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APPROXIMATION AND KERNELIZATION
FOR CHORDAL VERTEX DELETION\ast 

BART M. P. JANSEN\dagger AND MARCIN PILIPCZUK\ddagger 

Abstract. The Chordal Vertex Deletion (ChVD) problem asks to delete a minimum
number of vertices from an input graph to obtain a chordal graph. In this paper we develop a
polynomial kernel for ChVD under the parameterization by the solution size. Using a new Erd\H os--
P\'osa-type packing/covering duality for holes in nearly chordal graphs, we present a polynomial-time
algorithm that reduces any instance (G, k) of ChVD to an equivalent instance with poly(k) vertices.
The existence of a polynomial kernel answers an open problem posed by Marx in 2006 [D. Marx,
``Chordal Deletion Is Fixed-Parameter Tractable,"" in Graph-Theoretic Concepts in Computer Science,
Lecture Notes in Comput. Sci. 4271, Springer, 2006, pp. 37--48]. To obtain the kernelization, we
develop the first poly(opt)-approximation algorithm for ChVD, which is of independent interest. In
polynomial time, it either decides that G has no chordal deletion set of size k, or outputs a solution
of size \scrO (k4 log2 k).
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1. Introduction. Many important combinatorial problems can be phrased in
terms of vertex deletions: given an input graph G and an integer k, is it possible
to delete at most k vertices from G to ensure the resulting graph belongs to a
graph class \scrG ? For example, Vertex Cover asks to delete at most k vertices to
obtain an edgeless graph, while in (undirected) Feedback Vertex Set one deletes
vertices to obtain an acyclic graph. By a classic result of Lewis and Yannakakis [49],
the \scrG Vertex Deletion problem is NP-hard for all nontrivial hereditary graph
classes \scrG . This motivated intensive research into alternative algorithmic approaches
to deal with these problems, such as polynomial-time approximation algorithms
and fixed-parameter tractable (exact) algorithms, which test for a solution of size k
in time f(k) \cdot n\scrO (1) for some arbitrary function f . The notion of kernelization,
which formalizes efficient and effective preprocessing, has also been used to cope
with the NP-hardness of vertex deletion problems. A kernelization (or kernel) for
a parameterized graph problem is a polynomial-time preprocessing algorithm that
reduces any instance (G, k) to an equivalent instance (G\prime , k\prime ) whose total size is bounded
by g(k) for some function g, which is the size of the kernel. While all fixed-parameter
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2259

tractable problems have a kernel, a central challenge is to identify problems for which
the size bound g(k) can be made polynomial, a so-called polynomial kernel ; we refer
the reader to surveys [46, 50, 51] for recent examples.

The paradigm of parameterized complexity fits graph modification problems
particularly well. Assume that an input graph G represents results of an experiment
or measurement. The experimental setup could result in the fact that G has certain
properties, and therefore belongs to a specific graph class \scrG , if the measurements
were completely error-free. Due to measurement errors, graph G might not be in \scrG ,
but close to a member of \scrG . Graph modification problems then capture the task of
detecting and filtering out the errors. If the number of measurement errors is small,
the solution size of the corresponding modification problem is small; an ideal target
for parameterized algorithms.

The complexity of Vertex Cover and Feedback Vertex Set is well under-
stood with respect to all three aforementioned algorithmic paradigms: approximation
algorithms, fixed-parameter algorithms, and polynomial kernelization. In this paper we
analyze a generalization that has remained much more elusive: deleting vertices to make
a graph chordal, i.e., to ensure the resulting graph contains no induced cycles of length at
least four (holes). While Vertex Cover and Feedback Vertex Set have long been
known to be fixed-parameter tractable [10, 16], to have constant-factor approximation
algorithms [4, 7, 54], and to have kernels of polynomial size [12, 15, 54, 56], our
understanding of Chordal Vertex Deletion (ChVD) is considerably lacking. The
problem is known to be fixed-parameter tractable by a result of Marx [53], and the
current-best runtime is 2\scrO (k log k) \cdot n\scrO (1) [19]. The kernelization and approximation
complexity of ChVD has remained unresolved, however. The question of whether
ChVD has a polynomial kernel or not has been open for 10 years [52] and has been
posed by several groups of authors [19, 32, 40] and during the 2013 Workshop on
Kernelization [22]. The approximability of ChVD is similarly open. To the best of
our knowledge, nothing was known prior to this work.

Results. We resolve the kernelization complexity of ChVD and show that the
problem has a kernel of polynomial size. Our main data reduction procedure is
summarized by the following theorem.

Theorem 1.1. There is a polynomial-time algorithm that, given an instance (G, k)
of Chordal Vertex Deletion and a modulator M0 \subseteq V (G) such that G - M0 is
chordal, outputs an equivalent instance (G\prime , k\prime ) with \scrO (k45 \cdot | M0| 29) vertices and k\prime \leq k.

To be able to apply this reduction algorithm, a modulator M0 is needed to reveal
the structure of the chordal graph G  - M0. If ChVD would have a polynomial-
time constant-factor approximation algorithm, or even a poly(opt)-approximation
algorithm, one could bootstrap Theorem 1.1 with an approximate solution as modulator
to obtain a polynomial kernel for ChVD. Prior to this work, no such approximation
algorithm was known. We developed a poly(opt)-approximation algorithm to complete
the kernelization, which we believe to be of independent interest.

Theorem 1.2. There is a polynomial-time algorithm that, given an undirected
graph G and an integer k, either correctly concludes that (G, k) is a no-instance of
ChVD or computes a set X \subseteq V (G) of size \scrO (k4 log2 k) such that G - X is chordal.

Combining the two theorems, we obtain a kernel with \scrO (k161 log58 k) vertices for
ChVD. To appreciate the conceptual difficulties in obtaining a polynomial kernel for
ChVD, let us point out why some popular kernelization strategies fail. In general,
the difficulty of the \scrG Vertex Deletion problem is tightly linked to the amount
of structure of graphs in \scrG . If all graphs in \scrG have bounded treewidth, and \scrG is
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2260 BART M. P. JANSEN AND MARCIN PILIPCZUK

closed under taking minors, then one can obtain a kernel by repeatedly replacing large
protrusions [11, 31] in the graph by smaller gadgets. Since edgeless graphs and acyclic
graphs are minor-closed and have constant treewidth, this explains the existence of
kernels for Vertex Cover and Feedback Vertex Set. This approach does not
work for ChVD, as chordal graphs can have arbitrarily large treewidth (every complete
graph is chordal). Another kernelization strategy for vertex deletion problems into
hereditary classes \scrG is to model the problem as an instance of Hitting Set and apply
a kernelization strategy based on the Sunflower Lemma (cf. [29, section 9.1]). This
yields polynomial kernels when there is a characterization of \scrG in terms of a finite
set of forbidden induced subgraphs, such as P4-free graphs (equivalently, cographs).
However, the number of forbidden induced subgraphs for chordal graphs is infinite
as this set contains all induced cycles of length at least four, making this approach
infeasible as well.

A key ingredient in our kernelization is an algorithmic version of Erd\H os--P\'osa-
type [26] covering/packing duality for holes in chordal graphs, expressed in terms of
flowers. A v-flower of order \ell in graph G is a set \scrC of \ell holes \scrC = \{ C1, . . . , C\ell \} in G,
such that V (Ci) \cap V (Cj) = \{ v\} for all i \not = j.

Lemma 1.3. There is a polynomial-time algorithm that, given a graph G and a
vertex v such that G  - v is chordal, outputs a v-flower C1, . . . , C\ell and a set S \subseteq 
V (G) \setminus \{ v\} of size at most 12\ell such that G - S is chordal.

So there is a large packing of holes intersecting only in v, or all the holes can
be intersected by a small set of vertices. We prove Lemma 1.3 by presenting a local
search algorithm that builds a flower, followed by a greedy algorithm to construct a
hitting set when the local search cannot make further progress. This procedure forms
the first step in a series of arguments that tidy the modulator (in the sense of [58])
and narrow down the structure of the graph, which enables us to identify irrelevant
parts of the graph which can be reduced. Section 3 describes the intuition behind the
kernelization in more detail.

When it comes to the approximation algorithm, we combine linear-programming
rounding techniques with structural insights into the behavior of nearly chordal graphs.
Since chordal graphs have balanced clique separators (see, e.g., [38, Theorem 1] or [21,
Lemma 7.19]), if (G, k) is a yes-instance of ChVD, then there is a balanced separator
in G consisting of a clique plus k vertices. We use an approximation algorithm for
minimum-weight vertex separators of Feige, Hajiaghayi, and Lee [28] together with an
enumeration of maximal cliques to decompose the graph. This decomposition step
reduces the problem of finding an approximate solution to the setting in which we have
an input graph G and a clique X such that G - X is chordal, and the aim is to find
a small chordal deletion set in G (smaller than | X| ). After a second decomposition
step, an analysis of the structure of holes allows the problem to be phrased in terms
of multicut on a directed graph, to which we apply a result of Gupta [39].

Motivation. The parameterized complexity of graph modification problems to
chordal graphs and related graph classes gained significant interest in recent years.
Several factors explain the popularity of such problems. First, chordal graphs and
related graph classes, such as interval graphs, appear naturally in applications in
solving linear equations [14], in scheduling [5], and in bioinformatics [55, 59]. Second,
from a more theoretical perspective, these graph classes are closely related to widely
used graph parameters, such as treewidth: a tree decomposition can be seen as a
completion to a chordal graph, and similar relations hold between interval graphs
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2261

and pathwidth, proper interval graphs and bandwidth, or trivially perfect graphs and
treedepth (cf. [25]). Third, to this day, we do not know of a vertex deletion problem
that is fixed-parameter tractable (FPT) but has no polynomial kernel. (We do know of
some that are not FPT, such as Perfect Deletion [40].) It is tempting to conjecture
that all FPT vertex deletion problems have polynomial kernels. ChVD is a candidate
for refuting this conjecture, and resolving its complexity status gives us more insight
into the landscape of kernelization complexity of vertex deletion problems. Fourth,
as witnessed by numerous works in the past years [8, 9, 18, 20, 19, 25, 32, 42], most
graph modification problems to chordal graphs and related graph classes turn out to be
tractable but very challenging; the corresponding algorithmic results build upon deep
graph-theoretical insights into the studied graph class, making this study particularly
interesting from the point of view of graph theory.

One motivation for studying the particular case of vertex deletion to a chordal
graph comes from the following fact: given a graph G and a modulator M such
that G - M is chordal, one can find a maximum independent set, maximum clique,
and minimum vertex cover of G in time 2| M | \cdot n\scrO (1) (cf. [17, section 6]). Hence an
efficient algorithm for chordal vertex deletion allows these fundamental optimization
problems to be solved efficiently on nearly chordal graphs.

Related work. Kernels are known for a wide variety of vertex deletion prob-
lems [31, 32, 37, 42, 43, 48, 54, 56]. The recent kernels for Odd Cycle Transver-
sal [48] and Proper Interval Vertex Deletion [32, 42] are noteworthy since,
like chordal graphs, bipartite graphs and proper interval graphs do not have bounded
treewidth and do not have a characterization by a finite set of forbidden induced sub-
graphs. There are linear kernels for ChVD on planar graphs [11] and H-topological-
minor-free graphs [45]. Concerning nonstandard parameterizations, such as structural
ones, the ChVD problem is known to have polynomial kernels when parameterized by
the size of a vertex cover [30], when parameterized by the size of a set of candidate ver-
tices from which the solution is required to be selected [40], and on bounded-expansion
graphs when parameterized by a constant-treedepth modulator [33]. Approximation
algorithms have been developed for (weighted) Feedback Vertex Set [4, 7], Odd
Cycle Transversal [35], and its edge deletion variant [1].

Several recent kernelization results rely on matroid theory [47, 48] (resulting in
randomized kernels), or on finite integer index, or the Graph-Minor Theorem [11, 31,
33, 45] (resulting in proofs that kernelization algorithms exist without showing how
they should be constructed). In contrast, our kernelization algorithm is deterministic
and fully explicit; it is based on new graph-theoretical insights into the structure of
chordal graphs.

Organization. We present preliminaries on graphs in section 2. Section 3 contains
an informal overview of the data reduction procedure. Section 4 is devoted to the
proof of Lemma 1.3. We introduce an annotated version of ChVD in section 5, which
captures some of the structure we can obtain in the instance by appropriate use
of Lemma 1.3. Sections 6--9 present reduction rules for instances of the annotated
problem. The approximation algorithm is given in section 10, which allows us to give
the final kernel in section 11.

2. Preliminaries. The set \{ 1, . . . , n\} is abbreviated as [n]. A set S avoids a
set U if S \cap U = \emptyset . For a set U , by

\bigl( 
U
2

\bigr) 
we denote the family of all unordered

pairs of distinct members of U . We often use xy instead of \{ x, y\} for an element

of
\bigl( 
U
2

\bigr) 
. A graph G consists of a vertex set V (G) and edge set E(G) \subseteq 

\bigl( 
V (G)

2

\bigr) 
. For
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2262 BART M. P. JANSEN AND MARCIN PILIPCZUK

a vertex v \in V (G) its open neighborhood is NG(v) := \{ u \in V (G) | uv \in E(G)\} 
and its closed neighborhood is NG[v] := NG(v) \cup \{ v\} . The open neighborhood
of a set S \subseteq V (G) is NG(S) :=

\bigcup 
v\in S NG(v) \setminus S, and the closed neighborhood

is NG[S] :=
\bigcup 

v\in S NG[v]. The graph obtained from G by deleting all vertices in the
set S and their incident edges is denoted G  - S; for a single vertex v \in V (G) we
use G - v as shorthand for G - \{ v\} .

An st-walk in a graph G is a sequence of vertices s = v1, v2, . . . , v\ell = t such
that vi = vi+1 or vivi+1 \in E(G) for 1 \leq i < \ell . An st-path is an st-walk on which
all vertices are distinct. For a walk W or path P we use V (W ) and V (P ) to denote
the vertices of W and P , respectively. For an st-path P , the vertices s and t are its
endpoints and V (P ) \setminus \{ s, t\} are its interior vertices.

Observation 2.1. For any st-walk W in a graph G, any shortest st-path in
G[V (W )] is an induced st-path P in G with V (P ) \subseteq V (W ).

A hole is an induced (i.e., chordless) cycle of length at least four. A graph is
chordal if it does not contain any holes; we say that such graphs are hole-free. The
independence number of a graph G, denoted \alpha (G), is the maximum cardinality of a
set of vertices in G in which no pair is connected by an edge. Similarly, the clique
number \omega (G) is the maximum cardinality of a set of vertices that are pairwise all
adjacent.

Proposition 2.1. Any chordal graph G satisfies \alpha (G) \geq | V (G)| /\omega (G).

Proof. As any chordal graph is perfect [13], the chromatic number of G equals \omega (G).
A proper coloring with \omega (G) colors is a partition into \omega (G) independent sets. At least
one color class has size | V (G)| /\omega (G), guaranteeing an independent set of that size.

Tree decompositions. A tree decomposition of a graph G is a pair (T, \beta ),
where T is a tree and \beta : V (T ) \rightarrow 2V (G) assigns to every node p \in V (T ) a subset of
the vertices of G, called a bag, such that the following hold:

1.
\bigcup 

p\in V (T ) \beta (p) = V (G).

2. For each edge uv \in E(G), there is a node p \in V (T ) such that u, v \in \beta (p).
3. For each v \in V (G), the nodes of T whose bag contains v induce a connected

subtree of T .
For a vertex v \in V (G) we use \beta  - 1(v) to denote the set of nodes of T whose bag
contains v. The third property ensures that \beta  - 1(v) is a subtree of T for all v \in V (G).
The adhesion of an edge e = pq of the decomposition tree is adh(e) := \beta (p) \cap \beta (q).

Very often in our work, the tree T will be rooted. If this is the case, we use Tp to
denote the subtree of T rooted at p \in V (T ). For a rooted tree decomposition (T, \beta )
of G and a vertex v \in V (G), define top(v) to be the node p \in V (T ) whose bag \beta (p)
contains v and whose distance in T to the root node is minimum. The third property
of tree decompositions ensures that this is well-defined. For two nodes p, q \in V (T ), we
use lca(p, q) to denote the lowest common ancestor of p and q in T .

For a graph G and two vertex sets X and Y , we use dG(X,Y ) to denote the
number of edges on a shortest path from a vertex in X to a vertex in Y (or +\infty if
such a path does not exist). When (T, \beta ) is a tree decomposition of G and s, t \in V (G),
this means that dT (\beta 

 - 1(s), \beta  - 1(t)) is the distance between the subtree where s is
represented and the subtree where t is represented. A path P in G connects vertex
sets X and Y if one endpoint of P belongs to X and the other endpoint belongs
to Y . It is a minimal path connecting X and Y when no interior vertex belongs to X
or Y . Observe that for disjoint connected vertex subsets X and Y of a tree T , the
minimal path connecting X and Y is unique. This implies that the minimal path

c\bigcirc 2018 Bart M. P. Jansen and Marcin Pilipczuk

D
ow

nl
oa

de
d 

10
/1

1/
18

 to
 1

31
.1

55
.1

51
.3

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2263

connecting \beta  - 1(s) and \beta  - 1(t) is unique when s and t do not appear in the same
bag of a tree decomposition (T, \beta ) of G. We use \Pi T (s, t) to refer to a minimal path
connecting \beta  - 1(s) and \beta  - 1(t) in T . We also use \Pi T (s,root) to refer to the path
from top(s) to the root of T , which is the minimal path connecting \beta  - 1(s) to the
root node.

Observation 2.2. Let (T, \beta ) be a tree decomposition of graph G. If s, t are
distinct vertices of G and \Pi is a minimal path in T connecting \beta  - 1(s) to \beta  - 1(t), then
for every edge e on \Pi all st-paths in G contain a vertex of adh(e).

Observation 2.3. Let (T, \beta ) be a tree decomposition of graph G and let p \in V (T ).
If S \subseteq V (G) such that G[S \setminus \beta (p)] is connected, then there is a single tree T \prime in the
forest T  - p such that all bags containing a vertex of S \setminus \beta (p) are contained in T \prime .

Clique trees. A clique tree is a tree decomposition (T, \beta ) such that each bag \beta (p)
is a maximal clique in G. It is known that a graph is chordal if and only if it has a
clique tree [13, Theorem 1.2.3]. A clique tree of a chordal graph can be found in linear
time [13, Theorem 1.2.4]. The definition implies that if (T, \beta ) is a clique tree of G
and S \subseteq V (G) is a clique in G, then S \subseteq \beta (p) for some node p \in V (T ).

Note that in a chordal graph G with a clique tree (T, \beta ), two vertices s, t appear
in the same bag if and only if they are adjacent. Thus, in a chordal graph G with a
clique tree (T, \beta ), there is a unique minimal path connecting \beta  - 1(s) and \beta  - 1(t) for
every nonadjacent pair of vertices s, t.

In our proofs we often work with a clique tree (T, \beta ) of a chordal graph G, and
we will need to refer to both paths in G and paths in T . To maximize readability, we
use the convention that identifiers such as P and P \prime are used for paths in G, while
identifiers such as \Pi and \Pi \prime are used for paths in the decomposition tree T .

Proposition 2.2. Let (T, \beta ) be a clique tree of a graph G, let U \subseteq V (G), and
let s and t be distinct vertices in V (G) \setminus U . If there is a path \Pi in T connecting \beta  - 1(s)
to \beta  - 1(t) such that adh(e) \setminus U \not = \emptyset for each edge e on \Pi , then there is an induced
st-path in G - U .

Proof. If st \in E(G), the claim is trivial. Otherwise, the trees \beta  - 1(s) and \beta  - 1(t)
are vertex-disjoint since each bag of the clique tree forms a clique in G. Consider
a path \Pi as described, consisting of edges e1, . . . , e\ell with \ell \geq 1. For each edge ei
with i \in [\ell ] pick a vertex vi \in adh(ei) \setminus U and note that, by definition of adhesion, vi
occurs in the bags of both endpoints of ei. As v1 is in a common bag with s and each
bag is a clique in G, we know sv1 \in E(G). Similarly we have v\ell t \in E(G). Finally,
edges ei and ei+1 share an endpoint whose bag contains both vi and vi+1 for i < \ell ,
implying that s, v1, . . . , v\ell , t is an st-walk in G that avoids U . By Observation 2.1, this
yields an induced st-path in G that avoids U .

Proposition 2.3. Let (T, \beta ) be a clique tree of a graph G, let P be an induced
st-path in G with | V (P )| \geq 5 for s, t \in V (G), and let T \ast be the tree in the forest T  - 
(\beta  - 1(s) \cup \beta  - 1(t)) that contains the interior nodes of \Pi T (s, t). For any vertex u of P
that is not among the first two or last two vertices on P , the subtree \beta  - 1(u) is contained
entirely in T \ast .

Proof. Assume the preconditions hold. Since u is not among the first two or
last two vertices on the induced st-path P , vertex u is not adjacent to s or t and
therefore \beta  - 1(u) is vertex-disjoint with \beta  - 1(s) and \beta  - 1(t). It follows that \beta  - 1(u) is
contained entirely within one tree T \prime of the forest T  - (\beta  - 1(s) \cup \beta  - 1(t)). Assume for
a contradiction that T \prime \not = T \ast . Then either \Pi T (u, s) goes through \beta  - 1(t), or \Pi T (u, t)
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2264 BART M. P. JANSEN AND MARCIN PILIPCZUK

goes through \beta  - 1(s). Assume without loss of generality (by symmetry) that \Pi T (u, s)
goes through \beta  - 1(t).

The subpath P \prime of P from s to u is induced. None of the vertices on P \prime are
adjacent to t, since P is induced and u itself is not adjacent to s or t. Let e be an edge
on \Pi T (u, s) that has an endpoint p in \beta  - 1(t). By Observation 2.2, the su-path P \prime 

contains a vertex w of adh(e) \subseteq \beta (p), with p \in \beta  - 1(t). This shows that w is in a
common bag with t. Since each bag of T forms a clique, vertex w on P \prime is adjacent
to t, a contradiction.

Proposition 2.4. Let (T, \beta ) be a clique tree of graph G, and let P be an induced
st-path in G. For every interior vertex u of P , the tree \beta  - 1(u) contains a node
of \Pi T (s, t).

Proof. Assume for a contradiction that there is an interior vertex u of P for
which \beta  - 1(u) contains no node of \Pi T (s, t). Orient P from s to t and consider the
first vertex u1 for which this holds. Let u0 be the predecessor of u1 on P . Let u2 be
the first vertex after u1 on P for which \beta  - 1(u2) contains a node of \Pi T (s, t), which is
well-defined since t is such a vertex.

Let T \prime be the tree in T  - V (\Pi T (s, t)) containing \beta  - 1(u1), which is well-defined
since u1 does not occur in a bag of \Pi T (s, t) and the occurrences of u1 form a connected
subtree. Let q be the unique node of \Pi T (s, t) that has a neighbor in T \prime . Since u0 occurs
in a common bag with u1 and also occurs in a bag on \Pi T (s, t), by the connectivity
property of tree decompositions we have u0 \in \beta (q). Since u2 is the first vertex after u1

that occurs in a bag of \Pi T (s, t), all interior vertices u of the subpath of P from u0 to u2

occur only in bags of T \prime by Observation 2.3. Since u2 occurs in a common bag with
the predecessor of u2 on P , it follows that u2 occurs both in a bag of T \prime and in a bag
of \Pi T (s, t), and consequently u2 \in \beta (q). Hence u0 and u2 occur in a common clique,
implying that u0 and u2 are connected in G. But this edge is a chord on P since u0

and u2 are not consecutive, a contradiction to the assumption that P is induced.

3. Informal description of the kernelization. In this section we give the high-
level ideas behind the kernelization algorithm. Given an instance (G, k) of ChVD, we
run the approximation algorithm of Theorem 1.2. If it concludes that (G, k) is a no-
instance, then we output a constant-size no-instance as the result of the kernelization.
Otherwise, we obtain an approximate solution M0 \subseteq V (G) of size poly(k) such
that G - M0 is chordal. The reduction process proceeds in four phases.

1. We prove the promised Erd\H os--P\'osa property (Lemma 1.3). This allows us
to slightly enlarge the modulator M0 to a modulator M with the following
property: for every v \in M , the graph G - (M \setminus \{ v\} ) is chordal.

2. We find a vertex set Q \supseteq M of size poly(k, | M | ) such that all the connected
components A of G - Q (which are chordal graphs since Q contains M) are
simple in the following way: all vertices in A have the same neighborhood
in M , and the neighborhood of A in the rest of the graph (i.e., Q\setminus M) consists
of two cliques of size poly(k, | M | ). One could think of Q as a union of a
number of separators that break G  - M into, in some sense, homogeneous
pieces.

3. We introduce a reduction rule that bounds the number of connected compo-
nents of G - Q in terms of | Q| .

4. We introduce a reduction rule that shrinks the size of each component A
of G - Q to polynomial in the sizes of the two boundary cliques.

This process reduces the size of the graph to polynomial in k, when starting with
a modulator M0 of size poly(k).
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2265

Mx y

(a) Graph G, modula-
tor M .

(b) Graph G(\neg y).

Fig. 1. (a) A graph G with modulator M such that G - (M \setminus \{ v\} ) is chordal for each v \in M .
To prevent clutter, the common neighborhood of the vertices \{ x, y\} \in M is represented by a single
cloud of five vertices. The thick lines from \{ x, y\} to this cloud encode that all possible edges are
present. (b) The graph G(\neg y) is drawn in black. The three gray vertices form a clique, which is the
neighborhood of the rightmost connected component of G(\neg y).

Reduction phase 1. We prove Lemma 1.3: if G is a graph containing a distin-
guished vertex v such that G  - v is chordal, then either there are k + 1 holes in G
that are vertex-disjoint except for intersecting at v, or there is a set Sv \subseteq V (G) \setminus \{ v\} 
of 12k vertices such that G  - Sv is chordal. The proof is algorithmic and yields a
polynomial-time algorithm that computes the set of k + 1 holes or the set Sv, depend-
ing on the outcome. Given the input graph G and the modulator M0, we apply this
algorithm to the graph Gv := G  - (M0 \setminus \{ v\} ) for each v \in M0; note that Gv  - v is
chordal. When Gv contains k+1 holes that intersect only in v, we know that any size-k
solution to the original instance must contain v. Hence we can delete such vertices
and decrease the budget k by one. After exhaustively applying this rule, we can
collect the hitting sets Sv for the remaining vertices and add them to M0, obtaining
a larger modulator M . It yields the following useful structure: for every v \in M , the
graph G - (M \setminus \{ v\} ) is chordal. This property is exactly the tidyness of the modulator
as defined by van Bevern, Moser, and Niedermeier [58].

Reduction phase 2. For the next phases, we switch to an annotated version of
the ChVD problem where, apart from the graph G, the target solution size k, and the
modulator M , we are given a set Eh \subseteq E(G[M ]); the solution is additionally required
to contain at least one endpoint of every edge in Eh. (Note that the annotations Eh

can be easily gadgeteered in the pure ChVD regime by adding, for every xy \in Eh,
two new vertices x\prime , y\prime and edges xx\prime , yy\prime , and x\prime y\prime .)

For a vertex v \in M , we define G(\neg v) = G - (M \cup N(v)), that is, the subgraph of
G - M induced by the vertices nonadjacent to v in G; see Figure 1. By the previous
Erd\H os--P\'osa-type step, a boundary of a component of G(\neg v), i.e., the set NG - M (C)
for a connected component C of G(\neg v), is a clique. To achieve the desired set Q, we
first reduce the graph in two ways.

\bullet We shrink large cliques of G  - M , bounding the size of a clique in G  - M
polynomially in k and | M | (section 7). The procedure is inspired by the clique
reduction in the FPT algorithm by Marx [53].

\bullet We reduce the number of connected components of G(\neg v) for every v \in M
(section 8).

We start with Q being all boundaries of connected components of G(\neg v) for all v \in M .
To ensure that the boundary of A consists of two cliques, we use lowest-common-
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2266 BART M. P. JANSEN AND MARCIN PILIPCZUK

ancestor (LCA) closure of marked bags in a clique tree, similarly as in the case of the
protrusion decomposition technique [11]. This yields a separator Q with the desired
properties.

Reduction phase 3. The third phase is an easy application of the reduction
template presented in section 6; the same reduction template is also used later in
section 8. Since all holes pass through M \subseteq Q, a component A of G  - Q can only
be used on a hole to connect two vertices in Q by an induced path; it turns out
that two different types of connections are relevant. For each of the | Q| 2 pairs of
vertices x, y of Q, we mark k + 2 components of each type that provide a connection
between x and y (or fewer, if the connection type is realized by fewer than k + 2
components). Afterward, any component that is not marked can be safely discarded
from the problem.

Reduction phase 4. The last reduction phase is technically involved and is
described in section 9. Since a component A of G - Q is chordal and has two cliques
as its boundary, and all its vertices have the same neighborhood in M , the only way A
can be used to make a hole in the graph is to provide an induced path between its two
boundary cliques. To break the holes in the graph, it might therefore be beneficial
to have a separator between the two boundary cliques in a solution. By analyzing
the local structure and exploiting the fact that an earlier reduction rule has reduced
the sizes of all cliques in G - M to poly(k, | M | ), we can pinpoint a small number of
relevant cliques in A such that there is always an optimal solution that does not delete
vertices of A that fall outside the relevant cliques. Afterward we can shrink A by a
``bypassing"" operation on all the vertices that are not needed in an optimal solution.

4. Erd\H os--P\'osa for almost chordal graphs. The main goal of this section is
to prove Lemma 1.3. However, we first present some additional terminology and a
subroutine that will be useful during the proof.

We use V (\scrC ) to denote the union of the vertices used on the holes in a flower \scrC .
Observe that for any v-flower \scrC = \{ C1, . . . , C\ell \} of order \ell , the structure \scrC  - v consists
of \ell pairwise vertex-disjoint chordless paths P1, . . . , P\ell that connect two nonadjacent
neighbors of v, whose internal vertices belong to V (G) \setminus NG[v]. Throughout our proofs
we will switch between the interpretation of a v-flower as a set of intersecting holes
in G and as a collection of induced paths in G - v between nonadjacent neighbors of v.

Proposition 4.1. There is a polynomial-time algorithm that, given a graph G
and a vertex v such that G - v is chordal, computes a v-flower of order two or correctly
determines that no such flower exists.

Proof. Observe that \scrC = \{ C1, C2\} is a v-flower of order two if and only if P1 :=
C1  - v and P2 := C2  - v are pairwise vertex-disjoint induced paths whose endpoints
are nonadjacent neighbors of v, and whose internal vertices avoid NG[v]. To search
for a flower of order two, we try all \scrO (n4) tuples (s1, t1, s2, t2) \in (NG(v))

4 for the
endpoints of the paths P1 and P2 in the set NG(v). For all tuples consisting of
distinct vertices for which s1t1 \not \in E(G) and s2t2 \not \in E(G), we formulate an instance
of the Disjoint Paths problem in G - (NG[v] \setminus \{ s1, t1, s2, t2\} ) in which we want to
connect si to ti for i \in \{ 1, 2\} by pairwise vertex-disjoint paths. Any FPT algorithm
for the general k-Disjoint Paths problem suffices for this purpose as the parameter
is constant. We may also use the linear-time algorithm for k-Disjoint Paths in
Chordal Graphs due to Kammer and Tholey [41] since G - v is chordal. If there
are vertex-disjoint siti-paths P1 and P2, then we can shortcut them to induced paths,
which gives a flower of order two. Conversely, if there is a flower of order two, then
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2267

we will find such paths in the iteration where we guess the tuple containing their
endpoints. Hence if the algorithm loops through all tuples without finding a solution
to the Disjoint Paths problem, we may conclude that there is no flower of order two
and terminate.

We are now ready to prove Lemma 1.3, which we restate for completeness.

Lemma 1.3. There is a polynomial-time algorithm that, given a graph G and a
vertex v such that G  - v is chordal, outputs a v-flower C1, . . . , C\ell and a set S \subseteq 
V (G) \setminus \{ v\} of size at most 12\ell such that G - S is chordal.

Proof. We first present an algorithm to compute a v-flower \scrC . Then we show
how to compute a hitting set based on the structure of the flower, and argue that
the constructed set is not too large. To initialize the procedure, we compute a clique
tree (T, \beta ) of G - v and root it at an arbitrary node.

Computing a flower. The algorithm to compute the flower is a local search
procedure that maintains a v-flower \scrC , initially empty, and iteratively improves this
structure according to three rules that are described below.

(I) If G  - (V (\scrC ) \setminus \{ v\} ) contains a hole C, then add C to \scrC . Equivalently, if
there are two distinct nonadjacent vertices x, y \in NG(v) \setminus V (\scrC ) such that
graph G - (V (\scrC )\cup NG[v] \setminus \{ x, y\} ) contains an induced xy-path P , then add the
hole induced by \{ v\} \cup V (P ) to \scrC .

(II) If the current flower \scrC contains a hole Ci such that the graph G - (V (\scrC )\setminus V (Ci))
contains a v-flower \scrC \prime = \{ C \prime 

i, C
\prime \prime 
i \} of order two, then remove the hole Ci from

flower \scrC and add the holes C \prime 
i and C \prime \prime 

i instead.
(III) If the current flower \scrC contains a hole Ci such that the path Pi := Ci  - v has

endpoints s and t, and there exists a t\prime \in NG(v) \setminus (V (\scrC ) \cup NG(s)) such that
\bullet dT (\beta 

 - 1(s), \beta  - 1(t)) > dT (\beta 
 - 1(s), \beta  - 1(t\prime )); and

\bullet the graph (G - (NG[v] \setminus \{ s, t\prime \} )) - (V (\scrC ) \setminus V (Pi)) contains an induced st\prime -
path P \prime , i.e., there is an induced st\prime path P \prime in G whose interior vertices
avoid the closed neighborhood of v and avoid all vertices used on other
holes of the flower,

then replace Ci in the flower by the hole induced by \{ v\} \cup V (P \prime ).
Figure 2 illustrates these concepts. The applicability of each of the three improve-

ment steps can be tested in polynomial time. For (I) and (III) this follows from the fact
that induced paths can be found using breadth-first search; for (II) this follows from
Proposition 4.1. The number of improvement steps of types (I) and (II) is bounded by
the maximum order of the flower, which is at most | V (G)| . Step (III) replaces a path
in \scrC  - v by one whose endpoints are closer together in T . As there are only | V (G)| 2
pairs of possible endpoints, a path cannot be replaced more than | V (G)| 2 times by a
better path. Since the flower contains at most | V (G)| paths at any time, there can be
no more than | V (G)| 3 successive applications of step (III) before the algorithm either
terminates or applies a step that increases the order of the flower. The algorithm
therefore terminates after a polynomial number of steps. It is easy to verify that the
stated conditions ensure that the structure \scrC is a v-flower at all times. Hence we can
compute a v-flower \scrC that is maximal with respect to the three improvement rules in
polynomial time.

Computing a hitting set. Based on a maximal flower \scrC = \{ C1, . . . , C\ell \} and the
associated set of paths P1, . . . , P\ell in G - v, we compute a set S \subseteq V (G) \setminus \{ v\} that hits
all holes. To every vertex of G - v we associate an edge of the decomposition tree T .
For u \in V (G) \setminus \{ v\} , define the cutpoint above u, denoted \pi (u), as follows. Let \pi (u)
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(a) Graph G.
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(b) Clique tree (T, \beta ).

0

1

2 3

4
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v

6

(c) Searching 1 - 5 path.

Fig. 2. (a) A graph G such that G  - v is chordal. A v-flower of order two is highlighted by
dashed edges. (b) A clique tree of G - v, visualized by drawing the contents of bags inside the nodes.
With respect to this clique tree, the v-flower can be improved by step (III) by choosing Pi := (s =
1, 4, 6, 7 = t) and t\prime := 5. Note that dT (\beta  - 1(s), \beta  - 1(t)) = 2, while dT (\beta  - 1(s), \beta  - 1(t\prime )) = 1. (c) The
graph (G - (NG[v] \setminus \{ s, t\prime \} )) - (V (\scrC ) \setminus V (Pi)) contains an induced st\prime -path P \prime := (1, 4, 5).

be the first edge e \in E(T ) on the path from top(u) to the root for which adh(e) \subseteq 
NG(v) \cup V (\scrC ), or NIL if no such edge exists. The hitting set S is constructed as
follows:
(a) For each path Pi with i \in \{ 1, 2, . . . , \ell \} , add the endpoints of Pi to S.
(b) For each vertex u \in NG(v) \setminus V (\scrC ) with \pi (u) \not = NIL, add adh(\pi (u)) \setminus NG(v) to S.

It is easy to carry out this construction in polynomial time.

Claim 4.1. The set S is a subset of V (\scrC ) \setminus \{ v\} .

Proof. The endpoints of the paths Pi that are added to S in the first step
clearly belong to the flower. The vertices added to S in the second step belong
to adh(\pi (u)) \setminus NG(v). By definition of cutpoint we have adh(\pi (u)) \subseteq NG(v) \cup V (\scrC ),
hence adh(\pi (u)) \setminus NG(v) \subseteq V (\scrC ). As (T, \beta ) is a clique tree of G - v, vertex v does
not occur in any set adh(\pi (u)) and is not added to S. \lrcorner 

Claim 4.2. If \scrC is a maximal v-flower, then for any distinct s, t \in NG(v) \setminus V (\scrC )
with st \not \in E(G), the path \Pi T (s, t) contains \pi (s) or \pi (t).

Proof. Let s, t \in NG(v) \setminus V (\scrC ) be nonadjacent in G. Assume for a contradiction
that adh(e)\setminus (NG(v)\cup V (\scrC )) \not = \emptyset for all e on \Pi T (s, t). Let U := (NG(v)\cup V (\scrC ))\setminus \{ s, t\} ,
so adh(e) \setminus U \not = \emptyset for all edges e on \Pi T (s, t). By applying Proposition 2.2 to the
chordal graph G - v we find an induced st-path in (G - v) - U . Such a path forms a
hole together with v, since st \not \in E(G). So step (I) can be applied to increase the order
of the v-flower, contradicting the maximality of \scrC .

Hence there is an edge e\ast on \Pi T (s, t) for which adh(e\ast ) \subseteq NG(v)\cup V (\scrC ). Observe
that the trees \beta  - 1(s) and \beta  - 1(t) are vertex-disjoint as each bag forms a clique in G
and st \not \in E(G). We conclude with a case distinction; see Figure 3 for an illustration.

1. If \beta  - 1(s) is contained in Ttop(t), then some vertex of \beta  - 1(t) is an ancestor
to all vertices of \beta  - 1(s). Hence \Pi T (s, t) is the path from top(s) to its first
ancestor in \beta  - 1(t), so \Pi T (s, t) \subseteq \Pi T (s,root). As e\ast shows that at least
one edge on \Pi T (s,root) satisfies the defining condition for a cutpoint, \pi (s)
is well-defined. As \pi (s) is not higher than e\ast , which lies on \Pi T (s, t), the
edge \pi (s) lies on \Pi T (s, t).

2. If \beta  - 1(t) is contained in Ttop(s), then reversing the roles of s and t in the
previous argument shows that \pi (t) lies on \Pi T (s, t).

3. If neither case holds, then \beta  - 1(s) and \beta  - 1(t) are contained in different child
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s . . . s . . .

s . . .

. . .

t . . .

t . . .

. . .

. . .

e∗

(a) Case 1.

s . . . s . . .

s . . .

. . . t . . .

. . .

. . .

e∗

t . . .

. . .

. . .

node p

(b) Case 3.

Fig. 3. Illustration of the proof of Claim 4.2. The figure shows a clique tree (T, \beta ) of G - v.
The minimal path \Pi T (s, t) in T is drawn with thick edges. (a) All bags containing s are contained in
the subtree of T rooted at the highest bag containing t. (b) If the first two cases do not hold, then the
bags containing s are contained in a different child subtree of the lowest common ancestor p than the
bags containing t.

subtrees of p := lca(top(s),top(t)), implying that \Pi T (s, t) is the concatena-
tion of a path \Pi s from top(s) to its ancestor p, and a path \Pi t from top(t) to
its ancestor p. Since e\ast lies on \Pi T (s, t), it lies on \Pi s or \Pi t. Suppose that e\ast 

lies on \Pi s. Then \pi (s) is well-defined, lies above top(s) and no higher than e\ast ,
and therefore lies on \Pi T (s, t). The case when e\ast lies on \Pi t is symmetric. \lrcorner 

Claim 4.3. The graph G - S is chordal.

Proof. Assume for a contradiction that G  - S contains a hole C\ast . Since G  - v
is chordal, C\ast passes through v so that C\ast  - v is an induced st-path in G  - S  - v
for nonadjacent s, t \in NG(v). By step (a) we know that s and t are not endpoints of
paths in \scrC  - v, with respect to the computed maximal flower \scrC . Since paths in \scrC  - v
cannot contain members of NG(v) as interior vertices either, we find s, t \not \in V (\scrC ).

Since s and t are nonadjacent vertices of NG(v) \setminus V (\scrC ), by Claim 4.2 we know
that \Pi T (s, t) contains \pi (s) or \pi (t). Let e\ast \in \{ \pi (s), \pi (t)\} be a well-defined edge
on \Pi T (s, t). As s, t \in NG(v) \setminus V (\scrC ), by step (b) of the construction of S we know
that adh(e\ast ) \setminus S \subseteq NG(v). As only one bag of \Pi T (s, t) contains s by minimality
of \Pi T (s, t), and only one bag of \Pi T (s, t) contains t, it follows that s, t \not \in adh(e\ast ). On
the other hand, since \Pi T (s, t) connects \beta 

 - 1(s) to \beta  - 1(t) in T and e\ast lies on \Pi T (s, t),
by Observation 2.2 we know that the st-path Pv := C\ast  - v in G  - S  - v contains
a vertex u \in adh(e\ast ) \setminus S \subseteq NG(v) \setminus \{ s, t\} . This shows that Pv contains a vertex
from NG(v) in its interior, and hence has a chord, a contradiction to the assumption
that C\ast is a hole. \lrcorner 

The claims so far have established that we can compute a maximal v-flower \scrC and
a corresponding chordal deletion set S that avoids v in polynomial time. To complete
the proof, it remains to show that the size of S is bounded by twelve times the order of
the computed flower. This is the most technical part. It follows from the next claim.

Claim 4.4. If Ci is a hole of the maximal flower \scrC and Pi := Ci  - v, then S
contains at most 12 vertices from Pi.

Proof. Assume for a contradiction that Ci is a hole in \scrC such that S contains at
least 13 vertices from the path Pi := Ci  - v. Let s, t \in NG(v) be the endpoints of Pi.
We identify two special vertices in S \cap V (Pi) that allow us to derive a contradiction.
Define p := lca(top(s),top(t)) and note that p may coincide with top(s) or top(t).
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2270 BART M. P. JANSEN AND MARCIN PILIPCZUK

Since \beta (p) is a clique in G - v and Pi is an induced path, we know | \beta (p) \cap V (Pi)| \leq 2.
Similarly, Pi contains at most two vertices of each of the sets adh(\pi (s)) and adh(\pi (t)).

Let X be the set containing the first two and last two vertices on Pi, together
with \beta (p) \cap V (Pi), adh(\pi (s)) \cap V (Pi), and adh(\pi (t)) \cap V (Pi). Since | X| \leq 10
and | S \cap V (Pi)| \geq 13, there are at least three vertices in (S \cap V (Pi)) \setminus X. Since they
lie on the induced path Pi, these three vertices do not form a clique, implying that
there are two distinct vertices in (S \cap V (Pi)) \setminus X that are not adjacent in G. Call
these x and y and choose their labels such that when traversing the path Pi from s
to t, we visit x before visiting y. We will use the pair \{ x, y\} to derive a contradiction
to the maximality of \scrC with respect to the three presented improvement steps.

Since x and y are internal vertices of Pi and all paths in \scrC  - v are vertex-disjoint,
x and y are not endpoints of any path in \scrC  - v, and therefore step (a) of the hitting set
construction is not responsible for adding them to S. Consequently, x and y are in S
because there are vertices x\prime , y\prime \in NG(v)\setminus V (\scrC ) with well-defined cutpoints \pi (x\prime ), \pi (y\prime )
such that x \in adh(\pi (x\prime )) \setminus NG(v) and y \in adh(\pi (y\prime )) \setminus NG(v) that caused x and y to
be added to S in step (b); we will argue later that x\prime and y\prime are distinct.

Since no internal vertex of \Pi T (s, t) lies in \beta  - 1(s) or \beta  - 1(t), there is a unique
tree T \ast in the forest T  - (\beta  - 1(s)\cup \beta  - 1(t)) that contains the internal nodes of \Pi T (s, t).
To derive a contradiction we will argue for the following properties; note that (vii)
contradicts the maximality of \scrC with respect to step (II).
(i) \pi (x\prime ) and \pi (y\prime ) are distinct edges, and hence x\prime \not = y\prime .
(ii) \pi (x\prime ) and \pi (y\prime ) both belong to T \ast .
(iii) The edges \pi (x\prime ) and \pi (y\prime ) are distinct from \pi (s) and \pi (t).
(iv) Neither one of \{ x\prime , y\prime \} is simultaneously adjacent to both s and t.
(v) Neither one of \{ x\prime , y\prime \} is adjacent to s or t.
(vi) There are paths from x\prime to x and from y\prime to y that are pairwise vertex-disjoint

and whose interior avoids V (\scrC ) \cup NG(v).
(vii) The graph G - (V (\scrC ) \setminus V (Ci)) contains a v-flower of order two.

We continue by proving these properties one by one.
(i) If \pi (x\prime ) = \pi (y\prime ), then x, y \in adh(\pi (x\prime )) = adh(\pi (y\prime )) are adjacent in G  - v

because they occur in a common bag of a clique tree. This contradicts our choice of x
and y as nonadjacent vertices. Since \pi (x\prime ) \not = \pi (y\prime ) we must have x\prime \not = y\prime .

(ii) Since \pi (x\prime ) is an edge of T whose adhesion contains x, it follows that \pi (x\prime )
is an edge of the subtree \beta  - 1(x). Similarly, \pi (y\prime ) is an edge of \beta  - 1(y). It therefore
suffices to prove that the subtrees \beta  - 1(x) and \beta  - 1(y) are entirely contained in T \ast . This
follows from Proposition 2.3, since both x and y are vertices on the induced st-path Pi

in the chordal graph G - v that are not among the first two or last two vertices.
(iii) Suppose that \pi (x\prime ) equals \pi (s) or \pi (t). Then x \in adh(\pi (x\prime )) is a vertex on Pi

that is in adh(\pi (s)) \cup adh(\pi (t)). But this contradicts our choice of x to be a vertex
of (S \cap V (Pi)) \setminus X above, since X contains adh(\pi (s))\cap V (Pi) and adh(\pi (t))\cap V (Pi).
The argument when \pi (y\prime ) equals \pi (s) or \pi (t) is symmetric.

(iv) Assume for a contradiction that x\prime is adjacent to both s and t. We make a
case distinction on the structure of \beta  - 1(s) and \beta  - 1(t) in the clique tree T .

1. If \beta  - 1(s) is contained in Ttop(t), then let p be the lowest node of \beta  - 1(t) for
which \beta  - 1(s) \subseteq Tp. Then tree T \ast as defined above is contained in Tp. As we
assumed x\prime is adjacent to both s and t, vertices x\prime and t occur in a common
bag, showing that top(x\prime ) is a proper ancestor to all nodes of T \ast . Since \pi (x\prime )
is an edge on \Pi T (x

\prime ,root), the edge \pi (x\prime ) lies above top(x\prime ), while all nodes
of T \ast lie below top(x\prime ). This implies that \pi (x\prime ) does not belong to T \ast ,
contradicting (ii).
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2271

2. If \beta  - 1(t) is contained in Ttop(s), then reversing the roles of s and t in the
previous argument yields a contradiction.

3. If neither case holds, then \beta  - 1(s) and \beta  - 1(t) are contained in different child
subtrees of p := lca(top(s),top(t)). It follows that \Pi T (s, t) is the concate-
nation of a path from top(s) to p with a path from top(t) to p. Since x\prime 

is adjacent to both s and t, we know that \beta  - 1(x\prime ) intersects both \beta  - 1(s)
and \beta  - 1(t), and therefore contains p. It follows that top(x\prime ) is an ancestor
of p, and therefore that the edge \pi (x\prime ) connects two ancestors of p. By Propo-
sition 2.4 we know that x, which is a vertex on the induced st-path Pi, occurs
in a bag on \Pi T (s, t). Since x \in adh(\pi (x\prime )) and \pi (x\prime ) is an edge connecting
two ancestors of p, while all paths from ancestors of p to nodes in \Pi T (s, t) go
through p, we have x \in V (Pi) \cap \beta (p). This contradicts the choice of x, as we
chose it from a set that excludes V (Pi) \cap \beta (p).

The argument when y\prime is adjacent to both s and t is symmetric.
(v) Assume for a contradiction that z\prime \in \{ x\prime , y\prime \} is adjacent to r \in \{ s, t\} ; by (iv)

we then already know that z\prime is not adjacent to \^r := \{ s, t\} \setminus \{ r\} . We distinguish two
cases, depending on the relative positions of \beta  - 1(r) and \beta  - 1(\^r).

1. If \beta  - 1(\^r) \subseteq Ttop(r), then let p be the lowest node of \beta  - 1(r) for which \beta  - 1(\^r) \subseteq 
Tp. It follows that T

\ast \subseteq Tp. Now observe that since z\prime is adjacent to r in G,
the trees \beta  - 1(z\prime ) and \beta  - 1(r) share at least one node, and hence top(z\prime ) is not
a proper descendant of p. Since \pi (z\prime ) is an edge on \Pi T (z

\prime ,root), it follows
that \pi (z\prime ) does not lie in T \ast . But this contradicts (ii).

2. If the previous case does not hold, then \Pi T (r, \^r) does not enter \beta 
 - 1(r) ``from

below,"" which implies that \Pi T (r, \^r) contains the edge from top(r) to its
parent. We now distinguish two cases.
(a) If top(z\prime ) is a proper ancestor of top(r), then since z\prime occurs in a

common bag with r we must have that z\prime is contained in the bag of the
parent of top(r). We claim that, in this situation, step (III) is applicable
to improve the structure of the flower, contradicting the maximality of \scrC 
with respect to the given rules. To see this, observe that the presence
of z\prime in the parent bag of r, together with the fact that \Pi T (r, \^r) uses
the edge from top(r) to its parent, implies that dT (\beta 

 - 1(z\prime ), \beta  - 1(\^r)) is
strictly smaller than dT (\beta 

 - 1(r), \beta  - 1(\^r)); the latter quantity is exactly the
number of edges on \Pi T (r, \^r). By Observation 2.2, the st-path Pi contains
a vertex u of adh(e), where e is the edge from top(r) to its parent in T .
Consequently, u is not r itself since r does not appear in the parent bag
of top(r). Since both u and z\prime appear in that parent bag, we know
that z\prime is adjacent to u and therefore that z\prime together with the subpath
of Pi from u to \^r is a z\prime \^r-path in G. Hence, there is an induced z\prime \^r-path
in G on a vertex subset of V (Pi) \cup \{ z\prime \} . As z\prime \in \{ x\prime , y\prime \} \subseteq NG(v) \setminus V (\scrC )
and z is not adjacent to \^r, which is one of the endpoints of Pi, this shows
that step (III) can be applied to improve the structure of the flower \scrC , a
contradiction.

(b) If top(z\prime ) is not a proper ancestor of top(r), then since z\prime and r occur in
a common bag we know that top(z\prime ) \in Ttop(r). Since the cutpoint \pi (z\prime )
above z\prime lies on \Pi T (z

\prime ,root) by definition, and is contained in T \ast (by (ii))
which lies ``above"" top(r) by the precondition to this case, it follows
that \pi (z\prime ) is an edge between two ancestors of top(r). As the adjacent
vertices z\prime and r occur in a common bag and top(z\prime ) is not higher
than top(r), path \Pi T (z

\prime ,root) goes through top(r) and all bags on
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2272 BART M. P. JANSEN AND MARCIN PILIPCZUK

the path from top(z\prime ) to top(r) contain r. Since no bag in T \ast contains r
and \pi (z\prime ) \in T \ast it follows that \pi (z\prime ) is an edge connecting two ancestors
of r, and must therefore be the first edge e on the path from top(r)
to the root for which adh(e) \subseteq NG(v) \cup V (\scrC ). But then \pi (z\prime ) = \pi (r),
which contradicts (iii).

(vi) We first construct the paths and then prove that they have interiors that
avoid V (\scrC ) \cup NG(v) and are pairwise vertex-disjoint. Let z\prime \in \{ x\prime , y\prime \} , and let z be
the corresponding vertex in \{ x, y\} . Let \Pi \prime be the path in T from top(z\prime ) to the
lower endpoint of \pi (z\prime ). Since z \in adh(\pi (z\prime )) by definition of x, y, x\prime , y\prime , we know
that z appears in the bag of the bottom endpoint of \pi (z\prime ), and so \Pi \prime connects \beta  - 1(z)
to \beta  - 1(z\prime ) in T . Since none of the edges of \Pi \prime satisfied the condition for being the
cutpoint above z\prime , for each edge e on \Pi \prime the set adh(e) \setminus (NG(v) \cup V (\scrC )) is not
empty. Define U := (NG(v) \cup V (\scrC )) \setminus \{ z, z\prime \} . Applying Proposition 2.2 to the chordal
graph G - v where z\prime plays the role of s and z plays the role of t, we establish that
there is an induced zz\prime -path in the graph (G - v) - U . The interior vertices on this
path avoid U \cup \{ z, z\prime \} (since the latter are endpoints), and therefore the interior
avoids NG(v) \cup V (\scrC ) as demanded by (vi). As this holds for both choices of z, we
obtain an induced xx\prime -path Px\prime and an induced yy\prime -path Py\prime . It remains to prove
that Px\prime and Py\prime are pairwise vertex-disjoint. By (i) we know that x\prime \not = y\prime . As we
chose x and y to be distinct vertices, and x, y \in V (\scrC ) while x\prime , y\prime \in N(v) \setminus V (\scrC ), it is
clear that the endpoints of Px\prime and Py\prime are four distinct vertices. It remains to prove
that the interior of Px\prime is vertex-disjoint from the interior of Py\prime . If one of the two
paths has no interior, then this is trivial. So assume for a contradiction that both
paths have an interior, which includes a vertex common to both paths. Orient both
paths from the prime to the nonprime endpoint.

Choose z\prime \in \{ x\prime , y\prime \} and \^z\prime \in \{ x\prime , y\prime \} \setminus \{ z\prime \} such that the bottom endpoint p
of \pi (z\prime ) satisfies \pi (\^z\prime ) \not \in Tp. This is always possible; see Figure 4 for an illustration.
Let z \in \{ x, y\} , depending on whether z\prime = x\prime or z\prime = y\prime ; let \^z \in \{ x, y\} \setminus \{ z\} . Since
the two interiors of Pz\prime and P\^z\prime intersect, there is a path Q in G  - v from the
successor succ(z\prime ) of z\prime on Pz\prime to the predecessor pred(\^z) of \^z on P\^z\prime , such that all
vertices on Q belong to the interior of Px\prime or Py\prime . So V (Q) avoids NG(v) \cup V (\scrC ).
Vertex succ(z\prime ) occurs in a bag of Tp, since it is adjacent to z\prime and top(z\prime ) is a
descendant of both endpoints of \pi (z\prime ). To reach a contradiction we show that pred(\^z)
does not occur in a bag in Tp. To that end, we first show that \^z does not occur in a bag
of Tp. This follows from the fact that \^z occurs in the adhesion of \pi (\^z\prime ), that \pi (\^z\prime ) is not
contained in Tp, and that if \^z also occurred in a bag of Tp then this would force \^z to be
in \beta (p), which contains z \in adh(\pi (z\prime )); but this would imply that z and \^z are adjacent,
contradicting our choice of x and y in the beginning of the proof. So \^z does not occur
in Tp, implying that pred(\^z) occurs in some bag outside Tp. Consider a path \Pi in T
from a bag in Tp containing succ(z\prime ) to a bag outside Tp containing pred(\^z\prime ); we
established that \Pi contains the edge from the root of Tp to its parent, which is \pi (z\prime ).
By Observation 2.2, the path Q connecting succ(z\prime ) to pred(\^z\prime ) contains a vertex
of adh(\pi (z\prime )). By definition of cutpoint, we have that adh(\pi (z\prime )) \subseteq NG(v) \cup V (\scrC ).
But Q avoids NG(v) \cup V (\scrC ), a contradiction. It follows that Px\prime and Py\prime are indeed
vertex-disjoint, proving (vi).

(vii) Consider the xx\prime -path Px\prime and the yy\prime -path Py\prime , whose existence we proved
in (vi). The interiors of these paths avoid V (\scrC ) \cup NG(v), the endpoints x\prime and y\prime 

belong to NG(v), and the endpoints x and y belong to V (\scrC ) \setminus NG(v). Consider
the walk in G  - v that starts at s, traverses the st-path Pi = Ci  - v until x, and
then traverses Px\prime to x\prime . Since s is not adjacent to x\prime by (v) and x\prime \in NG(v), this
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(a) Clique tree.
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(b) Intersecting paths.

s x y t

x′ y′

v

Pi

Px′ Py′

(c) v-flower.

Fig. 4. (a) Illustration for part (vi) of the proof of Claim 4.4. Example of how the different
entities can be arranged in the clique tree (T, \beta ) of G - v. Subtree Tp is shaded, and the edges \pi (z\prime )
and \pi (\^z\prime ) have thick lines. (b) The structure of a hypothetical intersection in the interiors of the
paths Pz\prime and P\^z\prime . Path Q is shown by thick edges. (c) Illustration for part (vii) of Claim 4.4.
Drawing of how the constructed paths Px\prime and Py\prime are combined with the original petal Pi := Ci  - v
of the flower, to obtain a flower of order two (visualized by thick edges).

walk contains an induced sx\prime -path between two neighbors of v, whose internal nodes
avoid NG(v). Moreover, the only vertices of \scrC used on this path belong to Pi. Similarly,
there is an induced ty\prime -path within the walk starting at t, traversing Pi from t to y,
and then traversing Py\prime from y to y\prime . Since we chose x and y such that x occurs
before y, the pieces of Pi used by these two induced paths are vertex-disjoint. By (vi),
the pieces of Px\prime and Py\prime used are also vertex-disjoint. Hence these two induced paths
are vertex-disjoint and each connect two nonadjacent neighbors of v. Together with v
these form a v-flower of order two in G. Since the only vertices of \scrC used on this
order-2 flower are those of Pi and v, it follows that there is a v-flower of order two
in G - (V (\scrC ) \setminus V (Ci)), establishing (vii). This contradicts the fact that \scrC is maximal
with respect to step (II) and completes the proof of Claim 4.4. \lrcorner 

Armed with these claims we finish the proof of Lemma 1.3. Claim 4.3 shows that S
is a hitting set avoiding v for the holes in G. All vertices of S belong to V (\scrC ) \setminus \{ v\} by
Claim 4.1, and therefore all lie on some path of the structure \scrC  - v. Since the number
of paths equals the order of the flower, while S contains at most 12 vertices from each
path by Claim 4.4, it follows that the size of S is at most 12 times the order of the
flower. This concludes the proof of Lemma 1.3.

5. ANNOTATED CHORDAL VERTEX DELETION. In what follows it is more
convenient to work with a variant of the ChVD problem with some annotations on
the set M . More formally, the input to the problem Annotated Chordal Vertex
Deletion (A-ChVD, for short) is a tuple (G, k,M,Eh) with the following properties:

1. G is a graph, k is an integer, M \subseteq V (G), and Eh \subseteq E(G[M ]).
2. G  - M is a chordal graph, and, moreover, for every v \in M the graph

G - (M \setminus \{ v\} ) is a chordal graph.
The A-ChVD problem asks for the existence of a set X \subseteq V (G), called henceforth a
solution, such that | X| \leq k, G - X is chordal, and for every pair \{ x, y\} \in Eh, at least
one of x and y belongs to X.

Lemma 1.3 can be used to transform an instance of the general ChVD problem
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2274 BART M. P. JANSEN AND MARCIN PILIPCZUK

into an equivalent instance satisfying the requirements of the annotated problem, if a
modulator M is known. For the final kernelization algorithm, such a modulator will
be obtained from the approximation algorithm of Theorem 1.2.

Lemma 5.1. There is a polynomial-time algorithm that, given a graph G, an
integer k, and a set M0 \subseteq V (G) such that G - M0 is chordal, either correctly determines
that (G, k) is a no-instance of ChVD or computes an instance (G\prime , k\prime ,M,Eh) of A-
ChVD with the same answer such that | M | = \scrO (k \cdot | M0| ) and k\prime \leq k.

Proof. For every v \in M0, we apply the algorithm of Lemma 1.3 to the nearly
chordal graph G - (M0\setminus \{ v\} ), obtaining a v-flower \scrC v and a hitting set Sv. If | \scrC v| > k for
some v, we delete the vertex v from G, decrease k by one, and restart the algorithm. If
the budget k drops below zero, then we report that the original input was a no-instance
of ChVD. Clearly, if | \scrC v| > k, then every size-k solution to ChVD on G contains the
vertex v, so (G, k) is equivalent to (G  - v, k  - 1). If | \scrC v| \leq k for every v \in M0, we
define M := M0\cup 

\bigcup 
v\in M0

Sv; note that | M | \leq | M0| (12k+1). Letting G\prime and k\prime denote

the reduced graph and budget, we output the A-ChVD instance (G\prime , k\prime ,M,Eh = \emptyset ).
It follows from Lemma 1.3 that it is a valid A-ChVD instance, and clearly it is a
yes-instance if and only if the original ChVD instance (G, k) is a yes-instance.

For completeness, we remark that Lemma 1.3 can be circumvented in the reduction
to the annotated problem given above (which means it can be bypassed for the entire
kernelization). Instead of applying Lemma 1.3 to the graph G  - (M0 \setminus \{ v\} ) to
find a hitting set Sv for the holes through v, one can obtain such a hitting set by
creating | V (G)| true-twin copies of vertex v and running the approximation algorithm
for ChVD on the resulting inflated version of the graph G - (M0 \setminus \{ v\} ). This increases
the size of the kernel, though, so we prefer the linear bounds given by Lemma 1.3.

The next few sections are devoted to the proof of the following theorem.

Theorem 5.2. A-ChVD admits a polynomial kernel when parameterized by | M | .
More precisely, given an A-ChVD instance (G, k,M,Eh), one can in polynomial
time compute an equivalent instance (G\prime , k,M, Fh) with Eh \subseteq Fh and | V (G\prime )| =
\scrO (k16| M | 29).

As typical for kernelization algorithms, the algorithm of Theorem 5.2 consists of
a number of reduction rules; at every step, we apply the lowest-numbered reduction
rule. Observe that any instance with k \geq | M | has a trivial yes-answer as the set M is
a solution. For such instances we can output a constant-size yes-instance of A-ChVD.
In the remainder we assume | M | > k.

Let (G, k,M,Eh) be an A-ChVD instance. We say that a vertex set S \subseteq V (G)\setminus M
is irrelevant if the instances (G, k,M,Eh) and (G - S, k,M,Eh) are equivalent. We say
that a pair xy \in 

\bigl( 
M
2

\bigr) 
is a new forced pair if xy /\in Eh, but the instances (G, k,M,Eh)

and ((V (G), E(G)\cup \{ xy\} ), k,M,Eh \cup \{ xy\} ) are equivalent. Note that adding an edge
xy to G is meaningless, as a solution is required to delete x or y anyway, but it makes
later notation cleaner.

A hole H in the graph G is a permitted hole if V (H) does not contain any pair of
Eh. Note that a hole that is not permitted is hit by any solution to (G, k,M,Eh) due
to the constraints imposed by Eh, and, informally speaking, we can ignore such holes
in the further argumentation.

Recall that G(\neg v) was defined as G - (M \cup N(v)), the subgraph of G - M induced
by the vertices nonadjacent to v in G. In what follows, we will use the following
generalization of this shorthand notation.
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2275

Definition 5.3. Let x1, x2, . . . , xa, y1, y2, . . . , yb \in M be (not necessarily distinct)
vertices for some a, b \geq 0. Let us define

V (x1, x2, . . . , xa,\neg y1,\neg y2, . . . ,\neg yb) =

\Biggl( 
(V (G) \setminus M) \cap 

a\bigcap 
i=1

N(xi)

\Biggr) 
\setminus 

\left(  b\bigcup 
j=1

N(yj)

\right)  ,

G(x1, x2, . . . , x1,\neg y1,\neg y2, . . . ,\neg yb) = G[V (x1, x2, . . . , xa,\neg y1,\neg y2, . . . ,\neg yb)].

Consider the following reduction rule.

Reduction Rule 1. For every x, y \in M with x \not = y, xy /\in E(G), if the size of
the largest independent set in G(x, y) is at least k+2, then add xy to Eh and to E(G).

The correctness is straightforward: any solution to (G, k,M,Eh) can delete at
most k out of k+2 vertices of any maximum independent set in G(x, y); the remaining
vertices form a C4 with x and y, forcing the solution to delete either x or y. We add the
edge xy to E(G) to preserve the properties of an A-ChVD instance. Furthermore, note
that as G(x, y) is chordal, maximum independent sets can be computed in polynomial
time [36].

In the remainder we will often use the following simple observation to find holes,
in proofs by contraposition.

Observation 5.1 (see [53, Proposition 3]). If a graph G contains a vertex v with
two nonadjacent neighbors u1, u2 \in N(v) and contains a walk from u1 to u2 with all
internal vertices in V (G) \setminus N [v], then G contains a hole passing through v.

We conclude this section with an important immediate observation about A-
ChVD.

Proposition 5.4. Let (G, k,M,Eh) be an instance of A-ChVD. Then, for every
v \in M and every connected component A of G(\neg v), the set NG(A) \setminus M is a clique.

Proof. Suppose there exist two nonadjacent vertices u1, u2 \in N(A) \setminus M . Apply
Observation 5.1 to the graph G  - (M \setminus \{ v\} ) with the vertex v and a path between
u1 and u2 with internal vertices in A. This yields a hole in G  - (M \setminus \{ v\} ), which
contradicts the requirement of A-ChVD instances that G - (M \setminus \{ v\} ) is chordal for
all v \in M .

6. Reducing the number of components with respect to a separator.
The next procedure reduces an instance (G, k,M,Eh) of A-ChVD if we have access to
a small vertex set whose removal splits the graph into many components. In general,
it is not easy to find such a vertex set since it is related to computing the toughness
of a graph, which is NP-hard [6]. The reduction can therefore only be applied for a
concrete separator that is supplied to the procedure. For that reason, we call it a
reduction template, instead of a concrete reduction rule. We will apply the template in
situations where such a vertex set can be identified efficiently.

In the following, we will say ``mark up to f(k) objects of type X"" to mean the
following. If there are more than f(k) objects of type X, then choose f(k) of them
arbitrarily and mark them. If there are fewer, then mark all of them.

Reduction Template 1. Given a vertex subset S \supseteq M of G, do the following:
1. For every pair xy \in 

\bigl( 
S
2

\bigr) 
\setminus E(G), mark up to k + 2 connected components C

of G - S that contain both a neighbor of x and a neighbor of y.
2. For every pair xy \in 

\bigl( 
S
2

\bigr) 
\cap E(G), mark up to k + 1 connected components C

of G - S that contain a path P between a vertex in NG(x)\cap V (C) and a vertex
in NG(y) \cap V (C) such that V (P ) avoids NG(x) \cap NG(y).
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2276 BART M. P. JANSEN AND MARCIN PILIPCZUK

Delete the vertices in an unmarked component C from the graph.

Template 1 yields a stand-alone reduction that does not rely on any other reduction
rules being exhaustively applied. Observe that if G - S has more than (k + 2)

\bigl( | S| 
2

\bigr) 
components, then the marking scheme will leave at least one component unmarked,
and therefore the reduction will shrink the graph. Given S, it is easy to apply the
procedure in polynomial time. Observe that the existence of a path P through a
component C satisfying the conditions of the second item can be tested by trying for
each v \in NG(x) \cap V (C) and u \in NG(y) \cap V (C) whether u and v belong to the same
connected component of G[V (C)] - (NG(x) \cap NG(y)). Correctness follows from the
next lemma.

Lemma 6.1. If a component C of G - S is not marked by Reduction Template 1,
then V (C) is irrelevant.

Proof. Since S \supseteq M , no forced pairs involve V (C). It therefore suffices to prove
that if (G  - V (C))  - X is chordal for some set X of size at most k, then G  - X is
chordal as well. Assume for a contradiction that (G - V (C)) - X is chordal but G - X
is not, and consider some hole H in G - X. It uses at least one vertex v \in V (C). Let x
and y be the first vertices of S that you encounter when traversing the hole H in both
directions when starting in v. By definition of A-ChVD and the fact that M \subseteq S
such vertices exist and x \not = y.

If xy \not \in E(G), then C is unmarked and contains a path from a neighbor of x to
a neighbor of y. We marked at least k + 2 components that provide such a path
and X intersects at most k of them, leaving two marked components C1, C2 free. As
each component Ci contains a path between a neighbor of x and a neighbor of y,
by shortcutting these paths we find induced xy-paths whose interior vertices belong
to Ci for each i \in \{ 1, 2\} . As C1 and C2 are distinct components of G  - S and the
only vertices from S used on these paths are x and y, the interiors of the path are
vertex-disjoint and the interior vertices of one path are not adjacent to the interior
of the other. Hence the concatenation of these paths is a hole in (G - V (C)) - X, a
contradiction.

Now consider the case that xy \in E(G). Since x and y are the first vertices of S
encountered when traversingH starting at v, it follows thatH\cap V (C) is an induced path
in C between a neighbor of x and a neighbor of y that avoidsNG(x)\cap NG(y). The holeH
consists of xy together with this single segment in H \cap V (C). Since C was not marked,
there are k+1 marked components containing an NG(x)\cap V (C) to NG(y)\cap V (C) path
avoiding NG(x) \cap NG(y). Consequently, one of these components C \prime is not intersected
by X. Let P be an induced path in C \prime from u1 \in NG(x)\cap V (C \prime ) to u2 \in NG(y)\cap V (C \prime )
that avoids NG(x) \cap NG(y). Let u

\prime 
1 be the last vertex on P that is adjacent to x, and

let u\prime 
2 be the first vertex after u\prime 

1 that is adjacent to y. The subpath of P from u\prime 
1 to u\prime 

2

is an induced path with at least two vertices from a neighbor of x to a neighbor of y,
and no interior vertex of this subpath is adjacent to x or y. Moreover, u\prime 

1y, u
\prime 
2x \not \in E(G)

since P avoids NG(x) \cap NG(y). Hence P forms a hole together with x and y, and this
hole avoids X and V (C). So (G - V (C)) - X is not chordal, a contradiction.

7. Reducing cliques. Our goal for this section is to prove the following state-
ment.

Lemma 7.1. Given an A-ChVD instance (G, k,M,Eh) on which Reduction Rule 1
is not applicable and a clique K in G - M of size | K| > (k + 1)(| M | 3 + (k + 3)| M | 2),
one can in polynomial time find either an irrelevant vertex or a new forced pair.
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2277

Let G\circ := G  - M . Fix a clique tree of G\circ and root it in a node p such that
K \subseteq \beta (p).

7.1. Sets \bfitQ \bfitx \bfity and forced pairs. We first look for a new forced pair in the
following manner. Let x and y be two distinct vertices of M with xy /\in E(G). We
say that a node q \in V (T ) is xy-good if there exists an xy-path Pq in G whose every
internal vertex v belongs to G\circ and satisfies \beta  - 1(v) \subseteq V (Tq). Note that if q is xy-good,
then all its ancestors in the tree T are also xy-good. Let Qxy be the set of all lowest
xy-good nodes in T , that is, q \in Qxy if and only if q is xy-good but none of the
children of q are xy-good. We claim the following.

Claim 7.1. If | Qxy| \geq k + 2 for some pair xy \in 
\bigl( 
M
2

\bigr) 
\setminus E(G), then every solution

to the instance (G, k,M,Eh) contains at least one vertex from the pair xy.

Proof. For every q \in Qxy, let Pq be a path witnessing that q is xy-good; without
loss of generality, assume that Pq is an induced path. Consider two distinct q, q\prime \in Qxy.
Observe that, by the definition of Qxy, the nodes q and q\prime are not in an ancestor-
descendant relationship in T , and thus the subtrees Tq and Tq\prime are node-disjoint.
Consequently, no internal vertex of Pq is equal or adjacent to any internal vertex of
Pq\prime . As xy /\in E(G), the union of the paths Pq and Pq\prime is a hole in G. As there are at
least k + 2 elements of Qxy, any solution to (G, k,M,Eh) avoids the set of internal
vertices of at least two such paths, and therefore contains x or y. \lrcorner 

Claim 7.1 justifies the following reduction rule.

Reduction Rule 2. If | Qxy| \geq k + 2 for some pair xy \in 
\bigl( 
M
2

\bigr) 
\setminus E(G), then add

xy to Eh and to E(G).

Observe that it is straightforward to check directly from the definition if a node
q \in V (T ) is xy-good for a given pair xy. Thus, Reduction Rule 2 can be applied
in polynomial time, and henceforth we assume | Qxy| \leq k + 1 for every pair xy \in \bigl( 
M
2

\bigr) 
\setminus E(G).

7.2. Marking relevant parts of a clique. Having bounded the size of the sets
Qxy, we now mark a number of vertices of the clique K, and then argue that any
unmarked vertex is irrelevant. The argumentation here was loosely inspired by the
analogous part of the work of Marx [53, section 5].

Note that for every x \in M , there is at most one connected component of G(\neg x)
that contains a vertex of \beta (p), since \beta (p) is a clique in G\circ . By Ax we denote the vertex
set of this connected component of G(\neg x) if it exists. We define Ax := \emptyset otherwise,
which occurs when \beta (p) \subseteq N(x). By Proposition 5.4, if Ax \not = \emptyset , then N(Ax) \setminus M is a
clique in G\circ ; let px be a node of T such that N(Ax) \setminus M \subseteq \beta (px). For a vertex x \in M
with Ax = \emptyset , we define px = p, which is the root of the clique tree.

The marking procedure for this rule works with additional constraints. By a
statement of the form ``mark up to \ell vertices of Z, preferring vertices maximiz-
ing/minimizing distance from q"" for some node q \in V (T ), we mean that we do not
choose the vertices of Z to mark arbitrarily (in the case | Z| > \ell ), but we sort vertices
u \in Z according to the distance between \beta  - 1(u) and q in T , and mark \ell vertices with
the largest/smallest distance. We are now ready to present our marking algorithm.
(a) For every triple (x1, x2, y) \in M \times M \times M , mark up to k + 1 vertices from

K \cap V (x1, x2,\neg y).
(b) For every pair (x1, x2) \in 

\bigl( 
M
2

\bigr) 
\setminus E(G) and every node q \in Qx1x2 , mark up to k + 1

vertices of K \cap V (x1, x2), preferring vertices maximizing distance from q.
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z6

Mx

K

z5

y

y3

w2

y1x2

w1

z3

y2z1x1

z4 z2

(a) Graph G with the
modulator M .

z6z5

y3

w2

y1x2

w1

z3

y2z1x1

z4 z2

(b) Graph G\circ , with
G(\neg x) in black.

z5 z6 y1 y3

z5 z6 w2 w1 y1 z6

z4 z5

z5 z6 x2 y3

z1 z4 z2 z4

x1 z1 y2 z1

z3 z6

node p = py

px

(c) Clique tree (T, \beta ).

Fig. 5. Illustration for the clique marking procedure. (a) Instance of A-ChVD with graph G
and modulator M , and a clique K in G\circ . For readability, edges between G\circ and M are not drawn,
but encoded through vertex names. Vertex x is adjacent to the xi's and zi's; vertex y is adjacent
to the yi's and zi's. (b) The graph G(\neg x) contains the vertices in black and has a component with
vertex set Ax = \{ y1, y3, w1\} that intersects K. Since K \subseteq NG(y) we have Ay = \emptyset . (c) A clique tree
of G\circ rooted at a node p whose bag contains the entire clique K. The three nodes of Qxy are colored
gray. Contents of a bag are drawn within the rectangle representing its node. A node px containing
all vertices of N(Ax) \setminus M is chosen.

(c) For every pair (x, y) \in M \times M , mark up to k + 1 vertices from K \cap V (x,\neg y),
preferring vertices minimizing distance from py.

(d) For every pair (x, y) \in M \times M , mark up to k + 1 vertices from K \cap V (\neg x,\neg y),
preferring vertices minimizing distance from py.

A direct calculation shows that we mark at most (k+1)(| M | 3+(k+3)| M | 2) vertices of
K, and it is straightforward to implement the marking algorithm to run in polynomial
time. Figure 5 illustrates the context of the marking procedure. Figure 6 illustrates
the different types of holes that are preserved by this marking procedure.

7.3. Every unmarked vertex is irrelevant. The remainder of this section is
devoted to the proof that any unmarked vertex of K is irrelevant. For that we need
the following simple technical step.

Claim 7.2. Let v \in K be an unmarked vertex, let y \in M be a vertex such that
vy /\in E(G), and let P be a path between v and y with all internal vertices in G\circ . Then,
for every x \in M , and every vertex v\prime marked for the pair (x, y), either in point (c) if
vx \in E(G) or in point (d) if vx /\in E(G), the vertex v\prime is equal or adjacent to at least
one vertex of V (P ) \setminus \{ v, y\} .

Proof. First, note that since in points (c) and (d) we prefer vertices minimizing
the distance to py, and the vertex v is a candidate for marking when v\prime has been
marked, the distance from \beta  - 1(v\prime ) to py is not larger than the distance from \beta  - 1(v)
to py.

Without loss of generality we may assume that P is an induced path: shortcutting
the path P to an induced one would only make our task harder. Let u be the
neighbor of y on the path P . We have u \in V (G\circ ); since vy /\in E(G), we have also
u \not = v. Furthermore, as P is an induced path, all vertices on P except for y and u lie
outside N [y], and thus they lie in Ay as v \in Ay. Consequently, u \in N(Ay), and thus
py \in \beta  - 1(u).

If py \in \beta  - 1(v), then also py \in \beta  - 1(v\prime ) and v\prime = u or v\prime u \in E(G). Otherwise,
let e be the first edge of T on the unique path from p to py that is not contained in
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Mx1 x2

K

v

(a) | NH(v) \cap M | = 2
and | V (H) \cap M | = 2.

Mx1
x2

K

v

y

v′

(b) | NH(v)\cap M | = 2 and
| V (H) \cap M | > 2.

v′

Mx

K

v

y

u
. . .

(c) | NH(v) \cap M | = 1.

vy

Mx

K

v

y

vx

ux

wx

. . .
uy

wy

. . .

(d) | NH(v) \cap M | = 0.

Fig. 6. Illustration for the correctness of the clique marking procedure (Claim 7.3). The four
subfigures correspond to the four marking steps (a)--(d). Each subfigure shows a schematic view of
an instance with a modulator M and clique K in G\circ that is the target of the marking procedure. For
each of the four types of holes highlighted by thick edges, the corresponding marking step ensures that
the constraints they impose on size-k solutions are preserved after deleting the unmarked vertices.
Vertex names correspond to those used in the proof of Claim 7.3.

T [\beta  - 1(v)], and let p\prime be the endpoint of e that belongs to \beta  - 1(v). Since V (P ) \setminus \{ y\} 
induces a connected subgraph of G\circ containing vertices v \in \beta (p) and u \in \beta (py), there
exists a vertex w \in V (P ) \setminus \{ y\} with w \in adh(e). As v \not \in adh(e) we know w \not = v.
Furthermore, we have p\prime \in \beta  - 1(v\prime ), since \beta  - 1(v\prime ) is at least as close to py as \beta  - 1(v),
and both \beta  - 1(v) and \beta  - 1(v\prime ) contain the root p. Hence, w = v\prime or wv\prime \in E(G). This
finishes the proof of the claim. \lrcorner 

We are now ready to prove the last claim, concluding the proof of Lemma 7.1.

Claim 7.3. Every unmarked vertex of K is irrelevant.

Proof. Let v \in K be an unmarked vertex. It suffices to show that if X is a
solution to (G - v, k,M,Eh), then it is also a solution to (G, k,M,Eh). Assume the
contrary; as v /\in M , it must hold that there is a hole H in G - X. Since G - v  - X
is chordal, v \in V (H). By the properties of an A-ChVD instance (G, k,M,Eh), the
hole H contains at least two vertices of M . We make a case distinction, depending on
whether the neighbors of v on the hole H belong to M or lie in G\circ (see Figure 6).

Case 1: Both neighbors of \bfitv on \bfitH lie in \bfitM . Denote these two neighbors
by x1, x2. As H is a hole, x1x2 /\in E(G); in particular, x1x2 /\in Eh.

Assume first that x1 and x2 are the only two vertices of V (H) \cap M . Then H
consists of vertices v, x1, x2 and a path P between x1 and x2 with all internal vertices
in G\circ . Consider the set PT of all nodes of T whose bag contains at least one internal
vertex of P . Since v \in K \subseteq \beta (p), and H is a hole, we have p /\in PT . Furthermore, by
the connectivity of P , PT induces a subtree of T . Let q0 be the topmost (closest to p)
vertex of PT ; note that q0 \not = p.

By the existence of the path P , the node q0 is x1x2-good. By the definition of
Qx1x2 there exists a node q \in Qx1x2 that is a descendant of q0. Consider a vertex v\prime 

marked at point (b) for the pair x1x2 and the node q that does not belong to the
solution X. Since in point (b) we mark vertices that maximize the distance from q,
the distance between \beta  - 1(v\prime ) and q is at least as large as the distance between \beta  - 1(v)
and q. Consequently, since the root p belongs to \beta  - 1(v\prime ) and to \beta  - 1(v), and q0 is an
ancestor of q, we have q0 /\in \beta  - 1(v\prime ). We infer that v\prime is not adjacent to any internal
vertex of PT , and thus if we replace v with v\prime on the hole H, we obtain a hole as well,
contradicting the fact that G - v  - X is a chordal graph.
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2280 BART M. P. JANSEN AND MARCIN PILIPCZUK

In the remaining case, there exists a third node y \in V (H) \cap M , different from x1

and x2; in particular, vy /\in E(G). Consider a vertex v\prime marked at point (a) for the
triple (x1, x2, y) that does not belong to X. Consider the path P := H  - y between
the neighbors of y on the hole H, and let P \prime be the walk created from P by replacing
the vertex v with v\prime . Since v\prime \in N(x1) \cap N(x2), P

\prime is indeed a walk. Since v\prime /\in N(y),
all internal vertices of P \prime avoid N [y]. Since no vertex of P \prime belongs to X or equals v,
by Observation 5.1 the graph G - v  - X contains a hole, a contradiction.

Case 2: One neighbor of \bfitv on \bfitH lies in \bfitM . Let u and x be the two neighbors
of v on H, with x \in M and u \in V (G\circ ). Let y be the first vertex of V (H)\cap M that we
encounter if we traverse H starting from v in the direction towards u. Since V (H)\cap M
contains at least two vertices, x \not = y, in particular, vy /\in E(G). Let Pu, Px be the
subpaths of H between v and y, with u \in V (Pu) and x \in V (Px).

Consider a vertex v\prime marked at point (c) for the pair (x, y) that does not belong
to the solution X. By Claim 7.2, (V (Pu) \setminus \{ v\} ) \cup \{ v\prime \} induces a connected subgraph
of G. Since v\prime y /\in E(G) and v\prime x \in E(G), (V (Px) \cup V (Pu) \setminus \{ v\} ) \cup \{ v\prime \} contains a
path from the two neighbors of y on the hole H whose internal vertices belong to
V (G) \setminus (N [y] \cup \{ v\} ). By Observation 5.1, the graph G  - v  - X contains a hole, a
contradiction.

Case 3: None of the neighbors of \bfitv on \bfitH lies in \bfitM . Let ux and uy be
the two neighbors of v on H. Let x be the first vertex of M that we encounter if
we traverse H starting from v in the direction towards ux, and similarly define y for
uy. Since V (H) \cap M contains at least two vertices, x \not = y. Clearly, we have also
vx, vy /\in E(G). Let Px be the subpath of H between v and x containing ux, and let
wx be the neighbor of x on Px. Similarly define Py and wy. Note that it is possible
that wx = ux or wy = uy.

Consider vertices vy and vx marked at point (d) for the pairs (x, y) and (y, x),
respectively, that do not belong to the solution X. Note that it is possible that vy = vx.
By Claim 7.2, both (V (Px) \setminus \{ v\} ) \cup \{ vx\} and (V (Py) \setminus \{ v\} ) \cup \{ vy\} induce connected
graphs. As both vx and vy belong to the clique K, it follows that (V (Px) \cup V (Py) \cup 
\{ vx, vy\} ) \setminus \{ v\} induces a connected subgraph of G; in particular, it contains a path
from wx to wy whose internal vertices belong to V (\neg x,\neg y). This path, together with
the subpath of H between x and y not containing v, witnesses that there exists a walk
in G - v  - X between two neighbors of y on H whose internal vertices do not belong
to N [y]. By Observation 5.1, G - v  - X contains a hole, a contradiction. \lrcorner 

Define \omega k,| M | := (k + 1)(| M | 3 + (k + 3)| M | 2) \leq \scrO (k| M | 3) as a shorthand for
the bound of Lemma 7.1; note that instances with k \geq | M | trivially have a solution
consisting of the entire set M . Having proven Lemma 7.1, we may state the following
reduction rule.

Reduction Rule 3. Apply the algorithm of Lemma 7.1 to any maximal clique
of G\circ whose size is larger than \omega k,| M | . Depending on the outcome, either add the new

forced pair to Eh and to E(G) or delete an irrelevant vertex from G.

Exhaustive application of Reduction Rule 3 ensures that the clique number \omega (G\circ )
of the chordal graph G\circ is bounded by \omega k,| M | . Recall that the number of maximal
cliques in a chordal graph is linear in the number of vertices (cf. [13, section 1.2]).
The maximal cliques can be identified efficiently from a clique tree, implying that
Reduction Rule 3 can be applied exhaustively in polynomial time.
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M

C2

c

x y. . .

C1

a

b

Fig. 7. Illustration for Observation 8.1. The figure shows an instance of A-ChVD with a
graph G and modulator M . Gray boxes highlight components of G(\neg x). Solid lines indicate edges
in the graph. Thick edges are used to highlight a hole. Components C1 and C2 of G(\neg x) contain
neighbors a and c of y. The nonneighbor b of y that belongs to NG\circ (C1) \cap NG\circ (C2) implies the
existence of the hole drawn with thick lines, using only one vertex from M .

8. Reducing the number of components of nonneighbors. The main goal
in this section is to reduce the number of connected components of G(\neg x) for each x \in 
M . Rather than reducing this number by deleting vertices, we will get rid of components
of G(\neg x) by making them adjacent to x. To ensure that this process does not change
the answer of the instance, we have to understand how holes in G use such components.
We therefore need to introduce some notation.

Definition 8.1. Let x, y \in M with x \not = y. Let \scrC \neg x(y) be the connected compo-
nents C of G(\neg x) such that V (C) \cap NG(y) \not = \emptyset and NG\circ (C) \setminus NG(y) \not = \emptyset .

A component C of \scrC \neg x(y) contains the interior vertices of an induced path PC

between y and a vertex v of NG\circ (C)\setminus NG(y), which has at least two edges. Observe that
if we have two components C1, C2 \in \scrC \neg x(y) for which v \in (NG\circ (C1)\cap NG\circ (C2))\setminus NG(y)
is a common neighbor, then the concatenation of the two paths PC1

and PC2
is a

hole through y and v (see Figure 7). The key point here is that since C1 and C2 are
different components of G(\neg x), no vertex of C1 is adjacent to a vertex of C2. The role
of x in Definition 8.1 is to ensure this property.

Furthermore, we observe that such a hole, created from a concatenation of PC1 and
PC2 , contains only one vertex of M , namely, y. This is a contradiction of the definition
of an A-ChVD instance. Consequently, we have the following observation, which is
crucial to our goal of reducing the number of components of G(\neg x) for all x \in M .

Observation 8.1. For fixed vertices x, y \in M , the sets \{ NG\circ (C) \setminus NG(y) | C \in 
\scrC \neg x(y)\} are pairwise disjoint.

We are now ready to state our reduction rule.

Reduction Rule 4. Let (G, k,M,Eh) be exhaustively reduced under Reduc-
tion Rule 3. First, exhaustively apply Reduction Template 1 to sets

S\neg x,y := M \cup 
\bigcup 

\{ NG(C) | C is a component of G(\neg x) that contains a neighbor of y\} 

for all x, y \in M . Second, for every x \in M do the following marking process:
1. For all y \in M with xy \not \in E(G), mark up to (k+1)((k+2) \cdot \omega k,| M | + | M | )2 +1

components C of G(\neg x) that contain a neighbor of y.
2. For each y \in M with xy \in E(G), mark up to k + 1 components C of \scrC \neg x(y).
3. For each y1, y2 \in M with y1y2 \not \in E(G), mark up to k + 1 components C

of G(\neg x) for which V (C) \cap NG(y1) \not = \emptyset and V (C) \cap NG(y2) \not = \emptyset .
If some component C of G(\neg x) is unmarked when the process finishes, then make x
adjacent to all vertices of C.
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2282 BART M. P. JANSEN AND MARCIN PILIPCZUK

If G(\neg x) has at least (k + 1)((k + 2) \cdot \omega k,| M | + | M | )2 + (k + 1)(| M | + | M | 2) + 2
components, then Reduction Rule 4 will be triggered to make x adjacent to all vertices
of one such component. Hence exhaustively applying the rule bounds the number of
components of G(\neg x) by \scrO (k5| M | 6).

Before proving the correctness of the reduction step, we give some intuition. The
goal is to reduce the number of components of G(\neg x) for each x \in M . A simple way
to achieve this reduction would be the following: if C is a component of G(\neg x) that
remains unmarked at the end of the procedure, then remove all vertices from V (C)
from the graph. However, this simpler operation would not always preserve the answer
to the instance. Roughly speaking, the marking procedure ensures that if C remains
unmarked, then there are no interesting holes that simultaneously pass through x
and a subset of V (C) (each such hole can be rerouted through marked components),
and therefore the presence of edges between V (C) and x can be flipped. There can,
however, be interesting holes through vertices of M \setminus \{ x\} and V (C), which would be
lost from the instance when removing all vertices of C. The removal of those vertices
can therefore turn a no-instance into a yes-instance. This is why the more subtle
reduction operation of making x adjacent to V (C) is needed.

Lemma 8.2. If Reduction Rule 4 reduces an instance (G, k,M,Eh) of A-ChVD
to instance (G\prime , k,M,Eh) by making x adjacent to all vertices of C, then these instances
are equivalent.

Proof. As adding edges to a nonchordal graph can make it chordal, and adding
edges to a chordal graph can make it nonchordal, both directions of the equivalence
are nontrivial.

(\Rightarrow ) Assume that (G, k,M,Eh) has a solution X of size at most k, and assume for
a contradiction that X is not a solution for the reduced instance. Since the instances
have the same forced pairs, graph G  - X is chordal but G\prime  - X is not. Consider a
hole H in G\prime  - X. Since H is not a hole in G  - X, while adding edges to a graph
cannot make an existing cycle chordless, one of the edges that was added between x
and C lies on H. Let xv \in E(H) with v \in V (C) be such an edge. Orient H such
that x is the predecessor of v on H, and consider the successor y of v. Since H is a
hole, xy \not \in E(G\prime ), and therefore y \not \in V (C) since G\prime has all edges between x and V (C).
Moreover, y \not \in NG(C) \setminus M since NG(C) \setminus M \subseteq NG(x) as C is a component of G(\neg x).
Hence y \in M . Since C is an unmarked component of G(\neg x) that contains v \in NG(y),
in point (1) we marked (k+ 1)((k+ 2) \cdot \omega k,| M | + | M | )2 + 1 other components of G(\neg x)
that contain a neighbor of y. Consider the set \scrC \prime of components of G(\neg x) that contain
a G-neighbor of y and define S :=

\bigcup 
C\in \scrC \prime NG\circ (C).

Claim 8.1. There is a subset S\prime \subseteq S of size k + 2 that is independent in G.

Proof. Proposition 2.1 implies \alpha (G[S]) \geq | S| /\omega (G[S]). By the precondition that
Reduction Rule 3 cannot be applied, we know \omega (G[S]) \leq \omega k,| M | . It follows that
if | S| \geq (k + 2) \cdot \omega k,| M | , an independent subset of size k + 2 exists.

Assume for a contradiction that | S| < (k+2) \cdot \omega k,| M | . Let S
\ast := S\cup M and observe

that each component of \scrC \prime occurs as a connected component of G - S\ast . Hence G - S\ast 

has at least | \scrC \prime | \geq (k + 1)((k + 2) \cdot \omega k,| M | + | M | )2 + 1 > (k + 1)| S\ast | 2 connected
components. But this implies that applying Template 1 with the separator S\ast = S\neg x,y

will remove an irrelevant component, contradicting the precondition that this template
is exhaustively applied for S\neg x,y. \lrcorner 

Claim 8.2. There are two distinct marked components C1, C2 \in \scrC \prime that avoid X,
along with distinct vertices u1 \in NG(C1) \setminus (M \cup X) and u2 \in NG(C2) \setminus (M \cup X) such
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M

C1

x y. . .

C

v

u1

C2

u2

(a) (\Rightarrow ), Lemma 8.2.

M

C ′

y1 y2

C

x

(b) (\Leftarrow ), | NH(x)\cap M | = 2.

Mx y

C

uy

u′
x

ux

u′
y

v
C ′

(c) (\Leftarrow ), | NH(x) \cap M | = 1.

Fig. 8. Illustrations for Lemma 8.2, in the same style as Figure 7. Dotted lines represent
edges between x and C added by the reduction rule to obtain G\prime . (a) If adding edges between x
and C creates a hole in G\prime  - X (thick edges) that was not in G - X, then a hole in G - X can be
found through the marked components. (b) Case 1 of Lemma 8.2. If G\prime  - X is chordal but G - X
contains a hole through x (thick edges), then another hole can be found in G\prime  - X through the marked
component C\prime . (c) Case 2 of Lemma 8.2.

that there are no edges in G between V (C1) \cup \{ u1\} and V (C2) \cup \{ u2\} .
Proof. Consider an independent subset S\prime of S of size k + 2, whose existence is

guaranteed by Claim 8.1. By definition of S, for each v \in S\prime there exists a compo-
nent Cv \in \scrC \prime whose G-neighborhood contains v. For v \not = v\prime \in S\prime , the corresponding
components Cv and Cv\prime are distinct. This follows from the fact that vv\prime \not \in E(G)
as S\prime is independent in G, together with the fact that for each component C of G(\neg x)
the set NG\circ (C) is a clique by Proposition 5.4. Moreover, v is not adjacent to any
vertex in Cv\prime , as otherwise v \in NG\circ (Cv\prime ) would be adjacent to v\prime \in NG\circ (Cv\prime ) as the
neighborhood is a clique. Similarly, v\prime is not adjacent to any vertex in NG\circ (Cv).

Consider the set S\prime of size k+2. For each vertex u \in X, discard v from S\prime if v = u or
if u \in Cv\cap X. As each vertex of X discards at most one vertex, two vertices u1, u2 \in S\prime 

exist that are not discarded. Let C1 and C2 in \scrC \prime be the corresponding components
of G(\neg x) that contain a G-neighbor of y. By the discarding process we know that X
contains no vertex of \{ u1, u2\} \cup V (C1) \cup V (C2). The argumentation above shows that
no vertex of \{ u1\} \cup V (C1) is adjacent in G to a vertex of \{ u2\} \cup V (C2). \lrcorner 

Claim 8.2 allows us to derive a contradiction. Consider the marked components
C1, C2 with the corresponding vertices u1 and u2, whose existence is guaranteed by that
claim. Since each Ci contains a neighbor of y, while each ui is in the G-neighborhood
of a component of G(\neg x) and is therefore adjacent to x, it follows that each Ci \cup \{ ui\} 
contains the interior vertices of an induced xy-path in G. As the claim guarantees
that these paths are vertex-disjoint, not adjacent to each other, and avoid X, their
concatenation forms a hole in G - X (see Figure 8(a)). The hole avoids C, since its
interior uses marked components and C is unmarked. But then this is also a hole
in G\prime  - X, a contradiction. This concludes the proof of the forward direction of the
equivalence.

(\Leftarrow ) Assume that G\prime  - X is chordal but G  - X is not, and let H be a hole
in G  - X. Since G  - X is obtained from G\prime  - X by removing all edges between x
and V (C) \setminus X, hole H goes through x and the edges from x to C form chords on H
in G\prime . Consider NH [x] containing x and its two neighbors on H. As H is a hole
in G - X, for all v \in V (H) \setminus NH [x] we have xv \not \in E(G).

Claim 8.3. All vertices of V (H) \setminus NH [x] belong to C.

Proof. If v \in V (H) \setminus (NH [x] \cup V (C)), then xv \not \in E(G) implies xv \not \in E(G\prime ). The
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2284 BART M. P. JANSEN AND MARCIN PILIPCZUK

subpath of H connecting the neighbors of v on H forms a walk connecting NG\prime (v)
in G\prime  - X whose interior avoids NG\prime [v], implying by Observation 5.1 that G\prime  - X has
a hole. \lrcorner 

We do a case distinction on where the neighbors of x on H appear in the graph.

Case 1: Both neighbors of \bfitx on \bfitH lie in \bfitM . Denote these two neighbors
by y1, y2. As H is a hole in G  - X we have y1y2 \not \in E(G), and as G\prime and G differ
only in edges between x and V (C) we have y1y2 \not \in E(G\prime ). By Claim 8.3, all vertices
of V (H) \setminus \{ y1, y2, x\} belong to C, showing that both y1 and y2 have a G-neighbor
in C. Hence C was a candidate for marking in point (3), and as C was not marked
there is a marked component C \prime of G(\neg x) containing a G-neighbor of y1 as well as
a neighbor of y2, such that X avoids C \prime . There is an induced path P connecting y1
to y2 such that the interior of P is contained in C \prime . As the interior of P belongs to a
component of G(\neg x), the interior is not adjacent to x in G. The concatenation of P
with (y1, x, y2) is therefore a hole in G - X (see Figure 8(b)). Since no vertex belongs
to C, this is also a hole in G\prime  - X, a contradiction.

Case 2: One neighbor of \bfitx on \bfitH lies in \bfitM . Let ux and y be the two
neighbors of x on H, with y \in M and ux \in V (G\circ ). Let v be the neighbor of ux

on H that is not x, and let uy be the neighbor of y that is not x. Since the hole
contains (y, x, ux) we know yux \not \in E(G). By Claim 8.3 we have v \in V (C) and
therefore ux \in NG\circ (C). Claim 8.3 also ensures uy \in V (C).

So C is a component of G(\neg x) that contains a neighbor uy of y, and the G\circ -
neighborhood of C contains a nonneighbor ux of y. It follows that C \in \scrC \neg x(y), and
hence C was eligible for marking in point (2), but was not marked because some
other k + 1 components of G(\neg x) were marked. Consider the set \scrC M of marked
components, and discard all components C that contain a vertex of X either in C
or in NG\circ (C) \setminus NG(y). By Observation 8.1, every vertex of X discards at most one
component of \scrC M , implying that some marked component C \prime \in \scrC M is not discarded
and C \prime contains a G-neighbor of y. Let u\prime 

x be a vertex of NG\circ (C \prime ) \setminus (NG(y) \cup X),
which exists by the discarding process, and note that this implies u\prime 

xx \in E(G). There
is an induced path from y to u\prime 

x whose interior belongs to C \prime , and therefore the path
avoids X. Since the interior belongs to C \prime , which is a component of G(\neg x), the interior
is not adjacent to x. This path forms a hole in G - X together with x (see Figure 8(c)),
and as the hole avoids C it is also a hole in G\prime  - X, a contradiction.

Case 3: None of the neighbors of \bfitx on \bfitH lie in \bfitM . This case is the
easiest. Claim 8.3 ensures that the vertices of H that are not x or its neighbors belong
to C \subseteq G\circ . If the neighbors of x on H do not lie in M , then they also lie in G\circ so
that x is the only vertex from H that belongs to M . But then G - (M \setminus \{ x\} ) is not
chordal. So (G, k,M,Eh) is not a valid instance of A-ChVD, a contradiction.

9. Reducing a single component. In this section we assume that we are
working with an A-ChVD instance (G, k,M,Eh) for which none of the so-far defined
reduction rules apply. Recall that we denote G\circ = G - M . We fix some clique tree
(T, \beta ) of G\circ . We mark a set Q0 \subseteq V (T ) of important nodes as follows:
1. For every pair xy \in 

\bigl( 
M
2

\bigr) 
\setminus E(G), for every maximal clique of G(x, y) we mark a

node of T that contains this clique in its bag.
2. For every x \in M and every connected component A of G(\neg x), we mark a node

of T whose bag contains NG\circ (A); recall that by Proposition 5.4 the set NG\circ (A)
induces a clique in G\circ .
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2285

Let Q be the set Q0 together with the root of T and all lowest common ancestors in
T of every pair of nodes from Q0. Standard arguments show that | Q| \leq 1 + 2| Q0| . We
define SQ =

\bigcup 
s\in Q \beta (s).

Reduction Rule 5. Apply Reduction Template 1 with the separator SQ \cup M .

Proposition 9.1. If Reduction Rules 1, 2, 3, 4, and 5 have been applied exhaus-
tively, then | SQ \cup M | = \scrO (k6| M | 10) and G - (SQ \cup M) = G\circ  - SQ has \scrO (k13| M | 20)
connected components.

Proof. We first bound the size of Q0 and Q. For every pair xy \in 
\bigl( 
M
2

\bigr) 
\setminus E(G), we

add a bag to Q0 in the first step for each maximal clique of G(x, y). Since Reduction
Rule 1 is not applicable and xy \not \in E(G), we have \alpha (G(x, y)) < k + 2. Proposition 2.1
shows that | V (x, y)| \leq \alpha (G(x, y)) \cdot \omega (G(x, y)), and since Reduction Rule 3 is not
applicable, we know \omega (G(x, y)) \leq \omega (G\circ ) \leq \omega k,| M | . Hence | V (x, y)| \leq (k + 2) \cdot \omega k,| M | .
Since the number of maximal cliques in the chordal graph G(x, y) does not exceed its
order, for each nonadjacent pair x, y in M we add at most | V (x, y)| bags to Q0. Hence
the first step contributes at most | M | 2(k + 2) \cdot \omega k,| M | = \scrO (k2| M | 5) bags to | Q0| .

In the second step, we add a bag to Q0 for each connected component of G(\neg x)
for each x \in M . Since Reduction Rule 4 is not applicable, we know that each x \in M
yields \scrO (k5| M | 6) connected components in G(\neg x). The contribution of the second
step therefore dominates the size of Q0, and we have | Q0| = \scrO (k5| M | 7), which
implies | Q| = \scrO (k5| M | 7).

Since each bag is a clique in G\circ , it contains \omega k,| M | = \scrO (k| M | 3) vertices since
Reduction Rule 3 is exhaustively applied. It follows that | SQ| \leq | Q| \cdot \omega k,| M | =
\scrO (k6| M | 10) vertices, which also forms a size bound for the entire separator SQ \cup M .
As Reduction Rule 5 is exhaustively applied, it follows that the number of components
of G\circ  - SQ is \scrO (k \cdot | SQ \cup M | 2) = \scrO (k13| M | 20).

As Proposition 9.1 shows that | SQ \cup M | and the number of components of G - 
(SQ \cup M) is bounded polynomially in the parameter, it only remains to bound the size
of each component. Our main focus in this section is therefore to bound the size of a
single connected component of G\circ  - SQ. Let A be the vertex set of such a component,
and let QA =

\bigcup 
v\in A \beta  - 1(v). Since G\circ [A] is connected, T [QA] is connected as well. By

the construction of Q, there exist at most two nodes q \in NT (Q
A) such that if p is the

unique neighbor of q in QA, then \beta (p) \cap \beta (q) \not = \emptyset . Furthermore, one of these nodes q
is the parent of the topmost vertex of QA, and we denote it by q\uparrow . If the second one
exists, we denote it by q\downarrow ; otherwise, we add a dummy node q\downarrow with an empty bag as
a child of one of the leaves of T [QA]. Consequently, we have that

(1) NG(A) \subseteq M \cup \beta (q\uparrow ) \cup \beta (q\downarrow ).

Let \Pi be the unique path from q\uparrow to q\downarrow in the tree T . Refer to Figure 9 for an
illustration of these concepts. We start with the following simple observation.

Observation 9.1. For every vertex v \in A and two distinct neighbors x \in N(v) \cap 
M and u \in N(v) we have xu \in E(G). In particular, we have N(v) \cap M = N(A) \cap M
(i.e., every vertex in A has exactly the same set of neighbors in M), and N(A) \cap M is
a clique in G.

Proof. First, assume the contrary of the first claim. If u \in M , then v \in V (x, u),
but since xu /\in E(G), v belongs to

\bigcup 
q\in Q0

\beta (q) by the first marking step. Hence v \in SQ

and cannot belong to a component A of G\circ  - SQ, a contradiction. If u \not \in M , then
v \in NG\circ (V (\neg x)) since u \in V (\neg x), and thus v \in 

\bigcup 
q\in Q0

\beta (q) by the second marking
step. The second claim follows from the connectivity of A.
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v u↑ u′

v u↓ u′

u↑ u′

vu↓ u′

v

q↓

q↑

Π

QA

(a) (T, \beta ).

M. . .NG(A) ∩M

A
v

u′

u↓ u↑
. . .

. . .

(b) G with modulator M .

Fig. 9. Illustration of the structure of components A of G\circ  - SQ analyzed in section 9. (a) Clique
tree (T, \beta ) of the graph G\circ . The marked bags Q are drawn in gray; note that the set Q is closed with
respect to taking lowest common ancestors. The bags QA that contain a vertex of A are highlighted
by the dashed container. The subtree induced by QA has two neighbors in T : q\uparrow and q\downarrow . The unique
simple q\uparrow q\downarrow -path \Pi in T is drawn dashed-dotted. (b) Local structure in the corresponding graph G
with modulator M . The component A of G\circ  - SQ is illustrated with a box. Its neighborhood in G\circ 

is a subset of the vertices in \beta (q\uparrow ) and \beta (q\downarrow ), both of which are cliques in G\circ . These two cliques
can overlap, as they do here in vertex u\prime . By Observation 9.1, all vertices in A have the same
neighborhood in M , which is illustrated with a box. The thick edge between the two boxes represents
all possible edges between the two sets. By Claim 9.1, any permitted hole H using a vertex of A
uses A to form an induced path between some u\uparrow \in \beta (q\uparrow ) and u\downarrow \in \beta (q\downarrow ). For any vertex v used on
such a path, the subtree \beta  - 1(v) uses a vertex of \Pi .

9.1. Permitted holes through \bfitA . In this section we analyze permitted holes
in G that contain some vertices from A.

Claim 9.1. Let H be a permitted hole in G that passes through A, and let v \in 
V (H) \cap A be arbitrary. Then

1. both neighbors of v on H lie in G\circ ;
2. H contains a subpath between a vertex of \beta (q\uparrow ) and a vertex of \beta (q\downarrow ) that

contains v and whose interior vertices all lie in A;
3. \beta  - 1(v) contains at least one interior vertex of \Pi .

Proof. The first claim follows from Observation 9.1: if one of the neighbors of v
on H lies in M , then it is adjacent to the second neighbor of v on H, a contradiction.

For the second claim, let P be a maximal subpath of H containing v such that all
interior vertices lie in A; recall that at least two vertices of H lie in M , so the endpoints
of P are distinct. Furthermore, from the first claim, applied to all interior vertices of
P , we infer that the endpoints of P lie in G\circ . Since N(A) \subseteq M \cup \beta (q\uparrow )\cup \beta (q\downarrow ) by (1),
they lie in \beta (q\uparrow ) \cup \beta (q\downarrow ). Since H needs to contain at least two vertices of M , and
P does not contain any such vertices but contains v \in A, the two endpoints of P are
nonadjacent, and thus one endpoint of P lies in \beta (q\uparrow ) and one lies in \beta (q\downarrow ) as both
sets are cliques.

For the last claim, let P \prime be a subpath of H between a vertex u\uparrow \in \beta (q\uparrow )
and u\downarrow \in \beta (q\downarrow ) that contains v, whose existence we just established. The minimal
path \Pi T (u

\uparrow , u\downarrow ) connecting \beta  - 1(u\uparrow ) and \beta  - 1(u\downarrow ) in T is a subpath of \Pi . Since P \prime 

is an induced path in G\circ , Proposition 2.4 shows that \beta  - 1(v) contains a node
of \Pi T (u

\uparrow , u\downarrow ) \subseteq \Pi . This must be an interior node of \Pi , since v \in A does not occur
in \beta (q\uparrow ) or \beta (q\downarrow ). \lrcorner 
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1
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1
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4
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4

3 44 3 54 55

q↑ q↓

Fig. 10. Illustration of the process of marking nodes on \Pi to determine sets Qi \subseteq V (\Pi )
and Zi \subseteq V (A) \subseteq V (G\circ ). Path \Pi in (T, \beta ) is laid out horizontally. Only the occurrence of the
vertices in \beta (q\uparrow ) \cup \beta (q\downarrow ) in bags of T is shown. The bags also contain other vertices, which are
hidden. Nodes in Q0 = \{ q\uparrow , q\downarrow \} are drawn in dark gray. The set Qi+1 contains Qi, and for each
vertex v in a bag q \in Qi it contains the leftmost and rightmost occurrence of v on \Pi . The light-gray
bags are added to Q1 by this process. For example, the first light-gray node from the left is added
to Q1 because it has the rightmost occurrence of 1 \in \beta (q\uparrow \in Q0), i.e., the occurrence of 1 on \Pi that
is closest to q\downarrow in T .

9.2. Important vertices in \bfitA . We now define a set Z of important vertices
in A. Intuitively, these are the only vertices that a ``reasonable"" solution may delete
in A.

We define by induction sets Qi \subseteq V (\Pi ) for i \in \{ 0, 1, 2, . . .\} . Let Q0 = \{ q\uparrow , q\downarrow \} .
Given Qi, we first define Zi =

\bigcup 
q\in Qi

\beta (q) and then Qi+1 as follows: we start with

Qi+1 = Qi and then, for every u \in Zi, we add to Qi+1 the node on V (\Pi ) \cap \beta  - 1(u)
that is closest to q\uparrow and the node that is closest to q\downarrow . In what follows we will work
with sets Q0, Q1, and Q2 (see Figure 10).

Furthermore, we construct a set of edges R \subseteq E(\Pi ) as follows: for every two nodes
q1, q2 \in Q2 that are consecutive on \Pi (i.e., no node of \Pi between them belongs to
Q2), we add to R an edge e of the subpath of \Pi between q1 and q2 that minimizes
| adh(e) \cap A| (see Figure 11).

We define the set

Z := A \cap 

\Biggl( 
Z2 \cup 

\bigcup 
e\in R

adh(e)

\Biggr) 
.

Since every clique in G\circ has size \scrO (k| M | 3) (by Reduction Rule 3), we have | Qi| =
\scrO (ki| M | 3i) and | Zi| = \scrO (ki+1| M | 3i+3) for every fixed i, and, consequently, | Z| =
\scrO (k3| M | 9).

An important property of the set Q1 is the following.

Claim 9.2. Let H be a permitted hole containing a vertex v \in A \setminus Z1. Then both
neighbors of the vertex v on the hole H lie in A as well. In particular, if P is the path
obtained from Claim 9.1 for H and v, then v is not adjacent to either of the endpoints
of the path P .

Proof. We apply Claim 9.1 to the hole H with vertex v, obtaining a path P with
endpoints u\uparrow \in \beta (q\uparrow ) and u\downarrow \in \beta (q\downarrow ), and a node s \in V (\Pi ) \cap \beta  - 1(v). Note that
s /\in Q1. Let s\uparrow be the first node of Q1 encountered if we traverse \Pi from s in the
direction of q\uparrow , and similarly define s\downarrow (recall that q\uparrow , q\downarrow \in Q1, so these nodes are
well-defined).

The crucial observation, stemming from the definition of Q1, is that the bag
of every node of V (\Pi ) \cap \beta  - 1(v) contains exactly the same subset of vertices of Z0.
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. . .

1

2

3 4

1 2 3 4 55

q↑ q↓

1

2

7

6

1

5

4

5

4

8

. . .

5

q′ ∈ Q2 q′′ ∈ Q2

Fig. 11. The set Q2 on the q\uparrow q\downarrow -path \Pi is drawn in gray. For some bags on the path, the
vertices from A they contain are drawn inside the bags. Between consecutive nodes from Q2 we find
an edge e minimizing | adh(e) \cap A| and add it to R. The dashed-dotted edge is added to R, since its
adhesion within A is \{ 1, 2, 6, 7\} \cap \{ 1, 4, 5\} = \{ 1\} \in A, while the other edges between q\prime and q\prime \prime all
have at least two vertices from A in their adhesion.

Furthermore, this subset of vertices forms a clique in G\circ , as they appear together in
\beta (s). By Claim 9.1, each neighbor w of v on P lies in A \cup Z0. We have that \beta  - 1(w)
contains a node of V (\Pi ): this follows from Claim 9.1 if w \in A, and for w \in Z0 it
follows from the facts that w \in \beta (q\uparrow )\cup \beta (q\downarrow ) and w is adjacent to v \in A. Furthermore,
since w is adjacent to v, we have that \beta  - 1(w) actually needs to contain a vertex of
V (\Pi ) \cap \beta  - 1(v). Consequently, every neighbor w \in N(v) \cap Z0 is equal or adjacent to
both neighbors of v on P , which implies that w cannot lie on P . \lrcorner 

9.3. Vertices outside \bfitZ can be made undeletable. Our goal now is to show
the following lemma that says that the vertices of A \setminus Z can be made undeletable: the
answer to the problem would not change if we would forbid the vertices of A \setminus Z to be
part of a solution. Hence if a solution exists, there is a solution disjoint from A \setminus Z.
Using this knowledge, we can later eliminate such vertices using a bypassing operation.
In the following, \bigtriangleup denotes symmetric difference.

Lemma 9.2. For every solution X to (G, k,M,Eh) there exists a solution X \prime with
| X \prime | \leq | X| , X\bigtriangleup X \prime \subseteq A, and X \prime \cap A \subseteq Z.

Proof. Assume the contrary, and letX be a counterexample with minimum number
of vertices from A \setminus Z. Let v \in X \cap (A \setminus Z). By the minimality of X, we have that
G - (X\setminus \{ v\} ) contains a holeH passing through v. SinceX is a solution to (G, k,M,Eh)
and v /\in M , this hole is permitted. We apply Claim 9.1: let P be a subpath of H
whose existence is asserted in the second claim, and let r \in \beta  - 1(v) \cap V (\Pi ).

Let x be an arbitrary vertex of V (H) \cap M . Note that by Claim 9.1 we have
vx /\in E(G) and, consequently, by Observation 9.1, A \cap N(x) = \emptyset .

Since v /\in Z we have \beta  - 1(v) \cap Q2 = \emptyset , and in particular r /\in Q2. Let r\uparrow be the
first vertex of Q2 encountered if we traverse \Pi from r in the direction of q\uparrow , and
similarly define r\downarrow (recall that q\uparrow , q\downarrow \in Q2, so these nodes are well-defined). We claim
the following.

Claim 9.3. X contains adh(eX) \cap A for some edge eX that lies on \Pi between r\uparrow 

and r\downarrow .

Proof. Assume the contrary. Construct a set B \subseteq A \setminus X as follows: for every edge
e that lies on \Pi between r\uparrow and r\downarrow , insert into B an arbitrary vertex of adh(e)\cap (A\setminus X).
Since every bag of T is a clique, G[B] is connected.

Let P \uparrow be the subpath of P between v and the endpoint of P in \beta (q\uparrow ), and let
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q↑ ∈ Q0 q↓ ∈ Q0

u↑ u↓v
s↑ ∈ Q1

r↑ ∈ Q2 r↓ ∈ Q2

s↓ ∈ Q1
v

v′

vv v′ v′

v′
e ∈ R eX

r s

Fig. 12. Illustration of the situation for Claim 9.5. The set Q2 \supseteq Q1 \supseteq Q0 on the q\uparrow q\downarrow -path \Pi 
is drawn in light gray. A marked edge e \in R between r\uparrow and r\downarrow is drawn dashed-dotted. An edge eX
for which adh(eX) \cap A \subseteq X is also shown.

P \downarrow be the subpath of P between v and the endpoint of P in \beta (q\downarrow ). Since r\uparrow lies on
the unique path in T between \beta  - 1(v) and q\uparrow , P \uparrow contains a vertex w\uparrow \in \beta (r\uparrow ); note
that w\uparrow \not = v as v /\in \beta (r\uparrow ). Similarly define w\downarrow \in \beta (r\downarrow ). By the construction of B,
w\uparrow , w\downarrow \in N [B].

We infer that G[V (H) \setminus \{ v\} \cup B] contains a walk between the neighbors of x on
the hole H with interior vertices in V (G) \setminus N [x] (recall that B \subseteq A and A\cap N [x] = \emptyset ).
By Observation 5.1, G - X contains a hole, which is easily seen to be permitted, a
contradiction. \lrcorner 

By construction of R in the beginning of section 9.2, there is an edge e on R that
lies between r\uparrow , r\downarrow \in Q2 on \Pi . Let X \prime = (X \setminus (adh(eX) \cap A)) \cup (adh(e) \cap A), where
the edge eX is given by Claim 9.3. By the choice of e in the process of constructing
R, we have | X \prime | \leq | X| . Clearly, also X\bigtriangleup X \prime \subseteq A. Since adh(e \in R) \cap A \subseteq Z, to
prove that X \prime contains strictly fewer vertices of A \setminus Z than X it suffices to show the
following.

Claim 9.4. If eX is an edge whose existence is asserted by Claim 9.3, then
v \in adh(eX).

Proof. By Claim 9.2 for H and v, neither u\uparrow nor u\downarrow is adjacent to v; in particular,
they do not belong to \beta (r). By the definition of Q1, neither of them belongs to any
bag on \Pi between r\uparrow and r\downarrow , exclusive.

Consequently, u\uparrow , u\downarrow /\in adh(eX), and thus P contains a vertex of adh(eX) \cap A.
Since H is a hole in G - (X \setminus \{ v\} ), and adh(eX)\cap A \subseteq X, this vertex is the vertex v.\lrcorner 

To reach a contradiction, it remains to show that X \prime is a solution to (G, k,M,Eh)
as well. Since X\bigtriangleup X \prime \subseteq A, X \prime satisfies all the constraints imposed by the set Eh.
Thus, it remains to prove that G - X \prime is chordal. Assume the contrary, and let H \prime be
a hole in G - X \prime .

Since G - X is chordal, H \prime needs to contain a vertex v\prime \in A\cap (adh(eX) \setminus adh(e)).
Since e and eX are edges of \Pi between two consecutive vertices of Q2 (namely, r\uparrow and
r\downarrow ), it follows from the definition of Q2 that adh(e) \cap Z1 = adh(eX) \cap Z1. We infer
that v\prime /\in Z1. Refer to Figure 12 for an illustration.

We apply Claim 9.1 to the hole H \prime with vertex v\prime , obtaining a path P \prime with
endpoints u\uparrow \in \beta (q\uparrow ) and u\downarrow \in \beta (q\downarrow ), and a node s \in V (\Pi ) \cap \beta  - 1(v\prime ). Note that
s /\in Q1. Let s\uparrow be the first node of Q1 encountered if we traverse \Pi from s in the
direction of q\uparrow , and similarly define s\downarrow (recall that q\uparrow , q\downarrow \in Q1, so these nodes are
well-defined). Observe that since v\prime \in adh(eX), but s\uparrow , s\downarrow /\in \beta  - 1(v\prime ), we have that r\uparrow ,
r\downarrow , e, and eX lie on the subpath of \Pi between s\uparrow and s\downarrow ; possibly r\uparrow = s\uparrow or r\downarrow = s\downarrow .
We now show the following corollary of Claim 9.2.
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2290 BART M. P. JANSEN AND MARCIN PILIPCZUK

Claim 9.5. The vertex u\uparrow is not present in any bag on \Pi between s\uparrow (exclusive)
and q\downarrow (inclusive); i.e., \beta  - 1(u\uparrow ) \cap V (\Pi ) is contained in the subpath of \Pi between
s\uparrow and q\uparrow . Symmetrically, the vertex u\downarrow is not present in any bag on \Pi between s\downarrow 

(exclusive) and q\uparrow (inclusive); i.e., \beta  - 1(u\downarrow ) \cap V (\Pi ) is contained in the subpath of \Pi 
between s\downarrow and q\downarrow .

Proof. By Claim 9.2 for H \prime and v\prime \not \in Z1, neither u\uparrow nor u\downarrow is adjacent to v\prime ; in
particular, they do not belong to \beta (s). By the definition of Q1, neither of them belongs
to any bag on \Pi between s\uparrow and s\downarrow , exclusive. The statement for u\uparrow follows from the
fact that \beta  - 1(u\uparrow ) \cap V (\Pi ) is connected and contains q\uparrow , and similarly for u\downarrow . \lrcorner 

Since all interior vertices of P \prime lie in A, from Claim 9.5 it follows that P \prime needs to
contain a vertex of adh(e) \cap A, as e lies between s\uparrow and s\downarrow on \Pi . Consequently, P \prime is
hit by X \prime , a contradiction. This concludes the proof of the lemma.

9.4. Reducing \bfitA \setminus \bfitZ . Our goal now is to reduce A \setminus Z. While by Lemma 9.2
we know that in a yes-instance there is a solution disjoint with A \setminus Z, we need to be
careful, as some permitted holes may contain vertices from A \setminus Z. We first filter out a
simple case.

Observation 9.2. Any vertex of A \setminus 
\bigcup 

q\in V (\Pi ) \beta (q) is irrelevant.

Proof. Let v \in A \setminus 
\bigcup 

q\in V (\Pi ) \beta (q). By Claim 9.1, no permitted hole passes through

v. Consequently, any solution X to (G - v, k,M,Eh) is a solution to (G, k,M,Eh) as
well: as v /\in M , X satisfies all constraints imposed by Eh, while G and G - v contain
the same permitted holes.

This allows us to formulate the following reduction rule.

Reduction Rule 6. If A \setminus 
\bigcup 

q\in V (\Pi ) \beta (q) is nonempty, remove any vertex from
this set.

Other vertices of A \setminus Z need to be handled differently. For a vertex v \in V (G), by
bypassing the vertex v we mean the following operation: we first turn NG(v) into a
clique, and then delete v from G. We first observe that bypassing a vertex preserves
being chordal.

Observation 9.3. A graph constructed from a chordal graph by bypassing a vertex
is chordal as well.

Proof. Let G1 be a chordal graph with clique tree (T1, \beta 1), let v \in V (G1), and let
G2 be constructed from G1 by bypassing v. Consider the following tree decomposition
(T2, \beta 2): we take T2 = T1 and then, for every p \in V (T2), we put \beta 2(p) = N(v) if
v \in \beta 1(p), and \beta 2(p) = \beta 1(p) otherwise. A direct check shows that (T2, \beta 2) is a tree
decomposition of G2 in which every bag induces a clique. Thus, G2 is chordal, as
claimed.

Lemma 9.3. Assume all previous reductions are inapplicable. Let v \in A \setminus Z, and
let G\prime be constructed from G by first turning NG(v) into a clique, and then removing
the vertex v. Then the instances (G, k,M,Eh) and (G\prime , k,M,Eh) are equivalent.

Proof. In one direction, assume (G, k,M,Eh) is a yes-instance. Lemma 9.2 asserts
that there exists a solution X that does not contain v. Observation 9.3, applied to
G  - X and vertex v, implies that G\prime  - X is chordal as well. Consequently, X is a
solution to (G\prime , k,M,Eh) as well.

The other direction is significantly more involved. Intuitively, we want to rely on
Claim 9.2 to show that v can only interact with permitted holes ``locally,"" and thus
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2291

any permitted hole in G has its counterpart in G\prime : possibly shorter but still being a
hole. We start with showing that the new edges in G\prime are actually only in G[A].

Claim 9.6. If u,w are two distinct nonadjacent neighbors of v in G, then u,w \in 
A \setminus Z1.

Proof. Pick u,w as in the statement. Observation 9.1 implies that u,w /\in M .
Since Reduction Rule 6 is not applicable to v, there exists r \in \beta  - 1(v) \cap V (\Pi ). Since
v /\in Z, we have r /\in Q2. Let r

\uparrow be the first vertex of Q2 encountered if we traverse \Pi 
from r in the direction of q\uparrow , and similarly define r\downarrow (recall that q\uparrow , q\downarrow \in Q2, so these
nodes are well-defined).

By contradiction, assume u \in Z1. Note that all nodes of \beta  - 1(v) \cap V (\Pi ) lie on
\Pi between r\uparrow and r\downarrow , exclusive. By the definition of Q2, every bag at every node of
\beta  - 1(v)\cap V (\Pi ) contains exactly the same subset of Z1; in particular, it contains u. Since
Reduction Rule 6 does not apply to w, w is present in some bag on \Pi ; since vw \in E(G),
w is present in some bag of \beta  - 1(v) \cap V (\Pi ). We infer that u and w meet in some bag
of \beta  - 1(v) \cap V (\Pi ), a contradiction to the assumption that they are nonadjacent. \lrcorner 

Assume now that (G\prime , k,M,Eh) is a yes-instance, and let X be a solution. We
claim that X is a solution to (G, k,M,Eh) as well; clearly it satisfies all the constraints
imposed by Eh. By contradiction, let H be a hole in G - X; clearly, H is permitted.
Since H is not a hole in G\prime  - X, either it contains the vertex v or one of the edges of
E(G\prime )\setminus E(G) is a chord of H in G\prime  - X. We infer that in both cases H contains a vertex
w \in A\setminus Z1: in the first case we take w = v, in the second case it follows from Claim 9.6.

We apply Claim 9.1 to the hole H and the vertex w, obtaining a path P with
endpoints u\uparrow \in \beta (q\uparrow ) and u\downarrow \in \beta (q\downarrow ). By the construction of G\prime , the subgraph
G\prime [V (P ) \setminus \{ v\} ] is connected. By Claim 9.2, the vertex w is nonadjacent to neither
u\uparrow nor u\downarrow ; thus u\uparrow u\downarrow /\in E(G\prime ) and the shortest path P \prime between u\uparrow and u\downarrow in
G\prime [V (P ) \setminus \{ v\} ] is of length at least two. We infer that if we replace P with P \prime on
the hole H, we obtain a hole in G\prime  - X, a contradiction.

Lemma 9.3 justifies the following reduction rule.

Reduction Rule 7. If there exists a vertex v \in A \setminus Z, then bypass v.

To conclude, observe that if the reductions introduced in this section are inap-
plicable, we have | A| = \scrO (k3| M | 9) for every connected component A of G  - (M \cup 
SQ) = G\circ  - SQ. Since Proposition 9.1 shows that the number of such components
is bounded by \scrO (k13| M | 20) after exhaustive applications of all the reduction rules
and | SQ| = \scrO (k6| M | 10), we obtain a final size bound of \scrO (k16| M | 29) vertices in an
exhaustively reduced instance. All reduction rules can be applied in polynomial time.
Each application either reduces the number of vertices, or adds an edge to the graph.
It follows that an instance can be exhaustively reduced by \scrO (| V (G)| + | E(G)| ) appli-
cations of a reduction rule, which means the entire kernelization runs in polynomial
time. This concludes the proof of Theorem 5.2.

10. Approximation algorithm. This section is devoted to the proof of Theo-
rem 1.2. We start with an informal overview. Let (G, k) be a ChVD instance. First,
we can assume that log n \leq k log k, as otherwise the algorithm of Cao and Marx [19]
solves (G, k) in polynomial time.

We observe that in a yes-instance there exists a balanced vertex cut1 that consists of
a clique and at most k vertices. To this end, it suffices to take a minimum solution and a

1That is, a vertex set S such that each connected component of G  - S has at most c \cdot | V (G)| 
vertices for some constant c < 1.
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``central"" maximal clique of the remaining chordal graph G\prime , that is, a maximal clique K
of G\prime such that every connected component of G\prime  - K is of size at most | V (G\prime )| /2. We
can find an approximate variant of such a balanced vertex cut in the following fashion.
Since we can assume that G is C4-free (e.g., by greedily deleting whole C4's in G), it
has \scrO (n2) maximal cliques [27, Proposition 2]. We iterate over all choices of a maximal
clique K in G and apply the approximation algorithm for a balanced vertex cut of [28,
section 6.2] to G - K. In this manner, we can always find a balanced vertex cut in G
consisting of a clique and \scrO (k

\surd 
log k) vertices (or conclude that we have a no-instance).

We iteratively apply the above partitioning algorithm to a connected component
of G that is not chordal and remove the output cut. A simple charging argument
shows that in a yes-instance such a procedure finishes after \ell = \scrO (k log n) steps. In
the end, we obtain a partition

V (G) = A0 \uplus K1 \uplus K2 \uplus \cdot \cdot \cdot \uplus K\ell \uplus X0,

where G[A0] is chordal, every Ki is a clique, and | X0| = \scrO (\ell k
\surd 
log k). We put X0 into

the solution we are constructing. To obtain the desired approximation algorithm, it
is sufficient to tackle the special case where we are given a partition V (G) = A \uplus B,
where G[A] is chordal and B is a clique in G. We can initially apply an algorithm for
this special case to the graph G[A0 \uplus K1], obtaining a solution X1. We apply it again
to G[((A0 \uplus K1) \setminus X1) \uplus K2] to obtain X2, and then we repeat. After \ell iterations of
finding an approximate solution and adding back the next clique, we have found an
approximate solution to the original input.

To find an approximate solution in the mentioned special case, we again apply
the balanced partitioning approach, but with a different toolbox. Let L be a ``central""
maximal clique of G[A]. If we find a small (bounded polynomially in the value of an
LP relaxation) set of vertices that hits all holes passing through L, then we can delete
such a set, discard L (as no holes now pass through L), and recurse on connected
components of remaining graph.

Thus, we can now focus only on holes passing through L (see Figure 13). We
obtain an orientation G\downarrow of G as follows: we root a clique tree of G[A] in L and orient
every edge of G ``downwards""; that is, uv \in E(G) becomes (u, v) \in E(G\downarrow ) if top(u)
is an ancestor of top(v), breaking ties arbitrarily for top(u) = top(v). Then every
hole H passing through L (and through B as G[A] is chordal) decomposes into two
directed paths in G\downarrow , Q1 and Q2, that (except for some corner cases when one of
the paths Qi consists of only a few vertices) go from L to N(B) through different
components of G[A] - L. This fact allows us to claim that if we substitute Qi with a
different directed path in G\downarrow with the same first few vertices and the same last vertex,
we obtain again a hole in G. As a corollary, a (constant multiple of) the LP relaxation
needs to separate (in G\downarrow ) the first few vertices of Qi from the last vertex of Qi for
some i \in \{ 1, 2\} . This observation allows us to reduce the task of hitting all holes
passing through L to a Multicut instance in G\downarrow , for which a constant multiple of
the original LP relaxation is a feasible fractional solution. In this Multicut instance,
we can apply an approximation algorithm of Gupta [39] to round the aforementioned
fractional solution to an integral one.

The rest of this section is organized as follows. First, in section 10.1 we recall the
definition of the Multicut problem and formally define LP relaxations of Multicut
and ChVD. We also recall the approximation algorithm of Gupta [39] that we will use.
In section 10.2 we focus on approximating ChVD in a special case of graphs G where
V (G) is partitioned into A \uplus B such that G[A] is chordal and B is a clique. Finally,
we wrap up the approximation algorithm in section 10.3.

c\bigcirc 2018 Bart M. P. Jansen and Marcin Pilipczuk

D
ow

nl
oa

de
d 

10
/1

1/
18

 to
 1

31
.1

55
.1

51
.3

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2293

clique L

clique B

chordal G[A]

Fig. 13. Schematic overview for the key special case in the approximation algorithm: given a
partition V (G) = A\uplus B such that G[A] is chordal and B is a clique, find a small vertex set (in black)
intersecting all holes (thick lines) that pass through a ``central"" maximal clique L of G[A]. Except
for easily handled special cases, the relevant holes through L split into two paths from L to NG(B)
through different components of G[A] - L. The holes passing through B but not L (dotted) are hit
when recursing for the different components of G[A] - L. Since B is a clique, a hole in G avoiding L
uses at most one component of G[A] - L.

10.1. MULTICUT and LP relaxations. An instance of the Multicut problem
consists of a directed graph G and a family \scrT \subseteq V (G)\times V (G) of terminal pairs. A set
X \subseteq V (G) is a feasible solution to a multicut instance (G, \scrT ) if, for every (s, t) \in \scrT ,
there is no path from s to t in G  - X. The Multicut problem asks for a feasible
solution of minimum cardinality. That is, we focus on the unweighted node deletion
variant of Multicut and note that the set X may contain terminals.

Given a Multicut instance (G, \scrT ), a fractional solution is a function x\ast : V (G) \rightarrow 
[0,+\infty ) such that for every (s, t) \in \scrT and every path P from s to t in G, we have

x\ast (P ) :=
\sum 

v\in V (P )

x\ast (v) \geq 1.

The equation above is a linear constraint on values of x\ast that defines the polytope
of fractional solutions. Clearly, a feasible solution to the Multicut instance (G, \scrT )
induces a fractional solution that assigns 1 to the vertices of the solution. Furthermore,
the separation oracle of the aforementioned polytope is straightforward to implement
by a shortest-path algorithm such as Dijkstra's. Consequently, using the ellipsoid
method, in polynomial time we can find a fractional solution of total value arbitrarily
close to the minimum possible.

Very similarly we define a fractional solution to ChVD on an undirected graph G:
it is a function x\ast : V (G) \rightarrow [0,+\infty ) such that for every hole H in G we have

x\ast (H) :=
\sum 

v\in V (H)

x\ast (v) \geq 1.

Again, the equation above defines a polytope containing all feasible solutions to ChVD
on G, and there is a simple separation oracle for this polytope.2

2Iterate over all possibilities of three consecutive vertices v1, v2, v3 on the hole H, and compute
the shortest path from v1 to v3 in G  - N [v2] with respect to the distances defined by the current
values of x\ast .
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For a fractional solution x\ast (either to Multicut or ChVD), we use the notation
x\ast (X) for a vertex set X \subseteq V (G) for

\sum 
v\in X x\ast (v). Furthermore, we use | x\ast | for

x\ast (V (G)) and x\ast (H) = x\ast (V (H)) for a subgraph H of G (e.g., a path).
Multicut is NP-hard even in undirected graphs with three terminal pairs [23].

The best known approximation ratio for undirected graphs is \scrO (log n) [34], but for
general directed graphs only \scrO (

\surd 
n)-approximation is known [39]. We will need the

following result from the work of Gupta [39].

Theorem 10.1 (see [39]). Given a Multicut instance (G, \scrT ) and a fractional
solution x\ast , one can compute in polynomial time an integral solution of size \scrO (| x\ast | 2).

Although [39] tackles the edge deletion variant of Multicut, note that in directed
graphs the edge and node deletion variants are equivalent via standard reductions.

Finally, we will frequently need the following observation.

Theorem 10.2 (see [38, Theorem 1]). For every graph G, its tree decomposition
(T, \beta ), and a function f : V (G) \rightarrow \BbbR \geq 0, there exists a node t \in V (T ) such that
every connected component C of G  - \beta (t) satisfies f(V (C)) \leq f(V (G))/2, where
f(X) =

\sum 
v\in X f(v) for X \subseteq V (G). In particular, for every chordal graph G and

a function f : V (G) \rightarrow \BbbR \geq 0 there exists a maximal clique X in G such that every
connected component C of G - X satisfies f(V (C)) \leq f(V (G))/2.

10.2. Adding a clique to a chordal graph. In this section we develop an
approximation algorithm for the following special case.

Lemma 10.3. Assume we are given a graph G, a fractional solution x\ast to ChVD
on G, and a partition V (G) = A \uplus B, such that G[A] is chordal and G[B] is complete.
Then one can in polynomial time find an integral solution to ChVD on G of size
\scrO (| x\ast | 2 log | x\ast | ).

As an intermediate step towards Lemma 10.3, we show the following.

Lemma 10.4. Let G, x\ast , A, and B be as in the statement of Lemma 10.3. Fur-
thermore, let L be a maximal clique of G[A]. Furthermore, assume that x\ast (v) = 0 for
every v \in B and x\ast (v) < 1/10 for every v \in A. Then one can in polynomial time find
a set X \subseteq V (G) of size at most \scrO (| x\ast | 2) such that G  - X does not contain a hole
passing through L.

Proof. We fix a clique tree (T, \beta ) of G[A], and root it in a node root with
\beta (root) = L. We define a partial order \preceq 0 on A as v \prec 0 u if top(v) is an ancestor
of top(u), and we pick \preceq to be an arbitrary total order extending \preceq 0. We obtain an
orientation G\downarrow of G[A] by orienting the edges of G so that \preceq becomes a topological
ordering of G\downarrow (i.e., we orient uv \in E(G) as (u, v) if u \preceq v). In G\downarrow , we define a
distance measure distG\downarrow ,\bfx \ast as distances with respect to the cost function x\ast ; that is,
distG\downarrow ,\bfx \ast (u, v) is the minimum value of x\ast (P ) over all uv-paths P in G\downarrow . Finally, we
define

\scrT = \{ (u, v) \in A\times A : distG\downarrow ,\bfx \ast (u, v) \geq 1/10\} .

Clearly, 10x\ast is a fractional solution to the Multicut instance (G\downarrow , \scrT ). By
applying the algorithm of Theorem 10.1, we obtain a set X \subseteq V (G) of size \scrO (| x\ast | 2)
that is a solution to Multicut on (G\downarrow , \scrT ). To finish the proof of the lemma, it suffices
to show that X is also good for our purposes, that is, G  - X does not contain any
hole passing through L.

Assume the contrary, and let H be any such hole in G  - X. Since G[A] is
chordal, H contains at least one vertex of B. Since both L and B are cliques in G,
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APPROXIMATION AND KERNELS FOR CHORDAL DELETION 2295

H contains at most two vertices of each of these cliques. Consequently, there exists
a unique decomposition of H into two paths P 1, P 2, such that every path P i has an
endpoint xi \in L, and endpoint yi \in B, and all internal vertices in A \setminus L. We have
V (P 1) \cup V (P 2) = V (H). Note that it is possible that x1 = x2 or y1 = y2.

Let u, v be two consecutive internal vertices on P i, such that u is closer to xi on
P i than v. Observe that top(u) is an ancestor of top(v), as otherwise v is adjacent
in G to the predecessor of u on P i, a contradiction to the assumption that H is a hole.
Consequently, P i  - \{ xi, yi\} is a directed path in G\downarrow .

Let ui
j be the jth internal vertex on P i starting from xi, that is, the consecutive

vertices on P i are xi, ui
1, u

i
2, . . . , u

i
\ell i , y

i, where \ell i = | P i|  - 1.
Since X is a multicut for terminals \scrT and P i - \{ xi, yi\} is a directed path in G\downarrow  - X

for i \in \{ 1, 2\} , for any 1 \leq a < b \leq \ell i the pair (ui
a, u

i
b) is not a terminal pair. By

definition of \scrT , this implies that there is a path P in G\downarrow from ui
a to ui

b with x\ast (P ) <

1/10. We define two alternative paths \^P i to derive a contradiction. If P i has at most
two internal vertices, then \^P i := P i. Otherwise, define \^P i as (xi, ui

1, Q
i, yi), where Qi

is a path in G\downarrow from ui
2 to ui

\ell i with x\ast (Qi) < 1/10. No vertex on Qi is adjacent to x1

in G: since ui
2 is not adjacent to x1 on the hole H, we know ui

2 and x1 do not occur
in a common bag. This implies that x1, which is in the root bag, does not belong
to top(ui

2) and does not occur in the subtree rooted there; all vertices that can be
reached from ui

2 in G\downarrow have root bags that are descendants of top(ui
2).

The concatenation of \^P 1 with \^P 2 forms a (possibly nonsimple) walk in G that
visits x1 exactly once. Consider the walk W obtained by removing x1 from this cycle.
It connects the successor of x1 on H to the predecessor of x1 on H. All internal
vertices of the walk are nonadjacent to x1, which follows from our claims on Qi and the
fact that H is a hole. Hence we can shortcut W to an induced path P connecting the
predecessor and successor of xi on H, to obtain a hole H \prime in G. Since x\ast (v) < 1/10 for

each vertex v \in G, and x\ast (Qi) < 1/10, it follows that x\ast ( \^P i) < 3/10 + 1/10 = 4/10.
Hence x\ast (H \prime ) < 8/10 < 1, a contradiction to the assumption that x\ast is a fractional
solution to ChVD on G.

Proof of Lemma 10.3. First, we take X0 = \{ v \in V (G) : x\ast (v) \geq 1/20\} , put
X0 into the solution we are constructing, and delete X0 from the graph. Clearly,
| X0| \leq 20| x\ast | ; from this point, we can assume that x\ast (v) < 1/20 for every v \in V (G).

Second, we modify x\ast (v) as follows: we put x\ast 
2(v) := 2x\ast (v) for every v \in A and

x\ast 
2(v) := 0 for every v \in B. Since x\ast (v) < 1/20 for every v \in V (G), the length of

the shortest hole in G is at least 21, while at most two vertices of such a hole can
lie in the clique G[B]. Consequently, x\ast 

2 is a fractional solution to ChVD on G with
the additional properties that x\ast 

2(v) = 0 for every v \in B and x\ast 
2(v) < 1/10 for every

v \in A.
We now perform the following iterative procedure. Let \scrC be the set of connected

components of G[A]. We pick a component C \in \scrC with largest value x\ast 
2(C). If

x\ast 
2(C) < 1, we infer that G[C \cup B] is chordal; by the choice of C, this implies that

the entire graph G is chordal, and we are done. Otherwise, let L be a maximal clique
of G[C] such that x\ast 

2(D) \leq x\ast 
2(C)/2 for every connected component of G[C]  - L

(Theorem 10.2). We apply the algorithm of Lemma 10.4 to G[C \cup B] with partition
C \uplus B, the clique L, and a fractional solution x\ast 

2| C , obtaining a solution XC of size
\scrO (x\ast 

2(C)2). We put XC into the solution we are constructing, and delete it from the
graph. At this point, no hole in G passes through L; we delete L from the graph as well.

Consider a vertex v \in C \setminus (L \cup XC) after this step. Let D be a connected
component of G[A] containing v. Since we deleted the entire clique L, we have
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x\ast 
2(D) \leq x\ast 

2(C)/2. Consequently, every vertex v can be contained in a component
C chosen by the algorithm at most \lceil log(1 + | x\ast 

2| )\rceil times. Whenever an algorithm
considers a component C, we charge a cost of \scrO (x\ast 

2(v)| x\ast 
2| ) to every vertex v \in C.

Since the set XC is of size \scrO (x\ast 
2(C)2) \leq \scrO (x\ast 

2(C)| x\ast 
2| ), the total size of all sets XC

in the course of the algorithm is bounded by the total charge. On the other hand,
by the previous argument, every vertex v is charged a value of \scrO (x\ast 

2(v)| x\ast 
2| log | x\ast 

2| ).
Consequently, the total size of all sets XC is \scrO (| x\ast 

2| 2 log | x\ast 
2| ).

10.3. The approximation algorithm. Let (G, k) be a ChVD instance. Our
main goal in this section is to show that, after deleting a small number of vertices
from G, we can decompose V (G) into a chordal graph and a small number of cliques.
Then we can use Lemma 10.3 to add these cliques to the chordal graph one by one.

We start with a bit of preprocessing. As discussed before, it is straightforward
to implement a separation oracle for the LP relaxation of ChVD. Using the ellipsoid
method, we can compute a fractional solution x\ast to ChVD on G of cost arbitrarily
close to the optimum. For our purposes, a 2-approximation x\ast suffices. If | x\ast | > 2k,
we conclude that (G, k) is a no-instance. Otherwise, we proceed with x\ast further.
We greedily take into the constructed solution and delete from G any vertex v with
x\ast (v) \geq 1/4; note that there are at most 4| x\ast | \leq 8k such vertices. Thus, from
this point we can assume that x\ast (v) < 1/4 for every v \in V (G); in particular, G is
C4-free.

Our main partitioning tool is an\scrO (
\surd 
log opt)-approximation algorithm for balanced

vertex cut by Feige, Hajiaghayi, and Lee [28]. Given an n-vertex graph G, a balanced
vertex cut is a set X \subseteq V (G) such that every connected component of G  - X has
at most 2n/3 vertices. We use the approximation algorithm of [28] in the following
lemma.

Lemma 10.5. Given a ChVD instance (G, k), we can in polynomial time find a
set Z \subseteq V (G) and a set K \subseteq Z such that every connected component of G - Z has
size at most 3n/4, G[K] is complete, and | Z \setminus K| = \scrO (k

\surd 
log k), or correctly conclude

that (G, k) is a no-instance to ChVD.

Proof. Since G is C4-free, G has at most n2 maximal cliques [27, Proposition 2].
Furthermore, we can enumerate all maximal cliques in G with polynomial delay [57].
If there exists a maximal clique K of size at least n/4, we can simply return Z = K,
as | V (G) \setminus K| \leq 3n/4. Otherwise, for every maximal clique K of G, we invoke the
approximation algorithm for a balanced vertex cut of [28] on the graph G - K. If for
some clique K the algorithm returns a cut Y of size \scrO (k

\surd 
log k), we output Z := K\cup Y

and K. Clearly, this output satisfies the desired properties.
It remains to argue that if (G, k) is a yes-instance, then the algorithm finds a

desired cut. Let X be a solution to ChVD on G of size at most k. By Theorem 10.2,
the chordal graph G  - X contains a maximal clique K0 such that every connected
component of G  - (X \cup K0) has at most (n  - | X| )/2 \leq n/2 vertices. Consider the
iteration of the algorithm for a maximal clique K \supseteq K0 in G. Note that X is a
balanced cut of G - K of size at most k: every connected component of G - (X \cup K)
is of size at most

n

2
=

2

3
\cdot 3
4
n \leq 2

3
| V (G) \setminus K| .

Consequently, for this choice of K, the algorithm of [28] finds a balanced vertex cut of
size \scrO (k

\surd 
log k). This finishes the proof of the lemma.
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By iteratively applying Lemma 10.5, we obtain the following.

Lemma 10.6. Given a ChVD instance (G, k), we can in polynomial time either
correctly conclude that it is a no-instance or find a partition V (G) = A0 \uplus K1 \uplus K2 \uplus 
\cdot \cdot \cdot \uplus K\ell \uplus X0 such that G[A0] is chordal, G[Ki] is complete for every 1 \leq i \leq \ell ,
\ell = \scrO (k log n), and | X| = \scrO (\ell k

\surd 
log k) = \scrO (k2

\surd 
log k log n).

Proof. Consider the following iterative procedure. We start with H := G, \ell := 0,
and X0 := \emptyset . As long as H contains a connected component C that is not chordal, we
apply the algorithm of Lemma 10.5 to a ChVD instance (C, k). In case the algorithm
returns that (C, k) is a no-instance, we can return the same answer for (G, k), as we will
maintain the invariant that H is an induced subgraph of G. Otherwise, if a pair (Z,K)
is returned, we take K as a next clique Ki, insert Z \setminus K into X0, and delete Z from
H. The algorithm terminates when H is a chordal graph; we then put A0 := V (H).
Clearly, the algorithm outputs a partition V (G) = A0 \uplus K1 \uplus K2 \uplus \cdot \cdot \cdot \uplus K\ell \uplus X0 as
desired, and | X| = \scrO (\ell k

\surd 
log k). It remains to argue that if (G, k) is a yes-instance,

then the algorithm always terminates after \scrO (k log n) steps, that is, \ell = \scrO (k log n).
Consider a solution X to ChVD on (G, k). Whenever the algorithm applies

Lemma 10.5 to a component C, we have X \cap V (C) \not = \emptyset , since C is not chordal. We
charge this step of the algorithm to an arbitrarily chosen vertex v \in X \cap V (C). Note
that after the algorithm finds Z \subseteq V (C), we have either v \in Z or v lies in a connected
component of C  - Z of size at most 2| V (C)| /3. Consequently, every vertex v \in X is
charged at most log3/2 n times, and in a yes-instance the algorithm always terminates
after k log3/2 n steps. (That is, if it runs longer than expected, we terminate the
algorithm and claim that (G, k) is a no-instance.)

We can now conclude the proof of Theorem 1.2. Let (G, k) be a ChVD instance.
First, if log n > k log k, the exact FPT algorithm of Cao and Marx [19] with run-
time 2\scrO (k log k) \cdot n\scrO (1) actually runs in polynomial time in n, and we can just solve
the instance. Otherwise, we apply the algorithm of Lemma 10.6, either concluding
that (G, k) is a no-instance, or finding the partition V (G) = A0 \uplus K1 \uplus K2 \uplus \cdot \cdot \cdot \uplus K\ell \uplus 
X0 with \ell = \scrO (k log n) = \scrO (k2 log k) and | X0| = \scrO (k2

\surd 
log k log n) = \scrO (k3 log3/2 k).

Then, for i = 1, 2, . . . , \ell , we construct sets Ai and Xi as follows. We apply the algo-
rithm of Lemma 10.3 to a graph G[Ai - 1 \cup Ki] with the clique Ki and the fractional
solution x\ast restricted to Ai - 1 \cup Ki. The algorithm returns a solution Xi to ChVD on
G[Ai - 1 \cup Ki] of size \scrO (| x\ast | 2 log | x\ast | ) = \scrO (k2 log k); we put Ai := (Ai - 1 \cup Ki) \setminus Xi.

Note that every G[Ai] is chordal, and

V (G) \setminus A\ell = X0 \cup X1 \cup \cdot \cdot \cdot \cup X\ell .

Thus, we can return a solution X := X0 \cup X1 \cup \cdot \cdot \cdot \cup X\ell which is of size

| X| = | X0| +
\ell \sum 

i=1

| Xi| = \scrO (k3 log3/2 k) +\scrO (k2 log k) \cdot \scrO (k2 log k) = \scrO (k4 log2 k).

This concludes the proof of Theorem 1.2.

11. Kernelization algorithm. We are now in position to repeat the statement
of the main data reduction procedure for the unannotated problem, Theorem 1.1, and
prove it. The proof shows that the annotations can be simulated by small gadgets.

Theorem 1.1. There is a polynomial-time algorithm that, given an instance (G, k)
of Chordal Vertex Deletion and a modulator M0 \subseteq V (G) such that G - M0 is
chordal, outputs an equivalent instance (G\prime , k\prime ) with \scrO (k45 \cdot | M0| 29) vertices and k\prime \leq k.
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Proof. Given a ChVD instance (G, k) and a modulator M0, apply Lemma 5.1. If
it reports that (G, k) is a no-instance, output a constant-size no-instance of ChVD.
Otherwise, we obtain an equivalent instance (G\prime , k\prime ,M,Eh) of A-ChVD with k\prime \leq k
and | M | = \scrO (k \cdot | M0| ). Apply Theorem 5.2 to (G\prime , k\prime ,M,Eh) to obtain an equivalent
instance (G\prime \prime , k\prime ,M, Fh) of A-ChVD with \scrO (k16| M | 29) \leq \scrO (k45| M0| 29) vertices. To
turn this into an instance of the original ChVD problem, we simulate the annotations.

By definition of the annotated problem, we have xy \in E(G\prime \prime [M ]) for each
pair \{ x, y\} \in Fh and therefore x, y \in M . For each pair \{ x, y\} \in Fh, we simulate the
annotation by adding two new vertices x\prime , y\prime and the edges xx\prime , x\prime y\prime , and y\prime y to G\prime \prime ,
thereby creating a C4. As all holes passing through x\prime or y\prime also pass through x
and y, there is always a minimum chordal modulator in the resulting graph that
does not contain any of the newly added vertices. Moreover, since we introduce
a C4 containing x and y for each annotated pair \{ x, y\} \in Fh, such solutions hit at
least one vertex of each annotated pair. Letting G\ast denote the graph resulting from
adding such C4's for all annotated pairs, we therefore establish that if G\ast has a
chordal modulator of size k\prime , then G\prime \prime has a solution of size k\prime that hits all annotated
pairs. Conversely, any solution X to the annotated problem on G\prime \prime is a chordal
deletion set in G\ast , since in G\ast  - X the newly added vertices form a pendant path
and are therefore not part of any hole. Consequently, the ChVD instance (G\ast , k\prime ) is
equivalent to the annotated instance and therefore to the original input (G, k). Since
the definition of A-ChVD ensures that we only annotate pairs of vertices from M , we
add at most | M | 2 vertices. Hence the asymptotic size bound for G\ast is dominated by
the size of G\prime \prime . The pair (G\ast , k\prime ) is given as the output of the procedure.

Combining the previous theorem with our approximation algorithm in Theorem 1.2,
we obtain a polynomial kernel for ChVD. The size bound follows from plugging
in \scrO (k4 log2 k) for the modulator size.

Corollary 11.1. Chordal Vertex Deletion has a kernel with \scrO (k161 log58 k)
vertices.

12. Conclusion. We presented a polynomial kernel for Chordal Vertex
Deletion based on new graph-theoretic insights and a poly(opt)-approximation
algorithm. Our work raises several questions for future research. The most obvious
questions concern the kernel size and the approximation factor; both have room for
significant improvements. Since there is a simple linear-parameter transformation from
Vertex Cover to ChVD, by the results of Dell and van Melkebeek [24] there is no
kernel for ChVD that can be encoded in \scrO (k2 - \epsilon ) bits unless \sansN \sansP \subseteq \sansc \sanso \sansN \sansP /\sansp \sanso \sansl \sansy . The

bound of \widetilde \scrO (k161) vertices is very far from this, and we expect the optimal kernel to
have a size bound with degree at most ten. A better approximation ratio will directly
translate into a better kernel size. While our current kernel is only of theoretical
interest, it paves the way for future improvements. Indeed, building on an extended
abstract of our work, Agrawal et al. [2] recently improved the kernel size for ChVD
to \scrO (k25 log14 k) vertices, aided by a new polynomial-time algorithm that outputs a so-
lution of size \scrO (opt2 log2 n). Further improvements for approximation algorithms for
(weighted generalizations of) ChVD were later obtained by the same set of authors [3].

Our work also relates to purely graph-theoretical questions. Lemma 1.3 proves
that the set of holes in nearly chordal graphs satisfies a form of Erd\H os--P\'osa-type
packing/covering duality. For a long time, it was open whether such packing/covering
duality holds for holes in general graphs. Kim and Kwon [44] recently established that
this is indeed the case: there a constant c such that for any k, an arbitrary graph G
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either has at least k + 1 vertex-disjoint holes or has a set of ck2 log k vertices that
intersect all holes.

We conclude with an open problem about kernelization for vertex deletion problems.
The Interval Vertex Deletion problem, asking whether a graph G can be turned
into an interval graph by removing at most k vertices, is fixed-parameter tractable [18,
20]. Does it have a polynomial kernel?
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