

Forming tile shapes with a single robot

Citation for published version (APA):
Gmyr, R., Kostitsyna, I., Kuhn, F., Scheideler, C., & Strothmann, T. (2017). Forming tile shapes with a single
robot. 9-12. Abstract from 33rd European Workshop on Computational Geometry (EuroCG 2017), Malmö,
Sweden.

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9f4e0fc3-402b-4337-b99d-f30c84d20dbc

9

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Forming Tile Shapes with a Single Robot∗

Robert Gmyr† Irina Kostitsyna‡ Fabian Kuhn§ Christian Scheideler† Thim Strothmann †

1 Introduction

We investigate the problem of shape formation with
robots on tiles in which a collection of robots has to
rearrange a set of movable tiles to form a desired
shape. In this preliminary work we consider the case
of a single robot operating on an arbitrary number of
tiles and present first results towards the formation of
simple shapes. Our ultimate goal is to investigate how
multiple robots can cooperate to speed up the process
of shape formation.

Model. We consider a single robot acting on a finite
set of hexagonal tiles. The tiles are passive, i.e., they
do not perform any computation and cannot move on
their own. The tiles may form any structure so that
their centers coincide with nodes of a triangular grid
graph, as shown in Figure 1, and there is at most one
tile per node.

N

S

NE

SE

NW

SW

Figure 1: An example tile configuration. The top right
part of the figure shows the compass directions we use
to describe the movement of the robot.

The robot is active and may occupy any node of
the grid graph. It is a deterministic finite automaton

that operates in look-compute-move cycles. In the look

phase the robot can observe the node it occupies and
the six neighbors of that node. For each of these nodes
it can determine whether there is a tile placed at that
node. In the compute phase the robot can use this
information together with its state to determine its
next move and to change its state. In the move phase
the robot can take a tile from its current node, place a

∗This work was begun at the Dagstuhl Seminar on Algorith-
mic Foundations of Programmable Matter, July 3–8, 2016.

†University of Paderborn, Germany
‡Université libre de Bruxelles (ULB), Brussels, Belgium
§University of Freiburg, Germany

tile it is carrying at that node, or move to an adjacent
node while possibly carrying a tile with it. The robot
can carry at most one tile.

Note that even though we describe the algorithms
as if the robot knew its global orientation, we do not
actually require the robot to have a compass. For the
algorithms presented in this paper, it is enough for the
robot to be able to maintain its relative orientation
with respect to its original orientation.

Problem Statement. A configuration consists of the
positions (i.e., the occupied nodes) of the tiles and the
position and state of the robot. We define a config-
uration to be connected if the subgraph induced by
the nodes that are occupied by the tiles (including a
tile carried by the robot) is connected. In the triangle

formation problem we are given an arbitrary connected
configuration in an infinite grid graph with a robot
in the initial state and the goal is to rearrange the
tiles into an equilateral triangle with the help of the
robot while having a connected configuration at the
beginning of every look-compute-move cycle.

We aim at maintaining connectivity of the tile struc-
ture. Consider a scenario where a tile structure floats
in a liquid. Connected components of a disconnected
structure might float apart. Thus, we want our tech-
niques to be applicable to scenarios where it is im-
portant to maintain fixed tile positions (relative to
each other). To be applicable also to nano-systems,
we assume the robot just to have the computational
power of a finite automaton.

Note that the requirement for connectivity effec-
tively restricts the movement of the robot but there
are no restrictions concerning the grid graph since it
is assumed to be infinite in every direction. Also note
that if the number of tiles is not a triangular number,
one side of the triangle is only partially occupied by
tiles.

Related Work. There is a number of approaches to
shape formation in the literature that use agents that
fall somewhere in the spectrum between passive and
active. For example, tile-based self-assembly [8] uses
passive tiles that bond to each other to form shapes.
A variant of population protocols proposed in [7] uses
agents that are partly passive (i.e., they cannot con-
trol their movement) and partly active (i.e., upon
meeting another, they can perform a computation
and decide whether they want to form a bond). Fi-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

10

33rd European Workshop on Computational Geometry, 2017

nally, the amoebot model [4], the nubot model [11], and
the modular robotic model proposed in [6] use agents
that are completely active in that they can compute
and control their movement. All of these approaches
have in common that they consider a single type of
agent. In contrast, we investigate a model that uses a
combination of active and passive agents.

When arguing about a robot that traverses a tile
structure without moving tiles, our model essentially
reduces to an instance of the ubiquitous agents on

graphs model. The vast amount of research on this
model covers many interesting problems such as Gath-
ering and Rendezvous (e.g. [9]), Intruder Caption
and Graph Searching (e.g. [1, 5]), and Graph Explo-
ration (e.g. [2]). Some approaches are also known that
allow agents to move tiles (e.g. [3, 10]) but these focus
on computational complexity issues or agents that are
more powerful than finite automata.

2 A Naive Approach

In a naive approach to shape formation, the robot
could iteratively search for a tile that can be removed
without disconnecting the tile structure and then move
that tile to some position such that the shape under
construction is extended. While there always is a tile
that can be safely removed, the following theorem
shows that, in general, the robot cannot find it, which
makes this naive approach infeasible.

Theorem 1 The robot cannot find a tile that can be

removed without disconnecting the tile structure.

Proof. Suppose that there is an algorithm that allows
the robot to find such a tile. Let s be the number of
states used by the algorithm. Consider the execution
of the algorithm on a hollow hexagon of side length �

where the robot is initially placed on a vertex of the
hexagon as depicted in the left part of Figure 2. We
subdivide the execution into phases where we define a
new phase to start whenever the robot visits a vertex of
the hexagon. Note that the algorithm runs for at most
6s phases before the robot chooses the tile because if
it would run for more phases the robot would visit the
same vertex twice in the same state and therefore the
algorithm would enter an infinite loop.

The way the robot traverses the hexagon depends on
the side length �. We define the traversal sequence asso-
ciated with � as ((v1, q1), (v2, q2), . . . , (vk, qk)) where
k is the number of phases the algorithm takes until
the tile is chosen, vi is the vertex occupied by the
robot at the beginning of phase i, and qi is the state
of the robot at the beginning of phase i. Since the
algorithm takes at most 6s phases to choose the tile
(independently of �), there are at most (6s)6s distinct
traversal sequences. Hence, there is a finite number
of traversal sequences and an infinite number of side

Figure 2: Left: The hollow hexagon of side length
� = 4. Right: An example of the tile structure S. The
red mark represents the initial position of the robot.

lengths which implies, according to the pigeonhole
principle, that there must be an infinite set of side
lengths L that have the same traversal sequence.

Based on this observation, we now define a tile
structure S for which the algorithm fails to find a
tile that can be safely removed. This tile structure
essentially consists of a spiral as depicted in the right
part of Figure 2. We start at an arbitrary node of
the triangular grid graph and construct an outward
spiral consisting of 24s line segments. The first line
segment of the spiral goes north and each following
line segment takes a 60◦ clockwise turn. The lengths
of the line segments are chosen from L in such a way
that the segments stay separated. This is possible
since L is an infinite set and therefore we can always
choose sufficiently large segment lengths. We initially
place the robot at the end of the 12s-th line segment.

It remains to show that the algorithm fails to find a
tile that can be safely removed when being executed
on S. As above, we subdivide the execution of the
algorithm into phases where we define a new phase
to start whenever the robot visits a vertex of the
spiral (i.e., a tile where two line segments meet). It
is easy to show using induction on the phases that
the robot traverses S in a way that corresponds to
the traversal sequence associated with the side lengths
in L. Consequently, the robot chooses a tile that is
neither the start tile nor the end tile of the spiral. Since
these two tiles are the only tiles that can be safely
removed from S, the algorithm fails. This contradicts
the assumption that the algorithm works correctly and
therefore shows that there is no such algorithm. �

3 Taking a Detour via a Line

We now present an approach that avoids the pitfall of
the naive approach by first rearranging the tiles into a
straight line. Whenever a tile that cannot be removed
without disconnecting the structure is picked up by
the robot during this process, the tile is placed at a
neighboring node in a way that preserves connectivity.

11

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Algorithm 1 Algorithm to form a straight line from
any tile configuration by a single robot.

1: procedure MakeLine

2: The robot moves S until there is no tile to step on.
3: do

4: Set flag is−line to TRUE.
5: Tile searching phase: at every step, until the

robot can no longer move,
6: – if there is a neighboring tile at NW, SW,

NE, or SE, set the flag is−line to FALSE;
7: – the robot repeatedly moves NW, SW or N

(in this order of preference).
8: Tile moving phase: if is−line is FALSE, the

robot picks up the tile at the current position,
and moves it to the bottom of the
adjacent column, starting at position SE.

9: while is−line is FALSE

Figure 3: First several steps of the algorithm. The
green tiles are moved to the positions marked by
dashed frames.

3.1 Line Formation

We consider the problem of rearranging the tiles into
a straight line. We will measure the efficiency of our
algorithm in the number of steps (i.e., move actions)
that the robot has to perform.

We present an algorithm for one robot to rearrange
a tile configuration into a straight line in O(n2) steps.
Throughout the algorithm we use the labels N, NE,
SE, S, SW and NW (corresponding to cardinal direc-
tions) to refer to the six neighbors of the robot (see
Figure 1). The pseudocode is given in Algorithm 1.
At the beginning of every iteration of the algorithm,
the robot is located at a locally most southern tile,
i.e., there is no tile in the S direction. During one
iteration of the algorithm, the robot finds a locally
most north-western tile and moves it to the bottom
of the column of tiles to the right from it. Figure 3
illustrates the first several iterations of the algorithm.
To check whether the desired tile configuration has
been achieved, the robot inspects neighboring tiles at
each step in the search phase.

Theorem 2 Following the procedure MakeLine, a

single robot can rearrange any tile configuration into

a straight line in O(n2) steps.

Proof. The correctness of the algorithm follows from
the following observations: (i) the tile searching phase
terminates in a locally most north-western tile, (ii) if
there is more than one column in the tile configuration,
the tile searching phase does not terminate in the top-
most tile of the rightmost column, (iii) the tile moving
phase does not disconnect the tile configuration and
(iv) the algorithm terminates when a line is formed.

The first observation is obvious by the definition of
the first phase of the algorithm. The second observa-
tion follows from the fact that the preference is given
to the NW and SW directions when searching. If the
target tile configuration has not yet been achieved,
and the robot stops at some locally north-western tile,
there must be tiles to the right from that position.

For the third observation, suppose that the tile mov-
ing phase disconnects the tile configuration. Let t be
the locally most north-western tile being moved. The
tile configuration can get disconnected after remov-
ing t only if there are neighboring tiles to NE and S
of t, but no SE neighboring tile, since otherwise the
neighboring tiles will still be locally connected after
removing t. But in that case the tile t will be placed in
the empty position at the SE neighbor and reconnect
the neighboring NE and S tiles. Therefore, during the
second phase of the algorithm the tile configuration
does not get disconnected.

To prove the last claim, assign 2-dimensional coor-
dinates to the centers of tiles. Let the x coordinate
grow from left to right, and the y coordinate grow
from top to bottom. Let 0 be the x-coordinate of a
rightmost tile, thus the x-coordinate of any tile is not
greater than 0. Consider the sum of the x-coordinates
of all tiles S =

∑n

1 xt. Initially, the value of S is nega-
tive, and it always increases by 1 after a tile is moved.
The tile configuration is a straight line at x = 0, i.e.,
S = 0. No tiles will be moved to a position with an
x-coordinate larger than 0. Therefore, the algorithm
will terminate, and the terminal tile configuration will
be a vertical straight line.

Finally, we show that the algorithm takes O(n2)
steps. The preparation steps of the algorithm (line 2
of the Algorithm) take O(n) steps. Consider the tile
moving phase (line 8). Let the initial coordinates of
some tile t be (xt,0, yt,0), and its final coordinates be
(0, yt,1). Each time the tile was moved, its coordinates
were changed from some (xt, yt) to (xt + 1, yt + 1

2
+ ct),

where ct is the number of tiles in the column, at the
bottom of which the tile t was placed. The total
number of steps the robot performed to move the tile
from (xt, yt) to (xt +1, yt + 1

2
+ ct) is 1+ ct. Therefore,

the total number of steps the robot performed to move
the tile from its initial position to its final placement,

12

33rd European Workshop on Computational Geometry, 2017

is 0−xt,0+yt,1−yt,0− 1
2
(0−xt,0) = − xt,0

2
+(yt,1−yt,0).

And the total number of steps the robot performed to

move all the tiles is smove =
∑

t

(
− xt,0

2
+(yt,1−yt,0)

)
≤∑

t
3
2
n = O(n2) . Now, consider the tile searching

phase (lines 5–7). Whereas the sum of the coordinates
of the robot was increasing at every step in the tile
moving phase, in the tile searching phase, the sum of
the coordinates of the robot is decreasing at every step.
More specifically, at each step of the tile moving phase,
the sum of the coordinates of the robot increases by
at most 3

2
, and at every step of the tile searching

phase, the sum of the coordinates decreases by at
least 1

2
. Thus, the total number of steps in the tile

searching phase can be bounded in the following way:
ssearch < 3 × smove + (x0 + y0) − mini(xi + yi) , where
(x0, y0) is the initial coordinates of the robot, and the
value min(xi +yi) is taken over all possible placements
of all tiles. As the initial tile configuration is connected,
(x0 + y0) − mini(xi + yi) = O(n), and ssearch = O(n2).
Therefore, the total number of steps is O(n2). �

Note that it is not hard to see that Ω(n2) steps are
necessary to rearrange an arbitrary initial tile config-
uration into a straight line. If starting from a initial
configuration with diameter O(

√
n), a constant frac-

tion of the tiles have to be moved by a distance linear
in n and thus, in total, Ω(n2) move steps are necessary.

3.2 Triangle Formation

Once the robot has built a line, it can construct a
triangle as follows: the robot picks up tiles from one
end of the line and assembles them into a triangle at
the other end following a zig-zag pattern, see Figure 4.
It fills each layer of the triangle with tiles until it

Figure 4: Triangle formation starting from a line

recognizes that the current position does not have a
tile in the NW direction (when moving up), or that
the current position does not have a tile in the SW
direction (when moving down). In both cases, it starts
a new layer of the triangle arrangement.

Theorem 3 A single robot can rearrange any tile

configuration into a triangle in O(n2) steps.

It is not hard to see, using similar arguments as in the
previous section, that this is asymptotically optimal.

4 Future Work

There are many directions for further research on shape
formation with robots on tiles. First, we would be very
interested to see how multiple robots can cooperate to
speed up shape formation. Another obvious direction
would be the formation of more complex shapes. Fi-
nally, it might be interesting to study an extension of
the model in which each tile can have a state that can
be read and modified by the robot.

Acknowledgments. This work was partially sup-
ported by DFG grant SCHE 1592/3-1. Irina Kostit-
syna is supported by F.R.S.-FNRS and Fabian Kuhn
is supported by ERC Grant No. 336495 (ACDC).

References

[1] A. Bonato and R. J. Nowakowski. The Game of Cops
and Robbers on Graphs. AMS, 2011.

[2] S. Das. Mobile agents in distributed computing: Net-
work exploration. Bulletin of the European Association
for Theoretical Computer Science, 109:54–69, 2013.

[3] E. Demaine, M. Demaine, M. Hoffmann, and
J. O’Rourke. Pushing blocks is hard. Computational
Geometry, 26(1):21–36, 2003.

[4] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Schei-
deler, and T. Strothmann. Universal shape formation
for programmable matter. In 28th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), pages 289–299, 2016.

[5] F. V. Fomin and D. M. Thilikos. An annotated bibli-
ography on guaranteed graph searching. Theoretical
Computer Science, 399(3):236–245, 2008.

[6] F. Hurtado, E. Molina, S. Ramaswami, and V. Sac-
ristán. Distributed reconfiguraiton of 2D lattice-
based modular robotic systems. Autonomous Robots,
38(4):383–413, 2015.

[7] O. Michail and P. G. Spirakis. Terminating population
protocols via some minimal global knowledge assump-
tions. Journal of Parallel and Distributed Computing,
81-82:1–10, 2015.

[8] M. J. Patitz. An introduction to tile-based self-
assembly and a survey of recent results. Natural
Computing, 13(2):195–224, 2014.

[9] A. Pelc. Deterministic rendezvous in networks: A
comprehensive survey. Networks, 59(3):331–347, 2012.

[10] Y. Terada and S. Murata. Automatic modular assem-
bly system and its distributed control. International
Journal of Robotics Research, 27(3–4):445–462, 2008.

[11] D. Woods, H. Chen, S. Goodfriend, N. Dabby, E. Win-
free, and P. Yin. Active self-assembly of algorithmic
shapes and patterns in polylogarithmic time. In In-
novations in Theoretical Computer Science (ITCS),
2013.

