

Kinetic kd-trees

Citation for published version (APA):
Abam, M. A., Berg, de, M., & Speckmann, B. (2007). Kinetic kd-trees. 126-129. Abstract from 23rd European
Workshop on Computational Geometry (EuroCG 2007), Graz, Switzerland.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b453ce2c-1772-4886-8ce1-5607ecb54e23

23rd European Workshop on Computational Geometry, 2007

Kinetic kd-Trees

Mohammad Ali Abam∗ Mark de Berg∗ Bettina Speckmann∗

Abstract

We propose a simple variant of kd-trees, called rank-
based kd-trees, for sets of points in Rd. We show
that a rank-based kd-tree, like an ordinary kd-tree,
supports range search queries in O(n1−1/d + k) time,
where k is the output size. The main advantage of
rank-based kd-trees is that they can be efficiently
kinetized: the KDS processes O(n2) events in the
worst case, assuming that the points follow constant-
degree algebraic trajectories, each event can be han-
dled in O(log n) time, and each point is involved
in O(1) certificates.

1 Introduction

Background. Due to the increased availability of
GPS systems and to other technological advances,
motion data is becoming more and more available in a
variety of application areas: air-traffic control, mobile
communication, geographic information systems, and
so on. In many of these areas, the data are moving
points in 2- or higher-dimensional space, and what is
needed is to store these points in such a way that range
queries (“Report all the points lying currently inside
a query range”) can be answered efficiently. Hence,
there has been a lot of work on developing data struc-
tures for moving point data, both in the database
community as well as in the computational-geometry
community.

Within computational geometry, the standard
model for designing and analyzing data structures for
moving objects is the kinetic-data-structure frame-
work introduced by Basch et al. [3]. A kinetic data
structure (KDS) maintains a discrete attribute of a
set of moving objects—the convex hull, for example,
or the closest pair—where each object has a known
motion trajectory. The basic idea is, that although all
objects move continuously, there are only certain dis-
crete moments in time when the combinatorial struc-
ture of the attribute—the ordered set of convex-hull
vertices, or the pair that is closest—changes. A KDS
contains a set of certificates that constitutes a proof

∗Department of Mathematics and Computer Science, TU
Eindhoven, {mabam, mdberg, speckman}@win.tue.nl. M.A.
was supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 612.065.307. M.d.B. was
supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 639.023.301.

that the maintained structure is correct. These cer-
tificates are inserted in a priority queue based on
their time of expiration. The KDS then performs an
event-driven simulation of the motion of the objects,
updating the structure whenever an event happens,
that is, when a certificate fails—see the surveys by
Guibas [6, 7] for more details.

Related work. There are several papers that de-
scribe KDS’s for the orthogonal range-searching prob-
lem, where the query range is an axis-parallel box.
Basch et al. [4] kinetized d-dimensional range trees.
Their KDS supports range queries in O(logd n + k)
time and uses O(n logd−1 n) storage. If the points fol-
low constant-degree algebraic trajectories then their
KDS processes O(n2) events and each event can be
handled in O(logd−1 n) time. In the plane, Agar-
wal et al. [1] obtained an improved solution: their
KDS supports range searching queries in O(log n+k)
time, it uses O(n log n/ log log n) storage, and the
amortized cost of processing an event is O(log2 n).

Although these results are nice from a theoretical
perspective, their practical value is limited for several
reasons. First of all, they use super-linear storage,
which is often undesirable. Second, they can per-
form only orthogonal range queries; queries with other
types of ranges or nearest-neighbor searches are not
supported. Finally, especially the solution by Agar-
wal et al. [1] is rather complicated. Indeed, in the set-
ting where the points do not move, the static counter-
parts of these structures are usually not used in prac-
tice. Instead, simpler structures such as quadtrees,
kd-trees, or bounding-volume hierarchies (R-trees, for
instance) are used. In this paper we consider one of
these structures, namely the kd-tree.

Kd-trees were initially introduced by Bentley [5].
A kd-tree for a set of points in the plane is obtained
recursively as follows. At each node of the tree, the
current point set is split into two equal-sized subsets
with a line. When the depth of the node is even the
splitting line is orthogonal to the x-axis, and when it
is odd the splitting line is orthogonal to the y-axis.
In d-dimensional space, the orientations of the split-
ting planes cycle through the d axes in a similar man-
ner. Kd-trees use O(n) storage and support range
searching queries in O(n1−1/d + k) time, where k is
the number of reported points. Maintaining a stan-
dard kd-tree kinetically is not efficient. The problem
is that a single event—two points swapping their order

126

EWCG 2007, Graz, March 19–21, 2007

on x- or y-coordinate—can have a dramatic effect: a
new point entering the region corresponding to a node
could mean that almost the entire subtree must be re-
structured. Hence, a variant of the kd-tree is needed
when the points are moving.

Agarwal et al. [2] proposed two such variants: the δ-
pseudo kd-tree and the δ-overlapping kd-tree. In a
δ-pseudo kd-tree each child of a node ν can be as-
sociated with at most (1/2 + δ)nν points, where nν

is the number of points in the subtree of ν. In a δ-
overlapping kd-tree the regions corresponding to the
children of ν can overlap as long as the overlapping
region contains at most δnν points. Both kd-trees
support range queries in time O(n1/2+ε + k), where k
is the number of reported points. Here ε is a posi-
tive constant that can be made arbitrarily small by
choosing δ appropriately. These KDS’s process O(n2)
events if the points follow constant-degree algebraic
trajectories. Although it can take up to O(n) time to
handle a single event, the amortized cost is O(log n)
time per event. Neither of these two solutions are
completely satisfactory: their query time is worse by
a factor O(nε) than the query time in standard kd-
trees, there is only a good amortized bound on the
time to process events, and only a solution for the 2-
dimensional case is given. The goal of our paper is to
developed a kinetic kd-tree variant that does not have
these drawbacks.

Our results. We present a new and simple variant
of the standard kd-tree for a set of n points in d-
dimensional space. Our rank-based kd-tree supports
orthogonal range searching in time O(n1−1/d +k) and
it uses O(n) storage—just like the original. But ad-
ditionally it can be kinetized easily and efficiently.
The rank-based kd-tree processes O(n2) events in the
worst case if the points follow constant-degree alge-
braic trajectories and each event can be handled in
O(log n) worst-case time. Moreover, each point is in-
volved only in a constant number of certificates. Thus
we improve the both the query time and the event-
handling time as compared to the planar kd-tree vari-
ants of Agarwal et al. [2], and in addition our results
work in any fixed dimension.

2 Rank-based kd-trees

Let P be a set of n points in Rd and let us denote
the coordinate-axes with x1, · · · , xd. To simplify the
discussion we assume that no two points share any
coordinate, that is, no two points have the same x1-
coordinate, or the same x2-coordinate, etc. (Of course
coordinates will temporarily be equal when two points
swap their order, but the description below refers to
the time intervals in between such events.) In this
section we describe a variant of a kd-tree for P, the
rank-based kd-tree. A rank-based kd-tree preserves all

main properties of a kd-tree and, additionally, it can
be kinetized efficiently.

Before we describe the actual rank-base kd-tree for
P, we first introduce another tree, namely the skeleton
of a rank-base kd-tree, denoted by S(P). Like a stan-
dard kd-tree, S(P) uses axis-orthogonal splitting hy-
perplanes to divide the set of points associated with a
node. As usual, the orientation of the axis-orthogonal
splitting hyperplanes is alternated between the coor-
dinate axes, that is, we first split with a hyperplane
orthogonal to the x1-axis, then with a hyperplane or-
thogonal to the x2-axis, and so on. Let ν be node
of S(P). h(ν) is the splitting hyperplane stored at
ν, axis(ν) is the coordinate-axis to which h(ν) is or-
thogonal, and P(ν) is the set of points stored in the
subtree rooted at ν. A node ν is called an xi-node
if axis(ν) = xi and a node ω is referred to as an xi-
ancestor of a node ν if ω is an ancestor of ν and
axis(ω) = xi. The first xi-ancestor of a node ν is the
xi-parent(ν) of ν.

A standard kd-tree chooses h(ν) such that P(ν) is
divided roughly in half. In contrast, S(P) chooses
h(ν) based on a range of ranks associated with ν,
which can have the effect that the sizes of the chil-
dren of ν are completely unbalanced. We now ex-
plain this construction in detail. We use d arrays
A1, · · · ,Ad to store the points of P in d sorted lists;
the array Ai[1, n] stores the sorted list based on the
xi-coordinate. As mentioned above, we associate a
range [r, r′] of ranks with each node ν, denoted by
range(ν), with 1 ≤ r ≤ r′ ≤ n. Let ν be an xi-
node. If xi-parent(ν) does not exist, then range(ν) is
equal to [1, n]. Otherwise, if ν is contained in the left
subtree of xi-parent(ν), then range(ν) is equal to the
first half of range(xi-parent(ν)), and if ν is contained
in the right subtree of xi-parent(ν), then range(ν) is
equal to the second half of range(xi-parent(ν)). If
range(ν) = [r, r′] then P(ν) contains at most r′−r+1
points. We explicitly ignore all nodes (both internal
as well as leaf nodes) that do not contain any points,
they are not part of S(P), independent of their range
of ranks. A node ν is a leaf of S(P) if range(ν) = [j, j]
for some j. Clearly a leaf contains exactly one point,
but not every node that contains only one point is a
leaf. (We could prune these nodes, which always have
a range [j, k] with j < k, but we chose to keep them
in the skeleton for ease of description.) If ν is not a
leaf and axis(ν) = xi then h(ν) is defined by the point
whose rank in Ai is equal to the median of range(ν).

We construct S(P) incrementally by inserting the
points of P one by one. Let p be the point that we
are currently inserting into the tree and let ν be the
last node visited by p; initially ν = root. Depending
on which side of h(ν) contains p we select the ap-
propriate child ω of ν to be visited next. If ω does
not exist, then we create it and compute range(ω)
as described above. We recurse with ν = ω un-

127

23rd European Workshop on Computational Geometry, 2007

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[5, 6]

[7, 8]

[6, 6]

p1

p2

p3

p4

p7

p8

p5

p6

(a)

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[6, 6]

(b)

p1

p2

p3

p4

p7

p8

p5

p6

[5, 8]

[5, 8]

Figure 1: (a) The skeleton of a rank-based kd-tree and (b) the rank-based kd-tree itself.

til range(ν) = [j, j] for some j. We always reach
such a node after d log n steps, because the length of
range(ν) is a half of the length of range(xi-parent(ν))
and depth(ν) = depth(xi-parent(ν)) + d for an xi-
node ν. Figure 1(a) illustrates S(P) for eight points.
Since the depth of each leaf is d log n, the size of S(P)
is O(n log n).

Lemma 1 The depth of S(P) is O(log n) and the size
of S(P) is O(n log n) for any fixed dimension d. S(P)
can be constructed in O(n log n) time.

A node ν ∈ S(P) is active if and only if both its
children exist, that is, both its children contain points.
A node ν is useful if it is either active, or a leaf, or its
first d−1 ancestors contain an active node. Otherwise
a node is useless. We derive the rank-based kd-tree
for P from the skeleton by pruning all useless nodes
from S(P). The parent of a node ν in the rank-based
kd-tree is the first unpruned ancestor of ν in S(P).
Roughly speaking, in the pruning phase every long
path whose nodes have only one child each is shrunk
to a path whose length is less than d. The rank-
based kd-tree has exactly n leaves and each contains
exactly one point of P. Moreover, every node ν in the
rank-based kd-tree is either active or it has an active
ancestor among its first d − 1 ancestors. The rank-

based kd-tree derived from Figure 1(a) is illustrated
in Figure 1(b).

Lemma 2 A rank-based kd-tree on a set of n points
in Rd has depth O(log n) and size O(n).

Proof. A rank-based kd-tree is at most as deep as its
skeleton S(P). Since the depth of S(P) is O(log n)
by Lemma 1, the depth of a rank-base kd-tree is
also O(log n). To prove the second claim, we charge
every node that has only one child to its first active
ancestor—recall that each active node has two chil-
dren. We charge at most 2(d−1) nodes to each active
node, because after pruning there is no path in the
rank-based kd-tree whose length is at least d and in
which all nodes have one child. Therefore, to bound
the size of the rank-based kd-tree it is sufficient to
bound the number of active nodes. Let T be a tree
containing all active nodes and all leaves of the rank-
based kd-tree. A node ν is the parent of a node ω
in T if and only if ν is the first active ancestor of ω in
the rank-based kd-tree. Obviously, T is a binary tree
with n leaves where each internal node has two chil-
dren. Hence, the size of T is O(n) and consequently
the size of the rank-based kd-tree is O(n). �

Like a kd-tree, a rank-based kd-tree can be used to re-
port all points inside a given orthogonal range search

128

EWCG 2007, Graz, March 19–21, 2007

query—the reporting algorithm is exactly the same.
At first sight, the fact that the splits in our rank-based
kd-tree can be very unbalanced may seem to have a
big, negative impact on the query time. Fortunately
this is not the case, since we can bound the number
of cells intersected by an axis-parallel plane h. The
following theorem summarizes our results.

Theorem 3 A rank-based kd-tree for a set P of n
points in d dimensions uses O(n) storage and can be
built in O(n log n) time. An orthogonal range search
query on a rank-based kd-tree takes O(n1−1/d + k)
time where k is the number of reported points.

The KDS. We now describe how to kinetize a rank-
base kd-tree for a set of continuously moving points
P. The combinatorial structure of a rank-base kd-
tree depends only on the ranks of the points in the
arrays Ai, that is, it does not change as long as the
order of the points in the arrays Ai remains the same.
Hence it suffices to maintain a certificate for each pair
p and q of consecutive points in every array Ai, which
fails when p and q change their order. Now assume
that a certificate, involving two points p and q and
the xi-axis, fails at time t. To handle the event, we
simply delete p and q and re-insert them in their new
order. These deletions and insertions do not change
anything for the other points, because their ranks are
not influenced by the swap and the deletion and re-
insertion of p and q. Hence the rank-based kd-tree
remains unchanged except for a small part that in-
volves p and q. A detailed description of this “small
part” can be found below.

Deletion. Let ν be the first active ancestor of the
leaf µ containing p—see Figure 2(a). Leaf µ and all
nodes on the path from µ to ν must be deleted, since
they do not contain any points anymore (they only
contained p and p is now deleted). Furthermore, ν
stops being active. Let ω be the first active descendent
of ν. There are at most d nodes on the path from ν
to ω. Since ν is not active anymore, any of the nodes
on this path might become useless and hence have to
be deleted.

Insertion. Let ν be the highest node in the rank-
based kd-tree such that its region contains p and the
region corresponding to its only child ω does not con-
tain p—note that p cannot reach a leaf when we re-
insert p, because the range of a leaf is [j, j] for some
j and there cannot be two points in this range. Let
ν′ and ω′ be the nodes in S(P) corresponding to ν
and ω. Let u′ be the lowest node on the path from ν′

to ω′ whose region contains both region(ω′) and p as
illustrated in Figure 2(b)—note that we do not main-
tain S(P) explicitly but with the information main-
tained in ν and ω the path between ν′ and ω′ can

ν

ω
p

p

ν′

ω′

u′

u′
1

(a) (b)

µ

Figure 2: Inserting and deleting a point p.

be constructed temporarily. Because u′ will become
an active node, it must be added to the rank-based
kd-tree and also every node on the path from u′ to
ω′ must be added to the rank-based kd-tree if they
are useful. From u′, the point p follows a new path
u′1, · · · , u′k which is created during the insertion. All
first d − 1 nodes in the list u′1, · · · , u′k and the leaf
u′k must be added to the rank-based kd-tree—note
that range(u′k) = [j, j] for some j.

Theorem 4 A kinetic rank-based kd-tree for a set P
of n moving points in d dimensions uses O(n) storage
and processes O(n2) events in the worst case, assum-
ing that the points follow constant-degree algebraic
trajectories. Each event can be handled in O(log n)
time and each point is involved in O(1) certificates.

References

[1] P. Agarwal, L. Arge, and J. Erickson. Indexing mov-
ing points. Journal of Computer and System Sciences,
66(1):207-243, 2003.

[2] P. Agarwal, J. Gao, and L. Guibas. Kinetic medians
and kd-trees. In Proc. 10th European Symposium on
Algorithms, pages 5–16, Lecture Notes in Computer
Science 2461, Springer Verlag, 2002.

[3] J. Basch, L. Guibas, and J. Hershberger. Data struc-
tures for mobile data. Journal of Algorithms, 31:1–28,
1999.

[4] J. Basch, L. Guibas, and L. Zhang. Proximity prob-
lems on moving points. In Proc. 13th Symposium on
Computational Geometry, pages 344–351, 1997.

[5] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[6] L. Guibas. Kinetic data structures: A state of the art
report. In Proc. 3rd Workshop on Algorithmic Foun-
dations of Robotics, pages 191–209, 1998.

[7] L. Guibas. Modeling motion. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Com-
putational Geometry, pages 1117–1134. CRC Press,
2nd edition, 2004.

129

	EuroCG2007Abstracts.pdf

