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Kinetic Euclidean 2-centers in the Black-Box Model

⇤

Mark de Berg† Marcel Roelo↵zen† Bettina Speckmann†

Abstract

We study the 2-center problem for moving points in
the plane. Given a set P of n points, the Euclidean
2-center problem asks for two congruent disks of mini-
mum size that together cover P . Our methods work in
the black-box KDS model, where we receive the loca-
tions of the points at regular time steps and we know
an upper bound d

max

on the maximum displacement
of any point within one time step.
We show how to maintain a (1 + ")-approximation

of the Euclidean 2-center in amortized sub-linear time
per time step, under certain assumptions on the dis-
tribution of the point set P . In many cases—namely
when the distance between the centers of the disks
is relatively large or relatively small—the solution we
maintain is actually optimal.

1 Introduction

The clustering problem is to partition a given set of
objects into clusters, that is, into subsets consisting of
similar objects. These objects are often (represented
by) points in some 2- or higher dimensional space,
and the similarity between points corresponds to the
distance between them. We are interested in a set-
ting with two clusters of points in the plane. Given a
set P of n points, the Euclidean 2-center problem—
or 2-center problem for short—asks for two congruent
disks of minimum size that together cover P . The
2-center problem can also be interpreted as a facility-
location problem, where the goal is to place two fa-
cilities such that the distance from any client in P to
its nearest facility is minimized.
The 2-center problem and the more general k-center

problem—which asks for k disks to cover P—have
been studied extensively since their introduction by
Sylvester [20] in 1857. Closely related is the recti-
linear k-center problem which asks for k congruent
squares to cover the point set. Both the Euclidean
and the rectilinear k-center problem are np-hard [14]
when k is part of of the input, but polynomial-time
solutions are possible when k is a constant. The recti-
linear k-center problem can be solved quite e�ciently
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for small k. For k = 2, 3 the optimal rectilinear k-
center can be computed in O(n) time [8, 13, 19] and
for k = 4, 5 in O(n log n) time [15, 16]. In contrast, no
sub-quadratic algorithm was known for the Euclidean
2-center for many years, until Sharir [18] developed
an O(n log9 n) time algorithm. The currently best so-
lution takes O(n log2 n(log log n)2) time [6]. Other re-
sults include an ⌦(n log n) lower bound for k = 2 [17]
and algorithms that compute a (1+")-approximation
of the k-center [1, 2]. For the 2-center problem in R2

such an (1 + ")-approximation can be computed in
O(n) + (2/")O(1) time.

The kinetic 2-center problem. The results men-
tioned so far are for static point sets, but also kinetic

versions of the 2-center problem have been studied.
Here we want to maintain the optimal 2-centers as the
points in P move. Unfortunately, even under the re-
striction that the speed of the points in P is bounded
by a given value v

max

, the speed of the centers can-
not be bounded if one maintains the optimal 2-center.
For mobile facility location this is undesirable as the
centers represent moving facilities which often have a
bounded speed as well. Hence, Durocher and Kirk-
patrick [9] describe a general strategy for maintain-
ing an approximate 2-center in such a way that the
speed of the disk centers is bounded. One variant
of their strategy achieves an approximation ratio of
8/⇡ ⇡ 2.55 while the maximum speed of the disk cen-
ters is bounded by (8/⇡+1) v

max

⇡ 3.55 v
max

. Main-
taining this approximation is done using the kinetic
data structures (KDS) framework by Basch et al. [3].
When viewed as a clustering problem the centers have
no explicit meaning and no bound on their speed is
necessary. For this case e�cient KDSs for the discrete
version of the k-center problem, where the disk cen-
ters must be chosen from the input set P , have been
given [7, 11].

Problem statement. The previous results on the
kinetic 2-center problem [7, 9, 11] use the standard
KDS model, where the trajectories of the points are
known in advance. However, in many applications
the trajectories are not known and the standard KDS
framework cannot be used. Hence, we study the
kinetic 2-center problem in the so-called black-box

model [4, 5, 12]. In the black-box model the loca-
tions of the points are reported at regular time steps
t
0

, t
1

, · · · , and we are given a value d
max

such that any
point can move at most distance d

max

from one time
step to the next. Thus, when p(t) denotes the location
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of point p at time t, we have dist(p(ti), p(ti+1

)) 6 d
max

for all p 2 P and every time step ti. We want to main-
tain the 2-center of the set P (t) := {p(t) : p 2 P} at
every time step while using coherence to speed up the
computations. This is not possible without restricting
the relation of the maximum displacement d

max

and
the distribution of the point set P : if all points lie
within distance d

max

from each other then the distri-
bution at time t+1 need not have any relation to the
distribution at time t, and so there is no coherence
that can be used. Following our previous papers [4, 5]
we assume the following.

Displacement Assumption: There is a

maximum displacement d
max

and constant

k such that for each point p 2 P and any

time step ti we have

• dist(p(ti), p(ti+1

)) 6 d
max

, and

• there are at most k other points from

P within distance d
max

from p(ti).

Under this assumption, we formulate our bounds
in terms of the so-called k-spread [10] of P ,
which is defined as follows. Let mindistk(P ) :=
minp2P dist(p,nnk(p, P )) denote the smallest dis-
tance from any point p 2 P to its k-nearest neigh-
bor nnk(p, P ). Then the k-spread �k of P is defined
as �k(P ) := diam(P )/mindistk(P ). The 1-spread is
simply the regular spread of a point set. We use the
k-spread instead of regular spread, since two points
may pass by each other at a very close distance, caus-
ing a small value for mindist

1

(P ) and, consequently,
a high spread. It is much less likely that k points are
very close simultaneously, and so mindistk(P ) tends
to not be very small. For a good k-spread we also
need the diameter not to be too large. This is some-
what unnatural for the 2-center problem: when the
two clusters are far apart, the k-spread may become
very large even though within each cluster, the points
are very evenly distributed. Hence we introduce the
so-called (2, k)-spread �

2,k(P ):

�
2,k(P ) := min

P1,P2

max(�k(P1

),�k(P2

)),

where the minimum is taken over all possible parti-
tions of P into two subsets P

1

, P
2

. (The partition
defining �

2,k(P ) does not need to be the same as
the partition defining the optimal clustering in the
2-center problem, but since �

2,k(P ) is the minimum
over all partitions this can lead only to a better (2, k)-
spread.) We express our results using the (2, k)-
spread of P , that is, using the maximum value of
�

2,k(P (ti)) over all time steps ti, which we abbre-
viate as �

2,k := maxti �2,k(P (ti)).

Results and Organization. We study the kinetic
Euclidean 2-center problem from a clustering point of
view: without restrictions on the speed of the centers.
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Figure 1: When a) dist(q
1

, q
2

) > 2r + "r or b)
dist(q

1

, q
2

) 6 2r � "r/2 the 2-center disks that cover
P" also cover P , and c) otherwise blowing up the disks
by a factor 1 + " ensures they cover P .

We investigate the Euclidean 2-center problem and
show how to maintain a (1 + ")-approximation, for
any 0 < " 6 ⇡/4 in O((k/"3)�

2,k log
3 n(log log n)2)

amortized time. In many cases—when the distance
between the centers of the disks is relatively large or
small—the solution we maintain is optimal.

2 The Euclidean 2-center

The Euclidean 2-center problem asks for two congru-
ent disks of minimum size that together cover P . Our
global strategy to maintain the Euclidean 2-center ki-
netically is to find a subset Q ✓ P containing points
that are in some sense on the outside of P . We then
compute the optimal 2-center for Q and show that it
is an approximation of the 2-center of P . Maintaining
the approximate 2-center can then be done by main-
taining Q. First we define what exactly it means for
a point to be on the outside of the point set.
Define a point p 2 P to be "-interesting if there

is a wedge W"(p) with apex p and opening angle "
such that W"(p) does not contain any other points
of P . Let P" denote the set of "-interesting points in
P . We show that it su�ces to consider the points in
P" to get (an approximation of) an optimal solution
to the 2-center problem on P . In the following we use
disk(q, r) to denote the disk of radius r centered at q.

Lemma 1 Let disk(q
1

, r) and disk(q
2

, r) be the two

disks of an optimal solution for the Euclidean 2-center

problem on P", for some " < ⇡/4. If dist(q
1

, q
2

) 6
2r � "r/2 or dist(q

1

, q
2

) > 2r + "r then disk(q
1

, r)
and disk(q

2

, r) are an optimal solution for the 2-

center problem on P ; otherwise disk(q
1

, r + "r) and

disk(q
2

, r + "r) are a (1 + ")-approximation for the

2-center problem on P .

Proof (sketch). First consider the case dist(q
1

, q
2

) 6
2r�"r/2. Since P" ✓ P , the disks in an optimal solu-
tion for P cannot have radius smaller than r. Hence,
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it su�ces to prove that disk(q
1

, r) [ disk(q
2

, r) cov-
ers P . Suppose for a contradiction there is an un-
covered point in P . Assume without loss of gener-
ality that the line ` through q

1

and q
2

is horizon-
tal, and let p be the highest uncovered point above `,
see Figure 1. (If all uncovered points lie below ` we
can apply a similar argument to the lowest uncovered
point.) The condition dist(q

1

, q
2

) 6 2r � "r/2 im-
plies that the “vertical” wedge W"(p) does not inter-
sect disk(q

1

, r)[ disk(q
2

, r), and the fact that p is the
highest uncovered point implies that W"(p) does not
contain any other uncovered point. Hence, p 2 P",
contradicting that disk(q

1

, r) and disk(q
2

, r) form a
solution for P".

When dist(q
1

, q
2

) > 2r+"r we can show in a similar
way that disk(q

1

, r)[disk(q
2

, r) covers P . When 2r�
"r/2 6 dist(q

1

, q
2

) 6 2r + "r we cannot guarantee
this, but if we blow up the disks by a factor (1+") we
are essentially back in the first case and we can apply
the same reasoning. ⇤
By Lemma 1 we obtain a (1 + ")-approximation for
the Euclidean 2-center problem if we can maintain the
set P". This seems di�cult, so instead we maintain a
superset P ⇤

" ◆ P" defined as follows. Let W"/2 be a
wedge of opening angle "/2. We say that W"/2 is a
canonical ("/2)-wedge if the counter-clockwise angle
that its angular bisector makes with the positive x-
axis is i"/2, for some integer 0 6 i < d4⇡/"e. We
now define P ⇤

" as the set of points p in P that have
an empty canonical ("/2)-wedge (that is, a wedge not
containing points from P ) with apex p. The following
observation implies that Lemma 1 is still true if we
replace P" by P ⇤

" .

Observation 1 Any point p 2 P that is the apex

of an empty "-wedge is also the apex of an empty

canonical ("/2)-wedge, so P" ✓ P ⇤
" .

We are left with the problem of maintaining P ⇤
" . This

is done in a similar fashion as we maintained the con-
vex hull vertices in a previous paper [4]: Each point
p 2 P gets a time stamp that indicates how many
time steps it takes before p can be in P ⇤

" . At each
time step we then consider only points whose time
stamps have expired. Recall that there are d4⇡/"e
di↵erent classes of canonical wedges, corresponding
to the orientation of their angular bisector. We treat
each of these classes separately. Consider one such
class, and assume without loss of generality that its
angular bisector is pointing vertically upward. We
wish to maintain the set P ⇤,up

" of points whose up-
ward canonical wedge is empty. Define W down(p)
to be the wedge with apex p that is the mirrored
image of the upward canonical wedge of p, and let
Wdown(t) := {W down(p(t)) : p 2 P} be the set of all
such downward wedges. Then a point q lies in the up-
ward canonical wedge of p if and only if p 2 W down(q).

p(t)

p0(t)

E(Wdown(t))

dist⇤(p(t))

Figure 2: The point p0(t) is the projection of p(t) on
E(Wdown(t)).

This implies the following lemma.

Lemma 2 Let E(Wdown(t)) denote the upper enve-

lope of the downward wedges at time t. Then p 2
P ⇤,up
" (t) if and only if p(t) is a vertex of E(Wdown(t)).

Because of the bounded speed of the points, we know
that points far from the upper envelope E(Wdown)
need a lot of time before they can appear on the en-
velope. Hence, we can use the distance from p to
E(Wdown) to define its time stamp. To be able to
compute time stamps quickly, we will not use the
Euclidean distance from p to E(Wdown) but an ap-
proximation of it. Let p0(t) be the vertical projec-
tion of p(t) onto E(Wdown(t)); see Figure 2. Then
our approximated distance is defined as dist⇤(p(t)) :=
dist(p(t), p0(t))·sin("/4). Note that dist⇤(p(t)) is equal
to the distance from p(t) to the boundary of the down-
ward wedge W down(p0(t)). Because W down(p0(t)) is
completely below (or on) E(Wdown), the actual Eu-
clidean distance from p(t) to E(Wdown) is at least
dist⇤(p(t)). Hence, we can safely use dist⇤(p(t)) to
define the time stamps. Thus, when we compute the
time stamp of a point p at time t we set

tup(p) := min(bdist⇤(p(t))/2d
max

c+ 1, n).

Lemma 3 If a point p receives time stamp tup(p) at
time ti, then p cannot be on E(Wdown(tj)) for ti <
tj < ti + tup(p).

The final time stamp of a point p is defined as the
minimum over all time stamps computed for p for
the d4⇡/"e di↵erent wedge orientations. The al-
gorithm for maintaining the Euclidean 2-center can
now be summarized as follows. Initially (at time
t = t

0

) we compute a time stamp t(p) for every
point p, which is the minimum over the time stamps
for the d4⇡/"e canonical wedge orientations. Then
at each time step t = ti we take the set Q(t) of
points whose time stamps expire at time t. For each
canonical orientation we use a simple sweep-line al-
gorithm to compute in O(|Q(t)| log |Q(t)|) time the
envelope of the mirrored wedges of the points in
Q(t). Since there are d4⇡/"e di↵erent orientations
this takes O((1/")|Q(t)| log |Q(t)|) time in total. The
collection of all points p 2 Q(t) that are a vertex of
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at least one of the envelopes is the set P ⇤
" (t). We

then solve the Euclidean 2-center problem on P ⇤
" (t)

using an algorithm for static points, giving us two
disks disk(q

1

, r) and disk(q
2

, r). (To get the best run-
ning time, we use Chan’s algorithm [6] for this.) If
2r � "r/2 6 dist(q

1

, q
2

) 6 2r + "r then we report
disk(q

1

, r + "r) and disk(q
2

, r + "r), otherwise we re-
port disk(q

1

, r) and disk(q
2

, r). Finally, we compute
new time stamps for the points in Q(t). Since we
already have all the envelopes this can be done in
O((1/")|Q(t)| log |Q(t)|) time in total.

The running time of our algorithm strongly depends
on the number of points in Q(t). Although in the
worst case |Q(t)| may be large, we can show that it is
small on average. The proof of the following lemma is
similar to a proof in a previous paper [4, Lemma 6].

Lemma 4 The number of points in Q(t) is

O((1/"2)k�
2,k logn) amortized.

Using that the static 2-center algorithm by Chan [6]
on m points runs in O(m log2 m(log logm)2) time, we
obtain the following theorem.

Theorem 5 Let P be a set of n moving points that

adheres to the Displacement Assumption with param-

eters k and d
max

, let �
2,k denote the maximum (2, k)-

spread of P at any time t, and let 0 < " 6 ⇡/4. Then
we can maintain a (1 + ")-approximation of the Eu-

clidean 2-center for P in the black-box KDS model in

O((k/"3)�
2,k log

3 n(log log n)2)) amortized time per

time step and using O(n) space.

3 Conclusions

We have shown how to maintain an approximation
of the Euclidean 2-center problem in amortized sub-
linear time in the black-box model under certain as-
sumptions on the distribution of the points. In the
solution presented here the centers can “jump” be-
tween time steps. That is, between two consecutive
time steps the distances between the centers can be
very large compared to d

max

. For clustering this is
not a problem, but for facility location problems this
is undesirable. Durocher and Kirkpatrick [9] show a
lower bound of

p
2 on the approximation ratio when

the centers move with bounded speed. They provide
an approximation scheme that achieves an approxima-
tion ratio of 8/⇡ ⇡ 2.55. We have also investigated
bounded speed approximations for Euclidean kinetic
2-center problem in the black-box model. In the full
paper we show how to obtain a 2.28-approximation for
the Euclidean 2-center, such that the centers move at
most 4

p
2d

max

per time step. There, we also study
the rectilinear version of the kinetic 2-center problem
(with and without speed restriction for the centers).
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