

Kinetic collision detection for low-density scenes in the black-
box model
Citation for published version (APA):
Berg, de, M. T., Roeloffzen, M. J. M., & Speckmann, B. (2012). Kinetic collision detection for low-density scenes
in the black-box model. 53-56.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fa32d95f-d524-464a-bfde-08eb57e8eb1e

53

EuroCG 2012, Assisi, Italy, March 19–21, 2012

Kinetic Collision Detection for Low-Density Scenes

in the Black-Box Model

Mark de Berg∗ Marcel Roeloffzen∗ Bettina Speckmann∗

Abstract

We present an efficient method for collision detection
in the black-box KDS model for a set S of n objects in
the plane. In this model we receive the object loca-
tions at regular time steps and we know a bound dmax

on the maximum displacement of any object within
one time step. Our method maintains, in O((λ+k)n)
time per time step, a compressed quadtree on the
bounding-box vertices of the objects; here λ denotes
the density of S and k denotes the maximum number
of objects that can intersect any disk of radius dmax.
Collisions can then be detected by testingO((λ+k)2n)
pairs of objects for intersection.

1 Introduction

Collision detection [12, 13] is an important problem in
computer graphics, robotics, andN -body simulations.
One is given a set S of n objects, some or all of which
are moving, and the task is to detect the collisions
which occur. In practice collision detection is often
performed in two phases: a broad phase that serves
as a filter and reports a (small) set of potentially col-
liding pairs of objects, and a narrow phase that tests
each of these pairs to determine if there is indeed a col-
lision. Here we are concerned only with broad-phase
collision detection; more information on the narrow
phase can be found in a survey by Kockara et al. [11].

Related work. The most common way to perform
collision detection is to test for collisions at regular
time steps; for graphics applications this is typically
every frame. This approach can be wasteful, in partic-
ular if computations are performed from scratch every
time: if the objects moved only a little, then much of
the computation may be unnecessary. In addition,
even with small time steps, collisions can be missed.

An alternative is to use the kinetic-data-structure
(KDS) framework introduced by Basch et al. [3]. A
KDS for collision detection maintains a collection
of certificates (elementary geometric tests) such that
there is no collision as long as the certificates re-
main true. The failure times of the certificates—these

∗Department of Computer Science, TU Eindhoven,
the Netherlands, {mdberg,mroeloff,speckman}@win.tue.nl.
M. Roeloffzen and B. Speckmann were supported by the
Netherlands’ Organisation for Scientific Research (NWO) un-
der project no. 600.065.120 and 639.022.707, respectively.

can be computed from the motion equations of the
objects—are stored in an event queue. When the next
event happens, it is checked whether there is a real col-
lision and the set of certificates and the event queue
are updated. (In addition, if there is a collision the
motion equations of the objects involved are changed
based on the collision response.) KDSs for collision
detection have been proposed for 2D collision detec-
tion among polygonal objects [2, 10], for 3D collision
detection among spheres [9], and for 3D collision de-
tection among fat convex objects [1].

The KDS framework is elegant and can lead to effi-
cient algorithms, but it has its drawbacks. One is that
it requires knowledge of the exact trajectories (motion
equations) to compute when certificates fail. Such
knowledge is not always available. Another disad-
vantage is that some KDSs are complicated and may
not be efficient in practice—the collision-detection
KDS for fat objects [1] is an example. We therefore
study collision detection in the more practical black-
box model [5, 7]: We receive, for each object Ai ∈ S,
its location Ai(t), at regular time steps t = 1, 2, . . .
and we know an upper bound on the maximum dis-
placement dmax of any object within one time step.
Our main goal is to obtain provable bounds for broad-
phase collision detection in the black-box model.

Results. We present an algorithm for maintaining
a compressed quadtree on the set S of objects, and
we prove that our algorithm runs in O((λ+k)n) time
per time step; here λ denotes the density [6] of S, and
k denotes the maximum number of objects intersect-
ing any disk of radius dmax. The compressed quadtree
can be used to report the at most O((λ+k)2n) poten-
tially colliding pairs of objects to the narrow phase.
The basis of our algorithm is a technique to efficiently
maintain a compressed quadtree for a set of moving
points, which is of independent interest. We describe
our results for the planar case, but they generalize
to 3- or higher-dimensional space in a straightforward
manner.

2 Preliminaries

Assumptions on distribution and displace-

ment. Let S be the set of constant complexity ob-
jects in the plane—e.g. a set of triangles or disks—,
let Aj(t) be the object Aj ∈ S at time t, and let

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

54

28th European Workshop on Computational Geometry, 2012

S(t) = {A1(t), . . . , An(t)}. To use temporal coher-
ence in our algorithm, we need bounds on the max-
imum distance the objects can move in relation to
their inter-distances—otherwise the locations at time
t have no relation to those at time t + 1 and we can
do nothing but compute T (t) from scratch. Following
De Berg et al. [5] we make the following assumption.

Displacement Assumption: There is a maximum
displacement dmax such that dist(A(t), A(t + 1)) 6

dmax for each object A ∈ S and any time step t.

For simplicity we assume the objects only translate,
and we define dist(A(t), A(t+1)) as the length of the
translation vector between A(t) and A(t + 1). How-
ever, our algorithm also works in more general cases,
as long as the boundaries of the objects do not move
too much. As mentioned, we need to relate the max-
imum displacement to the inter-object distances:

Distribution Assumption: Any disk of radius dmax

intersects at most k objects from S(t), at any time
step t.

Our algorithms do not know the value of k; it is used
only in the analysis. We also use the concept of den-
sity [6]. A set S of objects has density λ if, for any
disk D, the number of objects Aj ∈ S intersecting D

having diam(Aj) > diam(D) is at most λ. We assume
that the density of S(t) is λ at every time step t.

The compressed quadtree. A quadtree for a set of
points inside a square is a tree representing a subdi-
vision of that square into four equal-sized subsquares
(quadrants) that continues recursively until a stop-
ping criterion is met. There can be splits where only
one of the four resulting quadrants contains points. In
the quadtree this corresponds to a path of nodes with
only one non-empty child. A compressed quadtree re-
places such paths by compressed nodes, which have
two children: a child for the hole representing the
smallest quadtree square containing all points, and a
child for the donut representing the rest of the square.
A compressed quadtree for a set of points has lin-
ear size. Our main data structure is a compressed
quadtree T on the set P of bounding-box vertices of
the objects in S, with the following stopping criterion.

Stopping Criterion: A square σ becomes a leaf
when (i) σ contains at most one point from P , or
(ii) σ has edge length at most dmax.

We use region(v) to denote the region associated with
a node v of T and assume that region(root(T)) is a
fixed, large square that always contains all objects.

Observation 1 Under our Stopping Criterion,

region(v) intersects O(λ + k) objects from S for any

leaf v.

The leaf regions of T intersect only few objects: re-

gions with edge length larger than dmax contain at
most one bounding-box vertex and, hence, intersect
O(λ) objects [4], and regions with edge length at most
dmax intersect at most O(k) objects by definition of k.
For each leaf v in T we maintain a list of objects

intersecting region(v). Broad-phase collision detec-
tion is then performed by reporting for each leaf v

all O((λ+ k)2) pairs of objects intersecting region(v).
Since the tree T contains O(n) nodes we report at
most O((λ+ k)2n) pairs.

A compressed quadtree for a set of n points can be
constructed in O(n log n) time [8]. This holds in an
appropriate model of computation, where we can find
the smallest canonical square—a canonical square is
any square that results from recursive subdivision of
the given initial square—containing two given points
in O(1) time. Our goal is to show that, in this model
of computation, we can efficiently maintain our com-
pressed quadtree as the objects move. We use T (t) to
denote the compressed quadtree on the bounding-box
vertices of S(t). In the remainder of this abstract we
sketch how to create T (t+1) from T (t) in O((λ+k)n)
time, resulting in the following theorem.

Theorem 1 Let S be a set of n moving objects in

the plane that adheres to the Displacement and Dis-

tribution Assumption and with maximum density λ.

We can maintain a compressed quadtree for S in

O((λ + k)n) time per time step, which allows us to

perform broad-phase collision detection resulting in

O((λ+ k)2) pairs of potentially colliding objects.

3 Maintaining the compressed quadtree

Our compressed quadtree is built on the points in P

(the bounding-box vertices). The main problem in
updating T is that a leaf region can border many other
leaf regions and many points may move into it. Con-
structing the subtree replacing that leaf from scratch
is therefore too expensive. We solve this by first re-
fining T (t) into an intermediary tree T1(t). We then
insert the (moved) points into T1(t) to obtain T2(t).
We insert the (moved) objects into T2(t) to obtain
T3(t) which we prune into T (t+1) (see Fig 1). Below
we describe these steps in more detail. Note that T (t)
remains unchanged, whereas T1(t) is first constructed
and then changed into T2(t), T3(t) and T (t+ 1).

Refine. The intermediary tree T1(t) has the property

T (t)

T1(t) T2(t) T3(t)

T (t+ 1)

move
points

move
objects

prune
refine

Figure 1: Constructing T (t+ 1) from T (t).

55

EuroCG 2012, Assisi, Italy, March 19–21, 2012

v2

v3u

v1

(a) (b)

ud

Figure 2: Subdivision defined by T (t) and its refine-
ment (dashed lines), ud and u are nodes of T (t), v1, v2,
and v3 are nodes of T1(t), region(ud) is a donut (gray),
its right boundary consists of two segments (fat).

that each region in T1(t) has O(1) neighbor regions in
T (t). To make this precise we define for a node v in
T1(t) some related internal or leaf nodes in T (t):

• original(v): The lowest node u in T (t) such that
region(v) ⊆ region(u) and region(u) is a square.

• nbrn(v), nbre(v), nbrs(v), nbrw(v): We call these
the horizontal and vertical neighbors of v in T (t).
We define the west neighbor nbrw(v) as the low-
est node u in T (t) such that the left boundary
of region(v) is included in the right boundary of
region(u) (in Fig. 2(b) nbrw(v3) = ud). The other
vertical and horizontal neighbors are defined sim-
ilarly. (Not all neighbors need to exist.)
• nbrnw(v), nbrne(v), nbrse(v), nbrsw(v): These are
the diagonal neighbors of v in T (t). We define
nbrnw(v) as the lowest node u in T (t) such that
the north-west corner of region(v) is the south-
east corner—or a corner of a donut cell created by
the corresponding hole—of region(u) (in Fig. 2(a)
nbrnw(v1) = u and in Fig. 2(b) nbrnw(v2) = ud).
• nbrh1(v), nbrh2(v): These neighbors exist only for
donut cells with a hole along the boundary and
are the diagonal neighbors of the corner points
along the boundary that are created by the hole.

For ease of notation we define the following sets:

Nhv(v) = {nbrn(v), nbre(v), nbrs(v), nbrw(v)}

Nd(v) = {nbrnw(v), nbrne(v), nbrse(v),

nbrsw(v), nbrh1(v), nbrh2(v)}

We can now express the conditions on T1(t):

(i) For every node u in T (t) such that region(u)
is a square, there is a node v in T1(t) with
region(v) = region(u). Thus, the subdivision in-
duced by T1(t) is a refinement of the subdivision
induced by T (t).

(ii) For each leaf v in T1(t) every node u ∈ Nhv(v) is
a leaf of T (t).

We construct T1(t) top-down. Whenever we create a
new node v of T1(t), it receives a pointer to original(v)

and pointers to its horizontal and vertical neighbors
in T (t) (the nodes in Nhv(v)). These are obtained
from the parent of v and the original and neighbors
of that parent. How we refine each node v in T1(t)
depends on original(v) and the neighbors in Nhv(v)
and is described in more detail in Algorithm 1.

We can prove that each of the cases occurs at
most O(n) times and, hence, T1(t) also contains O(n)
nodes. Besides the pointers to the nodes in Nhv(v),
we also need pointers to the set Nd(v) of diagonal
neighbors of each node v in T1(t). The details of this
are not difficult and omitted due to space limitations.

Moving the bounding-box vertices. We first cre-
ate for each leaf v in T1(t) a list of all points in P

contained in region(v) at time t+1. We traverse T1(t)
and for each leaf v we encounter we inspect original(v)
and all its neighbors in Nhv(v) ∪ Nd(v)—recall that
these neighbors are leaves of T (t). The points con-
tained in these at most eleven leaves—ten neighbors
and one original—are the only ones that can be in
region(v) at time t + 1 as points in other cells have
more than distance dmax to region(v).

For each of the points in these eleven nodes we check
if they are inside region(v) and if so we add them to v.
This takes constant time assuming each of these nodes
contains only one point. Due to the definition of our
quadtree there can be nodes containing more than one
point, corresponding to squares that were not refined
because their edge length is dmax. Fortunately, these
nodes can only be neighbor or original to at most nine
nodes in T1(t). Each point in these cells is inspected
at most nine times and hence points from these cells
only require O(n) time in total.

After moving points into v there may be more than
one point in v. To ensure that the tree still adheres to
the Stopping Criterion we refine v. Since the points
come from a constant number of nodes they occupy a
constant number of cells of size dmax. Building a com-
pressed quadtree on these cells takes constant time.
The result is the second intermediary tree T2(t).

Moving the objects. The objects are moved in the
same way as the points. We traverse T2(t) and for
each node v we test each object from S(t) intersect-
ing a neighbor or original of v for intersection with
region(v). Since T (t) adheres to the Stopping Crite-
rion at time t, it follows from Observation 1 that we
test only O(λ+k) objects for each node in T2(t). This
results in the intermediary tree T3(t).

Pruning the tree. We finally prune T3(t) to re-
move any unnecessary compressed nodes or splits.
Splits that put all vertices into one child are re-
placed by compressed nodes and nested compressed
nodes—where the hole of one compressed node is an-
other compressed node—are reduced to a single com-
pressed node. This results in T (t+1), the compressed
quadtree for the objects at time t+ 1.

56

28th European Workshop on Computational Geometry, 2012

Algorithm 1: Refine(T (t))

1 Create root(T1(t)). Set Nhv(root(T1(t))) = ∅ and
original(root(T1(t))) = root(T (t));

2 Add root(T1(t)) to empty queue Q;
3 while Q is not empty do

4 v ← pop(Q);
5 Case 1: original(v) is split OR a neighbor

in Nhv(v) is split: (see figure) v becomes a
split node and we create four children
vnw, vne, vse, vsw which we add to Q;

6 Case 2: original(v) is a compressed node

OR a neighbor in Nhv(v) has a hole on

shared boundary:

7 mirror the top level square of each adjacent
hole into region(v) and mirror the hole of
original(v) along its top, left, bottom and
right boundary;

8 scs← the smallest canonical square of the
mirrored squares in region(v);

9 Case 2a: scs is empty: v remains a leaf;
10 Case 2b: scs = region(v): v becomes a

split node and we create four children
vnw, vne, vse, vsw which we add to Q;

11 Case 2c: scs ⊂ region(v): v becomes a
compressed node and we create vd and vh
such that region(vd) = region(v)\scs and
region(vh) = scs. Add vh to Q;

12 Case 3: otherwise: v remains a leaf;

Case 2c

vh

vh

Case 2b

Case 1

v

v
vd

vd

v

vnw vne

vsw vse

vnw vne vsw vse

v

v

v

Figure 3: Algorithm 1 (left) to construct T1(t) and an illustration (right) of several consecutive steps of the
algorithm showing the Cases 1, 2b and 2c. The top tree is the input tree T (t).

References

[1] M.A. Abam, M. de Berg, S.-H. Poon, and B. Speck-
mann. Kinetic collision detection for convex fat ob-
jects. Algorithmica, 53(4):457–473, 2009.

[2] P.K. Agarwal, J. Basch, L.J. Guibas, J. Hershberger,
and L. Zhang. Deformable free-space tilings for ki-
netic collision detection. Int. J. Robotics Research,
21(3):179–197, 2002.

[3] J. Basch, L.J. Guibas, and J. Hershberger. Data
structures for mobile data. In Proc. 8th ACM-SIAM
Symp. Discr. Alg. , pages 747–756, 1997.

[4] M. de Berg, H. Haverkort, S. Thite, and L. Toma.
Star-quadtrees and guard-quadtrees: I/O-efficient in-
dexes for fat triangulations and low-density planar
subdivisions. Comput. Geom. Theory Appl. 43:493–
513, 2010.

[5] M. de Berg, M. Roeloffzen and B. Speckmann. Ki-
netic convex hulls and Delaunay triangulations in the
black-box model. In Proc. 27th ACM Symp. Comput.
Geom., pages 244–253, 2011.

[6] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications (3rd edition). Springer, 2008.

[7] J. Gao, L.J. Guibas, A. Nguyen. Deformable spanners
and applications. In Proc. 20th ACM Symp. Comput.
Geom., pages 190–199, 2004.

[8] Sariel Har-Peled. Geometric Approximation Algo-
rithms. American Mathematical Society, 2011.

[9] D.-J. Kim, L.J. Guibas, and S.Y. Shin. Fast colli-
sion detection among multiple moving spheres. IEEE
Trans. Vis. Comp. Gr., 4:230–242 (1998).

[10] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Ki-
netic Collision Detection for Simple Polygons. Int. J.
Comput. Geom. Appl., 12(1-2):3–27 (2002).

[11] S. Kockara, T. Halic, K. Iqbal, C. Bayrak and R.
Rowe. Collision detection: A survey. In Proc. of SMC,
pages 4046–4051, 2007.

[12] M. Lin and S. Gottschalk. Collision detection be-
tween geometric models: A survey. In Proc. of IMA
Conf. Math. Surfaces, pages 37–56, 1998.

[13] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M. Cani, F.
Faure, Magnenat N. Thalmann, W. Strasser and P.
Volino. Collision detection for deformable objects.
Computer Graphics Forum, 24:119–140, 2005.

