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Abstract. Objective: Wrist-worn photoplethysmography (PPG) can enable free-

living physiological monitoring of people during diverse activities, ranging from sleep

to physical exercise. In many applications, it is important to remove the pulses not

related to sinus rhythm beats from the PPG signal before using it as a cardiovascular

descriptor. In this manuscript, we propose an algorithm to assess the morphology of

the PPG signal in order to reject non-sinus rhythm pulses, such as artifacts or pulses

related to arrhythmic beats.

Approach: The algorithm segments the PPG signal into individual pulses and

dynamically evaluates their morphological likelihood of being normal sinus rhythm

pulses via a template-matching approach that accounts for the physiological variability

of the signal. The normal sinus rhythm likelihood of each pulse is expressed as a quality

index that can be employed to reject artifacts and pulses related to arrhythmic beats.

Main results: Thresholding the pulse quality index enables a near perfect detection of

normal sinus rhythm beats by rejecting most of the non-sinus rhythm pulses (positive

predictive value 98-99%), both in healthy subjects and arrhythmic patients. The

rejection of arrhythmic beats is almost complete (sensitivity to arrhythmic beats 7-

3%), while the sensitivity to sinus rhythm beats is not compromised (96-91%).

Significance: The developed algorithm consistently detects normal sinus rhythm beats

in PPG signal by rejecting artifacts and, first of its kind, arrhythmic beats. This

increases the reliability in the extraction of features which are adversely influenced by

the presence of non-sinus pulses, whether related to inter-beat intervals or to pulse

morphology, from wrist-worn PPG signals recorded in free-living conditions.
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1. Introduction

1.1. Physiological monitoring with photoplethysmography

Over the last decades wearable devices for general consumer applications, such as

fitness trackers and smartwatches, are increasingly used in medical and diagnostic

applications. The need for unobtrusive and inexpensive monitoring in certain areas

of healthcare, such as cardiac and sleep monitoring, is important driving force for

the development of medically graded wearable devices and algorithms (Russo et al.

2015, Eapen et al. 2016, Piwek et al. 2016). Photoplethysmography (PPG) is one of

the most promising technologies for wearable medical monitoring (Allen 2007). The

PPG sensor uses one or more LEDs to illuminate the skin and a photo-diode to

measure the quantity of light that is either transmitted through (transmissive PPG)

or reflected (reflective PPG) by the tissue. The acquired PPG signal describes the

variation of blood volume in the micro-vessels that is caused by the pulsatile nature

of the circulating blood. PPG technology is broadly researched because it can be used

to derive a substantial number of physiologically relevant signals and features, such as

respiration and heart rate variability (HRV) (Charlton et al. 2017, Lázaro et al. 2011,

Allen 2007). In turn, these signals and features can be used to develop algorithms

to monitor or classify various physiological phenomena. Reflective PPG is commonly

applied in consumer devices, such as smartwatches, as it is easily embeddable in wrist-

worn devices and enables continuous and relatively unobtrusive monitoring of cardio-

circulatory activity. Several research studies have been conducted on wrist-worn PPG

devices for medical applications with the intent to complement or replace more classical

diagnostic techniques, such as polysomnography in sleep research and Holter ECG in

cardiac-monitoring (Fonseca et al. 2017, Eerikäinen et al. 2017, Bonomi et al. 2016).

For several applications, it is necessary to evaluate the quality and the regularity

of the PPG signal in order to correctly extract the desired information. For instance,

the removal of artifacts and arrhythmic beats from the inter-beat intervals (IBI) is

paramount for computation of accurate HRV features. The irregularities caused by

artifacts and non-sinus rhythm beats can increase IBI variability or bias IBI analysis

and, therefore, corrupt HRV estimation (Camm et al. 1996, Peltola 2012). In addition to

their effect on HRV calculation, the presence of pulses from arrhythmic beats hampers

the calculation of PPG morphology-related features, such as PPG-derived respiration,

due to the different hemodynamical response as compared to normal sinus rhythm

beats (Camm et al. 1996, Sološenko et al. 2017). Signal quality assessment is particularly

important for PPG because this signal is more prone to be corrupted when compared,

for example, with an ECG signal. The PPG signal can be distorted by motion artifacts,

low blood perfusion or sub-optimal contact between the sensor and the skin (Allen

2007, Schäfer & Vagedes 2013, Tamura et al. 2014). At the same time, evaluating the

quality of PPG is not a trivial task, as the morphology of the pulses is highly variable

due to the broad spectrum of physiological parameters influencing the signal. The

pulse morphology depends on the PPG measuring location, the pressure applied to the
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sensor, the systemic and local blood pressure, cardiorespiratory dynamics, and factors

influencing the mechanical properties of the vessels—such as arterial stiffness due to

age or plaque buildup (Linder et al. 2006, Allen 2007, Lázaro et al. 2011, Tamura et al.

2014, Hickey et al. 2015). Moreover, the presence of pulses caused by arrhythmic beats

such as premature ventricular contractions, can be hidden by adjacent sinus rhythm

pulses (Sološenko et al. 2017, Gil et al. 2013).

1.2. Quality assessment in PPG signals

Several algorithms for beat detection and quality assessment of PPG signals are

described in the literature. Some of them estimate the quality of each pulse by

thresholding specific morphological features, such as the duration of the rising slope and

the amplitude of the PPG pulse (Fischer et al. 2017, Sukor et al. 2011). Furthermore,

the thresholds for quality assessment are often defined heuristically or experimentally

and are not necessarily valid for every PPG recording set-up. For example, some signal

amplitude-related thresholds require adjustment depending on the location or the type

of PPG sensor (Allen 2007, Nijboer et al. 1981). Other algorithms assess the quality

of each PPG pulse by comparing it with a pulse template derived from the PPG signal

itself. Such a template is often obtained by averaging multiple PPG pulses and quality is

then calculated by directly comparing each individual pulse with the template, typically

using one or more matching metrics, such as the Pearson’s correlation coefficient (Karlen

et al. 2012, Orphanidou et al. 2015) or the dynamic time warping (DTW) distance (Li

& Clifford 2012). Depending on the set of pulses considered, averaging the pulse signals

can lead to a distorted template because of the variability in the morphology of the

pulses (Boudaoud et al. 2005, Petitjean et al. 2014). Moreover, direct comparison

between a pulse and a template could lead to misclassification of a sinus rhythm pulse

as a corrupted pulse, for instance when pulse-morphology changes due to a postural

change. In addition, metrics like Pearson’s correlation coefficient evaluate only the

strength of the linear relationship between two variables. Therefore, it might not be

sensitive to morphology changes that do not affect the rise-decline behavior of the

PPG pulses, such as arrhythmic phenomena, but which are relevant to identify. We

recently proposed an algorithm that overcomes these drawbacks (Papini et al. 2017).

This algorithm calculates the pulse quality by comparing each individual PPG pulse to a

template obtained from a set of pulses via a DTW-based averaging. The pulse-template

comparison is mediated by the DTW of the pulse onto the template in order to account

for the physiological variability of the PPG signal. However, the warping of the PPG

pulse is not constrained and could therefore over-adapt the pulses to the template. This

limits its applicability when a high similarity between the non-sinus rhythm pulse and

the template is present, e.g. when the pulses are generated by arrhythmic beats. In

addition, similar to the algorithms in the literature that we are aware of, this algorithm

was developed and tested only on transmissive PPG, conventionally used in medical

pulse oximeters. Moreover, none of the algorithms presented in the literature are

developed to reject arrhythmic pulses and most of them were not tested in the presence
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of arrhythmias or in long-term recordings in free-living conditions such as in overnight

recordings. Therefore, questions remain regarding the applicability and reliability in

important real-world applications such as night-by-night sleep analysis and follow-up of

patients after hospital discharge.

This paper describes an extended version of the algorithm presented previously (Pa-

pini et al. 2017). Here we describe an algorithm to assess the quality of individual PPG

pulses, defined as the likelihood of being generated by normal sinus rhythm contractions.

The quality index is assessed by comparing PPG pulse morphology to an adaptive tem-

plate. The template is created via DTW barycenter averaging of several (DBA) pulses in

order to be insensitive to physiological differences in pulses used to create the template

and to guarantee a tailored template for every recording. The comparison between each

pulse and the template is mediated by constrained DTW in order to account for the

physiological variability of pulse morphology during sinus rhythm. The performance of

the algorithm to classify normal sinus rhythm beats is tested on two datasets containing

overnight free-living data from a wrist-worn reflective PPG device and analyzed in terms

of beat detection and rejection rate of pulses caused by arrhythmic beats.

2. Methods: Pulse quality index estimation algorithm

Figure 1 illustrates an overview of the algorithm; each of the steps will be described

in the following sections. Regarding the abbreviations used, the subscript indicates the

main characteristic of an element (e.g. TempAd is the adapted template); PP indicates

a pulse of a PPG signal (e.g. PP10Hz is a pulse of PPG10Hz); the abbreviations ending

in s have to be considered plural (e.g. PPs10Hz is the plural form of PP10Hz).

2.1. PPG pre-processing, segmentation and beat localization

The raw PPG signal is filtered to obtain two versions with different frequency

components:

• PPG2.25Hz: a 3rd order zero-phase band-pass Butterworth filter with cut-off

frequencies of 0.4 Hz and 2.25 Hz is used to remove high-frequency components

related to noise and to the diastolic peak and the low-frequency components related

to respiration and body position changes (Allen 2007) (figure 2(a)). This enhances

the two local minima defining the start and the end of each pulse. The local minima

are found according to:

l = {t | sign ˙PPG2.25Hz(t) 6= sign ˙PPG2.25Hz(t− 1) &

& ¨PPG2.25Hz(t) > 0 & PPG2.25Hz(t) < 0}. (1)

Where ˙PPG2.25Hz and ¨PPG2.25Hz indicate, respectively, the first and second

derivative of PPG2.25Hz.

• PPG10Hz: a 3rd order zero-phase band-pass Butterworth filter with cut-off

frequencies of 0.4 Hz and 10 Hz is used to preserve the morphology of the PPG pulses

which should still exhibit the component related to the diastolic peak (figure 2(a)).
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Figure 1. Overview of the algorithm. The flowchart represents the steps to

obtain the beat locations and their associated pulse quality index (PQI) from the

raw PPG signal. The rectangular blocks represent the operations and the blocks

with rounded corners and bold text are the inputs/outputs for each operation. The

sections of the paper corresponding to each operation block are reported above each of

them. Regarding the acronyms in the figure: PPG2.25Hz and PPG10Hz are two filtered

versions of the raw PPG signal (section 2.1), PP10Hz is a segment of PPG10Hz (section

2.1), PPTemp and PPPQI are two different normalization of PP10Hz used for template

and quality calculation (section 2.2), TempAd is an amplitude adjusted version of the

template (sections 2.2 and 2.3), PPwarped is a dynamic time warped version of the

PPPQI (section 2.4).

PPG10Hz is segmented in PPs10Hz using the local minima of PPG2.25Hz (figure 2(b))

according to the following equations:

li = ith local minimum time, (2)

peak = {t | PPG2.25Hz(t) = max PPG2.25Hz(li, li+1)}, (3)

start = {t | PPG10Hz(t) = min PPG10Hz(li, peak)}, (4)

end = {t | PPG10Hz(t) = min PPG10Hz(peak, li+1 + li+1−li
4

)}, (5)

PP10Hz = PPG10Hz(start, end). (6)

The resulting PPs10Hz that have a duration above 1.5 sec or below 0.5 sec, corresponding

to a heart rate outside normal sinus rhythm range of 40 to 120 beats per minute

(bpm), are excluded from further analysis. The exclusion criteria are slightly broader

than the normal resting HR range in adults (40 to 90 bpm) in order to retain HR

changes that may be caused by conditions unrelated to cardiovascular conditions, such

as obstructive sleep apnea (Penzel et al. 2003, Mason et al. 2007). The remaining

PPs10Hz are upsampled to 1 kHz (in case recorded with a lower sampling frequency)

using a cubic spline interpolation in order to localize more accurately their key points,

such as their peaks. This procedure is commonly employed for ECG signals in order

to better define the beat time location in the QRS complexes (Ellis et al. 2015). Since

each PPG pulse is the hemodynamic consequence of a cardiac contraction, it is possible

to associate a fiducial point of the pulse with a heartbeat. The algorithm detects the
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2

(a)

Figure 2. PPG signals and Pulses. (a): The raw PPG signal and the two filtered

signals derived from it. (b): Segmentation of the PPG10Hz using the PPG2.25Hz minima

(green stars); the red arrow indicates the search window for the start of the pulse (red

star) and the blue arrow the search window for the end of the pulse (blue star). The

yellow dotted line represents the maximum tangent to the rising slope of the PP10Hz

and the yellow star indicates the point where is obtained. The yellow star is the fiducial

point of the pulse associated to the heartbeat chosen in our research.

largest first derivative in the rising slope of PP10Hz as the fiducial point (yellow star

in figure 2(b)) since we found it to reproduce accurately the ECG-derived IBI (Nano

et al. 2017).

2.2. Pulse normalization

The amplitude of the PPG pulses can vary significantly during a recording due,

for instance, to a change in body position or to different pressure applied to the

sensor (Linder et al. 2006, Tamura et al. 2014). Therefore, it is necessary to normalize

the PP10Hz amplitude before creating a pulse template out of an ensemble of pulses.

The normalized version of PP10Hz is calculated according to:

amplitude = |max PP10Hz −min PP10Hz|, (7)

shift = (max PP10Hz + min PP10Hz)/2, (8)

PPTemp =
PP10Hz − shift

amplitude
. (9)

Sudden substantial increases of the PP10Hz amplitudes are often representative of signal

corruption. In these cases, the amplitude information is helpful in identifying segments

that should have a low quality index. For this reason, a second normalized version of

the PPs10Hz which is used for quality index calculation is computed as:

PPPQI = PP10Hz − shift. (10)

The different normalization approaches complicate the estimation of the similarity

between the template derived from the PPsTemp and each PPPQI because the first

represents a normalized amplitude, while the second contains a varying amplitude.

Therefore, in order to be able to compare template and PPsPQI, it is necessary to adjust

the template amplitude with a correction factor before each comparison between the

template and PPPQI. To derive the correction factors, a time series comprising all the
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amplitudes obtained in (7) is stored. First, the algorithm removes from the amplitude

time series all elements that have a value 50% higher or lower than the previous or the

following value. Then the clipped amplitude time series is interpolated at 4 Hz using a

cubic spline interpolation and filtered with a 3rd order zero-phase low-pass Butterworth

filter with a cut-off frequency of 1.5 Hz. The cut-off frequency is chosen to confidently

include physiological amplitude variations since these are not expected to occur faster

than the respiration frequency (a frequency range from 4 to 60 breaths per minute, i.e.

from 0.067 Hz to 1 Hz was considered) (Charlton et al. 2017). Finally, the filtered signal

is resampled at the same time locations of the original amplitude time series. In this

way, the algorithm suppresses abnormal amplitude variations from each PPPQI while

retaining the low-frequency physiological amplitude variations. The cleaned amplitude

time series is used as a series of correction factors; the adjusted templates (TempAds)

are obtained by multiplying the template by the corresponding correction factors for

each comparison with the PPPQI.

2.3. Template creation

The literature describes several examples of template extraction from cardiovascular

signals such as ECG and ballistocardiogram for the purpose of beat classification and

signal quality estimation (Orphanidou et al. 2015, Brüser et al. 2013, Redmond et al.

2012, Clifford 2002). In our algorithm, the quality assessment of each PPG pulse is also

based on a template matching approach: each PPPQI is compared with an amplitude

adjusted template describing the morphology of an uncorrupted and regular PPG pulse,

i.e. a pulse free from movement artifacts and caused by a normal sinus rhythm beat. The

pulses in a PPG signal are a clear example of a time series that changes in shape: the

pulse morphology changes according to normal physiological variation, such as heart rate

(HR), vascular tone and body position (Linder et al. 2006, Allen 2007). For this reason,

our algorithm calculates the pulse template by means of DBA (Petitjean et al. 2014).

This allows the time series to be averaged by iteratively decreasing the DTW distance

between an initial template and each individual pulse (figure 3). In each iteration,

PP Temps

Dynamic time warping barycenter averaging 

PP Temps

adaptation to 

the template 

in one hour of recording

Medoid

calculation

Initial 

template

Temporary 

Template

5 iterations

Template

Lowpass filter

10.0 Hz

Only for 1st

iteration

Only for 5th

iteration

averaging of

Conven�onal

adapted PPsTemp

Figure 3. Template creation. The flowchart shows the steps to obtain, for each hour

of PPG recording, a template from the PPTemps. The format of the blocks indicates

their type as in figure 1. The PPTemps adaptation to the template is mediated by

DTW, similar to the PPPQIs adaptation described in section 2.4.

the resulting averaged time series is used as the initial template for the next iteration.

The DBA is initialized with the medoid of the PPsTemp as initial template and this
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initial template is refined during five iterations (Petitjean et al. 2014). The number

of iterations is chosen empirically to ensure the computation a pulse template with a

correct morphological representation of the pulses, in an efficient computation time.

The resulting pulse template is filtered using a 3rd order low-pass Butterworth filter

with a cut-off frequency of 10 Hz to remove high-frequency components introduced by

the DBA. This guarantees that the template has the same frequency components as the

PPG segments used to obtain it (PPsTemp) and of the PPG segments used to calculate

the quality index (PPsPQI). A separate template is calculated for each one-hour segment

of the PPG recording. The choice of one hour segments represent a compromise between

a sufficient amount of uncorrupted pulses while keeping computational time within

reasonable limits. However, the algorithm is also able to handle shorter segments, for

instance of eight minutes, as described in Papini et al. (2017).

Figure 4 illustrates an example where DBA outperforms a conventional averaging

procedure. In this case, the subset of pulses used has a varying morphology caused by

the presence of a venous pulsation at the beginning of some of the PPG pulses (e.g. in

PPTemp 2) (Shelley et al. 1993). The morphological variety is remarkably broad (the

area highlighted in green) and conventional averaging does not yield a pulse rising slope

characteristic of an actual PPG pulse. Instead, the DBA maintains the overall shape

of the PPG pulses and, in addition, includes the influence of the venous pulsation.

Aligning the pulses before conventional averaging would improve the results, but would

also require removal of the part of the PPG pulses related to the venous pulsation and,

therefore, part of the physiological information present in the signal. In our algorithm,

it is not necessary to account separately for the pulse misalignment because the DBA

accounts for it (pulse adaptation step in figure 3). Thanks to this, the DBA can operate

on segments with different lengths, eliminating the need to zero-pad or trim segments

to a fixed length before aligning and finally averaging them.

Figure 4. Template and PPsTemp. The green area encloses the pulse morphology

within the 90th and the 10th percentile of the PPsTemp’ silhouettes. The morphology

varies from classical pulse (PPTemp1) to pulse with a venous pulsation (PPTemp2). The

template obtained by DBA (DBA Template) is closer to a sinus rhythm pulse than

that obtained by conventional averaging (Avg Template).
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2.4. PPPQI adaptation

The proposed algorithm uses DTW to derive PPwarped from the warping of PPPQI to

the template calculated for the one hour of PPG signal they belong to (figure 5). In

contrast with our previous algorithm (Papini et al. 2017), we now apply two constraints

to the DTW in order to avoid a distortedly warped PPsPQI (Sakoe & Chiba 1978). One

constraint limits the maximum time warping to 0.3 sec and the other limits the number

of matching points to a maximum of 3. The first constraint is derived heuristically

and corresponds approximately to two times the standard deviation of the inter-pulse

intervals in our datasets. The second constraint is chosen in order to be able to transform

a PPPQI from 0.5 sec to 1.5 sec, and vice versa, and to guarantee a balanced warping

to each point of the pulses. In this way, the entire spectrum of pulses, with a duration

within the boundaries set in the PPG signal segmentation, can be covered. Finally,

the PPwarped are filtered using the same approach as for the template, in order to

remove high-frequency components introduced by the DTW (figure 5) and to enable

the comparison with the TempAd to calculate the pulse quality index.

A
m

p
li
tu

d
e
 [

a
.u

]

(a) (b) (c)

Figure 5. PPPQI adaptation examples. (a) sinus rhythm pulse similar to the

template, (b) sinus rhythm pulse different from the template, (c) pulse composed by a

sinus rhythm pulse merged with a pulse caused by a premature ventricular contraction.

2.5. PQI calculation

The DTW produces a warped pulse that matches best, within the constraints, with

the derived pulse template. However, some differences between them remain, for two

reasons: first of all, because the DTW modifies the time locations of each point, but

not their values, and second, because of the DTW constraints used. In this way, part of

the morphological discrepancies between PPPQI and TempAd remain in the PPswarped.

These residual differences are used by the algorithm to calculate the quality index (PQI)

of each PPG pulse. An overview of the procedure is shown in figure 6 and the details

are explained in the following equations.

First, the algorithm finds the indices of each sample of PPwarped with a difference

higher than 10% with respect to the corresponding samples of the TempAd (11).

UP =
{
i ∈ Z+|

∣∣∣PPwarped(i)−TempAd(i)

TempAd(i)

∣∣∣ > 0.1
}
. (11)

Where Z+ denotes the set of positive integers ranging from one to the number of

samples of PPwarped. These indices allow the classification of each point of PPwarped as

unmatched (UP) or matched (MP) to the relative TempAd points. The 10% threshold
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PPwarped Unmatched 

points 

estimation

True

TempAd

Eq. 11 & 12

Root mean square 

error of the 

unmatched points

Eq. 13
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points
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and TempAd
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> 0
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Eq. 15

Eq. 15
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False

# = 0

True
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Eq. 13

Figure 6. PQI calculation. The flowchart shows the steps to calculate the pulse

quality index. The blue blocks represent the search for pulse-template dissimilarities,

the orange blocks the quantification of the dissimilarity as an error, the red blocks the

correction of the error and the green blocks the calculation of the PQI. The format

of the blocks indicates their type as in figure 1. The numbers on top of the blocks

indicate the corresponding equation.

is chosen heuristically and lower threshold values appear not to drastically influence the

algorithm’s performance. Instead, thresholds above 20% are not recommended in order

to avoid decreasing the ability to correctly calculate the PQI. By using a 10% threshold,

the algorithm can account for small deviations that the DTW cannot fully compensate

for, and can treat them as residual physiological variations. The quantity of unmatched

and matched points, respectively NUP and NMP, are used to calculate the percentage

of matching points as:

NMP% = NMP/(NMP + NUP). (12)

The second step consists in calculating the root mean square error of the unmatched

points in respect to TempAd according to:

RMSEUP =

 0 if Nup = 0√∑NUP
j=1 [TempAd(UPj )−PPwarped(UPj )]

2

NUP
if otherwise.

(13)

The RMSEUP represents the pulse-template dissimilarity, but it depends on the

amplitude of TempAd, which varies for each PPwarped-TempAd comparison. In fact when

NUP is not zero, the higher the amplitude of TempAd, the higher the RMSEUP is,

regardless of the actual dissimilarity between TempAd and PPwarped. Therefore, the

algorithm normalizes the RMSEUP for the amplitude of TempAd:

RMSEnorm = RMSEUP/(max(TempAd)−min(TempAd)). (14)

In case the error is larger than the amplitude of TempAd, the PPwarped has certainly

a poor quality, therefore its PQI is set to zero. The RMSEnorm has the disadvantage

that it takes into account only the magnitude of the mismatch and not the number of

the points mismatching. This characteristic negatively influences the PQI because it

makes PQI insensitive to situations where there is a high number of unmatched points

(low NMP%) in combination with a low RMSEnorm. The algorithm accounts for this

by dividing the RMSEnorm by NMP%. This ratio can be higher than 1, resulting in a

negative PQI. Since there is no reason to have a PQI lower than zero, PQI is set to 0 in

case the ratio is larger than 1, i.e. RMSEnorm larger than NMP%.

PQI = max {0, 1− RMSEnorm/NMP%} . (15)
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The algorithm calculates a single PQI varying from 0—low-quality, highly corrupted

or highly influenced by arrhythmia—to 1—high quality, uncorrupted and belonging to

normal sinus rhythm—for each pulse in a one-hour segment of the PPG recording.

In case the average of the non-null PQIs is below 0.9 in an one-hour segments of

the recording, the PQI is considered invalid, the algorithm excludes the pulses with the

20% lowest PQI, recalculates the template and re-assesses the quality of all pulses in

that segment. If the PQI is still not valid, the template calculated in the previous hour

of the recording is used. In case there is no template available, a PQI of zero is assigned

to all the pulses in the segment.

3. Materials and validation methods

3.1. Datasets

Two datasets are used to assess the performance of the PQI as measure of normal sinus

rhythm likelihood of a pulse. The first dataset (Heart Health Sleep dataset, HHS)

consists of 26 overnight recordings from 16 healthy adults and is described by Fonseca

et al. (2017) as Validation set 1. The subjects in the HHS datasets did not have any

previous history of cardiovascular disorders and the subjects were assumed to have

normal sinus rhythm. The second dataset (Atrial Fibrillation dataset, AF) consists of

16 24-hour recordings from 16 patients, of which four had continuous atrial fibrillation,

one atrial flutter and eleven sinus rhythm with premature contractions. This dataset

is described by Eerikäinen et al. (2017); for this research, only the overnight part of

each recording is considered in order to have a stationary recording condition, as in

most literature (Aboy et al. 2005, Karlen et al. 2012, Li & Clifford 2012, Fischer et al.

2017). The start and end time in bed were annotated by a researcher by analyzing the

accelerometer signal. The HHS and AF datasets contain ECG (respectively from lead II

and 12-lead) and wrist-worn PPG signal recorded simultaneously. In addition, the ECG

data in the AF dataset was visually analyzed by a clinical expert using an automated

software to label every beat either as sinus rhythm, AF, premature atrial contraction,

premature ventricular contraction, artifact, or unknown. For the HHS dataset, the

beats in the ECG signal were automatically detected using a QRS detector and post-

processing localization algorithm described in Fonseca et al. (2014). The ECG signals

comprise 769935 beats in the HHS dataset and 437337 beats in the AF dataset. The

AF dataset comprises 276041 sinus rhythm beats and the arrhythmic beats comprise

9778 premature atrial contractions (PAC), 8060 premature ventricular contractions

(PVC), 107485 beats during atrial fibrillation (AFib), 35873 beats during atrial flutter

(AFlu) and 100 unknown/artifact. During the benchmarking of the algorithm, the

unknown/artifact beats are treated in the same way as arrhythmic beats because of

their limited amount and since both groups shoud anyway be rated with a low quality

index.
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3.2. Validation procedures

The current version of the algorithm differs from that described in Papini et al. (2017)

in the two constraints employed in the pulse adaptation (section 2.4). The constraints

do not refer to specific pulse types (e.g. uncorrupted, arrhythmic or artifact) or to a

specific pathology. Given the large number of beats used to validate the algorithm,

and the independence of the constraints from arrhythmic/artifact influences on the

pulse morphology, we are convinced that there is no risk of overfitting to the validation

datasets. The algorithm is tested regarding sinus rhythm beat detection capability

and rejection of arrhythmic beats. Its performance is evaluated in comparison with

a reference: either manually or automatically annotated beats from the ECG signal.

Moreover, the performance is compared with the correlation derived pulse quality index

described in Clifford et al. (2015) and summarized in the next section.

3.2.1. Correlation derived pulse quality index An algorithm to derive a pulse quality

index based on the Pearson’s correlation coefficient between the PPG pulses and a

template has been publicly released during the PhysioNet/Computing in Cardiology

Challenge of 2015. The algorithm takes as input a PPG signal in addition to the pulse

segmentation points, and outputs a quality index for each pulse. The algorithm first

computes a template from all the pulses and then uses this template to calculate the

correlation-based pulse quality index of the same pulses (PQICorr). In our research,

the correlation-based algorithm takes as input the PPsTemp and uses these pulses for

template creation and quality assessment. The beat locations within the pulses are

defined as in our algorithm, i.e. the point with the maximum slope in the rising part

of the PPG pulse. The correlation-based algorithm uses a standard ensemble averaging

to derive the template and it re-samples the pulses to match the number of samples of

the template before calculating the quality index. The PQICorr is validated in the same

way as the PQI, allowing us to benchmark the performance of our proposed algorithm

with respect to a commonly used approach described in the literature.

3.2.2. Sinus rhythm beat detection The algorithm described in this manuscript gives

as an output the beat times and the PQI associated with each pulse. The performances

of the beat detection algorithms are calculated by comparing the beat times derived

from PPG to the annotated beat times from ECG as in Karlen et al. (2012) and Aboy

et al. (2005). Prior to the performance evaluation, the beat times derived from the

PPG signal are synchronized with those derived from the ECG signal. This is done

by maximizing the cross-correlation of the IBIs obtained from both signals (Fonseca

et al. 2017). Sensitivity and positive predictive values (SEN, PPV) are employed to

quantify the beat detection rate of normal sinus rhythm beats (ANSI-AAMI 1998). In

order to be able to compute these metrics, true detections are determined by defining a

maximum time difference allowed between the reference beat from ECG and a detected

beat from PPG as in Aboy et al. (2005), Karlen et al. (2012), Papini et al. (2017). Every

missed detection is considered a false negative while every detection not belonging to any
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detection window is considered a false positive. SEN and PPV are then calculated as:

SEN =
True detections

True detections + Missed detections
, (16)

PPV =
True detections

True detections + Not belonging detections
. (17)

The detection window for ECG-PPG beat matching is set to 125 ms in order to account

for the pulse transit time variations that can generate local time differences between

PPG and ECG beats even after the global synchronization step, e.g. due to body

position change (Foo et al. 2005). PQI is used to discard pulses with a PQI lower than

a predefined threshold. SEN and PPV are calculated for different thresholds in order

to determine the operating characteristics of the algorithm regarding detection of beats

annotated as sinus rhythm with respect to the others, i.e. arrhythmic beats, artifacts or

corrupted pulses. The assumption is that by increasing the quality index threshold the

PPV should increase, because more erroneous detections, i.e. artifacts and non-sinus

rhythm beats, will be rejected. SEN and PPV are not calculated for the subjects with

continuous AFib and AFlu because they do not have any beats labeled as sinus rhythm,

and the number of true detections cannot be calculated.

3.2.3. Rejection of arrhythmic beats Each arrhythmic beat in the AF dataset has a

reference label of PAC, PVC, AFlu or AFib. The capability of the algorithm to assign

a low quality index to each arrhythmic beat is tested as the sensitivity to each of

these types of beats (SENArr). SENArr is calculated in the same way as the sensitivity

to sinus rhythm beats by now using the arrhythmic beats as positive class instead

of sinus rhythms beats. The assumption is that by increasing the PQI threshold the

number of arrhythmic beats rejected should increase and consequently the SENArr should

decrease due to the lower arrhythmic beat detection (true positives). The presence of

an arrhythmic beat can also influence the morphology of a previous PPG pulse by,

for instance, deforming its diastolic phase (Sološenko et al. 2017, Gil et al. 2013).

Therefore, we determine a subject-specific time threshold as the median of the time

distances between each peak and the corresponding end of each pulse in the complete

recording (to account for the subject variability of the PPG signal). If two PPG beats

are closer in time than the subject-specific threshold, the same label as that assigned

to the subsequent PPG beat is also assigned to the first one. Subjects with continuous

AFib or AFlu do not have any beats labeled as sinus rhythm, therefore their SENArr

is calculated separately from the other arrhythmic subjects. The four AFib subjects

are treated differently from the rest because no sinus rhythm is present and, therefore,

it is not possible to assess deviations from sinus rhythm. The AFlu subject is also

treated separately because one form of the pathology reduces the ventricular contraction

variability on the contrary to the other arrhythmias (Scholz et al. 2014). The pulses

during atrial flutter are extremely regular and are therefore not distinguishable by simple

morphological comparison. By isolating subjects with AFib and AFlu, the sensitivity

to arrhythmic beats can be calculated over the entire AF dataset without being biased
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Figure 7. Sinus rhythm beat detection. The sensitivity and positive predictive

value obtained using the PQI (left) and the PQICorr (right). Each curve shows the

results for one of the datasets; the marker types are dataset-specific. The results start

for a quality threshold equal to zero (stars in the figure) and are reported for threshold

going from 0.5 to 0.8 with 0.1 step. The exact sensitivity and positive predictive value

for each point are in parenthesis.

by the different type of arrhythmic populations, i.e. continuous as in AFib and AFlu,

versus intermittent PAC and PVC. Nonetheless, for these five subjects, the sensitivity

to arrhythmic beats is calculated separately for each pathology for the overall number

of arrhythmic beats. In addition, the overall quality indices values are calculated to

describe the algorithm’s behavior for these two arrhythmia cases and to compare it

with the average quality indices for premature contractions and sinus rhythm beats

using the Mann & Whitney (1947) test. For the recordings with premature contractions,

SENArr is calculated for the overall number of arrhythmic beats, as the average of each

subject’s SENArr and for the overall number of PAC and PVC beats.

4. Results

4.1. Sinus rhythm beat detection

The PPV and SEN for detecting normal sinus rhythm beats in the HHS and AF datasets

calculated for PQI and PQICorr thresholds ranging from 0.0 to 0.8 are reported in figure 7.

For both pulse quality indices, increasing the threshold of beat rejection increases the

positive predictive value at the expense of sensitivity. While the positive predictive

value is comparable in both datasets, the sensitivity is lower in the HHS dataset. The

beat detection algorithm performs well, also without thresholding the PQI; the positive

predictive value with a PQI threshold of 0.0 is around 97% and 95% in the HHS and

the AF datasets, respectively. By increasing the PQI threshold, the positive predictive

value increases consistently by around 2% and 3% in the two datasets with a moderate

decrease in sensitivity. For a PQI threshold of 0.6, nearly all the beats are successfully

matched with the reference beats from the ECG.
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Table 1. Distribution of PQI and PQICorr for each beat type.

AFib AFlu PAC+PVC Sinus Rhythm

PQI avg±std 0.55±0.38† 0.98±0.11∗ 0.20±0.28† 0.95±0.14

PQICorr avg±std 0.68±0.26† 0.98±0.08∗ 0.57±0.29† 0.95±0.10

Statistically significantly lower (†)/higher (∗) than Sinus Rhythm beats (p<0.01).

Table 2. SENArr [%] for the overall number of beats, per-subject average (avg±std)

and overall number of beats for arrhythmia cases for different thresholds (Thr).

Thr 0.0 0.5 0.6 0.7 0.8

PQI Overall 46.92 6.90 4.90 3.75 2.65

Per-subject 53.64± 25.54 13.73± 11.74 11.38± 10.66 9.53± 8.93 4.06± 4.56

PAC 62.43 11.00 7.92 6.16 4.40

PVC 28.24 1.97 1.25 0.84 0.55

AFib 80.70 55.88 51.80 44.06 30.68

AFlu 98.40 97.34 97.13 96.78 95.78

PQICorr Overall 46.92 30.03 25.10 19.62 12.53

Per-subject 53.64± 25.54 35.99± 22.10 31.89± 22.63 29.05± 22.63 25.77± 22.48

PAC 62.43 39.69 33.50 25.95 15.74

PVC 28.24 18.40 14.98 11.99 8.66

AFib 80.70 63.47 56.91 48.34 36.45

AFlu 98.40 97.90 97.70 97.50 97.16

4.2. Arrhythmic beat rejection

The overall quality index distributions are reported in table 1. The beats belonging to

the subjects with continuous Afib and Aflu have, respectively, significantly lower and

higher quality indices compared to sinus rhythm beats. In table 2 the SENArr is reported

for the same quality index thresholds as used in the normal sinus rhythm beat detection

performance evaluation. For each quality index threshold, the SENArr is lower for the

PQI when compared with the PQICorr, independently of how the metric is evaluated.

5. Discussion

In this paper, we describe and evaluate an algorithm to detect normal sinus rhythm

beats from PPG signals by means of a pulse quality-based rejection of arrhythmic beats

and corrupted pulses. With respect to the detection of normal sinus rhythm beats, the

PQI calculated by comparing the PPG pulses and the signal specific templates achieves

a performance which is on par with the literature. Using a threshold to reject beats

based on the PQI leads to a good agreement with beats obtained from ECG, which is

a more noise resilient signal compared to the PPG signal for beat detection.

The sensitivity to sinus rhythm beats we obtained is lower compared to our previous

work and to results reported in literature (Papini et al. 2017, Fischer et al. 2017, Karlen

et al. 2012, Aboy et al. 2005). However, this can be attributed to the datasets used

for validation. An artifact present in the PPG signal is often not visible in the ECG

signal, because the latter is less influenced by movement artifacts and because the

PPG sensor often temporarily loses contact with the sensed area. For instance, limb-
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worn devices are more subject to body movements than the thorax or abdomen where

ECG is conventionally mounted. In addition, the lack of sinus rhythm annotation

and the completely automatic detection of the reference beats make the HHS dataset

sub-optimal to test the sinus rhythm detection capabilities of our algorithm. The

annotation methodology of the HHS dataset can cause the inclusion of some artifacts

of the ECG signal or arrhythmic beats as sinus rhythm beats. However, it is legitimate

to assume that the large majority of the beats detected in the ECG signals of the

HHS dataset are sinus rhythm beats because the dataset consists of healthy subjects,

with no primary history of cardiovascular disorders or using any substance that could

have influenced the cardiovascular activity (Fonseca et al. 2017). In addition, the

ECG beat detector has been published with good results and used in other research

works (Radha et al. 2017, Fonseca et al. 2018). Nevertheless, the results obtained on

the HHS dataset should not be considered on their own, but only as further evidence of

the algorithm’s performance besides what was obtained on the correctly annotated AF

dataset. Despite this apparent decrease in performance, it should be emphasized that

unlike earlier work, this research focused on free-living recordings of healthy subjects

and of patients with cardiac arrhythmias. The recording conditions introduce a higher

physiological variability in the PPG signals due to the long recording duration and to the

unconstrained setup. Moreover, the number and different pathologies of the measured

subjects enriches the morphological variability of the PPG signal. The reference used

and the type of recordings contribute to a lower sensitivity to sinus rhythm beats, but

the algorithm is able to provide—even for higher PQI thresholds—an average sensitivity

higher than 90% together with positive predictive values close to 99%. In terms of sinus

rhythm beat detection, the PQI performance is comparable to what is obtained using

the PQICorr. However, the positive predictive value is consistently higher for the PQI,

especially for the AF dataset. This performance difference can be attributed to a higher

specificity in assessing the quality of the arrhythmic beats: the PPG pulses associated

with arrhythmic beats are more distinguishable, and hence, easier to reject when rated

with PQI than with PQICorr. In fact, nearly all the arrhythmic beats are rated with a

PQI below 0.6 while PQICorr distribution has the same trend for arrhythmic and sinus

rhythm beats (figure 8).
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Figure 8. Quality index histograms. Distributions of the PQI (left) and PQICorr

(right) for the beats matched with the reference in the AF dataset. The two classes

are more easily separable using PQI than with PQICorr
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The higher class separability between sinus rhythm and arrhythmic pulses using the

PQI is reflected in the arrhythmic beat rejection results. The PQI is able, as desired, to

decrease the overall sensitivity to arrhythmic beats—specifically to PACs and PVCs—to

below 7% while with the PQICorr the SENArr reaches 12% for a threshold of 0.8, i.e. close

to the quality index suitable for sinus rhythm beats. Furthermore, this means that in

order to have a proportion of arrhythmic beats lower than 12% using PQICorr one would

have to sacrifice the sensitivity to sinus rhythm beats, making the SEN-SENArr trade-

off more disadvantageous than for PQI. In fact, PQI is able to guarantee, for every

threshold, a lower presence of arrhythmic beats while maintaining a higher sensitivity

to sinus rhythm beats. An example of the higher discriminative capacity of PQI can

be seen in figure 5. The comparison between PPPQI and the template in figure 5(c)

by means of the Pearson’s correlation coefficient overestimates the pulse quality by

assigning a PQICorr of 0.89—indicating high similarity with the template—even though

it is derived from the merging of a sinus rhythm PPG pulse with a premature ventricular

contraction. Instead, the PQI correctly assigns a low quality index value to most similar

pulse cases (in this example PQI is zero). Changing the similarity metric to a more

sensitive one, such as the pulse-template distance derived via classical DTW (Li &

Clifford 2012), can resolve the pulse quality overestimation, but at the same time it

might increase the chance of underestimating the quality of uncorrupted pulses. For

instance in figure 5(b), the difference between the pulse and the template is not due

to signal corruption or abnormal HR behavior, but the DTW distance increases by

20% with respect to figure 5(a), where the difference between template and pulse is

almost absent.

The SENArr of the PQI is better than that for PQICorr when calculated across all

beats as well as when calculated per-subject. In fact, the PQI offers a per-subject

SENArr three times lower with a twice as low standard deviation compared to the

PQICorr, indicating a lower between-subject variability of the results. This does not

only guarantee a higher rejection of arrhythmic beats in each subject, but also a higher

consistency in the results, suggesting a higher generalizability of the PQI approach.

Moreover, the SENArr of PQI is similar among the two arrhythmic conditions under

evaluation, i.e. PAC and PVC, while the PQICorr tends to have a larger difference

in performance.

The rejection of arrhythmic beats is higher when the recordings are mainly

characterized by PVCs rather than PACs. This can be explained by the morphological

differences in the PPG signal for pulses generated by the PVC and PAC beats. A pulse

related to a PVC often tends to be merged with the sinus rhythm pulse that precedes

it, resulting in a single PPPQI (e.g. figure 5(c)). This occurs less frequently in the case

of PACs. In fact, in the PVC recordings, 99% of the beats preceding the actual PVC

beats were assigned a PVC label as compared to only 55% of PAC beats. The PPsPQI

resulting from the merging of a sinus rhythm and PVC related pulses have a morphology

that is significantly different than the generated templates and, therefore, are easier to

correctly classify as low-quality pulses.
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One of the limitations of the PQI is the inability to properly assess the normal

sinus rhythm likelihood of every single beat/pulse in case an arrhythmic condition

is continuously present in the PPG recording. However, in case of AFib the PQI is

significantly lower than the PQI obtained for the sinus rhythm beats. This means

that also when no normal sinus rhythm pulses are present, the algorithm can quantify

the irregularity of the recording and assign a lower PQI to most of the pulses. This

measure can, therefore, be used to exclude a subject completely from further analysis in

case a PPG recording presents an overall low average PQI. The algorithm needs to be

developed further to achieve a similar rejection rate during AFib as with PAC and PVC.

One future development will be to separate the template creation from the PPsTemp

in case of overall low average PQI in order to increase the morphological difference

between the arrhythmic pulses and the template. These expedients cannot be used in

case of atrial flutter since this condition produces a significant reduction in contraction

variability, which leads to pulses with an extremely regular morphology, as confirmed

by an AFlu SENArr higher than the SEN for every threshold (table 2). In fact, the

PQI distribution of beats from the AFlu subject is significantly higher than the PQI for

any other cardiac condition and sinus rhythm pulsations. Even though the PQI cannot

be used to flat the potential presence of a condition in the case of AFlu, it behaves as

expected: regular pulses are classified with a higher quality index. To correct for this

drawback, a standard 24-hour Holter ECG monitoring could be used to confirm the

suspicion of an atrial flutter.

Naturally, if arrhythmic beats or pulses are excluded when aiming to exclude pulses

corrupted by movement artifacts, the resulting time series is not usable for arrhythmia

detection. However, the information in the PQI can be used as an additional indicator

for arrhythmia detection or to pre-select pulses deviating from the sinus rhythm.

Another limitation of our algorithm is that it is not suitable for online, real-time

assessment of PPG pulse quality. However, by changing, for instance, the number of

pulses required to derive the template, it could be adapted for such an application, with

a trade-off between assessment delay (due to template build-up) and the power of the

PQI in discriminating sinus rhythm and arrhythmic or corrupted beats.

6. Conclusion

We present a new beat detection algorithm for wrist-worn PPG signals. The algorithm

allows the precise identification of normal sinus rhythm beats in a PPG signal recorded

by a wrist-worn device. This is achieved by segmenting the signal into individual pulses

and dynamically evaluating their quality via a template comparison approach. The

algorithm can be employed to obtain inter-beat intervals or PPG pulse series comprising

only of normal sinus rhythm beats by excluding artifacts and pulses corrupted by

external or arrhythmic phenomena, and hence enabling, for instance, the calculation of

heart rate variability features or PPG derived respiration. Moreover, the pulse quality

index can be used according to the application needs: for instance, a higher quality

threshold can be used when analyzing the morphology of the PPG puls; instead, a lower
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threshold can be set in case of beat detection where the sporadic inclusion of a wrong

beat can be corrected during post-processing of inter-beat intervals.

Future work on the algorithm will focus on a more application-specific pulse quality

index calculation, for instance by weighing the mismatch error according to its location

on the PPG pulse. This could help increasing the sensitivity to sinus rhythm beats in

the cases where, e.g., only the rising slope of the PPG pulse is necessary for feature

extraction.
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