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Kinetic Collision Detection for Balls Rolling on a Plane

Mohammad Ali Abam∗ Mark de Berg∗ Sheung-Hung Poon∗ Bettina Speckmann∗

Abstract

This abstract presents a first step towards kinetic col-
lision detection in 3 dimensions. In particular, we
design a compact and responsive kinetic data struc-
ture (KDS) for detecting collisions between n balls of
arbitrary sizes rolling on a plane. The KDS has size
O(n log n) and can handle events in O(log n) time.
The structure processes O(n2) events in the worst
case, assuming that the objects follow low-degree al-
gebraic trajectories. The full paper [1] presents ad-
ditional results for convex fat 3-dimensional objects
that are free-flying in R

3.

1 Introduction

Collision detection is a basic computational problem
arising in all areas of computer science involving ob-
jects in motion—motion planning, animated figure ar-
ticulation, computer simulated environments, or vir-
tual prototyping, to name a few. Very often the prob-
lem of detecting collisions is broken down into two
phases: a broad phase and a narrow phase. The broad
phase determines pairs of objects that might possi-
bly collide, frequently using (hierarchies of) bounding
volumes to speed up the process. The narrow phase
then uses specialized techniques to test each candidate
pair, often by tracking closest features of the objects
in question, a process that can be sped up significantly
by exploiting spatial and temporal coherence. See [13]
for a detailed overview of algorithms for such collision
and proximity queries.

Algorithms that deal with objects in motion tradi-
tionally discretize the time axis and compute or up-
date their structures based on the position of the ob-
jects at every time step. But since collisions tend
to occur rather irregularly it is nearly impossible to
choose the perfect time-step: too large an interval be-
tween sampled times will result in missed collisions,
too small an interval will result in unnecessary com-
putations (and still there is no guarantee that no colli-
sions are missed). Event-driven methods, on the other
hand, compute the event times of significant changes
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to a system of moving objects, store those in a pri-
ority queue sorted by time, and advance the system
to the event at the front of the queue. The kinetic
data structure (KDS) framework initially introduced
by Basch et al. [4] presents a systematic way to design
and analyze event-driven data structures for moving
objects (see [7] and [8] for surveys on kinetic data
structures).

A kinetic data structure is designed to maintain or
monitor a discrete attribute of a set of moving ob-
jects, where each object has a known motion trajec-
tory or flight plan. A KDS contains a set of certifi-

cates that constitutes a proof of the property of inter-
est. These certificates are inserted in a priority queue
(event queue) based on their time of expiration. The
KDS then performs an event-driven simulation of the
motion of the objects, updating the structure when-
ever a certificate fails. A KDS for collision detection
finds a set of geometric tests (elementary certificates)
that together provide a proof that the input objects
are disjoint.

Kinetic data structures and their accompanying
maintenance algorithms can be evaluated and com-
pared with respect to four desired characteristics. A
good KDS is compact if it uses little space in addition
to the input, responsive if the data structure invari-
ants can be restored quickly after the failure of a cer-
tificate, local if it can be updated easily when the flight
plan for an object changes, and efficient if the worst-
case number of events handled by the data structure
for a given motion is small compared to some worst-
case number of “external events” that must be han-
dled for that motion.

Kinetic data structures for collision detection. One
of the first papers on kinetic collision detection was
published by Basch et al. [3], who designed a KDS
for collision detection between two simple polygons
in the plane. Their work was extended to an ar-
bitrary number of polygons by Agarwal et al. [2].
Kirkpatrick et al. [11] and Kirkpatrick and Speck-
mann [12] also described KDS’s for kinetic collision
detection between multiple polygons in the plane.
These solutions all maintain a decomposition of the
free space between the polygons into “easy” pieces
(usually pseudo-triangles). Unfortunately it seems
quite hard to define a suitable decomposition of the
free space for objects in 3D, let alone maintain it
while the objects move—the main problem being, that
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all standard decomposition schemes in 3D can have
quadratic complexity. Hence, even though collision
detection is the obvious application for kinetic data
structures, there has hardly been any work on kinetic
collision detection in 3D.

There are only a few papers that deal directly with
(specialized versions of) kinetic 3D collision detection.
Guibas et al. [9], extending work by Erickson et al. [6]
in the plane, show how to certify the separation of two
convex polyhedra moving rigidly in 3D using certain
outer hierarchies. Basch et al. [5] describe a structure
for collision detection among multiple convex fat ob-
jects that have almost the same size. The structure of
Basch et al. uses O(n log2 n) storage and events can be
processed in O(log3 n) time. If all objects are spheres
of related sizes Kim et al. [10] present an event-driven
approach that subdivides space into cells and pro-
cesses events whenever a sphere enters or leaves a cell.
Unfortunately there is only experimental evidence for
the performance of this structure. Finally, Guibas et
al. [9] use the power diagram of a set of arbitrary balls
in 3D to kinetically maintain the closest pair among
them. The worst-case complexity of this structure is
quadratic and it might undergo more than cubically
many changes.

Results. In this abstract we describe a compact and
responsive kinetic data structure for detecting colli-
sions between n balls of arbitrary sizes rolling on a
plane. The KDS has size O(n log n) and can handle
events in O(log n) time. It processes O(n2) events in
the worst case, assuming that the objects follow low-
degree algebraic trajectories.

2 Balls rolling on a plane

Assume that we are given a set B of n 3-dimensional
balls which are rolling on a 2-dimensional plane T ,
that is, the balls in B move continuously while re-
maining tangent to T . In this section we describe a
responsive and compact KDS that detects collisions
between the balls in B.

The basic idea behind our KDS is to construct a
collision tree recursively as follows:

• If |B| = 1, then there are obviously no collisions
and the collision tree is just a single leaf.

• If |B| > 1, then we partition B into two sub-
sets, BS and BL. The subset BS contains the
bn/2c smallest balls and the subset BL contains
the dn/2e largest balls from B, where ties are bro-
ken arbitrarily. The collision tree now consists of
a root node that has an associated structure to
detect collisions between any ball from BS and
any ball from BL, and two subtrees that are col-
lision trees for the sets BS and BL, respectively.

To detect all collisions between the balls in B it
suffices to detect collisions between the two subsets
maintained at every node of the collision tree. Let
BS and BL denote the two subsets maintained at a
particular node. The remainder of this section fo-
cusses on detecting collisions between the balls con-
tained in BS and BL. In particular, we describe a
KDS of size O(|BS |+ |BL|) that can handle events in
O(1) time—see Theorem 5. The structure processes
O((|BS | + |BL|)2) events in the worst case, assum-
ing that the balls follow low-degree algebraic trajec-
tories. Since the same event can occur simultaneously
at O(log n) nodes of the collision tree, we obtain the
following theorem:

Theorem 1 For any set B of n 3-dimensional balls

that roll on a plane, there is a KDS for collision detec-

tion that uses O(n log n) space and processes O(n2)
events in the worst case, assuming that the balls fol-

low low-degree algebraic trajectories. Each event can

be handled in O(log n) time.

2.1 Detecting collisions between small and large

balls

As mentioned above, we can restrict ourselves to de-
tecting collisions between balls from two disjoint sets
BS and BL where the balls in BL are at least as large
as the balls in BS . Recall that all balls are rolling on
a plane T . Our basic strategy is the following: we
associate a region Di on T with each Bi ∈ BL such
that if the point of tangency of a ball Bj ∈ BS and T
is not contained in Di, then Bj can not collide with
Bi. The regions associated with the balls in BL need
to have two important properties: (i) each point in T
is contained in a constant number of regions and (ii)
we can efficiently detect whenever a region starts or
stops to contain a tangency point when the balls in
BL and BS move. We first deal with the first require-
ment, that is, we consider BL to be static. For a ball
Bi let ri denote its radius and let ti be the point of
tangency of Bi and T .

The threshold disk. We define the distance of a
point q in the plane to a ball Bi as follows. Imagine
that we place a ball B(q) of initial radius 0 at point
q. We then inflate B(q) while keeping it tangent to
T at q, until it collides with Bi. The radius of B(q)
equals the distance of q and Bi which we denote by
dist(q, Bi). More precisely, dist(q, Bi) is the radius of
the unique ball that is tangent to T at q and tangent to
Bi. It is easy to show that dist(q, Bi) = d(q, ti)

2/4ri

where d(q, ti) denotes the Euclidean distance between
q and ti.

Since we have to detect collisions only with balls
from BS we can stop inflating when B(q) is as large
as the smallest ball in BL. Based on this, we define the
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threshold disk Di of a ball Bi ∈ BL as follows: a point
q ∈ T belongs to Di if and only if dist(q, Bi) ≤ rmin

where rmin is the radius of the smallest ball in BL.
It is straightforward to show that Di is a disk whose
radius is 2

√
ri · rmin and whose center is ti.

Clearly a ball Bj ∈ BS can not collide with a ball
Bi ∈ BL as long as tj is outside Di. In following, we
prove that a point q ∈ T can be contained in at most
a constant number of threshold disks. For a given
constant c ≥ 0 let us denote with c · Di a disk with
radius c · radius(Di) and center ti.

Lemma 2 The number of disks Dj that are at least

as large as a given disk Di and for which c·Di ∩ c·Dj 6=
∅, is at most (8 c2 + 2 c + 1)2 + 1.

Proof. Let D(i) be the set of all disks Dj that are at
least as large as Di and for which c ·Di ∩ c ·Dj 6= ∅.
First we prove that there are no two balls Bj and
Bk such that rk ≥ rj > 16 c2 ri and Dj , Dk ∈ D(i).
Assume, for contradiction, that there are two balls
Bj and Bk such that rk ≥ rj > 16 c2 ri and Dj, Dk ∈
D(i). Since Bj and Bk are disjoint, we have

d(tj , tk) ≥ 2
√

rj · rk > 8 c
√

rk · ri .

On the other hand, we know that

d(tj , tk) ≤ d(tj , ti) + d(ti, tk)

≤ (2 c
√

ri · rmin + 2 c
√

rj · rmin) +

(2 c
√

ri · rmin + 2 c
√

rk · rmin)

< 8 c
√

rk · ri

which is a contradiction. Hence, there is at most one
ball Bj such that rj > 16 c2 ri and Dj ∈ D(i).

It remains to show that the number of balls Bj

whose radii are not greater than 16 c2 ri and whose
disks Dj belong to D(i) is at most (8 c2 + 2 c + 1)2.
Let Bj be one of these balls and let x be a point in
c · Dj ∩ c · Di. Since

d(ti, tj) ≤ d(ti, x) + d(tj , x)

≤ 2 c
√

ri · rmin + 2 c
√

rj · rmin

≤ (2 c + 8 c2) ri

tj must lie in a disk whose center is ti and whose
radius is (2 c + 8 c2) ri. We also know that for any
two such balls Bj and Bk, d(tj , tk) ≥ 2

√
rj · rk ≥ 2 ri

holds. Thus the set D′(i) of disks centered at tj with
radius ri for all Dj ∈ D(i) are disjoint. Note that any
disk in D′(i) lies inside the disk centered at ti with
radius ((2 c + 8 c2) + 1) ri. Thus |D(i)| = |D′(i)| ≤
π ((2 c + 8 c2 + 1) ri)

2/πr2

i = (2 c + 8 c2 + 1)2. �

Lemma 3 Each point q ∈ T is contained in at most

a constant number of threshold disks.

Proof. Let Di be the smallest threshold disk contain-
ing q. Lemma 2 with c = 1 implies that the number
of disks which are not smaller than Di and which in-
tersect Di is constant. Hence the number of threshold
disks containing q is constant. �

The threshold disks have the important property that
each point in T is contained in a constant number
of disks. But unfortunately, as the balls in BL and
BS move, it is difficult to detect efficiently when-
ever a tangency point enters or leaves a threshold
disk. Hence we replace each threshold disk by its
axis-aligned bounding box. The bounding box of a
threshold disk Di associated with a Bi ∈ BL is called
a threshold box and is denoted by TB(Bi). In the fol-
lowing we prove that the threshold boxes retain the
crucial property of the threshold disk, namely, that
each point q ∈ T is contained in at most a constant
number of threshold boxes.

Lemma 4 Each point q ∈ T is contained in at most

a constant number of threshold boxes.

Proof. Instead of considering the threshold boxes di-
rectly, we consider the disks defined by the circumcir-
cles D(TB(Bj)) of each threshold box TB(Bj) with
Bj ∈ BL. Clearly we have radius(D(TB(Bj))) =√

2 · radius(Dj) for all Bj ∈ BL. Let TB(Bi) be the
smallest box containing q. Lemma 2 with c =

√
2 im-

plies that the number of circumcircle disks which are
at least as large as D(TB(Bi)) and which intersect
D(TB(Bi)) is constant. Hence the number of thresh-
old boxes which are not smaller than TB(Bi) and in-
tersect TB(Bi) is constant and so is the number of
threshold boxes containing q. �

Kinetic maintenance. Recall that to detect colli-
sions between BS and BL, for each ball Bj ∈ BS we
determine which threshold boxes contain the tangency
point tj . Note that according to Lemma 4, tj is con-
tained in a constant number of threshold boxes. For
each Bj ∈ BS we maintain the set of threshold boxes
that contain tj and certificates that guarantees dis-
jointness of Bj and the balls from BL whose threshold
boxes contain tj .

To maintain our structure we only need to detect
when a tangency point tj enters or leaves a threshold
box. To do so, we maintain two sorted lists on the x-
and y-coordinates of the tangency points of BS and
the extremal points of the threshold boxes associated
with the balls in BL. Clearly the number of events
processed by our structure is quadratic in the size of
of BS and BL and each event can be processed in
constant time. Unfortunately this structure is not
local—a ball Bi ∈ BL might be involved in a number
of certificates that is linear in the size of BS.

Theorem 5 Let BS and BL be two disjoint sets of

balls that roll on a plane where the balls in BL are
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at least as large as the balls in BS. There is a KDS

for collision detection between balls of BS and balls

of BL that uses O(|BS | + |BL|) space and processes

O((|BS |+ |BL|)2) events in the worst case if the balls

follow low-degree algebraic trajectories. Each event

can be handled in O(1) time.

3 Conclusions

This abstract describes a first step towards kinetic
collision detection in 3 dimensions: a compact and
responsive kinetic data structure for detecting colli-
sions between n balls of arbitrary sizes rolling on a
plane. The full paper [1] presents additional results
for convex fat 3-dimensional objects of constant com-
plexity that are free-flying in R

3. In that case we can
detect collisions with a KDS of O(n log6 n) size that
can handle events in O(log6 n) time. The structure
processes O(n2) events in the worst case, assuming
that the objects follow low-degree algebraic trajecto-
ries. If the objects have similar sizes then the size of
the KDS becomes O(n) and events can be handled in
O(1) time.
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