLP and MetSnon-DLP since plasma TG is significantly different from 

MetSDLP, and plasma TC is significantly different from MetSnon-DLP. However, from correlation 

and regression analyses (Figure 5.5B) it is evident that plasma TG and plasma TC are correlated 

(ρ=0.66, p=8.7e-9), although the R2 of the linear regression line is just 0.44. Therefore we use 

a clustering approach to identify subgroups based on plasma TG and plasma TC levels after 

three months of diet induction. 

 

 

5.5 Identification of subgroups in dyslipidemic status using a clustering 

approach 

We combined both the three-month and six-month study data, yielding 60 data points 

describing plasma TG and plasma TC after three months of diet induction (data depicted in 

Figure 5.5B). These data were divided into subpopulations identified using a k-means clustering 

approach. [MacQueen, 1967] This method iteratively partitions the data by minimizing the squared 

Euclidean distance between cluster points and cluster centroid location. The clustering 

approach was performed using only plasma TG and TC values measured after three months of 

diet. 

 We performed the clustering procedure for two up to fifteen clusters. The initial centroid 

seeds were based on the centroid locations of the mean TG and mean TC in the three-month 

MetSDLP and MetSnon-DLP populations. When identifying more than two clusters, the initial seed 

was complemented by random samples taken from the TG and TC data, assuming TG and TC 

to be normally distributed. For each number of clusters, the k-means clustering procedure was 

repeated 1,000 times. Figure 5.6 depicts the relationship between the obtained least squared 

Euclidean distance and the number of clusters used. Subdividing the data into at least two 

groups (as we already did with the MetSDLP and MetSnon-DLP groups) reduced the squared 

Euclidean distance by 60%. Introducing increasingly more groups (n≥3) yielded a substantial 

decrease of the distance up to around four to five clusters. Although theoretically, the error 



Chapter 5 

76 

would become zero with 60 clusters (each 

point belonging to a single cluster), 

increasing the number of clusters above 

around 10 did not provide any significant 

improvement. To reduce the risk of 

overfitting, we, therefore, chose to work 

with up to seven clusters to analyse the 

obtained cluster topologies. Figure 5.7 

depicts several acceptable obtained 

cluster topologies. When using up to four 

clusters (Figures 5.7A2-C4), the algorithm 

performs its separation mainly based on 

 
 

Figure 5.6 
 

  

Convergence with increasing numbers of clusters being 

introduced. 
 

plasma TC levels. When starting to use five clusters or more (Figures 5.7A5-B5), we observe the 

effect of TG taken into account as well. The more clusters that are introduced, the more TG 

begins to play a role as well, which is probably due to the fact that the range in which the TC 

values lie is larger than for TG. 
 

However, using four clusters we notice a single outlier to be allocated to a single cluster (Figure 

5.7B4) and this remains an issue for increasing numbers of clusters (Figures 5.7A5, A6, A7, B7, 

C7). This raises the question of how many subpopulations should be identified. As a pre-

requisite, we used the earlier classified animals from the three-month cohort (depicted by the 

dots with black border). We imposed that the data points from the three-month MetSDLP group 

would remain together in one group, and vice versa for the three-month MetSnon-DLP group. 

Therefore we chose to work with three subpopulations (see Figure 5.7A3): cluster 2 (in green) 

representing the lowest degree of dyslipidemia (DLP-1; previously referred to as MetSnon-DLP), 

cluster 1 (in orange) the highest degree of dyslipidemia (DLP-3; previously referred to as 

MetSDLP) and cluster 3 (in blue) as intermediate range of dyslipidemia (DLP-2). The experimental 

time course data on body weight and plasma and liver metabolite pools corresponding to these 

subpopulations is categorically shown in Figures 5.11-5.14 in Appendix 5.8.2. These clusters are 

separated well and are significantly different (see Table 5.3) from each other in both plasma TG 

and plasma TC. We also assessed the quality of the clustering procedure using silhouette plots 

(see Figure 5.10 in Appendix 5.8.1), providing evidence that the data has been separated well 

into the corresponding clusters. 
 

 

Table 5.3 
 

  

Cluster characteristics (one-way ANOVA) at three months of diet induction corresponding to Figure 5.7A3. 

   plasma triglyceridest=3M [mM] plasma total cholesterolt=3M [mM] 

  n mean median std range mean median std range 

DLP-1: low DLP cluster 2 25 2.5α 2.2 1.1 0.8-5.5 8.4α 8.9 1.6 5.3-10.6 

DLP-2: intermediate DLP cluster 3 24 3.4β 3.2 0.9 1.8-5.8 12.5β 12.3 1.5 10.5-15.3 

DLP-3: high DLP cluster 1 11 6.9γ 7.1 2.3 3.7-12.2 17.2γ 16.6 2.0 14.6-20.0 

  α DLP-1 vs. DLP-2: p=0.0022 
β DLP-2 vs. DLP-3: p=3.9e-7 
γ DLP-1 vs. DLP-3: p=4.3e-9 

α DLP-1 vs. DLP-2: p=3.1e-12 
β DLP-2 vs. DLP-3: p=9.1e-9 
γ DLP-1 vs. DLP-3: p=9.9e-16 
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Figure 5.7 
 

  

Clustering results of dyslipidemic status after three months of diet induction. 

Panels A2-A7 describe the results for 2-7 clusters in total. When multiple model topologies were obtained that have a similar 

(absolute) sum of squared Euclidean distance (depicted as e in the legend), the corresponding results are depicted in panels B-

C. Each dot (n=60) represents a single individual and is colour-coded for the cluster to which it was assigned. The previously 

identified mice from the three-month study are highlighted with a black border. Cluster centroid locations are depicted by the 

squares in corresponding colours. 
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5.6 Earlier detection of phenotypic outcome? 

The data from the three-month study suggested that the plasma TG and plasma TC levels after 

two months of diet could be an early indicator for phenotypic outcome. Because of the limited 

population size, it had to be investigated carefully whether this early detection provides 

accurate predictions of dyslipidemia development. 

 First, we analysed the data from the second month after diet induction in a similar fashion 

as was done in section 5.4. From Table 5.4 and Figure 5.8 we infer that the plasma TG and TC 

data are correlated (ρ=0.52, p=2.8e-5) in time, but weaker (R2 of the linear regression line is 

0.27) than after three months. 

 

 
 

Figure 5.8 
 

  

Scatter plot (panel B) of plasma triglyceride (TG) levels 

versus plasma total cholesterol (TC) levels after two 

months of diet induction. 

Data from three-month study classified as MetSDLP is depicted 

in red; MetSnon-DLP in grey, and unclassified data from the six-

month study in blue. The linear regression line (through all 60 

data points) is denoted by the dashed blue line. Panel A 

depicts the distribution in plasma TC levels; panel C the 

distribution in plasma TG levels for the six-month study. The 

error bars represent the mean ± standard deviation of the 

phenotypes obtained from the three-month study. 
 

 

 
 

Table 5.4 
 

  

Plasma triglyceride (TG) and total cholesterol (TC) levels after two months of dietary induction expressed as the 

mean ± standard deviation. 
 

 plasma TG [mM] plasma TC [mM] 

MetSDLP 2.3 ± 0.2 §§§  5.9 ± 0.4 §§ 

MetSnon-DLP 1.3 ± 0.1 §§§ 4.7 ± 0.3 §§ 

M6 (pooled) 3.0 ± 1.2 ## 9.4 ± 2.6 *,### 

M6-1 3.6 ± 1.3 *** 8.0 ± 2.3 ## 

M6-2 NA1 NA1 

M6-3 2.6 ± 1.0 *,## 10.5 ± 2.2 **,### 

M6-4 2.5 ± 1.1 ### 9.6 ± 2.7 *,### 

M6-5 NA2 NA2 

Statistical significance levels obtained using a one-way ANOVA 

are depicted as: 
§ P<0.05; §§ P<0.01; §§§ P<0.001 MetSDLP vs. MetSnon-DLP 

* P<0.05; ** P<0.01; *** P<0.001 vs. MetSDLP 
# P<0.05; ## P<0.01; ### P<0.001 vs. MetSnon-DLP 
 

1 no data measured at eight weeks of dietary induction only at 

 six or twelve weeks). 
2 no data available; this cohort ends after one month. 
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Next, we examined the trend in both plasma TG and plasma TC levels between two and three 

months of diet induction. Figure 5.9 displays that the three-month MetSDLP phenotype shows 

large increases in plasma TG (Figure 5.9A) and plasma TC (Figure 5.9B), whereas the change in 

the three-month MetSnon-DLP phenotype is only minor. The pattern in the six-month cohort was 

not consistent and largely deviates among animals. Nevertheless, and more importantly, the 

newly defined phenotypic clusters do reveal a coherent pattern: both ΔTG and ΔTC increase 

with the degree of dyslipidemia. 

 

 
 

Figure 5.9 
 

  

Change in plasma triglycerides (panel A) and plasma cholesterol (panel B) between three and two months of diet 

induction. 

Individual data points are depicted with circles for the respective groups on the horizontal axis. The corresponding error bar 

represents the mean ± standard deviation for each group. It should be noted that not all data could be taken into account since 

only from two cohorts in the six-month study data of both the second and third month were available (see also Tables 5.2 and 

5.4). Therefore, the M6 (pooled) group consists of 34 data points (but contains actually 52 animals); DLP-1 has 21 data points 

(25 animals); DLP-2 has eighteen data points (24 animals) and DLP-3 has eight data points (11 animals). 

Statistical significance levels obtained using a one-way ANOVA are depicted as: 
§ MetSDLP vs. MetSnon-DLP 

* vs. MetSDLP 
# vs. MetSnon-DLP 

 

 

5.7 Discussion 

The assessment of the long-term development of the Metabolic Syndrome in male E3L.CETP 

mice upon a high-fat, high-cholesterol diet using both a larger population and a longer timespan 

yielded a large dataset. In this chapter, we focused on the identification of phenotypes differing 

in degree of dyslipidemia development. 

 

5.7.1 Heterogeneity in MetS development 

We considered data from an experiment that uses the same set-up and design as described in 

chapter 4. Strikingly, we found that the variability increased with increasing population size, 

rather than providing a narrower confidence interval. [Cumming et al., 2007] Phenotype 

development appears to be more disperse and heterogeneous than anticipated based on the 

initial study, where we found two clear-cut subpopulations based on the three-month plasma 

triglyceride and total cholesterol levels. 
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It is known that despite experimental standardization (same diet, same genetic background, 

animals obtained from the same breeding facility, etc.), differences between laboratories and 

lab technicians may affect reproducibility of animal experiments. [Richter et al., 2009] Also, we have 

to acknowledge that although these mice may be genetically identical siblings, each of these 

animals is a unique, independent variable in our experiments. 

 These experiments were performed using the same protocol, except for the laboratory in 

which and lab technician by whom the experiments were performed. In addition, it appeared 

that the mice in the six-month cohort were roughly one month older at the start of the diet 

induction experiment than the mice in the three-month cohort. However, correcting for this 

one-month difference in timeline (data not shown), did not improve the comparison of the 

data. Therefore, we chose to adhere to the original timeline since the start of the diet induction 

as a basis for comparison of data among both cohorts. 

 To the best of our knowledge, we were not able to identify substantial causes of differences 

among both studies and therefore acknowledge that the variability with which this animal 

model develops MetS is larger than anticipated from the initial study. The longer timespan 

involved could possibly have induced effects of ageing, which might have implications on the 

metabolic endpoints of this longitudinal study. [Whitehead et al., 2014] 

 Moreover, from the human perspective we known that the MetS population is largely 

heterogeneous and that MetS can present itself in many different phenotypic outcomes. 

Therefore we decided to identify different subpopulations specifying phenotypic outcome 

using this animal model of MetS development. 

 

5.7.2 Identification of subpopulations based on plasma TG and TC after three months of 

feeding a high-fat, high-cholesterol diet 

In the previous chapter, we identified two subpopulations in the three-month cohort: MetSDLP 

and MetSnon-DLP. Based on these findings, we initiated our clustering approach using plasma TG 

and plasma TC after three months of diet induction as the two entities based on which the 

subgroups were separated. 

 The simple k-means clustering procedure proved to be sufficient to classify our data. Since 

MetS is considered to be a multi-factorial disorder in which both lipid and glucose regulation 

are disturbed, we could possibly extend the clustering method to include also other measured 

entities such as plasma glucose and/or insulin levels, or e.g. body weight. 

 

5.7.3 Taking the time-dependency of MetS development into account in the identification 

of subpopulations 

The time course data for the newly introduced subpopulations (see Figures 5.11-5.14 in 

Appendix 5.8.2) shows a coherent separation among animals around the three months’ time 

point, but this separation does not persist for up to six months. It would be interesting to see 

whether the overall separation could be improved by incorporating time course data into the 

clustering procedure. This would require more sophisticated machine learning techniques such 

as mixed-effect modelling approaches that have been used for the clustering of time course 

gene expression data. [Luan and Li, 2003; Schliep et al., 2003] 
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5.7.4 Using a systems approach to identify subpopulations 

Alternatively, we could use our systems approach to employ modelling of the six-month dataset 

using MINGLeD with ADAPT. Data processing would become a challenge here due to the 

disperse, heterogeneous data of the different cohorts. To benefit from the intermediate 

measurements of metabolic fluxes and hepatic lipid pool sizes, the data should be pooled 

carefully. Since we have seen that different animals may respond much differently than others, 

we should first test whether the measured fluxes and hepatic pools originate from cohorts that 

are overall similar and can, therefore, be considered in the estimation of the time course fluxes 

and hepatic pool sizes. 

 Simply pooling the data of the five individual cohorts may lead to observing patterns in the 

data that are probably due to artefacts. This can e.g. be seen in the plasma total cholesterol 

data. The shaded blue area in the right-hand side panel of Figure 5.3B represents the pooled 

data and indicates an oscillating pattern between three and six months. Since the data pre-

processing for ADAPT involves both sampling and interpolation, this may yield splines that start 

oscillating to meet the individual mean data points although visually we would probably regard 

this pattern to be an artefact and would draw a plateauing line through the plasma total 

cholesterol data over the time course of six months. This large variability issue will, therefore, 

require careful assessment of data handling prior to the model fitting by ADAPT. 

 In [Paalvast et al., manuscript in preparation] we show that it is feasible to employ our systems 

approach to separate responders from non-responders based on the modelled trajectories, 

rather than pre-selecting them based on the baseline plasma TG and plasma TC data as we did 

in Section 5.2. However, these baseline criteria for responders/non-responders do provide a 

“ground truth” with which the results of the in silico classification could be verified. 

 

5.7.5 Conclusion 

Male E3L.CETP mice develop Metabolic Syndrome after being fed with a high-fat, high-

cholesterol diet for at least three months. The development of MetS symptoms mainly occurs 

in the first three months of the diet induction and stabilizes in the later months in a time 

window up to six months. The degree to which these animals develop dyslipidemia is highly 

heterogeneous. We have identified three different subpopulations that develop dyslipidemia 

to different degrees (relatively low, intermediate and relatively high) based on the three-month 

plasma triglyceride and plasma total cholesterol levels. 

 

 

5.8 Appendix 

5.8.1 Silhouette analysis 

A method to graphically assess the clustering performance is provided by silhouette plots. 

[Rousseeuw, 1987] Silhouettes represent how well each object lies within its cluster and which 

objects are merely somewhere in between clusters. These silhouettes allow for evaluating the 

cluster performance and may assist in identifying an appropriate number of clusters for the 

examined data. 
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Figure 5.10 displays the silhouettes for the clustering results using two up to seven clusters. 

The silhouette plot consists of one bar for each object (data point) in the corresponding cluster. 

The silhouette value measures how well the object has been classified, i.e. how well the object 

is matched to the resulting clusters. A silhouette value close to one implies that the within-

cluster-dissimilarity is much smaller than the smallest between-cluster-dissimilarity. When that 

is the case, we can say with confidence that the object has been assigned to the appropriate 

cluster. A silhouette value close to zero implies that it is unclear whether the object is correctly 

assigned to its cluster, or whether it should actually belong to another cluster. Silhouette values 

close to minus one indicate that the object actually lies closer to another cluster than the cluster 

to which it was assigned. Hence, these objects are labelled as being misclassified. 

 

From Figure 5.10 we can appreciate that an increasing number of clusters being introduced, 

decreases the silhouette values per cluster. Little misclassified objects were obtained for the 

clustering results with up to seven clusters. The previously made decision of using three clusters 

(Figure 5.10B) is strengthened by its silhouette plot that shows little misclassified objects and 

relatively high silhouette values throughout the clusters. 

 

5.8.2 Clustering results in terms of time course body weight and plasma and liver 

metabolites 

Figures 5.11-5.14 show the average (Figures 5.11-5.12) and individual (Figures 5.13-5.14) data 

of the six-month diet induction study as clustered using plasma TG and plasma TC at the three 

months’ time point in the identified dyslipidemic categories according to the lowest (DLP-1), 

intermediate (DLP-2), and the highest degree of dyslipidemia (DLP-3). 

 

 
 

Figure 5.10 
 

  

Silhouette plots for two (panel A) through seven (panel F) clusters. 

These silhouette plots correspond to the cluster topologies depicted in Figures 5.7A2-A7. 
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Figure 5.11 
 

  

Average body weight and plasma metabolite pool data in the different dyslipidemic subpopulations. 

DLP-1 corresponds with the lowest degree of dyslipidemia, DLP-2 with an intermediate degree of dyslipidemia, and DLP-3 with 

the highest degree of dyslipidemia. 

 

 

 
 

Figure 5.12 
 

  

Average hepatic lipid pools (error bars: mean ± standard deviation) in the different dyslipidemic subpopulations. 

The error bars on the left depict data obtained after thirteen weeks of diet induction; the right error bars after 28 weeks. 
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Figure 5.13 
 

  

Individual body weight and plasma metabolite pools in the different dyslipidemic subpopulations. 

DLP-1 corresponds with the lowest degree of dyslipidemia, DLP-2 with an intermediate degree of dyslipidemia, and DLP-3 with 

the highest degree of dyslipidemia. 

 

 

 
 

Figure 5.14 
 

  

Individual hepatic lipid pools in the different dyslipidemic subpopulations. 

The dots on the left for each subpopulation depict the data obtained after thirteen weeks of diet induction; the dots on the 

right after 28 weeks. 
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A positive energy balance is considered to be the primary cause of the development of obesity-

related diseases. Treatment often consists of a combination of reducing energy intake and 

increasing energy expenditure. Here we use an existing computational modelling framework 

describing the long-term development of Metabolic Syndrome (MetS) in mice with a human-

like metabolic system. This model was used to analyse energy expenditure and energy balance 

in a large set of individual model realizations. 

 We developed and applied a strategy to select specific individual models for a detailed 

analysis of heterogeneity in energy metabolism. Models were stratified based on energy 

expenditure. A substantial surplus of energy was found to be present during MetS 

development, which explains the weight gain during MetS development. In the majority of the 

models, energy was mainly expended in the peripheral tissues, but also distinctly different 

subgroups were identified. 

 In silico perturbation of the system to induce increased peripheral energy expenditure 

implied changes in lipid metabolism, but not in carbohydrate metabolism. In silico analysis 

provided predictions for which individual models an increase of peripheral energy expenditure 

would be an effective treatment. 

 The computational analysis confirmed that the energy imbalance plays an important role in 

the development of obesity. Furthermore, the model is capable to predict whether an increase 

in peripheral energy expenditure – for instance by cold exposure to activate brown adipose 

tissue (BAT) – could resolve MetS symptoms. 

 

 

6.1 Introduction 

A positive energy balance is a major contributor to the development of obesity and its related 

disorders such as the Metabolic Syndrome (MetS). [Romieu et al., 2017; Hill et al., 2012; Hamilton et al., 2007; 

Rodrigues et al., 2016] Given the obesity-driven pathophysiology of MetS, the main driver for weight 

gain is considered to be the surplus of energy caused by excessive caloric intake (overnutrition) 

and/or combined with insufficient energy utilization, characterised by a sedentary lifestyle with 

little physical activity. [Pang et al., 2014; Romieu et al., 2017] Treatment of MetS is therefore often aimed 

at diminishing the surplus of energy in the system. This can be accomplished by making 

adjustments at both sides of the equation, but we are in particular interested in how increasing 

energy expenditure (EE) could contribute to the treatment of MetS. 

 Energy expenditure comprises multiple entities that consume energy, of which the most 

important ones include basal metabolic activity to maintain e.g. body temperature and skeletal 

muscle activity. The latter can easily be stimulated by increasing physical activity. However, 

brown adipose tissue (BAT) also plays an important role in thermogenesis and energy 

management. [Nedergaard and Cannon, 2010; Cannon and Nedergaard, 2004; Chechi et al., 2014; Lidell et al., 2014; Lee 

et al., 2013] Recent studies have shown that activation of BAT has beneficial effects on weight 

loss, implying that this may be a promising therapeutic target against MetS. [Bartelt and Heeren, 

2014; Broeders et al., 2015; Hanssen et al., 2015] Activated BAT combusts substantial amounts of 

triglycerides and glucose in the circulation. [Hanssen et al., 2015; Khedoe et al., 2015; Wang et al., 2015; Berbée 

et al., 2015; Schlein et al., 2016] A clinically feasible way to activate BAT is by cold exposure. [Lichtenbelt 

et al., 2014; Romu et al., 2016] Most of these studies do show an increased energy expenditure but 
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allow for direct compensation by increased food intake. To aid our understanding, we 

demonstrate a method to study the effects of increased energy expenditure isolated from 

other possible compensatory mechanisms. Since the effectiveness of such treatments may also 

strongly depend on the differential response of patients, our method will also take this into 

consideration. 

 In chapter 4, we developed a computational modelling framework describing the 

progressive and heterogeneous development of MetS. [Rozendaal et al., 2018b] This study yielded an 

extensive library of n=1,000 different model realizations. This ensemble of models was 

established by Monte Carlo sampling of experimental data assessed from a pre-clinical mouse 

model that describe onset and development of diet-induced MetS over a timespan of three 

months. This Monte Carlo sampling entails the generation of random samples of the data to 

account for experimental uncertainties. Subsequent model fitting yielded alternative 

parameterizations that describe the same phenotypic readout (in terms of plasma and liver 

biomarkers characteristic for MetS) but are established by different combinations of underlying 

model parameters and metabolic fluxes to match the sampled data to which this model 

realization was calibrated. 

 This collection of n=1,000 model realizations entails uniquely different parameter sets and 

different model outcomes. However, since the data to which each model instance has been 

calibrated was sampled from the same experimental data set, these different model 

realizations do describe the same overall observable phenotype. Each model realization yields 

a different model outcome, which is a result of quantification of uncertainty that was 

introduced by variability in data. So far, this collection of models was analysed on the 

population level. [Allen et al., 2016] Here, we evaluate this virtual patient cohort using an 

individualized perspective using so-called virtual patients. [Kansal and Trimmer, 2005; Zazzu et al., 2013; 

Alkema et al., 2006; Kononowicz et al., 2015; de Graaf et al., 2009] Virtual patients can be regarded as different 

sets of model simulations that are representative of the differences in real-life. These virtual 

patients can subsequently be used in virtual trials to delineate how different individuals may 

respond differently to perturbations to the system and hence how effective potential 

treatment interventions may be. [Viceconti et al., 2016; Schork, 2015] 

 Whereas food intake was explicitly incorporated in the model, the energy balance had not 

been analysed. To identify differences between virtual patients in terms of energy handling, we 

first quantify the variation in energy expenditure and resulting energy balance and use this 

information for further stratification. Since the virtual patient cohort consists of n=1,000 

different model realizations, we expect to find various combinations of metabolic fluxes 

underlying MetS. 

 Secondly, we analyse how robust the system is to changes in energy handling. Sensitivity 

and control of this type of metabolic systems are often assessed by applying perturbation 

experiments and is similar to methodologies often used in metabolic control analysis and flux 

balance analysis. [Moreno-Sánchez et al., 2008; Orth et al., 2010] Here we apply perturbations that induce 

increased peripheral energy expenditure – representing an increase in BAT activity. Energy is 

expended in the model by both the liver and the periphery. Peripheral tissues include 

metabolically active tissues such as skeletal muscle and adipose tissue. Hence, peripheral 

energy expenditure describes, amongst others, thermogenesis by BAT. [Nedergaard and Cannon, 2010; 

Lidell et al., 2014; Din et al., 2018] We therefore hypothesize that by simulating an increase in peripheral 
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energy expenditure, activation of BAT can be studied in an in silico setting. We expect this 

additional drainage of energy from the peripheral compartment to diminish the energy surplus 

in the system. We hypothesize this perturbation leads to a decrease in peripheral triglyceride 

pool and also result in improvement in plasma biomarkers. 

 

 

6.2 Computational model of energy management in Metabolic Syndrome 

The previously published computational model describing the metabolic system in both healthy 

and Metabolic Syndrome conditions (Model Integrating Glucose and Lipid Dynamics; MINGLeD; 

chapter 3) [Rozendaal et al., 2018b] is schematically displayed in Figure 6.1. MINGLeD consists of four 

compartments (liver, intestine, plasma, and periphery) in which carbohydrate, lipid and 

cholesterol species are described. The peripheral compartment comprises the major metabolic 

tissues (except for the liver, intestine, and plasma) including adipose tissue and (skeletal) 

muscle. 

 MINGLeD describes energy handling with two components: energy intake (known from food 

intake data; depicted by the grey fluxes from the intestinal lumen in Figure 6.1) and energy 

expenditure (EE; predicted by the model). Energy expenditure is represented by respiration of 

acetyl-Coenzyme A (ACoA) in the liver (indicated by the blue arrow in Figure 6.1; EEhep) and in 

the peripheral compartment (indicated by the red arrow in Figure 6.1; EEper). 

 

 
 

Figure 6.1 
 

  

Schematic overview of energy expenditure in the computational model MINGLeD. 

Energy expenditure takes place in both hepatic (indicated by the blue arrow) and peripheral (indicated by the red arrow) 

compartments. 
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In chapter 4, the model was calibrated to data derived from E3L.CETP mice that respond in a 

human-like manner [van den Hoek et al., 2014; Westerterp et al., 2006] to a high-fat diet supplemented 

with cholesterol, thereby inducing MetS. This data set [Rozendaal et al., 2018b] comprises monthly 

samples of plasma metabolic pool sizes and body weight and compostion over the course of 

three months and was used for calibration of the model using maximum likelihood estimation. 

Here we specifically utilize the n=1,000 model realizations subset representing the onset and 

progression of dyslipidemic MetS. [Rozendaal et al., 2018b] This phenotype presents itself with the 

development of obesity and glucose intolerance in combination with dyslipidemia (high levels 

of plasma total cholesterol and high levels of plasma triglycerides). The collection of model 

realizations comprises trajectories (model simulations over a timespan of three months) 

describing the metabolic pool sizes and fluxes in the plasma, liver, intestine, and periphery. 

 

 

6.3 Stratification of energy expenditure 

Prior to applying any constraints on energy handling, any individuals that did not comply with 

the calibration data – i.e. did not accurately describe the data on which the trajectories were 

constraint – or those with unrealistic (high) flux magnitudes were excluded. This yielded a 

collection of n=887, i.e. virtual individuals with physiologically correct MetS biomarkers. 

 However, the models should not only adequately describe biomarkers, but energy handling 

is also an important criterion for model selection. While energy intake is known from food 

intake, energy expenditure is not yet studied. Therefore, we first stratify the population to 

ensure physiologically plausible values of energy expenditure in the system. Figure 6.2A shows 

the distribution of trajectories of total energy expenditure (summation of hepatic and 

peripheral EE) over time. The timespan on the horizontal axis describes development from a 

healthy phenotype to MetS over a period of three months. The collection of trajectories 

contains models ranging from low to high energy expenditure, but in general, the EE remains 

relatively stable over time. Therefore, the mean, as shown in the histogram of Figure 6.2B, is 

sufficient to summarize these results. 

 We applied physiological constraints obtained via indirect calorimetry (see Table 6.3 in 

section 6.8.3). Metabolic cages were used to measure VO2 and VCO2 such that metabolic rate 

and energy expenditure can be quantified. [Even and Nadkarni, 2012; Ferrannini, 1988] The physiological 

constraints obtained from these experiments are depicted as the 99.7% confidence interval 

(green error bars in Figure 6.2A and green shaded area in Figure 6.2B). This demonstrates that 

the majority of the virtual population (76%; n=678) presented itself with a physiologically 

plausible energy expenditure. Models with extremely low EE and high EE are presumed to be 

artefacts of solving the inverse problem of fitting a model with many degrees of freedom to a 

limited amount of data. 

 For the following analyses, we limit ourselves to the subgroup of n=678 virtual individuals. 

With an average energy expenditure of 12 kcal/day (calculated by the model) and an average 

energy intake of 19 kcal/day (known from dietary composition and daily food intake), the 

resulting energy balance is a constant surplus of energy of around 7 kcal/day. This explains the 

weight gain and development of obesity over time. 
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6.4 Energy is mainly expended in the peripheral compartment 

The next step in the stratification process comprises the breakdown of the contribution of 

different tissues to the total energy expenditure. The total energy expenditure consists of 

energy utilization in both liver (Figure 6.3A) and periphery (Figure 6.3B). We expected to find a 

significant contribution from the periphery, compared to the liver. The periphery is the largest 

compartment; both in volume and in number of cells. Since it also comprises muscle and BAT, 

we expect that the periphery utilizes much more energy than the liver, although the liver is also 

a metabolically active organ. However, we found a distribution with a strong bimodal profile. 

This bimodality indicates that energy can predominantly be utilized by just either of these 

tissues, but that energy can also be utilized by both compartments to the same extent. 

 Consequently, we divided the population into three different subgroups, each with its own 

characteristic contribution of hepatic and peripheral energy expenditure. Figure 6.3C shows 

the relative contribution of hepatic (blue) and peripheral (red) EE for each virtual individual at 

the three months’ time point of MetS development. It reveals the existence of a continuous 

“spectrum” in the contribution of hepatic and peripheral energy expenditure. As suggested by 

Figure 6.3C, in a part of the population, the majority of energy is utilized in the periphery (on 

the l eft-hand side); another subgroup exists in which the majority of energy is utilized in the 

liver (on the right-hand side); and an intermediate group in which both peripheral and hepatic 

energy expenditure are significantly contributing to the total energy consumption. Therefore, 

the virtual individuals were separated into three different subgroups: 

 
 

Figure 6.2 
 

  

Energy expenditure predicted by MINGLeD as trajectories over time (A) and mean over time (B). 

A: distribution of trajectories describing total energy expenditure. The trajectories that adhere to the physiological 

constraints (represented by the green error bars) are depicted in black; the unacceptable ones in grey. 

B: histogram of the mean energy expenditure. The physiologically acceptable range is depicted in green and derived from 

the following inclusion criteria: 

 EE at t=3w within three-weeks confidence interval, i.e. [8.4 - 13.6 kcal/day]; 

 EE at t=10w within three-weeks confidence interval, i.e. [9.5 - 15.7 kcal/day]; 

 overall minimum EE above the lower bound of the 3w confidence interval, i.e. 8.4 kcal/day; 

 overall maximum EE below 20 kcal/day. 
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  [P]: predominantly peripheral energy expenditure (>80% originates from the peripheral 

compartment); 

 [H]: predominantly hepatic energy expenditure (>80% originates from the hepatic 

compartment); 

 [P+H]: intermediate subgroup in which both periphery and liver contribute significantly 

(>20% originates from the peripheral compartment and >20% originates from the liver). 

 

Table 6.1 lists the characteristics for each of these subgroups and shows that these subgroups 

are clearly separated in their average peripheral and hepatic energy consumption. Figure 6.7 

in Appendix 6.9 shows that although the predominant compartment of energy expenditure 

varies among these individuals, the same MetS phenotype in terms of biomarker profiles has 

been established, whereas the underlying metabolic fluxes may be different (see Figure 6.8 in 

Appendix 6.9). 

 
 

Table 6.1 
 

  

Division into subgroups characteristic for the peripheral and hepatic contribution to the total energy expenditure. 
  

 

n 

relative contribution of peripheral EE [%] relative contribution of hepatic EE [%] 

  mean std min max  mean std min max 

[P] 354 (52%)  94 5.6 80 100  5.5 5.6 4.3e-7 20 

[P+H] 139 (21%)  47 21 20 80  53 21 20 80 

[H] 185 (27%)  8.5 6.5 2.6e-4 20  92 6.5 80 100 
 

 
 

Figure 6.3 
 

  

Peripheral (red) and hepatic (blue) contribution of energy expenditure. 

Panels A and B include histograms of the mean energy expenditure. Panel C shows the relative contribution (numbers above 

graph) where each vertical line represents a single virtual individual. The white dashed lines indicate the division in subgroups 

[P], [P+H], and [H]. 
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6.5 Further stratification based on substrate oxidation 

The subsequent step of the stratification process involves further specification of the source of 

energy. Energy expenditure in MINGLeD is described by the respiration of ACoA. The ACoA pool 

originates from three different substrates: carbohydrate, lipid, and protein. ACoA is obtained 

from carbohydrate substrates via glycolysis of glucose-6-phosphate. ACoA from lipid substrate 

originates from the β-oxidation of triglycerides (TG). ACoA can also be derived from ketogenic 

protein uptake from the diet. 

 In Figure 6.4 the relative peripheral (A) and hepatic (B) energy utilization are shown, split 

into the relative contribution of carbohydrate, lipid, and protein oxidation. MINGLeD predicts 

a range of substrate ratios (carbohydrate:lipid:protein) to be possible and predicts that the 

majority of the virtual individuals utilize mainly carbohydrate substrates as an energy source 

while lipids are stored in the form of TG. 

 Literature has revealed that on a high-fat diet, mammals mainly utilize TG as energy source. 

[Bobbioni-Harsch et al., 1997; Cooling and Blundell, 1998; Melzer, 2011; Thomas et al., 1992] In our diet- induced MetS 

animal model, physiological data (see Table 6.3 in section 6.8.3) has placed this cut-off on at 

least 57% of energy to result from lipid substrates. Therefore, we imposed this as the criterion 

for the minimal contribution of fat oxidation, indicated by the dashed lines in Figure 6.4. 

 

 
 

Figure 6.4 
 

  

Contribution of carbohydrate and fat oxidation to the peripheral (A) and hepatic (B) energy expenditure. 

In subgroup [P] (left-hand side panels), energy is predominantly utilized in the periphery (>80% originates from the peripheral 

compartment). In subgroup [H] (right-hand side panels), energy is predominantly utilized in the liver (>80% originates from the 

hepatic compartment). Subgroup [P+H] (panels in the centre) is an intermediate subgroup in which both periphery and liver 

contribute significantly (>20% originates from the peripheral compartment and >20% originates from the liver). 

The dark coloured areas (bottom right) correspond with fat oxidation, the medium coloured areas (top left) indicate protein 

oxidation and the light areas (middle) specify carbohydrate oxidation. The dashed line bounds of the acceptable physiological 

range on the lipid oxidation ratio (at least 57% originates from lipid substrates). The fraction of individuals that adheres to this 

constraint is depicted below each graph. 
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Table 6.2 lists the overall statistics of the substrate oxidation for peripheral and hepatic energy 

expenditure for each subgroup separately. In the predominantly peripheral subgroup [P], 

overall, 75% of peripheral energy originates from carbohydrate sources, 15% from fat oxidation 

and 10% from protein substrates. Although most of these numbers are not close to our 57% 

fat-threshold, a subset of this group does adhere to this criterion (highlighted in grey in Table 

6.2). 

 Note that in the predominantly hepatic subgroup [H], only acceptable solutions regarding 

the relative contribution of fat oxidation were found for the peripheral energy consumption, 

but that the contribution of the periphery to the total energy expenditure is very low (<10%). 

 

To conclude, our stratification process resulted in a reduced population of n=32 virtual 

individuals. This is a representative subgroup as the selected individuals 1) have an accurate 

description of plasma and liver biomarkers (the characteristic MetS phenotype); 2) have a 

physiologically correct EE; 3) predominantly utilize energy in the periphery; and 4) of which 

energy originates for at least 57% from lipid substrates. 

This stratification and selection process reduced the virtual population of interest from several 

hundred to a few dozen virtual individuals. Since each virtual individual in the selected 

subgroup is described by a different parameter set, we decided to analyse each model in more 

detail to understand how differences in model parameters affect the behaviour of the 

metabolic system. For this analysis, the subgroup of n=32 virtual individuals was sufficiently 

large to represent the variability within the population and to interpret results on an individual 

basis. 

 
 

Table 6.2 
 

  

Relative contribution of substrate oxidation to peripheral and hepatic energy expenditure. 

The relative contribution of substrate oxidation is depicted as the mean ± standard deviation, and the minimum and maximum 

bounds are denoted between brackets. The number of virtual individuals adhering to the physiological bound of at least 57% 

fat oxidation is highlighted in grey. 
 

 peripheral energy expenditure hepatic energy expenditure 

 
carbohydrate 

oxidation [%] 
fat oxidation [%] 

protein 

oxidation [%] 

carbohydrate 

oxidation [%] 
fat oxidation [%] 

protein 

oxidation [%] 
         

[P] 
75.1 ± 21.8 

[5.1 - 100] 

15.4 ± 24.1 

[7.3e-10 - 95] 

≥57%: 

n=32 

(9%) 

9.6 ± 5.4 

[6.7e-9 - 20] 

32.6 ± 26.7 

[1.8e-8 - 

100] 

33.5 ± 29.4 

[0.049 - 

100] 

≥57%: 

n=103 

(29%) 

33.9 ± 28.3 

[3.1e-11 - 

100] 
         

[P+H] 
58.1 ± 29.4 

[0.59 - 99] 

23.4 ± 28.8 

[5.1e-6 - 99] 

≥57%: 

n=21 

(15%) 

18.5 ± 19.6 

[8e-6 - 58] 

80.8 ± 20.7 

[33 - 100] 

1.8 ± 2.9 

[0.017 - 23] 

≥57%: 

n=0 

17.3 ± 19.6 

[1e-7 - 58] 

         

[H] 
29.2 ± 20.5 

[0.0015 - 93] 

40.5 ± 36.1 

[7.7e-11 - 

100] 

≥57%: 

n=63 

(34%) 

9.6 ± 5.8 

[4e-12 - 90] 

89.4 ± 5.7 

[74 - 99] 

1.0 ± 1.0 

[0.012 - 

9.7] 

≥57%: 

n=0 

9.6 ± 5.8 

[5.3e-12 - 

21] 
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6.6 In silico perturbation experiment to study the robustness of energy 

homeostasis 

Subsequently, we employed MINGLeD to simulate an increase in peripheral energy 

expenditure. To induce an increase in peripheral energy expenditure, we perturbed each of the 

n=32 selected models (that adhered to physiological constraints in terms of EE and substrate 

oxidation) by multiplication of the peripheral ACoA flux with different activation factors as 

shown in Figure 6.5A. This factor was iteratively increased from 1 to 25 as explained in detail in 

section 6.8.4. For each factor, the steady-state of the model system was re-calculated while the 

nutritional intake was kept constant at the original values for macronutrient intake. Since each 

virtual individual is described by a different parameter set, the different individuals can be 

expected to respond differently to perturbation in energy balance. 

 Figure 6.5A demonstrates the effects of perturbation in energy expenditure (results are 

colour-coded for each model) versus the activation factor on the horizontal axis. Whereas these 

models respond differently to the perturbation, the majority shows a strong increase in total 

 

 
 

Figure 6.5 
 

  

In silico activation of peripheral energy expenditure leads to an increase of total EE. 

Panel A shows the absolute (left vertical axis) and relative (right vertical axis) change in total EE upon increasing activation 

factor. Each line depicts a different virtual individual where data are colour-coded according to the maximally achieved increase 

in peripheral energy expenditure. 

For each virtual individual, the highest activation result (if yielding at least a 0.1% increase in total EE) was used for further 

analysis and indicated by the black circle. 

Panel B displays the resulting decrease of the energy surplus in the system. Results are colour-coded based on panel A. Panel 

C presents the shift in peripheral (red), hepatic (blue) and total (black) EE from baseline (represented with dots) to in silico 

activation (represented with upward facing triangles for increasing values and downward triangles for decreasing values) versus 

the relative increase in peripheral EE (on the horizontal axis). 
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energy expenditure upon increasing values of the activation factor and saturating towards a 

plateau. However, the level of the plateau is different throughout our population. This means 

that in some individuals, the peripheral energy expenditure can be activated to a much larger 

extent than for others. For further analysis, we selected the activation factor that achieved 

highest increase in EE (indicated by the black circle), but yielding at least an increase of 0.1% in 

total energy expenditure – as an increase in total energy expenditure should be substantial in 

order to induce propagation of effects throughout the system. This showed that the 

perturbation was successfully applied in 23 virtual individuals. 

 The maximally achieved increase in EE is different for each individual and for some the 

effects of the perturbation are much higher than for others (Figure 6.5A). For some models, 

application of larger activation factors led to depletion of the peripheral ACoA pool, preventing 

a further increase in the externally applied perturbation (these are the solutions that do not 

span the entire horizontal axis). 

 The perturbation yielded a decrease of the energy surplus (Figure 6.5B) of up to 2 kcal, but 

not sufficient to create an energy deficit. Under the condition of fixed food intake, increase in 

peripheral EE (Figure 6.5C in red) is paralleled by a decrease in hepatic EE (Figure 6.5C in blue). 

This decrease in hepatic EE is more profound when the increase in peripheral energy 

expenditure is higher (towards the right on the horizontal axis) – but the total EE (Figure 6.5C 

in black) does increase upon increased peripheral EE. 

 

Figure 6.6 shows the resulting relative change in metabolite pool sizes (A) and metabolic fluxes 

(B) upon the highest achieved increase in total EE. Using heatmaps, we depicted these results 

for the n=23 different individualized models with from left to right increasing relative change 

of peripheral EE. Decreasing pool sizes and fluxes are shown in red and increases in blue. 

Perturbation induced a drastic increase in peripheral ACoA respiration (top row in Figure 6.6B), 

obviously depleting large quantities of the peripheral ACoA pool. Results reveal direct changes 

in peripheral lipid and lipoprotein metabolism, but also propagation into the plasma, liver, and 

intestine. Circulating lipoprotein levels decrease with increased peripheral energy expenditure 

(whilst dietary intake was kept the same). Remarkably, the perturbation did not imply any 

changes in the carbohydrate metabolic system. 

 

 

6.7 Discussion 

We successfully studied energy handling in Metabolic Syndrome development. Our 

perturbation experiments have shown that an additional drain of peripheral energy 

expenditure successfully decreases lipid and lipoprotein pools in the periphery, but also lipid 

contents in the surrounding tissues. This thereby provided insight into how a change in energy 

handling could be beneficial in the treatment of MetS. 

 

The growing incidence rates of obesity and related diseases in combination with the 

heterogeneity in phenotypic presentation and metabolic manifestations ask for a more patient-

specific approach towards treatment. [Lynes and Tseng, 2018; Neeland et al., 2018] Hereto we should first 

gain insight into which patient subgroups can be identified. Recently we have demonstrated 
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the differential response to high-fat, high-cholesterol feeding, which induces two different 

MetS phenotypes. [Rozendaal et al., 2018b] These findings are in line with the expected phenotypic 

heterogeneity in metabolic component combinations [Agyemang et al., 2012; Lee et al., 2008], but also 
 

 
 

Figure 6.6 
 

  

Increased peripheral energy expenditure affects metabolite pools (A) and metabolic fluxes (B) throughout the 

system. 

The impact of the activation is depicted as relative change using a heatmap for n=23 virtual individuals (from left to right: 

increasing relative change of peripheral energy expenditure). The changes are colour-coded such that decreases are shown in 

red and increases in blue, and according to intensity: a darker colour indicates a stronger change in metabolite concentration 

than a lighter colour. White indicates a 0% change. 
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the heterogeneity within the same phenotypic presentation – and energy handling – may be 

large. Whereas most conventional studies make predictions based on the population level, we, 

therefore, took a step further and evaluated virtual patient subgroups. This follows the path 

towards evaluating individual, patient-specific data and enabling predictions in an 

individualized framework by classifying patients into a corresponding subgroup. [Kononowicz et al., 

2015] 

 

6.7.1 Stratification tool 

We have shown the feasibility of (virtual) patient stratification. Relevant individuals were first 

filtered out based on physiological constraints. This approach parallels with many in vivo 

experimental set-ups as a reduction of the population is applied to retain only those individuals 

expressing the desired features, but also yielding a manageable amount of data. This is a crucial 

step in the “era of precision medicine” [Valdes et al., 2016] towards identifying a framework to 

classify patients in corresponding subgroups and often used in virtual (and clinical) trials. [Lindon 

and Nicholson, 2014; Fryburg et al., 2011] 

 

6.7.2 Virtual trial of BAT activation 

Our perturbation experiment can also be regarded as a virtual trial. For this, we even took one 

step further and provided simulations on an individual level. For instance, we can demonstrate 

that enhanced peripheral energy expenditure can be used as an in silico proxy to study the 

effects of BAT activation. Firstly, the imposed perturbation is in the same order of magnitude 

as achieved in clinical practice with exposure to cold (despite possibly extra energy intake). In 

our virtual individuals, large differences have been observed to what extent the energy 

expenditure could be increased. However, (pre)clinical studies report that cold exposure (CEX) 

induces a similarly large range of average increase of energy expenditure compared to thermo-

neutral conditions ranging from only a few percent to several dozen percent increase. [Lichtenbelt 

et al., 2014; Yoneshiro et al., 2013; Ouellet et al., 2012] These results strongly depend on the conditions of 

the experiment: degree (mild versus strong, i.e. how cold) and the duration of the period of 

cold exposure. 

 Secondly, the imposed flux changes are in line with clinical observations showing that BAT 

can be activated by cold exposure [Lichtenbelt et al., 2014; Romu et al., 2016; Lee et al., 2011; Nedergaard et al., 

2007; Saito et al., 2009; Seale and Lazar, 2009] and that it possesses anti-obesogenic properties. [Yoneshiro 

et al., 2013] We found a reduction of (circulating) lipid and cholesterol levels after simulating short 

and acute CEX. Radioactive tracer experiments confirmed direct changes in TG uptake fluxes 

after one-day of CEX but did not report changes in plasma markers. [Bartelt et al., 2011; Khedoe et al., 

2015] 

 This difference could be explained by differences in experimental conditions: the in silico 

study induced a quite extreme activation compared to one-day CEX treatment. If CEX would 

have induced an activation as strong as in the in silico case, supposedly changes in plasma 

metabolite pools would have been observed as well. 

 Literature indicates that BAT also possesses the ability to improve glucose handling. This is 

in contrast to our results as the carbohydrate system remains unaffected upon increased 

peripheral EE. This difference may be explained by considering the model’s stoichiometry, and 

more specifically, the direction of the fluxes in the model. MINGLeD was designed to describe 
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the most important elements and processes in lipid, cholesterol, and carbohydrate metabolism. 

Thorough model testing using different scenarios and/or metabolic conditions (such as in this 

study the in silico activation of peripheral EE) indicates how MINGLeD can be extended and 

improved. The observation that the glucose system remains unaffected upon increased 

peripheral EE is an indication to further investigate the relationship between glucose and ACoA, 

which is currently implemented as a one-way interaction (glucose-6-phosphate can only be 

donated to ACoA). 

 

6.7.3 Opportunity for other activation schemes of BAT 

Experimental studies have shown that BAT activation can induce weight loss. [Bartelt and Heeren, 

2014; Broeders et al., 2015; Hanssen et al., 2015] Our perturbation experiment has shown that increased 

peripheral energy expenditure is able to induce a decrease of the energy surplus in the system. 

To yield a negative energy balance, we would recommend longer and/or more frequent periods 

of CEX treatment to induce a sustained and/or prolonged BAT activation. Experimental studies 

with intermittent CEX schemes have shown to be feasible to do this. [Ravussin et al., 2014; Wang et al., 

2015; Yoo et al., 2014] Recent studies have also shown the potential to chronically activate BAT using 

a pharmacological intervention with the thermogenic β3-adrenergic receptor agonist 

CL316,243. [Bartelt et al., 2017; Berbée et al., 2015] Dietary supplementation of the short-chain fatty acid 

butyrate has also shown promising results in both animals [Li et al., 2018] and in humans [Bouter et 

al., 2018; Fluitman et al., 2018] to reduce both appetite and active BAT through the gut-brain axis. [Li et 

al., 2018] 

 

6.7.4 Computational energy metabolism models 

Most computational models describing energy metabolism are specifically developed for the 

human metabolic system, and hardly any for murine energy metabolism. [Guo and Hall, 2011] 

Whereas specific metabolic pathways may be different between mouse and human [Hall, 2012], 

much can be learned from mouse computational models. Our computational model (Figure 

6.1) was designed to be a generic representation for both murine and human energy 

metabolism. Since no human data is available as of yet, our work using the murine model 

calibration provides a step towards translation of in silico models developed using genetically 

modified mice towards the human energy management in metabolic diseases. 

 

6.7.5 Conclusions 

The computational analysis of energy handling and energy expenditure for stratification and 

perturbation experiments confirmed that the energy imbalance plays an important role in the 

development of obesity and its related diseases. Furthermore, increasing peripheral energy 

expenditure has a positive effect on lipid metabolism in Metabolic Syndrome. 
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6.8 Methods 

6.8.1 Stratification of energy handling in an in silico model 

We employ our previously developed computational model MINGLeD (Model Integrating 

Glucose and Lipid Dynamics) describing the metabolic system from a healthy state towards the 

development of Metabolic Syndrome. [Rozendaal et al., 2018b] MINGLeD was utilized in combination 

with ADAPT (Analysis of Dynamic Adaptations in Parameter Trajectories) [Tiemann et al., 2013, 2011; 

van Riel et al., 2013] to achieve a model library describing various phenotypes. Here we analyse the 

n=1,000 model simulations for the dyslipidemic Metabolic Syndrome phenotype. These model 

simulations describe MetS development over a timescale of three months, with a discretization 

of 90 days. Based on this large set of in silico data, we performed data reduction by applying 

physiological constraints to obtain a manageable amount of physiologically-correct data. 

 Physiological data on the energy expenditure was obtained using metabolic cages (see also 

section 6.8.3). In the experimental study of [Rozendaal et al., 2018b], the animals were subjected to 

indirect calorimetry after three and ten weeks of diet induction. This information was used to 

select those virtual individuals of which the energy expenditure lies within a physiologically 

correct range, defined using both the three-week (8.4-13.6 kcal/day) and the ten-week (9.5-

15.7 kcal/day) 99.7% confidence interval (see Table 6.3). 

 Moreover, this physiological data was also utilized to define a threshold for the relative 

contribution of fat oxidation to energy expenditure. As criterion we used that for mice on a 

high-fat diet at least 57% of the energy should originate from lipid substrates. This cut-off value 

is based on the lower bound of the 99.7% confidence interval for fat oxidation (see Table 6.3) 

obtained by indirect calorimetry after ten weeks of MetS induction (since this resembles the 

fully developed phenotype the closest). The virtual individuals we selected for further analysis 

predominantly utilize energy in the periphery (subgroup [P]), with approximately 75% of energy 

from carbohydrate, 15% from fat, and ~10% from protein substrate oxidation, resulting in a 

cohort of n=32 individuals that was used for further analysis. 

 

6.8.2 Converting energy expenditure into energy units 

Traditionally, all fluxes in MINGLeD are expressed in μmol/day. To recalculate the energy 

expenditure fluxes in MINGLeD into energy units, we made use of the energy content of TG 

particles. Hereto, we first recalculated the ACoA respiratory fluxes into the equivalent of TG 

particles assuming that 1 mole of TG is equivalent to 21.4 moles of ACoA: 

EE [
μmol TG

day
] =EE [

μmol ACoA

day
] ·

1

21.4
 (6.1) 

Then these fluxes were converted from molar units to grams per day by assuming that the 

molar mass of TG is 853 u: 

EE [
g TG

day
] =EE [

μmol TG

day
] ·853·10-6 [

 g

μmol
] (6.2) 

We then can calculate how much energy is equivalent to this flux assuming that 1 gram of fat 

contains 9 kilocalories: 

EE [
kcal

day
] =EE [

g TG

day
] ·9 [

kcal

g
] (6.3) 
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Hence, the energy expenditure fluxes can easily be converted from molar units (6.1) into energy 

content (6.3) using: 

EE [
kcal

day
] =EE [

μmol ACoA

day
] ·

1

21.4
·853·10-6·9  (6.4) 

 

6.8.3 Physiological ranges provided by in vivo assessment of energy expenditure 

To measure energy expenditure in the in vivo situation, male E3L.CETP mice on a high-fat, high-

cholesterol diet (the same individuals as were the subject in chapter 4 [Rozendaal et al., 2018b]) 

underwent indirect calorimetry using metabolic cages [Even and Nadkarni, 2012] after three and ten 

weeks of diet induction respectively. Mice were housed individually in these metabolic cages 

for four days. The first day was used to let the mice get used to the new environment. The 

animals were non-invasively, fully computer operated monitored during these four days. 

Afterwards, the animals were put back into their normal cages. 

 O2 and CO2 concentrations were measured every ten minutes to calculate the energy 

expenditure. [Ferrannini, 1988] Different substrates yield different consumption rates. We can infer 

the relative contribution of substrate utilization from the measured changes in oxygen and 

carbon dioxide: 
EEtotal     = EEglucose + EEfat + EEprotein 

EEglucose = VO2·fglucose·REDglucose 

EEfat       = VO2·ffat·REDfat 

EEprotein = VO2·fprotein·REDprotein 

(6.5) 

where VO2 represents consumed oxygen (L O2/day), REDx is the respiratory energy density (in 

kcal/L O2) of substrate x, and fx is the relative contribution to the total oxygen consumption by 

oxidation of substrate x. Based on the respiratory quotient (RQ): 

RQ = 
VCO2

VO2
 = fglucose·RQglucose + ffat·RQfat + fprotein·RQprotein (6.6) 

assuming RQglucose = 1, RQfat = 0.71, RQprotein = 0.835 [Livesey and Elia, 1988], the relative contribution 

of the respiratory energy density parameters should adhere to: 
fglucose + ffat + fprotein = 1 (6.7) 

 

Assuming that body mass of protein is constant, the rate of protein oxidation should equal the 

rate of protein intake. Hence, protein oxidation will be a consistent factor γ of the total energy 

expenditure: 

EEprotein = γ · (EEglucose + EEfat + EEprotein) (6.8) 

 

Substitution with (6.5) and some rearranging yields: 

fprotein = 

γ
1-γ

·(fglucose·REDglucose + ffat·REDfat)

REDprotein

 (6.9) 

which can be simplified using substitution with α and β by: 

α = 
γ

1-γ
·
REDglucose

REDprotein

 

β = 
γ

1-γ
·

REDfat

REDprotein

 

(6.10) 
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and yields: 
fprotein = α · fglucose + β · ffat (6.11) 

 

Therefore the relative contribution of the other substrates is determined by: 

fglucose = 
RQ-

(RQfat+β·RQprotein)
1+β

RQglucose+α·RQprotein-
(1+α)(RQfat+β·RQprotein)

1+β

 

ffat       = 
1-fglucose·(1+α)

1+α
 

(6.12) 

assuming that γ = 0.2, REDprotein = 4.17, REDfat = 4.66, and REDglucose = 5.02. [Livesey and Elia, 1988] 

 

The statistics of the obtained calculations for the energy expenditure for the different 

substrates are depicted in Table 6.3. 

 

 
 

Table 6.3 
 

  

Total energy expenditure assessed using indirect calorimetry. 

Data are depicted as the mean ± standard deviation, and as 99.7% confidence interval (between brackets). 
 

EE [kcal/day] fat oxidation [%] 
carbohydrate 

oxidation [%] 
protein oxidation [%] 

MetS-3w 
11.1 ± 0.87 

[8.4 - 13.6] 

57.6 ± 2.8 

[49.3 - 65.9] 

22.4 ± 2.8 

[14.1 - 30.7] 

20.0 ± 2.6e-4 

[20.0 - 20.0] 

MetS-10w 
12.6 ± 1.04 

[9.5 - 15.7] 

63.2 ± 2.0 

[57.4 - 69.1] 

16.8 ± 2.0 

[10.9 - 22.6] 

20.0 ± 1.3e-4 

[20.0 - 20.0] 
 

 

 

 

6.8.4 In silico perturbation experiment inducing enhanced peripheral energy 

expenditure 

Since we aim to study the effects of short-term BAT activation through cold exposure, we chose 

to perform our in silico simulation using the one-day snapshot obtained in the fully developed 

phenotype, i.e. after three months of MetS induction. This timescale is also consistent with the 

time window in which an in vivo cold exposure intervention would be applied. 

 The perturbation experiment involved applying an external perturbation such that an in 

silico increase in peripheral energy expenditure was achieved. Since the peripheral 

compartment comprises all metabolically active tissues apart from the liver, plasma, and 

intestinal lumen, we assumed that the respiration of peripheral acetyl-Coenzyme A 

(represented by the red arrow in Figure 6.1) can be used as a proxy for BAT activation. 

 An increase in peripheral ACoA respiratory flux was induced by multiplication of the flux 

equation with activation factor fact: 

jresp,per
ACoA  = kresp,per·ACoAper·fact (6.13) 

 

However, since it is not a priori known how high this activation factor should be, and this factor 

may differ among different virtual individuals, we applied a variety of activation factors that 

ranged different scales (1+1e-10, 1+1e-8, 1+1e-6, 1+1e-4, 1+1e-3, 1+1e-2, 1.1:0.1:1.9, 2:9 

10:5:25) to the system. The system was re-simulated to steady state with these perturbations 

applied, yielding the results presented in Figures 6.5 and 6.6. 
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6.9 Appendix: Subgroups in energy expenditure 

We identified three subgroups based on where the majority of energy is utilized: predominantly 

peripheral [P], predominantly hepatic [H], and both peripheral and hepatic energy expenditure 

[P+H]. Here we examined the metabolic fluxes and pool sizes corresponding to these different 

classes. Regardless of where the majority of energy is utilized, the resulting MetS phenotype in 

terms of plasma and liver biomarkers (top three rows in Figure 6.7) is equivalent. However, this 

phenotype can develop with different combinations of underlying metabolic fluxes (see Figure 

6.8). 
 

 
 

Figure 6.7 
 

  

Metabolite pool sizes depend on where the majority of energy is utilized. 

The mean pool sizes in individuals with predominantly peripheral energy expenditure [P] are depicted in red; mean pool sizes 

in individuals with predominantly hepatic energy expenditure [H] in blue; and mean pool sizes of individuals with both 

peripheral and hepatic energy expenditure [P+H] in purple. All pool sizes of plasma metabolites are expressed as concentration 

in mM; all other pool sizes are expressed in µmol. 
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Figure 6.8 
 

  

Metabolic fluxes depend on where the majority of energy is consumed. 

The mean fluxes in individuals with predominantly peripheral energy expenditure [P] are depicted in red; mean fluxes in 

individuals with predominantly hepatic energy expenditure [H] in blue; and mean fluxes of individuals with both peripheral and 

hepatic energy expenditure [P+H] in purple. All fluxes are expressed in µmol/day. 
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Summarizing discussion and future 
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7.1 Summary of contributions 

Metabolic Syndrome is gaining increasing attention in both biomedical and clinical research. 

Research has, however, often focused on singular pillars (symptoms or comorbidities) of MetS 

such as insulin resistance [Romeo et al., 2012],  atherosclerosis [Barbalho et al., 2015; González-Navarro et 

al., 2008], or very specific co-occurring side effects such as periodontal health [Hatipoglu et al., 2015], 

sleeping disorders [Vgontzas et al., 2005], and neurological disorders. [Farooqui et al., 2012] We used a 

comprehensive and systematic approach overarching the traditional borders of medicine to 

allow for an integrative and interdisciplinary study of MetS. 

 

Thanks to the innovative set-up of the in vivo experiments in RESOLVE – with its longitudinal 

design, frequent measurements at intermediate time points, and follow-up for a long period of 

time – we were able to extract much more information than with just a cross-sectional or 

prospective set-up. We acquired a very rich and fruitful dataset (chapter 4) that allowed for 

studying disease onset and progression in individuals, as well as across the population, in a 

mouse model. 

 The heterogeneity in this population could be quantified by classification of distinctly 

different MetS phenotypes based on dyslipidemic status (low-grade dyslipidemia versus strong 

dyslipidemia). These distinct phenotypes were found to be reproducible in an independent and 

larger cohort (chapter 5). This follow-up study also revealed an additional group spanning the 

continuum between mild to moderate dyslipidemia, and indicates an even more 

heterogeneous and less coherent population than expected from chapter 4. These preclinical 

studies underline that MetS is not simply caused by overeating and an inactive lifestyle, but 

that its origin involves many more intricate underlying mechanisms in the onset and 

development of MetS. 

 

We focused our modelling on the data describing the development of the distinct subgroups 

as identified in chapter 4. A fundamental problem in the analysis of such data using 

conventional statistical methods would be the lack of reproducibility and wide sample-to-

sample variation in statistical outcome. [Goodman, 2001; Halsey et al., 2015; Nuzzo, 2014] Our systems 

biology approach does take this variability into account: the data is supplied as constraints to 

the model. The physiology-based mechanistic model MINGLeD encapsulates both 

carbohydrate, lipid, and cholesterol regulation (chapter 3), it also allowed for the integration of 

these different research domains into one coherent framework. Moreover, ADAPT made the 

model parameters dynamic and time-dependent (chapter 2), providing a methodology to 

describe the continuous, longitudinal development of MetS in terms of modelled trajectories 

by quantitatively linking the (discrete data) samples in time. The sampling procedure that is 

essential in the ADAPT methodology drastically scaled up the number of individuals from the 

few animals in the in vivo cohort, to a much larger in silico population. This approach nicely 

demonstrates the implementation of the “3R principle” (i.e. replacement, reduction, and 

refinement) of animal research using in silico methods. [Lang et al., 2018] Compared to 

conventional statistical methods, our computational approach requires a lot fewer animals 

(reduction) by utilizing the obtained data in a more intelligent way. The boundaries within we 

performed Monte Carlo sampling were constraint by the in vivo data. We did not only look at 
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the mean of the in vivo population, but by feeding the sampled data to the model (refinement), 

we yielded a large set of in silico trajectories, i.e. virtual individuals, that represent different 

phenotypic presentations (replacement) within a reasonable, physiological range (estimated 

from the in vivo data). 

 The resulting in silico predicted trajectories show parallels with the concept of “parameters 

becoming dynamic phenotypes”. [Rajasingh et al., 2008; Wang et al., 2012] Furthermore, these 

predictions provide a deeper understanding of the complex underlying pathophysiology 

associated with the development of distinct phenotypic representations. Differences in dietary 

cholesterol uptake and hepatic turnover were elucidated as potential drivers for the 

emergence of these different MetS phenotypes. This underlines that the multi-factorial nature 

of MetS is much more complex than just originating from overfeeding and an inactive lifestyle. 

However, the imbalance in energy handling does indeed play an important role as well. The 

case study outlined in chapter 6 has shown that our modelling framework can be used for 

stratification purposes to gain insight into the heterogeneity of the population as well as that it 

can facilitate the implementation and execution of in silico trials. We have demonstrated that 

inducing an increase of peripheral energy expenditure – a representative entity for BAT 

activation by e.g. cold exposure – is effective in the treatment of MetS. 

 In conclusion, we have developed a novel modelling framework that describes the metabolic 

derailments during the onset and development of MetS. It also provides insight into phenotypic 

differentiation and allows for studying treatment interventions aimed at ameliorating, and 

possibly reversal of the metabolic derailments in MetS. Systems biology and computational 

modelling have been essential to gain a deeper and integrative understanding of the complex 

and multi-factorial nature of MetS. 

 

 

7.2 Study limitations 

Thus far, we have applied our model to and with data obtained from a transgenic murine 

population that possesses human-like metabolic properties. However, throughout this study, 

we have kept our focus on being able to translate this modelling methodology also to the 

human MetS population. Several issues concerning this translational challenge are discussed 

below. 

 

7.2.1 Implications and translational challenges of E3L.CETP as a disease model for 

human Metabolic Syndrome 

Animals, and in particular mice, have been used as experimental in vivo models in (bio)medical 

research and preclinical studies for over a century. Mice respond strikingly similar to humans 

and can (genetically) be manipulated to mimic a wide spectrum of human diseases and 

conditions. Furthermore, disease pathophysiology in mice has shown to be similar to that in 

humans. [Kõks et al., 2016]  Genetically engineered mouse models (GEMMs) are therefore 

considered relevant models for studying human diseases since specific mouse genes can be 

replaced by their human counterpart. This yields a so-called “humanised” mouse that produces 

the human version of the modified protein. [European Commission, 2010; Vandamme, 2014] 
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Other advantages of using animal models over human subjects in preclinical studies include the 

implementation of standardization procedures and the set-up in controlled testing facilities. 

Thereby yielding an environment in which variability due to external factors can be reduced. 

Variability is also restraint by inbreeding to yield genetically identical strains. Another practical 

benefit is the accelerated lifespan in comparison to humans – one mouse year is equivalent to 

roughly 30 human years according to The Jackson Laboratory (JAX) [Flurkey et al., 2007] – which 

makes it an ideal candidate to study slowly progressing diseases, such as MetS. [Perlman, 2016; 

Vandamme, 2014] 

 

Preclinical models to study human diseases 

The abundance of (preclinical) animal models has created a considerable knowledge base 

regarding metabolic diseases. [Softic et al., 2017] However, extrapolation and the translational 

scope of many of these models remain challenging. We therefore specifically selected an 

animal model that possesses many human-like metabolic properties. The E3L.CETP mouse is 

currently the best available transgenic animal model to induce and study the co-occurrence of 

MetS symptoms and comorbidities. [van den Hoek et al., 2014] The metabolic system of the E3L.CETP 

mouse was designed to mimic human lipoprotein metabolism. As explained in detail in section 

4.10.1, E3L.CETP mice have a defective triglyceride-rich lipoprotein (TRL) clearance to mimic 

the lower clearance of TRL in humans compared to mice. In addition, the (V)LDL:HDL ratio in 

E3L.CETP mice is similar to that in humans. The transfer of cholesteryl esters and triglycerides 

between LDL and HDL (facilitated by CETP) does not naturally occur in mice but is introduced 

in the E3L.CETP mouse through genetic modification to include the human CETP gene. [Rensen 

and Havekes, 2006; Westerterp et al., 2006] Therefore, it can be concluded that the lipid and lipoprotein 

metabolism of E3L.CETP mice is representative for that in humans. 

 Although it may be debatable whether glucose biology is species-specific, it has been shown 

that reduced insulin sensitivity occurs naturally upon obesity development in mice. [Toye et al., 

2005; Wang and Liao, 2012] The latter can easily be induced by feeding mice a high-fat, Western-type 

diet. No additional genetic alterations in the glucose domain are thus required to mimic the 

(defective) glucose handling in obese humans. 

 

Animal model of complete clinical Metabolic Syndrome? 

The E3L.CETP mouse has indeed demonstrated to be a good disease model for MetS. The data 

presented in this thesis show the development of the majority of the characteristic phenomena 

in terms of both symptoms (obesity, hyperglycemia, dyslipidemia) and comorbidities (insulin 

resistance, fatty liver). It is noteworthy as well as remarkable that this preclinical animal model 

was specifically designed to describe MetS symptoms, but also appears to be suitable to study 

clinical endpoints within the same timeframe. This shows that MetS is not just a precursor stage 

towards possibly certain metabolic diseases, but that this risk is indeed drastically increased 

since we found both insulin resistance and hepatic lipid accumulation in the majority of animals 

at the end of the experimental studies. 

 However, this in vivo disease model does not include one clinical hallmark of MetS: 

hypertension. This criterion was assessed neither in this thesis nor in other E3L.CETP studies, 

although murine models of hypertension do exist. [Johns et al., 1996; Lerman et al., 2005; Monassier et al., 

2006] In that sense, MetS may be incompletely represented, but hypertension is a phenomenon 
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that does not fit within the scope of our current modelling framework as that is merely focused 

on the metabolic derailments of MetS. 

 

Heterogeneity 

Another important MetS characteristic is its heterogeneous presentation. This was initially one 

of the main reasons to pursue a model describing the human MetS complexity, but being set-

up and calibrated with data derived from a dedicated animal model. Variability in phenotypic 

presentation is a phenomenon that is, allegedly, less profound in animal models than in the 

human population (due to standardization, controlled environment, etc.). Both E3L and 

E3L.CETP strains are known for their non-uniform response to Western-type diets. [Paalvast et al., 

2017] 

 We have partially unravelled this heterogeneity by classification of distinct MetS 

phenotypes. This subdivision could be related to differences in dietary cholesterol uptake and 

hepatic turnover. However, the exact precipitating factor(s) underlying phenotypic variation 

has(have) not fully been identified yet. Part of the observed heterogeneity may be attributed 

to inter-individual differences in food intake, but it is unclear which other factors may also 

contribute to this. Note that the heterogeneity cannot solely be attributed to the transgenes 

introduced in E3L.CETP as heterogeneity is also observed in its background strain C57BL/6J. 

[Burcelin et al., 2002; Peyot et al., 2010] The microbiome and gut barrier dysfunction have recently also 

been found to be predisposing factors in this heterogeneous presentation. [Chakrabarti et al., 2017; 

Festi et al., 2014; Lee et al., 2017; Nieuwdorp et al., 2014] 

 In conclusion, the E3L.CETP mouse model comprises the majority of phenotypic MetS 

outcomes and therefore matches our objective. The heterogeneity, however, underlines the 

importance of stratification into coherent subpopulations prior to data and model analysis. 

 

Robustness, reproducibility, and frailty 

An inherent next trait involves the reproducibility and robustness of the selected disease model 

on the long-term. This topic was briefly touched upon in chapter 5, where we observed drop-

outs indicated by sudden trends of rapid weight loss in several animals. It appears that the 

health span is limited as these animals develop (age-related?) abnormalities with time [Drechsler 

et al., 2016], but also various tumours. Ageing and frailty [Whitehead et al., 2014] may have important 

implications for the outcome of such long-term experiments. 

 Moreover, another important aspect remains the consistency and coherence of the 

metabolic response to the high-fat, high-cholesterol diet. The phenomenon of responders and 

non-responders appears to play an important role in this. Both in the data presented in this 

thesis and in other studies regarding the E3L.CETP strain, a substantial number (20-30%) of 

animals does not develop the full metabolic complexity of MetS. Many of these non-responders 

suffer from a severe inflammatory hepatic condition, which may severely impair liver function. 

[Tarasco et al., 2018] The underlying pathophysiology remains unclear, but it might be related to the 

genetic intervention, as baseline (i.e. prior to the HFD+C diet) liver abnormalities have been 

observed in several individuals. Hence, it is critical to identify and separate the respective 

animals by making use of both clinical chemistry and histological analysis to retrospectively 

confirm the animals’ classification. Nevertheless, our conclusion remains that male E3L.CETP 
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mice fed a high-fat, high-cholesterol diet yield a representative in vivo disease model with 

relevance for human MetS. 

 

7.2.2 Implications for MINGLeD as a disease model for human Metabolic Syndrome 

Next, we discuss how representative the developed computational modelling framework – 

based on murine data – is for the human MetS population and what potential hurdles could be 

encountered in the application of the model to the human population. 

 Throughout the development of both the computational model and its framework, we have 

kept our focus primarily on the relevance in the human population. Hence, the topology of 

MINGLeD is specifically designed to describe the human metabolic system and does not require 

any adjustments for when implemented with human data. It can, however, be extended with 

additional regulations – such as hormonal regulation, e.g. effects of insulin (resistance) – or 

metabolites, provided that the current model topology is insufficient to describe a specific 

dataset and/or specific research question. However, it does require a large amount of data to 

be collected longitudinally. 

 

Translation of murine model results to the human situation 

Since in vivo data describing human-like MetS development was used to construct the model, 

its results provide valuable insights into the pathophysiology involved in MetS onset, 

development, and progression. Although exact values cannot be extrapolated (e.g. thresholds 

for hyperglycemia are different among mouse and human), we assume that the trend and 

dynamics of processes involved can be generalized towards human MetS pathophysiology. 

 This raises the question of how these model results can objectively and quantitatively be 

interpreted. Distributions of time-dependent trajectory solutions have been generated for each 

phenotypic subgroup. Analysis of time-series data quickly becomes complicated when 

considering multiple entities, e.g. a subset of metabolite and/or flux trajectories. Thus far, we 

limited the interpretation to visual comparisons, but this will not suffice when more phenotypic 

subgroups would become involved – as is expected when applying the model with human data. 

Conventional statistical methods to compare time-series data are limited, but a more elegant 

and objective approach to interpret the modelled trajectory distributions could involve 

techniques for continuous model evaluation, such as Profile Likelihood Analysis (PLA). [Nguyen et 

al., 2017; Raue et al., 2009] Future application of this type of models does require a sophisticated 

analysis approach to enable systematic interpretation of the predicted data within the context 

of the modelled network. 

 ADAPT is a very powerful tool to incorporate uncertainty in experimental data in an ODE 

model. Since the model is data-driven in that sense, this uncertainty propagates into the model 

predictions. The result of this is reflected by the width of the trajectory distributions. Although 

the data did span the entire plasma compartment of the model, tissue compartments may be 

underrepresented in that context. This is also reflected by the wider trajectory distributions for 

species and fluxes in the tissues that have not been constraint by data (possibly an indication 

of overmodelling or underfitting). It can, therefore, be a challenge to estimate model 

parameters and to quantify the uncertainty of the model predictions. 
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Another important contribution of ADAPT is that it provides (possibly unintuitive but) testable 

predictions, such as the differences in pathophysiology underlying the different MetS 

phenotypes as observed in chapter 4. However, these predictions still need to be verified. 

 

Modifications for application of modelling framework to the human situation 

Application of the modelling framework to human data requires some minor modifications. 

Tissue and distribution volumes are considerably larger in human versus mouse. This can easily 

be taken into account, as estimates for body fat and blood volume are well-known. [Friesen, 2014; 

Janmahasatian et al., 2005; Lemmens et al., 2006] 

 Timescales may appear more challenging, but the time axis is provided by the input data. 

Therefore, time is an entity that is independent of the model results. No changes have to be 

made to the modelling framework. To extrapolate longitudinal modelling results from murine 

to human timescales, several studies have provided suggestions for this. [Demetrius, 2006; Dutta and 

Sengupta, 2016] An issue that is related to this, involves the less clear demarcated time window of 

disease development in human patients. No true “healthy” t=0 point of onset has been 

identified in MetS patients, as they are usually diagnosed when already metabolically altered 

and are located somewhere along the disease progression curve. 

 Furthermore, specification and logging of food intake for the human situation will not be 

trivial. Although controlled and standardized meals are often used in e.g. postprandial tests 

[Rozendaal et al., 2018a; Zeevi et al., 2015], it is practically unrealistic to maintain such an artificial diet for 

a prolonged period of time. Although day-to-day nutrition may deviate, overall dietary patterns 

can be logged and will, in general, average out over the scope of months to years. To gain a 

model that is more realistic in terms of lifestyle, dietary interventions in terms of caloric 

restriction and/or macronutrient restriction can easily be implemented. Especially the effect of 

dietary composition in terms of carbohydrate:fat ratio has been the focus of many diets in order 

to lose weight. [Abete et al., 2010; Eaton and Konner, 1985; Iacovides and Meiring, 2018] Physical activity levels, 

however, have not yet been taken into account as constraints to the model. 

 

Longitudinal data collection 

The real bottleneck in the application of the modelling framework to the human MetS 

population lies elsewhere. The model can only perform effectively and predict sensible results 

if provided with sufficient longitudinal data. For humans, however, long-term data collection is 

challenging. ADAPT has been shown to require large amounts of data on many metabolic 

species and at many time intervals. Intermediate monitoring of plasma metabolites and 

macroscopic markers (body weight, fat percentage) can be achieved relatively easily at e.g. 

intervals for general check-ups in the clinic or at the general practitioner. The main challenge 

will be to obtain tissue-specific data, let alone time-series tissue data. It is questionable whether 

plasma data alone would be a sufficient read-out of intra-tissue metabolic status. Biopsies are 

invasive, but possibly one could make use of imaging modalities such as proton magnetic 

resonance spectroscopy to noninvasively measure ectopic fat and thereby obtaining an 

estimate of hepatic lipid composition and content. [Dall’Ara et al., 2016; Johnson et al., 2008; Nissen et al., 

2016] In addition, nonradioactive, stable isotopes can be employed as metabolic tracers for flux 

measurements. [Adiels et al., 2005; Kim et al., 2016] Preferably these measurements should also be 

performed at multiple points in time, as it has been shown that only t=0 and t=end is insufficient 
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to thoroughly describe the longitudinal dynamics. ADAPT is designed to only infer complex 

dynamics when necessary to describe longitudinal trends. Since ADAPT minimizes unnecessary 

changes in parameters over time, it will inherently predict a simple linear trajectory when only 

two points in time are provided – whereas from a biological point of view this might be unlikely. 

[Scott, 2007] Keeping in mind the much longer timescales in human compared to our in vivo MetS 

model, disease progression will also be affected by ageing [Figueira et al., 2016; Mooney et al., 2016] and 

frailty [von Zglinicki et al., 2016] as the prevalence of the different components of MetS has been 

shown to increase with age. [Bellantuono et al., 2018] 

 We should also take into account the use of medication that affects metabolic regulation. 

For example, statins and metformin are both used very often in clinical practice to, respectively, 

lower cholesterol and glucose levels. When such treatment is effective, the plasma read-out 

would result in an indication of lower concentrations of these metabolic species. However, it 

should somehow be taken into account in the modelling framework that this change was 

pharmaceutically induced, and is not caused by disease progression (or rather amelioration) in 

the underlying network. In a previous study (and chapter 2) using human data, we have shown 

that ADAPT is capable to distinguish between disease progression and treatment effects. [Nyman 

et al., 2016] 

 

 

7.3 Future perspectives 

The developed modelling framework provides a solid basis for further research of MetS 

pathophysiology as well as as a potential tool for patient stratification. We recognize that this 

work is ongoing and discuss several possible directions in which this work can be extended and 

applied. 

 

7.3.1 Extending the modelling framework: more phenotypic subgroups and multiple 

treatment interventions 

The first direct extension of the modelling framework lies in the integration of more data. 

Chapter 5 has provided an extensive dataset that captures a longer period of time. With these 

data, we can extend our model and assess the longitudinal dynamics more thoroughly. 

Moreover, this study also indicated an additional dyslipidemic MetS subgroup that spans the 

continuum between mild and moderate dyslipidemia, and fills the gap between the more 

extreme phenotypes that we have analysed thus far. 

 

Extension of in silico database: phenotypic subgroups 

Chapter 6 has shown the applicability of our modelling framework to study the effects of 

therapeutic interventions. Although the simulated treatment effect of short-term cold 

exposure revealed to be insufficient to result in a full reversal of energy balance, it did 

ameliorate the metabolic derailments associated with MetS. We expect that exposure to cold 

for a longer period of time would eventually induce reversal of the energy balance. 

 Still, it is questionable whether MetS is fully reversible. However, several studies have shown 

that the metabolic system is flexible in the genesis, but also in treatment towards reversal of 

metabolic diseases associated with obesity. [Aucouturier et al., 2011; Galgani et al., 2008; Goodpaster and 
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Sparks, 2017; Tareen et al., 2018] This is an interesting future application of the model. Hereto other 

treatment strategies aimed at slowing down, and – best-case scenario – reversal and 

prevention of the metabolic derailments of MetS have been explored in the context of 

RESOLVE. These in vivo studies have provided data obtained from our specific animal model 

(male E3L.CETP on a high-fat, high-cholesterol diet) that should fit nicely into this framework 

using the substantial in silico database describing MetS development (chapter 4). Especially if 

this database would be extended with virtual individuals generated using the data from chapter 

5, this would yield an extensive database comprising a large range of MetS phenotypes. When 

applying the modelling framework to simulate treatment interventions, we would suggest to 

first select a proper (subset of) baseline phenotypic model(s) from the in silico population to 

ensure alignment with the in vivo measured (baseline) data. Next, the model can be used to 

simulate a treatment intervention, and in silico predictions can then be compared to in vivo 

observations. This methodology allows differentiation between disease developmental effects 

and treatment effects, whereas if the model would be fitted to in vivo treatment data, this 

separation cannot be made. 

 

Therapeutic interventions in E3L.CETP 

Therapeutic interventions such as dietary interventions (e.g. caloric restriction or modification 

of the carbohydrate:fat ratio) can easily be implemented in the model since food intake in 

terms of macronutrients is specified as input fluxes to the system. Also other sophisticated 

dietary approaches, such as butyrate supplementation, are suggested for the treatment of 

obesity-related disorders. Butyrate is a short-chain fatty acid of which oral treatment has been 

associated with beneficial metabolic effects both in (E3L.CETP) mice [Li et al., 2018] and in humans. 

[Bouter et al., 2018] The underlying mechanism of the effects of butyrate intake remain unclear but 

it seems to be associated with BAT activation. This makes butyrate supplementation an ideal 

case study for our modelling framework. 

 Another type of dietary intervention involves tetrahydrolipstatin (THL). THL is a lipase 

inhibitor that has been shown to reduce weight gain and improve glycemic control by reducing 

dietary fat lipolysis and subsequent absorption from the intestinal lumen; both in mice [Hassanein 

et al., 2015] and in humans. [Aldekhail et al., 2015] THL treatment data has recently become available 

for male E3L.CETP mice fed an HFD+C diet (unpublished data), making it an excellent case study 

for our modelling framework. 

 A more invasive approach that is often performed in morbidly obese patients involves 

bariatric surgery. The Roux-en-Y gastric bypass (RYGB) has been shown to improve 

comorbidities such as diabetes and hypertension and lowers the risk of obesity-related cancers 

both in mice [Frohman et al., 2018] and in humans. [Camastra et al., 2013; Jørgensen et al., 2012] RYGB not only 

reduces stomach size, it also involves rerouting of the intestinal tract. Immediate improvements 

in glucose metabolism, prior to weight loss are observed, but the mechanism behind this 

remains unclear. Observations of RYGB applied to E3L.CETP mice have recently become 

available (unpublished data), making it an interesting case study for our modelling framework. 
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7.3.2 Towards precision and personalized medicine 

Throughout the design and development of our modelling framework, the clinical relevance 

has been the primary focus. However, the road towards a population-based, let alone a patient-

specific, MetS model remains long. 

 

Population-based MetS model 

As discussed above, some minor modifications of the modelling framework will be required. 

The most important first step towards the application of the framework for the human MetS 

population involves the acquisition of a time-course calibration dataset, and subsequent time-

course validation dataset. The heterogeneous clinical presentation requires a large population 

of MetS patients to be followed for a long period of time. Data acquisition should be performed 

both extensively and carefully to yield a population-based model for the most common MetS 

phenotypes that arise from the patient population. Previous studies have shown that also in 

the human population, distinct subgroups can be identified that differ in MetS severity. [Poon et 

al., 2014] 
 

Patient-specific MetS model 

The population-based model can then be refined and applied with different scopes. It can be 

used to identify the phenotypic classification of a specific patient (i.e. to which MetS subgroup 

he/she belongs) and to estimate the phase and severity of MetS (i.e. at which point in the 

progression timeline the patient is located). Eventually, it may be useful as a decision support 

tool to predict the efficacy of different treatment interventions aiming at the reversal of MetS. 

A prognosis can then be made by outlining different clinical outcomes as a result of different 

combinations of treatment strategies and/or lifestyles. The modelling framework can be used 

as a tool to provide insight into which individuals are (more) at risk of the development of 

comorbidities. 

 We have developed a novel modelling framework that is not exclusive for MetS but can be 

employed to study the longitudinal behaviour of other slowly progressing diseases. The 

ultimate goal of this work is in line with the long advocated scope of the “P4 paradigm” – 

predictive, preventive, personalized, and participatory – of systems medicine. [Hood et al., 2012] 

Personalized and precision medicine and healthcare are essential for refining patient-specific 

treatment as well as in the prevention of complex disorders, both with a metabolic, but also 

with an oncogenic pathophysiological origin. [Shin et al., 2017; Yanovski and Yanovski, 2018; Schork, 2015] 
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Ethical paragraph 
 

The Metabolic Syndrome (MetS) is defined as a cluster of multiple metabolic abnormalities 

including obesity, insulin resistance, dyslipidemia, and hypertension. These abnormalities are 

well-documented risk factors for cardiovascular diseases and type 2 diabetes. The obesity 

pandemic and MetS prevalence are increasing steadily; not only in the Western societies but 

also in developing countries. This is cause for a global concern and has a strong societal impact 

since current pharmacological strategies remain inadequate and insufficient in dealing with the 

growing rate of MetS. Lifestyle modulation (including diet adjustment) still remains the 

fundamental approach to combat MetS. Personalized approaches are limited since the 

mechanisms underlying the pathophysiology of MetS remain unclear. 

 The experiments and methodologies described in this thesis contribute to reducing this gap 

in understanding by systematically studying the onset and longitudinal development of the co-

occurrence of MetS symptoms (obesity, hyperglycemia, dyslipidemia) and comorbidities 

(insulin resistance, liver lipid accumulation) by using computational modelling techniques 

integrated with data obtained from a transgenic, diet-induced MetS mouse model. This animal 

model has been indispensable in the construction of the computational modelling framework 

described in this thesis. 

 The majority of medical breakthroughs have involved preclinical studies performed on 

animals. Although considerable efforts are being made in the design of appropriate 

alternatives, animal models do remain valuable tools for gaining a deeper understanding of 

pathophysiology and etiology of complex and multi-factorial diseases such as MetS. 

Nevertheless, the use of animals remains controversial. Well-informed choices should be made 

in experimental design, set-up, and conduct. The research described in this thesis was therefore 

designed and performed conforming to the 3R principle: 

 Replacement of animal experiments with non-animal experiments when possible. MetS is a 

complex and multi-factorial disease and many different tissues and metabolites are 

involved. Therefore, in vitro techniques and video or film modalities are not sufficiently 

suitable to study the integrated effects of diet-induced MetS development. Computational 

modelling techniques are able to generate large amounts of in silico data but do require in 

vivo obtained data for model calibration. 

 Reduction of the number of animals used was possible by the sampling of in vivo obtained 

data to generate large amounts of in silico data for which only a few mice were sacrificed. 

To keep this number of mice as little as possible, standardisation was applied. Mice were 

housed in identical cages with constant temperature and ventilation. Furthermore, all 

actions were performed by the same, experienced personnel. 

 Refinement of experiments was realized to minimize animal distress and discomfort. The 

severity of painful and distressing procedures was decreased by using proper methods of 

anaesthesia. All in vivo experiments described in this thesis were performed in accordance 

with the regulations of Dutch law on animal welfare. The experimental procedures 

regarding the in vivo data described in chapters 4 and 6 have been approved by the Animal 

Ethics Committee of the Leiden University Medical Centre, The Netherlands. The 
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experimental procedures regarding the in vivo study described in chapter 5 have been 

approved by the Ethics Committees for Animal Experiments of the University of Groningen, 

The Netherlands. 

 

In this thesis, we have demonstrated that in silico computational methods allow for a more 

intelligent and more resourceful use of a smaller number of animals. The study outcome was 

maximized by generating large amounts of in silico data. Moreover, all in vivo and in silico 

generated data have been made publically available. 
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Summary 
 

Systems biology of Metabolic Syndrome development and treatment 

 

The worldwide increase in overweight and obesity co-occurs with the development of various 

other abnormalities. This drastically increases the risk of the development of diabetes and 

cardiovascular diseases. The cluster of comorbidities associated with obesity development is 

referred to as the Metabolic Syndrome (MetS). It is characterized by alterations in both 

carbohydrate (glucose intolerance) and lipid (high cholesterol, high triglycerides) metabolism 

that develop over long timescales. Due to its progressive, complex, and multi-factorial nature, 

its presentation is highly heterogeneous, i.e. many different phenotypes can be classified under 

the terminology of MetS. Therefore, we propose the use of a systems biology approach to study 

the longitudinal development of MetS in both in vivo and in silico settings. This approach 

involves three main methodologies: 

 A computational technique to predict dynamic adaptations during long-term disease 

development. Hereto we made use of ADAPT (Analysis of Dynamic Adaptations in 

Parameter Trajectories), which describes the long-term timespan using time-dependent 

model parameters. Its data-driven approach enables integration of longitudinal biomarker 

data to describe phenotype transition over time. 

 A dedicated mathematical model consisting of a system of coupled nonlinear ordinary 

differential equations that describes carbohydrate and lipid metabolism in a systemic, 

whole-body perspective: MINGLeD (Model Integrating Glucose and Lipid Dynamics). Its 

steady state represents a single metabolic snapshot and is applicable under both healthy 

and (different) diseased conditions. 

 In vivo data from a preclinical animal model with human-like lipid handling. Male APOE*3-

Leiden.CETP mice were fed a high-fat, high-cholesterol diet for three months to induce 

symptoms (obesity, glucose intolerance, dyslipidemia) and comorbidities (insulin 

resistance, hepatic steatosis) characteristic for MetS. This data was integrated into 

MINGLeD by employing ADAPT and yielded a large set of predictions of the longitudinal 

dynamics of MetS onset and development in thousands of virtual individuals. This revealed 

the emergence of two distinct MetS phenotypes that differ in severity of dyslipidemia. Flux 

trajectory analysis revealed increased hepatic lipid fluxes in those with dyslipidemia, 

whereas the dietary cholesterol uptake from the intestinal lumen is decreased in the non-

dyslipidemic MetS phenotypes. 

The heterogeneity and variability in phenotypic presentation of MetS were further explored in 

an in vivo study involving a larger population followed up to six months. This showed that 

although the degree to which these animals develop dyslipidemia is highly heterogeneous, 

three different subpopulations could be identified based on the three-month plasma 

triglyceride and total cholesterol levels: those with a low, mild to moderate, and high degree of 

dyslipidemia. The first and third group comprise the groups previously identified based on the 

three-month experiment. 
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Subsequently, we shifted our focus from the developmental aspects of MetS towards possible 

therapeutic interventions. Obesity is considered to be the central hallmark of MetS, indicating 

an inherent energy imbalance (surplus). The virtual population of dyslipidemic MetS was first 

stratified in terms of biologically plausible measures of energy expenditure prior to performing 

in silico perturbation experiments on the peripheral energy expenditure to study the 

robustness and sensitivity of the system. Enhanced peripheral energy expenditure led to a 

direct decrease of cholesterol and lipid fluxes and pool sizes, indicating its potential to improve 

MetS related symptoms. To translate these findings into an experimental study, we considered 

the contribution of Brown Adipose Tissue (BAT) in energy homeostasis. BAT can be activated 

for a short period of time by cold exposure and can contribute to reduce the metabolic 

derailments associated with MetS. 

 

We have shown that our comprehensive systems biology approach by combining in silico 

studies with in vivo data yielded new insights into the development of various MetS 

phenotypes. Although this thesis was limited to preclinical datasets, our methodology can be 

applied to the human situation. We have shown that our generic modelling methodology is 

able to stratify the large heterogeneity in MetS presentation and that it can make predictions 

on sub-population level. These virtual populations could also be created for the human case, 

which can be used to facilitate stratification and contribute to a more personalized approach. 

Eventually, this is expected to provide possibilities for early diagnosis of patients, simulate 

scenarios for disease progression, and to support decision making of therapeutic interventions 

to refrain from further development of MetS. 
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Samenvatting 
 

Systeembiologie van de ontwikkeling en behandeling van Metabool Syndroom 

 

De wereldwijde toename aan zwaarlijvigheid en obesitas gaat gepaard met de ontwikkeling van 

allerlei andere afwijkingen. Ook is de kans op de ontwikkeling van diabetes en hart- en 

vaatziekten sterk verhoogd. Het tegelijkertijd voorkomen van deze afwijkingen en indicatoren 

zijn geclusterd onder de term “Metabool Syndroom” (MetS). Karakteristiek voor deze 

aandoening zijn de verstoringen in zowel koolhydraat- (glucose-intolerantie) als 

vetstofwisseling (hoog cholesterol- en triglyceridegehalte), welke zich langzaam ontwikkelen 

over de tijd. De klinische presentatie van MetS is zeer heterogeen, mede vanwege haar 

progressieve, complexe, en multi-factoriële aard. Dit betekent dat meerdere verschillende 

fenotypes geschaard kunnen worden onder de definitie van MetS. We hebben daarom 

besloten om gebruik te maken van een systeembiologische aanpak om de longitudinale, 

geleidelijke ontwikkeling van MetS te bestuderen in zowel een in vivo als een in silico omgeving. 

Deze methodologie bestaat uit drie hoofdcomponenten: 

 Een simulatiemethode welke de dynamische veranderingen tijdens ziekteontwikkeling kan 

beschrijven. Hiervoor is gebruik gemaakt van de rekenmethode “ADAPT” (Analysis of 

Dynamic Adaptations in Parameter Trajectories; een methode om dynamische adaptaties 

in parametertrajectorieën te analyseren). Deze methode beschrijft de lange termijn 

tijdspanne door middel van tijdafhankelijke modelparameters. De data-gedreven aanpak 

maakt het mogelijk om longitudinale biomarker data te integreren in een model voor een 

beschrijving van de transitie van het ene fenotype naar het andere fenotype over de tijd. 

 Een rekenkundig model op basis van differentiaalvergelijkingen welke de koolhydraat- en 

vetstofwisseling beschrijft op weefselniveau. Dit model wordt “MINGLeD” (Model 

Integrating Glucose and Lipid Dynamics; een integraal model van glucose en lipide 

dynamiek) genoemd. De steady state van dit model geeft een momentopname van de 

stofwisseling weer, en is toepasbaar voor zowel een gezonde stofwisseling, als voor diverse 

afwijkingen in de stofwisseling. 

 In vivo data verkregen uit een preklinisch proefdiermodel met een vetstofwisseling 

vergelijkbaar met die van ons. Hiervoor zijn mannelijke APOE*3-Leiden.CETP transgene 

muizen gevoed met een vet- en cholesterolrijk dieet gedurende drie maanden. Dit 

induceerde de karakteristieke symptomen (obesitas, glucose intolerantie, dyslipidemie) en 

comorbiditeiten (insuline resistentie, leververvetting) van MetS. De integratie van deze 

data in MINGLeD door middel van de ADAPT methodologie leverde een grote verzameling 

van voorspellingen op die de longitudinale dynamiek in MetS ontwikkeling beschrijft in 

duizenden virtuele individuen. Dit liet een duidelijke tweedeling in ziekteontwikkeling zien: 

we hebben onderscheid gemaakt tussen twee verschillende MetS fenotypes op basis van 

de ernst van dyslipidemie. Analyse van de uitwisseling- en omzettingsfluxen van de 

metabolieten toonde aan waarin deze fenotypes van elkaar verschillen. Het sterk 

dyslipidemische fenotype is gekarakteriseerd door verhoogde activiteit in de lever, terwijl 
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juist de opname van cholesterol uit het dieet door de darmen verlaagd is in het licht 

dyslipidemische fenotype. 

 

De gevonden heterogeniteit en variabiliteit in de ontwikkeling van verschillende fenotypes is 

hierna verder onderzocht. Hiervoor is een in vivo studie opgezet welke een grotere hoeveelheid 

proefdieren omvatte en welke voor een periode tot en met zes maanden bestudeerd is. Hoewel 

de gradatie van dyslipidemie erg heterogeen blijkt te zijn, hebben we deze wel kunnen opdelen 

in drie klassen op basis van de bloedwaarden van het triglyceride- en totaal cholesterolgehalte 

gemeten na drie maanden dieetinterventie. Deze subgroepen zijn vervolgens geclassificeerd 

als licht, gematigd, en sterk dyslipidemisch – waarbij de eerste en laatste groep overeenkomen 

met deze geïdentificeerd op basis van het drie-maanden experiment. 

 

Hierna hebben we ons gericht op de toepassing van deze ontwikkelde modellen in onderzoek 

naar passende therapeutische behandelingen. Obesitas is een belangrijke graadmeter in de 

ontwikkeling van MetS. Het overschot aan energie dat hieraan ten grondslag ligt, duidt aan dat 

de energiehuishouding niet in evenwicht is. Om hier meer inzicht in te krijgen, hebben we naar 

de energiehuishouding in onze virtuele MetS populatie gekeken. Deze populatie is eerst 

gestratificeerd op basis van biologisch plausibele waardes van energieverbruik. Hierna hebben 

we een in silico verstoring opgelegd in het perifere energieverbruik om de robuustheid en 

gevoeligheid van het systeem te bestuderen. Verhoging van het perifere energieverbruik leidde 

tot een directe verlaging van cholesterol- en vetgehalte. Deze toepassing geeft de mogelijkheid 

weer in de behandeling van de symptomen gerelateerd aan MetS. En deze uitkomsten kunnen 

mogelijk gerelateerd worden aan de bijdrage van bruin vet (Brown Adipose Tissue; BAT) aan de 

energiehuishouding. Eerdere studies hebben aangetoond dat bruin vet geactiveerd kan worden 

voor een korte periode door blootstelling aan kou, en dat dit kan bijdragen aan het 

verminderen van de ernst van MetS. 

 

Onze systeembiologische aanpak waarin in silico experimenten geïntegreerd zijn met in vivo 

gemeten data, heeft nieuwe inzichten opgeleverd in de ontwikkeling van diverse ziektebeelden 

welke onder MetS vallen. Hoewel deze thesis gelimiteerd is tot preklinische datasets, kan de 

generieke modelleringsmethodologie ook toegepast worden voor de mens. We hebben 

aangetoond dat onze methodologie in staat is om de heterogene presentatie van de MetS 

populatie te stratificeren. Ook kan deze methode voorspellingen maken op sub-populatie 

niveau. Zulke virtuele populaties kunnen ook gemaakt worden voor de mens, welke 

patiëntstratificatie faciliteren en kunnen bijdragen aan een patiënt-specifiekere behandeling. 

De verwachting is dat dit soort werk deuren zal openen richting eerdere diagnostiek van 

patiënten, en dat het scenario’s kan simuleren als voorspelling van ziekteontwikkeling en 

mogelijke uitkomsten bij diverse behandelmethodes. 
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NAW, Groen AK. Dynamic metabolic modelling indicates that heterogeneity in plasma 
triglyceride and body weight development in “humanized” APOE*3-Leiden.CETP mice is in 
part explained by differences in intestinal triglyceride absorption 
☐ poster presentation @ Conference of the European Association of Systems Medicine (EASyM), Berlin 

  

2016 
Rozendaal YJW. Computational modelling of the development and progression of Metabolic 
Syndrome in E3L.CETP mice and the effect of interventions 
☐ poster presentation @ RESOLVE 3rd annual meeting, Hamburg 

  

2016 

Rozendaal YJW, Wang Y, Paalvast Y, Groen AK, Hilbers PAJ, van Riel NAW. Modelling the 
glucose and lipid system during health and disease reveals differences in the underlying 
pathways 
☐ poster presentation @ Dutch Bioinformatics & Systems Biology Conference (BioSB), Lunteren 

🏆 nominated for best poster award 
  

2016 
Rozendaal YJW, Wang Y, Paalvast Y, Groen AK, Hilbers PAJ, van Riel NAW. Modelling the 
glucose and lipid system during health and diseases 

☐ oral & poster presentation @ Biomedical Engineering Research Day 
  

2015 
Sips FLP, Snel RCQ, Rozendaal YJW, Hilbers PAJ, van Riel NAW. In silico investigation of the 
changes in postprandial bile acid concentrations after metabolic surgery 
☐ poster presentation @ Dutch Bioinformatics & Systems Biology Conference (BioSB), Lunteren 

  

2015 

Rozendaal YJW, Wang Y, Willems van Dijk K, Rensen PCN, Groen AK, Hilbers PAJ, van Riel NAW. 
Dynamic modelling of the development of Metabolic Syndrome through longitudinal data 
integration using ADAPT 
☐ poster presentation @ Biomedical Engineering Research Day, Eindhoven 

  

2015 
Rozendaal YJW, Paalvast Y. – ADAPT tutorial in the Lorentz Center Training Course “Data 
Integration in the Life Sciences” 
☐ giving a hands-on tutorial and workshop @ Lorentz Center, Leiden 

  

2015 

Paalvast Y, Rozendaal YJW, Wang Y, Willems van Dijk K, Kuivenhoven JA, Rensen PCN, van Riel 
NAW, Groen AK Use of dynamic metabolic modelling to study heterogeneity in development 
of metabolic syndrome in “humanized” APOE*3-Leiden.CETP mice on a high-fat diet 
 ☐ poster presentation @ International Atherosclerosis Society (ISA), Amsterdam 

  

2014 

Rozendaal YJW, Wang Y, Willems van Dijk K, Rensen PCA, Groen AK, Hilbers PAJ, van Riel NAW. 
Dynamical modelling of the onset and progression of the metabolic syndrome through 
longitudinal data integration using ADAPT 
☐ oral and poster presentation @ Systems Biology Symposium (SB@NL), Maastricht 
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2014 

Rozendaal YJW, Tiemann CA, Hilbers PAJ, van Riel NAW. A knowledge- and data-driven 
approach to integrate transcriptomic and metabolomic time-course data and application in 
biomedical systems biology 
☐ poster presentation @ Dutch Bioinformatics & Systems Biology Conference (BioSB), Lunteren 

  

2014 

Rozendaal YJW, Wang Y. The effects of additional dietary cholesterol intake on glucose 
metabolism in obese APOE*3-Leiden.CETP mice fed on a high-fat diet: Predicted from a 
mathematical model 
☐ oral presentation @ RESOLVE 1st annual meeting, Heraklion 

  

2014 

Rozendaal YJW, Hilbers PAJ, van Riel NAW. Computational modelling approaches to study 
disease progression in type 2 diabetes 
☐ poster presentation @ Biomedical Engineering Research Day, Eindhoven 

🏆 nominated for best poster award 
  

2014 

Maas AH, Rozendaal YJW, van Pul C, Cottaar EJE, Hilbers PAJ, Haak HR, van Riel. NAW 
Incorporating the intake of meals in the Eindhoven Diabetes Education Simulator 
(E-DES) 
☐ poster presentation @ Conference on Advanced Technologies & Treatments for Diabetes (ATTD), Vienna 

  

2013 

Rozendaal YJW. A mechanism-based disease progression model to analyse long-term 
treatment effects on disease processes underlying type 2 diabetes 

☐ oral presentation & co-
organized this workshop 

@ Eindhoven Metabolic Syndrome Workshop: “The interplay of fat and 
carbohydrate metabolism with application in Metabolic Syndrome and type 2 

diabetes”, Eindhoven 
  

2013 

Rozendaal YJW, Maas AH, van Pul C, Cottaar EJE, Haak HR, Hilbers PAJ, van Riel NAW. 
Understanding glycemic control in everyday life: The importance of accurate quantification of 
postprandial response profiles for different types of food 
☐ poster presentation @ Systems Biology Symposium (SB@NL), Egmond aan Zee 

  

2013 

Maas AH, Rozendaal YJW, van Pul C, Cottaar EJE, Hilbers PAJ, van Riel NAW, Haak HR. 
Incorporating different food products and composite meals in the Eindhoven Diabetes 
Education Simulator 
☐ poster presentation @ Annual Dutch Diabetes Research Meeting (ADDRM), Oosterbeek 

  

2013 

Rozendaal YJW, Maas AH, van Pul C, van Riel NAW, Haak HR. Voedselspecificatie binnen een 
educatieve diabetes simulator 
☐ poster presentation @ MMC Wetenschapsavond, Veldhoven 

🏆 nominated for best poster award 
  

2013 
Rozendaal YJW, Maas AH, van Pul C, Haak HR, van Riel NAW. – Food specification within an 
educational diabetes simulator 
☐ poster presentation @ Biomedical Engineering Research Day, Eindhoven 
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Dankwoord 
 

Na vijf jaar, 134 pagina’s, en ruim 50.000 woorden is het dan eindelijk zover: de laatste pagina’s 

van het proefschrift zijn in zicht! De promotie is nu écht “bijna af”! 

 

Wie mij tijdens de eerste jaren van het VWO had verteld dat ik een technische studie zou gaan 

doen, had ik voor gek verklaard. En wie mij tijdens mijn Master had verteld dat ik ook zo gek 

zou zijn, om uiteindelijk tien jaar vol te maken aan de TU/e, tja... Daar waar sommige gebouwen 

op de campus een totale make-over kregen, is W-hoog (behalve haar naam) vrijwel 

onveranderd gebleven. Ikzelf daarentegen heb heel wat kennis en kunde vergaard in die 

periode. Voor beiden geldt: dezelfde building blocks, maar met een nieuwe naam en titel aan 

het einde van de rit! 

 Ondanks dat promoveren veel van je zelfstandigheid en eigen doorzettingsvermogen vraagt, 

heb ik deze weg zeker niet alleen bewandeld. Daarom wil ik graag een aantal mensen in het 

bijzonder bedanken omdat ze het mogelijk hebben gemaakt om de kans om te promoveren na 

te jagen én deze hebben helpen te realiseren. 

 

Natal, het heeft je heel wat overtuigingskracht nodig gehad voor ik inging op jouw aanbod om 

te promoveren. Ik wil je bedanken voor al je support door de jaren heen. Jouw positieve 

mindset en altijd aanwezige enthousiasme voor het doen van gedegen wetenschappelijk 

onderzoek met behulp van systeembiologie en modellering zijn belangrijke eigenschappen 

waar ik veel van heb mogen leren. Zeker in de perioden dat ik besluiteloos was, geen richting 

kon (of wilde) innemen, en niet inzag hoe dit werk ooit zou gaan convergeren naar een 

consistent manuscript, was jouw kritische en constructieve input onmisbaar. Heel erg bedankt 

daarvoor! 

 

Peter, nog voor ik het voor mezelf doorhad, wist jij al zo'n beetje halverwege mijn afstuderen, 

dat ik – ook al ontkende ik dat op dat moment hardgrondig – tóch verder zou gaan in het 

opzetten en uitvoeren van onderzoek binnen een academische setting. Bedankt voor de 

prettige samenwerkingen, zowel in het onderwijs als bij het bespreken van 

onderzoeksresultaten. Je hebt me hierbij erg geholpen om te leren uitzoomen en door minder 

“ja, maar” te zeggen, en tot concrete, maar gedegen conclusies te komen. Heel erg bedankt 

hiervoor! 

 

Daarnaast wil ik graag prof.dr. Barbara Bakker, prof.dr.ir. Ilja Arts, prof.dr.ir. Uzay Kaymak, 

prof.dr. Bert Groen, en prof.dr.ir. Cees Oomens bedanken voor lezen van dit proefschrift en het 

plaatsnemen in de promotiecommissie. 

 

Ik realiseer me dat ik erg bevoorrecht ben dat ik heb deel mogen nemen in RESOLVE. Hereto I 

would like to express my gratitude to all RESOLVE colleagues. Thanks to the highly 

interdisciplinary team, I think we were able to provide valuable research efforts in the field of 
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Metabolic Syndrome. I really enjoyed the collaboration between all these different research 

fields and felt very supported by this research team! 

 Bert, als spreekwoordelijke vader van RESOLVE heb je een belangrijke rol gehad in het tot 

stand komen van dit proefschrift. Jouw rijkdom aan kennis van het stofwisselingssysteem heeft 

mij altijd weten te fascineren, maar is ook onmisbaar geweest in het opbouwen van het model, 

en in de interpretatie van alle data. Jouw eindeloze geduld en ontelbare revisies hebben 

uiteindelijk geleid tot een aantal mooie papers! 

 Yanan, throughout RESOLVE I have really enjoyed the many opportunities that we had to 

work together extensively. Your expertise and heaps of biological knowledge have been 

indispensable. Thanks to your never ending enthusiasm and empathy, I really enjoyed working 

together! You were always very eager to learn from our complex mathematical models and to 

really understand them. On the other hand, you were always willing to explain any 

experimental details and help to interpret the (also complex) raw experimental data. In the 

end, I think we have published very nice work together and I wish you all the best with your 

little family and academic career! 

 Yared, de vele trip(je)s van en naar Groningen (cq. Eindhoven) hebben hun vruchten af 

geworpen: jouw enorme biologische kennis en interpretatie van signaalcascades hebben me 

enorm geholpen bij het ontwikkelen van een consistent en sterk wiskundig model, maar wat 

ook direct toepasbaar is met de experimentele data van de hoofdstukken 4 en 5. Bedankt voor 

de prettige samenwerking en ik wens je veel succes met de afronding van jouw proefschrift! 

 

Naast de RESOLVE partners zijn mijn directe collega’s aan de TU/e minstens zo belangrijk 

geweest. Een promotietraject kan erg eenzaam zijn, en dan is het heel prettig als je samen je 

frustraties kunt delen en mijlpalen kunt vieren. I would like to thank everyone who is or at some 

point in time was a member of the CBio group. Special thanks goes to Fianne, Anne, Zandra, 

Rik, Huili, and Ceylan for the many enjoyable PhD dinners and nice cups of tea! 

 

Naast het doen van onderzoek, heb ik ook een aantal studenten mogen begeleiden bij OGO 

projecten, minor projecten, bachelor eindprojecten, master projecten, en afstudeerprojecten. 

In het bijzonder: Anouk, Twan, Roderick, Zihan, and Pascal – thank you all for your help and 

insightful discussions with data analysis and/or implementation of the computational 

framework. 

 

Hoewel het wellicht ietwat onconventioneel (en ambitieus) is om nog voor het einde van het 

schrijven van je proefschrift te beginnen aan een nieuwe baan in een nieuw onderzoeksveld, 

ben ik erg dankbaar dat ik deze kans mogen krijgen binnen de Precision & Decentralized 

Diagnostics groep bij Philips. Uiteindelijk heeft dit mij juist geholpen om het proefschrift af te 

ronden en om het promotieonderzoek in perspectief te kunnen stellen. Ik kijk er naar uit om 

de systematische en modelleringsaanpakken die ik mij tijdens mijn promotie eigen gemaakt 

heb, toe te passen in het oncologische onderzoeksveld! 

 

Een promotieonderzoek vindt ook niet uitsluitend plaats op de universiteit. Ik heb ervaren dat 

morele support minstens zo belangrijk is als inhoudelijke support. Hiervoor ben ik mijn lieve 
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ouders en schoonouders immens dankbaar dat ze altijd klaar staan met een luisterend oor en 

mij geholpen hebben om mijn soms ietwat technische mijmeringen en issues in perspectief te 

stellen. Zowel bij het vieren van mijlpalen, als het kunnen rekenen op aandacht wanneer je het 

even niet ziet zitten – dankjewel dat jullie er altijd voor mij zijn! 

 

En bovenstaande geldt ook dubbel en dwars voor mijn lieve broer. Hans, jij hebt een hele 

belangrijke rol gehad in het afronden van dit proefschrift. Jouw inzichten in hoe ik dit juist 

procesmatig, maar ook communicatief sterk aan kon pakken, hebben me geholpen om de 

struikelblokken minder abstract en meer behapbaar te maken. Indirect heb ik dus mijn 

proefschrift af weten te maken tijdens de vrijdagavonden in het zwembad en bij het omploegen 

van onze tuinen ;) Heel erg bedankt dat je ook tijdens mijn verdediging aan mijn zij wilt staan 

als paranimf! 

 

En saving the best for last: mijn grootste dank gaat uit naar Dennis. Jouw onuitputtelijke 

vrolijkheid, enthousiasme, oneindige geduld, en liefde maken van iedere dag een feestje; ik kan 

me geen beter maatje wensen! Met jou altijd aan mijn zij, en zelfs nu als paranimf tijdens mijn 

verdediging; samen kunnen wij alles aan! Bedankt voor alles senpai!! 

 

 
Yvonne Wesseling-Rozendaal 

Luyksgestel, 8 november 2018 
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same year, she started with her Bachelor in Biomedical Engineering at the Eindhoven University 

of Technology and graduated in 2011. She continued with the Master’s program in Biomedical 

Engineering at the same university. 

 During this Master’s program, Yvonne carried out a research internship at the Academic 

Centre of Epileptology, Kempenhaeghe (Heeze, The Netherlands) under the supervision of dr. 

Pauly Ossenblok. During this internship, she performed spatiotemporal mapping of interictal 
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Master’s thesis was carried out in the Computational Biology group (prof.dr. Peter Hilbers and 
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Anne Maas and dr. Harm Haak). This thesis described the development of an educational 
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