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Abstract
Ionized hydrogels, as osmoelastic media, swell enormously (1000 times its original volume in unionized water) due to
the osmotic pressure difference caused by the presence of the negatively charged ion groups attached to the solid matrix
(polymer chains). The coupling between the extremely large deformations (induced by swelling) and fluid permeation is a
field of application that regular poroelasticity formulations cannot handle. In this work, we present a mixed hybrid finite
element (MHFE) computational framework featuring a three-field (deformation-chemical potential-flux) formulation. This
formulation guarantees that mass conservation is preserved both locally and globally. The impact of such a property on the
swelling simulations is demonstrated by four numerical examples in 2D. This paper focuses on the implementation aspects
of the MHFE model and shows that it stays robust and accurate for a volume increase of more than 3000%.

Keywords Finite deformation · Swelling model · Mixed formulation · Numerical methods · Hydrogel

1 Introduction

Hydrogels arewater-swollen and cross-linked polymeric net-
works, produced by the simple reaction of one or more
monomers. Hydrogels exhibit ability to swell and retain
a significant fraction of water within its structure without
dissolving. Various environmental stimuli can induce the
swelling of a hydrogel. The common stimuli are pH, ion
concentration in the solution, electric potential and temper-
ature [1]. Hydrogels have received considerable attention in
the past 50years due to their outstanding application in wide
range of fields including biomedicine [2].

Super Absorbent Polymers (SAPs), as a specific type of
ionized hydrogels, can absorb and retain extraordinary large
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amounts of water. They can imbibe deionized water as high
as 1000–100,000% of their own mass. In other words, 1g
SAPs can absorb 10–1000g water. The absorption capac-
ity of common hydrogels, however, is not more than 100%
(1g/g) [3]. SAPs due to its exceptional ability to absorb a
large amount of water in a short time are widely used in
hygiene products as well as for agricultural applications.
Nowadays SAPs are made from partially neutralized, lightly
cross-linked polyacrylic acid, which has been proven to give
the best performance versus cost ratio [4]. A schematic illus-
tration of the structure of a SAPs gel particle is given in
Fig. 1.

There are several mechanisms leading to the swelling
of SAPs. First of all, the backbone of the polymer chains
(carboxylate acid group) is hydrophilic. As a result, when
the polymer is in contact with water, water molecules are
attracted to the polymer. Hydration happens and hydrogen
bonds are formed as these activities increase the entropy
of the system. This process is known as mixing. Secondly,
besides mixing, for a partially neutralized gel the positive
sodium ions are able to move relatively freely inside the gel
as soon as the water molecules weaken the bonding force
between them and negatively charged carboxylate groups.
Consequently, the gel acts like a semi-permeable membrane
and the difference in osmotic pressure arises in and outside
of the gel. It has been proven that compared to the mixing
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Fig. 1 Schematic structure of a SAPs gel particle

part, the difference in osmotic pressure is the main drive con-
tributing to the swelling of a SAPs gel [5].

To study the mechanical behavior of a hydrogel during
swelling, a reliable swelling model is needed. Under the
framework of mixture theory, Lanir [6] developed an osmoe-
lastic model arguing that the ionic concentrations are always
in equilibrium with the external solution. In essence, this is
a biphasic (solid and fluid phase) swelling model. Later, Lai
et al. [7] developed a triphasic (solid, fluid and ion phases)
theory to model the swelling and deformation behavior in
articular cartilage. Later, Huyghe and Janssen [8] proposed
a finite deformation quadriphasic model where solid, fluid,
cation and ion phases are all independently considered for
incompressible porous media.

Considering a SAPs gel particle facing a gush of urine
which canbe approximated by the physiological salt solution,
i.e. a solution of Na+ and Cl− of concentration 0.154mol/L,
chemical potential responds much faster to the local ions
concentration change than solvent permeating into the gel.
This claim is justified by the following calculation. We have,
on one hand, the diffusion coefficient dion of ions in free
water of the magnitude 10−9 m2/s [9]. On the other hand,
the hydraulic pressure diffusion coefficient dp is estimated
by the multiplication of hydraulic permeability and Young’s
modulus. In a SAPs gel particle, its hydraulic permeability is
of order 10−3 mm4/(Ns) andYoung’smodulus is of the order
10−2 N/mm2. Therefore, after some simple calculation, one
finds that dion/dp = 102. For this reason, we assume ions
respond infinitely fast to the presence of outer solution com-
pared to the fluid. In other words, Lanir’s osmoelastic model
was found sufficient to characterize the swelling mechanism.

In order to simulate such a fluid permeation and solid
deformation coupled problem, proper numerical schemes
need to be implemented. Due to the essential focus on solid
deformation, FEM (Finite Element Method) has been a nat-
ural choice for such swelling simulations. Lots of effort

in numerical implementation are made by various groups
over the years. Frijns et al. [10] implemented the quad-
riphasic model in one dimension to simulate the swelling
and shrinking of biological tissues. The extension to the 3D
implementation of quadriphasic model in finite deformation
is done byVanLoon et al. [11]. Limiting to gel swelling simu-
lations, Hong et al. [12] andKuang andHuang [13] presented
a finite element swelling model for inhomogeneous swelling
at equilibrium state. A number of works ([14–16]) take a dif-
ferent approach to model a swelling hydrogel. Namely the
swelling front is treated as a sharp transition surface between
the solution phase and the gel phase (characterized by dif-
ferent chemical potential). The literature listed above only
dealt with spherical gel specimen. The generalization to an
arbitrary gel shape is not a trivial job. The application of
eXtended Finite Element method in such simulations have
received wide attentions [17–19]. Extended Finite element is
applied to simulate the crackpropagation in hydrogel induced
by swelling [20].

However, to achieve satisfactory simulation results, it is
essential to deploy a discretization method that takes the
physics of the problem into account. In swelling simulations,
(local) solid deformation is directly related to (local) net
in/out flow of the fluid. As a result, it is sensible to value the
accurate calculation of the flux field in swelling simulations.
In FEM, the flux field is calculated by numerical differentia-
tion of the chemical potential field, which leads to a serious
loss of precision [21]. On the other hand, MHFEM (Mixed
Hybrid Finite Element Method), which approximates flux
as an independent variable using Raviart–Thomas element
and resolves the resulting indefinite coefficient matrix by
means of hybridization procedure, possesses local mass con-
servation property and has proven to be effective in solving
Darcy type equations [22,23]. Moreover, similar discretiza-
tion method is applied to solve Biot consolidation problem
in geomechanics. Specifically, Jha and Juanes [24] approx-
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imated displacement, pressure and flux using linear (P1),
lowest order Raviart–Thoams (RT0) and element-wise con-
stant (P0) elements respectively and successfully performed
reservoir simulations. Ferronato et al. [25] adopted the same
discretization method in solving three dimensional Biot con-
solidation and showed that the mixed formulation alleviates
the pressure oscillations at the interface between different
permeability.

Extension from linear poroelasticity to finite strain is also
investigated. Berger et al. [26] presented a three-field finite
strain poroelasticity framework where the pressure and flux
are approximated using P1/P0 elements combinedwith a sta-
bilization technique to avoid spurious pressure oscillation.
In the field of biomechanics, where large deformations of
biological tissues are often expected,Wall et al. [27] andLev-
enston et al. [28] presented their own mixed finite element
formulations under the theoretical framework ofmixture the-
ory.

Motived by the success of MHFEM in solving Darcy’s
type equations and Biot consolidation problems, we apply
MHFEM in swelling simulations in order to achieve more
reliable and satisfactory results.Malakpoor et al. [29] applied
MHFEM in the simulation of the swelling of cartilaginous
tissues.However, his simulationswere limited to small defor-
mations. To our knowledge, there is so far no research
available that applyMHFEM to the finite swelling of gels. In
this study, a nonlinear system of partial differential equations
modeling the swelling of SAPs particles is derived and solved
using MHFEM. The model is first discretized in time using
the first order implicit Euler finite difference scheme and
then linearized using the Newton–Raphson strategy. Space
discretization is achieved using the lowest order Raviart–
Thomas space followed by a hybridization procedure. The
numerical model is validated in one dimension by compar-
ing to a semi-analytical solution obtained using MATLAB.
By means of numerical examples in two dimensions, we
demonstrate that MHFEM is a robust and accurate method
for swelling simulations involving large deformations.

2 Relevant theory

In the framework of mixture theory [30], SAPs are treated as
the superposition of two constituents that occupy the same
physical domain: fluid phase and solid phase (a ∈ {s, f }).We
assume that the fluid phase and the solid phase are nonreac-
tive and incompressible. Body force and inertia are ignored.

2.1 Preliminaries

Let Ωs0 ∈ R
2 be the original bounded domains of the solid

field. The original domain is transformed to the current (gel)
domain Ω by:

x = χs(X, t), (1)

where x ∈ Ω , X ∈ Ωs0, χs is an invertible and continuously
differentiable mapping from Ωs0 to Ω . As we are interested
in the deformation of the solid field, without explicit indica-
tion, the original domain is referred to as Ω0 = Ωs0. The
velocity of the solid phase is given by:

va = ∂χa

∂t
. (2)

Time derivative D
Dt is a material time derivative with respect

to the original solid field and is defined as:

D

Dt
= ∂

∂t
+ vs · ∇ (3)

The deformation gradient F, right Cauchy-Green strain
tensor C and volume ratio J , are defined as:

F = ∂χs

∂X
, (4)

C = FTF, (5)

J = det F. (6)

We define the apparent density of a−constituent ρa as the
mass of constituent a per unit volume of the mixture, in con-
trast to the true density of a−constituent γa , which is defined
as the mass per unit volume of the constituent. An important
dimensionless quantity in mixture theory of immiscible con-
stituents is volume fraction φa(x, t) := ρa/γa . The physical
meaning of φa(x, t) is the volume of the a−constituent per
unit volume of the mixture. In the case of incompressible
solid and fluid (γa is constant), mass conservation of con-
stituent a in the current configuration is derived as:

∂φa

∂t
+ ∇ · (φava) = 0. (7)

The assumption that the gel is fully saturated yields a con-
straint:

φs(x, t) + φ f (x, t) = 1, (8)

for x ∈ Ω, t ≥ 0. Adding up the mass conservation equa-
tion for individual constituents Eq. (7) and making use of the
relation Eq. (8), the mass conservation for the mixture at the
current configuration is derived:

∇ · (φsvs + φ f v f ) = 0. (9)

This relationship is the basis of the derivation of mass con-
servation in Sect. 3 (Field equations).
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2.2 Helmholtz free energy function

Next, we postulate that Helmholtz free energy per initialmix-
ture volume W consists of two independent parts: ionic part
and elastic part. Namely, we have:

W = Welastic + Wionic. (10)

The form of the elastic part Welastic is taken fromWilson
et al. [31]. Explicitly, we have:

Welastic = 1

8
K ln2(det(C)) + 1

2
G(tr(C) − 3 det(C)1/3),

(11)

where K is the bulk modulus and G is the shear modu-
lus. One can recognize that it represents the compressible
Neo-Hookean law. Further, we include the following rela-
tionship between Poisson’s ratio ν and solid volume fraction
φ f : ν = 0.5φs . This relation is justified by the assumption
that at the dry state (φs = 1), the polymer network becomes
incompressible (ν = 0.5). Making use of the relationship
between the current solid volume fraction and the initial vol-
ume fraction φs = φs,0

J , the bulk modulus K can be rewritten
in terms of G and φs,0 as:

K = 2

3
G
1 + 0.5φs,0/J

(1 − φs,0/J )
. (12)

Substituting Eq. (12) into (11), the final form of Welastic is
derived:

Welastic = 1

12
G
1 + 0.5φs,0/J

(1 − φs,0/J )
ln2(det(C))

+ 1

2
G(tr(C) − 3 det(C)1/3). (13)

The ionic part Wionic represents the energy related to the
affinity between the ions and the water. The form the ionic
part is given by:

Wionic = (RTΓ c)Φ (14)

where R is the universal gas constant, T is the absolute tem-
perature, Γ is the osmotic coefficient and c is the molar
concentration of the fluid phase and Φ is the fluid volume
fraction in initial configuration (Φ = Jφ f ). It is related to
the Donnan osmotic pressure π via the relation:

π = ∂Wionic

∂Φ
. (15)

2.3 Biphasic swellingmodel

In the biphasic swelling model [6], it is hypothesized that
Donnan osmosis equilibrium is achieved instantly. Under the
condition that the activity coefficient of the mobile ions is the
same in the gel and in the equilibrium solution, the Donnan
equilibrium ion concentrations inside the gel are derived [8]:

c+ = 1

2

(
−c f c +

√
(c f c)2 + 4(cex )2

)
, (16)

c− = 1

2

(
c f c +

√
(c f c)2 + 4(cex )2

)
, (17)

where c f c denotes the (deformation-dependent) fixed charged
density and cex the (constant) ion concentration in the exter-
nal solution. The osmotic pressure π inside of the gel follows
the van ’t Hoff law:

π = RTΓ (c+ + c−) = RTΓ
√

(c f c)2 + 4(cex )2, (18)

where R is universal gas constant,Γ is the osmotic coefficient
and T is absolute temperature.

3 Field equations

In Sect. 2, we have presented some preliminaries of mixture
theory and the derivation of the osmotic pressure. In this
section, we formulate our model problem mathematically
using the related theory presented in Sect. 2. The isothermal
condition, hyperelasticity and isotropy of the material are
assumed. The governing equations contain linearmomentum
balance, fluid content balance and extended Darcy’s law.

3.1 Governing equations and constitutive relations

By incorporating general balance principles (mass conser-
vation and linear momentum conservation) and incompress-
ibility constraints into the entropy inequality, we derive the
following set of equations Eqs. (19)–(21) that a mixture con-
tinuumneeds to obey. They are “pulled back” to the reference
(initial) configuration [32], since we deal with finite defor-
mation in the current work.

∇0 · T = 0, (19)

Q = −K · ∇0μ, (20)

DJφ f

Dt
+ ∇0 · Q = 0. (21)

The divergence operator with “0” subscript indicates the
divergence is taken with respect to the initial configuration.

Equation (19) represents linear momentum balance in the
reference configuration. T denotes the first Piola-Kirchhoff
stress of the mixture and is calculated by:
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T = J (−pI + œe f f )F−T , (22)

where p is hydraulic pressure andœe f f is the effective stress.
Assuming proper constitutive relations for the gel, the effec-
tive stress is derived from the elastic part of the Helmholtz
energy function Welastic (Eq. 13):

œe f f = 2

J
F · ∂Welastic

∂C
· FT

= −G

6

ln(J )

J

[
−1 + 3(J + φs,0)

(−J + φs,0)
+ 3 ln(J )Jφs,0

(−J + φs,0)2

]
I

+ G

J
(F · FT − J 2/3I).

(23)

Recall that G is shear modulus and φs,0 is the initial solid
volume fraction.

Equation (20) representsDarcy’s law in an extended sense.
Q denotes the flux in the initial configuration and is related
to the variables in current configuration by:

Q = JF−1 · φ f (v f − vs). (24)

K is the hydraulic permeability tensorwritten in the reference
configuration and is related to the hydraulic permeability k
in the current configuration by:

K = JkF−1 · F−T . (25)

Chemical potential μ inside of the gel consists of two parts:
hydraulic pressure p and osmotic pressure π . Specifically
we have [33]:

μ = p − π, (26)

where π is given in Eq. (18). Fixed charge is considered to be
part of solid matrix. Its density c f c is therefore decreases as
the solvent molecules enter the gel. In other words, the fixed
charge density is deformation dependent:

c f c = c f c
0

φ f ,0

φ f ,0 + J − 1
, (27)

where c f c
0 denotes the initial fixed charge density and φ f ,0

denotes the initial fluid volume fraction.
At last, Eq. (21) represents the fluid content balance. It is

basically Eq. (9) written in the initial configuration. Based on
themolecular incompressibility assumption [34], the volume
of the solid stays unchanged during swelling. We have thus:

J (1 − φ f ) = 1 − φ f ,0, (28)

which leads to

Jφ f = J − 1 + φ f ,0. (29)

Consequently, we have:

DJφ f

Dt
= DJ

Dt
. (30)

3.2 Three-field weak formulation

We adopt mixed formulation to describe fluid permeation:
position x, chemical potential μ and flux Q are chosen to
be prime variables in the weak formulation. In this section,
the corresponding weak form of the governing equations is
presented.

Firstly, we need to determine proper search/test function
spaces for the approximation of the prime variables. For
the position field, the continuity requirement demands x at
least continuously differentiable. We have thus x(X, t) ∈
(H1

D(Ω))2, where

H1
D(Ω) =

{
χ ∈ L2(Ω) : ∂χ

∂X
∈ L2(Ω), χ |Γ u

D
= 0

}
, (31)

where Γ u
D denotes the Dirichlet boundary for x. For μ, we

set μ ∈ L2(Ω). At last, we let Q ∈ HN (div,Ω), where

HN (div,Ω) = {q ∈ L2(Ω) : ∇ ·q ∈ L2(Ω),q ·n|Γ μ
N

= 0},
(32)

where Γ
μ
N denotes the Neumann boundary for μ.

To achieve the symmetry of the system, we use the second
Piola-Kirchhoff stress S and Green strain tensor E pair to
calculate the virtual work. We make use of the following
relation:

∫

Ω0

T : (∇0x̄)dV =
∫

Ω0

S : ΔĒdV , (33)

where the bar “-” denotes that the variable is a virtual variable
and we define

ΔĒ = 1

2

[
(∇0x̄)TF + (∇0x̄)FT

]
. (34)

The three-field variational form of the system is given as fol-
lows. Find (x,Q, μ) ∈ ((H1

D(Ω))2, HN (div,Ω), L2(Ω)),
such that the following set of equations are satisfied

∫

Ω0

S : ΔĒdV =
∫

Γ u
N

fext · x̄dΓ , (35)
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∫

Ω0

K−1Q · Q̄dV −
∫

Ω0

μ∇0 · Q̄dV = μext

∫

Γ
μ
D

Q̄ · ndΓ ,

(36)

−
∫

Ω0

DJ

Dt
μ̄dV −

∫

Ω0

∇0 · Qμ̄dV = 0, (37)

for any (x̄, Q̄, μ̄) ∈ ((H1
D(Ω))2, HN (div,Ω), L2(Ω)).

Note that fext denotes external surface tension applied to
the Neumann part boundary Γ u

N . μext denotes the chemical
potential in the external solution at the Dirichlet boundary
part Γ μ

D . We have μext = −2RTcex .

4 Mixed hybrid finite element method

Given the weak form (35)–(37), we present in this sec-
tion how MHFEM was applied to solve the system. The
model is first discretized in time using the first order implicit
Euler finite difference scheme and then linearized using the
Newton–Raphson strategy. Space discretization is achieved
using the lowest order Raviart–Thomas space followed by a
hybridization procedure.

4.1 Time discretization and linearization

First of all, equations are discretized in time. To achieve
unconditional stability, first order implicit Euler time dis-
cretization scheme is implemented. The time-discretized
system is derived as follows:

∫

Ω0

Sn : ΔĒndV =
∫

Γ u
N

fext · x̄dΓ , (38)

∫

Ω0

K−1
n Qn · Q̄dV −

∫

Ω0

μn∇0 · Q̄dV

= μD

∫

Γ
μ
D

Q̄ · ndΓ , (39)

−
∫

Ω0

μ̄
Jn − Jn−1

Δt
dV −

∫

Ω0

μ̄∇0 · QndV = 0, (40)

where subscriptn/n−1denotes variables at time stepn/n−1;
Δt denotes the time step size. From now on, we will skip
subscript n.

The non-linearity stems from both the gel constitutive
law (geometric and material non-linearity) and the nonlin-
ear dependency of osmotic pressure on deformation (Eq.27).
Newton–Raphson strategy is applied to solve such a non-
linear system. “δ” in front of a variable indicates the
increment of the variable and the tilde above the variables
indicates the current (known) value of the variable so far.
Linearization is performed as follows: find (δx, δQ, δμ) ∈
((H1

D(Ω))2, HN (div,Ω), L2(Ω)), such that

∫

Ω0

(∇0δx)S̃ : ∇0δxdV +
∫

Ω0

C : δE : Δ̃EdV

−
∫

Ω0

(∇0δx) J̃F−1 : δμdV = rhs1 (41)

∫

Ω0

K−1δQ · δQdV −
∫

Ω0

∇0 · δQδμdV = rhs2 (42)

− 1

Δt

∫

Ω0

δμ J̃F−T : ∇0δxdV −
∫

Ω0

δμ∇0 · δQdV = rhs3

(43)

where

rhs1 = −
∫

Ω0

S̃ : ΔEdV +
∫

Γ u
N

Fext · x̄dΓ , (44)

rhs2 = −
∫

Ω0

K−1Q̃ · δQdV +
∫

Ω0

μ̃∇0 · δQdV

+ μext

∫

Γ
μ
D

δQ · ndΓ , (45)

rhs3 = − 1

Δt

∫

Ω0

δμJn−1dV + 1

Δt

∫

Ω0

δμ J̃ dV

+
∫

Ω0

δμ∇0 · Q̃dV , (46)

for any (δx, δQ, δμ) ∈ ((H1
D(Ω))2, HN (div,Ω),

L2(Ω)), where C is the fourth order elasticity tensor.

4.2 Spatial discretized form

Given the linearized system of equations (Eqs. 41–43), we
further discretize the spatial domain Ω0. In this work, we
assume two dimensional domain andwe use four-node linear
quadrilateral elements to discretize the domain. Qh denotes
a quadrilateral domain discretization. Finite dimensional
approximations of the search function spaces (H1

D(Ω))2,
HN (div,Ω), and L2(Ω) are introduced. Specifically, we
have:

δxh ∈ (P1
0 (Qh))

2 ⊂ (H1
D(Ω0))

2, (47)

δQh ∈ RT 0
0 (Qh) ⊂ HN (div,Ω0), (48)

δμh ∈ M0−1(Qh) ⊂ L2(Ω0), (49)

where The finite dimensional function spaces are defined as:

P1
0 (Qh) = {ϕ ∈ L2(Ω0) : ϕ|T ∈ P1(Ωe)} ∩ H1

D(Ω0),

(50)

RT 0−1(Qh) = {υ ∈ L2(Ω0) : υ|T ∈ RT 0(Ωe)}, (51)

RT 0
0 (Qh) = RT 0−1(Qh) ∩ HN (div,Ω0), (52)

M0−1(Qh) = {ψ ∈ L2(Ω0) : ψ |T ∈ M0(Ωe)}. (53)
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Note that P1(Ωe) denotes the space of polynomials of degree
less or equal than 1 on one single element domain Ωe. We
have:

P1(Ωe) = {a + bx, a, b ∈ R}. (54)

RT 0(Ωe) stands for the lowest order Raviart–Thomas ele-
ment [35] and is defined on one single element Ωe as

RT 0(Ωe) = {(a + bx, c + by), a, b, c ∈ R}. (55)

M0(Ωe) denotes the function space that is constant on ele-
ment Ωe. Therefore, the spatial discretizations on one single
element Ωe are derived:

(δxh)x =
4∑

i=1

ϕiδxi , (56)

(δxh)y =
4∑

i=1

ϕiδyi , (57)

δQh =
4∑

i=1

υiδQi , (58)

δμh = Ψ , (59)

where ϕi and υi are basis functions of the function spaces
P1
0 (Qh) and RT 0−1(Qh) and Ψ is an arbitrary constant.
The isoparametric concept has been invoked for the basis

functions ϕi and υi . The basis functions on the reference
domain (x̂, ŷ) are given as:

ϕ̂1(x̂, ŷ) = 1

4
(1 − x̂)(1 − ŷ), (60)

ϕ̂2(x̂, ŷ) = 1

4
(1 + x̂)(1 − ŷ), (61)

ϕ̂3(x̂, ŷ) = 1

4
(1 + x̂)(1 + ŷ), (62)

ϕ̂4(x̂, ŷ) = 1

4
(1 − x̂)(1 + ŷ), (63)

υ̂1(x̂, ŷ) =
(

0
ŷ−1
4

)
, (64)

υ̂2(x̂, ŷ) =
( 1+x̂

4
0

)
, (65)

υ̂3(x̂, ŷ) =
(

0
1+ŷ
4

)
, (66)

υ̂4(x̂, ŷ) =
( x̂−1

4
0

)
. (67)

For Raviart–Thomas element basis function υi , the trans-
formation between the reference domain (x̂, ŷ) and the real
domain (X ,Y ) follows Piola transformation:

υi = (detM)−1Mυ̂i (x̂, ŷ), (68)

where M is the affine mapping matrix from the reference
domain to the real domain. Such a transformation guarantees
that the integration of flux on each edges stays the same as
in the reference domain and in the real domain [21].

Finally, based on the discretization details we presented
above, the matrix form of the system on the element level is
derived as:

⎛
⎝

A 0 B
0 ΔtC ΔtD
BT ΔtDT 0

⎞
⎠

⎛
⎝

δx
δQ
δμ

⎞
⎠ =

⎛
⎝

F1

ΔtF2

ΔtF3

⎞
⎠ , (69)

where for i, j = 1, . . . , 4

Ai j =
∫

Ωe

[(∇0ϕi )
T S̃∇0ϕ j I + ET

i : C : E j ]dV , (70)

Bi = −
∫

Ωe

J̃ F−1∇0ϕi dV , (71)

Ci j =
∫

Ωe

υT
i K

−1υ j dV , (72)

D = [−1,−1,−1,−1]T , (73)

(F1)i = −
∫

Ωe

ET
i S̃dV , (74)

(F2)i = −
∫

Ωe

υT
i K

−1Q̃dV + μ̃, (75)

F3 = 1

Δt

∫

Ωe

(−Jn−1 + J̃ )dV +
4∑

i=1

Q̃i , (76)

δx = [δx1 δy1 δx2 δy2 δx3 δy3 δx4 δy4]T , (77)

δQ = [δQ1 δQ2 δQ3 δQ4]T . (78)

Remark In poroelasticity, locking (which often manifests
itself as spurious pressure oscillation) receives a consider-
able amount of attention over the years. Locking has been
proved to be related to the violation of inf-sup condition
for the coupling discrete element spaces [36]. Numerous
work has been done to unveil the cause of locking and
its numerical remedy [37–40]. As Haga et al. [40] argued
that for (more than two fields) mixed formulation, the cou-
pling between stable element spaces should satisfy individual
problems. In our three-field formulation, there are two pairs
of coupling in consideration: chemical potential-flux and
displacement-chemical potential. For the chemical potential-
flux pair, we have chosen the well-known stable pair P0/RT0
for Darcy flow problem, which conveniently also possesses
local mass conservation property. As to the displacement-
chemical potential pair, as heuristically explained by Philips
and Wheeler [41], care needs to be taken at the beginning
of the deformation of a porous medium when a small time
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step and low permeability are considered in poroelasticity.
Basically, the divergence of the displacement is close to zero
due to the incompressibility constraint on the solid matrix.
Extension from infinitesimal strain to finite strain is straight-
forward.

In our formulation, the incompressibility constraint
(Eqs. 28) has been implicitly included in the fluid mass con-
servation equation. As a matter of fact, the infinitesimal
volume change of gel δ J is approximated by ∇ · x. Com-
bining with a small time step (δt) and low permeability (k),
the fluid mass conservation equation is reduced to a con-
straint on the position field x at the beginning stage of the
swelling simulation:

∇ · x ≈ 0. (79)

It is well-known that for such a constraint, the current dis-
crete element space combination P1/P0 is unstable [21,36].
Hence, to avoid locking, different element spaces com-
binations (for example, P2/P0 or P2/P1) or stabilization
techniques need to be applied. However, since finite swelling
simulations stay quite far away from incompressibility con-
straint except for the very beginning stage, we assess the
impact of such an unstable pair on the simulation by means
of numerical example (Sect. 6.1).

4.3 Hybridization procedure

So far, the search function space we applied in the dis-
cretization for the flux field is RT 0−1 (bigger) instead of
RT 0

0 (smaller). For a function that is in RT 0−1 to be also
in RT 0

0 , a necessary and sufficient condition is that the nor-
mal flow across the edge between the neighboring elements
is continuous [21]. There are several ways to implement
such a constraint [42]. Here we adopt the Lagrange mul-
tiplier method. By introducing a new variable λ with the
physical meaning chemical potential on edges as Lagrange
multiplier, the constraint mentioned above is enforced. One
of the advantages of such an implementation is that bymeans
of static condensation the total number of unknowns is even-
tually reduced from (x,Q, μ, λ) to (x, λ), which leads to
improvement in computational efficiency. Besides, for such
an implementation no extra information like edge orienta-
tions is needed and therefore is more desirable when mesh
structure is complex. In what follows, we show how the sys-
tem becomes “hybrid” by introducing a Lagrange multiplier
λ.

Firstly, we define the discretized approximation space for
λ:

λh ∈ Λ = L0
0(Qh), (80)

where L0
0(Qh) denotes the set of functions that are constant

on each edge e of the decompositionQh . Next, to incorporate
boundary conditions, we define

Λμext ,D = {λh |λh ∈ Λ,

∫

e
(λh−μext )ds = 0, ∀e ∈ Qh∩Γ

μ
D },
(81)

which indicates that λh has to satisfy the Dirichlet bound-
ary condition of μ. The rationale of hybridization can
be summarized in the following result: let (Qh, μh) ∈
(RT 0

0 (Qh), M0−1(Qh)) be the solution of the system:

∫

Ω0

K−1Qh · Q̄hdV −
∫

Ω0

μh∇0 · Q̄hdV

= μD

∫

Γ
μ
D

Q̄h · ndΓ , (82)

−
∫

Ω0

∇0 · Qhμ̄hdV =
∫

Ω0

DJ

Dt
μ̄hdV , (83)

for any given function J (X, t) that satisfies DJ
Dt (X, t) ∈

L2(Ω), ∀t . Then, according to [21] Theorem 1.1 p.180, there
exists a unique λh ∈ Λμext ,D satisfying:

∫

Ω0

K−1Qh · Q̄hdV −
∫

Ω0

μh∇0 · Q̄hdV

=
∑
K∈Qh

∫

∂K
λhQ̄h · ndΓ . (84)

for any Q̄h ∈ RT 0−1(Qh). Moreover, (Qh, μh, λh) ∈
(RT 0−1(Qh), M0−1(Qh),Λμext ,D) is the solution of the fol-
lowing “hybrid” system:

∫

Ω0

K−1Qh · Q̄hdV −
∫

Ω0

μh∇0 · Q̄hdV

=
∑
K∈Qh

∫

∂K
λhQ̄h · ndΓ , (85)

−
∫

Ω0

∇0 · Qhμ̄hdV =
∫

Ω0

DJ

Dt
μ̄hdV , (86)

∑
K∈Qh

∫

∂K
Qh · nλ̄hdΓ = 0, (87)

for any (Q̄h, μ̄h, λ̄h) ∈ (RT 0−1(Th), M0−1(Th),Λ0,D) is also
the solution of (82)–(83). Therefore, by introducing the
Lagrange multiplier λ, the continuity of the normal flow is
guaranteed and we are assured that the solution is found in
the correct function space.
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In terms of implementation, given the approximation of
δλh on one single element Ωe:

δλh =
4∑

i=1

ηiδλi , (88)

where ηi ’s are constant on ei ∈ ∂Ωe, the system of equations
(69) is extended to

⎛
⎜⎜⎝

A 0 B 0
0 ΔtC ΔtD ΔtE
BT ΔtDT 0 0
0 ΔtET 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δx
δQ
δμ,

δλ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

F1

ΔtF2

ΔtF3

ΔtF4

⎞
⎟⎟⎠ , (89)

where

E =
(
1 0
0 1

)
, (90)

(F2)i = −
∫

Ωe

υT
i K

−1Q̃dV + μ̃ − λ̃i , (91)

(F4)i = −Q̃i , (92)

δλ = [δλ1 δλ2 δλ3 δλ4]T . (93)

After applying static condensation, we end end up solving
the following (much smaller) system:

(
A1 A2

AT
2 A3

) (
δx
δλ

)
=

(
F1

F2

)
, (94)

where

A1 = A + 1

Δt
B(DT C−1D)−1BT , (95)

A2 = −B(DT C−1D)−1DT C−1E, (96)

A3 = ΔtET C−1D(DT C−1D)−1DT C−1E − ΔtET C−1E,

(97)

F1 = F1 + B(DT C−1D)−1F3

− B(DT C−1D)−1DT C−1F2 (98)

F2 = ΔtF4 − ΔtET C−1F2 − ΔtC−1D(DT C−1D)−1F3

(99)

+ ΔtC−1D(DT C−1D)−1DT C−1F2. (100)

Note that A1 and A3 are proven to be symmetric positive
definite matrices [29].

5 Solution verification

So far, we have presented various aspects of the numerical
simulation engine. In this section, we focus on the verifica-
tion of such a simulation engine. Namely, given the partial

differential equation system we would like to solve, we cal-
culate the solution in a differentway and then compare results
with the proposed simulation results.

Since there is no analytical solution available for the
transient swelling or consolidation simulation with finite
deformation even in one dimension. Simulation results are
comparedwith semi-analytical results. These semi-analytical
results are solutions calculated by a MATLAB internal par-
tial differential equation solver (“pdepe”) in one dimension.
On the other hand, the equilibrium state of a circular swollen
gel can be calculated analytically (homogeneous swelling)
we also compared our simulation results with that.

First of all, the system of nonlinear partial differential
Eqs. (19)–(20) are simplified in 1D (y-direction). Basically,
deformation tensor F is reduced to volume ratio J , and the
simplified equations in terms of J and μ are:

σe f f (J ) − μ − π(J ) = 0, (101)

∂ J

∂t
− ∂

∂ y

(
k

J

∂μ

∂ y

)
= 0, (102)

where σe f f and π are nonlinear function of J , given by:

σe f f (J ) = −G

6

ln(J )

J

[
−1 + 3(J + φs,0)

(−J + φs,0)
+ 3 ln(J )Jφs,0

(−J + φs,0)2

]
,

(103)

π(J ) = RTΓ

√√√√4(cex )2 +
(

c f c
0 φ f ,0

φ f ,0 + J − 1

)2

. (104)

Equation (101) expresses the linear momentum balance for
the swelling case (no surface compression/traction applied).
In the case of consolidation, Eq. (101) needs to be adapted
to:

σe f f (J ) − μ − π(J ) = fext , (105)

where fext is the surface tension applied.
Equation (102) is the fluid content conservation equation

with Darcy’s law incorporated. Substituting μ in Eq. (102)
using (101), a parabolic (nonlinear) partial differential equa-
tion of J is derived:

∂ J

∂t
− ∂

∂ y

(
k

J

∂(σe f f − π)

∂ y

)
= 0. (106)

The initial condition (for consolidation as well as swelling)
is:

J (y, 0) = 1, ∀0 ≤ y ≤ 1. (107)
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Table 1 Model parameters

Parameter Value Unit

Shear modulus G 0.015 N/mm2

Hydraulic permeability k 10−3 mm4/(Ns)

Initial porosity φ f ,0 0.83

Osmotic coefficient Γ 0.99999

Initial fixed charge density c f c
0 3.32 × 10−4 mol/ml

Boundary conditions for consolidation simulation are:

− k

J

∂

∂ y
(σe f f − π)(J (1, t)) = 0, (108)

σe f f (J (0, t)) − π(J (0, t)) = −2RTcex0 . (109)

Their physical meaning are: at y = 1, no flow boundary
condition; at y = 0 the sample is in touch with the outer
solutionwhose chemical potential is kept constant and equals
−2RTcex0 . The value of cex0 is chosen so that at the initial state
the gel is at “stress-free” state. Therefore, cex0 needs to satisfy
the following equation:

2RTcex0 = RTΓ

√
(c f c

0 )2 + 4(cex0 )2. (110)

Similarly, boundary conditions for swelling simulation are:

− k

J

∂

∂ y
(σe f f − π)(J (1, t)) = 0, (111)

σe f f (J (0, t)) − π(J (0, t)) = −2RTcex . (112)

Their physical meanings are similar to the one for the con-
solidation simulation.

Parameters given in Table 1 are chosen carefully so
that they are within the industrially relevant regime. These
parameters are used throughout all simulations presented

in this paper unless otherwise indicated. In this section we
set cex to be physiological salt concentration, thus equals
1.54×10−4 mol/ml. The applied (downward) pressure fext
in the consolidation simulation is 0.02MPa. Mesh size and
time steps are chosen to be the same for MHFE and MAT-
LAB solutions.

The evolution of swelling ratio and dimensionless chemi-
cal potential on the top surface are plotted for both consolida-
tion and swelling simulations (Figs. 2, 3). The characteristic
time scale τ in this problem equals l2mp/RTk, where l is the
characteristic length (dry size), mp is the molar volume of
the polymer (taken to be 105 cm3/mol). The dimensionless
time is found to be td = t/τ . Similarly, the dimensionless
chemical potential is derived as μd = μ/( RTmp

).
Figure 2a shows that the chemical potential at the top sur-

face monotonically decreases over time with some delay at
the beginning of the consolidation simulation. This delay can
be explained by the fact that it takes time for the fluid inside
the gel to drain through the bottom (y = 0). We conclude
from the figures that MHFEM solutions match MATLAB
solutions very well for both variables of interest in both sim-
ulations.

For homogeneous swelling in two dimensions, the follow-
ing equations of stretch γ must hold:

σe f f (γ
2) − π(γ 2) + 2RTcex = 0, (113)

If we let res(γ ) = σe f f (γ )−π(γ )+2RTcex , its magnitude
stays at 10−10 for γ calculated by MHFEM under various
values of external salt concentrations (cex ).

6 Numerical examples

The capability of the MHFEM in the swelling simulations
is demonstrated in this section by four two-dimensional

0 58 116
td

6.03×10-4

7.32×10-4

MHFEM solution
MATLAB solution

μd

9.05×10-4

0 58 116

td

0.7

0.85

1

sw
el

lin
g 

ra
tio

MHFEM solution
MATLAB solution

(a) (b)

Fig. 2 Consolidation simulation: MHFEM solution (−) and MATLAB solution (*). a Chemical potential of the top node. b Swelling ratio of the
top node
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Fig. 3 Consolidation simulation: MHFEM solution (−) and MATLAB solution (*). a Chemical potential of the top node. b Swelling ratio of the
top node

0 0.5 1
0

0.5

1

A CB DE F

GH

Fig. 4 Illustration of the initial unswollen domain (1mm × 0.5mm).
Yellow area: high permeable zone k = 10−2 mm4/(Ns). Blue area:
low permeable zone k = 10−6 mm4/(Ns). Swelling is only allowed in
y-direction with the flow entering the sample only from edge HG. The
rest of edges are with no flow boundary condition

numerical examples. We start with the swelling with a
low-permeable stripe simulation, in which a heterogeneous
permeable domain is introduced. By comparing to the stan-
dard FEM, the impact of local mass conservation property
is highlighted. Besides, the locking phenomena that are
frequently encountered in poroelasticity problems are dis-
cussed. Next, we move on to present the simulation results of
free swelling of a quarter of a square, which followed by the
free swelling of a quarter of a circle using MHFEM. In both
cases, the swelling ratios are above 30. At last, we present a
complex pattern formation induced by swelling. The results
produced by the simulation are compared with the experi-
mental results reported in the literature qualitatively.

6.1 Swelling with a low-permeable stripe

Inspired by a numerical example presented in [22], a het-
erogeneously permeable domain is introduced (Fig. 4).

0.5 1
0.7

0.76

0.82

0.0833 mm
0.0417 mm
0.0167 mm
0.0083 mm

0 0 0.5 1
0.7

0.76

0.82

0.0833 mm
0.0417 mm
0.0167 mm
0.0083 mm

(a) (b)

Fig. 5 FEM and MHFEM solutions of edge EF with shear modulus G = 0.15MPa at time t=120s. a Edge EF produced by FEM with different
mesh sizes. b Edge EF produced by MHFEM with different mesh sizes
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0 0.5 1
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0.0167 mm
0.0083 mm

(a) (b)

Fig. 6 FEM and MHFEM solutions of edge EF with shear modulus G = 0.025 MPa at time t=120s. a Edge EF produced by FEM with different
mesh sizes. b Edge EF produced by MHFEM with different mesh sizes

Table 2 Edge EF error with
G = 0.15 MPa

Mesh sizes (mm) 0.0833 0.0417 0.0167 0.0083

eFEM
max 0.0137 0.0042 9.78e−4 2.85e−4

eMHFEM
max 0.0045 0.0035 0.0012 2.85e−4

eFEM
avg 0.0044 0.0011 1.81e−4 5.04e−5

eMHFEM
avg 3.49e−4 1.39e−4 1.90e−5 2.36e−6

Table 3 Edge EF error with
G = 0.025 MPa

Mesh sizes (mm) 0.0833 0.0417 0.0167 0.0083

eFEM
max 0.0291 0.0139 0.0033 6.59e−4

eMHFEM
max 0.0155 0.0076 0.0013 6.59e−4

eFEM
avg 0.0085 0.0042 7.25e−4 9.85e−5

eMHFEM
avg 0.0012 3.05e−4 2.15e−5 5.44e−6

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

(a) (b)

Fig. 7 Contour plots of flux vectors and streamlines at time t=120s. a FEM solution. bMHFEM solution

Simulations are carried out using bothMHFEMand standard
FEM with different mesh sizes (0.0833mm, 0.0417mm,
0.0167mm, 0.0083mm). Note that regardless of mesh
refinement, the area and location of the low permeable stripe
is kept unchanged. Due to the existence of the low perme-

ability stripe, the top edge EF is expected to form a curve as
the swelling starts and the curve is used to characterize the
deformation of the gel (Figs. 5, 6).

We conclude that both methods show convergence (to the
same curve) as the mesh size decreases. Moreover, with a
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Fig. 8 Chemical potential contour plots of MHFEM solutions at t=0.7 s. a P2/RT0/P0 solution (stable). b P1/RT0/P0 solution (unstable)

O

BC

A

Fig. 9 Initial geometry (1mm × 1mm): edge OA fixed in y direction,
edge OC fixed in x-direction, edge BA and CA are in touch with other
solution

smaller shear modulus (Fig. 6), where the larger degree of
swelling appears, differences in edge EF geometry evolution
with the decreasing mesh sizes between the two methods
becomes obvious. The quantitative results of Figs. 5 and 6
are summarized in Tables 2 and 3. Using the mean of stan-
dard FEM solution and MHFEM solution with the finest
mesh (0.0083mm) as the canonical solution, two types of
errors are presented. eFEM/MHFEM

max denotes the maximum
of the absolute value of the difference between the given solu-
tion and the canonical solution; and eFEM/MHFEM

avg denotes
the average (over the nodes) of the absolute value of the
difference between the given solution and the canonical
solution.

Both Tables 2 and 3 show that MHFEM produces more
accurate results than FEM given the same mesh sizes. As
a matter of fact, the average error indicates that MHFEM
produced more accurate results than FEM with the mesh 2.5
times coarser when shear modulusG = 0.15MPa. The accu-
racy advantages of MHFEM over FEM is more pronounced
when the shear modulus is reduced. Table 3 shows that at
mesh sizes 0.0833mm and 0.0417mm the maximum error
of FEM is almost twice as much as the one of MHFEM.

As it is argued that MHFEM possesses local mass con-
servation property, which should lead to more accurate

calculation of flux, we plot the flux vectors and correspond-
ing streamlines originating from the bottom edge for both
methods at a given moment Fig. 7) in order to trace back
the deformation differences presented above. Note that in
standard FEM chemical potential is approximated by linear
node-based interpolation functions, as a result of which the
flux vector is element-wise constant. As to MHFEM, fluxes
are derived edge-wise. Adding up flux on each edge, the net
flux of a given element is derived for MHFEM solution and
thus also element-wise constant.

A close check on the streamlines near the lowpermeability
area reveals that the streamlines are not completely sym-
metric in the FEM solution although geometry, permeability
distribution and boundary conditions are strictly symmetric
(Fig. 7a). On the other hand, the streamlines in MHFEM
solution stay strictly symmetric (Fig. 7b). The difference
in streamline distribution leads to visible deformation dif-
ference. We notice that elements at the corner of the low
permeability area in Fig. 7a exhibit non-physical distortions;
while the MHFEM solution (Fig. 7b) presents a much more
physical deformation. Such non-physical distortions not only
affect the accuracy of deformation calculation but also cause
converging issues. In fact, FEM simulation failed to converge
to the next step in this simulation while MHFEM succeeded.
In our simulation practice, it is observed that FEM is more
demanding thanMHFEM in terms of choosingmodeling and
discretization parameters to reach convergence.

To investigate the impact of an unstable pair (P1/P0) on
the swelling simulation, we slightly adapt boundary con-
ditions in Fig. 4. Instead of edge HG in touch with the
outer solution, we let EF directly in touch and the rest of
edges are with no flow conditions. Also the domain size is
changed to 1mm × 1mm. This way we generate a sharp
gradient in chemical potential especially for the low perme-
ability area. Fig. 8 shows the chemical potential contour of
both an unstable pair (P1/P0) and a stable pair (P2/P0) for
displacement-chemical potential coupling. We observe that
indeed the unstable pair led to a checkerboard distribution
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Fig. 10 Free swelling of a quarter of a square: chemical potential contour plots at four moments. a td = 0. b td = 6.05. c td = 1274.3. d td =→ ∞
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Fig. 11 Extremal stresses distribution over the sample at td = 1274.3. a First principal stress. b Second principal stress. c Maximum shear stress

Table 4 Convergence of
position and flux field

Mesh sizes (mm) 0.1000 0.0500 0.0333 0.0025 0.020 0.0167

eposi tion (mm) 0.0318 0.0177 0.0011 0.0063 0.0035 0.0015

e f lux 1.343e−3 1.277e−3 9.753e−4 6.852e−4 4.270e−4 2.002e−4

of pressure while the stable pair not. Also due to the higher
degree of approximation for displacement, the deformations
generated by the two pairs are slightly different. However, we
notice that the oscillation in the pressure field dissipates as the

swelling goes on and eventually disappears. Local element
refinement also helps with the alleviation of checkerboard
distribution. Moreover, the use of higher order element also
causes higher computational cost. Hence, unless great impor-
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O

A

B

Fig. 12 Initial geometry (radius 0.25mm): edge OA fixed in x-
direction, edge OB fixed in y-direction, curve AB is in touch with other
solution

tance is attached to the calculation of chemical potential at the
initial stage, we keep using P1/RT0/P0 pair in our swelling
simulations potentially combinedwith localmesh refinement
scheme.

6.2 Free swelling of a quarter of a square

In this section, we apply MHFEM to simulate the free
swelling of a quarter of a square OABC (Fig. 9). The bound-

ary conditions prescribed for free swelling are given as
follows:

x(X, t) = 0 on Γ u
D × [0, T ], (114)

T(X, t) · n = 0 on Γ u
N × [0, T ], (115)

μ(X, t) = μext on Γ
μ
D × [0, T ], (116)

Q(X, t) · n = 0 on Γ
μ
N × [0, T ], (117)

where μext denotes the chemical potential in the external
solution and equals −2RTcex ; Γ u

D represents OA in y-
direction andOC in x-direction;Γ u

N containsABandBC;Γ μ
D

contains AB and BC; Γ
μ
N contains OA and OC. The initial

conditions are:

x(X, 0) = X, (118)

μ(X, 0) = π0, (119)

where π0 = −RTΓ

√
(c f c

0 )2 + 4(cex )2. The outer solution

concentration cex is set to be 4.25×10−5 mol/ml. The domain
is discretized by 20 × 20 elements and we use an adaptive
time step size.

The chemical potential contour plots over time are given
in Fig. 10. The color indicates the magnitude of the chemi-
cal potential. It shows that fluid permeation starts from the
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Fig. 13 Free swelling of a quarter of a square: chemical potential contour plots at four moments. a td = 0. b td = 96.8. c td = 20388.8.
d td =→ ∞
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Fig. 14 Extremal stresses distribution over the sample at td = 96.8. a First principal stress. b Second principal stress. c Maximum shear stress

Fig. 15 Initial geometry (2mm×2mm): the radius of the circular holes
is 0.2mm. The dimensions of the gel membrane is fixed in both x and
y dimensions during swelling

two edges (AB and CB) gradually reaching the core. The
square shape of OABC is temporarily lost due to the faster
swelling area near node B comparing to node A and C. At

the equilibrium state (td → ∞) the square shape is recovered
(Fig. 10).

To predict material failure (for example, the initiation of
fractures), magnitude, directions and locations of the max-
imum and minimum stresses must be identified. Between
the two parts of stress (effective stress and hydraulic pres-
sure), only the effective stress contributes to the initiation
of fractures. Using the proposed numerical model, the mag-
nitude of the maximum and minimum normal stresses and
maximum shear stress distribution over the sample can be
calculated (Fig. 11). It is observed that the maximum nor-
mal stress appears near node A and C along the edges that
are in touch with the outer solution. Similar observation can
be made for minimum normal stress. The maximum normal
stresses are tensile stress (positive values) and the minimum
stresses are compressive stresses (negative values). As to the
maximum shear stresses, near nodes C and A the sample sus-
tains the highest shear stresses and near origin O and node B
the lowest.

The convergence of the simulation as the mesh sizes
decreases is demonstrated in Table 4. The y-coordinate of
the outer node B and the influx on edge AB at a transient
moment (2.48 s) are recorded. Using the calculated values at
high mesh density (70 × 70) as canonical solution, the error
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Fig. 16 Swelling of a gel membrane with periodical holes: chemical potential contour plots at three moments. a t =100s. b t =300s. c t =500s
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yielded by different meshes are given in the table (eposition
and e f lux ). As the mesh size decreases, the errors converges
towards zero.

6.3 Free swelling of a quarter of a circle

Next, we investigate gelswith a circular shape.Only a quarter
of the circle (OAB) is simulated due to symmetry reasons
(Fig. 12). The boundary conditions are the same as for the
square except that Γ u

D represents OA in x-direction and OB
in y-direction; Γ u

N and Γ
μ
D represent curve AB; Γ μ

N contains
OA and OB. The domain is discretized by 163 quadrilateral
elements with time step taken to be same as for the square.

Unlike in the square simulation, the shape of OAB stays
unchanged during swelling (Fig. 13). The extremal effective
stresses plot (Fig. 14) shows that at the transient state the
maximum normal and shear stresses are largest along the
outer boundary and gradually decrease towards the core. The
opposite holds true for minimum normal stress, where the
largest minimum normal stress is at the core and decreases
as the radius increases.

6.4 Swelling-induced bifurcation

A swelling bifurcation experiment is reported by Zhang et
al. [43]. By exposing a hydrogel membrane with periodic
circular hole array to a solvent, the holes deform into ellipses
and the interaction between them yield a “diamond plate”
pattern. In this subsection, we apply the proposed numerical
model to simulate the swelling of such a membrane aiming
to replicate the deformation of holes qualitatively as reported
in the experimental work by Zhang et al. [43].

The domain (Fig. 15) is discretized by 2926 linear quadri-
lateral elements and the time step is 0.025s. The outer
solution concentration cex set to be 5.54 × 10−4 mol/ml.
The chemical potential contour plots (Fig. 16) show that the
deformation of the originally circular holes. Firstly, the cir-
cular holes collapsed into ellipses of alternating directions
(Fig. 16a). Next, as the swelling went on, the elliptic holes
further elongated themselves in their major axis direction
(Fig. 16b). At last, a narrowing “waist” of the elongated
slits appeared (Fig. 16c). The simulation using the developed
numerical model goes on until contact between the elements
happens, since contact was not defined in the numerical
model. However, the calculated deformations of the holes
by MHFEM model are in good agreement with the experi-
mental results.

7 Conclusions

In this study, we have developed a MHFE model under the
theoretical framework of mixture theory for the simulation

of swelling ionized hydrogels in two dimensions. Newton–
Raphson strategy was applied to handle the non-linearity
arising from hyperelasticity and nonlinear osmotic pressure
term. We deployed the lowest order Raviart–Thomas ele-
ment to approximate flux as an independent variable. Then
hybridization procedurewas introduced to guarantee the con-
tinuity of normal flux across neighboring elements so that the
lowest order Raviart–Thomas elements were properly imple-
mented. The calculated solution using proposed model was
verified by comparing with semi-analytical solutions calcu-
lated by MATLAB in one dimension.

Local mass conservation property of the proposed model
guarantees more accurate calculation of flux and defor-
mation, which is crucial for the simulation of extremely
large deformation induced by swelling as shown in the low-
permeable stripe simulations. Next, we continue to simulate
the free swelling of a square and a circular-shaped gel using
MHFEM. In both simulations, the swelling ratio is more than
30. Chemical potential contours and extremal stresses dis-
tributions are presented. Chemical potential contours give
us a good idea about the fluid permeation progress during
swelling and extremal stress distribution plots are useful
for failure mechanics. At last, we carried out a swelling-
bifurcation simulation. The simulation results are verified
against experimental results and showed good agreement
qualitatively.
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