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Non-crossing drawings of multiple geometric Steiner arborescences∗

Irina Kostitsyna† Bettina Speckmann‡ Kevin Verbeek†

1 Introduction

An important problem in the area of computational
geometry is the Euclidean Steiner Tree problem: given
a set of n points in the plane, find a set of line segments
that connect all points in a single connected compo-
nent, such that the total length of the line segments is
minimized. The Euclidean Steiner Tree problem and
variants thereof have many applications in practice.
For example, rectilinear Steiner trees, where line seg-
ments must be horizontal or vertical, are commonly
used for wire routing in VLSI design. Also of interest
are Steiner arborescences [5]: Steiner trees rooted at a
node r, such that the path in the Steiner tree between
r and any other input point must be a shortest path
with respect to some metric (see Fig. 1). A variant of
Steiner arborescences, namely angle-restricted Steiner
arborescences, or flux trees, have recently been used
to design flow maps [4]. In a flux tree, the path from
an input point to the root r must always go roughly
in the direction of r, that is, it can only deviate by at
most a fixed angle.
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Figure 1: A rectilinear Steiner arborescence and a flux
tree with eight terminals.

The Euclidean Steiner tree problem and its variants
have been studied extensively. Although most of these
problems are NP-hard, many efficient approximation
algorithms are known [2, 8]. However, if we want to
compute multiple Steiner trees for multiple point sets,
such that the Steiner trees have no or few crossings,
then there are very few results. Aichholzer et al. [1]
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give an algorithm that, given two sets of n points in
the plane, computes in O(n log n) time two spanning
trees (not Steiner trees) such that the diameters of
the trees and the number of intersections between
the trees are small. Similar (weaker) results have
also been obtained for drawing more than two plane
spanning trees with few crossings [6, 7]. Recently,
Bereg et al. [3] presented approximation algorithms
for computing k disjoint Steiner trees for k point sets,
with approximation ratios O(

√
n log k) and k + ε for

general k, (5/3 + ε) for k = 3, and a PTAS for k = 2.
In this paper we consider multiple Steiner arbores-

cences. Two or more non-crossing Steiner arbores-
cences need not even exist. Nonetheless, they are very
relevant in practice, for example for constructing flow
maps. A flux tree can only show information about one
source, but ideally multiple sources should be shown
simultaneously, in such a way that the corresponding
flux trees have few or no crossings. To the best of our
knowledge, these problems have not been studied.

Problem statement. We study the following prob-
lem: given a set of k roots r1, . . . , rk ∈ R

2, and k sets
of terminals T1, . . . , Tk ⊂ R

2, do there exist k non-
crossing Steiner arborescences which connect each set
of terminals Ti to its root ri? We focus mostly on the
case k = 2. When considering only two trees, we refer
to the first tree as the red tree, with root r1 and ter-
minals T1 = {p1, . . . , pn}, and the second tree as the
blue tree with root r2 and terminals T2 = {q1, . . . , qm}.
We consider both rectilinear Steiner arborescences and
flux trees.

Preliminaries. It follows from the definition of geo-
metric Steiner arborescences that the path between the
root and a terminal must completely lie in a particular
region. For rectilinear Steiner arborescences this is the
rectangle spanned by the root and the terminal. For
flux trees this region is bounded by two logarithmic
spirals and is hence called the spiral region [4]. Here
we refer to these regions as R-regions and denote the
R-region between a root r and a terminal t by R(r, t).
When considering multiple rectilinear Steiner arbores-
cences, we allow the sets of axes of the two Steiner
arboresences to be different.

We say that two R-regions R(r1, pi) and R(r2, qj)
fully intersect if r1, pi /∈ R(r2, qj), r2, qj /∈ R(r1, pi),
and segments r1pi and r2qj intersect. It is easy to ver-
ify that two non-crossing Steiner arborescences do not
exist if there are two R-regions R(r1, pi) and R(r2, qj)
that fully intersect (see Fig. 2): any two paths routed
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Figure 2: Two R-regions fully intersect.

within the respective R-regions must intersect.
When drawing (the paths of) Steiner arborescences

we consider two models:
(a) Free turns: Paths can turn anywhere.
(b) Limited turns: Paths can only turn at a Steiner

point or at a corner of an R-region (as in Fig. 1).
The limited turns model can be quite restrictive. Fig. 3
shows an example where a non-crossing drawing of
two rectilinear Steiner arborescences exists only in the
free turns model.

Figure 3: Non-crossing drawing exists only in free
turns model.

Results. In the free turns model, we show in Sec-
tion 2.1 that two rectilinear Steiner arborescences have
a non-crossing drawing if (a) no two R-regions fully
intersect, and (b) the roots are not contained inside
any R-region. In Section 2.2 we lift the constraint on
the roots and show how to reduce the decision prob-
lem to 2SAT. In Section 3 we show that in the limited
turns model it is NP-hard to decide whether multiple
rectilinear Steiner arborescences have a non-crossing
drawing. The setting of flux trees is more subtle. Our
NP-hardness result extends, but testing whether there
exists a non-crossing drawing requires additional con-
ditions to be fulfilled (see Section 4). Due to space
limitations, some figures and proofs are omitted from
this short abstract and can be found in the full version
of the paper.

2 Two rectilinear Steiner arborescences

In this section we show how to decide if a non-crossing
drawing of two rectilinear Steiner arborescences in the
free turns model exists, and how to construct such a
drawing. We consider the general case, when the axes
of the two arborescences are not aligned. The free
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Figure 4: Non-crossing drawing of two rectilinear
Steiner arborescences.

turn model implies that, in principle, the paths of the
trees can approximate any xy-monotone curve. We
show that we can in fact restrict the directions of the
paths to the 8 directions implied by the axes of the
two rectilinear Steiner arborescences (see Fig. 4).

2.1 Roots not contained in R-regions

Consider the four quadrants of the coordinate system
of the red arborescence ordered counter-clockwise, and
the four quadrants of the blue arborescence ordered
clockwise. Let the first quadrants face each other (see
Fig. 4). There are eleven faces in the arrangement of
the four coordinate axes, to which we refer by the two
corresponding quadrants. For simplicity of presenta-
tion, we assume that no terminal lies on an axis of the
other color. Let Cb be a cone in the red coordinate
system with the apex in the blue root and with angle
range [0, π

2
], and let Cr be a cone in the blue coordi-

nate system with the apex in the red root and with
angle range [0, π

2
]. If the roots are not contained in

the R-regions of the other tree then there are no red
terminals in Cb, and there are no blue terminals in Cr.

Given a red terminal p, and some xy-monotone path
πp connecting p to r1, define a dead region D2(πp),
with respect to the blue root r2, to be the union of all
points q such that path πp intersects region R(r2, q)
and disconnects q from r2. Analogously, define a dead
region D1(πq) for a blue terminal q.

Observe that πp is on the boundary of D2(πp), and
that the rest of its boundary consists of lines parallel to
blue axes. For example, in Fig. 5, D2(πp) is bounded
by two lines parallel to the blue y-axis that go through
r1 and p (as p lies in the blue quadrant II). If p were,
for example, in quadrant I, than the bounding line
passing through p would be parallel to the blue x-axis.

Given a red terminal p such that R(r1, p) does not
contain r2, define the dead region D2(p) to be the inter-
section of dead regions D2(πp) for all possible paths πp

connecting p to r1, i.e., D2(p) =
⋂

πp

D2(πp). Define
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Figure 5: Dead regions of a path πp and a terminal p.

red terminals in blue terminals in

(a) I ∩ II vs. (b) II ∩ I,
(c) I ∩ III vs. (d) III ∩ I,
(e) I ∩ IV vs. (f) IV ∩ I,
(g) III ∩ IV vs. (h) IV ∩ III,
(i) I ∩ III vs. (j) IV ∩ IV,
(k) IV ∩ IV vs. (l) III ∩ I.

Table 1: Mutually exclusive cases of locations of red
and blue terminals.

dead region D1(q) analogously. From this definition it
follows that:

Proposition 1 Let a red terminal p �∈ R(r2, q) and
a blue terminal q �∈ R(r1, p). Then q ∈ D2(p) if and
only if R(r1, p) fully intersects R(r2, q), and therefore
q ∈ D2(p) if and only if p ∈ D1(q).

There can be terminals whose dead regions are empty.
For example, if p ∈ I∩I, then there is a path connecting
p to r1 that does not obstruct routing of any possible
blue terminal. Consider the eight faces of the axes
arrangement except for faces I ∩ I, I ∩ IV, and IV ∩ I.
For terminals p and q in them, D2(p) and D1(q) are
not empty. Moreover, in these faces p ∈ D2(p) and
q ∈ D1(q). Denote π

∗

p to be the path that connects
p to r1 along the boundary of D2(p), and π

∗

q to be
the path that connects q to r2 along the boundary of
D1(q) (see Fig. 5 (right)). We can show that:

Proposition 2 Paths π
∗

p and π
∗

q are xy-monotone in
the red and blue coordinate systems, respectively.

Therefore π
∗

p and π
∗

q are valid paths connecting p to
r1 and q to r2. From Proposition 1 it follows that if
a blue terminal q �∈ D2(p) then π

∗

p does not itersect
π

∗

q . In the full version of the paper we carefully go
through all cases for terminals p and q such that the
corresponding dead regions D2(p) and D1(q) are not
empty and their boundaries contain paths connecting
the terminals to their roots.

Routing rules. Notice that two cases, when there is
a red terminal p in I ∩ II, and when there is a blue
terminal q in II∩I, are mutually exclusive, for otherwise
R(r1, p) would fully intersect R(r2, q). Table 1 gives a

full list of all mutually exclusive cases. Given two roots
and two sets of terminals such that no two R-regions
of opposite colors fully intersect, we can construct two
non-intersecting Steiner arborescences using simple
routing rules (see Fig. 4). First, red terminals p in
(II ∪ III)\Cr, I ∩ II, I ∩ III, IV ∩ III, or IV ∩ IV are
routed along π

∗

p. Blue terminals q in (II ∪ III)\Cb,
II ∩ I, III ∩ I, III ∩ IV, or IV ∩ IV are routed along
π

∗

q . Next, terminals in Cr and Cb are routed as shown
in Fig. 6. Lastly, the rest of the terminals are routed
so as to avoid already constructed paths. Detailed
routing rules can be found in the full version.

Theorem 3 Two rectilinear Steiner arborescences
can be drawn with no crossings in the free turn model
if no two R-regions fully intersect and if no roots are
contained in R-regions.

2.2 Roots contained in R-regions

Next, we relax the restriction that the roots cannot
be contained in R-regions. Now, for any R-region
that contains the root of the other color, we need to
make a choice of how to route the terminal-to-root
path around the other root. This choice clearly can
affect later decisions. Before we proceed, we need some
additional definitions.

Points r and t split the boundary of R(r, t) into two
components that we call the right side σ

+(r, t) (that
leaves the R-region to the left if moving from r to t),
and the left side σ

−(r, t).
We say that R(r1, pi) cuts the right (left) side of

R(r2, qj), if r1 ∈ R(r2, qj), and both sides of R(r1, pi)
intersect the right (left) side of R(r2, qj) (see Fig. 7).
We can now define a dead region for a terminal p for
a fixed direction a p-to-r1 path must take around r2.

Given a red terminal p, define the left (right) dead
region Dl

2(p) (Dr
2(p)) to be the intersection of dead

regions D2(πp) for all possible paths πp connecting
p to r1 that go around r2 from the left (right), i.e.,
Dl

2(p) =
⋂

left πp

D2(πp) and Dr
2(p) =

⋂
right πp

D2(πp).

Analogously, define Dl
1(q) and Dr

1(q). Note that in this
definition we do not require R-regions to be root free.
We can make an observation similar to the one in the

x

x

y
y

Figure 6: Routing rule for
terminals in Cr and Cb.

pi
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Figure 7: Red R-regions
cut the left and right side
of the blue R-region.
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previous section. Let the blue root r2 ∈ R(r1, p) and
the red root r1 �∈ R(r2, q). A blue terminal q ∈ Dl

2(p)
(q ∈ Dr

2(p)) if and only if R(r2, q) fully intersects the
left side σ

+(r1, p) (right side σ
−(r1, p)) of R(r1, p).

Therefore, if r2 ∈ R(r1, p) and r1 �∈ R(r2, q), the blue
terminal q �∈ Dl

2(p) (q �∈ Dr
2(p)) if and only if D1(q)

does not intersect Dl
2(p) (Dr

2(p)). We can extend
this observation to the case where the blue root r2 ∈
R(r1, p) and the red root r1 ∈ R(r2, q):

Observation 1 If r2 ∈ R(r1, p) and r1 ∈ R(r2, q),
the blue terminal q �∈ Dl

2(p) (q �∈ Dr
2(p)) if and only if

Dl
1(q) (Dr

1(q)) does not intersect Dl
2(p) (Dr

2(p)).

We reduce the problem of choosing the direction of the
path with respect to the other root to 2SAT. Given
a solution to the 2SAT formula that fixes directions
of the paths with terminals in cones Cr and Cb, we
can again route the paths along the boundaries of the
dead regions. More details can be found in the full
version of the paper.

Theorem 4 We can decide in polynomial time
whether two rectilinear Steiner arborescences can be
drawn with no crossings in the free turn model.

3 Drawing many Steiner arborescences is NP-hard

If the number of arborescences in the problem is not
bounded, the problem becomes NP-hard for the limited
turns model.

Theorem 5 It is NP-hard to decide whether k rec-
tilinear Steiner arborescences, where k is part of the
input, can be drawn without crossings in the limited
turns model, even if all trees are axis-aligned.

Theorem 6 It is NP-hard to decide whether k flux
trees, where k is part of the input, can be drawn
without crossings in the limited turns model.

4 Two flux trees

In this section we sketch how to draw two flux trees
in the free turns model with no root containment in
R-regions. Similarly to the rectilinear case, free turns
imply that the terminal-to-root paths can approximate
any spiral monotone1 curve. Here we restrict the
paths to only follow four logarithmic spirals, positive
and negative spirals with the origin in the red root,
and positive and negative logarithmic spirals with the
origin in the blue root. We prove the following theorem
in the full version of the paper.

1A spiral monotone curve [4] requires that for any point the
angle between the tangent and the direction to the destination
is not greater than a given parameter α.

Figure 8: Two non-crossing drawings of flux trees for
α = 60◦ (left) and α = 30◦ (right).

Theorem 7 We can decide in polynomial time if two
flux trees with no root containment in R-regions can
be drawn without crossings in the free turns model.

Figure 8 shows the final result of the procedure.
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