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Colour Patterns for Polychromatic Four-colourings
of Rectangular Subdivisions

H. Haverkort∗ M. Löffler† E. Mumford∗ M. O’Meara‡ J. Snoeyink§ B. Speckmann∗

Abstract

A non-degenerate rectangular subdivision is a subdi-
vision of a rectangle into a set of non-overlapping rect-
angles S, such that no four rectangles meet in a point.
We consider a problem that Katz and colleagues call
strong polychromatic four-colouring: Colouring the
vertices of the subdivision with four colours, such that
each rectangle of S has all colours among its four cor-
ners. By considering the possible colouring patterns,
we can give short constructive proofs of colourabil-
ity for subdivisions that are sliceable or one-sided.
We also present techniques and observations for non-
sliceable, two-sided subdivisions.

1 Introduction

A rectangular subdivision is a set S of rectangles with
disjoint interiors whose union is a rectangle r(S). The
set of vertices of S is the union of the sets of vertices
(corners) of the rectangles in S. If S contains four
rectangles that meet in a single vertex, we say that
S is degenerate. A non-degenerate rectangular subdi-
vision is a rectangular subdivision in which each ver-
tex is a corner of only one or two rectangles. Unless
otherwise specified, a subdivision is a non-degenerate
rectangular subdivision.

Dinitz et al. [1] showed that it is possible to colour
the vertices of any subdivision S with three colours
so that each rectangle in S is polychromatic—has at
least one vertex of each colour. They conjectured that
this is also possible with four colours. This conjecture
is in fact a special case of a much older conjecture by
Seymour [6] concerning the edge-colouring of a special
class of planar graphs, so-called 4−graphs. Seymour’s
conjecture was proven by Guenin [3]. We are thankful
to Dimitrov et al. [2] for pointing out that Guenin’s
result implies that each non-degenerate subdivision
has indeed a strong polychromatic four-colouring.

∗Department of Mathematics and Computer Science, Eind-
hoven University of Technology, cs.herman@haverkort.net,

e.mumford@tue.nl, speckman@win.tue.nl
†Department of Information and Computing Sciences,

Utrecht University, loffler@cs.uu.nl
‡Department of Mathematics, University of Chicago,

mattjomeara@gmail.com
§Department of Computer Science, University of North Car-

olina at Chapel Hill, snoeyink@cs.unc.edu

Figure 1: From left to right: a degenerate subdivision
that is not colourable; a sliceable subdivision (but not
one-sided, because of the fat segment); a one-sided
(but not sliceable) subdivision.

Guenin’s proof is non-constructive. In the remain-
der of this abstract we focus on constructive proofs for
specialized subdivisions and report on observations
concerning so-called colour patterns. For any subdi-
vision S let a colouring pattern of S be an assignment
of four colours to the vertices of S such that each
rectangle is polychromatic. We say S is colourable if
it admits at least one colour pattern. Let a boundary
colouring pattern of S be the restriction of a colouring
pattern of S to the corners of the boundary of S.

Known and new results. Not all degenerate rectan-
gular subdivisions are colourable (see Figure 1).

Sliceable subdivisions. A subdivision is called
sliceable if it can be obtained by recursively slicing
a rectangle with horizontal and vertical lines. Horev
et al. [5] call these guillotine subdivisions, and show
that they are always colourable. We give a short proof
using boundary colour patterns.

Canonical form. We can order the rectangles of a
subdivision so that prefixes form monotone staircases;
for some subdivisions this order is unique. We show
that any colouring pattern of a subdivision can be
realized by a subdivision with a unique order, and
give a procedure to convert any given subdivision into
such a canonical form.

One-sided subdivisions. A maximal line seg-
ment of S is a line segment that is completely covered
by edges of the rectangles of S for which no extension
is covered. A subdivision is one-sided if and only if,
for every maximal line segment s, the vertices in the
interior of s are T-junctions that all have the leg on
the same side of s. We will prove that every one-sided
subdivision is colourable.

Other subdivisions. Here we present some ob-
servations regarding possible algorithms or hypothet-
ical counterexamples. We call a subdivision atomic
or semi-atomic if every proper subset S′ ⊂ S such
that S′ is a subdivision, consists of only one rectan-
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gle, or at most two rectangles, respectively. We show
that if there is a subdivision that is not colourable,
the smallest such subdivision must be semi-atomic,
or semi-atomic with one additional rectangle glued to
an external edge. We also study sets of boundary
colour patterns of different subdivisions of staircases
which are surprisingly dissimilar.

2 Corner colour patterns

Consider any subdivision S, whose union is a rectan-
gle r(S). We say S is even if |S| is even, and S is odd
if |S| odd.

Lemma 1 If S is odd and colourable, then every
boundary colouring pattern is polychromatic.

If S is even and colourable, then in every boundary
colouring pattern of S, either all four corners have the
same colour or two corners have the same colour and
two corners have another colour.

Proof. Number the colours to be used from 1 to 4.
For a given colouring pattern of S, let Cc be the num-
ber of corners of r(S) with colour c, and let Ic the
number of other vertices with colour c. Note that
each of the corners of r(S) gives its colour to exactly
one rectangle of S, while the remaining vertices of S
give their colour to exactly two rectangles of S. No
rectangle can have two corners of the same colour.
Thus, for every colour c, we have Cc + 2Ic = |S|.

When S is odd, Cc must be odd, and therefore pos-
itive for each colour. Since

∑
c∈{1,2,3,4} Cc = 4, this

implies that Cc = 1 for each c ∈ {1, 2, 3, 4}.
When S is even, Cc must be even, and therefore

either 0, 2 or 4, for each colour. �

Subdivisions thus allow five boundary colouring
patterns:

all corners have different colours;
corners use two colours, paired horizontally;
corners use two colours, paired vertically;
corners use two colours, paired diagonally;
all corners have the same colour.

3 Sliceable subdivisions

Theorem 2 Sliceable subdivisions are colourable.

Proof. We prove by induction on the number of
rectangles, that every odd sliceable subdivision with
|S| ≤ n can be coloured and must have as its only
boundary colouring pattern, and every even sliceable
subdivision with |S| ≤ n can be coloured and has at
least two of { , , } as boundary colouring patterns.

When n = 1, S has boundary colouring pattern .
Now, consider a subdivision with |S| = n + 1 com-

posed of two subdivisions, L and R, separated by a

vertical line (the case of a horizontal separating line
is symmetric). By induction, both L and R can be
coloured separately. We distinguish four cases, de-
pending on whether L and R are odd or even.

(i) If L and R are both odd, then, if necessary,
we relabel the colours of R to match the two corners
shared with L. The corners of r(S) now use the re-
maining two colours. We may swap these colours in R
so on the boundary they are paired either horizontally

or diagonally , satisfying the induction hypothesis.
(ii) If L is even and R is odd, then S is odd. By

induction, L has as a boundary colouring pattern or
. We can recolour R to match L on shared vertices,

resulting in a pattern for the boundary of S.
(iii) The case of L odd and R even is symmetric.
(iv) For the final case, in which L, R and S are

all even, we use the following notation for compos-
ing boundary colouring patterns: PLPR → PS means
that joining boundary colouring pattern PL for L with
PR for R gives boundary colouring pattern PS for S.

If L and R are both even and admit the pattern,
then S admits the pattern , ( → ). Furthermore,
by induction, both L and R admit at least one more
pattern out of and . Since → , → ,

→ , and → , we have that S has as a
pattern at least one of and .

If L and R are both even and L does not admit the
pattern, then, by induction, L admits both the

and patterns. R admits at least one of and .
Thus we can obtain the boundary colouring patterns

→ and → , or → and → ; in
both cases we obtain patterns and for S.

If L and R are both even and R does not admit
the pattern, we apply the above arguments sym-
metrically and again S admits and as boundary
colouring patterns.

Therefore the theorem holds for S by induction. �

4 Canonical form

One can build up a subdivision by listing rectan-
gles R1, . . . , Rn such that, for any i, the rectangles
R1, . . . , Ri cover the rectangle defined by the lower
right corner of S and the upper left corner of Ri. That
is, the rectangles with indices ≤ i are separated from
those with index > i by a staircase that is monoton-
ically increasing in x and y. Such an ordering can
be found for any subdivision by rotating it clockwise
and extending the “aboveness” partial order to a total
order [4]. We say that a subdivision has a canonical
ordering if there is a unique extension. We can use
aboveness to convert a subdivision into a canonical
form – a subdivision with a unique extension.

Lemma 3 One can in O(n log n) time convert a sub-
division into canonical form – having unique ordering
– without changing the colouring patterns.
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Figure 2: A subdivision in ↖-order and ↗-order.

Proof. [Sketch] Consider the rotated subdivision S
as a collection of open rectangles, and open maximal
line segments (i.e. not containing their endpoints, but
extending vertically or horizontally as far as possible –
ending at T-junctions.) These are convex and disjoint;
any set of disjoint convex objects can be given a total
order consistent with aboveness for the direction from
upper left to lower right corners of S.

Now, for the vertical and horizontal maximal seg-
ments, replace the x and y coordinates, respectively,
by their ranks, redraw the subdivision and rotate it
back, as in Figure 2. Including the segments in the
ordering makes the ordering unique, and the trans-
formation builds that uniqueness into the subdivi-
sion. This transformation does not affect the bipartite
graph in which each rectangle connects to the vertices
at its four corners. �

5 One-sided subdivisions

Theorem 4 One-sided subdivisions are colourable.

Proof. We may assume that S = {R1, . . . , Rn} is
a one-sided subdivision in canonical form (↖-order),
since conversion to canonical form preserves one-
sidedness. We claim that any two consecutive rect-
angles in ↖-order share a corner: Assume inductively
this claim holds after adding Ri−1. Up to reflection
we may assume we are adding Ri above Ri−1; let h
be the maximal line segment that contains the top
edge of Ri−1. Since S is in ↖-order, the left endpoint
l(h) of h must be the top left corner tl(Ri−1) of Ri−1,
and the right endpoint r(h) of h must be the bottom
right corner of Ri. If r(h) is also the top right corner
tr(Ri−1) of Ri−1, then Ri and Ri−1 share that cor-
ner. Otherwise tr(Ri−1) is a downward T-junction on
h. Since S is one-sided, the bottom left corner bl(Ri)
of Ri cannot be an upward T-junction on h, so we
have bl(Ri) = l(h) = tl(Ri−1), proving our claim.

We now define a path through S that we can use to
colour S. Consider the n rectangles of S in ↖-order,
R1, . . . , Rn. They define a path u0, . . . , un as follows:
let u0 be the lower right corner of R1, let un be the
upper left corner of Rn, and let ui (for 0 < i < n)
be the corner shared by Ri and Ri+1 (in case of a
tie, the left- and bottommost corner common to Ri

and Ri+1 is chosen). Symmetrically, we define a path
v0, . . . , vn from the lower left corner to the upper right
corner of S, following the rectangles in ↗-order – the
canonical order of their horizontal mirror image. Ties
are now broken in favour of the right- and topmost

R
R′Q R
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R
R′Q

R
R′
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R′

RQ R′
R
Q

R′
RQ R′

R
Q

Figure 3: In all cases, Q appears between R and R′

either in ↖-order or in ↗-order.

corner shared by two rectangles.
We claim that these two paths are vertex-disjoint.

Suppose, for the sake of contradiction, that there is a
vertex w that appears on both paths. Then the two
rectangles R and R′ of which w is a corner must be
adjacent in both ↖- and ↗-order. Moreover, R and
R′ share only one corner, otherwise the tie-breaking
mechanism would have put w in one path and the
other shared corner in the other path. Now consider
all ways in which R and R′ can share exactly one
corner. One can verify (see Figure 3) that in at least
one of the two orderings, R and R′ are not adjacent.
This contradicts our assumption, proving our claim.

We now colour ui black and vi red for even i, and
we colour ui white and vi green for odd i. Since each
rectangle has two successive corners on each path, this
ensures that each rectangle is polychromatic. �

6 On the hypothetical smallest counterexample

Lemma 5 If S is even and colourable, it allows at
least one boundary colouring pattern out of and ,
and at least one pattern out of and .

Proof. Consider a subdivision with boundary colour
pattern and assume that all corners are coloured
black. Consider the graph whose nodes are the ver-
tices of S that are coloured black or white, and whose
arcs are given by the pair of the black corner and
the white corner of each rectangle in S. This graph
consists of two paths whose four end nodes are the
corners of S, and possibly a number of cycles; if on
any of these paths or cycles we swap all black and
white vertices, we maintain a valid colouring pattern.

Since each rectangle contains only one arc, the two
paths cannot cross inside a rectangle; since each ver-
tex has degree at most two, the two paths cannot
cross in a vertex either. So the path that starts in the
lower left corner of S ends in either the upper left or
the lower right corner of S (never in the diagonally
opposite corner). In the first case, we can change the
-pattern into a -pattern by swapping the colours on

that path; in the second case, we can change the -
colouring into a -colouring by swapping the colours
on that path—see Figure 4. Note that by swapping
colours in this way, every rectangle is either left un-
changed (if the arc defined by it is not on the swapping
path) or it has its black corner turned white and its
white corner turned black, so that each rectangle re-
mains polychromatic. Hence every subdivision that
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Figure 4: Changing colour patterns into others.

admits a -pattern also admits a or a pattern.
With similar arguments we can show that a pat-

tern can always be changed into a or , and that
and can always be changed into or . �

For any subdivision S let the set of bound-
ary colouring patterns that S admits be P (S).
Then P (S) is one of the eleven sets: ∅, { , },
{ , }, { , }, { , }, { , , }, { , , }, { , , },
{ , , }, { , , , }, and { }. Figure 5 shows the
smallest subdivisions for the last eight sets.

Figure 5: Subdivisions for each good pattern set.

Observe that if there exists a subdivision S such
that P (S) = { , }, for every colouring pattern of
S, the top corners of S will have the same colour.
We can extend S to a subdivision S′ by gluing an
a rectangle R across the top of S. Then S′ is not
colourable as every colouring pattern of S forces R
to be non-polychromatic. Hence, if any subdivision
has P (S) = { , } or (by symmetry) P (S) = { , },
then there are subdivisions that are not colourable.
Therefore, we say that ∅, { , } and { , } are bad
pattern sets and the other pattern sets are good.

Theorem 6 Suppose there exist subdivisions with
bad boundary colouring pattern sets. Let S be a
smallest such subdivision. Then S does not contain
any proper subset T whose union forms a rectangle
with |T | > 2, that is, S is semi-atomic.

Proof. [Sketch] We claim that if S contains a proper
rectangular subset T with |T | > 2, then we can con-
struct a subdivision S′ with |S′| < |S|, such that
each colouring pattern of S′ can be transformed into a
colouring pattern of S with the same boundary colour-
ing pattern. Since S is the smallest subdivision with
a bad pattern set, the smaller subdivision S′ must
have a good pattern set. Now, since P (S′) ⊆ P (S),
and no superset of a good pattern set is bad, S must
have a good boundary colouring pattern set. But,
this contradicts our assumption that S is a smallest
subdivision with a bad pattern set.

To prove our claim we show how to construct S′ and
transform a colouring pattern for S′ into a colouring
pattern for S. If P (T ) = { }, then let S′ be the sub-
division obtained from S by replacing T with a single

rectangle T ′. Consider a colouring pattern of S′. By
definition of a valid colouring, T ′ must be polychro-
matic. Since ∈ P (T ), we can remove T ′ from S′

again, colour T with the same colours on its corners
as T ′, and insert T in S′. Thus we obtain a colour-
ing pattern for S, such that P (S) = P (S′). If P (T )
differs from { }, similar constructions are possible: if
P (T ) ⊇ { , }, we replace T by two rectangles sepa-
rated by a vertical line; if P (T ) ⊇ { , }, we replace
T by two rectangles separated by a horizontal line; if
P (T ) ⊇ { , , }, we shrink T to a line segment. �

7 Looking for algorithms and counterexamples

Trying to generalize the argument for colouring slice-
able subdivisions, we consider cutting a subdivision
S in ↖-order into a prefix set of rectangles S1 and
a postfix set of rectangles S2 and colouring each sep-
arately. Let P (S1) be the set of boundary colouring
patterns along the cut where each pattern is relabeled
to be in lex min order. Let S′

2 be S2, reflected in the
line x = y. We say that P (S1) and P (S′

2) couple with
pattern p ∈ P (S1) if S2 can be relabeled so that S is
colourable with pattern p along the cut.

We enumerated sets of rectangles that may arise as
a prefix in a subdivision in ↖-order. For stairs with
four corners, 359 distinct stair colouring pattern sets
were found. Of the possible 15 patterns the min set
size was 3 while the max was 14 with average 8.6. For
each pair of stair colouring pattern sets, the min size
of the coupling set was 1 while the max was 14 with
average 5.5. For each stair pattern we found a pair
where that was the only pattern they coupled along.
In the light of these results Guenin’s intricate proof is
particularly impressive.
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