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A B S T R A C T

Real-time functional magnetic resonance imaging (rtfMRI) allows visualisation of ongoing brain activity of the
subject in the scanner. Denoising algorithms aim to rid acquired data of confounding effects, enhancing the
blood oxygenation level-dependent (BOLD) signal. Further image processing and analysis methods, like general
linear models (GLM) or multivariate analysis, then present application-specific information to the researcher.
These processes are typically applied to regions of interest but, increasingly, rtfMRI techniques extract and
classify whole brain functional networks and dynamics as correlates for brain states or behaviour, particularly in
neuropsychiatric and neurocognitive disorders. We present Neu3CA-RT: a Matlab-based rtfMRI analysis frame-
work aiming to advance scientific knowledge on real-time cognitive brain activity and to promote its translation
into clinical practice. Design considerations are listed based on reviewing existing rtfMRI approaches. The
toolbox integrates established SPM preprocessing routines, real-time GLM mapping of fMRI data to a basis set of
spatial brain networks, correlation of activity with 50 behavioural profiles from the BrainMap database, and an
intuitive user interface. The toolbox is demonstrated in a task-based experiment where a subject executes visual,
auditory and motor tasks inside a scanner. In three out of four experiments, resulting behavioural profiles agreed
with the expected brain state.

1. Introduction

Real-time functional magnetic resonance imaging (rtfMRI) involves
the online measurement of a subject's neural activity, indirectly,
through the measurement of the blood oxygenation level-dependent
(BOLD) signal. After preprocessing and analysing these data within the
repetition time (TR) the researcher has access to these dynamic results
while the subject is inside the scanner. This stands in contrast to con-
ventional fMRI, where image processing is applied after the full set of
fMRI scans has been acquired. Since the first published implementation
of rtfMRI in 1995 (Cox et al., 1995) the ensuing two decades saw a
substantial increase of research interest and activity in this field. Ad-
vancements in medical imaging technology (reviewed by Cohen, 2001;
Weiskopf et al., 2007), computational algorithms (reviewed by Cohen,
2001; Weiskopf et al., 2007; deCharms, 2007) and computer processing
power allow increasingly faster and more advanced acquisition and

processing of functional images and give researchers and clinicians
access to data and results in real-time that would otherwise only be
available hours, days or weeks after scanning (Weiskopf, 2012).

The application of rtfMRI, initially proposed as a tool to monitor
data quality, to easily develop new task and stimulus protocols, and for
use in interactive neurological experiments (Cox et al., 1995), has ex-
panded to include: real-time data quality assurance and patient com-
pliance checking (Voyvodic, 1999), pre-experimental or pre-surgical
functional localisation and intraoperative guidance (see for example
Hirsch et al., 2000; Binder, 2011), neurofeedback studies and treatment
(see Weiskopf, 2012; deCharms, 2008; Sulzer et al., 2013; Sitaram
et al., 2016, for extensive reviews), and teaching (Weiskopf et al.,
2007). Increasingly, applied rtfMRI is viewed as a useful diagnostic and
treatment (navigation) tool in psychoradiology, a growing field de-
scribed as the use of radiologic approaches for diagnosis, treatment
planning and monitoring of patients with major neuropsychiatric
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disorders (Lui et al., 2016).
Apart from the basic real-time processing capabilities integrated

into the hardware of all major MRI vendors, several proprietary, custom
in-house and open-source rtfMRI solution sets or toolboxes have been
developed at various locations worldwide. These include FIRE
(Gembris et al., 2000) and TurboFIRE (Gao and Posse, 2003), scanSTAT
(Cohen, 2001), AFNI's real-time plugin (https://afni.nimh.nih.gov/;
Cox, 1996), Turbo-BrainVoyager (Brain Innovation, Maastricht, the
Netherlands; Goebel, 2012), STAR (Magland et al., 2011), FRIEND (Sato
et al., 2013), the FieldTrip toolbox's rtfMRI extension (http://www.
fieldtriptoolbox.org/development/realtime/fmri; Oostenveld et al.,
2011), BART (Hellrung et al., 2015) and more recently OpenNFT
(Koush et al., 2017). While these toolboxes allow a wide range of rtfMRI
processing and neurofeedback signal calculation capabilities, most
clinical studies reporting the use of rtfMRI (in particular most neuro-
feedback studies) have focused on analysing, visualising and feeding
back activation changes for particular ROIs in the brain that are asso-
ciated with the disorder or condition being studied (see for example
Alegria et al., 2017; Young et al., 2017; Ruiz et al., 2013; Subramanian
et al., 2011; Nicholson et al., 2017). In most neuropsychiatric condi-
tions, however, an array of complex brain functions such as cognition
are affected, processes that are increasingly regarded as being mediated
by synchronous activity across multiple brain regions (Mišić and
Sporns, 2016). To improve learning effects in neurofeedback training
experiments conducted in subjects with these conditions, the operant
conditioning model requires feedback to be contingent on the brain
mechanism believed to underlie the condition (Weiskopf et al., 2004).
Thus, it is hypothesized that a feedback signal calculated based on a
model that reflects a richer understanding of the underlying neural
mechanism could be an improved approach over ROI-based methods in
cases where complex brain function is involved. To enable further de-
velopment and testing of this hypothesis, rtfMRI toolsets and neuro-
feedback studies should expand to include a particular focus on the
analysis of dynamic and spatially distributed brain activity, in addition
to ROI-based approaches.

The dynamics and spatial distribution of functional brain networks
at rest have been widely investigated and reported. Resting state net-
works tend to show separable spatial patterns with distinct temporal
characteristics during rest- or task-based experimental paradigms
(Beckmann et al., 2005). Differences in resting state network char-
acteristics between subjects with neuropsychiatric disorders and
healthy subjects have also been studied and used as the basis for po-
tential biomarkers (see e.g. Whitfield-Gabrieli and Ford, 2012, for a
review focusing on the default mode network). Recently,
Karahanoğlu and Van de Ville (2015) applied temporal deconvolution
and clustering techniques to resting state fMRI time series to yield
spatially and temporally overlapping co-activation patterns. These
iCAPs form dynamically assembling building-blocks for resting state
networks, and each pattern has been associated with a consistent be-
havioural profile using the Brainmap database (http://www.brainmap.
org/; Laird et al., 2005). These aspects, that is the spatially distributed
and dynamic nature of the iCAPs patterns as well as their relation to
behavioural brain state interpretations, suggest that they could be
useful as targets for neurofeedback calculation in rtfMRI neurofeedback
experiments relating to neuropsychiatric conditions.

In this article we introduce Neu3CA-RT, a Matlab-based framework
for rtfMRI analysis developed at the Neu3CA research group (http://
neu3ca.org/background/neu3ca/) at the Eindhoven University of
Technology. Based on design considerations obtained from reviewing
previous and current state of the art rtfMRI solutions and methodolo-
gies, we describe the experimental setup and image (pre)processing
steps central to the framework. We present an exploratory rtfMRI
analysis implementation, which is based on a dynamic spatial general
linear model (GLM) fit of Karahanoğlu and Van de Ville's innovation-
driven coactivation patterns (iCAPs) (Karahanoğlu and Van de
Ville, 2015) to real-time fMRI data and the subsequent mapping to

behavioural brain states. The method is demonstrated by subjecting a
healthy control to several known behavioural paradigms and com-
paring the data-driven network analysis and behavioural interpretation
to the expected brain state(s). We conclude by discussing the results and
future work.

1.1. Design considerations for a rtfMRI toolbox

Several aspects of existing rtfMRI toolsets influence their perfor-
mance and area of application. These include the particular technical
infrastructure and imaging parameters, pre-real-time processing, pre-
processing, image analysis, program execution time and software de-
sign. When assessing the performance of real-time toolsets, specific
attention should be given to latency, i.e. the total delay of the real-time
processing chain between image acquisition and availability of the
analysis results, and the achievable throughput, i.e. the quantified
output per time period (in our case, analysed images per second or,
similarly, TR).

Particulars of how rtfMRI aspects have been implemented in ex-
isting toolsets, especially artefact correction and ROI and whole-brain
processing algorithms, have been reviewed extensively elsewhere
(Weiskopf et al., 2007; LaConte, 2011; Caria et al., 2012). For the
purpose of this article, important design considerations (and, where
applicable, their influence on latency and throughput) are described
below.

1.1.1. rtfMRI technical setup
The specifics of the MRI scanner, processing hardware and the ac-

companying rtfMRI software package are considered. In principle,
rtfMRI should be achievable with any modern MRI scanner that has
online image reconstruction and network communication capabilities,
although custom development is typically necessary to facilitate
transporting or sharing image data between scanner hardware and the
device used for real-time processing, whether this is the scanner console
or a network location. Dedicated development has also been done to
integrate rtfMRI processing directly into scanner hardware 1995 (Cox
et al., 1995, Cohen, 2001, LaConte et al., 2007). Ideally, all major MRI
vendor hardware should be able to export acquired images in real-time
to a network location, from which the preferably vendor-agnostic
rtfMRI software package would then collect and process the data. Both
the Turbo-BrainVoyager and OpenNFT toolboxes employ such a server-
client setup and are compatible with scanners from multiple MRI ven-
dors. Neu3CA-RT has been implemented similarly, facilitated by real-
time data transfer software developed in collaboration with Philips.

The technical setup extends from the scanner to external hardware
and software. Firstly, rtfMRI packages need to be easily understood and
easily adaptable to facilitate widespread use. As reported by
Koush et al. (2017), interpreted languages like Matlab (MathWorks,
Natick, Massachusetts, United States) and Python (https://www.
python.org/) allow intuitive understanding and easier sharing of code
and continued collaborative tool development by a wide-ranging and
large user base. This is strengthened further by the existence of SPM
(www.fil.ion.ucl.ac.uk/spm), FSL (https://fsl.fmrib.ox.ac.uk/fsl) and
AFNI (https://afni.nimh.nih.gov/), three of the most widely used
platform-independent and freely available fMRI analysis libraries that
can readily be incorporated into interpreted language programs. When
optimising for widespread use and whenever possible, rtfMRI toolboxes
should exploit these libraries and frameworks. While acknowledging
that commercial tools like Matlab provide barriers to unconditional
dissemination of software tools and knowledge, our familiarity with the
programming environment and its widespread use in research and
educational institutions led to the initial version of Neu3CA-RT being
based in Matlab and using SPM12.

Secondly, the central or graphical processing unit (CPU or GPU) of a
designated image processing computer needs to have enough power so
as to minimise real-time latency while managing a tradeoff between
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processing speed and all factors restricting increased processing power
(these might include cost, logistical impediments and site-specific re-
strictions). To facilitate ease of implementation, a personal computer
(PC) with 16GB RAM and a 4-core GHz-range processor is re-
commended for a rtfMRI setup like Neu3CA-RT. Increased processing
power could be warranted if the resulting latency is too high for the
desired throughput, while more complicated pipelining and paralleli-
zation of real-time processes could be considered (either at application-
level, computationally on a single PC or at hardware level on multiple
machines) if throughput needs to be increased.

1.1.2. rtfMRI image quality considerations
Echo-planar imaging (EPI) is widely used in fMRI imaging se-

quences and provides a sound, although not exclusive, basis for rtfMRI.
The use of multi-echo imaging sequences in real-time (Posse et al.,
1999; Weiskopf et al., 2005) has been reported to remove image dis-
tortion artefacts and increase BOLD contrast sensitivity through
weighted combination of multi-echo images. More recently, Kundu
et al. (2012, 2013, 2017) implemented an independent component
analysis algorithm (ME-ICA) on full multi-echo EPI datasets to yield
significant gains in BOLD CNR. Importantly, imaging parameters like
the field-of-view (FOV), voxel resolution, voxel matrix size, repetition
time (TR) and echo time (TE) have to be refined so as to manage the
tradeoff between increased spatial resolution, increased BOLD sensi-
tivity, and shortened TR, while keeping the specific application in
mind. Increased spatial resolution is beneficial when requiring rtfMRI
output that is highly spatially localised, but this in turn requires more
acquisition and processing time and thus increases latency. Similarly, a
short TR (in reviewed literature, typically in the order of 2 s for ROI-
based acquisition and real-time processing) is beneficial for more fre-
quent real-time data visibility and neurofeedback, but simultaneously
compromises spatial resolution and constrains the amount of available
dynamic calculation time, essentially requiring the real-time latency to
be less than 2 s if the throughput is to be one analysed image per TR and
no pipelining is used.

Selection of a short TR is further motivated by the need to identify
distributed changes in BOLD signal response (from a predefined base-
line) as soon as they occur. In a task paradigm the general haemody-
namic response function characteristics are well established: an initial
post-stimulus delay of 1–2 s and a peak at 4–6 s, reaching a plateau if
the stimulus is sustained (Bandettini et al., 1992). For a controlled task
time course with an expected response, less incentive exists for short-
ening the TR, but for the comparatively unknown dynamics of resting
state fMRI data this is not the case. Here, more frequent sampling en-
ables a real-time description of dynamic data, which is especially useful
if this description needs to be acted on in real-time.

Real-time denoising or preprocessing is required to provide further
image quality improvements. Previously implemented algorithms in-
clude those for image distortion correction, prospective or retrospective
3D motion correction, temporal filtering and spatial smoothing (re-
viewed by Weiskopf et al., 2007). Prospective motion correction typi-
cally incorporates real-time data from optical motion tracking systems,
such as described by Zaitsev et al. (2006), or is implemented to estimate
and apply a 3D transformation during reconstruction of each EPI image.
Other confounders of real-time BOLD activation are artefacts resulting
from subject physiology like heartbeat and respiration, as well as EPI
artefacts resulting from gradient coil heating and other scanner in-
stability effects. Technical setup allowing, physiological data should be
sent dynamically to the applicable rtfMRI toolbox for continuous
monitoring (for example Voyvodic, 1999) and correction (for example
Smyser et al., 2001).

In general, any imaging parameters or preprocessing approaches
such as those described above that fundamentally improve the signal-
to-noise-ratio (SNR) are important to improve spatiotemporal resolu-
tion and hence to reduce latency for a specified spatial resolution.
However such approaches should themselves have limited latency to

ensure that there is a net improvement in overall latency.
With the aim of acquiring and describing distributed BOLD activity

in specific (sub)networks of the brain, the imaging parameters for
current Neu3CA-RT experiments were selected to favour increased
spatial resolution (1.75 × 1.75 × 3 mm per voxel, see Data Acquisition
in the Materials and Methods section) over a short TR, resulting in a TR
of 3 s which can be considered standard in a task-based paradigm.

1.1.3. rtfMRI image analysis considerations
Reviewed literature shows a wide variety of mass univariate and

multivariate analysis algorithms being implemented in rtfMRI.
Historically, statistical methods like t-tests, correlation analysis
(Voyvodic, 1999), GLMs and multiple regression (for example
Bagarinao et al., 2003) formed the basis of analysing single ROI acti-
vation or identifying artefacts in real-time. Thus researchers and clin-
icians are able to view, for example, real-time ROI activation maps or
real-time subject motion estimations.

In clinical applications, multiple rtfMRI studies have reported ben-
efits of specific ROI-based neurofeedback as a treatment option in
neurological and psychiatric conditions, such as ADHD, depression,
schizophrenia, Parkinson's disease and PTSD (see Sitaram et al., 2016,
for a review). For studying cognition-related aspects related to whole-
brain networks, however, the methodological focus should include
analysing spatially distributed and temporally dynamic brain activity.
Accordingly, an increasing amount of rtfMRI algorithms using func-
tional connectivity and multivariate pattern analysis (MVPA, also re-
ferred to as multi-voxel pattern analysis) have been published and made
available in rtfMRI toolsets, including: windowed correlation
(Zilverstrand et al., 2014); dynamic causal modelling (Koush et al.,
2013); spatial GLMs; independent component analysis (ICA) (Esposito
et al., 2003); support vector machines (SVMs) (LaConte et al., 2007);
and neural networks (reviewed by LaConte, 2011). Reviewed literature
shows that, in the case of machine learning algorithms, the focus is
increasingly on quantifying intuitive and interpretable brain states
through classification, as opposed to quantifying the lower-level BOLD
activation level of specific ROIs and using that for biomarker devel-
opment or neurofeedback.

In the current version of our Neu3CA-RT framework, we im-
plemented an exploratory functional network-based fMRI analysis pi-
peline that aims to quantify the real-time brain state of the subject by
mapping dynamic and spatially distributed brain activity onto known
co-activation patterns that relate to certain behavioural profiles. In a
recent study, Karahanoğlu and Van de Ville (2015) developed the iCAP
model of functional brain networks, which is based on a spatio-tem-
poral regularisation of resting state fMRI data from healthy volunteers.
It decomposes fMRI data into a set of 13 generic co-activation patterns
(see Fig. 2 of Karahanoğlu and Van de Ville, 2015) that can be used as
spatially and temporally minimally overlapping building blocks to de-
scribe a variety of dynamic brain network states. These iCAPs have in
turn been associated with the set of 50 behavioural domains as defined
by the Brainmap database (http://www.brainmap.org/; Laird et al.,
2005), a vast online repository of activation maps from fMRI studies (in
the order of 3000 papers, 70000 subjects, 15000 experiments and
122000 reported brain locations). This allows for the interpretation of
observed networks in terms of constituents of interpretable behavioural
categories Action, Cognition, Emotion, Introception and Perception (see
Fig. 6 of Karahanoğlu and Van de Ville, 2015). The implementation in
the current version of our Neu3CA-RT framework thus allows for a real-
time (every 3 s) mapping of dynamic whole-brain activity to the 13
innovation-driven co-activation patterns through a spatial GLM (i.e.
calculating how well the dynamic brain activity pattern can be ex-
plained by known "building block" patterns) and the subsequent asso-
ciation to behavioural profiles through correlation (i.e. how the sub-
ject's dynamic brain activity pattern, as explained by the iCAP
networks, relates to known behavioural states. This analysis adds real-
time throughput steps of voxel masking, executing two GLM
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calculations, and calculating correlation coefficients to the Neu3CA-RT
pipeline. These steps add minimal latency to the real-time process, in
the order of 0.3 s (see Results section).

In exploring the use of whole-brain activity patterns in real-time, we
aim to provide a framework that allows the rtfMRI neurofeedback
signal to be calculated from a more representative data sample, which
could lead to improved neurofeedback learning effects. Additionally,
the access to real-time brain state interpretations in terms of beha-
vioural profiles allows a more intuitive look at dynamically changing
brain activity.

1.1.4. rtfMRI program execution considerations
The statement by Cox et al. (1995) that dynamically increasing

calculation time in rtfMRI applications is unacceptable remains valid,
although improvements in computer processing power can be a miti-
gating factor. Where possible, new rtfMRI developments should aim to
avoid cumulative algorithms (processing larger amounts of data for
every iteration) that could lead to problematic increases in calculation
time, while taking experiment-specific constraints in terms of TR and
number of acquired volumes into account. This applies to all pre-
processing and image analysis steps applied to fMRI data during the
course of a single TR. Sliding-window approaches (Gembris et al.,
2000), recursive algorithms (Cox et al., 1995) and approximations can
be implemented to contain the required calculation time.

To minimise real-time program latency, a rtfMRI processing pipe-
line can be constructed such that real-time processing occurs in the
native functional stereotactic space. This removes the real-time pre-
processing step of normalisation to a standard space, but necessitates
the pre-real-time mapping of standard space model components (if
applicable) to the native functional space. This might add time (to the
order of 10–20 min) to the overall experiment, but could easily be in-
corporated into the functional localizer pipeline that is part of a typical
neurofeedback experiment. It was thus selected as the desired method
for Neu3CA-RT.

Furthermore, standard software programming best practices should
be implemented to ensure efficient code execution (for example, in
Matlab, vectorisation and preallocation of memory). Ultimately, if the
desired throughput is to be 1 analysed image per TR, all real-time
preprocessing and image analysis steps should result in a total dynamic
calculation time less than the selected TR, and with an increasing need
to shorten the TR for resting state real-time applications, future rtfMRI
toolbox developments should optimise algorithms for speed.

2. Methods

2.1. Experimental setup

Neu3CA-RT was developed and tested using a Philips Achieva MRI
scanner (3T) interfaced with an external PC (16GB RAM, 3.2 GHz single
core processor) running Windows 7 and Matlab. The program retrieves
data from a user-specified location on the processing PC, which could in
principle be served by NIfTI data (https://nifti.nimh.nih.gov/) from any
network-enabled MRI scanner (provided the ability for real-time fMRI
data transfer and conversion to NIfTI format), thus allowing im-
plementations with other MRI vendors. The experimental setup is
shown in Fig. 1.

2.2. Data Acquisition

As a preliminary step to real-time image acquisition and processing,
both an anatomical and a functional image are acquired. These images
are used in the pre-real-time processing steps described below.
Anatomical data are recorded using a three dimensional T1-weighted
gradient echo sequence (T1 TFE) with scanning parameters:
TR = 8.2 ms, TE = 3.75 ms, flip angle 8˚, FOV 240 × 240 × 180 mm,
resolution 1 × 1 × 1 mm3, total scan time = 6:02 min.

Functional whole brain data are recorded using a gradient echo EPI
sequence with scanning parameters: TR = 3000 ms; TE = 30 ms; 45
transverse slices with a slice thickness of 3 mm (no gap); in plane re-
solution = 1.75 × 1.75 mm; voxel matrix size 128 × 128 × 45; flip
angle = 90˚; total scan time = 8 min.

2.3. Data transfer

An integral part of the technical rtfMRI setup is having access to
functional scans for processing as soon as they are acquired. This is
achieved by real-time TCP/IP data transfer from the MRI scanner to an
external processing PC through the Philips scanner's eXTernal Control
(XTC) interface and the XTC-datadumper application installed on the
processing PC (Smink et al., 2011). These packages were implemented
with support from the vendor. The XTC interface allows reconstructed
image data to be retrieved from the scanner, which the XTC-datadumper
then receives and converts to Philips PAR/REC files (one pair per
functional image) before storing it in a pre-specified location on the
processing PC, ready for import by the rtfMRI toolbox.

Fig. 1. The experimental setup of Neu3CA-RT
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2.4. Image Processing

All image processing is done in Matlab using a combination of
adapted SPM12 routines and self-developed scripts. The pre-real-time
and real-time processing pipelines are illustrated in Figs. 2 and 3 and
explained below.

2.4.1. Pre-real-time processing
To minimise real-time program execution time, the full pipeline is

constructed such that real-time processing occurs in the native func-
tional stereotactic space. Prior to real-time processing, the initial
structural image is coregistered to the initial functional image using
SPM12′s coregister functionality. The coregistered structural image is
then segmented into grey matter, white matter and cerebrospinal fluid
(CSF) tissue classes using SPM12′s unified segmentation procedure.
This segmentation process also implicitly normalises the coregistered
structural image to the standard MNI space (Montreal Neurological
Institute; Collins et al., 1994), generating forward and inverse trans-
formations. The inverse transformation is subsequently applied to the
13 iCAPs networks/images to transform them from MNI to the native
functional space. Finally, the tissue probability maps and native-space
iCAPs images are all resliced to the native functional space grid, thus
allowing for direct comparison of voxels.

2.4.2. Real-time processing
For every functional dynamic (i.e. once every TR), the XTC-data-

dumper sends a PAR/REC file pair to a prespecified location on the
external PC. These files are converted to NIfTI format (https://nifti.
nimh.nih.gov/) using a modified version of r2agui (http://r2agui.
sourceforge.net/). Once converted, the dynamic functional NIfTI

image is realigned to the first functional image (which can be user-
specified as the initial pre-real-time functional image, or the first image
in the real-time series) using a least squares approach and a 6 parameter
rigid body transformation. The algorithms for the motion correction
steps were adapted from the "spm_realign_rt" and "spm_reslice_rt" rou-
tines of the OpenNFT codebase (https://github.com/OpenNFT/
OpenNFT), which were originally adapted from SPM12 to minimize
execution time. A binary mask derived from the grey matter tissue class
image is then applied to the realigned functional image. From this point
onward, standard matrix calculations are done from in Matlab on ma-
trix data retrieved from each dynamic NIfTI image.

To determine how the iCAPs model of network-building-blocks fits
the dynamic fMRI data, a spatial GLM containing the iCAPs spatial
maps is subsequently applied, with the 13 most frequently occurring
iCAP images (as the desired model) and the mean functional image
(derived from the full 4D fMRI dataset) as the spatial design matrix
regressors. As the model aims to describe spatial activity differences in
terms of distinct co-activation patterns, the image mean is included so
as to describe the majority of the observed signal in the dynamic
functional image. This allows the 13 iCAP regressors to describe any
additional up- or down-regulated activity across grey matter. Beta va-
lues resulting from the spatial GLM are corrected for drift and for rea-
lignment residuals by applying a temporal GLM with the 6 realignment
movement parameters and linear and quadratic drift terms as re-
gressors.

The GLM steps generate a list of iCAP network weights (beta values)
that indicate in which relative proportion the iCAP network building
blocks best describe the current fMRI activity with respect to the image
mean. To convert these weights into interpretable information, they are
correlated (using Pearson's linear correlation) with the 50 behavioural

Fig. 2. The pre-real-time processing pipeline.
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profiles from the BrainMap database that fall into 5 behavioural cate-
gories: Action, Cognition, Emotion, Introception and Perception. These
profiles can then be used as a means to interpret the real-time brain
state of the subject.

In summary, once a dynamic image has been realigned and masked,
the real-time processing entails mapping the current spatial activity
pattern to a set of iCAP building blocks, yielding a set of beta weights
that are subsequently detrended and then correlated with the 50
BrainMap behavioural profiles. This translates spatial patterns into
possible brain states experienced by the subject in the scanner.

2.5. Experimental task design

With a set of 13 iCAPs beta-weights and a correlated set of 50 be-
havioural correlation coefficients being generated for each functional
dynamic image, a full functional imaging run essentially contains a time
series of BrainMap-database-interpreted behavioural activity fluctua-
tions. To demonstrate our dynamic fMRI network modelling approach,
i.e. to map real-time distributed brain activity to underlying iCAP
patterns and subsequently to a behavioural interpretation, experiments
were done with a single healthy, right-handed, male volunteer.
Conditions of known block task paradigms were chosen such that the
calculated behavioural activity time series could be compared with the
variation in brain state expected to be induced by the stimulus or task.
Controlled task paradigms included visual stimulus (watching movie
clips of underwater sea life), auditory stimulus (listening to Bach) and
motor task execution (finger tapping), each with a box-car design. In
addition, auditory data from SPM's so-called Mother of All Experiments

(MoAE, released as part of the SPM user manual) were also analysed
off-line. Experimental task paradigms for both the visual stimulus and
motor task were: 16 interleaved rest and task periods of 30 s each
(starting with rest), totalling an experiment run-time of 8 min. The
paradigm for the auditory stimulus experiment was: 5 task periods of
60 s each, interleaved with rest periods of 30 s each (starting with rest),
totalling an experiment run-time of 8 min. For the MoAE auditory data,
the paradigm was: 14 interleaved rest and task periods of 42 s each (7
periods each, starting with rest), totalling an experiment run-time of
9 min 48 s.

2.6. Results Analysis

For each experiment, the behavioural time series resulting from
Neu3CA-RT processing was correlated with the expected (haemody-
namic response function - HRF - convolved) task time course to gen-
erate a set of Pearson's linear correlation coefficients (R) and corre-
sponding p-values. Bonferroni correction was applied for multiple
comparisons (i.e. 50 behavioural profiles); consequently, correlations
with a corrected p-value below 0.001 were deemed significant.
Correlations with a corrected p-value above 0.001 and below 0.002 (i.e.
0.1/50) were regarded as displaying a trend towards significance.

To investigate how well the iCAPs model described the real-time
fMRI data fluctuations, the dynamic estimation error was calculated
and the sum of squared estimation errors (SSE) for each experimental
run was compared to the sum of squared fMRI signal (SSS) for the run.
While the SSE gives an indication of the model error that can be
compared between runs (by subtracting the model fit, i.e. the matrix

Fig. 3. The real-time processing pipeline.
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product of the design matrix and the estimated beta weights, from the
data and calculating the square of the residual), the SSE to SSS ratio
gives an indication of how large the error is compared to the actual
signal (i.e. the real-time fMRI data).

3. Results

3.1. Technical results

All pre-real-time and real-time processing functionality was com-
bined into a Matlab graphical user interface (GUI), known as Neu3CA-
RT (Fig. 4), a video demonstration of which can be accessed on the
Neu3CA website (http://neu3ca.org/project/rtfMRINF/) and for which
the basic functionality is available on Github (https://github.com/
jsheunis/Neu3CA-RT). The GUI allows for the specification of relevant
file locations (particularly the location where real-time images are
stored), the selection of pre-real-time acquired images, controlling the
MRI scanner via a START/STOP command, display of real-time ac-
quired and processed data (functional activity, task paradigm, iCAP
weights and behavioural profile correlation values), as well as offline
(re)processing of real-time acquired data.

Regarding timing considerations, the calculation time was logged in
real-time for all processing steps of each dynamic. This included real-
time file format conversion (∼0.4 s), image realignment (∼0.55 s),
spatial GLM calculations (∼0.08 s), temporal GLM calculations
(∼2.7 × 10−4 s) and correlations and visualisations (∼0.2 s), total-
ling ∼1.5 s on average. These averaged values were calculated for the
three experiments with TR = 3 s described below. For the MoAE-SPM
data, which had a considerably lower in-plane resolution with a
64 × 64 matrix size, the image realignment duration was ∼0.3 s and
the total real-time latency amounted to less than 1 s on average.

3.2. Throughput and latency

After image acquisition and pre-real-time processing steps, the
current throughput of Neu3CA-RT amounts to 1 analysed fMRI image
per TR (3 s). Pre-real-time steps include, as described, anatomical and
functional image acquisition, coregistration, segmentation, mapping of
the iCAPs framework to the functional space and reslicing all relevant
images to the functional space resolution. During a single real-time
dynamic, the throughput includes file format conversion, functional
image realignment, masking, spatial and temporal GLM calculations,
correlation calculations and visualisations. In Neu3CA-RT's current ex-
perimental setup, the actual time required for initial image acquisition
and pre-real-time processing is about 6 min and 10 min respectively.
These are indicated together with the real-time latency in Fig. 5.

3.3. Experimental results

Experimental results are shown in Fig. 6 for all four experiments
(auditory, visual, motor and auditory-MoAE), with the 50 BrainMap be-
havioural profiles located on the vertical axes and Pearson's linear
correlation coefficient defining the unit for the horizontal axes. The
correlation results are colour coded according to their corresponding
corrected p-values, where blue shows insignificant correlation
(p > 0.002), cyan shows a trend towards significance (0.001 ≤
p ≤ 0.002) and green indicates significant correlation (p < 0.001).

For improved interpretation, the top 4 positively correlated beha-
vioural profiles from each experiment are displayed in Table 1 below,
together with their R- and corrected p-values. The profiles are colour
coded as explained in the caption of Fig. 6.

Additionally, to investigate how well the iCAPs model described the
real-time fMRI data, the sum of squared estimation errors for each ex-
perimental run was compared to the sum of squared fMRI signal for the

Fig. 4. A screenshot of the Neu3CA-RT GUI
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run. The results are shown in Fig. 7, which indicates the median (red
line), 25th percentile (lower bound of blue box), 75th percentile (upper
bound of blue box), upper and lower adjacent values (upper and lower
black lines) and outlier values (red markers) for each of the four ex-
perimental runs. In all four cases, the sum of squared error to sum of
squared signal ratio is between 0.9:1 and 1:1.

4. Discussion

4.1. Technical aspects

The importance of minimising rtfMRI calculation times has been
stressed. Regarding Neu3CA-RT's latency performance, averages of real-
time processing step calculation times indicated that image realignment
had the longest duration: about 0.55 s of the available 3 s (i.e. 1 TR). In
contrast, the data analysis and visualisation steps total about 0.28 s,
although it must be added that the current visualisation options of
Neu3CA-RT are not complex or resource-intensive. Considering the
likely future increase of real-time processing steps (e.g. additional de-
noising steps and analysis algorithms, e.g. functional connectivity or
MVPA methods) while keeping the throughput constant, steps should
be taken to optimise for speed. It should be noted that the incorporated
SPM realignment routine has several parameters (including estimation
quality, interpolation techniques and reslicing options) that can be
optimised for calculation speed, however the tradeoff in data quality
will have to be investigated.

The real-time latency could be decreased further if no processing
time is required for conversion of PAR/REC files to NIfTI by the ex-
ternal PC, i.e. if the vendor-supplied software exported functional
images already converted to the standard NIfTI or DICOM format.
However, if this conversion is handled by the vendor (either as part of
the online reconstruction process or by peripheral software responsible
for transporting the data) it should necessarily have a shorter execution
time than the current conversion latency.

Another option worth investigating towards decreasing latency is
the functional masking. Calculation time increases with the number of

voxels being processed, which could be of concern given that we focus
on whole-brain analysis (as opposed to ROIs with limited voxels, as-
suming comparable spatial resolution) and given that increased spatial
resolution could lead to improved spatial localisation. For our own
experiments, the grey matter voxels of interest amounted to about 100k
out of a possible 740k. Different masking methods should be in-
vestigated to minimise this number while maintaining enough multi-
variate data for accurate network analysis. Similarly, lower in-plane
matrix sizes could be considered (as evidenced by the lower latency for
the SPM-MoAE data vs the experimental data) if high spatial resolution
is not particularly important for the specific analysis.

Considering overall experiment duration, Fig. 5 and the Data Ac-
quisition section indicated that the typical experiment lasted about
25 min, with the initial image acquisition time being 7 min (taking time
between scans into account), the pre-real-time processing time being
10 min, and the real-time latency being ∼1.5 s per dynamic and 8 min
in total. This is within the clinically acceptable total scan duration of
30 min to 1 h. Even so, processing steps will need to be addressed for
improved data quality (the specifics of which are described below).
More denoising steps or denoising steps with increased efficiency could
lead to a latency increase, which should be restricted as far as possible.
Apart from the options discussed above, more promising additional
timesavers would be to optimise the program structure, algorithm se-
lection and processing equipment for decreased latency of all proces-
sing steps. In this regard, apart from optimising Matlab code for speed
by incorporating accepted best practices, no further in-depth con-
sideration was given to improving program execution in the current
implementation of Neu3CA-RT. Future work should also investigate the
use of graphical processing units (GPUs), parallel computing archi-
tectures or multiplatform shared memory multiprocessing program-
ming APIs towards decreasing real-time latency.

Finally, concerning the software infrastructure, as displayed in
Fig. 1 and described previously, vendor specific software is necessary
(on the scanner itself and on the external processing PC) for real-time
transfer of functional images. However, Neu3CA-RT was created with
the requirement of a server-client infrastructure, allowing future

Fig. 5. Neu3CA-RT's real-time latency. Real-time latency (green, totalling less than 2 s) is indicated on a scale with all processing steps (vertical axis). The time scale
has been selectively adapted for ease of reading. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. Correlation results (colour-coded for p-values) for behavioural time series datasets (resulting from real-time processing) for different experimental task
paradigms. (a) Visual stimulus, (b) Auditory stimulus, (c) Motor task execution and (d) Auditory stimulus (SPM's "Mother of All Experiments"). Colour code:
Blue = insignificant correlation (p > 0.002), Cyan = significant trend (0.001 ≤ p ≤ 0.002), Green = significant correlation (p < 0.001). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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integration with scanners from vendors other than Philips. In the case
that scanners from other vendors output data in a proprietary file
format (i.e. not NIfTI), conversion plugins will be necessary to serve
data in a compatible format.

4.2. Data quality

The model estimation error investigation showed a significant dif-
ference between the actual rtfMRI data and the data described by the
iCAPs model: in the order of 90%–100%, which means the error and the
signal are almost equal in size. This is an undesirable outcome for a
model attempting to describe as large a percentage as possible of the
measured signal fluctuations. Several factors could influence this error,
including: insufficient noise regressors or confounding regressors in the
spatial GLM (for example, real-time physiological data were unavail-
able and thus not corrected for in the current Neu3CA-RT im-
plementation); not accounting for other possible artefacts like EPI
signal dropout or scanner induced distortion; processing fMRI data at
suboptimal BOLD contrast; and incorrect model definition. If it can be
established that said artefacts have significant detrimental effects on
the quality of these experimental rtfMRI data, they should first be

corrected for before further analysis iterations can shed light on the
remaining error and the resulting performance of the iCAPs model.
Thus, although realignment residuals and signal drift were already
corrected for in the current implementation, improved noise modelling
and removal techniques should be investigated. Because masks were
calculated in the functional space for grey matter, white matter and
CSF, the latter two could be used to generate averaged noise com-
partment signals to be used as extra regressors in the denoising GLM.

Whether improved preprocessing steps result in an improved fit of
the iCAPs model to the experimental data or not, or if completely dif-
ferent models or analysis techniques are applied in future, accurate
preprocessing for improved data quality remains of utmost importance.

4.3. Network-based analysis

In the real-time fMRI analysis method explored in this work, a brain-
wide multi-voxel approach was used to characterise modulation of
distributed brain activity during a known task paradigm as a set of
innovation-driven co-activation pattern fluctuations, which were in
interpretable as correlated behavioural profile fluctuations. The main
aim was to develop a toolbox that allows the analysis of whole-brain

Table 1
Top 4 positive correlations between HRF-convolved task time course and behavioural
profiles for multiple task paradigms
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networks as the basis for eventually calculating a neurofeedback signal,
as networks are hypothesized to contain richer information about the
underlying condition being studied (as compared to ROI-based ana-
lysis). Measures of brain network fluctuation and interaction could thus
serve as contingent neurofeedback signals with the aim of increasing
training effects in rtfMRI neurofeedback studies.

Our proof-of-concept network-based analysis consisted of fitting a
model of temporally and spatially overlapping co-activation patterns,
regarded as building-blocks of standard resting state networks
(Karahanoğlu and Van de Ville, 2015), to real-time denoised fMRI data
using a spatial GLM. For each timepoint in a functional time series, the
beta weights resulting from the GLM were transformed to correlation
values with 50 behavioural profiles from the BrainMap database, es-
sentially yielding a real-time behavioural interpretation of the subject's
brain state. These behavioural time series were then correlated with
their respective experimental task designs to find specific behavioural
profiles that correlated with the task or stimulus time series. This was
compared against expected behaviours given the task or stimulus.

The results indicated expected effects in three out of the four ex-
periments, where the most significant positive correlation between a
BrainMap behavioural profile time course and the experimental task
design was shown for an expected brain state. Table 1 summarised this
result: for a visual stimulus, Vision had the most significant correlation;
for an auditory stimulus (MoAE-SPM data), Audition; and for a motor
task, Execution (speech). It should be noted that the Execution (speech)
profile might detract from the results' accuracy, as Execution (other)
seems like a more logical expectation, although it is known that speech
involves complex articular movement and that the sensorimotor and
language networks involve common anatomy (Besseling et al., 2013).
Unexpected results in the top 4 positively correlated behavioural pro-
files are also noted for each experiment: for the visual experiment,
Hunger is unexpected; and for both auditory experiments, Anger is un-
expected. This occurrence of unexpected effects was not limited to
within-behavioural-category profiles, as is demonstrated by the Hunger
profile (from the category, Introception) being significantly correlated
with the visual experiment task design. The fact that more significant
effects (and trends towards such effects) were found than were expected
indicates a lack of specificity of the analysis method. Furthermore, the
observed correlation values in all experiments were relatively low,

reaching a maximum of 0.4103 for behavioural profile Anger in the
auditory stimulus experiments.

For the experiments under consideration, the investigation was
limited to task-positive correlations in a single subject in an attempt to
identify significant up-regulated behaviour for a given task paradigm.
This design decision, however, posited no claims as to the importance
of significant and simultaneous task-negative correlations, nor to si-
multaneous but unexpected up-regulations, nor to the relative corre-
lation values. An example of strong negative correlation between be-
havioural profiles and the task design was found in all language profiles
for both the visual and auditory experiment. Further investigation, with
an increase in statistical power, is required into the dynamics of si-
multaneous and opposing behavioural profile fluctuations to shed light
on this observation, specifically given the known spatially distributed
and dynamic nature of human brain networks.

Furthermore, the iCAPs and BrainMap behavioural profile model
used in this study was selected as an exploratory method based on their
hypothesized usefulness as targets for neurofeedback in neuropsychia-
tric conditions, given the spatially distributed and dynamic nature of
the patterns and the intuitive relation to brain state interpretations.
This, however, does not preclude the use of other network-based ana-
lysis methods in Neu3CA-RT. With some updates to the code, it is pos-
sible to use the framework with different network models hypothesized
to underlie whichever whole-brain mechanism is being studied and
used for neurofeedback training.

4.4. Future work

Although the current implementation of Neu3CA-RT serves as a
successful proof of concept of a network analysis driven rtfMRI fra-
mework, the discussion items indicate that further development and
testing is required, especially with regards to improving technical im-
plementation, network analysis and data quality.

Regarding Neu3CA-RT's technical implementation and software de-
sign, aside from adding improved artefact monitoring and visualisation
options to the toolbox, particular attention will be given to: minimising
the latency of each step in the real-time processing pipeline; minimising
the latency added by the Matlab GUI infrastructure (either by using a
compiled version of Matlab or a different programming framework);

Fig. 7. Sum of squared errors (SSE) divided by sum of squared signal (SSS). SSE/SSS (on the vertical axis, lowest value at 0.88 for easier comparability) is shown for
each of the four experimental runs (on the horizontal axis).
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investigating increased processing power and parallelization options;
and updating the GUI for intuitive user experience.

To improve the network analysis presented in this study, the first
aim should be to use a better understanding of the behavioural profile
dynamics to propose an efficient model that increases the specificity of
the results, an aspect that the Neu3CA-RT framework currently lacks.
With increased specificity, more complete and intuitive interpretations
can be made from the results about the dynamic brain state of the
subject and hence about the validity of the iCAPs/BrainMap network
analysis model in a rtfMRI framework. In future, network analysis need
not be limited to the iCAPs model and should be expanded to include
other network models as well as MVPA, data-driven and/or machine
learning methods known in literature to yield improved results.

Envisaged steps to investigate and improve data quality include:
adding real-time white matter and CSF nuisance regressors to the de-
noising GLM; correcting for physiological noise in real-time (heart beat
and breathing); correcting for scanner induced artefacts in real-time;
improving software options to display subject movement and other
noise in real-time (i.e. quality checking); and optimising BOLD contrast
and sensitivity with the use of real-time multi-echo EPI acquisition and
processing.

Finally, while this work reported the development and explorative
use of a real-time fMRI analysis tool based on whole-brain networks,
the ultimate goal of Neu3CA-RT is for it to be used as a tool in rtfMRI
neurofeedback training experiments. In this regard, several data pro-
cessing steps should be added to the real-time pipeline, including
neurofeedback signal calculation, scaling and presentation. Once future
developments with regards to rtfMRI data denoising and quality im-
provements have been accomplished, a neurofeedback experiment
could investigate the effects of neurofeedback-driven modulation of one
or a set of the behavioural profiles, as these profiles provide a simple
representation of complex network-based and dynamic brain activity.
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