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Abstract

In today’s world, we increasingly rely on complex software-driven systems.
Thus it comes as no surprise that software-related problems can have an in-
credible impact on society, organizations, and users. In practice, it is hard
to address these problems a priori because software continues to evolve and
grow in complexity and operates in an ever-changing environment. To address
and possibly avoid these problems, one has to observe, log, monitor and study
software systems “on the run”, preferably in its natural, real-life production
environment. Process mining techniques use logged event data, obtained from
operational and software processes, to discover process models, to check the
conformance of predefined process models, and to extend such models with in-
formation about bottlenecks, decisions, deviations, resource usage, and more.

In this thesis, we will show how we can use process mining for analyzing
software systems. In addition, we will address the lack of support for hierar-
chical subprocesses, recursive behavior, and cancelation behavior, which is com-
monly found in software behavior. By including these constructs, we benefit
from the extra information such constructs provide and improve the algorith-
mic and visual scalability. Finally, we will address the lack of support for
integrating process mining in the software process analysis lifecycle.

To summarize, this thesis contains the following contributions:
• A detailed discussion of software event data, how to use such data for

process mining, as well as tool support for logging such data.
• A modeling notation and discovery techniques for hierarchical and recur-

sive behavior, exploiting hierarchical models with named submodels.
• A modeling notation and discovery techniques for cancelation behavior.
• A framework for visualization-independent performance analysis, sup-

porting hierarchy, recursion, and cancelation.
• A family of model translations, supporting hierarchy, recursion, and can-

celation, thereby separating visualization and representation bias.
• Extensive tool support for round-trip software analysis.

All methods have been implemented, systematically evaluated, and applied in
real-life situations in the context of several case studies.
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In Part I, we set the scene for the rest of the thesis.
Chapter 1 starts with an introduction to Process Mining, Software

Analysis, and the research problems addressed in this thesis.
Chapter 2 introduces preliminaries, basic notations and model lan-

guages, and some basic process mining concepts.
Chapter 3 positions this thesis and discusses related work.
Chapter 4 introduces a basic process mining foundation upon which

the techniques in the rest of the thesis build.
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Overview

In today’s world, we increasingly rely on information technology. Complex
software-driven systems can be found in all sectors: communication, produc-
tion, distribution, healthcare, transportation, education, entertainment, gov-
ernment, trade, etc. Thus it comes as no surprise that software-related prob-
lems can have an incredible impact on society, organizations, and users. Spec-
ification, verification and testing techniques attempt to avoid such problems.
However, in practice, these techniques fall short because software continues
to evolve and grow in complexity, and operates in an ever-changing environ-
ment [7]. In short, one cannot anticipate all problems at design-time or during
testing.

To date, the computer science discipline has tried to address such problems
by proposing new design methodologies and reverse-engineering tools. How-
ever, these a priori techniques have inherent limitations: we cannot predict
evolving requirements and circumstances at design time, and numerous ex-
amples show that traditional approaches cannot cope with the complexity of
today’s information systems [7]. To address and possibly avoid these prob-
lems, one has to observe, monitor and study software systems “on the run”,
preferably in its natural, real-life production environment.

Event log data capturing actual system behaviors are being recorded ev-
erywhere: in enterprise information systems and business transaction logs, in
web servers, in high-tech systems such as X-ray machines and wafer scanners,
in warehousing systems, etc. [8] Although considerable amounts of data are
recorded by software, machines, and organizations, problems are typically only
addressed in a trial-and-error and ad-hoc fashion. Much of the information in
the recorded data is ignored in this way. Especially in the case of (legacy)
system comprehension, analysis, maintenance, and evolution, this data could
give us insight into the actual structure, behavior, operation, and usage of the
observed systems. In short, there is a need to exploit this rich data in a more
systematical fashion. Especially in the case of software systems, where mal-
functions can and will happen, it is important to study these systems in their
natural environment to better understand the problems and to minimize their
impact [7].
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Figure 1.1: The software process analysis lifecycle, showing the relation be-
tween software artifacts, software analysis, and process mining. The arrows
indicate the most important dependencies.

In the situation described above, process mining is a good candidate for
the analysis of actual system behavior. Process mining techniques provide a
powerful and mature way to discover formal process models and analyze and
improve these processes based on the event log data that is already being
recorded. In this thesis, we will show, amongst others, how we can use process
mining for analyzing software systems. The software process analysis lifecycle,
as depicted in Figure 1.1, illustrates the relation between software artifacts,
software analysis, and process mining. That is, we will look at log data ob-
tained from software systems on the run, capturing actual system behavior.
Using this recorded behavior, we will apply process mining to gain insight into
the software systems, and we will relate the results back to the underlying
software system artifacts.

1.1 Process Mining

The field of process mining [8] aims to extract information from recorded event
log data. Such an event log typically consists of traces, where each trace
represents one end-to-end execution of a system or process. Each trace consists
of records of all the steps executed (events), detailing what happened for a
particular execution. Typically, each event relates to a particular process step,
called an activity. A trace details, for example, how a visitor used a website,
how a product is processed by a machine, how an insurance company processes
a claim, or how a programming interface (API) is used in a software system.
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Figure 1.2: Process mining and the three major classes of techniques focused
on in this thesis: process discovery, performance and conformance analysis,
and enhancement.

Process mining techniques use event logs to solve an array of different
problems. In this thesis, we will address three major classes of techniques: 1)
Process discovery tries to find new process models to describe the behavior in
the event log. 2) Performance and conformance analysis aims to investigate
and verify recorded behavior with a provided process model. 3) Enhancement
attempts to combine the result of performance and conformance results with
the process model, i.e., to project the measured results back onto the model at
the right place. Figure 1.2 illustrates these techniques in the context of process
mining.

1.1.1 Event logs

The starting point for process mining is an event log. Table 1.1 shows an
example of such an event log for a web service provider process. It shows
several traces, each with their own case id. Each row represents one event,
detailing which activity was executed, and all the data associated with that
event. In the first trace, with case id 1, we see that the process started with
a receive request (events 1.1 and 1.2), followed by a parse request head (event
1.3) and a check authorization (events 1.4 and 1.5). Finally, at events 1.6
and 1.7, a reject request was recorded. Observe how for each step, both the
start and complete (end) time was recorded, as well as which thread (which
resource) executed the step. For example, from events 1.1 and 1.2 we know that
the main-thread worked on receive request from 11:02:45.000 till 11:02:45.500.
These are just some examples of the type of data one can find in an event
log. Observe how each trace explains a different example run of the underlying
process. For example, in case 1, the request was declined, and in case 2, the
request was processed.
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Table 1.1: Example snippet of an event log for a web service provider process.
Each row is an event, and each column an attribute. Events are grouped into
traces, as indicated by the horizontal lines and case id column.

Attributes

Case id Event id Activity Lifecycle Timestamp Resource . . .

1 1.1 a receive request start 30-10-2017 11:02:45.000 main-thread . . .
1.2 a receive request complete 30-10-2017 11:02:45.500 main-thread . . .
1.3 g parse request head start 30-10-2017 11:02:45.650 worker-1 . . .
1.4 d check authorization start 30-10-2017 11:02:45.651 worker-3 . . .
1.5 d check authorization complete 30-10-2017 11:02:45.710 worker-3 . . .
1.6 e reject request start 30-10-2017 11:02:45.820 main-thread . . .
1.7 e reject request complete 30-10-2017 11:02:45.870 main-thread . . .

2 2.1 a receive request start 30-10-2017 11:03:12.150 main-thread . . .
2.2 a receive request complete 30-10-2017 11:03:12.450 main-thread . . .
2.3 g parse request head start 30-10-2017 11:03:12.670 worker-2 . . .
2.4 b read data part start 30-10-2017 11:03:12.670 worker-1 . . .
2.5 g parse request head complete 30-10-2017 11:03:13.110 worker-2 . . .
2.6 b read data part complete 30-10-2017 11:03:13.160 worker-1 . . .
2.7 f prepare query start 30-10-2017 11:03:13.320 worker-1 . . .
2.8 f prepare query complete 30-10-2017 11:03:13.400 worker-1 . . .
2.9 h process request start 30-10-2017 11:03:13.670 main-thread . . .
2.10 h process request complete 30-10-2017 11:03:14.220 main-thread . . .

3 3.1 a receive request start 31-10-2017 09:43:16.030 main-thread . . .
...

...
...

...
...

...
...

. . .

Figure 1.3: A BPMN model discovered for the web service provider process.
The X-diamond represents a choice; the +-diamond represents concurrency or
parallel fork/join. Note that this model does not perfectly fit the example
behavior from the event log in Table 1.1. For example, in case 1, activity g
(event 1.3) was executed before activity d was performed.

1.1.2 Process Discovery

Within the area of process mining, the main focus of research has been on
process discovery. The goal of process discovery is, given only an event log,
construct a process model describing the behavior recorded in the event log.
Such a process model is typically expressed in a formalism such as a Petri net
or a process tree, and can be visualized using various notations, e.g., BPMN,
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Statecharts, etc. For example, from the event log in Table 1.1, the model in
Figure 1.3 could be discovered. In this model, after receive request and check
authorization, there is a choice between failed and succeeded authorization.
When authorization failed, a reject request is performed. When authorization
succeeded, two paths are executed in parallel: 1) a parse request head is ex-
ecuted, and concurrently 2) a read data part and prepare query is executed.
After both paths are completed, a process request is performed.

Numerous process discovery techniques and algorithms have been proposed
in the literature. Despite all this effort, process discovery still remains chal-
lenging, with many open problems. In this section, we will briefly discuss the
main challenges in process discovery.

Sound Semantics

One challenge is that process discovery techniques should yield models with
clear and well-defined semantics that are free of deadlocks and other anomalies.
Clear semantics is a prerequisite for reliable interpretation by both man and
machine. For example, without clear semantics, one cannot reliably perform
performance and conformance analysis. The discovered models should also be
sound, i.e., they should be free of deadlocks and other anomalies. Ambiguity
and unclear behavior should be avoided, all process steps should be executable,
and an end state should always be reachable. Without soundness, the model,
and any conclusion derived from it, is unreliable.

It should be noted that in certain cases it is beneficial to remain vague, es-
pecially when there is not enough “evidence” in the data or when the modeling
constructs do not fit the observed behavior [11]. In addition, many commer-
cial tools deliberately remain vague in order to scale well and produce simple
models [51, 72, 76]. However, especially when analyzing software, precise and
formal models are preferred for reliable reasoning and analysis.

Fitness and Precision

Another challenge is that the discovered models should represent the behavior
recorded in the event log. We can measure how much a model and log are
related using various quality metrics. In this thesis, we will mainly focus on
fitness and precision, but other metrics are defined as well [46]. We will explain
both metrics using the Venn diagrams in Figure 1.4.

Fitness expresses the part of behavior in the event log that is also captured
in the model. In Figure 1.4a, the green filled area indicates fitting behavior,
whereas the red filled area indicates unfitting behavior. In order to draw
conclusions based on a discovered model, that model should represent the
event log well, i.e., the model should have a high fitness. With a low fitness,
one cannot reliably analyze the recorded behavior with the discovered model:
the model has too many unfitting behavior. Conclusions such as the absence
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Fitting

Unfitting

Log
Model

(a) Fitting and unfitting behavior.

Precise Imprecise

Log
Model

(b) Precise and imprecise behavior.

Figure 1.4: Fitness and precision metrics illustrated. The circles represent
the finite behavior recorded in the event log. The squares represent the pos-
sibly infinite behavior captured by the model. The areas indicate the overlap
between logged and modeled behavior.

of behavior or process rule violations would become unreliable when based on
an unfitting model.

Precision expresses the part of the behavior in the model that is also present
in the event log. In Figure 1.4b, the green filled area indicates precise behav-
ior, whereas the red filled area indicates imprecise behavior. Since an event
log only captures observed behavior over a period of time, and thus is likely
incomplete, process discovery algorithms usually apply some generalizations.
That is, the discovered model allows for behavior beyond what is recorded in
the log. Although this imprecision can help in discovering a more fitting and
simpler model, it is important that such imprecisions are limited. With a low
precision, the modeled behavior is not supported by observations in the event
log. Conclusions such as the presence of behavior or process rule violations
would become unreliable when based on an imprecise model.

For example, the model in Figure 1.3 has a high fitness and precision but
it is not perfectly fitting the example behavior from the event log in Table 1.1.
For example, in case 1, activity g is executed too soon, and in case 2, activity d
was illegally skipped.

Supported Behavior
The model formalism and discovery algorithm should support the type of be-
havior that is recorded in the event log. For example, when one observes a web
service provider process, and the whole application should be canceled once an
authorization check fails, then the model formalism and discovery algorithm
should support such cancelation behavior. Likewise, when one observes a re-
cursive software process, then the model formalism and discovery algorithm
should support such hierarchical and recursive process model constructs.

Any discovery technique must decide on which type of behavior and process
model constructs it supports, i.e., it must decide on which class of behavior it
supports and leverage this representational bias.
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Lion’s share of existing process discovery techniques assume that activity
executions are instantaneous (atomic). Recent work started to explore also
non-atomic event logs, amongst others to support various notions of concur-
rency. However, most of these approaches do not address notions like hierarchi-
cal subprocesses, recursive behavior, or cancelation behavior. Process mining
techniques should be aware of such constructs in order to benefit from the
extra information it provides.

Scalability
Finally, the discovery algorithm and produced models should scale well. This
challenge concerns both the algorithmic and visual aspects of scalability.

First of all, the process mining algorithms should scale well with large in-
puts. That is, these techniques should be able to handle large, real-life event
logs within time and memory constraints. Current state-of-the-art process dis-
covery techniques already scale well with a large number of events and traces,
but are mainly limited by the number of activities or length of traces. Recent
advances in distributed process mining split computationally challenging pro-
cess mining problems into many smaller problems that can be analyzed easily
and whose results can be combined into solutions for the original problems.
In addition, state-of-the-art streaming process mining techniques enable the
analysis of running systems and event logs that are too large to fit main mem-
ory. However, more support is needed to improve the algorithmic scalability in
order to handle more complex event logs consisting of long traces with many
activities and complex relations. This is especially true in the case of software
systems, where the observed processes may produce extremely long traces with
hundreds of thousands of events and hundreds of activities in each trace.

Secondly, scalability also concerns the presentation of the resulting models,
i.e., the visual scalability. That is, even when a model consists of hundreds of
activities, the user should be able to grasp the presented complexity. Clearly,
this calls for proper process model constructs and tool support to aid the user.
Modeling languages like BPMN have recognized this need for visual scalability
by supporting process model constructs like subprocesses, cancelations, etc.
However, very few discovery techniques support and use such constructs to
reduce the modeled complexity.

1.1.3 Performance and Conformance Analysis
When both an event log and a process model are given, one can compare both
to check the quality of the model and analyze performance information. The
process model may have been constructed by hand (e.g., a reference model),
or may have been discovered.

Conformance checking relates events in the event log to activities in the
process model and compares both. The goal is to find commonalities and



10 Chapter 1. Overview

Figure 1.5: An annotated model learned from the web service provider pro-
cess. This example combined the event log in Table 1.1 and the model in
Figure 1.3 to show performance and conformance information in the context
of the model.

discrepancies between the modeled behavior and the observed behavior. When
an event log and process model do not agree, these discrepancies might indicate
undesirable deviations, fraud, inefficiencies, or other issues.

For example, the model in Figure 1.3 is not perfectly fitting the example
behavior from the event log in Table 1.1. Conformance checking reveals that
in case 1, activity g is executed too soon, and in case 2, activity d was illegally
skipped. Figure 1.5 shows these deviations in the context of the model.

Performance analysis uses the conformance checking results to measure
the performance of a process. Through conformance checking, events in the
log are coupled to elements in the model. This coupling allows for precise
performance analysis and diagnostics. Based on the event data linked to a
model element, durations, service times, waiting times, resource usage, and
more can be derived and evaluated.

For example, the model in Figure 1.5 shows various frequency and per-
formance annotations in the context of the model. Such annotations could
indicate bottlenecks or less frequently executed activities.

1.1.4 Enhancement
Enhancement techniques take both an event log and a process model to extend
or improve the model with information extracted from the event log. There are
various enhancements one can perform. Simple enhancements extend or anno-
tate the process model with conformance information such as deviations and
performance information such as frequency and timing information. More ad-
vanced enhancements animate event data over process models or repair process
models to better reflect the recorded behavior.
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For example, by annotating conformance and performance results onto the
model in Figure 1.5, deviations and performance issues can be located in the
context of the model. This allows us to identify which parts of the process are
problematic in terms of, for example, deviations or durations.

Enhanced process models consolidate information from multiple data per-
spectives and provide a lot of insight. The insights gained from enhancement
techniques may often lead to new analysis questions. In practice, this often
leads to an explorative process mining approach, where insights from enhanced
process models lead to new analyses using different data filters and different
perspectives.

1.2 Software Engineering and Analysis
Over the last few decades, the complexity of software systems has increased
considerably. These software systems have become an indispensable and inte-
gral part of everyday life and consist of millions of lines of code, written by
thousands of different programmers over the last few decades. As these sys-
tems continue to grow and evolve, failures, performance issues, and downtime
happen more often. Since these software systems are an accumulation of busi-
ness logic and lessons learned in the field, simply fixing or rewriting the failing
parts is not a trivial task. Even worse, in practice, knowledge and documen-
tation of these ever-evolving systems are typically missing or outdated; we are
dealing with legacy software. Such knowledge and documentation regarding
the structure, behavior, operation, and usage of these software systems is cru-
cial for system comprehension, analysis, maintenance, and evolution. When
no complete and up-to-date information is available, one has to extract this
information through software analysis techniques such as model learning.

1.2.1 Software Analysis and Model Learning
Many software analysis and reverse engineering techniques have been proposed
in the software engineering domain. We typically can partition such techniques
into static analysis and dynamic analysis.

Static analysis derives its analyses and models without actually executing
the software (see the top row in Figure 1.6). It uses source code, object code,
byte code, or other static sources as input. Instead of running the code, one
tries to understand the internal logic of the software and how it (statically)
connects with other parts. With static analysis, design models are inferred,
and behavior is estimated and approximated.

In contrast, dynamic analysis techniques, such as model learning , derives
its analyses and models by executing software programs on a real or virtual
processor (see the middle row in Figure 1.6). Using information obtained from
interactions with the software, log recordings, instrumentation, and debuggers,
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Figure 1.6: Analyzing software with static analysis, dynamic analysis, and
process mining. Static analysis only uses the static software system artifacts.
Dynamic analysis looks at the runtime behavior. Process mining extracts
information from structured event log data.

runtime behavior is captured and modeled. To understand the operation and
usage of a system, one has to observe and study the system “on the run”,
preferably in its natural, real-life production environment. To understand and
maintain the behavior of legacy systems when design and documentation are
outdated, one can observe and study the system in a controlled environment
using, for example, testing techniques.

1.2.2 Process Mining for Software Analysis

As noted before, in the process mining community, model (re)construction
from logs is commonly referred to as process discovery . In contrast to many
software analysis techniques, process mining provides a powerful and mature
way of combining and integrating both model (re)construction and analysis.
That is, process mining combines extracting (formal) enriched and annotated
models and enabling performance and conformance analysis using these mod-
els. With the use of structured and well-defined event logs (see the bottom
row in Figure 1.6), numerous existing techniques can be combined for advanced
analyses, yielding results like in Figure 1.5. Chapter 3 elaborates more on the
commonalities and differences between static analysis, dynamic analysis, model
learning, and process mining.

When applying process mining on event data originating from software
systems, new patterns and challenges pop up. For example, software event
data contains structured hierarchies not commonly found in business process
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Figure 1.7: Illustrative BPMN example of named submodels, recursion, and
cancelation. The X-diamonds represent choice. This model shows a fictive
process for parsing a recursive tree-like data structure.

event logs. Hierarchies can arise from structural relations such as dependen-
cies in client-server relations, communicating software components, or object
relations. When focusing on runtime structures, hierarchies can arise from
call-relations amongst functions, methods, or co-routine invocations. These
hierarchical structures should be exploited in all process mining tasks. This is
exactly the core property we will investigate and exploit in the techniques in
this thesis. Chapter 5 elaborates more on these patterns and challenges.

To illustrate some of the structured hierarchies that can be found in soft-
ware, consider the example of a process for parsing a recursive tree-like data
structure. Figure 1.7 presents a model for this example. At the top, the main
process is shown: a read input is followed by a parse node and a perform cal-
culations. The step parse node consists of multiple substeps, and is given in
more detail in the submodel parse node. The parse node submodel has a
choice between two steps: either the parse data submodel (not shown) is exe-
cuted, or the parse node step is executed, which refers back to the parse node
submodel. Hence, the parse node submodel is defined recursively in terms of
itself, parsing our fictive tree-like data structure level by level, node by node.
At any time, a parse error exception can occur. The submodel parse node
propagates this error upwards, canceling any and all behavior. At the top,
this parse error is caught, and the alternative handle error step is performed.
Clearly, such behavior cannot (easily) be captured in a flat model.
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1.3 Open Challenges in Process Mining for Analyzing Software

The application of process mining for analyzing actual software system behav-
ior leads to new challenges. On the one hand, there is the lack of support for
the type of behavior present in software system settings. On the other hand,
there is a lack of support for integrating process mining in the software process
analysis lifecycle (Figure 1.1). Below we discuss the open challenges addressed
in this thesis.

Challenge 1 — Lack of structured techniques for the recording and processing of
software event data. Process mining starts with an event log. Although event
log data is captured and recorded everywhere nowadays, there is no structured
format or standard detailing what type of information is recorded in which way.
This lack of a structured standard and accompanied tool support limits the
application of event data and process mining. Furthermore, the transformation
of software logging data to event log traces is far from trivial. In practice, one
has to decide on what constitutes a software event, and how cases/traces are
defined in a software analysis setting.

Challenge 2 — Lack of support for hierarchical models with named submodels.
Software behavior is, by design, hierarchical. Hierarchies can arise from struc-
tural relations such as dependencies in client-server relations, communicating
software components, or object relations. When focusing on runtime struc-
tures, hierarchies can arise from, for example, call-relations amongst functions,
methods, or co-routine invocations. See, for example, the parse node and parse
data submodel in Figure 1.7. In addition, in the context of business processes,
low-level events recorded by information systems may not directly match high-
level activities that make sense to process stakeholders [139]. Often, also in
these cases, a hierarchy of business activities can be identified. These hierar-
chical structures should be exploited in all process mining tasks. Moreover, in
most cases, the data contains enough information to extract hierarchies with
named submodels, which can be exploited for discovery and analysis purposes.
However, there is little work in either process discovery or analysis that exploits
hierarchical models with named submodels.

Challenge 3 — Lack of support for recursive behavior. Event logs are finite and
thus often incomplete observations of system behavior. Hence, process dis-
covery algorithms generalize over the behavior in the event log to deduce the
behavior of the observed system. For example, when one observes a repeated
occurrence of an activity a, one can deduce an iteration or repetition and gen-
eralize the observed behavior to a loop. Similarly, one can observe a repeated
occurrence down a hierarchy. This repetition down a hierarchy can be seen as
recursive behavior. See, for example, the recursive definition of the parse node
submodel in Figure 1.7. Especially when modeling software behavior, proper
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support for named submodels with recursion is a must. Current techniques
lack support for modeling and discovering such recursive behavior.

Challenge 4 — Lack of support for cancelation behavior. The majority of real-
life event logs contain some form of cancelation or error-handling behavior. A
bank loan request may be canceled or declined, a web server needs to handle a
connection error, an X-ray machine may detect a sensor problem, etc. See also,
for example, the cancelation involving parse error in Figure 1.7. This type of
cancelation behavior can easily be expressed in existing modeling formalisms,
but few existing process discovery techniques actually take these cancelation
features into account. Without cancelation support, discovery algorithms can
produce needlessly complex and imprecise models.

Challenge 5 — Separation of visualization and representational bias. Process min-
ing techniques require a representational bias to make assumptions about the
modeled behavior. However, the modeled behavior can be visualized in many
different formalisms. In traditional business process mining, visual notations
like BPMN, EPC and Petri nets are common. In software engineering, visual
notations like UML sequence diagrams, finite state machines, and call graphs
are more common. In practice, a combination of different visual notations
should be used for different process analysis questions. Ideally, process mining
techniques should not be limited by the bias and constraints arising from these
visual notations. Rather, they should use an internal representation whose bias
is the “greatest common denominator” of the supported visual representations.

Challenge 6 — Lack of support for integrating results with existing software ar-
tifacts. Analyzing software starts with the actual, runnable software system
itself. From this running software system, one needs to extract event data
before any process mining can be applied. Before this thesis, there were no
systematic approaches for extracting event logs from running software systems
suitable for process mining. Most logging and tracing functionality use cus-
tom or proprietary logging formats that cannot directly be used for process
mining. Secondly, for a true round-trip analysis, any insights gained from the
process mining analysis need to be related back to the software system do-
main. Hence, there should be support for tracing process mining results back
to software artifacts like the actual source code that generated the event data.

Challenge 7 — Improve understandability for non-experts and software analysts.
Recent work in process mining has shifted from technical Petri net visualiza-
tions to more user-friendly BPMN and flow-map visualizations. By providing
simple models enhanced with conformance and performance analysis results,
non-experts can quickly see and interact with the results in a language they
understand. Similarly, when applying process mining to software, suitable vi-
sualizations and interactions need to be chosen. This not only means choosing
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suitable (domain) model visualizations, but also means that the results should
be relatable and traceable to software domain concepts.

Challenge 8 — Improve algorithmic and visual scalability. The discovery algo-
rithm and produced models should scale well. This challenge concerns both
the algorithmic and visual aspects of scalability. That is, first of all, the tech-
niques should be able to handle large, real-life event logs within time and
memory constraints (i.e., the algorithmic scalability). Current state-of-the-art
process discovery techniques already scale well with a large number of events
and traces, but are mainly limited by the number of activities and trace length.
Support is needed to handle more complex processes consisting of many activi-
ties. This is especially true in the case of software systems, where the observed
processes can consist of long traces with hundreds of thousands of events and
hundreds of activities in each trace. Moreover, scalability also concerns the
presentation of the resulting models (i.e., the visual scalability). That is, even
when a model consists of hundreds of activities, the user should be able to
grasp the presented complexity. Clearly, this calls for proper process model
constructs and tool support to aid the user.

1.4 Our Approach – Design Decisions and Foundation

In this thesis, we will present techniques and tools based on process mining for
analyzing software behavior. Our work has been implemented as a plugin for
the process mining framework ProM [187]. We will reuse the well-established
IEEE XES event log standard [77, 187] to exchange software event data, see
also Section 2.3.2. This way, all techniques and tools from this thesis can be
used on any existing event log dataset, even if the dataset did not originate
from software systems, and our output results can be used with other existing
tools and ProM plugins.

At the core of this thesis, we will present hierarchical, recursion aware,
and cancelation discovery techniques based on the process tree notation, as
introduced in Section 2.2.6. For these techniques, we will build on an existing
process discovery foundation to discover process trees, and extend the modeling
notation and discovery technique where needed. Since process trees already
capture a hierarchical relation, they naturally allow for our novel and explicit
hierarchical extensions. We selected the well-known Inductive Miner (IM)
framework, as described in [130] and summarized in Chapter 4, as our process
discovery foundation. This framework offers good discovery guarantees, scales
well, and provides clear extension points for our adaptations.

The discovered models can be exported as Petri net models to be used in
other tools and ProM plugins. We reuse and build upon the mature alignments
technique [21] to provide hierarchical performance analysis.
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1.5 Contributions and Structure of this Thesis

This thesis presents hierarchical process mining techniques and shows how
these techniques can be used for analyzing software systems in a scalable way.
To summarize, this thesis contains the following contributions:

Contribution 1 — A detailed discussion of software event data, as well as tool
and methodology support for logging such data. Software behavior and event
data differ from business process event logs in several ways. Software event
data has different properties and contains different patterns and structures
not commonly found in business process event logs. Chapter 5 discusses these
properties, patterns, and the accompanied challenges. Chapter 11 presents a
methodology for obtaining and analyzing software event log data in a struc-
tured way. This contribution aims to address Challenges 1 and 6.

Contribution 2 — A modeling notation and discovery techniques for hierarchical
and recursive behavior. As discussed in Challenges 2 and 3, software behav-
ior contains hierarchical and recursive structures. Chapter 6 introduces the
hierarchical process tree notation to model hierarchical and recursive behavior.
In addition, we present several algorithms for discovering hierarchical and re-
cursive models. Our tools leverage the hierarchy to reduce the problem space
and modeled complexity, and provide the user with a model in terms of more
high-level concepts (Challenge 8).

Contribution 3 — A modeling notation and discovery techniques for cancelation
behavior. As discussed in Challenge 4, operational and software processes can
contain various forms of cancelation behavior. Chapter 7 introduces the can-
celation process tree notation to model cancelation regions using process trees.
In addition, we present an algorithm for discovering cancelation process trees.
These cancelation regions help reduce the modeled complexity (Challenge 8).

Contribution 4 — A framework for visualization-independent performance ana-
lysis, supporting hierarchy, recursion, and cancelation. Chapter 8 introduces a
hierarchical approach to performance analysis. Our hierarchical performance
analysis approach allows us to analyze performance while taking into account
hierarchical, recursive, and cancelation behavior (Challenges 2, 3, 4, and 8).
Furthermore, novel performance metrics bring process performance analysis
more into the software engineering domain (Challenge 7).

Contribution 5 — A family of model translations, supporting hierarchy, recur-
sion, and cancelation. Leveraging the process tree extensions mentioned above,
Chapter 9 provides an extensive model translation framework, taking into ac-
count the hierarchical, recursive, and cancelation semantics. This way, we sep-
arate visualization and representation bias and allow our results to be mapped
to more user-friendly visualizations, as discussed in Challenges 5 and 7. In
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addition, the translations maintain traceability across models and event logs,
allowing to map the results back to the software artifacts, as discussed in
Challenge 6.

Contribution 6 — Extensive tool support for round-trip software analysis. We
provide a rich implementation of the concepts and algorithms presented in this
thesis which allows the user to create event logs from their own software (Chal-
lenge 1), perform process mining, and link the results back to the source code.
Chapter 10 discusses the implemented tools, the interactions amongst tools,
the user interactions (Challenge 8), and how our tools allow for integration
with existing software artifacts (Challenge 6).

Figure 1.8 shows the structure of this thesis. Part I provides an introduction
to process mining and software engineering. Chapter 2 introduces the basic
concepts of process mining. Chapter 3 positions the thesis and discusses related
work. Chapter 4 introduces a basic process mining foundation upon which the
techniques in the rest of the thesis build.

Part II presents our novel hierarchical process discovery techniques. Chap-
ter 5, discusses the properties, patterns, and the accompanied challenges of
software event logs. Chapter 6 introduces the hierarchical process tree notation
to model hierarchical and recursive behavior. In addition, we present several
algorithms for discovering hierarchical and recursive models. Chapter 7 intro-
duces the cancelation process tree notation to model cancelation regions using
process trees. In addition, we present an algorithm for discovering cancelation
process trees.

Part III further explores hierarchical process mining beyond model discov-
ery. Chapter 8 introduces a hierarchical approach to performance analysis. Our
hierarchical performance analysis approach allows us to analyze performance
while taking into account hierarchical, recursive, and cancelation behavior.
Chapter 9 provides an extensive model to model transformation framework,
taking into account the hierarchical, recursive, and cancelation semantics.

Part IV discusses applications of the techniques and algorithms presented in
this thesis. Chapter 10 presents the implemented tools, their interactions, and
how our tools allow for integration with existing software artifacts. Chapter 11
presents a methodology for obtaining and analyzing software event log data in
a structured way. Chapter 12 presents various case studies, showing how our
techniques can be used in practice.

Part V concludes this thesis. Chapter 13 summarizes the main results
and discusses possible research directions that build on the presented work.
Appendix A presents the proof details for the various theorems and lemmas
found throughout this thesis.
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Figure 1.8: The structure of this thesis. The white boxes indicate the chap-
ters, grouped into five parts. The blue circles above the chapters refer to the
contributions and the grey boxes below the chapters refer to the challenges.
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Preliminaries

In this chapter, we will introduce the definitions, formalizations, and notations
used throughout the rest of the thesis. We start by introducing some basic
notations and terminology in Section 2.1. In Section 2.2, we discuss several
process model notations used in later chapters for discovering and visualizing
behavioral models. In Section 2.3 we will discuss event logs, the basic input
for many process mining techniques. In Section 2.4 we will discuss the directly
follows relation, an event log abstraction commonly used in process discovery.

2.1 Basic Notation
In this section, we start with sets, sequences, functions, and projections (Sec-
tion 2.1.1), followed by some basic graph theory (Section 2.1.2).

2.1.1 Sets, Sequences, and Functions
Definition 2.1.1 — Sets and Multisets. A set is an unordered collection of
elements. We use uppercase letters to denote sets and lowercase letters to
denote the elements. Given sets X = { a, b } and Y = { b, c }, we denote:

P(X) The power set over X.
For example: P(X) = { ∅, { a } , { b } , { a, b } }

X ∪ Y The union of X and Y .
For example: X ∪ Y = { a, b, c }

X ∩ Y The intersection of X and Y .
For example: X ∩ Y = { b }

X \ Y The set difference, i.e., in X but not in Y .
For example: X \ Y = { a }

X ⊆ Y The subset relation, i.e., is X a subset of Y .
For example: { a, b } ⊆ { a, b, c }.

∅ The empty set
A multiset is a set where each element can appear multiple times. Given

multisets A =
[
a2, b1

]
=
[
a2, b

]
∈ B(X), B =

[
b1, c1

]
= [ b, c ] ∈ B(Y )

and elements a, b, c ∈ X, we denote:
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B(X) The set of all multisets of set X.
For example: A ∈ B(X) = {[ ],

[
a1
]
,
[
b1
]
,
[
a2, b1

]
, . . .}

A(a) The number of times a appears in multiset A.
For example: A(a) = 2, A(b) = 1, A(c) = 0

A+B The summation of A and B.
For example: A+B =

[
a2, b2, c1

]
A−B The difference of A and B.

For example: A−B =
[
a2
]

A ≤ B The subbag relation, i.e., is A a subbag of B.
For example: [ a, b ] ≤

[
a2, b, c

]
.

|B| The size of a multiset is given by the total number of
elements: |B| =

∑
a∈B B(a) = 2

[ ] The empty multiset

Definition 2.1.2 — Sequences. A sequence is an ordered list of elements.
Given a set X = { a, b }, a sequence over X of length n is denoted as
σ = 〈 a1, . . . , an 〉 ∈ X∗. We denote:

X∗ The set of all sequences of X.
For example: X∗ = { ε, 〈 a 〉 , 〈 b 〉 , 〈 a, a 〉 , 〈 b, a 〉 , . . . }

σ · σ′ The concatenation of σ and σ′ For example: 〈 a, b 〉 ·
〈 c, d 〉 = 〈 a, b, c, d 〉, and 〈 a, b 〉 · ε = 〈 a, b 〉

σ � σ′ The set of all interleavings (shuffles) of σ and σ′. The
order of elements in σ and σ′ are respected in σ � σ′.
For example: 〈 a, b 〉 � 〈 c, d 〉 = { 〈 a, b, c, d 〉 , 〈 a, c, b, d 〉 ,
〈 a, c, d, b 〉 , 〈 c, a, b, d 〉 , 〈 c, a, d, b 〉 , 〈 c, d, a, b 〉 }

σ[i] Refer the ith element: 〈 a1, . . . , an 〉 [i] = ai
head(σ) The head (first element) of σ: head(〈 a1, . . . , an 〉) = a1

end(σ) The end (last element) of σ: end(〈 a1, . . . , an 〉) = an
ε The empty sequence

Definition 2.1.3 — Set and Sequence Comprehension. Set comprehension is
a notation for describing a set by stating the properties that its elements
must satisfy. For example, consider:

X = { 2 · x | x ∈ N ∧ x > 3 }
Here, X denotes the set containing all the numbers “2 times x” such

that x is an element of the natural numbers (N) and x is greater than 3.
The same idea can be extended to multisets and sequences as well, e.g.:

σ = 〈x | x ∈ 〈 1, 2, 3, 4 〉 ∧ “x is even” 〉
Here, σ denotes the ordered sequence containing all the even numbers

in the sequence 〈 1, 2, 3, 4 〉 (the order is maintained). Hence, this sequence
comprehension yields the sequence σ = 〈 2, 4 〉. Note that 〈 . . . | false 〉 = ε.
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Definition 2.1.4 — Functions. A function is a relation from a set X to a set
Y , where every element in X is associated with an element of Y . Given set
X and Y , we denote:
f : X 7→ Y The function f with domain type X and range type Y

dom(f) The domain of f : dom(f) = X
rng(f) The range of f : rng(f) = { f(x) | x ∈ X } ⊆ Y

A function f : X 7→ Y can be applied to sequences over X, yielding
sequences over Y . We define sequence function application, with σ ∈ X∗:

f(σ) = 〈 f(x) | x ∈ σ ∧ x ∈ X 〉

Definition 2.1.5 — Projections. A projection restricts or filters a function,
multiset, or sequence to a given domain Z. We define projections as follows:

Projection f�Z restricts function f to domain Z, with x ∈ dom(f):

f �Z (x) = f(x) for x ∈ dom(f�Z) = dom(f) ∩ Z

Projection A�Z restricts multiset A ∈ B(X) to domain Z, with a ∈ X:

A �Z (a) =

{
0 if a /∈ Z
A(a) if a ∈ Z

Projection σ�Z restricts sequence σ ∈ Y ∗ to domain Z, with y ∈ Y : We
define sequence function application, with σ ∈ X∗:

σ�Z = 〈x | x ∈ σ ∧ x ∈ Z 〉

For example, we have:[
a2, b, c3, d

]
�{ b,c } =

[
b, c3

]
〈 a, b, c, d, e, c, f 〉 �{ b,c } = 〈 b, c, c 〉

〈 a, b, c, d, e, c, f 〉 �{ a,d,e,f } = 〈 a, d, e, f 〉

2.1.2 Graph theory
A graph is a set of nodes combined with a set of edges, such that each edge
connects two nodes. Edges and nodes can be labeled and annotated. For
example, a node might have a name, and an edge can have a weight. If the
edges of a graph have no direction, the graph is an undirected graph. If the
edges do have a direction, the graph is a directed graph The start of a directed
edge is called the source, and the end is called the target. A directed graph can
be projected onto an undirected graph by ignoring the direction of the edges.
Figure 2.1 shows an example directed graph with 6 nodes and 9 edges.

We write a graph G with set of nodes V and set of edges E as G = (V,E).
We write (a, b) ∈ G to denote the existence of edge (a, b) ∈ E.
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a b c

d e f

Figure 2.1: Example graph with strongly connected components indicated.
The solid circles are the nodes and the arrows the edges. The dashed regions
indicate the strongly connected components.

Definition 2.1.6 — Path in a Graph. A (directed) path, notation  , in a
graph G is a non-empty sequence of nodes such that for all sequential pair
of nodes there exists a corresponding edge (in the connected direction).

For example, in Figure 2.1, there exists a path between nodes a and c
(a  c ∈ G), but no path between f and b (a  c /∈ G) since the edges are
connected in the wrong direction.
Definition 2.1.7 — (Strongly) Connected Components. A connected compo-
nent in an undirected graph is a non-empty set of nodes such that for each
pair of nodes u, v in the set, there is a path in the graph between u and v
(in either direction).

A strongly connected component in a directed graph is a non-empty set
of nodes such that for each pair of nodes u, v in the set, there is both a
directed path from u to v and a directed path from v to u in the graph.

For example, the graph in Figure 2.1 consists of a single connected com-
ponent and has 3 strongly connected components, which are indicated by the
dashed regions.
Definition 2.1.8 — Graph Cuts. A n-ary cut is a partition of the nodes V
of a graph G = (V,E) into pairwise disjoint non-empty sets Σ1, . . . ,Σn. A
graph cut is a non-trivial cut if n > 1 and no partition Σi is empty.

For example, the strongly connected components in Figure 2.1 describe a
valid non-trivial cut yielding 3 partitions: { a, b, d }, { c } and { e, f }.

2.2 Process Model Notations

Process models capture the behavior of a process. A plethora of modeling no-
tations exist, some tailored to business processes, and some tailored to software
processes. All these models describe, in different degrees of formality, if and
in which order activities are to be executed. That is, process models describe
a language in terms of activities. In this context, an activity is a well-defined
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step in the process such as a user task, an external service, a software method
or statement, etc. Process models can usually be represented in terms of a
graph, but more complex notations also exist.

In this section, we describe process model notations from both the busi-
ness process context and the software engineering context. We consider the
following notations: Petri nets (Section 2.2.1), YAWL (Section 2.2.2), BPMN
(Section 2.2.3), Statecharts (Section 2.2.4), Message Sequence Diagrams (Sec-
tion 2.2.5), and process trees (Section 2.2.6).

2.2.1 Petri nets
Petri nets are the oldest and best-investigated process modeling language that
naturally supports concurrency [146, 163]. Although the graphical represen-
tation is intuitive and relatively simple, Petri nets are executable, and many
analysis techniques can be used to analyze them. In this section, we intro-
duce the basics of Petri nets and some subclasses and extensions to this formal
notation.

Basic Petri net Notations and Definitions
A Petri net is a bipartite graph consisting of places and transitions, connected
by arcs. An example of a Petri net is given in Figure 2.2. Circles represent
places, and squares represent transitions. Arcs are arrows connecting places
and transitions in a bipartite manner. Transitions can represent tasks or ac-
tivities. A silent activity or transition, also called a τ -transition, is represented
by a filled black transition.

The state of a Petri net is determined by the distribution of tokens over
places and is referred to as its marking. Black dots represent the tokens and
arcs indicate the input and output places. When a transition is executed, it
consumes one token from each input place, and produces a token in each of
their output places. The start of the process is indicated by the initial marking,
and the end or termination of the process is indicated by a final marking.

In the example Petri net from Figure 2.2, the initial marking is given by
[ p0 ] (i.e., it starts with one token in the place p0 ). The firing rule defines
the dynamic behavior of this marked Petri net. A transition is enabled if each
of its input places contains a token. An enabled transition can fire if it is
enabled, thereby consuming one token from each input place, and producing
one token for each output place. In the initial marking in Figure 2.2, the
only transition that is enabled is a. After firing transition a, the token from
place p1 is consumed, and a token is placed in each of the three output places
(p1, p2, and p3 ), enabling the three parallel branches. In this new marking,
only transitions b, g, d and t (the black τ -transition) are enabled. Note that
transition d can be skipped via the τ -transition. The final marking [ p8 ] can
be reached by firing, for example, the sequence a, b, g, d, f, h. Because of the
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Figure 2.2: Example Petri net for a web service provider process. The initial
marking is [ p0 ], and the final marking is [ p8 ]. Note that this model is un-
sound, e.g., consider the firing sequence 〈 a, b, f, g, d, e 〉 ending in the marking
[ p5, p6, p8 ]. Possible sound variants are given in Figures 2.5 and 2.7.

loop construct involving c and b, there are infinitely many firing sequences.
Observe that the sequence a, b, f, g, d, e results in the marking [ p5, p6, p8 ],
and transition h is not enabled in this marking. Hence, from this marking,
we can no longer reach the final marking [ p8 ]. As we will explain below, this
is an example of a (problematic) unsound Petri net. A solution could be, for
example, to remove transition e.

To formalize Petri nets, we introduce some definitions and notations.
Definition 2.2.1 — Petri net. Let A denote the activity alphabet and let τ
denote a special (silent) label such that τ /∈ A. A Petri net is a tuple PN =
(P, T, F, `), where:

P is a finite set of places
T is a finite set of transitions, such that P ∩ T = ∅
F is a finite multiset of directed arcs: F ∈ B((P × T ) ∪ (T × P ))
` is a transition labeling function: ` : T 7→ A ∪ { τ }

Definition 2.2.2 — Pre set and Post set. Let PN = (P, T, F, `) be a Petri
net. For any x ∈ (P ∪ T ), we denote:
•x The pre (multi)set or input nodes of x: •x = [ y | (y, x) ∈ F ]
x• The post (multi)set or output nodes of x: x• = [ y | (x, y) ∈ F ]

The state of a Petri net is determined by the distribution of tokens over
places and is referred to as its marking. The firing rule defines the execution
semantics of a Petri net and captures how tokens are consumed and produced.
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Definition 2.2.3 — Marking, Enabled, and the Firing Rule. Given a Petri net
PN = (P, T, F, `), a marking M is a multiset of places, i.e., M ∈ B(P ).
A transition t ∈ T is enabled in a marking M , denoted (PN ,M)[t〉, if and
only if •t ≤ M , i.e., if in marking M there are enough tokens on all the
input places of t.

Firing transition t in marking M results in a new marking M ′ = (M −
•t) + t•, denoted M [t〉M ′, i.e., tokens are removes from the set of input
places •t and added to the set of output places t•. The firing rule _[_〉_ is
the smallest relation such that for any Petri net PN , any markingM ∈ B(P )
and any t ∈ T with •t ≤M , we have: (PN ,M)[t〉(PN , (M − •t) + t•).

For a given Petri net in a given state or marking, we can now define which
markings are reachable, and what sequences of transitions can be fired.

Definition 2.2.4 — Firing Sequences and Reachability. Let PN = (P, T, F, `)
be a Petri net and let M be a marking in PN , i.e., M ∈ B(P ).

A sequence σ ∈ T ∗ is called a firing sequence of (PN ,M), if and only
if it is a sequence of enabled transitions starting in M . More formally,
assuming M = M0, sequence σ ∈ T ∗ is a firing sequence iff, for some
n ∈ N, there exists markings M1, . . . ,Mn and transitions t1, . . . , tn ∈ T
such that σ = 〈 t1, . . . , tn 〉, and for all i with 0 ≤ i < n, we have both:
• (PN ,Mi)[ti+1〉, i.e., ti+1 is enabled in Mi; and
• (PN ,Mi)[ti+1〉(PN ,Mi+1), i.e., firing ti+1 from Mi results in the new

marking Mi+1.
A marking M ′ is reachable in PN from the marking M , notation M ′ ∈

[PN ,M〉, if and only if there exists a sequence of enabled transitions whose
firing leads from M to M ′, i.e., iff there is a sequence of firings σ =
〈 t1, t2, . . . , tn 〉 that transforms M into M ′, denoted M [σ〉M ′.

The start of a process is indicated by an initial marking and the end or
termination by a final marking. We capture a Petri net plus its initial and final
marking in a system net. Using these initial and final markings, we define the
language of a system net by capturing all full firing sequences.

Definition 2.2.5 — System net. A system net [1, 14] is a tuple SN = (PN ,
Mini ,Mfin) where:

PN is a Petri net
Mini is the initial marking: Mini ∈ B(P )
Mfin is the final marking: Mfin ∈ B(P )

Using the firing rule, we can now define which sequence of transitions can
fire in a system net. Moreover, we can capture all the reachable markings, and
define the language of a system net.
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Definition 2.2.6 — Full Firing Sequences and Language. Let SN = (P, T, F,
Mini ,Mfin , `) be a system net.

A sequence σ ∈ T ∗ is called a full firing sequence of (SN ,Mini), if it leads
from Mini to Mfin , notation: Mini [σ〉Mfin . The set of full firing sequences,
i.e., the set of sequences of enabled transitions leading from Mini to Mfin ,
is denoted as: SSN = {σ ∈ T ∗ |Mini [σ〉Mfin }

The language of a system net SN , notation L(SN ), is given by the set
of all full firing sequence labels: L(SN ) = { `(σ) | σ ∈ SSN ∧ `(σ) 6= τ }.

In the Petri net of Figure 2.2 with Mini = [ p0 ], the marking Mfin =
[ p8 ] is reachable through, for example, the firing sequences 〈 a, b, g, d, f, h 〉
and 〈 a, b, f, g, t, h 〉. The languge trace corresponding to the firing sequence
〈 a, b, f, g, t, h 〉 equals 〈 receive request, read data part, prepare query, parse
request head, process request 〉. Note that τ -transition t has no label. The
marking [ p5, p6, p8 ] is reachable through, for example, the firing sequence
〈 a, b, f, g, d, e 〉. However, the marking [ p7, p8 ] is not reachable from Mini .

Workflow Nets, Soundness, and Block-structured Workflow Nets
Workflow nets (WF-nets) are a subclass of system nets that have a dedicated
source place where the process starts, and a dedicated sink place where the
process ends [8]. Moreover, all nodes in a WF-net are on a path from source
to sink. The subclass of workflow nets is a natural representation for process
models that describe the lifecycle of a case.

Definition 2.2.7 — Workflow net. A workflow net (WF-net) [1, 14] is a sys-
tem net SN = (P, T, F,Mini ,Mfin , `) such that:
• There is a single source place i ∈ P such that: •i = ∅
• There is a single sink place o ∈ P such that: o• = ∅
• All places and transitions are on a path from i to o
• The source is the initial marking: Mini = [ i ]
• The sink is the final marking: Mfin = [ o ]

Observe that the Petri net in Figure 2.2 is a workflow net. However,
as noted before, there is a problem with this Petri net: the firing sequence
〈 a, b, f, g, d, e 〉 results in the marking [ p5, p6, p8 ], and the final marking is no
longer reachable. The Petri net in Figure 2.2 is an example of a (problematic)
unsound Petri net. We call a workflow net sound if each transition can fire
from the initial marking, and from each reachable marking, it is possible to
reach the final marking [8]. More formally:

Definition 2.2.8 — Soundness. Let SN = (P, T, F, [ i ] , [ o ] , `) be a workflow
net with source place i and sink place o. The WF-net SN is sound [1, 14]
if and only if:
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• Safeness: Places cannot hold multiple tokens at the same time:
∀M ′ ∈ [SN , [ i ]〉, p ∈ P : M ′(p) ≤ 1
• Absence of dead parts: Every transition can be enabled:
∀ t ∈ T : ∃M ′ ∈ [SN , [ i ]〉 : (SN ,M ′)[t〉
• Option to complete: For any marking reachable from the initial mark-

ing, it is possible to reach the final marking:
∀M ′ ∈ [SN , [ i ]〉 : [ o ] ∈ [SN ,M ′〉
• Proper completion: Every marking reachable from the initial marking

with a token in o has no tokens left behind:
∀M ′ ∈ [SN , [ i ]〉 : o ∈M ′ ⇒M ′ = [ o ]

Note that the option to complete implies proper completion.

Soundness is an important property, and unsound models are undesirable.
In an unsound model, some process steps might be inexecutable, one might
end up in a deadlock, or there might be tokens remaining after a token reaches
the sink place. In extreme cases, an unsound model might not even be able to
complete, i.e., the final marking might not be reachable at all. Furthermore,
when (automatically) analyzing unsound models, the analysis results can be
unreliable and counter-intuitive.

There exist various other kinds of soundness [14]. For example, a weaker
notion of soundness is weak soundness: a workflow net is weakly sound if
there is at least one way to reach the final marking from the initial marking.
Another example is relaxed soundness: a workflow net is relaxed sound if for
every transition t there is at least one trace from the initial to the final marking.
A sound workflow net is by definition also weak and relaxed sound.

Figure 2.3a shows an example of a workflow net in which the final marking
is not reachable. After firing either a or b, the net is in a deadlock: c would
require both a and b to be fired. Figure 2.3b shows an example of a workflow
net in which there can be remaining tokens after the sink place is reached.
After firing a, b, and c, transition d can fire: a token is placed in the sink
place, but there is a remaining token in the input place of d.

A subclass of workflow nets that are guaranteed to be sound is the block-
structured workflow net [130]. A workflow net is block-structured if, for every
place or transition with multiple outgoing arcs, there exists a corresponding
place or transition with multiple incoming arcs, respectively. Moreover, the
parts of the net between the outgoing and incoming arcs form regions, and
no arcs may exist between these regions. That is, each region has a single
entry and a single exit. Figure 2.4 demonstrates this single-entry-single-exit
property. Note that dashed regions can be bound by either transitions or
places and there are no arcs between the regions. The sound workflow net
in Figure 2.5 is block structured. The filled regions denote the blocks of the
block-structure, ensuring soundness.
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(a) A workflow net with an un-
reachable final marking. Mini =
[ p0 ] and Mfin = [p3 ].

(b) A workflow net with remaining tokens.
Mini = [p0 ] and Mfin = [p4 ].

Figure 2.3: Two examples of unsound workflow nets. See also Definition 2.2.8.

Figure 2.4: Single-entry-single-exit regions. Note that dashed regions can be
bound by either transitions or places and there are no arcs between the regions.

Figure 2.5: Example of a block-structured workflow net with initial marking
Mini = [ p0 ] and final marking Mfin = [ p8 ]. This net is a sound variant of the
example Petri net in Figure 2.2, obtained by removing transition e. The filled
regions denote the blocks of the block-structure.
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Reset arcs, Cancelation Regions, and Inhibitor arcs

Several extensions to Petri nets have been proposed to increase their expres-
sivity. In this section, we briefly discuss two: reset arcs and inhibitor arcs.

A reset arc between a place and a transition removes all tokens from that
place when the transition is fired. However, the place does not have to contain
tokens for the transition to be enabled. That is, the reset arc does not influence
the precondition of the transition. Reset arcs are typically used to ‘clean up’
tokens after a particular part of a process is canceled. As syntactic sugar,
one can associate a cancelation region with a transition t to denote the set of
places that have reset arcs to transition t. In Figure 2.6a two reset arcs are
shown, and in Figure 2.6b the same behavior is modeled using a cancelation
region. Figure 2.7 demonstrates how a cancelation region can be used to fix the
soundness issue in Figure 2.2. For example, the firing sequence 〈 a, b, f, g, d, e 〉
now results in the marking [ p8 ]; the tokens in p5 and p6 are removed after
firing e due to the cancelation region.

An inhibitor arc between a place and a transition models the requirement
for an empty place. That is, a transition with inhibitor arcs is only enabled
when all the places indicated by the inhibitor arcs are empty/contain no tokens.
In Figure 2.6c an inhibitor arc is shown.

A reset arc can always be transformed into an inhibitor arc, but the reverse
is not true [8]. Note that inhibitor arcs makes Petri nets Turing complete [156].

Definition 2.2.9 — Reset/Inhibitor net. A Reset/Inhibitor net is a tuple
PN = (P, T, F,R, I, `), where:

P is a finite set of places
T is a finite set of transitions, such that P ∩ T = ∅
F is a finite multiset of directed arcs: F ∈ B((P × T ) ∪ (T × P ))
R is a finite multiset of reset arcs: R : T 7→ P(P )
I is a finite multiset of inhibitor arcs: I : T 7→ P(P )
` is a transition labeling function: ` : T 7→ A ∪ { τ }

Definition 2.2.10 — Enabled and the Firing Rule in a Reset/Inhibitor net.
Let PN = (P, T, F,R, I, `) be a Reset/Inhibitor net and letM be a marking
in PN , i.e., M ∈ B(P ).

A transition t ∈ T is enabled in a marking M , denoted (PN ,M)[t〉, if
and only if •t ≤M and

∣∣∣M�I(t)∣∣∣ = 0, i.e., if in marking M there are enough
tokens on all the input places of t and there are no tokens on any of the
inhibited places I(t).

Firing transition t in marking M results in a new marking M ′ = (M −
•t) �(P\R(t)) +t•, denoted M [t〉M ′, i.e., tokens are removes from the set of
input places •t, any remaining tokens on the reset places R(t) are removed,
and tokens are added to the set of output places t•.
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(a) A Petri net with two reset arcs, modeled as double headed arrows.

(b) The Petri net from Figure 2.6a modeled with a cancelation region, de-
picted as a dashed region.

(c) A Petri net with an inhibitor arc, modeled as an arrow with open circle.

Figure 2.6: Examples of counting Petri nets using the reset and inhibitor
extensions. The language of these nets consists of traces that start with an a,
followed by b’s and c’s, and ending with a d. In the reset nets (Figures 2.6a
and 2.6b), the number of c’s never exceeds the number of b’s. In the inhibitor
net (Figure 2.6c), the number of c’s equals the number of b’s. Both constructs
cannot be expressed in a classical Petri net.

Figure 2.7: Example of a reset workflow net with a cancelation region and
with initial marking Mini = [ p0 ] and final marking Mfin = [ p8 ]. This net is a
sound variant of the example Petri net in Figure 2.2, obtained by associating
a cancelation region with transition e.
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2.2.2 YAWL – Yet Another Workflow Language

YAWL is both a workflow modeling language and an open-source workflow sys-
tem [8, 86]. The acronym YAWL stands for “Yet Another Workflow Language”.
The language was designed to provide an illustrative implementation of an im-
portant subset of the typical constructs to represent how cases flow through
a process: the workflow patterns [15]. These workflow patterns were identi-
fied based on a systematic analysis. They cover, amongst others, control-flow,
data, resource and exception patterns.

Figure 2.8: Example YAWL model for a loan application process. The start
and end conditions are labeled as such. The main YAWL model, excluding the
submodel for g, has the same language as the reset net model in Figure 2.7.
Note that the cancelation region must include the arcs, which represent the
‘hidden places’ from the model in Figure 2.7.

The YAWL language extends Petri nets using syntactic sugaring and several
constructs that increase the expressibility. Here we restrict ourselves to the
control-flow perspective. An example of a YAWL model is given in Figure 2.8.
Activities in YAWL are called tasks. Places are called conditions and are
optional, i.e., tasks may be connected directly. Each task can be decorated
with well-defined split and join semantics. The AND-join/AND-split tasks
behave like a Petri net transition: it needs to consume one token via each
input arc and produces a token via each output arc. In contrast, an XOR-split
selects exactly one of its outgoing arcs, and an XOR-join is enabled once for
every incoming token, without synchronization. The OR-split selects one or
more of its outgoing arcs, i.e., it selects a subset of all outgoing arcs. The
OR-join requires at least one input token, but also synchronizes tokens that
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are “on their way”. That is, as long as another token may arrive, the OR-join
waits. Furthermore, YAWL offers natural support for cancelation regions. The
semantics of a YAWL cancelation region is exactly the same as the Petri net
reset arc semantics mentioned before.

It should be noted the OR-join has non-local semantics: the decision to
wait or not does not only depend on its direct predecessors but also on parts of
the model that may lead to future triggers. Due to these non-local semantics,
it is possible to create a paradox known as “the vicious circle” where we do not
know whether the OR-joins should propagate or not [12, 98, 199].

Tasks in a YAWL model are either atomic or composite. A composite task
refers to another YAWL model, and hence supports a notion of hierarchy. Via
a composite task, a complex activity can be modeled in more detailed steps via
a referenced subprocess. The main YAWL model in Figure 2.8, excluding the
submodel for g, has the same language as the reset net model in Figure 2.7.

Note that YAWLmodels can have similar soundness issues as Petri nets. By
mixing the AND/XOR/OR splits and joins, unsound models can be obtained.

2.2.3 BPMN – Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) has become one of the most
widely used languages to model business processes. BPMN is supported by
many tool vendors and has been standardized by the OMG [8, 153].

Figure 2.9: Example BPMN model for a loan application process. The start
and end events are labeled as such. This BPMN model has the same language
as the YAWL model in Figure 2.8, including the submodel for g. Note that
the cancelation region is modeled via a subprocess and cancel events.
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A BPMN model is similar to a Petri net or YAWL model, and most con-
structs can easily be understood in the same way. One notable difference is
that the routing logic is not associated with tasks (as in YAWL), but with sep-
arate gateways. Like YAWL, there are routing constructs for AND, XOR, and
OR. An example of a BPMN model is given in Figure 2.9. Atomic activities are
called tasks. The notion of composite tasks is modeled via a subprocess task.
A BPMN event is comparable to a transition in a Petri net with one incom-
ing and one outgoing arc. There are two types of events: catching events and
throwing events. Catching events wait for some trigger, for example, a timeout,
an external message, or canceling the current task or subprocess. Throwing
events are actively triggered during the process, for example, sending a signal
or message to some catch event, or causing a cancelation. Observe that we can
represent a cancelation region in BPMN through the use of a subprocess and
cancel events. The BPMN model in Figure 2.9 has the same language as the
YAWL model in Figure 2.8, including the submodel for g.

Note that BPMN models can have similar soundness issues as Petri nets.
By mixing the AND/XOR/OR gateways, unsound models can be obtained.

2.2.4 Statecharts

Statecharts were first introduced as a visual formalism by David Harel in
1987 [80]. The visual formalism was designed for specifying the behavior of
complex reactive systems in the context of software and systems engineering.
Statecharts extend classical state-transition diagrams with hierarchy, concur-
rency, and communication. Here, we will restrict ourselves to hierarchy and
concurrency only. Later, Statecharts were incorporated in the Unified Mod-
eling Language standard (UML) as StateMachines, adding an object-oriented
extension [154]. Since the conception of Statecharts, there have been several
works proposing associated formal semantics [81, 82, 83, 105, 184].

An example of a Statechart model is given in Figure 2.10. In Statecharts,
activities are represented by states. Arcs called transitions connect states.
Outgoing and incoming arcs follow the XOR semantics. States may be grouped
in a super-state, creating a hierarchy of states. Super-states come in two flavors:
AND super-states and XOR super-states. The XOR super-states are similar to
YAWL composite tasks and BPMN subprocesses: they model a refinement of a
particular state into smaller steps. The AND super-state models concurrency
by capturing the orthogonal product of several XOR super-states, also known
as regions in UML terminology. In Figure 2.10, the center AND super-state
has three regions, separated by dashed lines: 1) the region containing states
b, c, and f, 2) the region containing the g XOR super-state, and 3) the region
containing the state d. For the sake of clarity, UML introduced fork and join
pseudo-states to model the beginning and end of a concurrent control-flow.
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Figure 2.10: Example Statechart model for a loan application process. The
start and end states are labeled as such. This Statechart model has the same
language as the YAWL model in Figure 2.8, including the submodel for g. Note
that the cancelation region is modeled via a super-state arc.

In the Statecharts language, one can also model an arc from a super-state.
Such a super-state arc is short for an arc from every underlying sub-state. Note
that such a super-state arc can be used to model a cancelation region. The
Statechart model in Figure 2.10 has the same language as the YAWL model
in Figure 2.8, including the submodel for g.

Note that, in Statecharts, both states and transitions can be labeled. The
label on a transition is called an event ; transitions are assumed to be instan-
taneous. In contrast, non-pseudo states are assumed to be non-instantaneous.
In a process context, activities represent some amount of work being executed;
they are not instantaneous. Hence, we chose to map activities to states, and
not to events.

2.2.5 MSD – Message Sequence Diagrams

Message Sequence Diagrams (MSDs) are a popular visual formalism for de-
scribing scenarios in terms of partial orderings on events. Early standards
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for MSDs appeared as Message Sequence Charts (MSCs) in a recommenda-
tion of the ITU [201]. This ITU standard defines the syntax of MSCs and
is accompanied by formal semantics in terms of process algebra [202]. Other
efforts at formal semantics have been made in terms of Petri nets and other
formalisms [36, 74, 104]. Later, Message Sequence Diagrams were incorporated
in the Unified Modeling Language standard (UML) [154].

Figure 2.11: Example Message Sequence Diagram (MSD) for a loan appli-
cation process. The first message (seen from the top) is the start. This MSD
has almost the same language as the YAWL model in Figure 2.8, including the
submodel for g. The only difference is that the loop retry (activity c) could
not be modeled exactly, and can also occur at the end of the loop in this MSD.
The cancelation region is modeled via a try-catch fragment.

A Message Sequence Diagram shows how concurrent objects or processes
interact over time. These object or processes are depicted as parallel vertical
lines called lifelines. Horizontal arrows indicate the exchange of messages be-
tween any two objects or processes. Here, the exchanged messages are labeled
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and represent activities. Messages with solid arrowheads represent synchronous
calls; messages with dashed lines represent reply messages. When sending a
synchronous message, the source lifeline must wait till the message is done, as
indicated by the reply message. Hence, synchronous-reply message pairs model
the invocation of subroutines, similar to YAWL composite tasks and BPMN
subprocesses. Activation boxes are opaque rectangles drawn on top of lifelines
to represent that an activity is being performed in response to a message. The
vertical order of messages over the lifelines implies the partial order sequence
in which activities must occur. Messages can be grouped into fragments, drawn
as rectangular groups. These fragments can be used to model more advanced
concepts such as alternatives (alt), optionals (opt), loops (loop) and parallelism
(par). We will use the fragment labels try and catch to model cancelations.
In Figure 2.10 an example MSD is given. This MSD has almost the same
language as the YAWL model in Figure 2.8, including the submodel for g. The
only difference is that the loop retry (activity c) could not be modeled exactly,
and can also occur at the end of the loop in this MSD.

Note that Message Sequence Diagrams are traditionally used to describe
scenarios, i.e., they typically describe a set of example behaviors. Extensions
like live sequence charts (LSCs) [59] attempt to formally lift MSDs by explicitly
modeling universal (must happen) and existential (can happen) views. For our
purposes, we simply assume that the MSDs have a universal semantics; i.e.,
the diagrams model all the possible runs of a process.

Observe that, unlike the other models presented, Message Sequence Dia-
grams explicitly capture objects or processes via the lifeline notation.

2.2.6 Process Trees

Petri nets, WF-nets, BPMN models and YAWL models may be unsound, i.e.,
they may suffer from deadlocks, livelocks, and other anomalies. Soundness is
an important property, and unsound models are undesirable, unreliable and
counter-intuitive. One does not need to look at an event log to see that an
unsound model cannot describe the observed behavior well. Process discovery
approaches using any of the graph-based process notations mentioned may
produce unsound models. In fact, the majority of models in the search space
tend to be unsound [8]; this complicates discovery. One solution is to use
block-structured models that are sound by construction due to the fact that
each control-flow split has, by design, a corresponding join of the same type.
In this section, we introduce process trees as a notation to represent such
block-structured models. In contrast to other block-structured notations such
as process algebras [66] and BPEL [48], process trees have been designed to
facilitate process discovery and allow for easy manipulation of, and reasoning
over, the model.



2.2 Process Model Notations

2

39

→

a
receive
request

∧

→

	

b
read

data part

c
parse
data

f
prepare
query

g
parse request

head

×

d
check

authorization

τ

h
process
request

→ sequence

× exclusive choice

∧ concurrency

	 structured loop

a normal activity

τ silent activity

Figure 2.12: Example process tree for a loan application process. The top
node is called the root. This process tree has the same language as the Petri
net model in Figure 2.5.

A process tree is a hierarchical process model where the (inner) nodes are
operators such as sequence and choice, and the leaves are activities. Such a
process tree describes a language, and the operators describe how the languages
of subtrees are to be combined. In its basic form, there are four types of opera-
tors that can be used in a process tree: → sequence or sequential composition,
× exclusive choice or XOR choice, ∧ concurrency or parallel composition, and
	 structured loop or redo loop.

We will explain each operator using the example process tree given in Fig-
ure 2.12. This process tree has the same language as the Petri net model in
Figure 2.5. We start with the root node. In Figure 2.12, the root node is
a sequence operator (→) with three children: an activity a, a subtree, and an
activity h. This means that every process instance or trace starts with activ-
ity a, followed by the subtree, and ends with activity h. The subtree rooted
in the concurrency operator (∧) executes all of its children concurrently, i.e.,
any interleaving or parallel execution is possible. The exclusive choice subtree
(×) chooses one of its subtrees to execute: either d or the silent activity τ .
Since the silent activity τ cannot be observed, this means that the activity d
can either be executed or skipped. The subtree rooted in the structured loop
operator (	) starts with the leftmost child and may loop back through any of



40 Chapter 2. Preliminaries

its other children. This means we execute activity b, and if we choose to loop
back by executing the “redo” activity c, then we can execute b again.

The process tree in Figure 2.12 can also be represented textually:

→(a,∧(→(	(b, c), f), g,×(d, τ)), h)

The same activity may appear multiple times in the same process tree. For
example, the tree →(a, a, a) models a sequence of three a activities. Since the
silent activity τ cannot be observed, we can use it to model various properties:
×(a, τ) models an activity a that can be skipped; 	(a, τ) models the process
that executes a at least once; and 	(τ, a) models the process that executes a
any number of times.

To formalize process trees, we introduce the syntax, semantics, and func-
tions defined below.
Definition 2.2.11 — Process tree. We formally define process trees recur-
sively. We assume a finite alphabet A of activities and a set

⊗
of operators

to be given. The symbol τ /∈ A denotes the silent activity.
Any a ∈ (A ∪ { τ }) is a process tree. Let Q1, . . . , Qn with n > 0 be

process trees and let ⊗ ∈
⊗

be a process tree operator, then ⊗(Q1, . . . , Qn)
is a process tree. We consider the following process tree operators:
→ denotes a sequence or the sequential composition of all subtrees
× denotes an exclusive choice or XOR choice between one of the

subtrees
∧ denotes concurrency or the parallel composition of all subtrees
	 denotes the structured loop or redo loop with loop body Q1 and

alternative loop back paths Q2, . . . , Qn (with n ≥ 2)

We define the semantics and language of process trees directly by defining
how each operator combines the languages of its subtrees. The leaves are
defined directly, completing this recursive language definition. Recall that
sequence concatenation (·) and shuffle (�) were explained in Definition 2.1.2
on page 22.
Definition 2.2.12 — Process tree Semantics and Language. LetQ be a process
tree over the alphabet A and let τ /∈ A denote the silent activity. The
language of a process tree Q, notation L(Q), is defined recursively:

The basis of the process tree language are the activity a ∈ A and silent
activity (τ) leaves. For the activity leaf we define the singleton trace and
for the silent activity leaf the empty trace. For any process tree operator ⊗,
we use the operator specific language-join functions ⊗L defined below:
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L(a) = { 〈 a 〉 }
L(τ) = { ε }

L(⊗(Q1, . . . , Qn)) = ⊗L(L(Q1), . . . ,L(Qn))

The sequence operator concatenates the language of all its subtrees in
order. For →(Q1, Q2, . . . , Qn) we define the language-join function →L:

→L(L1, . . . , Ln) = {σ1 · σ2 · . . . · σn | ∀1≤i≤n σi ∈ Li }

The exclusive choice operator chooses one of its subtrees for execution.
For ×(Q1, Q2, . . . , Qn) we define the language-join function ×L:

×L(L1, . . . , Ln) =
⋃

1≤i≤n
Li

The concurrency operator yields the parallel or interleaved composition
of all subtrees. For ∧(Q1, Q2, . . . , Qn) we define the language-join func-
tion ∧L using the sequence shuffle operator (�) from Definition 2.1.2:

∧L(L1, . . . , Ln) = {σ ∈ (σ1 � σ2 � . . . � σn) | ∀1≤i≤n σi ∈ Li }

The structured loop starts with the leftmost child (the loop body) and
may loop back through any of its other children (the redo paths). For
	(Q1, Q2, . . . , Qn) we define the language-join function 	L:

	L(L1, . . . , Ln) = {σ1 · σ′1 · σ2 · σ′2 · . . . · σm−1 · σ′m−1 · σm | m ≥ 1 ∧

∀1≤i≤m σi ∈ L1 ∧ ∀1≤i<m σ′i ∈
⋃

2≤j≤n
Lj }

Observe that a loop indirectly models a XOR choice between the redo
paths. See for example the language L(	(a, b, c)) in the example below. In
addition, note that, based on the semantic definition, the order of children for
the operators ×, ∧, and the order of non-first children for the operator 	 are
arbitrary. For example, 	(a, b, c) and 	(a, c, b) are equivalent. We will address
these properties in more detail in the rewrite rules for process on the next page.

� Example 2.1 The following examples further illustrate the process tree oper-
ators and their semantics:

L(τ) = { ε }
L(a) = { 〈 a 〉 }

L(→(a, b, c)) = { 〈 a, b, c 〉 }
L(×(a, b, c)) = { 〈 a 〉 , 〈 b 〉 , 〈 c 〉 }
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L(∧(a, b, c)) = { 〈 a, b, c 〉 , 〈 a, c, b 〉 , 〈 b, a, c 〉 , 〈 b, c, a 〉 , 〈 c, a, b 〉 , 〈 c, b, a 〉 }
L(	(a, b, c)) = { 〈 a 〉 , 〈 a, b, a 〉 , 〈 a, c, a 〉 , 〈 a, b, a, c, a 〉 , 〈 a, c, a, b, a 〉 , . . . }

L(	(a,×(b, c))) = { 〈 a 〉 , 〈 a, b, a 〉 , 〈 a, c, a 〉 , 〈 a, b, a, c, a 〉 , 〈 a, c, a, b, a 〉 , . . . }
L(	(τ, a, b, c)) = { ε, 〈 a 〉 , 〈 b 〉 , 〈 c 〉 , 〈 a, a 〉 , 〈 a, b 〉 , 〈 a, c 〉 , 〈 b, a 〉 , 〈 b, b 〉 , . . . }
L(→(a,×(b, c),∧(a, a))) = { 〈 a, b, a, a 〉 , 〈 a, c, a, a 〉 }

L(×(τ, a, τ,→(τ, b),∧(c, τ))) = { ε, 〈 a 〉 , 〈 b 〉 , 〈 c 〉 }

Observe that the model 	(τ, a, b, c) allows for any behavior over the activities
a, b, c, i.e., L(	(τ, a, b, c)) = { a, b, c }∗. This particular construction is known
as a flower model, and this idea will be used again in Chapter 4. �

Process trees are sound by construction, and each process tree is easily
translatable to, amongst others, sound block-structured workflow nets. For
example, compare Figure 2.12 and Figure 2.5.

Observe that multiple process trees can describe the same language. With
the reduction rules described in Table 2.1, we can transform an arbitrary pro-
cess tree into a normal form. It is not hard to reason that these rules preserve
language. A process tree on which these rules have been applied exhaustively
is a reduced process tree.

Table 2.1: Reduction rules for process trees. By applying these rules exhaus-
tively, one obtains a reduced process tree in a normal form.

⊗(Q1) = Q1 for ⊗ ∈ {→,×,∧}
⊗(. . .1 ,⊗(. . .2), . . .3) = ⊗(. . .1 , . . .2 , . . .3) for ⊗ ∈ {→,×,∧}

⊗(. . .1 , τ, . . .2) = ⊗(. . .1 , . . .2) for ⊗ ∈ {→,∧}
×(. . .1 , τ, . . .2) = ×(. . .1 , . . .2) if ε ∈ L(. . .1 ∪ . . .2)

	(	(Q1, . . .1), . . .2) = 	(Q1, . . .1 , . . .2)

	(. . .1 ,×(. . .2), . . .3) = 	(. . .1 , . . .2 , . . .3)

When calculating and reasoning with process trees, the utility functions
defined below can come in handy.
Definition 2.2.13 — Process Tree Functions. We define the following utility
functions for a process tree Q and a given node Q′ somewhere in Q.

children(Q′) Node children: the set of children for a given node Q′:

children(Q′) =

{
{Q1, . . . , Qn } if Q′ = ⊗(Q1, . . . , Qn)

∅ otherwise

For example: children(a) = ∅, children(→(a, b)) =
{a, b}, and children(→(a,×(b, c))) = {a,×(b, c)}.
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enum(Q′) Enumerate tree: the set of nodes for a given node Q′:

enum(Q′) =
{
Q′
}
∪

⋃
Q′′∈children(Q′)

enum(Q′′)

For example: enum(a) = { a }, enum(→(a, b)) =
{a, b,→(a, b)}, and enum(→(a,×(b, c))) = {×(b, c), b, c,
→(a,×(b, c)), a}.

parent(Q,Q′) parent node: the parent of Q′ in the tree Q:

parent(Q,Q′) =


Q′′ if ∃Q′′ ∈ enum(Q) :

Q′ ∈ children(Q′′)

⊥ otherwise

For example: parent(a, b) = ⊥, parent(→(a, b), a) =
→(a, b), and parent(→(a,×(b, c)), b) = ×(b, c).

path(Q,Q′) path sequence: the sequence of nodes from root Q to
node Q′:

path(Q,Q′) =


path(Q,Q′′) · 〈Q′ 〉 if parent(Q,Q′)

= Q′′ 6= ⊥
〈Q′ 〉 otherwise

For example: path(→(a, b), a) = 〈→(a, b), a〉 and
path(→(a,×(b, c)), b) = 〈→(a,×(b, c)),×(b, c), b〉.

2.3 Event Logs

Process mining is impossible without proper event logs. An event log stores the
execution history of a process. For discovery algorithms and many other pro-
cess mining techniques, event logs are the main input. These event logs can
be found everywhere: in enterprise information systems and business trans-
action logs, in web servers, in high-tech systems such as X-ray machines, in
warehousing systems, and many other places [8].

In this section, we will first discuss the basic structure of an event log in
Section 2.3.1. Next, we will discuss two commonly used views on event logs:
atomic event logs (Section 2.3.3), and non-atomic event logs (Section 2.3.4).

2.3.1 Structure of an Event Log
We will explain the structure of an event log using the example dataset given
in Table 2.2. This event log relates to the process model in Figure 2.7. An
event log contains data related to a single process.
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Table 2.2: Example event data related to the process model in Figure 2.7.
Each line represents one event, each column an attribute. Case 1 records a
rejected request (event 1.6 cancels activity g, hence no complete was recorded
to match event 1.3), while case 2 records a processed request.

Attributes

Case id Event id Activity Lifecycle Timestamp Resource . . .

1 1.1 a receive request start 30-10-2017 11:02:45.000 main-thread . . .
1.2 a receive request complete 30-10-2017 11:02:45.500 main-thread . . .
1.3 g parse request head start 30-10-2017 11:02:45.650 worker-1 . . .
1.4 d check authorization start 30-10-2017 11:02:45.651 worker-3 . . .
1.5 d check authorization complete 30-10-2017 11:02:45.710 worker-3 . . .
1.6 e reject request start 30-10-2017 11:02:45.820 main-thread . . .
1.7 e reject request complete 30-10-2017 11:02:45.870 main-thread . . .

2 2.1 a receive request start 30-10-2017 11:03:12.150 main-thread . . .
2.2 a receive request complete 30-10-2017 11:03:12.450 main-thread . . .
2.3 g parse request head start 30-10-2017 11:03:12.670 worker-2 . . .
2.4 b read data part start 30-10-2017 11:03:12.670 worker-1 . . .
2.5 g parse request head complete 30-10-2017 11:03:13.110 worker-2 . . .
2.6 b read data part complete 30-10-2017 11:03:13.160 worker-1 . . .
2.7 f prepare query start 30-10-2017 11:03:13.320 worker-1 . . .
2.8 f prepare query complete 30-10-2017 11:03:13.400 worker-1 . . .
2.9 h process request start 30-10-2017 11:03:13.670 main-thread . . .
2.10 h process request complete 30-10-2017 11:03:14.220 main-thread . . .

3 3.1 a receive request start 31-10-2017 09:43:16.030 main-thread . . .
...

...
...

...
...

...
...

. . .

Each line in the table represents one event, and each column represents
one attribute of this event. Each event is associated with a case or process
instance. The sequence of events that are recorded for a case is called a trace.
As a bare minimum for process mining, we also assume that events can be
related to some label, e.g., an activity. The concept of a classifier maps the
attributes of an event onto a label, i.e., given an event, a classifier returns the
corresponding (activity) label based on the event attributes. In the example
of Table 2.2, the events are grouped by case and sorted chronologically; each
group is one trace. It is important that each event is grouped into a trace, and
that events are sorted. For without ordering information, it is impossible to
discover causal dependencies in process models.

In addition to a case and activity, events can be annotated with numerous
other attributes. Typically, an event also has an associated timestamp, i.e.,
date and time information for when the event occurred. This information is
useful when analyzing performance-related properties. In detailed event logs,
events can be associated with a lifecycle transition such as start and complete.
This way, the start and complete of an activity, and thus its duration, is
recorded. In addition, resources can be recorded to indicate which person
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executed the activities. Note that the start and complete lifecycle transitions
are a subset of the transactional lifecycle model [8]. This model also supports
more detailed transitions, such as schedule, pause, resume, abort, and reassign.

For example, consider the event log in Table 2.2. For case 1, we can see
that an activity g was started in event 1.3, but never completed. This is due
to event 1.6 and the associated cancelation behavior (recall the cancelation
region modelled for activity e in the process model in Figure 2.7).

To recap, we assume the following general structure of an event log:

• An event log consists of cases.
• A case consists of events such that each event relates precisely to one

case; no event is duplicated in a case or an event log.
• Events within a case are ordered.
• Events can have attributes. Examples of typical attributes are activity,
lifecycle, timestamp and resource. Some attributes are optional; below
we define the so-called standard attributes.
• A classifier maps the attributes of an event onto a label or name. For

example, a typical classifier uses the activity attribute to label events.

The above structure and assumptions are captured in the following defini-
tion for events, classifiers, and an event log.
Definition 2.3.1 — Event and Attributes. Let E be the event universe, i.e.,
the set of all possible event identifiers. Events may be characterized by
various attributes, such as an activity name, a timestamp, etc. For any
event e ∈ E and attribute name n, the value of attribute n for event e is
#n(e). If event e does not have an attribute named n, then #n(e) = ⊥,
i.e., the null value.

For convenience, we assume the following standard attributes:
#act(e) the activity associated to event e.
#time(e) the timestamp of event e.
#res(e) the resource associated to event e.
#life(e) the lifecycle transaction type associated to event e.

For example: start, complete, schedule, etc.

Definition 2.3.2 — Classifier. A classifier is a function that maps the at-
tributes of an event onto a label. For any event e ∈ E and classifier λ#, the
name of event e is given by λ#(e).

If events are simply identified by their activity name, then λ#(e) =
#act(e). For example, event 1.1 in Table 2.2 would be mapped onto a.

If events are identified by their activity name and lifecycle transaction
type, then λ#(e) = (#act(e),#life(e)). For example, event 1.1 in Table 2.2
would be mapped onto (a, start).
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Definition 2.3.3 — Event Log. Let E be a set of events. Let L ⊆ E∗ be an
event log, a set of traces such that no event is duplicated in L. That is, for
any two traces σ, σ′ ∈ L and any two numbers i, j such that 1 ≤ i ≤ |σ| and
1 ≤ j ≤ |σ′| we have (σ(i) = σ′(j))⇒ (σ = σ′ ∧ i = j).

2.3.2 XES – Extensible Event Stream

The XES format, or eXtensible Event Steam format, is the de facto standard
to store and exchange event logs. XES is the successor of MXML and was
adopted by the IEEE Task Force on Process Mining in September 2010 [8].
An XES document is an XML file that contains one log and consists of any
number of traces. Each trace describes a sequential list of events corresponding
to a particular case. The log, its traces, and its events can have any number
of attributes. Attributes are typed key-value pairs and may be nested.

The XES standard does not prescribe a fixed set of mandatory attributes
for each element. To provide semantics for attributes, the log refers to so-
called extensions. An extension gives semantics to particular attributes. The
XES standard extensions define the basic attributes mentioned in the previous
section. For example, the activity of an event is specified via the Concept
extension. The lifecycle transitions are detailed in the Lifecycle extension.
And the timestamp and resource attributes are specified in the Time and
Organizational extension respectively. In addition, XES allows new extensions
to be defined and used by end users.

XElement XTrace

XLog

XEvent

XAttributable

XAttribute

Key

XAttribute 
ID

XAttribute 
Continuous

XAttribute 
Boolean

XAttribute 
Timestamp

XAttribute 
Discrete

XAttribute 
Literal

XExtension

URI Name Prefix

<log>

<trace>

<event>

<meta>

<declares>

Core Standard Extension Interface

Figure 2.13: The XES metamodel, as originally defined in [77, 187].
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Figure 2.13 presents the XES metamodel. For more detailed information
on XES and the XES metamodel, we refer the reader to [77, 187]. We will
introduce some novel XES extensions in Section 5.3 on page 102. For the basic
discovery algorithms and their explanation, we will abstract from the rich event
log structure and XES format.

2.3.3 Atomic Event Log

For the basic discovery algorithms and their explanation, the rich event log
structure described above is a bit of overkill. If one is just interested in when
which activity occurred, we can use a simplified view of the event log. In this
section, we will define the atomic event log model and show how an event log
can be transformed to an atomic event log using a classifier.

In the atomic event log, we assume that an event is just an atomic activity
without any further attributes. Hence, we can describe an atomic event log
simply as a multiset of traces, where each trace is a sequence of activities.
Definition 2.3.4 — Atomic Event Log. Let A be a set of activities. Let
LA ∈ B(A∗) be an atomic event log, a multiset of traces. A trace σ ∈ LA

with σ ∈ A∗ is a sequence of activities.

Definition 2.3.5 — Transforming an Event Log into an Atomic Event Log. Let
L ⊆ E∗ be an event log as defined in Definition 2.3.3. Assume a classifier λ#

has been defined. Any trace σ ∈ L can be mapped onto a sequence of
activities using classifier λ# as follows: 〈λ#(e) | e ∈ σ 〉. The atomic event
log LA is derived as follows: LA = [ 〈λ#(e) | e ∈ σ 〉 | σ ∈ L ]

Note that, for the transformation in Definition 2.3.5, any classifier is valid.
That is, we are not restricted to using only the activity name attribute.

� Example 2.2 The rich event log in Table 2.2 can be represented as different
atomic event logs. For the sake of the example, we assumed that the activity
sequence of case 1 occurred 12 times, and the activity sequence of case 2
occurred 23 times. The table below shows a few transformations using different
classifiers and different filters applied before transformation.

atomic event log filter and classifier

LA = [ 〈 a, a, g, d, d, e, e 〉12 ,
〈 a, a, g, b, g, b, f, f, h, h 〉23 , . . . ]

Filter: none
Classifier: λ#(e) = #act(e)

LA =
[
〈 a, d, e 〉12 , 〈 a, g, b, f, h 〉23 , . . .

] Filter: remove start events
Classifier: λ#(e) = #act(e)

LA =
[
〈 a, g, d, e 〉12 , 〈 a, g, b, f, h 〉23 , . . .

] Filter: remove complete events
Classifier: λ#(e) = #act(e)
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atomic event log filter and classifier

LA = [ 〈main-thread,worker-3,
main-thread 〉12, 〈main-thread,worker-2,
worker-1,worker-1,main-thread 〉23, . . . ]

Filter: remove start events
Classifier: λ#(e) = #res(e)

Note the repetition of activities in the first example. This is due to the
lifecycle information in Table 2.2. By filtering out start or complete events,
different atomic event logs can be obtained, see the second and third example.
By using a different classifier, different views can be obtained. The last exam-
ple shows how the resource classifier can be used to get an atomic event log
detailing the relation between resources/threads. �

The atomic event log allows for some simple but rich event calculations. A
common operation used in (discovery) algorithms is the activity projection.

Definition 2.3.6 — Activity Log-Projection. Given a set Σ ⊆ A and trace
σ ∈ LA, we write Σ(σ) = Σ ∩ { a ∈ σ } to denote the set of activities in the
intersection of Σ and σ. We write Σ(LA) = Σ∩{ a ∈ σ | σ ∈ LA } to denote
the set of activities in the intersection of Σ and LA.

We write A(σ) to get the complete set of activities in σ, and A(LA) to
get the complete set of activities in LA.

We can use the activity log-projection and normal multiset operations to
derive various event log properties. For instance, the size of an event log L,
notation |L|, equals the number of traces in that log. The size of the activ-
ity alphabet of an event log L, notation |A(L)| equals the number of unique
activities in that log.

For example, we have for the log L = [ 〈 a, b, a, c 〉 , 〈 c, d, e 〉 ]:

|L| = 2

A(L) = { a, b, c, d, e }
|A(L)| = |{ a, b, c, d, e }| = 5

2.3.4 Non-Atomic Event Log

In atomic event logs, an event denotes the execution of an activity, which is
assumed to be atomic or instantaneous. For some cases, this view is a bit too
simplistic. In a non-atomic event log, executions of activities are represented
by two events instead of one: a start event and a complete event. That is, we
include a basic version of the lifecycle transitions and indirectly capture the
intervals during which activities are executed. Note that the full transactional
lifecycle model supports more detailed transitions, such as schedule, pause, and
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abort. However, for the purpose of capture the activity execution intervals, we
do not need the full lifecycle model.

In this section, we define the non-atomic event log model and show how an
event log can be transformed to a non-atomic event log.
Definition 2.3.7 — Non-Atomic Event Log. Let A be a set of activities.
Let LC = { start , complete } be the set of lifecycle transitions, denoting
start and complete respectively. Let LLC ∈ B((A× LC )∗) be a non-atomic
event log, a multiset of traces. A trace σ ∈ LLC with σ ∈ (A× LC )∗ is a
sequence of activities annotated with start or complete.

We write a+s to denote the start activity pair (a, start), with a ∈ A
and start ∈ LC . We write a+c to denote the complete activity pair
(a, complete), with a ∈ A and complete ∈ LC .

Definition 2.3.8 — Transforming an Event Log into an Non-atomic Event Log.
Let L ⊆ E∗ be an event log as defined in Definition 2.3.3. Assume we
have defined: 1) an activity label classifier λ#, and 2) a lifecycle transition
attribute #life . Any trace σ ∈ L can be mapped onto a sequence of activity-
lifecycle pairs as follows: 〈 (λ#(e),#life(e)) | e ∈ σ 〉. The non-atomic event
log LLC is derived as follows:

LLC = [ 〈 (λ#(e),#life(e)) | e ∈ σ 〉 | σ ∈ L ]

� Example 2.3 The rich event log in Table 2.2 can be represented as the follow-
ing non-atomic event log, after filtering on start and complete events and using
the classifier λ#(e) = #act(e). Again, we assumed that the activity sequence
of case 1 occurred 12 times, and the activity sequence of case 2 occurred 23
times.

LLC = [ 〈 a+s, a+c, g+s, d+s, d+c, e+s, e+c 〉12 ,

〈 a+s, a+c, g+s, b+s, g+c, b+c, f+s, f+c, h+s, h+c 〉23 , . . . ]

�

2.4 Directly-Follows Relation and the Directly-Follows Graph

In this section, we introduce the directly-follows relation and its associated
directly-follows graph. This relation expresses a causal language abstraction
that is used in many process mining techniques. These abstractions are used as
a basis for the discovery techniques described in this thesis. Both the directly-
follows relation and graph can be defined over an (atomic) event log, but also
over a process model [8, 130]. Hence, we will first explain these concepts over
a language, and later give examples for both an event log and a process model.
In this context, a language is simply a set of traces, where each trace is a
sequence of symbols or activities.
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2.4.1 Definition of the Directly-Follows Relation and Graph

The directly-follows relation specifies which activities can directly follow one
another in a language. This relation is an abstraction over all the traces in
a language. For example, in the language L = { 〈 a, b 〉 , 〈 a, c 〉 }, activity a is
directly followed by b and a is directly followed by c, but there is no directly-
follows relation between b and c.

The directly-follows graph captures the directly-follows relation, and ex-
plicitly tracks the start and end activities of a language. For example, in
the language L = { 〈 a, b 〉 , 〈 a, c 〉 }, the directly-follows graph consists of three
nodes and two edges: one edge from a to b, and one edge from a to c. In this
language a is a start activity, and b and c are end activities.

We formally define the directly-follows relation and directly-follows graph
below.
Definition 2.4.1 — Directly-Follows Relation and Graph. Let A be a set of
activities, and let L ⊆ A∗ be a language or atomic event log over A. Let
B /∈ A denote the start of a trace and let � /∈ A denote the end of a trace.
The directly-follows relation over L, notation�L, is defined as:

�L= { (a, b) ∈ A×A | ∃σ ∈ L : σ = σ1 · 〈 a, b 〉 · σ2 }
∪ { (B, a) | a ∈ A ∧ ∃σ ∈ L : σ = 〈 a 〉 · σ2 }
∪ { (a,�) | a ∈ A ∧ ∃σ ∈ L : σ = σ1 · 〈 a 〉 }
∪ { (B,�) | ε ∈ L }

We write a�L b to denote (a, b) ∈�L.
The directly-follows graph over L is the graph G(L) induced by �L,

i.e., G(L) = (
⋃
a�Lb

{ a, b },�L). We define the following functions over
directly-follows graphs:

Start(G) = { a ∈ A | B�L a } The set of all start activities in G.
End(G) = { a ∈ A | a�L � } The set of all end activities in G.

The set of start and end activities for a log L is defined as Start(L) =
Start(G(L)) and End(L) = End(G(L)) respectively. The set of start and
end activities for a model Q is defined as Start(Q) = Start(G(L(Q))) and
End(Q) = End(G(L(Q))) respectively.

2.4.2 Example Directly-Follows Graphs

As stated before, the directly-follows relation and graph can be defined over
an (atomic) event log, but also over a process model. The definition above
assumed a generic language. Below, we will discuss concrete examples for
both process models and event logs.
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(a) Model PN 1. (b) Model PN 2.

B a

g

d

h �

(c) Directly-follows graph G(PN 1).

B b

c

f �

(d) Directly-follows graph G(PN 2).

Figure 2.14: Example Petri nets and their corresponding directly-follows
graphs. These models are subsets of the model in Figure 2.5. Note that the
start activities are denoted by an incoming arc starting in B, and the end
activities are denoted by an outgoing arc ending in �. See also Example 2.4.

� Example 2.4 — Directly-Follows Graph for Process Models. In Figure 2.14 two
Petri net models and their corresponding directly-follows graphs are depicted.

In model PN 1, Figure 2.14a, we have an activity a, followed by activities d
and g in parallel, followed by activity h. Note that in G(PN 1), Figure 2.14c,
the parallel behavior is expressed by the strongly connected component { d, g },
indicating these activities can happen in any interleaving. Observe that remov-
ing the silent transition (τ) in PN 1 does not change its directly-follows graph.

In model PN 2, Figure 2.14b, we have an activity b, after which activity c
allows for a redo of activity b (loop back), followed by activity f. In G(PN 2),
Figure 2.14d, we also observe a strongly connected component: { b, c }. Note
that in G(PN 2) we only start in activity b, and can only continue with f after b,
i.e., it is not possible to start or end with c. Hence, this strongly connected
component captures the intended loop, and not some interleaving behavior. �

Observe how, in the above example, patterns in the directly-follows graph
are related to process model constructs. Likewise, as we will show in the
example below, patterns in an event log can be related to patterns in the
directly-follows graph.

� Example 2.5 — Directly-Follows Graph for Atomic Event Logs. We will be
reusing the directly follows graph from Figure 2.14. We have:

atomic event log directly-follows graph

L1 = [ 〈 a, g, d, h 〉 , 〈 a, d, g, h 〉 ] G(L1) = G(PN 1), Fig. 2.14c
L2 = [ 〈 b, f 〉 , 〈 b, c, b, f 〉 , 〈 b, c, b, c, b, f 〉 ] G(L2) = G(PN 2), Fig. 2.14d
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Observe that the atomic event log L′1 = { 〈 a, g, h 〉 , 〈 a, d, h 〉 } would not
yield G(PN 1) as a directly-follows graph. By removing the edges (d, g) and
(g, d) from G(PN 1), we would obtain the directly-follows graph G(L′1). �

In the above examples, patterns in the event log can be abstracted and
detected via the directly-follows graph, which in turn can be related to process
models. Several process discovery algorithms have exploited these properties;
see Chapter 3 for an extensive discussion. In Chapter 4, we will explore these
directly-follows relations further for the purpose of process discovery.

2.4.3 Annotated Directly-Follows Graphs

In the above sections, we introduced the basic notion of directly-follows graphs.
When deriving such graphs from event logs, additional information can be de-
rived and annotated onto these graphs. For example, frequency information
can be useful for discovery algorithms to determine which behavior occurs more
frequently than other behavior [130]. In addition, likelihood or probability an-
notations could be used to evaluate incomplete behavior [130], and dependency
annotations can be used to evaluate heuristic measures [192].

In order to extend directly-follows graphs with frequency information, the
set of nodes become multisets and the edges become annotated with a weight
denoting how often a relation happened. See also the example below.

B b

c

h

f
�

9
1 1

8 8

4 4

2

Figure 2.15: Directly-follows graph with frequency annotations on the edge.
The numbers on each arc indicate how often that relation happened in the fol-
lowing atomic event log: L = [ ε2, 〈 b, f 〉5 , 〈 b, c, b, f 〉2 , 〈 b, c, b, c, b, f 〉 , 〈 b, h 〉 ].

� Example 2.6 — Directly-Follows Graph with Frequency Annotations. For ex-
ample, consider the annotated directly-follows graph in Figure 2.15. The edge
from B directly to � captures that 2 empty traces were recorded in L. The edge
from B to b captures that 9 traces started with activity b and the edge from b
to h informs us that in only one trace activity b was followed by activity h.

Using a frequency threshold, a discovery algorithm could for example prune
infrequent edges from the graph in Figure 2.15, yielding for example the re-
duced graph in Figure 2.14d. Similarly, using a frequency threshold, one could
also prune infrequent nodes. �
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2.5 Conclusion
In this chapter, we introduced the definitions, formalizations, and notations
used throughout the rest of the thesis. In the next chapter, we will describe
a discovery algorithm based on the process tree notation (Section 2.2.6) and
directly-follows graph (Section 2.4).





“It is not only the violin that shapes the violinist, we
are all shaped by the tools we train ourselves to use.”

— Edsger W. Dijkstra

3 | 3Related Work

In this thesis, we address some of the challenges in applying process mining to
analyze actual software system behavior. As a result, our work can be posi-
tioned in-between reverse engineering of software systems and process mining.
In addition, this thesis focusses on investigating and exploiting hierarchical
structures.

This chapter presents a broad and systematic survey of both the reverse
engineering and process mining fields and touches upon related hierarchical
techniques. The remainder of this chapter is organized as follows. Section 3.1
presents a taxonomy covering both fields. Section 3.2 discusses the similarity
and differences between a selection of model learning and process discovery.
Section 3.3 surveys scalability in related work and the use of hierarchies, hier-
archical decomposition, and submodels in the broader process mining perspec-
tive. Section 3.4 will discuss various aspects of performance analysis in both
fields, and investigate the use of hierarchies and submodels in the context of
performance analysis.

3.1 A Taxonomy covering Reverse Engineering and Process Mining

Substantial work has been done on analyzing and (re)constructing models from
software, example behavior, or (event) logs in a variety of research fields. Due
to this variety and complexity, we will first establish the taxonomy and termi-
nology used in the rest of the chapter.

The problem of (re)constructing models from systems, be it software sys-
tems, (business) processes, or any generic system with behavior, has been
studied under different names in different communities [8, 183]: Control the-
orists refer to it as system identification, computational linguists speak about
grammatical inference [90, 150]. Some papers use terms like regular infer-
ence [34], model inference [190], model identification [85], regular extrapola-
tion [78], automata learning [91], or model learning [183]. Security researchers
coined the term protocol state fuzzing [62]. The process mining community
talks about process discovery [8]. In addition, the software engineering field
also tried to (re)construct behavior by looking at static source code artifacts
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Figure 3.1: Taxonomy positioning Model Learning and Process Discovery in
the scope of Reverse Engineering of Software Systems and Process Mining.

(e.g., control-flow analysis [166]), or using online program analysis (e.g., pro-
filers [73]). To make sense of this broad research topic, we classify these model
(re)constructing techniques using the taxonomy presented in Figure 3.1.

In the software analysis and engineering community, we partition related
work into static analysis and dynamic analysis. Static analysis derives its
analyses and models without actually executing the software. It uses source
code, object code, byte code, or other static sources as input. In addition,
documentation and (design) models, both formal and informal, can be used.
Instead of running the code, one tries to understand the internal logic of the
software and how it (statically) connects with other parts. A typical example
is the work on control-flow and data-flow analysis [100, 166]. Dynamic analysis
derives its analyses and models by executing software programs on a real or
virtual processor.

We further partition the school of dynamic analysis into program moni-
toring and analysis, active learning and passive learning. Program monitoring
and analysis observe the software system on the run and present (aggregate)
runtime information and notifications. These approaches have only a limited
focus on constructing (formal) control flow models. Examples include profil-
ers [73, 136, 191] and application performance management (APM) suites [31,
164, 182]. Active learning tries to learn or discover a behavioral model by
actively interacting with the software system, i.e., it queries the system in-
stead of relying on a log. That is, a special learner algorithm interacts with
the software under study, and observes the responses and output. The learner
metaphorically presses the buttons of the system and observes what happens.
The most efficient learning algorithms used today all follow the seminal work
on L∗ by Angluin [28, 183]. Passive learning tries to learn or discover a behav-
ioral model without interacting with the software system, i.e., it relies on some



3.2 Discovery and Learning Techniques

3

57

form of logging or passive monitoring. In contrast to active learning, in passive
learning, one only observes the software system. We will use the term model
learning [183] to refer to the family of active and passive learning techniques
in the software engineering community.

In the process mining community, model (re)construction from logs is com-
monly referred to as process discovery [8]. In contrast to many software analysis
techniques, process mining provides a powerful and mature way of combining
and integrating both model (re)construction and analysis. That is, process
mining combines extracting (formal) enriched and annotated models and en-
abling performance and conformance analysis using these models. With the
use of structured and well-defined event logs numerous existing techniques can
be combined for advanced analyses.

We refer to Section 1.1 for an introduction to process mining techniques and
concepts. In Section 3.2.3 we will discuss the subtle but important differences
in assumptions between (software) model learning and process discovery.

3.2 Discovery and Learning Techniques

In this subsection, we provide a systematic comparison of existing reverse en-
gineering and process discovery techniques. We will leverage the taxonomy
of Section 3.1 and Figure 3.1 to classify the related work. The comparison
(Section 3.2.2) will be based on the set of feature criteria (Section 3.2.1), as is
summarized in Table 3.1. After that, Section 3.2.3 presents a more high-level
comparison of the different schools of discovery and learning techniques.

3.2.1 Feature Criteria for Comparison

For the comparison, we defined a set of feature criteria, divided into two groups:
1) guarantees and analysis support, and 2) discovery expressivity.

To be able to perform meaningful analyses on a discovered or learned model,
it is important that the technique and underlying model notation provide some
guarantees and analysis support. First of all, the underlying model notation
should have clear, well-defined, formal execution semantics. Clear semantics
is a prerequisite for reliable interpretation by both man and machine. For ex-
ample, without clear semantics, we cannot reliably perform performance and
conformance analysis. Secondly, discovered models should be sound and error-
free, i.e., they should be free of deadlocks and other anomalies. Although in
some situations vagueness can be a feature [11], when analyzing software, am-
biguity and unclear behavior should be avoided, all process steps should be
executable, and an end state should always be reachable. Without soundness,
the model, and any conclusion derived from it, is unreliable. Another criterion
is that the discovered models should represent the behavior recorded in the
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event log, i.e., the technique should be able to guarantee fitness for the discov-
ered models. Real-life event logs are often messy and challenging for discovery
algorithms. In these cases, it may be necessary to trade fitness for simplicity by
filtering out infrequent behavior, i.e., discovering a so-called 80/20 model. An
80/20 model describes the mainstream (80%) behavior using a simple (20%)
model [130]. In addition, the model should be used as the backbone for fur-
ther analysis. At the very least, frequency (usage) and performance (timing)
analysis should be supported.

Any discovery technique must decide on which type of behavior and process
model constructs it supports, i.e., it must decide on which class of behavior it
supports and leverage this representational bias. Learning and discovery tech-
niques, and their underlying model notations, should support the type of be-
havior that is recorded in the event log. At the very least, choice and loop con-
structions should be supported, capturing branching and repetitive behavior.
In software systems, typical examples include if-then-else and foreach/iterators
respectively. Concurrency and parallelism support is equally essential. In real-
ity, parts of a process or system may be executing in a non-deterministic order
or simultaneously and potentially interacting with each other [8]. In addition,
some behavior can only be captured by non-local control-flow constructs such
as long-distance dependencies or global behavior such as cancelation. Given
the Open Challenges from Section 1.3, we will discuss three types of behavior
in more detail:

1. Named Submodels (Hierarchy) (see Challenge 2 on page 14),
2. Recursion or Stack Behavior (see Challenge 3 on page 14), and
3. Cancelation or Reset Behavior (see Challenge 4 on page 15).

3.2.2 Discussion of Learning and Discovery Techniques
Using the above criteria, we will now discuss a selection of related learning and
discovery techniques as is summarized in Table 3.1.

Static Analysis
Static analysis focusses more on insights into relations and dependencies be-
tween various statements, and less on obtaining a fitting model with execution
semantics. As a consequence, the models obtained have very little behav-
ioral expressivity. Typical examples of static analysis include control-flow and
data-flow analysis based on static artifacts like source code. The techniques
from [27, 100, 101, 166, 181] discover branching behavior (choices and loops),
but not much more. Obviously, since no actual software is executed, no 80/20
model or frequency and performance analysis is possible.

A consequence of static analysis is that these techniques have a difficulty
capturing the actual, dynamic runtime behavior. Especially in the case of dy-
namic types and jumps (e.g., inheritance, method overloading, dynamic bind-
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Table 3.1: Comparison of related model discovery and learning techniques.

Author Technique / Toolkit Formalism

Exectution Semantics

Sound and Error-free

Fitness Guarantee

Infrequent (80/20 model)

Frequency and Performance

Choice and Loops

Concurrency and Parallelism

Non-local control-flow

Named Submodels (Hierarchy)

Recursion or Stack Behavior

Cancelation or Reset Behavior

S
ta
ti
c

A
n
al
ys
is

[181] Tonella Interaction control flow UML Interaction - n/a n/a n/a - X - - - - -
[101] Korshunova CPP2XMI, SQuADT UML SD, AD ±sd X X n/a - X - - ±sh - -
[100] Kollmann Control Flow UML Collaboration - n/a n/a n/a - X - - - - -
[166] Rountev Program control flow UML SD ±sd X X n/a - X - - ±sh - -
[27] Amighi Sawja framework Control Flow Graph - n/a n/a n/a - X - - - - -

M
on

it
or
in
g

&
P
ro
fi
li
n
g [73] Graham gprof profiler Call graphs - n/a n/a - X - - - X ±r -

[89] Hoorn, van Kieker Framework Call graphs - n/a n/a - X - - - X - -
[177] Szvetits Reusable Event Types UML, any - n/a n/a - X - - - X - -
[136] Yourkit, LLC Yourkiet Profiler Call graphs - n/a n/a - X - - - X - -
[191] Weidendorfer Callgrind, Kcachegrind Call graphs - n/a n/a - X - - - X - -

A
ct
iv
e

L
ea
rn
in
g [28] Angluin L∗ (MAT approach) Mealy machine X X X - - X - - - - -

[92] Isberner TTT algorithm Mealy machine X X X - - X - - - - -
[188] Volpato Approximate L∗ LTS X X ± - - X - - - - -
[50] Cassel Symbolic L∗ Register automata X X X - - X - X - - -
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[24] Alalfi PHP2XMI UML SD ±sd X X - - - - - ±sh - -
[152] Oechsle JAVAVIS UML SD ±sd X X - - - X - ±sh - -
[43] Briand Meta models / OCL UML SD ±sd X X - - X - - ±sh - -
[42] Briand Meta models / OCL UML SD ±sd X X - - X X - ±sh - -
[103] Labiche Meta models / OCL UML SD ±sd X X - - X - - ±sh - -
[176] Systä Shimba SD variant ±sd X X - - X - - ±sh - -
[190] Walkinshaw MINT EFSM X X X - - X - Xd - - -
[38] Beschastnikh CSight CFSM X X X - - X X - - - -
[20] Ackermann Behavior extraction UML SD ±sd X X - ±p X - - ±sh - -
[61] De Pauw Execution patterns Execution Patterns - n/a n/a - ±f ±x - - X X -
[85] Heule DFAsat DFA X X X - - X - - - - -
[37] Beschastnikh Synoptic FSM X X X - ±f X - - - - -
[150] Nevill-Manning Sequitur Grammar X X X - - - - - ±n - -
[171] Siyari Lexis Lexis-DAG X X X - - - - - ±n - -
[96] Jonyer SubdueGL Graph Grammar X X X - - ±g - - ±n ±t -
[54] Chow Mystery Machine Causal Model X X X - X - X - - - -
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[18] Aalst, van der Alpha algorithm Petri net X - - - Xa X X - - - -
[16] Aalst, van der 2-step approach (Regions) Petri net X ±s - - Xa X X X - - -
[35] Bergenthum Regions of Languages Petri net X ±s - - Xa X X X - - -
[192] Weijters Flexible heuristics miner Heuristics net X ±s - X Xa X X X - - -
[10] Alves de Medeiros Genetic miner Heuristics net X ±s - X Xa X X X - - -
[33] Augusto Structured miner BPMN X - - X Xa X X X - - -
[193] Werf, van der ILP miner Petri net X ±s X - Xa X X X - - -
[204] Zelst, van ILP with filtering Petri net X ±s X X Xa X X X - - -
[49] Carmona Genet Petri net X - X X Xa X X X - - -
[162] Redlich Constr. Competition miner BP(MN) X X - X Xa X X - - - -
[46] Buijs ETM miner Process tree X X - X Xa X X - - - -
[130] Leemans, S.J.J. Inductive miner (IM) Process tree X X X X Xa X X - - - -
[75] Günther Fuzzy miner Fuzzy model - n/a n/a X ±m X - - ±n - -
[94] Bose Two-phase discovery Fuzzy model - n/a n/a X ±m X - - ±n,u - -
[76] Fluxicon / Günther Disco Fuzzy model - n/a n/a X ±m X - - - - -
[51] Celonis GmbH Celonis Fuzzy model - n/a n/a X ±m X - - - - -
[72] Gradient ECM Minit Fuzzy model - n/a n/a X ±m X - - - - -
[97] Kalenkova TS with catching event Reset WF-net X ±s - - Xa X X ±c - - ±1

[2] Aalst, van der Generic post-processing Reset WF-net X - - - Xa X X ±c - - ±1

[55] Conforti BPMN miner BPMN X X - X ±b X X ±c ±n - ±q

[139] Mannhardt Guided Process Discovery Petri net X X X X Xa X X - ±u - -

This Thesis Hierarchical Discovery Ex. Process Tree* X X X X Xa X X ±c X X X
a Aligning an event log and a process model enables advanced perfor-
mance and conformance analysis [21, 130].
b Analysis is based on alignments via a translation from BPMN to
Petri nets, but subprocesses are not supported.
c Cancelation is a non-local control-flow construct.
d Data guards can indirectly express non-local constructs.
f Frequency-only; performance analysis is not supported.
g Loop constructs are not supported.
m Various log-based process metrics have been defined, such as fre-
quency, significance, and correlation [75].
n Submodels have no names (i.e., only cluster hierarchy).
p Performance-only; frequency analysis is not supported.

q Cancelation not based on control-flow but on data perspective.
r Performance analysis is lost when recursion is modeled.
s Under certain conditions, soundness [33, 58] or relaxed sound-
ness [206] can be guaranteed with pre- and post-processing.
sd Formal semantics are available for UML SD variants.
sh Properly nested SD activations can imply a hierarchy.
t Only tail recursion is supported.
u Hierarchy based on user-provided models.
x Choice constructs are not supported.
1 Cancelation support is limited to one cancelation region; combina-
tions of multiple constructs are not supported.
* Extended Process Tree, as introduced in Part II.
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ing, exception handling), it is difficult or impossible to statically determine the
actual software behavior. There is little support for named submodels and can-
celation patterns in static analysis. Well-structured sequence diagrams with
properly nested activations could be seen as a named submodel hierarchy [101,
166], but this suggested hierarchy is not exploited further for either analysis or
as an aid for the user to navigate the modeled complexity (e.g., zoom, collapse,
expand, etc.). Although some related works, like [27], do consider exception
handling, this information is not lifted to the concepts of cancelation behavior.
In addition, since static techniques either (symbolically) unfold or do not ex-
plore references like function calls, these techniques lack support for recursive
behavior.

Monitoring and Profiling

Profilers are widely accepted and used in developing software and are extremely
important for understanding program performance and behavior. Profiler-
driven program analysis on Unix dates back to 1973 when Unix systems in-
cluded a basic tool called prof [180], which listed each function and how much
of program execution time it used. In 1982, gprof extended the concept to
a complete call graph analysis [73]. In 2004, the gprof papers were amongst
the 50 most influential PLDI (Programming Language Design and Implemen-
tation) papers for the 20-year period ending in 1999 [141, 197].

Despite their long history, popularity, and ease of use, profilers [73, 136,
191] have several shortcomings. The notion of call graphs used by profilers
provides a hierarchical view of the executed program behavior, but no for-
mal execution semantics support these models. That is, they give a hint or
cross-section of the execution call stack, but provide little control-flow context
(e.g., iterations, branches, etc.). Similarly, cancelation behavior (e.g., excep-
tion handling) is also not exploited. And despite the hierarchical view with
named submodels, no recursion is supported, i.e., any recursive behavior is
presented in an unfolded manner. In addition, only one execution or trace is
considered, limiting the analysis capabilities. In particular, it is difficult to
derive statistically sound conclusions about the observed performance.

In contrast to profilers, monitoring frameworks like Kieker [89] forgo de-
tailed insights like execution call stacks. Instead, these monitoring techniques
attempt to provide statistically sound performance insights by recording and
using multiple executions or traces.

Active Learning

The most efficient active learning algorithms used today are based on the
seminal work on L∗ by Angluin, published in 1987 [28, 183]. Angluin showed
that finite automata can be learned using so-calledmembership and equivalence
queries. Angluin’s L∗ approach is based on the minimally adequate teacher
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(MAT) framework. In this framework, learning is viewed as a game in which a
learner has to infer the behavior of an unknown state machine by asking queries
to a teacher [28, 183]. The teacher knows the state machine, which is typically
a Mealy machine, i.e., a deterministic finite-state transducer whose output
values are determined both by its current state and the current inputs [196].
A learner uses membership queries to learn the output response to a given
input sequence and build a hypothesis model, and uses equivalence queries to
ask if a hypothesized (learned) Mealy machine is correct. If not, the teacher
will respond with a counter example.

For a specific subset of behavior, active learning can potentially learn all
the stateful behavior of an observed piece of software. Recent improvements,
like the TTT algorithm [92], are much more efficient than the original L∗.
However, in practice, active learning algorithms still have difficulty dealing
with non-deterministic and timing-based behavior, i.e., non-Mealy machine
behavior [183]. Recent advances tried to lift some of these restrictions by
using register automata, a subclass of extended finite state machines [188], and
approximating behavior to learn non-deterministic labeled transition systems
(LTS) [50]. To the best of our knowledge, no support exists in the active
learning community for named submodels, recursive behavior, or cancelation
behavior. In addition, one should realize that, even with these recent advances,
active learning: 1) requires a controlled and intrusive setup, where a learner
algorithm can interact with the software, and 2) cannot learn the behavior
and knowledge captured in the environment and clients using the software
under study. In practice, this means that a learner algorithm cannot always
be deployed, especially in an industrial (legacy) system, and that valuable
context information from the environment and clients is lost.

Passive Learning

In the school of passive learning, one passively observes the software system on
the run, capturing tracing data, for example in a log. From this tracing data,
an algorithm can extract a behavioral model. Many approaches use some kind
of software instrumentation [24, 38, 42, 43, 103] or debugger interface [152,
176], although various monitoring and logging approaches [20, 38, 54, 61, 85,
96, 150, 171, 190], and even some supplementary source code analysis [103],
are also used.

A large number of passive learning techniques focus on obtaining a rich
but flat control-flow model, either in the form of an UML Sequence Diagram
(UML SD), or a form of finite automata or state machine. A lot of effort has
been put in enriching such models with more accurate choice and loop infor-
mation [103], guards [42, 43, 190], and other predicates [20]. Well-structured
sequence diagrams with properly nested activations could be seen as a named
submodel hierarchy, but this suggested hierarchy is not exploited further for ei-
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ther analysis or as an aid for the user to navigate the modeled complexity (e.g.,
zoom, collapse, expand, etc.). In the field known as grammar inference, there
has been some work on inferring hierarchies and recursive patterns [96, 150,
171], however, these yield mostly nameless clusters and can handle only tail
recursions. In short, there is little support for named submodels and recursive
behavior, and no support for cancelation behavior.

Most passive learning techniques only focus on obtaining the control-flow
model, and ignore the application of these models for tasks like analysis. No-
table exceptions are the use of frequencies by [61], the analysis of network
timings and performance by [20], and the extensive performance analysis and
critical path or slack analysis by [54].

Process Discovery

The idea to discover processes was first introduced in 1998 by Agrawal, who
focused on processes in the context of (business) workflow management [23].
Around the same time, Cook investigated various notions of process discovery
and model learning in the context of software engineering [56]. The seminal
work on the α-algorithm by Van der Aalst, published in 2004, can be seen
as the first algorithm to truly capture concurrency in business processes [18].
The α-algorithm exploits the directly-follows relation and derived log-based
ordering relations to discover a Petri net. Much of the later work on process
discovery is, at least in some way, inspired by the α-algorithm and its use
of Petri nets and directly-follows abstractions. In contrast to the variety of
input sources found in software engineering, most process discovery techniques
simply rely on an event log in the XES format.

Many different techniques have been proposed, based on, for example, var-
ious heuristics [2, 33, 55, 97, 162, 192], inductive logic programming [193,
204], state-based regions [16, 49], language-based regions [35], genetic ap-
proaches [10, 46], user-guided approaches [94, 139] and inductive discovery [130].
Most of these techniques yield models with formal execution semantics. In con-
trast, most commercial process discovery approaches [51, 72, 76] are based on
the fuzzy miner approach [75], favoring a (visually) simple model by trading
formal semantics for the less precise fuzzy semantics.

Despite the variety of approaches, soundness and error-free guarantees
remain tricky. Region-based techniques, including inductive logic program-
ming [193, 204], state-based regions [16, 49], and language-based regions [35],
typically guarantee weak soundness (see page 29). For inductive logic program-
ming, relaxed soundness (see page 29) can be guaranteed if there is a unique
start and end symbol for all the traces in the event log [206]. The output of
state- and language-based techniques can use the technique from [58] to gen-
erate a corresponding Petri net, which might be forced to be a sound workflow
net under the unique start and end symbol assumption. The models produced



3.2 Discovery and Learning Techniques

3

63

by heuristic miners [10, 192] can be restructured to sound models using the
technique from [33]. In addition, process tree based approaches guarantee the
discovery of sound and error-free models by construction [46, 130]. These ap-
proaches trade some expressivity for soundness by using process trees, i.e.,
the subclass of block-structured workflow nets. Often, simple block-structured
models are too restrictive, and many techniques support the discovery of non-
local control-flow like long-distance dependencies [10, 16, 33, 35, 49, 192, 193,
204]. These techniques typically introduce additional Petri net places, i.e., ad-
ditional constraints, to capture non-local control-flow dependencies. However,
the introduction of such constructs can result in unsound models.

An interesting type of non-local control-flow is the cancelation region, which
allows to “cancel” or stop executing a part of the model (i.e., the part inside the
cancelation region), and start executing an alternative control-flow. Although
cancelation has been defined as an official workflow pattern [15], only a few
approaches provide some support [2, 55, 97]. However, existing cancelation
discovery is only limited to one cancelation region [2, 97], or is based on a data
perspective instead of control-flow [55]. Hence, there is a lack of support for
more general cancelation and reset behavior discovery (Challenge 4).

Other interesting modeling features are named hierarchies and recursion.
Different approaches have recognized the need for layered models using some
form of clustering, grouping, or subprocesses [55, 75, 94, 139]. These ap-
proaches use a form of hierarchy to reduce the modeled complexity and pro-
vide the user with a model in terms of more high-level concepts. However,
these approaches either rely on user input to define the hierarchies [94, 139],
or provide only nameless clusters [55, 75]. Hence, there is a lack of support to
discover named submodels based on the available event data, without relying
on manually created abstraction patterns (Challenge 2). In addition, although
modeling languages like BPMN have recognized the need for reusable, recur-
sively defined subprocesses, none of the discovery techniques support recursion
or stack behavior (Challenge 3). Especially when modeling software behavior,
proper support for named submodels and recursive behavior is a must.

With the exception of the fuzzy miner approaches, most of the process
discovery techniques yield models that can be directly used for advanced per-
formance, conformance, and enhancement via the work on alignments [21].

Our hierarchical performance analysis approach (Contribution 4, Chap-
ter 8) is also based on alignments. See Chapter 8 for a detailed explanation.

3.2.3 Discovery Assumptions and Model Expressivity

There are some subtle differences in assumptions between the schools of model
learning and process discovery and the type of models they can learn or dis-
covery. Table 3.2 summarizes the fundamental differences based on the main-
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Table 3.2: Comparison of active learning, passive learning, and process dis-
covery on the mainstream assumptions and expressivity.

Non-determenism

Duplicate Labels

Noise Handling

Concurrency
Loops Loop Identification

Active Learning ±a X n/a - X Smallest hypothesis model
Passive Learning X X - ±c ±l Post processing
Process Discovery ±d ±d X X X A Priori

Note: This table presents the mainstream assumption and expressivity,
giving a feeling for how the schools of techniques differ. As noted below,
there are always exceptions to the rule.
a Non-determinism is only supported by approximative extensions like [188].
c Concurrency is supported in some cases by relying on, for example, separate
logs [38] or a posteriori SD fragment annotation [42].
d Non-determinism and duplicate labels are supported via preprocessing tech-
niques like label-splitting [10, 16, 44, 47, 84, 137].
l Loops are supported in some cases by relying on, for example, a posteriori
state merging [190] or a posteriori SD fragment annotation [42].

stream assumptions and expressivity. The goal of this discussion is to give a
feeling of how the different schools approach the problems; there are always
excpetions to the rule.

The main differences are based on alphabet abstractions. In process dis-
covery, there is the general assumption that every activity should occur only
once in the process model, i.e., every activity is one transition. The places
between transitions represent the constraints on the ordering between the ac-
tivities. This assumption is also reflected in the frequently used directly-follows
graph, where each activity is a vertex. As a consequence, it is natural to de-
tect concurrency and loops as different constraints on the ordering between
the activities. The same assumption allows for effective noise filtering on the
alphabet abstractions, i.e., (frequency-based) filtering is performed over struc-
tures like directly-follows relations, and not directly on the event log level. The
cases where this “every activity is one transition” assumption does not hold are
referred to as the duplicate label problem in process mining. Duplicate labels
can cause inappropriate generalizations like loops, yielding unintuitive and
imprecise models. Some discovery algorithms can refine labels during model
construction to some extent [10, 16, 44, 47, 84]. In addition, event log pre-
processing techniques like label-splitting can solve this duplicate label problem
more generally by smartly relabeling the problematic events [137].
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In contrast, passive learning does not know the duplicate label problem.
In the case where multiple events with the same label occur one after another,
passive learning algorithms will initially model the repetitive behavior in an
unfolded manner, i.e., no loop abstractions are applied. After that, state merg-
ing algorithms like the red-blue fringe algorithm try to find recurring patterns
and merge or collapse them, thereby introducing loops and generalizing the
model [85, 190]. The upside of this approach is that these techniques do not
suffer from the duplicate label problem. The downside is that they can suffer
from long traces, as the generalization is only performed after the full model
(usually a complete prefix tree) has been generated. Since passive learning
focusses largely on sequential, state-based behavior, concurrency support is
under-represented. There are some techniques for distributed software that
rely on annotated or separated logs [38], but in other cases, one relies on a
posteriori sequence diagram (SD) fragment annotation based on, for example,
the source code [42].

In this comparison, active learning is a bit of a special case. Like passive
learning, it does not introduce loops when that generalization seems inappro-
priate, i.e., it does not suffer from the duplicate label problem. Like process
mining, it does try to introduce loops as early as possible. This “as early
as possible” strategy is a direct consequence of the iterative query strategy
and smallest hypothesis model employed by the L∗ approach [28]. A side ef-
fect of the way this query plus hypothesis strategy work, is that the learning
of non-determinism is only supported by approximative extensions like [188].
However, one should realize that active learning: 1) requires a controlled and
intrusive setup, where a learner algorithm can interact with the software, and
2) cannot learn the behavior and knowledge captured in the environment and
clients using the software under study. In practice, this means that a learner
algorithm cannot always be deployed, especially in an industrial (legacy) sys-
tem. In addition, valuable context information from the environment and
clients may be lost.

The differences in assumptions and alphabet abstractions between process
discovery and passive learning have a direct effect on the scalability of these
techniques with respect to alphabet size, trace length, and number of traces
(i.e., the algorithmic scalability). We will explore this scalability aspect in
more detail in Chapter 5.

3.3 Scalability – Hierarchical Decomposition and Submodels

As argued in Section 1.3, there is a need to support hierarchical, recursive,
and cancelation structures in process mining. This need is driven by both the
type of behavior logged (Challenges 2 and 4), as well as the need for algorith-
mically and visually scalable techniques (Challenge 8). Moreover, as stated in
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Table 3.3: Comparison of techniques for hierarchical decomposition and sub-
model identification in various process mining techniques targeted at algorith-
mic and visual scalability.

Author Algorithm / Technique

Log preprocessing

Process discovery

Conformance checking

Model postprocessing Submodels can be derived from

Log causality-based

Log data-based

Model semantic-based

Model graph-based

A
lg
or
it
h
m
ic

S
ca
la
b
il
it
y

[3] Aalst, van der Decomposed, passages - X X - Passages decomposition - - - X
[4] Aalst, van der Decomposed, generic - X X - Decomposition (log, model) X - X -
[186] Verbeek Decomposed ILP - X - - Decomposition (log, model) X - X -
[88] Hompes Decomposed, clusters - X - - Decomposition (log, model) X - X -
[158] Polyvyanyy Refined Process Structure Tree - - - X Graph structure (SESE, RPST) - - - X
[144] Munoz-Gama Partitioned conformance - - X X Partitions (topology, RPST) - - - X
[145] Munoz-Gama SESE-based conformance - - X X Graph structure (SESE, RPST) - - - X
[130] Leemans, S.J.J. Inductive Miner family - X X - Process tree (control-flow) X - X -

V
is
u
al

S
ca
la
b
il
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y

[75] Günter Fuzzy miner - X - - Anonymous clusters - - - X
[93] Bose Abstraction patterns X - - - Abstraction patterns X - - -
[94] Bose Two-phase discovery X X - - Cluster hierarchy - - - X
[55] Conforti BPMN miner - X - - Subprocesses, cancelation X X - -
[139] Mannhardt Guided Process Discovery X X - - Activity (abstraction) patterns X - - -
[97] Kalenkova Cancelation region - X - - Cancelation regions - - X X
[69] Gonzalez Database process mining X - - - Business instance object relations X X - -

This Thesis Recursion Aware Discovery X X - - Subprocesses, hierarchies X - X -
Cancelation Discovery - X - - Cancelation regions X - X -
Distributed software X X - - Distributed system submodels X X X -

Contribution 4, we not only consider process discovery, but also performance
analysis based on a given hierarchy. Therefore, this section will survey scal-
ability in related work and the use of hierarchies, hierarchical decomposition,
and submodels in the broader process mining perspective.

Frequently, hierarchical decomposition is used to increase the algorithmic
scalability of discovery and conformance techniques with respect to alphabet
size, trace length, and number of traces (i.e., the algorithmic scalability). In
other cases, hierarchical abstractions and submodels are used to reduce the
modeled complexity and provide the user with a model in terms of more high-
level concepts (i.e., the visual scalability). Below, we will discuss a selection
of related work dealing with both algorithmic scalability (Section 3.3.1) and
visual scalability (Section 3.3.2) as is summarized in Table 3.3.

3.3.1 Hierarchical Decomposition for Algorithmic Scalability
Related work has explored the use of various hierarchical decompositions to
improve the algorithmic scalability of both process discovery and conformance
checking. In fact, related work suggests that process discovery and confor-
mance checking are related problems, and similar techniques could be applied
to both problems [4]. In this section, we will first discuss several (generic)
decomposition techniques. After that, we will discuss two more concrete tech-
niques: the RPST-based techniques, and the Inductive Miner family.

Several decomposed process mining techniques have been proposed. One
of the earlier decomposition techniques leveraged the notion of passages to
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decompose both process mining and conformance checking [3]. A passage is
a pair (X,Y ) where X and Y are sets of activity nodes (i.e., events in a log
or transitions in a model), such that: 1) the activity nodes in X influence the
enabling of the activity nodes in Y , and 2) the activity nodes in Y are influenced
by the activity nodes in X. Observe that this notion of passages is quite strict,
hence the decomposition is fairly limited. Therefore, a generic approach was
proposed to lift many of the restrictions imposed by the notion of passages [4].
This generic approach decomposes process discovery by partitioning/clustering
activities, creating sublogs, and decomposes conformance checking by using
valid decompositions. A decomposition of a Petri net is valid if: 1) the subnets
“agree” on the original labeling function (i.e., the same transition always has
the same label), 2) each place resides in just one subnet, 3) each invisible
transition resides in just one subnet, and 4) if there are multiple transitions
with the same label, they should reside in the same subnet. Both the passages
and generic approaches rely on a decomposition or partitioning/clustering of
transitions in the model c.q. activities in the log. Due to the focus on activities
in the definition of passages and valid decompositions, these techniques rely
mostly on the log causality and model semantics. Concrete clustering [88]
and discover [186] approaches based on the generic framework from [4] have
been proposed. However, despite the huge gain in algorithmic scalability and
general applicability, the underlying hierarchical structure is not leveraged for
the visual scalability of discovered models or detected conformance issues.

RPST-based approaches rely on the underlying graph structure to improve
the algorithmic scalability of conformance checking. By analyzing (topological)
graph structures, clusters of vertices can be derived and structured in a so-
called Refined Process Structure Tree (RPST) [158]. Several improvements
based on RPSTs have been realized over the years [144, 145]. However, these
approaches only speed up conformance checking and provide no semantical
hierarchical decomposition. In addition, the underlying hierarchical structure
is not leveraged for the visual scalability of detected conformance issues.

The Inductive Miner family provided the first scalable process discovery
technique that guaranteed soundness [130]. The Inductive Miner discovery al-
gorithm leverages a relation between semantical structures in a directly-follows
graph and the operators in a process tree. That is, a hierarchical decomposition
of patterns in a directly-follows graph is related to the hierarchical structure
of a process tree; each pattern corresponds to a process tree operator. Later, a
novel, scalable conformance checking technique based on activity projections
was introduced, leveraging the process tree structure [130, 134]. For the visual
presentation, the underlying hierarchical structure of a process tree is indi-
rectly leveraged to provide structured process models. That is, the approach
yields visually simple models due to the restricted and well-structured process
trees. Although this provides some visual scalability, this underlying hierarchi-
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cal structure is not leveraged for the visual scalability of detected conformance
issues or models with many (low-level) activities.

The Inductive Miner discovery approach will be discussed in Chapter 4. In
Part II, we will further explore the notion of “patterns corresponding to process
tree operators” to formulate novel process discovery algorithms.

3.3.2 Hierarchies and Submodels for Visual Scalability

Different approaches have recognized the need for visual scalability in discov-
ered processes. One of the earlier approaches relied on the notion of user-
defined abstraction patterns to avoid many low-level activities and reduce the
visible complexity [93]. Various improvements have been proposed to help the
user in detecting abstraction patterns [94]. The fuzzy miner automated this
abstraction detection process and provided a slider-based approach to allow
the user to zoom between different levels of abstractions, thus reducing the
number of modeled activities [75]. In contrast, the BPMN miner attempts
to automatically infer subprocesses based on relations in the data perspective
instead of the control-flow perspective. However, an important downside of
these techniques is that they provide only nameless clusters. That is, although
the visible complexity is reduced through clustering, the understandability of
the models is also reduced.

Recent work attempts to discover more meaningful hierarchical structures.
In the Guided Process Discovery approach, user-defined named abstraction
patterns are used to obtain a hierarchical model with named subprocesses [139].
Here, these named submodels reduce the visual complexity. In the technique
from [97], the discovery algorithm attempts to find a cancelation region to
reduce the modeled complexity.

Another approach is to employ domain knowledge to find relations in the
event log. For example, in the technique from [69], business instance object
relations are inferred from the underlying database structure. These relations
can be used to construct a hierarchical decomposition of activities, and thus
yield named submodels.

Conclusively, the need for visual scalability based on hierarchies has been
recognized in various forms, but no existing work presented a generic and
automatic discovery approach that yields understandable and visually scalable
models with minimal user input (Challenge 8).

3.4 Performance Analysis

The area of performance analysis is very varied, both in the process min-
ing and software engineering community. Our performance analysis approach
(Contribution 4, Chapter 8) is especially useful for analyzing software system
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processes, and is generic enough to apply to any kind of operational or soft-
ware process. Therefore, we will compare a selection of both communities as
is summarized in Table 3.4.

3.4.1 Criteria for Comparison

For the comparison, we defined a set of feature criteria. To be able to perform
meaningful analyses on a discovered or learned model, it is important that the
underlying model notation has clear, well-defined, formal execution semantics.
Clear semantics is a prerequisite for reliable interpretation by both man and
machine. Without clear semantics, we cannot reliably apply performance and
conformance analysis. Secondly, the analysis should be (statistically) signifi-
cant, i.e., the technique should be able to aggregate information over multiple
execution runs. It is typically impossible to make reliable statements about
normal and noisy behavior and performance given only a small set of observa-
tions [8]. At the very least, some support for frequency (usage) and performance
(timing) analysis should be supported. Finally, the technique should support
submodels and “drill-down” type of analysis [8]. That is, the techniques need to
support frequency and performance analysis on various levels of abstractions,
thereby increasing the visual scalability and aiding the user in understanding
complex data (see Challenge 8 on page 16).

3.4.2 Discussion of Related Work

In the software engineering domain, profiler type of techniques [61, 73, 89, 136,
191] typically include some notion of submodels via call graphs. This gives
a hint of total times and frequencies across a cross-section of the execution
call stack. However, there is no control-flow context to put the numbers in
perspective, i.e., there is no support for semantic-aware, model-based analysis.
In addition, most profilers only look at one execution or trace. As noted before,
by relying on only a single observation, one is at risk of making unreliable,
statistically unsound statements.

Model-based techniques [20, 37, 54] typically focus more on the control-flow
aspect. These techniques project performance results onto actual control-flow
models. Multiple observations are aggregated, thereby supporting statistically
significant performance analyses. However, these techniques have limited or
no support for performance analysis on submodels and “drill-down” type of
analysis. That is, they work well for small models, but are not visually scalable.

In the process mining domain, related work can be divided into three
groups: 1) visual analytics without a model, 2) fuzzy model-based analysis,
and 3) formal model-based analysis.

Performance analysis techniques based on visual analytics provide insights
into the recorded behavior without using a model. Various event log based
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Table 3.4: Comparison of related performance analysis techniques in software
engineering and process mining.

Author Algorithm / Technique

Formal Semantics

Aggregate Runs

Frequency Info

Performance Info

Submodel Support

S
of
tw
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e
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gi
n
ee
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g [20] Ackermann Behavior extraction ±1 X - X -

[37] Beschastnikh Synoptic X X X - -
[89] Van Hoorn Kieker Framework - X X X -
[54] Chow Mystery Machine X X - X -
[177] Szvetits Reusable Event Types - X X X -
[61] De Pauw Execution patterns - - X - ±2

[73] Graham gprof profiler - - - X ±2

[136] YourKit, LLC YourKit Profiler - - X X ±2

[191] Weidendorfer Callgrind, KCachegrind - - X X ±2

P
ro
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M
in
in
g

[172] Song Dotted Chart - X X X -
[87] Hompes Context-aware KPI - X X X -
[157] Piessens Replay Performance X X X X -
[75] Günther Fuzzy miner - X X X -
[76] Fluxicon / Günther Disco - X X X -
[51] Celonis GmbH Celonis Process Mining - X X X -
[72] Gradient ECM Minit - X X X -
[13] Van der Aalst EMiT, timed WFnets X X - X -
[165] Rogge-Solti Stochastic Petri nets X X - X -
[22] Adriansyah Robust Performance X X X X -
[21] Adriansyah Alignments X X X X -

This Thesis Hierarchical Performance Analysis X X X X X
1 Formal semantics are available for some UML sequence diagram variants.
2 Aggregate values at submodels only, no semantic-aware, model-based analysis.

techniques have been proposed, like, for example, the Dotted Chart [172] and
the work on context-based KPIs [87]. The lack of a model can be both an
advantage and a disadvantage. On the upside, performance analysis is not
influenced by inaccurate or erroneous models. However, at the same time,
there is little control-flow context to put the numbers in perspective.

Fuzzy model-based performance analysis relies on techniques like (approx-
imative) replay [157] and various log-based process metrics such as frequency,
significance, and correlation [75]. Many commercial tools provide fuzzy model-
based performance analysis, favoring a (visually) simple model by trading for-
mal semantics for the less precise fuzzy semantics [51, 72, 76]. However, fuzzy
or imprecise semantics can yield unreliable performance and conformance an-
alysis results. This is especially true in processes with concurrency, where the
actual control-flow interpretation is often unclear [8].

Various formal model-based performance analysis techniques have been
proposed. Some approaches focus on embedding performance characteristics
into the model, yielding, for example, timed workflow nets [13] or stochastic
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Petri nets [165]. Other techniques focus on robust performance analysis [22]
and establishing a precise alignment between event logs and process mod-
els [21]. These techniques typically provide very precise performance insights
and can handle complex, formal process models such as arbitrary Petri nets.
However, these precise insights come at the cost of computation time (see also
Section 3.3).

In all of the above techniques, the performance analysis focusses only on
the level of individual activities or events. That is, they work well for small, flat
models, but are not visually scalable. In contrast, our hierarchical performance
analysis approach (Contribution 4, Chapter 8) aims at improving the visual
scalability by leveraging hierarchies.

3.5 Conclusion
In this chapter, we presented a broad and systematic survey of both the re-
verse engineering and process mining fields and touches upon related hierar-
chical techniques. We have presented a taxonomy covering both fields, and
discussed the similarity and differences between a selection of model learning
and process discovery. In addition, we surveyed the scalability in related work
and the use of hierarchies, hierarchical decomposition, and submodels in the
broader process mining perspective. Furthermore, we discussed various aspects
of performance analysis in both fields, and investigate the use of hierarchies
and submodels in the context of performance analysis.

In the next chapter, we will look at the Inductive Miner process discovery
technique from [130] in more detail.
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A Process Discovery Foundation

In this thesis, we will present hierarchical, recursion aware, and cancelation
discovery techniques based on process trees. For these techniques, we will
build on an existing process discovery foundation to discover process trees,
and extend the modeling notation and discovery technique where needed. We
selected the well-known Inductive Miner (IM) framework, as described in [130],
as our process discovery foundation. This framework enables a familty of
concrete process discovery techniques. In addition, the IM framework offers
good discovery guarantees, scales well, and provides clear extension points for
our adaptations.

In this chapter, we will give an introduction to the IM framework, covering
the problems this framework addresses (Section 4.1) the discovery algorithm
(Section 4.2) and its properties and guarantees (Section 4.3). In addition, we
will cover how this framework can be extended (Section 4.4) and some of the
open challenges (Section 4.5).

4.1 Problem Statement

The goal of process discovery is, given only an event log, construct a pro-
cess model describing the behavior recorded in the event log. As discussed
in Section 1.1.2, process discovery is challenging for several reasons. For one,
a process discovery technique should yield sound models with clear and well-
defined semantics. For another, discovered models should represent the be-
havior recorded in the event log, i.e., the discovered model should have a high
fitness and precision. In addition, the discovery algorithm should support the
type of behavior that is recorded in the event log. E.g., when observing a pro-
cess where everything is canceled upon a check fail, then the model formalism
and discovery algorithm should support such behavior. Finally, the discovery
algorithm should scale well, allowing for the analysis of large event logs.

The Inductive Miner framework addresses most of these challenges. By
relying on process trees (see Section 2.2.6), the Inductive Miner discovers sound
and well-defined models by construction. In addition, as we will discuss in
detail in Section 4.3, the Inductive Miner guarantees perfect fitness and scales
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well with large inputs. Naturally, by relying on process trees, the Inductive
Miner is limited to the behavior that such trees can capture.

In Section 4.2, we will cover the basics of the Inductive Miner framework,
summarizing the work in [130, 131]. However, there are several extensions to
this framework [130]. The incomplete and infrequent extensions address event
logs missing behavior (incomplete) or containing noise (infrequent). Special
construct extensions allow for the discovery of interleaved behavior and the
inclusive choice / OR split. Finally, the lifecycle extension is designed for non-
atomic event logs, and the directly-follows based approach is designed to handle
very large event logs.

4.2 The Inductive Miner Framework
This section covers the basics of the Inductive Miner discovery algorithm. Sec-
tion 4.2.1 will give an overview of the algorithm and framework. The sec-
tions 4.2.2 through 4.2.5 will discuss key concepts and extension points in the
Inductive Miner framework.

4.2.1 Algorithm Overview
The Inductive Miner framework discovers models using a divide and conquer
approach. Given a log L, the framework searches for possible splits of L into
sublogs L1, . . . , Ln, such that these sublogs combined with a process tree oper-
ator ⊗ ∈ {→,×,∧,	 } can (at least) reproduce L again. Later in this chapter,
we will show that these operators are mutually exclusive. The framework then
recurses on the corresponding sublogs, repeats the above process, and returns
the discovered submodels. Empty logs, logs with empty traces or traces with
only a single activity form the base cases for this framework. Note that we will
assume atomic event logs for the remainder of this chapter.

The core of each recursion step in the Inductive Miner framework is the
search for possible log splits and a corresponding process tree operator. The
framework performs these searches using the directly-follows graph abstrac-
tion G(L) of the (sub)log L. For each process tree operator, a different graph
cut or footprint is characterized based on the edges in G(L). The framework
searches for a valid non-trivial cut in the graph, selects the corresponding tree
operator, and recurses. Recall from Definition 2.1.8, a cut is nontrivial if there
are at least two partitions, and no partition is empty. If the log contains empty
traces or no valid non-trivial cut can be found, a fallback solution will be used.
In the worst case, the framework will fall back to a flower model, allowing for
any behavior. Note that, by design, each activity appears only once in the
produced process tree, and this tree can be a generalization of the original
event log. For example, for the event log L = [ 〈 a, a, a 〉 ], the framework would
return the model 	(a, τ), and not →(a, a, a).



4.2 The Inductive Miner Framework

4

75

Algorithm 4.1 describes the above process using three steps:
1. Check for base cases (line 1).
2. If no base case was valid and the log does not contain empty traces, then

find a valid non-trivial cut (line 5). If found, split the log (line 7) and
recurse on the new sublogs (line 8).

3. If no valid base case or cut was found, apply a fallback solution (line 9).
Each of these steps is an extension point in the IM framework, allowing

new base cases, cuts/splits, and fallback solutions to be defined and added to
the discovery algorithm. Below, we will discuss all steps in detail. We will be
using the example run in Table 4.1 as clarification. Section 4.2.2 details the
standard base cases. Section 4.2.3 covers the standard cuts, and how they are
related to the process tree operators. Section 4.2.4 defines log splits for each
log cut. And Section 4.2.5 elaborates on the fallback options, when no valid
base case or split can be found.

Algorithm 4.1: Inductive Miner (IM) Framework
Input: An event log L.
Output: A process tree Q such that L fits Q.
Description: The function IMdiscover() recursively tries to discover a process tree

capturing (at least) the behavior in L. Note that we use ⊥ to model
when no valid base case or valid cut was found for the given log.

IMdiscover(L)
1 Qbase = BaseCase(L) // Step 1 – Check base cases
2 if Qbase 6= ⊥ then
3 return Qbase // If a base case was found, then return

4 if ε /∈ L then
5 (⊗, (Σ1, . . . ,Σn)) = FindCut(L) // Step 2.1 – Find a valid cut
6 if (⊗, (Σ1, . . . ,Σn)) 6= ⊥ then
7 (L1, . . . , Ln) = SplitLog(L, (⊗, (Σ1, . . . ,Σn))) // Step 2.2 – Split logs
8 return ⊗(IMdiscover(L1), . . . , IMdiscover(Ln)) // Step 2.3 – Recurse

9 return Fallback(L) // Step 3 – Apply fallback

4.2.2 Base Cases

The first step in Algorithm 4.1 is to check for base cases using the function
BaseCase(L). This function returns the corresponding process tree when a
base case applies or returns ⊥ to indicate no base case was found. These base
cases provide an end to the recursion. We recognize the following base cases:

� Base Case 4.1 — Empty Log.
Condition: L = [ ] ∨ (∀σ ∈ L : σ = ε)
Return: τ
Description: The Empty Log base case applies when the log contains no traces
or only contains empty traces. This base case returns τ , representing the model
consisting of an empty step.
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Figure 4.1: Cuts of the directly-follows graph for the basic Inductive Miner
operators: →, ∧, ×, and 	. The grey areas indicate partitions; the arrows
indicate required and prohibited edges characterizing the cut.

� Base Case 4.2 — Single Activity.
Condition: L 6= [ ] ∧ (∃a ∈ A : ∀σ ∈ L : σ = 〈 a 〉)
Return: a
Description: The Single Activity base case applies when the log contains only
traces with a single activity a. This base case returns a as a leaf node.

4.2.3 Finding Cuts

The second step in Algorithm 4.1 is to search for possible log splits and a cor-
responding process tree operator using the function FindCut(L). The function
searches for non-trivial cuts in the directly-follows graph abstraction G(L) of
the (sub)log L or returns ⊥ to indicate no valid non-trivial cut was found. For
each process tree operator, a different cut or footprint is characterized based
on the edges between nodes in G(L). Figure 4.1 informally depicts cuts of the
directly-follows graph for the basic Inductive Miner operators: →, ∧, ×, and
	. We formally define these directly-follows graph cuts below, assuming the
event log has no empty traces (i.e., ε /∈ L). Note that these cuts are mutually
exclusive (see also Lemma 4.3.6 later in this chapter), and can be detected in
any order. Recall that graph cuts, partitions (Σi) and path in a graph ( )
were explained in Section 2.1.2 on page 23.
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Table 4.1: Example Inductive Miner discovery on the log L = [ 〈 a, b, c, d, g 〉 ,
〈 a, b, c, e, f, e, g 〉 , 〈 a, c, b, d, g 〉 , 〈 a, c, b, e, g 〉 ]. The rows illustrate how the dis-
covery progresses step by step. The highlights indicate the parts of the log
and directly-follows graph used, and relate them to the corresponding partial
process tree model that is discovered. The dashed lines indicate the cuts. The
corresponding Petri net model is shown at the bottom.

Event Log Directly-Follows Graph Discovered Model

1

a b c d g

a b c e f e g

a c b d g

a c b e g

B a
b

c

d

e

f

g � →

a ? ? g

2

a b c d g

a b c e f e g

a c b d g

a c b e g

B a
b

c

d

e

f

g �
→

a ∧

b c

? g

3

a b c d g

a b c e f e g

a c b d g

a c b e g

B a
b

c

d

e

f

g �
→

a ∧

b c

×

d ?

g

4

a b c d g

a b c e f e g

a c b d g

a c b e g

B a
b

c

d

e

f

g �

→

a ∧

b c

×

d 	

e f

g



78 Chapter 4. A Process Discovery Foundation

� Cut Detection 4.1 — Sequence (→).
Description: The directly-follows graph G can be partitioned with an ordered
cut such that edges only flow to succeeding partitions, and not back.
Definition: A sequence (→) cut is an ordered cut Σ1, . . . ,Σn of a directly
follows graph G such that:

1. There is a path from every Σi to Σj for i < j:

∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : ai  aj ∈ G

2. There is no path back from any Σj to Σi for i < j:

∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : aj  ai /∈ G

3. There is an edge from every ‘exit node’ ai ∈ E(Σi) of partition Σi to
every ‘entry node’ aj ∈ S(Σi+1) of partition Σi+1 (if such nodes exist):

∀ai ∈ E(Σi) ∧ aj ∈ S(Σi+1) : (ai, aj) ∈ G
Where S(Σi) = { ai ∈ Σi | j 6= i ∧ aj ∈ Σj ∧ (aj , ai) ∈ G }

and E(Σi) = { ai ∈ Σi | j 6= i ∧ aj ∈ Σj ∧ (ai, aj) ∈ G }

Example: In step 1 in Table 4.1, a sequence cut is detected in the directly-
follows graph, yielding four partitions: Σ1 = { a }, Σ2 = { b, c }, Σ3 = { d, e, f },
and Σ4 = { g }. Partitions Σ1 and Σ4 are handled by the single activity base
case, the other partitions are handled in recursive steps 2 and 3.

� Cut Detection 4.2 — Concurrency (∧).
Description: Directly follows graph G can be partitioned with a cut such that
there are edges between any two nodes of any two partitions.
Definition: A concurrency (∧) cut is a cut Σ1, . . . ,Σn of a directly follows
graph G such that:

1. Every partition Σi has some start and end activities:

∀1 ≤ i ≤ n : Σi ∩ Start(G) 6= ∅ ∧ Σi ∩ End(G) 6= ∅

2. There are edges between every node ai ∈ Σi and node aj ∈ Σj , in both
directions, for i 6= j:

∀ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) ∈ G ∧ (aj , ai) ∈ G

Example: In step 2 in Table 4.1, a concurrency cut is detected in the directly-
follows graph, yielding two partitions: Σ1 = { b } and Σ2 = { c }. Both parti-
tions are handled by the single activity base case.

� Cut Detection 4.3 — Exclusive Choice (×).
Description: Directly follows graph G can be partitioned with a cut such that
there are no edges between any two partitions.
Definition: A choice (×) cut is a cut Σ1, . . . ,Σn of a directly follows graph G
such that:
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1. There are no edges between any Σi and Σj with i 6= j:
∀ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

Example: In step 3 in Table 4.1, a choice cut is detected in the directly-follows
graph, yielding two partitions: Σ1 = { d } and Σ2 = { e, f }. Partition Σ1 is
handled by the single activity base case, partition Σ2 is handled in recursive
step 4.

� Cut Detection 4.4 — Structured Loop (	).
Description: Directly follows graph G can be partitioned with a partially or-
dered cut such that the first partition represents the loop body, and the non-
first partitions represent the loop redo options.
Definition: A loop (	) cut is a partially ordered cut Σ1, . . . ,Σn of a directly
follows graph G such that:

1. All start and end activities are in the body Σ1:
Start(G) ∪ End(G) ⊆ Σ1

2. There are only edges from the end of Σ1 to Σi for i > 1:
∀ i > 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (a1, ai) ∈ G⇒ a1 ∈ End(G)

3. There are only edges to the start of Σ1 from Σi for i > 1:
∀ i > 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (ai, a1) ∈ G⇒ a1 ∈ Start(G)

4. There are no edges between nodes in Σi and Σj for i > 1∧ j > 1∧ i 6= j:
∀ i > 1 ∧ j > 1 ∧ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

5. Σi, with i > 1, has an edge to Σ1 iff it connects to all start activities:
∀ i > 1 ∧ ai ∈ Σi ∧ a1 ∈ Start(G) : (ai, a1) ∈ G

⇔ (∃a′1 ∈ Σ1 : (ai, a
′
1) ∈ G)

6. Σi, with i > 1, has an edge from Σ1 iff it connects from all end activities:
∀ i > 1 ∧ ai ∈ Σi ∧ a1 ∈ End(G) : (a1, ai) ∈ G

⇔ (∃a′1 ∈ Σ1 : (a′1, ai) ∈ G)

Example: In step 4 in Table 4.1, a loop cut is detected in the directly-follows
graph, yielding two partitions: body Σ1 = { e } and redo Σ2 = { f }. Both
partitions are handled by the single activity base case.

4.2.4 Splitting Logs
Once a valid cut Σ1, . . . ,Σn has been found for a given process tree opera-
tor ⊗, Algorithm 4.1 splits the log according to the cut using the function
SplitLog(L, (⊗, (Σ1, . . . ,Σn))). This function splits the log L into sublogs
L1, . . . , Ln such that these logs combined with the operator ⊗ can (at least)
reproduce L again. We formally define these log splits below for each operator
cut. Recall that projection (σ�X) was explained in Definition 2.1.5 on page 23
and activity log-projection (A(σ)) was explained in Definition 2.3.6 on page 48.
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� Log Split 4.1 — Sequence (→).
Description: Each trace in the log is split into n subtraces such that each
subtrace corresponds to one of the n sequence cut partitions.
Definition: Given a sequence cut Σ1, . . . ,Σn and event log L:
• Sublog Li consists of all maximal subtraces with activities in Σi:

Li = [σi | σ1 · σ2 · . . . σn ∈ L ∧ (∀1 ≤ j ≤ n : A(σj) ⊆ Σj) ]

Example: In step 1 in Table 4.1, we have the input log L = [ 〈 a, b, c, d, g 〉 ,
〈 a, b, c, e, f, e, g 〉 , 〈 a, c, b, d, g 〉 , 〈 a, c, b, e, g 〉 ] and the sequence cut Σ1 = { a },
Σ2 = { b, c }, Σ3 = { d, e, f }, and Σ4 = { g }. As a result, L is split into the
sublogs L1 = [ 〈 a 〉4 ], L2 = [ 〈 b, c 〉2 , 〈 c, b 〉2 ], L3 = [ 〈 d 〉2 , 〈 e, f, e 〉 , 〈 e 〉 ], and
L4 = [ 〈 g 〉4 ].

� Log Split 4.2 — Concurrency (∧).
Description: Each trace in the log is projected n times, once for each of the n
partitions c.q. sets of activities.
Definition: Given a concurrency cut Σ1, . . . ,Σn and event log L:
• Sublog Li consists of all activities in Σi:

Li = [σ�Σi | σ ∈ L ]

Example: In step 2 in Table 4.1, we have the input log L = [ 〈 b, c 〉2 , 〈 c, b 〉2 ]
and the concurrency cut Σ1 = { b } and Σ2 = { c }. As a result, L is split into
the sublogs L1 = [ 〈 b 〉4 ] and L2 = [ 〈 c 〉4 ].

� Log Split 4.3 — Exclusive Choice (×).
Description: Each trace in the log is assigned to the sublog corresponding to
the matching choice cut partition, based on the activities in the trace.
Definition: Given a choice cut Σ1, . . . ,Σn and event log L:
• Sublog Li consists of all the traces with only activities in Σi:

Li = [σ | σ ∈ L ∧A(σ) ⊆ Σi ]

Example: In step 3 in Table 4.1, we have the input log L = [ 〈 d 〉2 , 〈 e, f, e 〉 ,
〈 e 〉 ] and the choice cut Σ1 = { d } and Σ2 = { e, f }. As a result, L is split
into the sublogs L1 = [ 〈 d 〉2 ] and L2 = [ 〈 e, f, e 〉 , 〈 e 〉 ].
� Log Split 4.4 — Structured Loop (	).
Description: Each trace in the log is split into subtraces of the loop body and
the loop redo partitions.
Definition: Given a loop cut Σ1, . . . ,Σn and event log L:
• Sublog Li consists of all maximal subtraces with activities in Σi:

Li = [σ2 | σ1 · σ2 · σ3 ∈ L ∧A(σ2) ⊆ Σi

∧ (σ1 = ε ∨ (σ1 = 〈 . . . , a1 〉 ∧ a1 /∈ Σi))

∧ (σ3 = ε ∨ (σ3 = 〈 a3, . . . 〉 ∧ a3 /∈ Σi)) ]
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Example: The structured loop can split a trace into multiple subtraces. For
example, in step 4 in Table 4.1, we have the input log L = [ 〈 e, f, e 〉 , 〈 e 〉 ]
and the loop cut Σ1 = { e } and Σ2 = { f }. As a result, L is split into the
sublogs L1 = [ 〈 e 〉3 ] and L2 = [ 〈 f 〉 ]. Note that the first trace in L yields two
subtraces for sublog L1.

4.2.5 Fallback Cases

Algorithm 4.1 should return a process tree under all circumstances. But for
some input event logs, no base case can be applied and no valid cut can be
found. Therefore, the third step in Algorithm 4.1 is to apply a fallback so-
lution if all other options failed. Such a fallback solution is triggered when,
for example, the directly-follows graph is not complete, the system cannot
be accurately described by a process tree, or the log contains empty traces.
To improve precision in fallback cases, multiple fallback patterns are defined
in [130], which are checked in the order given below. When no pattern applies,
a so-called flower model will be returned, allowing for any behavior. Table 4.2
provides illustrative examples for each of the fallback pattern detailed below.

� Fallback 4.1 — Empty Traces.
Applies when: The event log contains empty traces, i.e., ε ∈ L.
Solution: To preserve fitness, a skip is modeled using ×(τ, . . .), and the dis-
covery continues with a recursion on the log without empty traces, i.e., on the
log L1 = [σ ∈ L | σ 6= ε ].
Example: In the example from Table 4.2, the empty traces are removed. Upon
recursion, a sequence cut can now be detected in the sublog L1.

� Fallback 4.2 — Activity Once Per Trace.
Applies when: An activity a appears precisely once in every trace of the log L.
Solution: This fallback discovers that activity a can be put concurrent to
the event log without a, i.e., a is concurrent to the log L1 = L�A(L)\{ a }.
The discovery continues with a recursion on the sublog L1. In case multiple
activities a are valid for this fallback, an arbitrary one is chosen.
Example: In the example from Table 4.2, activity d is selected to be put
concurrent to the remaining sublog. Upon recursion, a sequence cut can now
be detected in the sublog L1.

� Fallback 4.3 — Activity Concurrent.
Applies when: Leaving out an activity a allows a valid cut to be detected.
Solution: This fallback chooses an arbitrary activity a, filters it from the log
L, and tries to detect a valid cut. If this succeeds, a is put concurrently to
the filtered log. This fallback recurses on two sublogs: one with only a, i.e,
L1 = L�{ a }, and one without a, i.e, L1 = L�A(L)\{ a }.
Example: In the example from Table 4.2, activity d is selected to be put in
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Table 4.2: Example Inductive Miner fallback cases, illustrating how the dif-
ferent fallback solutions work. Each row illustrates an independent fallback
example, showing the fallback input, the recursive call input, and the interme-
diate discovered model. The highlights in the Input column indicate the parts
of the directly-follows graph used in the fallback conditions. The highlights in
the Discovered Model column indicate where in the resulting model a recursive
discvovery is applied.

Fallback
Case Input Resulting Recursion Input Discovered

Model

Empty
Traces

L = [ 〈 a, b, c, d 〉 , ε ]

B
a b c d

�

L1 = [ 〈 a, b, c, d 〉 ]
B a b c d �

×

τ ?

Activity
Once Per
Trace

L = [ 〈 a, b, c, d 〉 , 〈 d, a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c, d 〉 ]

B
a b c

d

�

L1 = [ 〈 a, b, c 〉 , 〈 a, b 〉 ,
〈 a, c 〉 , 〈 b, c 〉 ]
B a b c �

∧

d ?

Activity
Concur-
rent

L = [ 〈 a, b, c, d 〉 , 〈 d, a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c, d 〉 ]

B
a b c

d

�

L1 = [ 〈 d 〉4 ]

B d �

L2 = [ 〈 a, b, c 〉 , 〈 a, b 〉 ,
〈 a, c 〉 , 〈 b, c 〉 ]
B a b c �

∧

?1 ?2

Strict
Tau Loop

L = [ 〈 a, b, c, d 〉 , 〈 d, a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c, d 〉 ]

B
a b c

d

�

L1 = [ 〈 a, b, c 〉 , 〈 a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c 〉 , 〈 d 〉3 ]

B
a b c

d

�

	

? τ

Tau Loop

L = [ 〈 a, b, c, d 〉 , 〈 d, a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c, d 〉 ]

B
a b c

d

�

L1 = [ 〈 a 〉3 , 〈 b, c 〉2 , 〈 d 〉3 ,
〈 b 〉 , 〈 d, c 〉 ]

B

a

b

d

c �

	

? τ

Flower
Model

L = [ 〈 a, b, c, d 〉 , 〈 d, a, b 〉 ,
〈 a, d, c 〉 , 〈 b, c, d 〉 ]

B
a b c

d

�
No recursive call

	

×

a b c d

τ
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parallel. Upon recursion, a sequence cut can now be detected in the sublog L2.
Note that, in this example, recursive discovery on sublog L1 yields a leaf with
acitvity d. However, since a recursive discovery is performed on sublog L1,
activity d could also end up in a structured loop or a skip construction.

� Fallback 4.4 — Strict Tau Loop.
Applies when: Looping behavior is present.
Solution: This fallback checks for looping behavior by splitting each trace in
the event log L on each occurrence of an end activity a ∈ End(L) followed by
a start activity a ∈ Start(L). If resulting sublog L1 has more traces than the
original input log L, i.e., at least one trace was split, then the new sublog is
used in the recursive discovery and a tau loop is modeled using 	(. . . , τ).
Example: In the example from Table 4.2, the start activities of L are { a, b, d }
and the end activities are { b, c, d }. After splitting, the resulting sublog L1

has more traces. Upon recursion, a sequence cut can now be detected in the
sublog L1.

� Fallback 4.5 — Tau Loop.
Applies when: Looping behavior is present.
Solution: This fallback checks for looping behavior by splitting each trace in
the event log L on every occurrence of a start activity. If the resulting sublog
L1 has more traces than the original input log L, i.e., at least one trace was
split, then the new sublog is used in the recursive discovery and a tau loop is
modeled using 	(. . . , τ).
Example: In the example from Table 4.2, the start activities of L are { a, b, d }.
Upon spliting, the resulting sublog L1 has more traces. Upon recursion, a
sequence cut can now be detected in the sublog L1.

� Fallback 4.6 — Flower Model.
Applies when: The event log contains no empty traces.
Solution: This fallback returns a model that allows for any behavior without
the empty trace. The so-called flower model is constructed by looping over a
big choice over all the activities in L, i.e., the model 	(×(a1, . . . , an), τ) where
A(L) = { a1, . . . , an }.
Example: In the example from Table 4.2, we have the set of activities A(L) =
{ a, b, c, d }. The flower model is instantiated and no recursion is performed.

The above fallback cases handle several interesting edge cases, for example:

IMDiscover([ 〈 a, a 〉 ]) = 	(IMDiscover([ 〈 a 〉2 ]), τ) Apply Fallback 4.4
= 	(a, τ) Apply Base Case 4.2

IMDiscover([ 〈 a 〉 , ε ]) = ×(τ, IMDiscover([ 〈 a 〉 ])) Apply Fallback 4.1
= ×(τ, a) Apply Base Case 4.2
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4.3 Guarantees

The Inductive Miner (IM) framework, as introduced in the previous section, of-
fers good discovery guarantees, scales well, and provides clear extension points
for our adaptations. In this section, we will briefly cover the discovery guaran-
tees provided by the basic framework as described above. We refer the reader
to Section A.1 on page 365 for the proofs.

4.3.1 Soundness and Termination
We start with two general properties of the IM framework: soundness is guar-
anteed (Theorem 4.3.1), and termination is guaranteed (Theorem 4.3.2).

Theorem 4.3.1 — IM guarantees soundness. All models returned by the IM
framework are guaranteed to be sound.

Sketch of Proof. See page 365. �

Theorem 4.3.2 — IM guarantees termination. The IM framework is guaran-
teed to always terminate.

Sketch of Proof. See page 365. �

4.3.2 Perfect Fitness
As stated in Section 1.1.2, we want the discovered model to fit the actual
behavior. That is, we want the discovered model to at least contain all the
behavior in the event log. The perfect fitness guarantee in Theorem 4.3.3 states
that all the log behavior is in the model discovered by the IM framework.

Theorem 4.3.3 — IM guarantees fitness. The IM framework returns a model
that fits the log. That is, given an event log L, the IM framework returns a
model Q such that L ⊆ L(Q).

Sketch of Proof. See page 366. �

4.3.3 Language Rediscoverability
The language rediscoverability property tells whether and under which condi-
tions a discovery algorithm can discover a model that is language-equivalent
to the original process. That is, given a ‘system model’ Q and an event log L
that is complete with respect to Q (for some notion of completeness), then we
rediscover a model Q′ such that L(Q′) = L(Q).

We will show language rediscoverability in several steps. First, we will
define the notion of language complete logs. Then, we define the class of models
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that can be language-rediscovered. And finally, we will show the language
rediscoverability theorem.

Language Completeness
Language rediscoverability holds for directly-follows complete logs.
Definition 4.3.1 — Directly-follows Completeness. Recall the directly-follows
relation (�L) and graph functions (Start(L), End(L)) from Definition 2.4.1
on page 50 as well as the activity projection (A(L)) from Definition 2.3.6
on page 48. A log L is directly-follows complete to a model Q, denoted as
L �df Q, if and only if:

1. ∀a, b ∈ A(Q) : a�L(Q) b⇒ (a, b ∈ A(L) ∧ a�L b);
2. Start(L(Q)) ⊆ Start(L);
3. End(L(Q)) ⊆ End(L); and
4. A(Q) ⊆ A(L).

Class of Language-Rediscoverable Models
We will prove language rediscoverability for the following class of models.

Definition 4.3.2 — Class of Rediscoverable Process Trees. Let A(Q) denote
the set of activities inQ. A modelQ is in the class of language rediscoverable
models iff for all nodes ⊗(Q1, . . . , Qn) in Q we have:

1. No duplicate activities: ∀ i 6= j : A(Qi) ∩A(Qj) = ∅;
2. In the case of a loop, the sets of start and end activities of the first

branch must be disjoint:
⊗ = 	⇒ Start(Q1) ∩ End(Q1) = ∅

3. No τ ’s are allowed: ∀ i : Qi 6= τ .

Note that when referred to a reduced model, we refer back to the normal
form and the reduction rules detailed in Table 2.1 on page 42.

Language-Rediscoverable Guarantee
Using the above language completeness definition and class of language-rediscoverable
models, we can now proof language-rediscoverability. The proof for this prop-
erty is divided into four steps:

1. In Lemma 4.3.4 we show that the base cases can be rediscovered.
2. In Lemma 4.3.5 we show that any root process tree operator can be

rediscovered, proving that the cut criteria are correct.
3. In Lemma 4.3.6 we show that for all process tree operators, the graph cut

yields the correct activity division and the log is correctly subdivided.
4. Finally, Theorem 4.3.7 uses the above lemmas to prove language redis-

coverability using induction on the model size.

Lemma 4.3.4 — IM rediscovers base cases. Let Q = a for some a ∈ A or let
Q = τ ; let L be a log such that L�df Q∧L ⊆ L(Q). Then IMdiscover(L) = Q.
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Sketch of Proof. See page 366. �

Lemma 4.3.5 — IM selects right tree operator. Let Q = ⊗(Q1, . . . , Qn) be a
reduced model that adheres to the model restrictions in Definition 4.3.2 and
let L be a log such that L �df Q ∧ L ⊆ L(Q). Then FindCut(L) selects ⊗.

Sketch of Proof. See page 366. �

Lemma 4.3.6 — IM splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the model restrictions in Definition 4.3.2 and let L be a
log such that L �df Q ∧ L ⊆ L(Q). Let ⊗ be the result of FindCut(L) and let
(L1, . . . , Ln) be the corresponding result of SplitLog. Then for the resulting
sublogs Li we have ∀ i : Li �df Qi ∧ Li ⊆ L(Qi).

Sketch of Proof. See page 366. �

Finally, using the above lemmas, we prove language rediscoverability using
induction on the model size.

Theorem 4.3.7 — IM guarantees language rediscoverability. If the model re-
strictions in Definition 4.3.2 hold for a process tree Q, then IMdiscover

language-rediscovers Q, i.e., L(Q) = L(IMdiscover(L)) for any log L such
that L �df Q ∧ L ⊆ L(Q).

Sketch of Proof. See page 367. �

4.3.4 Polynomial Runtime Complexity
The IM framework is implemented as a polynomial algorithm and scales well
with large event logs. Due to the used directly-follows abstraction, the al-
gorithm is able to handle a large number of events and traces and is mainly
limited in the number of activities or the alphabet size.

Theorem 4.3.8 — IM has polynomial runtime complexity. The runtime com-
plexity of the IM framework is bounded by O(|A(L)|5 + |A(L)| · |L|).

Proof. See page 367. �

4.4 Existing Behavioral and Scalability Extensions

The Inductive Miner (IM) framework, as introduced in the above sections,
provides a good basis for process discovery. In addition, the base cases, cuts
and splits, and the fallbacks provide easy extension points. Below, we discuss
some existing extensions using these extension points, illustrating the various
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ways in which the framework can be extended while maintaining (some of) the
guarantees from the previous section.

In [130, Section 6.2], the Inductive Miner – infrequent (IMf) algorithm
is presented, handling deviating and infrequent behavior. This algorithm ex-
tends the cut detection (FindCut in Algorithm 4.1) as follows: if no cut was
detected, filter the directly-follows graph according to some user-chosen fre-
quency threshold and repeat the cut detection. Likewise, the log splitting is
modified to take this filtering into account. The user can set this frequency
threshold by using a so-called “path” slider in the user interface implementa-
tions. In addition, the single activity base case and empty traces fallback are
slightly altered to take into account infrequent behavior. Naturally, since IMf
excludes behavior of the event log from the discovered model, perfect fitness is
no longer guaranteed. However, the rediscoverability guarantee is maintained.

In [130, Section 6.3], the Inductive Miner – incompleteness (IMc) algorithm
is presented, handling incompleteness. By using probabilistic activity relations
in the cut detection, this algorithm accounts for missing behavior. Naturally,
since IMc does not necessarily honor all observed activity relations, perfect
fitness is no longer guaranteed. However, the rediscoverability guarantee is
maintained.

In [130, Section 6.4] it is shown how the list of process tree operators can
easily be extended. Here, new cases are added to the cut detection (FindCut
in Algorithm 4.1) and log splitting (SplitLog in Algorithm 4.1) to support
interleaved behavior and the inclusive choice/OR split. By construction of the
new operators and language join-functions, perfect fitness is maintained (Theo-
rem 4.3.3 can be proved independent of the actual tree operators). By covering
these new cases in extensions of Lemmas 4.3.5 and 4.3.6, the rediscoverability
guarantee is maintained.

In [130, Section 6.5], a lifecycle aware extension is presented, which adds
support for non-atomic event logs by adapting the single activity base case,
the cut detection, and some of the fallback solutions. And in [130, Section 6.6],
support is added for very large event logs by replacing the sublogs with sub
directly-follows graphs. That is, the framework no longer recurses using event
log as input. Instead, we recurse on a directly-follows abstraction, such that
in each recursion, only a directly-follows relation needs to be copied instead of
an event log. Hence, we save memory otherwise needed for all the sublogs.

4.5 Open Challenges and Our Approach

In this chapter, we presented the well-known Inductive Miner (IM) framework,
as described in [130], as our process discovery foundation. This framework of-
fers good discovery guarantees, scales well, and provides clear extension points
for our adaptations. However, existing extensions do not cover the need for
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discovering models with hierarchy (Challenge 2), recursion (Challenge 3), and
cancelation (Challenge 4). In addition, as noted in Section 4.3.4, the IM frame-
work is mainly limited in the number of activities or the alphabet size.

In Chapters 6 and 7, we will use the extension points provided by the IM
framework to add support for hierarchical, recursive, and cancelation behav-
ior. Using the basis provided in Section 4.3, we will show that our extensions
maintain many of the original guarantees. In addition, we will show how the
hierarchical discovery approach has the potential to significantly improve the
running time in the presence of a large number of activities.
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In Part II, we introduce the challenges of software process discovery
and present our novel hierarchical process discovery techniques.
Chapter 5 discusses the properties, patterns, and the accompanied

challenges of software event logs.
Chapter 6 introduces the hierarchical process tree notation and dis-

covery techniques for hierarchical and recursive behavior.
Chapter 7 introduces the cancelation process tree notation and dis-

covery techniques for cancelation behavior.
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On Software Data and Behavior

In this chapter, we will discuss software event logs, how to obtain such logs,
and how software event logs compare to traditional business event logs (Con-
tribution 1). Section 5.1 discusses various sources of software event data and
different techniques for obtaining and structuring such data. After that, Sec-
tion 5.2 compares software event logs to traditional business event logs. Sec-
tion 5.3 proposes some common elements and structures for software event
data. Finally, Section 5.4 concludes this chapter.

5.1 Software Data Sources and Case Identification

Event log data capturing actual system behavior can be found at many places:
in enterprise information systems and business transaction logs, in web servers,
in high-tech systems such as X-ray machines and wafer scanners, in warehous-
ing systems, etc. [8] In this section, we will look into these various data sources
(Section 5.1.1), and discuss different techniques for obtaining (Section 5.1.2)
and structuring (Section 5.1.3) such data.

5.1.1 Log Files, Monitoring, Tracing, and Instrumentation
There are many different sources for obtaining software data. Below, we will
discuss the most common sources of data by dividing the discussion into four
data source types: log files, monitoring, tracing, and instrumentation.

Log Files
The most obvious source for software data are log files already provided by ex-
isting systems. For example, the Apache web server [30], which serves 43%
of all active websites [149], records error logs and access logs. The error logs
record diagnostic information and any errors that Apache encounters in pro-
cessing requests. And the access logs records all (HTTP) requests processed
by the server. Based on these logs, one could derive how users use a website,
which pages are accessed in which order, how individual web pages perform,
where and when errors occur, etc. As another example, consider the various
transaction logs at Adyen, a large service-provider company in the payment
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industry [195]. Whenever Adyen handles a payment service request, several
log entries are produced in multiple different systems. The above are just a few
examples of the many software systems and companies that have logging in
place, usually for debugging and troubleshooting purposes. However, these ex-
amples also illustrate some of the challenges associated with using such existing
log files. For one, relevant and interesting log entries may be hidden among all
the log entries that are less relevant. For another, large-scale logging is usually
deployed using so-called rotating logs, i.e., log files are periodically archived or
deleted in order to deal with the large amounts data being produced.

Monitoring

Another common source for software data is external monitoring. There exist
many monitoring frameworks geared to various purposes. For example, the
Kieker framework [89] is designed to monitor and analyze a software system’s
internal runtime behavior. In contrast, application performance management
(APM) suites like AppDynamics [31], New Relic [164], and XRebel [182] are
focussing on cross-stack monitoring and analysis, showing how a collection
of programs, servers, databases, and more are linked together and perform.
Like APM suites, network monitoring tools like Wireshark [179] and UNIX
Snoop [175] allow for cross-stack monitoring of large software systems. As
another example, Google Analytics [70], the most widely used web analytics
service on the internet [189], monitors and tracks users across websites or within
applications like ProM 6.7 [185]. These monitoring frameworks typically hook
into a target software system, record all events to an internal database or a
structured format, and present the analyst with a dashboard-like summary
of (recent) activities. Monitoring information, especially when stored in an
internal database, is typically well structured and documented.

Tracing

Many of the more complex software systems usually have some kind of on-
demand tracing infrastructure. For example, ASML, a large high-tech com-
pany producing lithography machines, employs a tracing infrastructure in their
component-based software systems for debugging and troubleshooting purposes
(see also Chapter 12). As another example, Google’s Dapper is a production
distributed systems tracing infrastructure. Dapper aims to obtain more infor-
mation for developers about the behavior of complex distributed systems [170].
Similarly, Facebook’s ÜberTracing was designed to trace the interaction of soft-
ware components during the end-to-end processing of a Facebook request [54].
In contrast to log files and monitoring, tracing infrastructures are a high-
precision tool and designed to be configurable. That is, they do not log every-
thing all the time. Rather specific behavior and data is traced upon request,
and such data is often of high quality and designed with various analyses in
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mind. For example, Facebook’s ÜberTracing was designed to unify various
tracing sources for analysis. In particular, these ÜberTraces enable request
analyses in Facebook’s Mystery Machine, a causal graph discovery tool [54].

Instrumentation
The most obvious examples of instrumentations are software profilers. Tools
like the Yourkit Profiler [136] and our solution presented in Chapter 10 instru-
ment software by altering the program source code or its binary executable to
sample or trace behavior and performance information. The key feature here
is that the instrumentation by such tools is fully automatic and non-invasive.
That is, the original software source code is not changed and the sampling or
tracing code is not added manually by a developer. Although the information
recorded by profilers is usually not (directly) accessible, similar instrumenta-
tion techniques can easily be employed for streaming or logging event data. For
many target programming languages, instrumentation techniques can easily be
built using one of the various Aspect-Oriented Programming (AOP) tools [65],
such as AspectJ [71] for Java, AspectC++ [173] and AOP++ [200] for C++,
and the TXL processor [57] for many other languages. In addition, many inter-
preted languages provide code-manipulation hooks such as, for example, Java
Agents and Javassist [52, 53] for the Java programming language. The benefit
of instrumentation approaches is the very high-quality, precise and fine-grained
information that is available. However, such instrumentation can produce a
noticeable overhead and as a result the behavior of the instrumented software
system may be different from the unmodified software system, especially in
the context of deadlines and race conditions. This is an unavoidable conse-
quence as observing a system changes the system [168]. However, one should
nevertheless strive to minimize the impact of the instrumentation code on the
software system’s behavior and performance.

5.1.2 Software Environment and Stimuli
Next to the software data sources discussed above, the software systems also
need an environment and external stimuli to trigger actual behavior and gen-
erate software event data. Below, we will discuss various approaches for trig-
gering behavior.

For detailed and controlled software behavior analyses, a development or
test environment can be used. In a development environment, one typically
uses tracing and instrumentation techniques to observe a software system under
carefully controlled setups. The software can be triggered via various means,
such as: unit and integration test suites, simulation suites, scenario-based
testing, random stimuli, etc. Such a setup is especially useful for obtaining a
detailed and fine-grained observation of a piece of software. When an analysis
focusses on the internal behavior of a specific part of a software system, such
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detailed and fine-grained observation can be very useful. In addition, observ-
ing a software system in a development environment, possibly in a mock-up or
simulation setting, is usually cheaper and more accessible than other setups.
The downside of using such a controlled setup is the lack of any real-life be-
havior (e.g., lack of usage patterns, tests cannot cover all behavior, etc.) or
real-life conditions (e.g., high load or resource demand).

For a more real-life analysis, an acceptance (test) environment can be used.
An acceptance environment usually resembles a production environment more
closely, and usually involves customers or users testing the software system or
product. The upside is of using acceptance testing for triggering behavior is
the more realistic usage patterns. As a result, more unusual behavior may be
triggered, covering more corner cases in the software. The downside is that
acceptance testing is more costly and thus limited. In addition, certain real-
life conditions usually cannot be reproduced during testing (e.g., high load or
resource demand).

Finally, the production environment can be used to observe real-life behav-
ior and investigate the software system under real-life conditions. Especially
the monitoring tools like the APM suites (see Section 5.1.1) are designed to be
used in a production environment. Most of the performance problems, unusual
usage patterns, and exceptional errors become only visible once a software sys-
tem is in production. In addition to observing the behavior of a software
system itself, a production environment can also be used for observing how a
software system is used. However, due to the costly and sensitive nature of a
production environment, any behavior observation has to be non-intrusive with
respect to both the software behavior as well as the performance. Therefore,
it is unlikely that one would obtain any detailed and fine-grained observation
in a production environment.

5.1.3 Event Structuring and Case Identification

Once a dataset has been obtained from a software data source, this data has
to be interpreted and structured. Following the structure of an event log (see
Section 2.3.1 on page 43), there are various interpretation questions to be
answered in parsing software data and mapping such data to an event log:
• What is the main subject being observed? I.e., what is the case notion?
• What are the activities describing the behavior?
• Which data represents lifecycle transition types?
• What timestamp data will be used?
• Which resource notions are associated with the activities?
• What other data exist, and what are the associated semantics?
The most important decision here is the case notion. That is, the case

notion determines the view on the dataset, how traces are constructed, and
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the subject of further process analysis efforts. Often, in practice, a dataset can
be interpreted in many different ways, yielding different case notions. For ex-
ample, when considering the Apache access logs, one can adopt a user-centric
view such that each trace represents the activities of a user. An equally valid
choice would be a page-centric view such that each trace represents the visit
of a particular page by various users. Below, we will further detail three com-
mon approaches for determining a case notion: instance identifiers, business
transactions, and windowing/protocol runs.

Instance Identifiers
The simplest approach to construct a case notion is to use a set of existing
attributes as instance or case identifiers. In many (software) event datasets
various context attributes are present. A web server access log may log page
names, request identifiers, session identifiers, host names, and service, client or
user ids. A cyber-physical system may log product numbers, batch identifiers,
or location names. A detailed execution log of internal software behavior may
log process and thread instance ids, class object addresses, or communication
port numbers. Sometimes, such data can be used directly for case identifica-
tion. In other cases, only a little preprocessing is needed for normalizing and
combining attribute names and values.

Business Transactions
Another common approach is to identify business transactions. A business
transaction is a sequence of related events, which together detail a specific
(user/service) request. To construct a business transaction, data from several
software systems, usually across a specific software stack, is combined based on
certain identifiers. For example, connection information from communication
channels can be used to correlate events from a server and a client. In other
cases, session, request, or span identifiers are passed across different systems.
In addition, timestamps and (interval) containment relations can be analyzed
to form business transactions [119]. Business transactions are typically used
for a user-centric or request-centric analysis of a distributed system. Especially
in APM suites [31, 164, 182] and approaches like Dapper [170], ÜberTrace [54],
service mining [6], and distributed software mining [119], business transaction
notions are used for case identification.

Windowing/Protocol Runs
In situations where a case notion cannot be constructed from data attributes
alone, one can resort to windowing and protocol run techniques. In these tech-
niques, one uses repeating patterns to identify the start and end of cases.
Typically, one defines rules to “window events” based on observed patterns,
i.e., causal rules that group events by indicating the start and end activities of
an example run. For example, if one would observe an I/O software interface,
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a rule could be that a case starts with a constructor call or an interface method
named open() and ends with a destructor call or an interface method named
close() or release(). A useful practice is to identify and number repeating pat-
terns, storing the resulting run identifiers in a new, artificial data attribute.
Alternatively, one could also track the opened and closed I/O handles in a
queue, and number a new run each time the queue is empty, i.e., at so-called
regeneration points. Afterwards, the new run identifiers can be combined with
other instance identifiers such as, for example, (file) handles and product or
user identifiers. In Chapter 12, we will show a more detailed real-life example
on an event log from a software interface at ASML where a protocol run was
identified based on observations made with a Dotted Chart analysis.

5.2 Business Event Logs versus Software Event Logs

In the previous section, we discussed the various ways to obtain software event
logs. In this section, we will compare a set of publicly-available software event
logs with well-known publicly-available business event logs on both log size
(Section 5.2.1) and type of behavior (Section 5.2.2).

5.2.1 Log Size Comparison
In this section, we present a log size comparison between business event logs
and software event logs. The size of an event log is typically measured in terms
of four metrics: number of traces, number of events, number of activities (size
of the alphabet), and average trace length.

Example Event Logs
Table 5.1 shows the event logs used in this comparison with their input sizes.

For the business event logs, we selected the following logs. The BPIC
2012 [63] and BPIC 2013 [174] event logs are so-called BPI Challenge logs.
These large real-life event logs with complex behavior are often used in process
mining evaluations. The challenge logs are made available yearly in conjunction
with the BPM conference and are considered sufficiently large and complex
inputs to stress test process mining techniques. The WABO [45] event log
describes the receipt phase of an environmental permit application process
(‘WABO’) at a Dutch municipality. The Road fine [60] event log was obtained
from an information system managing road traffic fines and is one of the largest
event logs in this collection.

For the software event logs, we used an extended version of the instrumen-
tation tool developed for [119], yielding XES event logs with method-call level
events. The JUnit 4.12 software [67] was executed once, using the example
input found at [40]. For the Apache Commons Crypto 1.0.0 software [29], we
executed the CbcNoPaddingCipherStreamTest unit test. For the NASA CEV soft-
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Table 5.1: Event logs used in comparing business and software event logs.

Trace length

Event Log # Traces # Events # Acts Min Mean Max

[108] JUnit 4.12 1 946 182 946 946 946
[109] Crypto 1.0.0 3 241, 973 74 278 80, 658 241, 140
[110] NASA CEV 2, 566 73, 638 47 12 29 50
[112] Alignments 1 17, 912 90 17, 912 17, 912 17, 912

[63] BPIC 2012 13, 087 262, 200 24 3 20 175
[174] BPIC 2013 7, 554 65, 533 13 1 9 123
[45] WABO 1, 434 8, 577 27 1 6 25
[174] Road Fines 150, 370 561, 470 11 2 4 20

ware [148], we executed a unit test generated from the source code, covering
all of the code branches. For the alignments software [21, 187], we executed
an alignment computation on a typical input log and model.

Comparison
As we can already see from Table 5.1, business and software event logs differ
greatly in the number of activities and average trace length. Figure 5.1 presents
two graphical comparisons, illustrating the size differences between logs (note
the logarithmic scales). We will discuss these comparisons in more detail below.

Based on Figure 5.1a, we observe that, although business and software
event logs have a comparable number of total events, software event logs tend
to have an order of magnitude more unique activities. Recall from Chapter 1,
page 9, that current state-of-the-art process discovery techniques scale well
with a large number of events and traces, but are mainly limited by the num-
ber of activities or length of traces. Hence, the fact that software event logs
tend to have significantly more activities can be problematic. Especially pro-
cess discovery algorithms can suffer from the large amount of activities. For
example, the Inductive Miner discovery algorithm scales linearly in the number
of traces and events, but is limited in the number of activities or alphabet size
it can handle (see also Section 4.3.4 on page 86).

Based on Figure 5.1b, we observe that software event logs, compared to
business event logs, tend to have several orders of magnitude more events per
trace. Again, recall from Chapter 1 the scalability limitation of process mining
techniques in terms of the trace length. For example, at the time of writing, the
Alignments algorithm [21] for conformance and performance analysis cannot
process the Apache Crypto event log simply because the implementation was
never designed to handle such long traces.
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Figure 5.1: Comparison of business event logs and software event logs. Note
that all axes use a logarithmic scale. These charts show a clear division between
business event logs and software event logs in terms of various log sizes.
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Large software event logs with many activities and a large average trace
length can be problematic for process mining techniques. However, a smart
event log interpretation can go a long way in reducing this complexity. In the
next section, we will discuss some opportunities for such smart interpretations.

5.2.2 Behavior Comparison and Accompanied Challenges

In this section, we will compare the different types of behavior found in business
event logs and software event logs. In addition, we will discuss some of the
associated behavioral properties, patterns, and accompanied challenges one
can encounter in such software process settings.

Inter-Process Relations and Hierarchies
In business event logs, an event log usually captures the activities performed
by humans within a business process. In the case such logs originated from an
(enterprise) information systems or business transaction logs, each event usu-
ally represents a user completing a certain activity and recording the associated
information within the system. Since most of the actual work is performed out-
side of the system, the recorded activities are typically “flat”. That is, activities
are not composed of more detailed steps. For example: an employee registers a
request and details the customers details, a doctor visits a patient and records
the patient’s vitals, etc. In some cases, such as in artifact-centric [39, 151] and
service-oriented [6] settings, there are multiple processes or process instances
interacting, each providing a perspective on the overall process. For example,
a customer may place an order to be delivered (process A), while a warehouse
processes multiple orders into multiple deliveries (process B). Such processes
are considered equal and interact side-by-side. That is, often there is no master
or main process from which the rest of the behavior originates.

In software event logs, each event in an event log typically captures what
happens (the activities) at a particular abstraction level. For example, consider
a user visiting a website. Such a visit consists of requesting multiple webpages.
In turn, requesting a webpage consists of querying multiple systems for one
business transaction: a web server cooperates with a database server and a
cache server to deliver the requested content. And so on. Often, there is a lot
of structure to the recorded behavior and activities are seldom “flat”. That is,
typically activities are composed of smaller steps and a hierarchical relations
amongst activities and (sub)process can be inferred. In Chapter 6, we will
further explore such structures by making the underlying hierarchical relations
explicit for process discovery.

Error Handling and Cancelation
Another behavioral property to consider is the notion of error handling. In
business processes, whenever something goes wrong according to the process,
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the actual human users of the process can step in. In such cases, errors are
usually handled outside of the information system recording the processes. In
extreme cases, the predefined process can be ignored to solve issues, and, as
a result, deviating behavior is recorded by the information system. For exam-
ple, when a patient visiting a hospital for a routine checkup suddenly suffers
from a cardiac arrest, the doctor simply ignores the predefined process and
acts. Afterwards, the doctor can skip the routine checkup steps and record
the unfortunate event. In less extreme cases, errors can be handled at spe-
cific go/no-go points in a process. For example, upon a fraud detection, a loan
request is simply rejected at a later decision step. There is often no need to ex-
plicitly account for error handling within business processes; errors are handled
by humans and the appropriate decisions are made at the right moment.

In software processes, error handling is typically much more involved. Of-
ten, errors and exceptions must be anticipated and handled automatically.
Moreover, a complete abort of a process is usually not desired, and multiple,
overlapping error recovery schemes are designed and deployed. Hence, software
processes tend to have much more complex error catching, cancelation, and re-
covery schemes in place. In addition, these notions of errors, cancelations, and
recovery schemes are often more explicit in software process than in human-
driven processes. In Chapter 7, we will further investigate such error-handling
behavior and propose a process discovery solution based on cancelation regions.

Concurrency, Multi-Instance, and Communication

One of the basic behavioral patterns covered by process discovery approaches
is the notion of concurrency or parallelism. In business event logs, concurrency
often occurs when different people or departments can progress independently
of each other or when the order of a group of activities does not matter. In
some cases, resource and organizational information in an event log can hint
at the concurrency. However, in practice, concurrency is simply inferred from
the causal relations over multiple traces (recall the concurrency detection from
Section 4.2.3 on page 76). With the relatively small number of activities in
business event logs, any reasonably sized event log is likely to have seen enough
traces to correctly reconstruct concurrency patterns. Communication between
parallel branches is either visible via synchronization points in the process or
occurring outside the information system recording the process.

When observing larger software systems, concepts like multi-threading,
multi-processes, and distributed systems start to become relevant. In event
logs from such systems, there is often much more concurrency than in business
event logs. Moreover, there is often a precise structure or order to this type
of concurrency. Often there is a lot of extra data available about this concur-
rency and the communication between concurrent parts of a software process.
Simply looking at the causal relations alone to infer the concurrency patterns
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is unlikely to be effective. Not only is the relatively large number of activities a
problem, also the unlikelihood of specific interleavings is making concurrency
discovery more difficult. In the software engineering community, hidden bugs
and deadlocks caused by so-called race conditions are infamous examples of
how unlikely certain concurrency interleavings occur in practice. In addition,
in concurrent software, often the same activity or method is executed multiple
times in parallel with itself. For example: a process() method is instantiated
in parallel for each element in a large dataset to be processed by a software
system. The alignments software event log contains a nice example of such a
pattern, see for example the evaluation in Section 8.5.1 on page 239. In short,
unlike with most business event logs, concurrency in software processes can
and should be discovered based on the data perspective in a software event
log. Discovery algorithms should actively support inferring causal relations
from data attributes like thread and process identifiers, and add support for
specifically discovering fork and join patterns as well as multi-instance pat-
terns. We will not address the above challenges in this thesis, but we will
come back to some opportunities in the future work sections.

Services, Batches, and Orchestration

In artifact-centric [39, 151] and service-oriented [6] event logs, more than one
process is observed. These processes are interacting and coordinate their
progress via some orchestration mechanism. As indicated in [6, 9] one of the
main challenges in such a setting is how to correlate instances across all the
involved processes. That is, to use the recorded examples in an event log to de-
rive the orchestration mechanisms. Since such coordination and orchestration
mechanisms are usually very diverse, and any form of interaction can happen
in practice, this is a very broad and challenging problem.

In software event logs, similar challenges occur. For example, in the soft-
ware log from a software interface at ASML, we identified a product-level
process and a batch-level process interacting (see Chapter 12). However, un-
like the very broad and generic settings encountered in business settings, such
software event logs usually have a lot of auxiliary data available. In the ASML
example, the correlation between batch and product instance identifiers can be
extracted from the event log itself. Moreover, we can use knowledge about how
the different software services interact (based on their design and interfaces),
and we can infer specific interaction patterns. For example, we know that an
instance of the batch-level process creates and destroys multiple instances of
the product-level process. Similar patterns can be found in numerous other
software systems: cyber-physical systems such as industrial plants and bag-
gage handling systems processing batches of products/items, databases and
(web)services processing batches of requests (e.g., Dapper explicitly uses re-
quest parent-child relations [170]), etc. In such settings, it should be possible
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to use the extra information from the data perspective to infer where batch
workflow patterns are present, how services are connected, how processes are
related (possibly hierarchically), and how communication across processes is
orchestrated. It should be possible to discover and model such complex combi-
nations of processes. We can model interaction constraints and track different
process instances using, for example, colored Petri nets [95] or other high-level
nets. We will not address the above challenges in this thesis, but we will come
back to some opportunities in the future work sections.

5.3 Software Event Data

In this section, we propose common elements and structures for software event
data. Some of these common elements were already mentioned in the previous
sections. In this section, we assume that a software event log was recorded
at the method-call or interface-call level during software execution. This fine-
grained view on internal software behavior is much like the tracing, instrumen-
tation, and profiling setups discussed in Section 5.1.1. Events generated at this
level reference a specific point in the software source code. The Software Event
extension [128] captures this event location information, together with some
basic runtime information related to this location. In the remainder of this
section, we will first cover some basic terminology (Section 5.3.1) and after
that cover various data aspects with some examples (Sections 5.3.2 to 5.3.7).
We refer to [128] for a complete example event log.

In this section, we describe the common data elements based on the struc-
ture of event logs (Section 2.3.1) and the XES extension format (Section 2.3.2).
In an XES extension, attributes are defined at a particular level (log, trace,
event, or meta), have a specific key and data type, and have an associated
description. For example, suppose we annotate an event with a “name” of type
“string”. We define this “name” attribute as follows:

Level Key Type Description

event name string Some semantical description. . .

We refer the reader to the official XES software extensions for more details
and other elements that can be found in software event logs [127, 128, 129].

5.3.1 Terminology

In this section, we briefly explain some key terminology using the example
code snippet shown in Listing 5.1. When recording a software event at the
method call level, we refer to the method being called or invoked as the callee.
Optionally, we can track the context method where a method is triggered from.
We call this context method the caller. That is, the caller method invokes the
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callee method. In Table 5.2, we can see how the callee and caller role can
change over the course of executing the code in Listing 5.1.

Listing 5.1 Example code snippet showing when which event types are triggered.
1 class A {

2 void f(int y) { - - - - - - - - - - - - - - - - - - - - - - - - - - call A.f

3 try {

4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - calling B.g

5 int r = b.g(12, y);

6 - - - - - - - - - - - - - - - - - - - - - - - - - - - returning B.g

7 } catch (Exception e) { - - - - - - - - - - - - - - - - - handle in A.f

8 ...

9 }

10 } - - - - - - - - - - - - - - - - - - - - - - - - - - - - return/throws A.f

11 }

12 class B {

13 int g(int x, int y) { - - - - - - - - - - - - - - - - - - - - - - - call B.g

14 return x / y;

15 } - - - - - - - - - - - - - - - - - - - - - - - - - - - - return/throws B.g

16 }

Table 5.2: The caller-callee roles for an execution of Listing 5.1.

Line Callee Caller Line Callee Caller Line Callee Caller
2 A.f – 4 B.g A.f 13 B.g –
10 A.f – 6 B.g A.f 15 B.g –

5.3.2 Event Type and Lifecycle Transactions
Software events can be triggered at different states during a software execution.
To specify at which state an event was triggered, we record an indicative event
type attribute for method-level execution events, as defined below. Listing 5.1
shows these event types on the right in the context of an example code snippet.

Level Key Type Description

event type string Software event type, indicating at which
state during execution this event was gener-
ated. Possible values are enumarated below.

The possible software event type values we recognize are:
call The start of a method block
return The normal end of a method block
throws The end of a method block in case of an uncaught exception
handle The start of an exception handle catch block
calling The start of calling/invoking another method
returning The end of returning a called method
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The software event type values describe transitions in a transactional model
for the lifecycle of a method execution. In Figure 5.2, the state machine for
the method execution transactional model is given. As an example, Table 5.3
shows the states for the two methods in Listing 5.1. In Chapter 6, we will
(indirectly) use this event type information for extracting hierarchies based on
nested intervals or nested calls.

The software event type values can be related to values in the standard
lifecycle transactional model, defined in the lifecycle extension. We suggest the
mapping in Table 5.4. Note that the standard lifecycle transactional model
cannot correctly support the handle transition.

ClosedRunning

End

InProcess Suspended

Start

Aborted

Completed

handle

calling

returning

call throws

return

Figure 5.2: State machine for the method execution transactional model.

Table 5.3: The states for the two methods in Listing 5.1 using the transac-
tional lifecycle model from Figure 5.2. Shown are two different runs, with the
event types generated at the indicated line numbers, and the corresponding
lifecycle state for both methods.

Run without exceptions
Lifecycle State

Ln. Event Type A.f B.g

2 call A.f InProcess –
4 calling B.g Suspended –
13 call B.g Suspended InProcess
15 return B.g Suspended Completed
6 returning B.g InProcess Completed
10 return A.f Completed Closed

Run with exceptions
Lifecycle State

Ln. Event Type A.f B.g

2 call A.f InProcess –
4 calling B.g Suspended –
13 call B.g Suspended InProcess
15 throws B.g Suspended Aborted
7 handle in A.f InProcess Aborted
10 throws A.f Aborted Closed

Table 5.4: Mapping from the method execution transactional model (Fig-
ure 5.2) to the standard lifecycle transactional model [8].

Type Lifecycle Type Lifecycle Type Lifecycle
call start calling start handle reassign

return complete returning complete throws ate_abort
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5.3.3 Event Location

Software events are triggered at a particular, uniquely identifiable location in
the software source code. With this location, each event is traceable back to
the source code location where it was generated.

Each event has a callee location. Events with the calling or returning
event type also have an additional caller location. Each location is described
by the following attributes, with a callee- or caller- key prefix:

Level Key Type Description

event package string The package in the software code architec-
ture to which the method belongs.

event class string The class to which the method belongs.
event method string The referenced method name.
event paramSig string The parameter signature of the method.
event returnSig string The return signature of the method.
event isConstructor boolean If the method is a class constructor.
event instanceId string The instance id of the corresponding class

instance. The absence of an instance id is
represented by the value “0”.

event filename string The file name of the corresponding source
code artifact.

event lineNr int The line number of the executed source code
statement.

The software event callee values can be related to the concept name, defined
in the concept extension. We suggest to use the concatenation of callee package,
class, method and paramSig as a concept:name (e.g., demo.A.f(int) ). This way,
the concept name is the unique, canonical name for the executed method. Note

Table 5.5: Example event location information for some events for an execu-
tion of the program in Listing 5.1.

Line 2 Line 4 Line 4
call A.f calling B.g calling B.g

callee-package demo demo caller-package demo

callee-class A B caller-class A

callee-method f g caller-method f

callee-paramSig (int) (int,int) caller-paramSig (int)

callee-returnSig void int caller-returnSig void

callee-isConstructor false false caller-isConstructor false

callee-instanceId 1074593562 660017404 caller-instanceId 1074593562
callee-filename source/A.java source/B.java caller-filename source/A.java
callee-lineNr 2 13 caller-lineNr 5
concept:name demo.A.f(int) demo.B.g(int,int)
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that, in this way, cases like inheritance, method overloading, and dynamic
binding can be resolved at the labeling level. Table 5.5 presents example event
location information for some events from Listing 5.1.

5.3.4 Method Parameter Data
At runtime, when a method is called or returns, data can be passed along. A
return or returning event can define a return data value. A call or calling
event can define multiple parameter data values.

Level Key Type Description

log hasData boolean If method data is recorded for this log.
event returnValue string The return value for the returning method.
event params list List of parameters for the called method.
meta paramValue string A parameter value in the list params.
meta valueType string The runtime value type for a returnValue or

a paramValue.

For simple primitive datatypes, like integer and boolean type of parameters,
the actual values can be stored directly. For example, for the call A.f event in
Table 5.5, we could record parameter y = 0. For more complex datatypes such
as class objects, either a serialization, a hash code, or a pointer address can be
stored, depending on the use case.

5.3.5 Application Metadata
At runtime, the software events are generated by a particular application or
process instance. Users can annotate events with application information,
indicating which application instance generated the events. Not only makes
this the event log more self-contained, it also can help in tracing events in a
distributed or multi-process setup.

Level Key Type Description

event appName string The user defined application name.
event appTier string The user defined application tier.
event appNode string The user defined application node.
event appSession string The user defined application session.

5.3.6 Runtime Data
At runtime, the software events in an application process are triggered on a
particular thread. Such a thread can be identified by its thread id.

The nano time attribute is used to measure elapsed time in software. It
does not have to be related to any other notion of system or wall-clock time.
The value represents nanoseconds since some fixed but arbitrary time (perhaps
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in the future, so values may be negative). Note that, compared to the exist-
ing XES timestamp extension, which is limited to milliseconds, the nanotime
attribute allows for a more fine-grained time to be stored.

Level Key Type Description

event threadId string The thread id of the thread on which the
event was generated.

event nanotime int The elapsed nano time since some fixed but
arbitrary time, see the description above.

5.3.7 Exception Data
An exception in software indicates an error. When an exception is thrown
from a particular location/method, it can be caught/handled at a particular
location.
Level Key Type Description

log hasException boolean If exception data is recorded for this log.
event exThrown string The thrown exception type for a throws or

handle event.
event exCaught string The caught exception type for a handle

event.

For example, suppose that for the program in Listing 5.1 we record a
call B.g event with parameters x = 12 and y = 0. Then, due to a division by
zero, we will observe a throws event (line 15) with exThrown recording Arith-
meticException, followed by a handle event (line 7) with exThrown recording
ArithmeticException and exCaught recording Exception. In Chapter 7, we will
(indirectly) use this exception data for extracting cancelation regions based on
handled exceptions.

5.4 Conclusion

In this chapter, we discussed software event logs, how to obtain such logs, and
how software event logs compare to traditional business event logs (Contribu-
tion 1). In addition, we covered some common elements and structures for
software event data. We concluded that unlike business event logs, software
event logs tend to have more unique activities and longer traces, which can
potentially be problematic for process mining techniques. However, we also
observed the rich data which becomes available with observing and logging
software executions. Using this data in smart ways can provide various inter-
esting process mining solutions. For example, in Chapter 6, we will further
investigate (implicit) hierarchical structures and propose a discovery solution
using such hierarchical structures to scale better with more unique activities
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and longer traces. In Chapter 7, we will further investigate error-handling
behavior and propose an accompanied process discovery solution based on
cancelation regions.



“There is always another secret.”
— Brandon Sanderson, The Final Empire
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Hierarchical and
Recursion Aware Discovery

In this chapter, we introduce a modeling notation and discovery techniques for
hierarchical and recursive behavior (Contribution 2). We start by motivating
the need for hierarchy and recursion in Section 6.1. After that, we introduce
(atomic) hierarchical event logs (Section 6.2) and the hierarchical process tree
notation (Section 6.3). Based on these concepts, Section 6.4 introduces the
naïve hierarchical discovery algorithm, and Section 6.5 introduces the recursion
aware discovery algorithm. In addition, Section 6.6 elaborates on extending
the ideas to existing discovery extensions and to non-atomic event logs. Finally,
Section 6.7 evaluates these algorithms on rediscoverability and performance.

6.1 Why We Need Hierarchy and Recursion – Reality Is Not Flat

When applying process mining on event data originating from software sys-
tems, new patterns and challenges pop up. Typically, the run-time behavior
of a software system is large, complex, and contains some form of hierarchical
structure. Such hierarchies can arise from structural relations such as depen-
dencies in client-server relations, communicating software components, or ob-
ject relations. When focusing on runtime structures, hierarchies can arise from
call-relations amongst functions, methods, or co-routine invocations. In such
cases, one typically also encounters repetitive structures down the hierarchy,
suggesting recursive behavior. In the context of business processes, low-level
events recorded by information systems may not directly match high-level ac-
tivities that make sense to process stakeholders [139]. Often, also in these
cases, a hierarchy of business activities can be identified. In most cases, the
data contains enough information to extract hierarchies with named submodels
and recursions, which can and should be exploited for discovery and analysis
purposes. However, current techniques usually produce “flat” models where
activities are not composed of more detailed steps. Such models are often not
expressive enough to master the obsereved (software) complexity and are often
difficult to understand, see also Section 3.2 and Challenges 2 and 3.
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Listing 6.1 Running example Java code illustrating recursive behavior. Upon
execution, this program is logged at the method level.

1 public class Main {

2 // Entry point

3 public static void main(int i) {

4 A inst = input(i); // inst runtime type can be either A or B

5 inst.process(i); // invokes either A.process() or B.process()

6 output();

7 }

8 private static A input(int i) { ... }

9 private static void output() { ... }

10 }

11 class A {

12 public void process(int i) { ... }

13 }

14 class B extends A {

15 public void process(int i) {

16 if (i <= 0) {

17 super.process(i); // Call to A.process()

18 } else {

19 stepPre();

20 process(i - 1); // Recursive call to B.process()

21 stepPost();

22 }

23 }

24 private void stepPre() { ... }

25 private void stepPost() { ... }

26 }

As an example of hierarchical and recursive software behavior, consider
the program in Listing 6.1. The program starts with the Main.main() function.
During this main() function, we start with invoking Main.input(), followed by
inst.process(), and we finish with Main.output(). Note that the variable inst can
at runtime be an instance of either class A or class B. Based on this runtime
type, either A.process() or B.process() is invoked. For function A.process(), no
further behavior is specified. For function B.process(), a recursive process is
defined. Based on the input parameter int i, either a base case is executed if
i <= 0, invoking A.process(), or a step case is executed if i > 0. During this step
case of B.process(), first B.stepPre() is invoked, followed by a recursive call to
B.process(i - 1), decreasing i, and finally B.stepPost() is invoked.

Observe how, in the above example, the function-call relations induce a
hierarchical structure to the process description. In addition, observe that the
recursive behavior of B.process() is not a tail recursion. That is, since there
is a computation after each recursive call, it cannot be reduced to a simple
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loop. Another consequence of this recursive behavior is the emergent counting
behavior in the step case of B.process(). For example, due to the recursive call to
B.process() and the associated call stack, the number of B.stepPost() invocations
equals the number of B.stepPre() invocations. In the next section, we will show
how hierarchical event logs can capture this type of behavior.

6.2 Hierarchical Event Logs
In this section, we extend the event log notation (Definition 2.3.3, page 46) with
support for hierarchical behavior. In our extended notation, called the hierar-
chical event log, we can assign subtraces to events, capturing what happened
at different levels of granularity. Section 6.2.1 will start with a motivating
example based on the program in Listing 6.1. After that, Section 6.2.2 will
define hierarchical event logs, Section 6.2.3 presents an atomic variant, and
Section 6.2.4 will discuss various ways to obtain such logs.

6.2.1 Example Log of Executing a Program
Consider the program in Listing 6.1 again. Suppose we execute this program
with i = 1, and Main.input() returns an instance of class B. And suppose we trace
and log the start and end of each called method. Table 6.1 shows a resulting
example event log. Observe how the start and complete lifecycle information
implicitly capture a set of overlapping intervals. Figure 6.1 explicitly depicts
Case 1 as a set of intervals. Note how the intervals contain each other as can be
expected from the call relations, implying a hierarchical order. For example, we
can deduce that most events happen during the interval of Main.main(). Below,
we will show how a hierarchical event log can make such an implied hierarchical
order explicit.

In practice, an event log can record more lifecycle information beyond the
start and complete lifecycle transitions assumed above, recall Figure 5.2 on
page 104. However, for now, we assume starts and completes only. In most
cases, additional lifecycle information, such as the abort and handle lifecycle
transitions can be either encoded via starts and completes, or filtered out.

6.2.2 The Hierarchical Event Log
In the hierarchical event log, we can assign subtraces as attributes to events as
defined below, capturing what happened at different levels of granularity.
Definition 6.2.1 — Hierarchical Event Log. Let E be the event universe. We
define the following hierarchical extension attribute:

#subtrace(e) the hierarchical subtrace #subtrace(e) ∈ E∗ associated to
event e ∈ E.



112 Chapter 6. Hierarchical and Recursion Aware Discovery

Table 6.1: Example snippet of an event log for the program in Listing 6.1.
Each row is an event and each column corresponds to an attribute. The events
relate to the start and end of each called method.

Attributes

Case id Event id Activity Lifecycle Timestamp Resource . . .

1 1.1 M Main.main() start 30-10-2017 11:02:45.000 main-thread . . .
1.2 i Main.input() start 30-10-2017 11:02:45.200 main-thread . . .
1.3 i Main.input() complete 30-10-2017 11:02:45.400 main-thread . . .
1.4 B B.process() start 30-10-2017 11:02:45.650 main-thread . . .
1.5 s1 B.stepPre() start 30-10-2017 11:02:45.690 main-thread . . .
1.6 s1 B.stepPre() complete 30-10-2017 11:02:45.730 main-thread . . .
1.7 B B.process() start 30-10-2017 11:02:45.770 main-thread . . .
1.8 a A.process() start 30-10-2017 11:02:45.840 main-thread . . .
1.9 a A.process() complete 30-10-2017 11:02:45.920 main-thread . . .
1.10 B B.process() complete 30-10-2017 11:02:45.940 main-thread . . .
1.11 s2 B.stepPost() start 30-10-2017 11:02:45.980 main-thread . . .
1.12 s2 B.stepPost() complete 30-10-2017 11:02:46.160 main-thread . . .
1.13 B B.process() complete 30-10-2017 11:02:46.180 main-thread . . .
1.14 o Main.output() start 30-10-2017 11:02:46.250 main-thread . . .
1.15 o Main.output() complete 30-10-2017 11:02:46.460 main-thread . . .
1.16 M Main.main() complete 30-10-2017 11:02:46.580 main-thread . . .

2 2.1 M Main.main() start 30-10-2017 11:02:47.440 main-thread . . .
...

...
...

...
...

...
...

. . .

M - Main.main()

1.1 1.16

i - Main.input()

1.2 1.3

B - B.process()

1.4 1.13

o - Main.output()

1.14 1.15

s1 - B.stepPre()

1.5 1.6

B - B.process()

1.7 1.10

s2 - B.stepPost()

1.11 1.12

a - A.process()

1.8 1.9

start event
complete event

Figure 6.1: Case 1 from Table 6.1 depicts as intervals. Each diamond repre-
sents an event, with the event identifier below and activity name (abbreviated
and full name) above the diamond. The lines connect corresponding start and
complete events, creating the intervals for each activity instance. Observe how
the intervals contain each other as expected based on the call relations.
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In the presence of lifecycle information, we adopt the convention to
assign subtraces to the start event. When also timing information is avail-
able, we assume that the hierarchical subtrace describes the lower level
events during an activity instance. That is, given two events e, e′ that de-
scribe the start and end of the same activity instance with #life(e) = start
and #life(e′) = complete, if the start event is assigned a subtrace (i.e.,
#subtrace(e) 6= ⊥, recall null/⊥ from Definition 2.3.1 on page 45), then:

#time(e) ≤ #time(head(#subtrace(e)))

≤ #time(end(#subtrace(e))) ≤ #time(e′)

Given a set of event sequences L ⊆ E∗, the flattened set of all (sub)traces
in L is the smallest set Subtraces(L) such that:

Subtraces(∅) = ∅
Subtraces(L) = L ∪ Subtraces({#subtrace(e)

|σ ∈ L ∧ e ∈ σ ∧#subtrace(e) 6= ⊥})

The set L ⊆ E∗ is a hierarchical event log iff no event is duplicated in L,
i.e., for any two traces σ, σ′ ∈ Subtraces(L) and any two numbers i, j such
that 1 ≤ i ≤ |σ| and 1 ≤ j ≤ |σ′| we have (σ(i) = σ′(j))⇒ (σ = σ′∧ i = j).

Consider Case 1 from the event log in Table 6.1 again. Table 6.2 shows the
corresponding hierarchical event log interpretation using Definition 6.2.1 and
the implied interval containment hierarchical order from Figure 6.1.

Table 6.2: Example snippet of the hierarchical event log derived from Ta-
ble 6.1. Each row shows a subtrace, derived from Case 1 and the implied
interval containment hierarchical order shown in Figure 6.1. The last column
shows the corresponding actity + shortened lifecycle sequence interpretation,
using the notation from Definition 2.3.7 on page 49. Note that, amongst others,
event 1.8 has no subtraces defined.

Trace Event Sequence Activity + Lifecycle Seq.

Case 1: 〈 event 1.1, event 1.16 〉 〈M+s,M+c 〉
#subtrace(event 1.1) = 〈 event 1.2, event 1.3, event 1.4,

event 1.13, event 1.14, event 1.15 〉
〈 i+s, i+c, B+s,
B+c, o+s, o+c 〉

#subtrace(event 1.4) = 〈 event 1.5, event 1.6, event 1.7,
event 1.10, event 1.11, event 1.12 〉

〈 s1+s, s1+c, B+s,
B+c, s2+s, s2+c 〉

#subtrace(event 1.7) = 〈 event 1.8, event 1.9 〉 〈 a+s, a+c 〉
#subtrace(event 1.8) = ⊥ Undefined
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6.2.3 The Atomic Hierarchical Event Log
For the basic discovery algorithms and their explanation, we will use the fol-
lowing, simpler atomic view. In the atomic hierarchical event log we assume
that an event is described by a sequence of atomic activities. That is, if we
assume a set of activities A, then an event e is described by a sequence of such
activities, i.e., e ∈ A∗. Hence, we can describe an atomic hierarchical event log
simply as a multiset of traces, where each trace is a sequence of events, and
each event is a sequence of activities.
Definition 6.2.2 — Atomic Hierarchical Event Log. LetA be a set of activities.
Let L ∈ B((A∗)∗) be an atomic hierarchical event log, a multiset of traces.
A trace σ ∈ L with σ ∈ (A∗)∗ is a sequence of events. Each event e ∈ σ with
e ∈ A∗ is described by a non-empty sequence of activities, stating which
activity was executed at each level in the hierarchy.

Consider, for example, the atomic hierarchical event log L = [ 〈 〈 g, a 〉 ,
〈 g, b 〉 , 〈 c 〉 〉 ]. This log has one trace, where the first event is labeled 〈 g, a 〉,
the second event is labeled 〈 g, b 〉, and the third event is labeled 〈 c 〉. For
the sake of readability, we will use the following shorthand notation: given an
event labeled 〈 a1, a2, . . . , an 〉, we write a1.a2. . . . .an. For example, the above
log L can be written as L = [ 〈 g.a, g.b, c 〉 ].
Definition 6.2.3 — Atomic Hierarchical Functions. We define the following
utility functions over atomic hierarchical event logs:
‖L‖ Hierarchical depth: the length of the longest event label in the

event log:
‖L‖ = max ({ |e| | σ ∈ L ∧ e ∈ σ })

For example, using the above log L, we have: ‖L‖ = 2.
f.L
f.σ

Hierarchical concatenation: appends activity f ∈ A to the start
of each event’s activity sequence, where f ∈ A ∧ ∀ i : ei ∈ A∗:

f.L = [ f.σ | σ ∈ L ]

f.σ = f. 〈 e1, . . . , en 〉 = 〈 〈 f 〉 · e1, . . . , 〈 f 〉 · en 〉

For example, using the above log L, we have:
f.L = [ 〈 f.g.a, f.g.b, f.c 〉 ]. Note that ‖f.L‖ = 1 + ‖L‖ = 3.

L�∗i
σ�∗i

Hierarchical projection: removes a prefix of length i from every
event’s activity sequence:

L�∗i = [σ�∗i | σ ∈ L ]

σ�∗i = 〈 〈 ai+1, . . . , an 〉 | 〈 a1, . . . , an 〉 ∈ σ ∧ i < n 〉
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For example, using σ = 〈 g.a, g.b, c 〉, we have: σ�∗0 =
〈 g.a, g.b, c 〉, σ�∗1 = 〈 a, b 〉, and σ�∗2 = ε. Note that (f.L)�∗1 = L.

‖A(L)‖ Hierarchical alphabet size: the maximum activity alphabet size
across all hierarchy layers:

‖A(L)‖ = max (|{ head(e) | σ ∈ L ∧ e ∈ σ }| , ‖A(L�∗1)‖)

For example: ‖A([ 〈 f.a, f.a 〉 ])‖ = 1, ‖A([ 〈 f.a, g.a 〉 ])‖ = 2,
‖A([ 〈 f.a, f.b 〉 ])‖ = 2, ‖A([ 〈 f.a, g.b 〉 ])‖ = 2, and ‖A(L)‖ = 2

Definition 6.2.4 — Deriving an Atomic Hierarchical Event Log. Let L ⊆ E∗ be
a hierarchical event log as defined in Definition 6.2.1. Assume a classifier λ#

has been defined.
Given a trace σ ∈ E∗, a hierarchical trace σ′ = H (σ, λ#) with σ′ ∈ (A∗)∗

is derived as shown below. Function H inspects each event in the trace. For
each event, it either returns that event’s label when no subtraces are present,
or it returns that event’s label appended to the start of each of the event’s
activity sequences found in the corresponding subtrace.

H (ε, λ#) = ε

H (〈 e 〉 · σ′, λ#) =


event label plus subtraces︷ ︸︸ ︷

λ#(e).H (#subtrace(e), λ#) ·H (σ′, λ#) if #subtrace(e) 6= ⊥
〈λ#(e) 〉︸ ︷︷ ︸

no subtraces

·H (σ′, λ#) otherwise

The atomic hierarchical event log LH ,A is derived as follows:

LH ,A = [ H (σ, λ#) | σ ∈ L ]

For example, consider Case 1 from the hierarchical event log in Table 6.2
again. Suppose we filter out the complete events and use the abbreviated activ-
ity classifier (e.g., M for Main.main(), B for B.process(), see Table 6.1). Table 6.3
shows how we use hierarchical concatenation and the subtrace attribute to
“assemble” the resulting atomic (sub)traces. Table 6.4 shows the hierarchical
structure of the resulting atomic hierarchical trace.

Observe how we can use the utility functions from Definition 6.2.3 to inspect
the hierarchical trace from Tables 6.3 and 6.4:

‖H (Case 1, λ#)‖ = 4

H (Case 1, λ#)�∗1 = H (#subtrace(event 1.1), λ#)

H (Case 1, λ#)�∗2 = H (#subtrace(event 1.4), λ#)

H (Case 1, λ#)�∗3 = H (#subtrace(event 1.7), λ#)
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Table 6.3: Example snippet of the atomic hierarchical event log derived from
Table 6.2. Each row shows how the atomic (sub)traces are “assembled” into
the atomic hierarchical trace for Case 1.

Trace Hierarchical Activity Sequence

H (#subtrace(event 1.7), λ#) = 〈 a 〉
H (#subtrace(event 1.4), λ#) = 〈 s1, B.a, s2 〉
H (#subtrace(event 1.1), λ#) = 〈 i, B.s1, B.B.a,B.s2, o 〉

H (Case 1, λ#) = 〈M.i,M.B.s1,M.B.B.a,M.B.s2,M.o 〉

Table 6.4: The hierarchical structure for Case 1 as given in Table 6.3. Each
column is one event, and each row is a level in the hierarchy. Each cell shows
both the abbreviated and full activity name.

M Main.main() M Main.main() M Main.main() M Main.main() M Main.main()

i Main.input() B B.process() B B.process() B B.process() o Main.output()

s1 B.stepPre() B B.process() s2 B.stepPost()

a A.process()

6.2.4 Transformations – Heuristics for Hierarchy

In the above sections, we used the example of a software execution to demon-
strate the concepts of hierarchical event logs. In this example, we used the
implicit interval containment to infer a hierarchy. In practice, there are many
sources that can be used to construct a hierarchy. In this section, we will dis-
cuss a few common heuristics to transform an event log (Definition 2.3.3) into
a hierarchical event log (Definition 6.2.1).

Nested Intervals

The nested intervals heuristic uses the lifecycle attribute to view an event log
as a collection of intervals. By inferring an interval containment relation, a
hierarchy is built, as shown in the above sections.

A typical application of this heuristic is the call stack behavior associated
with a software execution logged at the method level, see the example from
Table 6.1 and Figure 6.1 we used in the above sections.

Another typical application is to establish the relation between component
or application interfaces. For example, like in the method/call stack example
used above, whenever one interface function uses another interface function,
this is manifested in the event log as a call relation or nested interval. By
interpreting such events using the nested intervals heuristic, one can infer which
interfaces are used (called by) a provided interface, and thus by extension also
how components are related and referring to each other.
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Structured Names
The structured names heuristic uses a predefined pattern to infer a hierarchy
from activity names. In some cases, an exact pattern can be specified as, for
example, a regular expression. In other cases, one can identify a so-called split
symbol to interpret path-like activity name structures.

For example, suppose the activities in an event log all have the follow-
ing pattern: <phase>_<step>. Then we can create a hierarchical log where the
top level captures the behavior amongst phases, and the level below that cap-
tures the steps for each phase. For example, the atomic trace 〈 Prepare_config,
Prepare_input, Process_compute 〉 can be interpreted as the hierarchical trace with
the events 〈 Prepare, config 〉 followed by 〈 Prepare, input 〉 and 〈 Process, compute 〉.

As an example of the split symbol approach, suppose that the activities in
an event log are packages names which can be splitted on the dot (.) symbol.
Then we can capture the static structure or “architecture” of a piece of software.
For example, the activity org.processmining.Main.main() can be interpreted as the
hierarchical event label sequence 〈 org, processmining, Main, main() 〉.

Multiple Attributes
The multiple attributes heuristic uses a sequence of classifiers or attribute
names to infer a hierarchical event label sequence. This heuristic is very ef-
fective where events have been annotated with external information such as
source-code information, domain knowledge, or patterns inferred by domain
experts and other (ProM) tools.

For example, suppose the events in an event log have a step attribute
and a phase attribute. Then, like before, we can create a hierarchical log
where the top level captures the behavior amongst phases, and the level below
that captures the steps for each phase. For example, consider event e with
#phase(e) = Prepare and #step(e) = config. Using the sequence 〈 phase, step 〉
to infer our hierarchical log, we would interpret e as the hierarchical event label
sequence 〈 Prepare, config 〉.

6.3 Hierarchical Process Trees

In this section, we extend the process tree notation (Section 2.2.6, page 38),
with support for hierarchies in the form of named subprocesses and recursions.
In our extended notation, called the hierarchical process tree, we add a new
tree operator Of to represent the named submodel and add a new tree leaf Mf
to denote a recursive reference.

6.3.1 Example Model of a Program Execution
We will explain the hierarchical extensions using the example hierarchical pro-
cess tree in Figure 6.2. This tree is modeled based on the event log in Table 6.1,
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OM
Main.main()

→

i
Main.input()

OB
B.process()

×

a
A.process()

→

s1
B.stepPre()

MB
B.process()

s2
B.stepPost()

o
Main.output()

→ sequence

× exclusive choice

∧ concurrency

	 structured loop

a normal activity

τ silent activity

Hierarchical extensions:

Of named submodel

Mf recursive reference

Figure 6.2: Example hierarchical process tree for the event log in Table 6.1.
This tree models concrete runtime behavior for the program in Listing 6.1.

see also the program in Listing 6.1. The root node is a named submodel oper-
ator (OM ) modeling the Main.main() function. The subtree of OM models what
happens during this submodel. In this case, a sequence (→) of Main.input(),
B.process(), and Main.output(). Note that B.process() is again modeled with a
named submodel operator (OB). Observe that, compared to the program in
Listing 6.1, this tree models runtime execution behavior where the reference
inst.process() is resolved to B.process(). The submodel of B.process() (OB) is
defined by the tree rooted in the choice node (×): either A.process() can be
performed, or the sequence of B.stepPre(), B.process(), and B.stepPost() can be
performed. Note that this second B.process() is modeled as a recursive refer-
ence (MB). This means that this leaf references back to the named submodel
of the same name, i.e., during MB the submodel of OB is performed. This
construction allows for multiple recursive executions of OB. Hence, like with
structured loops, the language of this tree is infinite.

The hierarchical process tree in Figure 6.2 can also be represented textually:

OM (→(i,OB(×(a,→(s1,MB, s2))), o))

The same submodel may appear multiple times in the same hierarchical
process tree. For example, the tree→(OA(a),OA(b)) models a sequence of two
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submodels named A, where the first time the submodel is defined in terms of
a, and the second time in terms of b.

6.3.2 Syntax and Semantics
To formalize hierarchical process trees, we extend the notion of process trees
from Definition 2.2.11 on page 40 by introducing the following syntax and
semantics.
Definition 6.3.1 — Hierarchical Process Tree. We formally define hierarchical
process trees recursively. We assume a finite alphabet A of activities with
O,M /∈ A and a set

⊗
of operators to be given. The symbol τ /∈ A denotes

the silent activity.
We define the following base cases for hierarchical process trees:
a any a ∈ (A ∪ { τ }) is a (silent) activity leaf;
Mf Hierarchical extension: denotes a recursive reference to a

named subtree ancestor with name f ∈ A (see below).
Let Q1, . . . , Qn with n > 0 be hierarchical process trees and let ⊗ ∈

⊗
be a hierarchical process tree operator, then ⊗(Q1, . . . , Qn) is a hierarchical
process tree. We consider the following hierarchical process tree operators:
→ denotes a sequence or the sequential composition of all subtrees;
× denotes an exclusive choice or XOR choice between one of the

subtrees;
∧ denotes concurrency or the parallel composition of all subtrees;
	 denotes the structured loop or redo loop with loop body Q1 and

alternative loop back paths Q2, . . . , Qn (with n ≥ 2);
Of Hierarchical extension: denotes the named subtree with

name f ∈ A and subtree Q1 (i.e., n = 1).

The intuition behind the hierarchical operators is as follows. We can name
any (sub)tree Q using the named subtree Of operator. This effectively prefixes
the language of Q with f and allows us to refer back to this prefixed language.
At any point in the subtree of Of , we can reference back to this prefixed
language using the recursive reference Mf leaf.

The semantics of hierarchical process trees are defined by extending the
language function L(Q) (see also Definition 2.2.12 on page 40).

Definition 6.3.2 — Hierarchical Process Tree Semantics and Language. In
this definition, we use the notations from Definition 6.2.3 and the semantics
previously defined in Definition 2.2.12. LetAM = A∪{Mf | f ∈ A }. Below,
we define a language of the type B(((AM)∗)

∗
), i.e., a set of traces, where

each symbol/event in a trace is a list of activity labels and (unresolved)
recursive references, i.e., each symbol e is a list such that e ∈ (AM)∗.
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First, we define the language of the recursive reference Mf leaf. We will
simply “mark” this leaf in the language, indicating that we need to resolve
the mark later. We define:

L(Mf ) = { 〈Mf 〉 } for f ∈ A

The named subtree Of operator prefixes the language of its subtree with
the activity label f ∈ A and resolves all equally-named recursive refer-
ences Mf . We will use the function ΨL(f, L, e) to resolve the recursive
reference markers, as defined below. Function ΨL scans each event’s label
sequence e ∈ A∗ for recursive references and resolve the event’s language
ΨL(f, L, e) = L′ ⊆ (A∗)∗. For Of (Q) we define the language-join func-
tion OL:

OL(f, L) = { f.(σ′ · . . . · σ′n) | 〈 e, . . . , en 〉 ∈ L for f ∈ A
∧ ∀1 ≤ i ≤ n : σ′i ∈ ΨL(f, L, ei) }

The function ΨL(f, L, e) scans an event’s label sequence label by label.
When a recursive reference is encountered, the name is checked. If it equals
f , we resolve the recursion by using the language OL(f, L), i.e., we recur-
sively use the language defined at the named subtree. If it does not match,
we keep the recursion marker.

ΨL(f, L, ε) = { ε }
ΨL(f, L, a.e′) =

{
a.(σ′)

∣∣ σ′ ∈ ΨL(f, L, e′)
}

for a ∈ A, e′ ∈ A∗

ΨL(f, L, 〈Mg 〉) =

{
OL(f, L) if f = g
{ 〈Mg 〉 } if f 6= g

for g ∈ A

Note that when modelling software behavior, cases like inheritance, method
overloading, and dynamic binding are resolved at the labelling level. See for
example the overloading of the method process() in Listing 6.1 and Figure 6.2.

� Example 6.1 The following examples demonstrate the basics of the above
language semantics, without recursion:

L(×(→(a, b), c)) = { 〈 a, b 〉 , 〈 c 〉 }
L(Of (×(→(a, b), c))) = { 〈 f.a, f.b 〉 , 〈 f.c 〉 }

L(Of (×(→(a,Og(b)), c))) = { 〈 f.a, f.g.b 〉 , 〈 f.c 〉 }

�

� Example 6.2 To demonstrate the basics of the recursion semantics, consider
the tree Of (×(→(a,Mf ), c)), as depicted in Figure 6.3. If we execute the right
subtree at the choice × operator, we get the trace 〈 f.c 〉. If we execute the
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Of

×

→

a Mf

c

Figure 6.3: Example recursive hierarchical process tree. The grey arrow
indicates the “jumping back” in the language of the recursive reference Mf .

left subtree, we encounter a recursion on f , “jumping back” to the root Of .
Hence, if we execute the left subtree once, and in the recursion choose the right
subtree, we get the trace 〈 f.a, f.f.c 〉. With two executions of the left subtree,
we get the trace 〈 f.a, f.f.a, f.f.f.c 〉. We write this tree’s language as:

L(Of (×(→(a,Mf ), c))) = { 〈 f.c 〉 , 〈 f.a, f.f.c 〉 , 〈 f.a, f.f.a, f.f.f.c 〉 , . . . }

The tree from Figure 6.2 has the language shown below. Observe that
H (Case 1, λ#) from Table 6.3, is in this language.

L(OM (→(i,OB(×(a,→(s1,MB, s2))), o))) =

{ 〈M.i,M.B.a,M.o 〉 , 〈M.i,M.B.s1,M.B.B.a,M.B.s2,M.o 〉 , . . . }

Below are some more complex recursive examples. These examples show
how recursive references can cross multiple named submodels, how mutual
recursions can be specified, and how a loop instead of a choice can be used to
specify a base and a recursive alternative.

L(Of (Og(×(→(a,Mf ), c)))) = { 〈 f.g.c 〉 , 〈 f.g.a, f.g.f.g.c 〉 ,
〈 f.g.a, f.g.f.g.a, f.g.f.g.f.g.c 〉 , . . . }

L(Of (Og(×(a,Mf ,Mg)))) = { 〈 f.g.a 〉 , 〈 f.g.g.a 〉 , 〈 f.g.g.g.a 〉 , 〈 f.g.f.g.a 〉 ,
〈 f.g.f.g.g.a 〉 , 〈 f.g.g.f.g.a 〉 , . . . }

L(Of (	(a,Mf ))) = { 〈 f.a 〉 , 〈 f.a, f.f.a, f.a 〉 ,
〈 f.a, f.f.a, f.a, f.f.a, f.a 〉 , 〈 f.a, f.f.a, f.f.f.a, f.f.a, f.a 〉 , . . . }

�

Observe that hierarchical process trees are not automatically sound. Below,
we define and discuss soundness for hierarchical process trees.
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Definition 6.3.3 — Sound Hierarchical Process Tree. A hierarchical process
tree Q is sound if and only if its language L(Q):

1. does not contain unresolved recursion markers:

∀σ ∈ L(Q) ∧ e ∈ σ : ¬(∃f ∈ A : Mf ∈ e)

2. every resolved recursion has the option to terminate:

∀Of (Q′) ∈ enum(Q) : for all named subtrees Of
(∃σ ∈ L(Q′) ∧ e ∈ σ : Mf ∈ e)⇒ if there exists a matching Mf , then

(∃σ ∈ L(Q′) : (∀e ∈ σ : Mf /∈ e)) there exists a non-Mf alternative

All of the example trees shown above are sound. The following trees, for
example, are not sound :

Mf Issue: language contains an unresolved recursion marker
Of (Mg) Issue: language contains an unresolved recursion marker
Of (Mf ) Issue: language does not contain non-recursive alternative

Of (→(a,Mf )) Issue: language does not contain non-recursive alternative

6.4 Naïve Hierarchical Discovery

In this section, we introduce the naïve hierarchical discovery algorithm. In this
algorithm, we extend the Inductive Miner (IM) framework (see Chapter 4)
with support for the named subtree (Of ) operator. The recursive reference
(Mf ) operator will be covered in Section 6.5. In the remainder of this section,
Section 6.4.1 gives an overview of the algorithm, Section 6.4.2 details our naïve
hierarchical extensions, Section 6.4.3 shows additional discovery examples, and
Section 6.4.4 covers the discovery guarantees maintained for our extension.

6.4.1 Algorithm Overview
For the naïve hierarchical discovery algorithm, we will follow the traditional IM
divide and conquer approach (see also Section 4.2 on page 74). That is, given
a log L, we search for possible splits of L into sublogs L1, . . . , Ln, such that
these sublogs combined with a process tree operator ⊗ ∈ {→,×,∧,	 } can (at
least) reproduce L again. The framework then recurses on the corresponding
sublogs, repeats the above process, and returns the discovered submodels as
normal. However, in the naïve hierarchical discovery algorithm, we will adopt
slightly different base cases. Note that we will assume atomic hierarchical event
logs for the remainder of this section.

For naïve hierarchical discovery, the empty log and empty traces base case
(i.e., Base Case 4.1) remains unchanged. However, the single activity base case
(i.e., Base Case 4.2) is modified to consider the head of each event’s activity
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sequence and check if there is a lower level in the hierarchy. We say there is
lower level in the hierarchy iff there exists an event activity sequence of length
two or more, i.e., an event e ∈ A∗ with |e| ≥ 2. If the head of each event refers
to the same activity f and there is a lower level in the hierarchy, then we will
model a named subtree Of . For the subtree, we recurse on the reduced event
log obtained by removing the head activity from each event, i.e., we recurse on
the event log L�∗1. Below, we will discuss these adaptations in detail. We will
be using the example run in Table 6.5 as clarification.

6.4.2 Framework Extensions
Formally, in the naïve hierarchical discovery algorithm, we use the original cut
detections, log splits, and fallbacks as defined in Section 4.2 on page 74. In
this extension, we will:
• use alternative base cases as detailed below, and
• adapt the directly-follows graph construction slightly such that we can

use the original cut detections over a hierarchical event log.
In the following formulas and examples, we will write NHDiscover(L) to refer to
the naïve hierarchical discovery (NHD) algorithm, i.e., the naïve hierarchical
instantiation of the IM framework (see Algorithm 6.1).

Algorithm 6.1: Naïve Hierarchical Discovery (NHD) Algorithm
Input: An event log L.
Output: A hierarchical process tree Q such that L fits Q.
Description: The function NHDiscover() recursively tries to discover a hierarchical

process tree capturing (at least) the behavior in L. We use ⊥ to model
when no valid base case or valid cut was found for the given log.

NHDiscover(L)
1 Qbase = BaseCase(L) // Base Cases 4.1, 6.1, and 6.2
2 if Qbase 6= ⊥ then
3 return Qbase // Returns either τ , a, or Of (NHDiscover(L�∗1))

4 if ε /∈ L then
5 (⊗, (Σ1, . . . ,Σn)) = FindCut(L) // Cut Detections 4.1, 4.2, 4.3, and 4.4
6 if (⊗, (Σ1, . . . ,Σn)) 6= ⊥ then
7 (L1, . . . , Ln) = SplitLog(L, (⊗, (Σ1, . . . ,Σn)))
8 return ⊗(NHDiscover(L1), . . . , NHDiscover(Ln))

9 return Fallback(L)

Adapted Base Cases
The naïve hierarchical discovery algorithm uses Base Case 4.1 as defined on
page 75 to handle the empty log/empty traces base case (τ). Instead of the
normal activity base case, the naïve hierarchical discovery algorithm uses the
Base Cases 6.1 and 6.2 as defined below to detect named submodels.
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Table 6.5: Example Naïve Hierarchical Discovery on the log L =
[ 〈 f.a, f.f.b 〉 ]. The rows illustrate how the discovery progresses step by step.
The highlights indicate the parts of the log and directly-follows graph used,
and relate them to the corresponding partial process tree model that is dis-
covered. The boxed nodes in the directly-follows graph indicate lower levels in
the hierarchy; the dashed lines indicate the cuts. The corresponding YAWL
model (see Section 2.2.2, page 33) is shown at the bottom.

Event Log Sublog View Directly-Follows Graph Discovered Model

1
f f

a f

b

[ 〈 f.a, f.f.b 〉 ] B f �

Of

?

2
f f

a f

b

[ 〈 a, f.b 〉 ] B a f �

Of

→

a ?

3
f f

a f

b

[ 〈 f.b 〉 ] B a f �

Of

→

a Of

?

4
f f

a f

b

[ 〈 b 〉 ] B b �

Of

→

a Of

b
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� Base Case 6.1 — Single Activity – No Hierarchy.
Condition: L 6= [ ] ∧ (∃a ∈ A : ∀σ ∈ L : σ = 〈 a 〉)
Return: a
Description: The Single Activity – No Hierarchy base case applies when the
traces in the log contain only events with a single activity label a. That is, for
every trace σ ∈ L and every event e ∈ L we have |e| = 1 ∧ e = 〈 a 〉. This base
case returns a as a leaf node.
Example: Consider step 2 in Table 6.5. After the sequence cut, we have a
sublog consisting of one event labeled a with no lower level in the hierarchy.
Hence, this base case holds and we return a as a leaf node. Similarly, in step 4
in Table 6.5, the log consists of one event labeled b, and there is no lower level
in the hierarchy, resulting in the leaf b. Observe that this base case does not
apply in step 1 since there is a lower level in the hierarchy.

� Base Case 6.2 — Single Activity – Lower Level in the Hierarchy.
Condition: L 6= [ ] ∧ (∃f ∈ A : (∀σ ∈ L ∧ e ∈ σ : head(e) = f)

∧ (∃σ ∈ L ∧ e ∈ σ : |e| ≥ 2) )
Return: Of (NHDiscover(L�∗1))
Description: The Single Activity – Lower Level in the Hierarchy base case
applies when the head of each event refers to the same activity f and there
exists an event activity sequence of length two or more. This base case returns
the named subtree Of and recurses on the event log reduced by removing the
head activity from each event, i.e., the event log L�∗1.
Example: In step 1 in Table 6.5, the log consists only of events with head
label f , and there is a lower level in the hierarchy. Hence, this base case holds,
we return Of , and we recurse on the reduced event log as shown in step 2.
Similarly, in step 3 in Table 6.5, the log consists of one event labeled f.b and
there is a lower level in the hierarchy, resulting in the named submodel Of and
a recursive discovery call.

Cut Detection and the Directly-Follows Graph in a Hierarchical Event Log
The cut detection is still performed as normal on the directly-follows graph
G(L) of the (sub)log L. This graph is built using the head of each event’s
activity sequence. That is, the directly-follows graph constructed for the “cur-
rent” or “topmost” level in the hierarchy. In Table 6.5, the graph at step 1
is constructed from 〈 f, f 〉 (the head of each element in 〈 f.a, f.f.b 〉), steps 2
and 3 use the graph based on 〈 a, f 〉 (the head of each element in 〈 a, f.b 〉),
and step 4 uses the graph constructed from 〈 b 〉.

6.4.3 Discovery Examples
Table 6.5 shows a step-by-step example run of the naïve hierarchical discovery
algorithm. Note that the recursive pattern on the named submodel Of is not
discovered with this discovery algorithm.
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Below are some more example logs and the corresponding discovered mod-
els. Note how multiple named submodels can be discovered and how a varying
hierarchical depth can lead to τ elements.

NHDiscover([ 〈 f.a, f.b 〉 , 〈 f.c 〉 ]) = Of (NHDiscover([ 〈 a, b 〉 , 〈 c 〉 ]))
= Of (×(NHDiscover([ 〈 a, b 〉 ]), c))
= Of (×(→(a, b), c))

NHDiscover([ 〈 f.a, f.g.f.b 〉 ]) = Of (NHDiscover([ 〈 a, g.f.b 〉 ]))
= Of (→(a, NHDiscover([ 〈 g.f.b 〉 ])))
= Of (→(a,Og(NHDiscover([ 〈 f.b 〉 ]))))
= Of (→(a,Og(Of (b))))

NHDiscover([ 〈 f.a 〉 , 〈 f 〉 ]) = Of (NHDiscover([ 〈 a 〉 , ε ]))

= Of (×(τ, NHDiscover([ 〈 a 〉 ])))
NHDiscover([ 〈 f.f 〉 ]) = Of (NHDiscover([ 〈 f 〉 ]))

= Of (f)

6.4.4 Guarantees

The naïve hierarchical discovery (NHD) algorithm maintains the IM discov-
ery guarantees from Section 4.3 on page 84 and returns a sound hierarchical
process tree (Definition 6.3.3). In this section, we will discuss these discovery
guarantees and properties. We refer the reader to Section A.2 on page 368 for
the proofs.

Soundness and Termination

We start with three general properties of the NHD algorithm: soundness is
guaranteed (Theorem 6.4.1), termination is guaranteed (Theorem 6.4.2).

Theorem 6.4.1 — NHD guarantees soundness. All models Q returned by the
NHD algorithm are guaranteed to be sound.

Proof. See page 368. �

Theorem 6.4.2 — NHD guarantees termination. The NHD algorithm is guar-
anteed to always terminate.

Proof. See page 369. �
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Perfect Fitness
The perfect fitness guarantee in Theorem 6.4.3 states that all the log behavior
is in the model discovered by the NHD algorithm.

Theorem 6.4.3 — NHD guarantees fitness. The NHD algorithm returns a
model that fits the log. That is, given an event log L, the NHD algorithm
returns a model Q such that L ⊆ L(Q).

Proof. See page 369. �

Language Rediscoverability
The language rediscoverability property tells whether and under which condi-
tions a discovery algorithm can discover a model that is language-equivalent
to the original process. That is, given a system model Q and an event log L
that is complete with respect to Q (for some notion of completeness), then we
rediscover a model Q′ such that L(Q′) = L(Q).

For the NHD algorithm, we will prove the language rediscoverability prop-
erty for directly-follows complete logs (Definition 4.3.1) and for all hierarchical
process trees that are:
• Sound hierarchical process trees (Definition 6.3.3), and
• In the class of rediscoverable process trees (Definition 4.3.2).
Observe how, by using the atomic hierarchical event logs from Defini-

tion 6.2.2, the notion of directly-follows complete logs as defined in Defini-
tion 4.3.1 is automatically defined over all levels of a hierarchical log.

To prove language-rediscoverability, we will use the proof framework used
by the base Theorem 4.3.7 as listed on page 85:

1. Show that the base cases can be rediscovered.
2. Show that any root process tree operator can be rediscovered, proving

that the cut criteria are correct.
3. Show that for all process tree operators, the graph cut yields the correct

activity division and the log is correctly subdivided.
4. Finally, Theorem 6.4.6 uses the above lemmas and base Theorem 4.3.7

to prove language rediscoverability using induction on the model size.
Reusing base Theorem 4.3.7, for the NHD algorithm, we only have to show

that the root tree operator can still be rediscovered (Lemma 6.4.4) and that
the log is still correctly subdivided (Lemma 6.4.5).

Lemma 6.4.4 — NHD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn)
be a reduced model that adheres to the above model restrictions and let L be
a log such that L �df Q. Then NHDiscover(L) returns a tree with root ⊗.

Proof. See page 370. �
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Lemma 6.4.5 — NHD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions and let L be a log such
that L �df Q∧L ⊆ L(Q). Then for the resulting sublogs Li produced by NHD
we have LI �df Qi ∧ Li ⊆ L(Qi).

Proof. See page 370. �

Using the above lemmas and base Theorem 4.3.7, we can prove language
rediscoverability using induction on the model size.

Theorem 6.4.6 — NHD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process treeQ, then NHDiscover language-
rediscovers Q, i.e., L(Q) = L(NHDiscover(L)) for any log L such that L �df
Q ∧ L ⊆ L(Q).

Proof. See page 370. �

Polynomial Runtime Complexity
The basic IM framework is implemented as a polynomial algorithm and scales
well with large event logs. The NHD algorithm maintains a polynomial runtime
complexity.

Theorem 6.4.7 — NHD has polynomial runtime complexity. The runtime com-
plexity of the NHD algorithm is bounded by O((‖A(L)‖+ ‖L‖) · ‖A(L)‖4 +
(‖A(L)‖+ ‖L‖) · |L|).

Proof. See page 371. �

Note that, compared with basic IM algorithm, although we depend on the
additional ‖L‖ term, the hierarchical alphabet size factor ‖A(L)‖ is bound to
be smaller than the original alphabet size factor |A(L)|. This results directly
from the idea that ‖A(L)‖ is defined as the maximum activity alphabet size
across all hierarchy layers. That is, due to the hierarchical projection, the
activity set is effectively divided across the hierarchical levels.

6.5 Recursion Aware Discovery
In this section, we introduce the recursion aware discovery algorithm. In this
algorithm, we extend the Inductive Miner (IM) framework (see Chapter 4)
with support for both the named subtree (Of ) operator and the recursive
reference (Mf ) operator. Section 6.5.1 gives an overview of the algorithm,
Section 6.5.2 details our recursion aware extensions, Section 6.5.3 shows addi-
tional discovery examples, and Section 6.5.4 covers the discovery guarantees
maintained for our extension.
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6.5.1 Algorithm Overview

For the recursion aware discovery algorithm, we need a mechanism to detect
and handle recursive references. We will assume atomic hierarchical event logs
for the remainder of this section and we again use the traditional IM divide
and conquer approach as a basis (see also Section 4.2 on page 74). However, at
any point during this top-down divide and conquer approach, we need to check
whether an event’s activity label refers back to an existing named subtree. If so,
the event at the current level of the hierarchy represents a recursive reference.
For example, take a look Table 6.5 again. In step 3, we encounter a label f
with a lower level in the hierarchy. Note that at this step, we already have
discovered a named subtree labeled f (see step 1). Hence, if we would have
used this knowledge, we could have modeled a recursive reference Mf at step 3.

To capture the knowledge of all the discovered named subtrees on the path
from the root node to the node currently being discovered, we introduce the
notion of a context path as defined below.
Definition 6.5.1 — Context Path. Let Q be a hierarchical process tree and
let Q′ be a specific (to be discovered) node in Q. A context path C ∈ A∗
is a sequence of activities representing the labels of the named subtrees on
the path from the root Q to Q′, i.e.:

C =
〈
f
∣∣ Q′′ ∈ path(Q,Q′) ∧Q′′ = Of

〉
Using the context path, we can verify the recursion on f in step 3 of

Table 6.5 using f ∈ C = 〈 f 〉. If we now would have modeled the recursive
reference Mf at step 3, then the definition of the named subtree Of would have
to be updated accordingly. After all, in the recursive call to f , the event log
recorded activity b instead of activity a. Hence, we need to be able to delay the
discovery of the named subtree’s definition, and repeat the discovery once new
information is available after modeling recursive references. To support delayed
and repeated discovery, we allow our algorithm to create and update sublogs
for specific context paths. We write L(C) to denote the sublog associated with
the context path C. We will be using these sublogs in the base cases below.

For recursion aware discovery, the empty log and empty traces base case
(i.e., Base Case 4.1) remain unchanged. However, the single activity base case
(i.e., Base Case 4.2) is modified to check if the head of each event refers to
the same activity f and if there is a lower level in the hierarchy. Recall, we
say there is lower level in the hierarchy if and only if there exists an event
activity sequence of length two or more. If this is the case, then we check
f ∈ C. If f ∈ C holds, recursion is detected, we return the leaf Mf and update
L(C′) for the corresponding context path C′. If f /∈ C holds, a named subtree
is detected, we return the partial named submodel Of (?C′), where ?C′ is a
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placeholder for the undiscovered model, and create the sublog L(C′) for the
corresponding context path C′. Whenever a sublog L(C) is created or updated,
we repeat discovery for that sublog. During this rediscovery, new information
may become available and sublogs are changed accordingly. Once the sublogs
are no longer changed, we finish the discovery by replacing all placeholders ?C

with their actual model, gluing all the results together.
Below, we will discuss these adaptations in detail. We will be using the

example run in Table 6.6 as clarification. This example run uses the same
event log as in Table 6.5, but shows how a recursive reference is discovered.

6.5.2 Framework Extensions

Formally, in the recursion aware discovery algorithm, we use the original cut
detections, log splits, and fallbacks as defined in Section 4.2 on page 74. In
this extension, we will:
• use alternative base cases as detailed below,
• adapt the directly-follows graph construction slightly such that we can

use the original cut detections over a hierarchical event log, and
• use the extended framework in the context of Algorithm 6.2 to implement

the idea of delayed and repeated discovery.
In the following formulas and examples, we will write RADstep(L,C) to

refer to the recursion aware instantiation of the IM framework (see Algo-
rithm 6.3). The actual recursion aware discovery (RAD) algorithm is given in
Algorithm 6.2, which uses RADstep() to repeatedly discover process trees for

Algorithm 6.2: Recursion Aware Discovery (RAD) Algorithm
Input: An (atomic hierarchical) event log L.
Output: A hierarchical process tree Q such that L fits Q.
Description: The function RADiscover() repeatedly tries to discover process trees for

all the sublogs L(C) using the recursive function RADstep(L,C). Note
that RADstep() is the recursion aware instantiation of the IM framework
derived from Algorithm 4.1 on page 75, see Algorithm 6.3.

RADiscover(L)
1 // Discover the root model using the complete event log L and context path C = ε
2 Qroot = RADstep(L, ε)

3 // As long as any sublog L(C) changed, (re)discover the corresponding submodel
4 while ∃C ∈ A∗ : L(C) changed do
5 QC = RADstep(L(C),C)

6 // Glue the partial models together
7 foreach node Q in the process tree Qroot (any order, including new children) do
8 if ∃C ∈ A∗ : Q = ?C then
9 Substitute ?C with QC // I.e., Of (?C) becomes Of (QC)

10 return Qroot
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Algorithm 6.3: Recursion Aware Discovery – Step
Input: An event log L.
Output: A hierarchical process tree Q such that L fits Q.
Description: The function RADstep() recursively tries to discover a (partial)

hierarchical process tree capturing (at least) the behavior in L. We use
⊥ to model when no valid base case or valid cut was found.

RADstep(L)
1 Qbase = BaseCase(L) // Base Cases 4.1, 6.1, 6.3, and 6.4
2 if Qbase 6= ⊥ then
3 return Qbase // Returns either τ , a, Of (?C′), or Mf
4 if ε /∈ L then
5 (⊗, (Σ1, . . . ,Σn)) = FindCut(L) // Cut Detections 4.1, 4.2, 4.3, and 4.4
6 if (⊗, (Σ1, . . . ,Σn)) 6= ⊥ then
7 (L1, . . . , Ln) = SplitLog(L, (⊗, (Σ1, . . . ,Σn)))
8 return ⊗(NHDiscover(L1), . . . , NHDiscover(Ln))

9 return Fallback(L)

all the sublogs L(C). Algorithm 6.2 implements the idea of delayed and re-
peated discovery. Below, we will first explain Algorithm 6.2 using an example.
Afterwards, we will detail the new recursion aware base cases.

Delayed and Repeated Discovery – Algorithm 6.2 Explained

Below, we will go over Algorithm 6.2 using the concrete example discovery run
from Table 6.6. We will relate each line of the algorithm to the concrete steps
in the example run and explain why the algorithm performs these steps. Note
how RADstep(L,C), i.e., the recursion aware instantiation of the IM framework,
is used multiple times to (re)discover the correct model.

Alg. 6.2 Tab. 6.6
The algorithm starts with the initial discovery on the

full input log and uses RADstep(L, ε) to discover the partial
root model Qroot . After this step, the sublog L(〈 f 〉) is
created due to the discovery of the named subtree Of (?〈 f 〉).

Line 2 Step 1

Since the sublog L(〈 f 〉) was changed, we perform a
separate discovery for the named subtree Of (?〈 f 〉). Using
the context path C = 〈 f 〉, we use RADstep(L(〈 f 〉), 〈 f 〉)
to discover the partial model Q〈 f 〉. Afterwards, due to the
discovery of the recursive reference Mf , the sublog L(〈 f 〉)
is updated with the new information in step 3.

Line 5 Steps 2
and 3

Due to the changed sublog L(〈 f 〉), we again use
RADstep(L(〈 f 〉), 〈 f 〉) for the same context path C = 〈 f 〉
to rediscover the partial model Q〈 f 〉. This time, since the
sublog L(〈 f 〉) already contains all the behavior, no sublogs
are changed in step 6.

Line 5 Steps 4,
5 and 6
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Alg. 6.2 Tab. 6.6
We now have discovered up-to-date submodels for all

the sublogs. Therefore, Algorithm 6.2 continues with glu-
ing the submodels together. In our example, the place-
holder ?〈 f 〉 is replaced by the submodel Q〈 f 〉.

Line 9 n/a

Afterwards, the resulting complete model is returned.
The last row of Table 6.6 shows this resulting model Q.

Line 10 model Q

So far, we only detailed the high-level workings of Algorithm 6.2. Below,
we will give the details of detecting and discovering the named submodels and
recursive references.

Adapted Base Cases
The RADstep(L,C) algorithm used by the recursion aware discovery algorithm
uses Base Case 4.1 as defined on page 75 and Base Cases 6.1, 6.3 and 6.4 as
defined below.

� Base Case 6.3 — Single Activity – Named Subtree.
Condition: L 6= [ ] ∧ (∃f ∈ A ∧ f /∈ C : (∀σ ∈ L ∧ e ∈ σ : head(e) = f)

∧ (∃σ ∈ L ∧ e ∈ σ : |e| ≥ 2) )
Derived context path: C′ = C · 〈 f 〉
Created sublog: L(C′) = L�∗1
Return: Of (?C′)
Description: The Single Activity – Named Subtree base case applies when the
head of each event refers to the same activity f /∈ C and there exists an event
activity sequence of length two or more. For this base case, we consider the
derived context path C′. This base case returns the named subtree Of (?C′), and
creates the new sublog L(C′). Due to the new sublog, Line 5 in Algorithm 6.2
will discover a model QC′ to substitute ?C′ .
Example: Consider step 1 in Table 6.6. The log consists only of events with
head label f , and there is a lower level in the hierarchy. Since f /∈ C = ε,
this base case holds, we return Of (?C′), and we create L(C′) = L�∗1 for further
discovery. Observe that this base case does not apply in steps 3 and 6 since
we have f ∈ C = 〈 f 〉.
� Base Case 6.4 — Single Activity – Recursive Reference.
Condition: L 6= [ ] ∧ (∃f ∈ A ∧ f ∈ C : (∀σ ∈ L ∧ e ∈ σ : head(e) = f)

∧ (∃σ ∈ L ∧ e ∈ σ : |e| ≥ 2) )
Derived context path: C′ = C1 · 〈 f 〉 where C = (C1 · 〈 f 〉 · C2)
Updated sublog: L(C′) = L(C′) ∪ L�∗1
Return: Mf
Description: The Single Activity – Recursive Reference base case applies when
the head of each event refers to the same activity f ∈ C and there exists an
event activity sequence of length two or more. For this base case, we consider
the derived context path C′. This base case returns the recursive reference
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Table 6.6: Example Recursion Aware Discovery on the log L = [ 〈 f.a, f.f.b 〉 ].
The rows illustrate how the discovery progresses step by step. The highlights
indicate the parts of the log and directly-follows graph used, and relate them
to the corresponding partial process tree model that is discovered. The boxed
nodes in the directly-follows graph indicate lower levels in the hierarchy; the
dashed lines indicate the cuts. A double line between rows indicates where
a new RADstep(L,C) run starts. The corresponding YAWL model (see Sec-
tion 2.2.2, page 33) and complete discovered tree are shown at the bottom.

Event Log Sublog View Directly-Follows Graph Discovered Model

1
f f

a f

b

Input: [ 〈 f.a, f.f.b 〉 ]
with context C = ε

L = [ 〈 f.a, f.f.b 〉 ]
B f � Qroot :

Of

?〈 f 〉

2
f f

a f

b

Input: [ 〈 a, f.b 〉 ]
with context C = 〈 f 〉

L = [ 〈 f.a, f.f.b 〉 ]
L(〈 f 〉) = [ 〈 a, f.b 〉 ]

B a f � Q〈 f 〉 :

→

a ?

3
f f

a f

b

Input: [ 〈 f.b 〉 ]
with context C = 〈 f 〉

L = [ 〈 f.a, f.f.b 〉 ]
L(〈 f 〉) = [ 〈 a, f.b 〉 ]

B a f � Q〈 f 〉 :

→

a Mf

4
f f

a f

b

Input: [ 〈 a, f.b 〉 , 〈 b 〉 ]
with context C = 〈 f 〉

L = [ 〈 f.a, f.f.b 〉 ]
L(〈 f 〉) = [ 〈 a, f.b 〉 , 〈 b 〉 ]

B

b

a f

� Q〈 f 〉 :

×

b ?

5
f f

a f

b

Input: [ 〈 a, f.b 〉 ]
with context C = 〈 f 〉

L = [ 〈 f.a, f.f.b 〉 ]
L(〈 f 〉) = [ 〈 a, f.b 〉 , 〈 b 〉 ]

B

b

a f

� Q〈 f 〉 :

×

b →

a ?

6
f f

a f

b

Input: [ 〈 f.b 〉 ]
with context C = 〈 f 〉

L = [ 〈 f.a, f.f.b 〉 ]
L(〈 f 〉) = [ 〈 a, f.b 〉 , 〈 b 〉 ]

B

b

a f

� Q〈 f 〉 :

×

b →

a Mf

Q :

Of

×

b →

a Mf
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Mf , and updates the sublog L(C′). Due to the changed sublog, Line 5 in
Algorithm 6.2 will rediscover a model QC′ for the named subtree Of . Such a
named subtree exists because f ∈ C.
Example: Consider step 3 in Table 6.6. The log consists only of events with
head label f , and there is a lower level in the hierarchy. Since f ∈ C = 〈 f 〉, this
base case holds, we return Mf , and we update L(C′) = L(C′)∪L�∗1 for further
discovery. Note that, in step 3, this changes L(C′) by adding the subtrace 〈 b 〉.
In step 6, this base case is also applied, but since the sublog L(〈 f 〉) already
contains all the behavior, no sublogs are changed.

Cut Detection and the Directly-Follows Graph in a Hierarchical Event Log
As with the naïve discovery, the cut detection is still performed as normal. For
recursion aware discovery, we reuse the naïve discovery solution, see page 125.

6.5.3 Discovery Examples
Table 6.6 shows a step-by-step example run of the recursion aware discov-
ery algorithm. Note that, in contrast to the example run in Table 6.5, the
recursive pattern on the named submodel Of is discovered in this discovery
algorithm. Below are some more example logs, the corresponding discovery
runs (enumerated), and the resulting discovered models.

� Example 6.3 — RADiscover([ 〈 f.a, f.g.f.b 〉 ]) = Of (×(b,→(a,Og(Mf )))).
1. Qroot = RADstep([ 〈 f.a, f.g.f.b 〉 ] ,C = ε) = Of (?〈 f 〉)

2. Q〈 f 〉 = RADstep([ 〈 a, g.f.b 〉 ] ,C = 〈 f 〉) =→(a,Og(?〈 f,g 〉))
3. Q〈 f ,g 〉 = RADstep([ 〈 f.b 〉 ] ,C = 〈 f, g 〉) = Mf
4. Q〈 f 〉 = RADstep([ 〈 a, g.f.b 〉 , 〈 b 〉 ] ,C = 〈 f 〉) = ×(b,→(a,Og(?〈 f,g 〉)))

�

� Example 6.4 — RADiscover([ 〈 f.f 〉 ]) = Of (×(τ,Mf )).
1. Qroot = RADstep([ 〈 f.f 〉 ] ,C = ε) = Of (?〈 f 〉)

2. Q〈 f 〉 = RADstep([ 〈 f 〉 ] ,C = 〈 f 〉) = Mf
3. Q〈 f 〉 = RADstep([ 〈 f 〉 , ε ] ,C = 〈 f 〉) = ×(τ,Mf )

�

� Example 6.5 — RADiscover([ 〈 f.g.g.a 〉 , 〈 f.g.f.g.a 〉 ]) = Of (Og(×(a,Mf ,Mg))).
1. Qroot = RADstep([ 〈 f.g.g.a 〉 , 〈 f.g.f.g.a 〉 ] ,C = ε) = Of (?〈 f 〉)

2. Q〈 f 〉 = RADstep([ 〈 g.g.a 〉 , 〈 g.f.g.a 〉 ] ,C = 〈 f 〉) = Og(?〈 f,g 〉)
3. Q〈 f ,g 〉 = RADstep([ 〈 g.a 〉 , 〈 f.g.a 〉 ] ,C = 〈 f, g 〉) = ×(Mf ,Mg)
4. Q〈 f 〉 = RADstep([ 〈 g.g.a 〉 , 〈 g.f.g.a 〉 , 〈 g.a 〉 ] ,C = 〈 f 〉) = Og(?〈 f,g 〉)
5. Q〈 f ,g 〉 = RADstep([ 〈 g.a 〉 , 〈 f.g.a 〉 , 〈 a 〉 ] ,C = 〈 f, g 〉) = ×(a,Mf ,Mg)

�
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� Example 6.6 — RADiscover([ 〈 f.a, f.f.a, f.a 〉 ]) = Of (	(a,Mf )).
1. Qroot = RADstep([ 〈 f.a, f.f.a, f.a 〉 ] ,C = ε) = Of (?〈 f 〉)

2. Q〈 f 〉 = RADstep([ 〈 a, f.a, a 〉 ] ,C = 〈 f 〉) = 	(a,Mf )

3. Q〈 f 〉 = RADstep([ 〈 a, f.a, a 〉 , 〈 a 〉 ] ,C = 〈 f 〉) = 	(a,Mf )
�

6.5.4 Guarantees
The recursion aware discovery (RAD) algorithm maintains the IM discovery
guarantees from Section 4.3 on page 84 and returns a sound hierarchical pro-
cess tree (Definition 6.3.3). In this section, we will discuss these discovery
guarantees and properties. We refer the reader to Section A.3 on page 371 for
the proofs.

Soundness and Termination
We start with three general properties of the RAD algorithm: soundness is
guaranteed (Theorem 6.5.1), termination is guaranteed (Theorem 6.5.2).

Theorem 6.5.1 — RAD guarantees soundness. All models Q returned by the
RAD algorithm are guaranteed to be sound.

Proof. See page 372. �

Theorem 6.5.2 — RAD guarantees termination. The RAD algorithm is guar-
anteed to always terminate.

Proof. See page 372. �

Perfect Fitness
The perfect fitness guarantee in Theorem 6.5.3 states that all the log behavior
is in the model discovered by the RAD algorithm.

Theorem 6.5.3 — RAD guarantees fitness. The RAD algorithm returns a
model that fits the log. That is, given an event log L, the RAD algorithm
returns a model Q such that L ⊆ L(Q).

Proof. See page 373. �

Language Rediscoverability
The language rediscoverability property tells whether and under which condi-
tions a discovery algorithm can discover a model that is language-equivalent
to the original process. That is, given a system model Q and an event log L
that is complete with respect to Q (for some notion of completeness), then we
rediscover a model Q′ such that L(Q′) = L(Q).
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For the RAD algorithm, like with the NHD algorithm in Section 6.4.4 on
page 127, we will prove the language rediscoverability property for directly-
follows complete logs (Definition 4.3.1) and for all hierarchical process trees
that are:
• Sound hierarchical process trees (Definition 6.3.3), and
• In the class of rediscoverable process trees (Definition 4.3.2).
To prove language-rediscoverability, we will again use the proof framework

used by the base Theorem 4.3.7 as listed on page 85:
1. Show that the base cases can be rediscovered.
2. Show that any root process tree operator can be rediscovered, proving

that the cut criteria are correct.
3. Show that for all process tree operators, the graph cut yields the correct

activity division and the log is correctly subdivided.
4. Finally, Theorem 6.5.7 uses the above lemmas and base Theorem 4.3.7

to prove language rediscoverability using induction on the model size.
Reusing base Theorem 4.3.7, for the RAD algorithm, we only have to show

that the root tree operator can still be rediscovered (Lemma 6.5.4), the re-
cursive reference can be rediscovered (Lemma 6.5.5), and that the log is still
correctly subdivided (Lemma 6.5.6).

Lemma 6.5.4 — RAD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn)
be a reduced model that adheres to the above model restrictions and let L be
a log such that L �df Q. Then RADiscover(L) returns a tree with root ⊗.

Proof. See page 373. �

Lemma 6.5.5 — RAD rediscovers the recursive reference leaf. Let Q = ⊗(Q1,
. . . , Qn) be a reduced model that adheres to the above model restrictions
with a leaf Mf somewhere in Q and let L be a log such that L �df Q. Then
RADiscover(L) returns a tree with a leaf Mf .

Proof. See page 374. �

Lemma 6.5.6 — RAD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions and let L be a log such
that L �df Q ∧ L ⊆ L(Q). Then for the resulting sublog L(C′) produced by
RAD we have L(C′) �df QC′ ∧ L(C′) ⊆ L(QC′).

Proof. See page 374. �

Using the above lemmas and base Theorem 4.3.7, we can prove language
rediscoverability using induction on the model size.
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Theorem 6.5.7 — RAD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process treeQ, then RADiscover language-
rediscovers Q, i.e., L(Q) = L(RADiscover(L)) for any log L such that L �df
Q ∧ L ⊆ L(Q).

Proof. See page 374. �

Polynomial Runtime Complexity
The basic IM framework is implemented as a polynomial algorithm and scales
well with large event logs. The RAD algorithm maintains a polynomial runtime
complexity.

Theorem 6.5.8 — RAD has polynomial runtime complexity. The runtime com-
plexity of the RAD algorithm is bounded by O(‖L‖·‖A(L)‖5+‖L‖·‖A(L)‖·
|L|)

Proof. See page 375. �

Note that, compared with basic IM algorithm, although we depend on the
additional ‖L‖) term, the hierarchical alphabet size factor ‖A(L)‖ is bound to
be smaller than the original alphabet size factor |A(L)|. This results directly
from the idea that ‖A(L)‖ is defined as the maximum activity alphabet size
across all hierarchy layers. That is, due to the hierarchical projection, the
activity set is effectively divided across the hierarchical levels.

6.6 Compatibility with Other Extensions

Both the naïve and recursion aware discovery, as presented in the above sec-
tions, provide a good basis for hierarchical process discovery. In this section,
we will revisit the existing inductive miner extensions listed in Section 4.4 on
page 86 and discuss how they can be used in combination with the hierarchical
discovery extensions.

The Inductive Miner – infrequent (IMf) extension handles deviating and
infrequent behavior by filtering the directly-follows graph according to some
user-chosen frequency threshold when no cut could be found. The user can set
this frequency threshold by using a so-called “path” slider in the user interface
implementations. In addition, the single activity base case and empty traces
fallback are slightly altered to take into account infrequent behavior. In our
hierarchical setting, we can easily integrate with this extension by altering the
base cases in a similar way to take into account infrequent behavior.

The Inductive Miner – incompleteness (IMc) extension handles incomplete
behavior by using probabilistic activity relations in the cut detection. Since
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the hierarchical extensions only adjust base cases, we can readily combine it
with the incompleteness extension.

By using the rich hierarchical event logs from Definition 6.2.1, we can
integrate with the lifecycle aware extension. Our hierarchical base cases can
replace the L�∗1 projection by using the #subtrace(e) attributes directly.

Integration with the directly-follows abstraction variant for very large event
logs is possible but tricky. This variant recurses on sub directly-follows graphs
instead of sublogs. In our hierarchical setting, we can integrate this variant
by annotating directly-follows nodes with sub directly-follows graphs whenever
there is a lower level in the hierarchy. See also the boxed nodes in the graphs
in Tables 6.5 and 6.6. In the recursion aware discovery algorithm, special care
should be taken to track and update the subgraphs for the various context
paths. Since only behavior is added whenever a recursive reference is detected,
we can update subgraphs using a graph union operation.

6.7 Evaluation

In this section, we compare the naïve hierarchical discovery (NHD) and re-
cursion aware discovery (RAD) algorithms against related, implemented tech-
niques. The NHD and RAD algorithms are implemented in the Statechart
plugin for the ProM framework, see also Chapter 10. Section 6.7.1 investigates
the discovery results on a controlled example. Section 6.7.2 provides a com-
parison on running time and model quality. For large, real-life case studies and
tool UI using the hierarchy techniques, see Chapter 12.

6.7.1 Evaluation using Synthetic Logs
In this evaluation, we focus on model understandability. We use a small syn-
thetic example software log, mine a model with various discovery algorithms,
and compare the resulting models on structure and visual appearance. The
goal of this evaluation is to investigate how the NHD and RAD algorithms
compare to existing algorithms in discovering accurate and understandable
models when hierarchical behavior is present.

Methodology
For this evaluation, we revisit the program in Listing 6.1. We executed the
program twice, once for i = 3 and once for i = 4, and let Main.input() return
an instance of class B. During execution, we traced and logged the start and
end of each called method, resulting in an event log similar to the one shown
in Table 6.1. This event log has 2 traces, 62 events, 14 activities (including
lifecycles), and 7 hierarchical levels.

We use the program in Listing 6.1 and the model from Figure 6.2 as a
baseline comparison. For the various discovered models, we use the default
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visualization provided by the various tool implementations, and annotate the
activities with their one-letter acronyms, see Table 6.7 for a summary. For
the Inductive Miner and our hierarchical discovery techniques, we used the
infrequent (IMf) extensions and indicate the “path” threshold. For “path”
threshold, 1.0 means all behavior, 0.8 means 80% of the behavior (i.e., an
80/20 model, describing 80% of the behavior using a simpler 20% model).

For this evaluation, we provide the fitness and precision scores calculated
on the Petri net translation, using the alignments-based technique from [21].
Recall from Section 1.1.2 on page 7: Fitness expresses the part of behavior in
the event log that is also captured in the model. Precision expresses the part of
the behavior in the model that is also present in the event log. A fitness of 1.0
indicates all behavior in the event log can be reproduced by the model; a lower
fitness (minimum 0.0) means the modeled behavior represents the behavior in
the event log less. A precision of 1.0 indicates all behavior in the model has
been observed in the event log; a lower precision (minimum 0.0) means the
modeled behavior is less supported by observations in the event log.

Table 6.7: One-letter acronyms for the activities used in the hierarchical
synthetic evaluation. These acronyms correspond with the baseline model in
Figure 6.2 for the program in Listing 6.1.

M Main.main() B B.process()

i Main.input() s1 B.stepPre()

o Main.output() s2 B.stepPost()

A A.process()

Lifecycle suffixes:
+s start
+c complete

Results
Figure 6.4 to 6.16 show the discovered models. Below, we will discuss each
model in turn.

Alpha miner [18] – The Alpha miner result in Figure 6.7 shows a very
disconnected model. Since no alpha-relations were inferred between most activ-
ities, most transitions are not connected to places and can fire at any time. This
model gives us no information about how the different activities are causally
related. The very low fitness score reflects this lack of information. Hence, this
model does not aid in understanding the behavior.

Fuzzy miner [75] – The Fuzzy miner result in Figure 6.8 shows a rea-
sonably structured model. Although the submodel structures are not explicit
in this model, using activity+lifecylce labels, we get a decent idea about the
interval containment relations. The causal relations of activities M, i, o and B
can be correctly inferred. In addition, we can infer that during activity B,
we can only finish by performing activity A, i.e., the termination or recursion
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base case can be spotted. However, the recursive and nested nature of the
B submodel cannot be deduced from this model. In addition, the loops and
self-loops on B, s1, and s2 are misleading. There are no constraints shown
on the number of starts and completes, and no constraint on the relation be-
tween the number of s1 and s2 executions. Using the significance cutoff in
the Fuzzy miner to cluster behavior does not help in finding more structures
in this model.

Heuristics miner [192] – The Heuristics miner result in Figure 6.4 again
shows a reasonably structured model. This model has the same overall struc-
ture and issues as the Fuzzy miner model discussed above. In addition, the
split-join semantics around the B activities are unclear, leading to soundness
issues.

ILP miner [204] – The ILP miner result in Figure 6.5 again shows a
reasonably structured model. This model has the same overall structure and
issues as the Fuzzy miner model discussed above. Although this model has
perfect fitness, the very low precision score reflects the lack of constraints and
information in the B submodel.

Genetic miner [10] – The Genetic miner result in Figure 6.6 again shows
a reasonably structured model. This model has the same overall structure and
issues as the Fuzzy miner model discussed above. In addition, the split-join
semantics around the B activities are unclear and the B+complete activity is
disconnected from the main flow, leading to soundness issues.

ETMd miner [46] – The ETMd miner result in Figure 6.6 shows a trace
model fitted to the longest trace (for input i = 4). This model has a high
fitness and precision, but it is clearly too overfitting and does not show us
anything about the underlying recursive and repetitive structures. Hence, if we
would rerun the software with a different input, and thus a different number of
recursive calls, this model would not be able to support the resulting behavior.
In short, this model does not aid in understanding the behavior.

TS Regions [16] – The Transition System miner using Regions result in
Figure 6.10 again shows a reasonably structured model. This model has the
same overall structure and issues as the Fuzzy miner model discussed above.
Observe how, due to the lack of lifecycle information, the fitness score dropped.

MINT ktails [190] – The MINT ktails result in Figure 6.11 shows a trace
model fitted to both traces. Like with the ETMd miner model discussed above,
this model is clearly too overfitting, and does not show us anything about the
underlying recursive and repetitive structures.

MINT redblue [190] – The MINT redblue result in Figure 6.13 shows
a rather convoluted and inaccurate model. It is difficult to understand what
the relations are between the activities A, B s1, and s2. In addition, the
model incorrectly shows the optionality of activity i, and all information about
the interval containment relations is lost. Even when ignoring the lack of
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lifecycle information, completely incorrect traces are admitted by this model,
e.g.: 〈M,B, o, o 〉 or 〈M, i, i, i, s2, A, o, o 〉. The low fitness score confirms this.

Synoptic miner [37] – The Synoptic miner result in Figure 6.12 again
shows a reasonably structured model. Compared to the Fuzzy miner type
of models discussed above, similar structures are present in this result. In
addition, the activities s1 and s2 are better placed in this model than in the
previous results. In this model s1 and s2 happen between successive executions
of B and cannot be skipped. However, again the constraints between s1 and s2
as well as the concrete recursive nature of the B submodel cannot be deduced
from this model.

Inductive miner [130] – The Inductive miner results in Figure 6.14 show
structured but imprecise models. The path thresholds indicate the amount of
behavior included: 1.0 is all behavior, 0.8 yields an 80/20 model. Activity M
is placed in a strange loop with the remaining activities due to the interval
containment relation. The causal relations of activities i, o and B can be
correctly inferred, but the behavior during activity B is again placed in a
strange loop due to the interval containment relation. By interpreting these
loops as “happens during” relations, we coincidentally get a decent idea about
the interval containment relations. However, no constraints or relations can be
deduced for the activities A, s1, or s2. The relatively low fitness score reflects
this lack of information.

NHD and RAD (this chapter) – The Naïve Hierarchical Discovery
(NHD) and Recursion Aware Discovery (RAD) algorithms from this chapter
yield the models in Figure 6.15, 6.16, and 6.17. The NHD model clearly shows
the correctly identified submodels. Although this model is in essence a trace
model, it does clearly show the inferred containment relations via the sub-
models. Note that this model has perfect fitness and precision. In the RAD
model the recursion was correctly detected and generalized, thereby reducing
the visual complexity. Note that the discovered hierarchical process tree in Fig-
ure 6.15b exactly matches the baseline model shown in Figure 6.2. In addition,
observe how the small statechart representation in Figure 6.16b clearly shows
all the submodels, recursion relation and constraints (e.g., relation between
the number of s1 and s2 executions), while at the same time being smaller
and easier to read than the larger model in Figure 6.16a. By dividing the
activity names into class and method names we obtain the message sequence
diagrams in Figure 6.17. Via the use of lifelines and activation boxes, we made
the nested calls and relation amongst classes explicit. Note that Figure 6.17b
now explicitly shows how the recursion is terminated in class A.
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Figure 6.4: The Heuristics miner [192] result, model is unsound. Although
this model is reasonably structured, we cannot deduce the recursive and nested
nature of the B submodel and we cannot infer the constraint on the relation
between the number of s1 and s2 executions.

Figure 6.5: The ILP miner [204] result with fitness 1,00 and precision 0,19.
Although this model is reasonably structured, we cannot deduce the recursive
and nested nature of the B submodel and we cannot infer the constraint on
the relation between the number of s1 and s2 executions.

Figure 6.6: The Genetic miner [10] result, model is unsound. Although
this model is reasonably structured, the B+complete activity is disconnected
from the main flow, we cannot deduce the recursive, and nested nature of the
B submodel and we cannot infer the constraint on the relation between the
number of s1 and s2 executions.
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Figure 6.7: The Alpha
miner [18] result with
fitness 0,97 and preci-
sion 0,15. The model
is very disconnected and
does not aid in under-
standing the behavior.

(a) Significance: 0.0 (b) Significance: 0.4

Figure 6.8: The Fuzzy miner [75] result. The
significance cutoff threshold controls how much
behavior is clustered (see the octagonal nodes i
and A). Although this model is reasonably struc-
tured, we cannot deduce the recursive and nested
nature of the B submodel and we cannot infer the
constraint on the relation between the number of s1
and s2 executions.
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Figure 6.9: The ETMd
miner [46] result with
fitness 0,86 and preci-
sion 0,97. This model
is clearly too overfitting
and does not show us any-
thing about the underly-
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Figure 6.10: The Transition System miner us-
ing Regions [16] result with fitness 0,67 and preci-
sion 0,47. Although this model is reasonably struc-
tured, we cannot deduce the recursive and nested
nature of the B submodel and we cannot infer the
constraint on the relation between the number of s1
and s2 executions.
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Figure 6.11: The MINT
ktails [190] result with
k=1, fitness 0,68 and pre-
cision 0,67. This model,
although better than the
ETMd model, is clearly
too overfitting and does
not show us anything
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Figure 6.12: The Synoptic miner [37] result with
fitness 1,00 and precision 0,66. This model is again
reasonably structured and better shows the rela-
tions between B, s1, s2, and A. However, again we
cannot deduce the recursive and nested nature of
the B submodel and we cannot infer the constraint
on the relation between the number of s1 and s2
executions.
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precision 0,67. This model is rather convoluted and inaccurate, and admits
completely incorrect traces. It is difficult to understand what the relations are
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(b) Path 0.8, fitness 0,69, and precision 0,46.

Figure 6.14: The Inductive miner [130] result. The path thresholds indicate
the amount of behavior included: 1.0 is all behavior, 0.8 yields an 80/20 model.
These models are structured but imprecise: activities are placed in strange
loops and various causal relations cannot be correctly inferred.
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(b) Recursion Aware Discovery (RAD), path 0.8, fitness 1,00, and precision 0,82.

Figure 6.15: The NHD and RAD results visualized as process trees. The path
thresholds indicate the amount of behavior included: 1.0 is all behavior, 0.8
yields an 80/20 model. These models clearly show the inferred containment
relations via the submodels. In the RAD model the recursion was correctly
detected and generalized, thereby reducing the visual complexity.
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Figure 6.16: The NHD and RAD results from Figure 6.15 visualized as
statecharts. In contrast to the process trees, these models explicitly show the
control-flow arrows. Note how the RAD model explicitly shows the recursive
relations and is more compact and easier to read than the NHD model.
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(a) NHD, path 0.8, fitness 1,00, and precision 1,00. Only the first 3 hierarchical levels
are visualized, the rest of the nested behavior is collapsed/hidden, see the dots (. . . ).
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(b) RAD, path 0.8, fitness 1,00, and precision 0,82.

Figure 6.17: The NHD and RAD results from Figure 6.15 visualized as
message sequence diagrams. The activity names were divided into class names
(lifelines) and method names (message arrows). Note how Figure 6.17b now
explicitly shows how the recursion is terminated in class A.
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6.7.2 Performance and Scalability Evaluation
In this section, we perform a comparative evaluation focusing on the per-
formance and scalability of the various discovery algorithms. The discovery
algorithms will be compared on running time and the resulting models will be
compared on model quality in terms of fitness and precision.

Methodology
All of the algorithms in this comparison are invoked from a Java benchmark
setup under the same operating conditions. For these experiments we used a
laptop with an i7-4700MQ CPU @ 2.40 GHz, Windows 8.1 and Java SE 1.7.0 67
(64 bit) with 12 GB of allocated RAM.

For the running time, we measured the average running time and associated
95% confidence interval over 30 micro-benchmark executions, after 10 warmup
rounds for the Java JVM. Each algorithm is allowed at most 30 seconds for
completing a single model discovery. The time for loading event logs or Java
classes is excluded from the measurements.

For the model quality, we use fitness and precision calculated on the Petri
net translations using the alignments technique from [21, 134] and set a time
limit of at most 15 minutes.

Event Logs
We selected seven event logs for this evaluation, covering a range of input
problem sizes. The input problem size is measured in terms of four metrics:
number of traces, number of events, number of distinct activities (size of the
alphabet), and the (average) trace length. The event logs and their input sizes
are shown in Table 6.8 and are divided into software and non-software logs.

For the software event logs we used an extended version of the instrumen-
tation tool developed for [119], yielding XES event logs with method-call level

Table 6.8: The event logs used in the performance and scalability evaluation.
Shown are input size statistics, indicating the problem sizes of the event logs.

Trace length

Event Log # Traces # Events # Acts Min Mean Max

[108] JUnit 4.12 1 946 182 946 946 946
[109] Crypto 1.0.0 3 241, 973 74 278 80, 658 241, 140
[110] NASA CEV 2, 566 73, 638 47 12 29 50
[112] Alignments 1 17, 912 90 17, 912 17, 912 17, 912

[63] BPIC 2012 13, 087 262, 200 24 3 20 175
[174] BPIC 2013 7, 554 65, 533 13 1 9 123
[45] WABO 1, 434 8, 577 27 1 6 25
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events. The JUnit 4.12 software [67] was executed once, using the example
input found at [40]. For the Apache Commons Crypto 1.0.0 software [29], we
executed the CbcNoPaddingCipherStreamTest unit test. For the NASA CEV soft-
ware [148], we executed a unit test generated from the source code, covering
all of the code branches. For the alignments software [21, 187], we executed
an alignment computation on a typical input log and model.

The BPIC 2012 [63] and BPIC 2013 [174] event logs are so-called BPI Chal-
lenge logs. These large real-life event logs with complex behavior are often used
in process mining evaluations. The challenge logs are made available yearly
in conjunction with the BPM conference and are considered sufficiently large
and complex inputs to stress test process mining techniques. The WABO [45]
event log describes the receipt phase of an environmental permit application
process (“WABO”) at a Dutch municipality.

For each of the above logs, we use various heuristics for hierarchy. For the
software logs, we use the nested intervals or nested calls heuristic (Intervals) as
well as a structured names heuristic based on the package.class.method() pattern
(Names). For the BPIC 2012 log, we use the <A>_<name> pattern, splitting
activities based on their prefix. For the BPIC 2013 log, we use a combination
of activity name and lifecycle label to form a hierarchy. For the WABO log,
we use a combination of resource group and activity name to form a hierarchy.

Results – Running Time
In Tables 6.10 and 6.11, the results for the runtime benchmark are given for
the software and non-software logs respectively.

We immediately observe that the ILP, MINT, and Synoptic algorithms
could not finish in time on most logs. We observed that the MINT and Synoptic
algorithms have difficulty handling a large number of traces, see for example the
BPIC and NASA logs. In addition, we also notice that most algorithms require
a long processing time and a lot of memory for the Apache Crypto log. We
conclude that large trace lengths, such as in the Crypto log, are problematic
for most approaches. In contrast, our NHD and RAD techniques overcome
this problem by using the hierarchy to divide large traces into multiple smaller
traces.

The running time of our techniques depend on an implicit input problem
size metric: the depth of the discovered hierarchy. In Table 6.9, the discovered
depths are given for comparison. For example, for the JUnit and Crypto logs,
we see that our techniques have a much lower running time than the base-
line Inductive Miner. This can be explained by the large depth in hierarchy:
25 levels and 8 levels respectively. This implies that the event log is effectively
decomposed into many smaller sublogs with reduced activity alphabets. Re-
call from Theorems 6.4.7 and 6.5.8 that the NHD and RAD algorithms are
mainly influenced by the activity alphabet size. Hence, the imposed hierarchy
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Table 6.9: The depth of the discovered hierarchy for the event logs used in
the performance and scalability evaluation.

Intervals Names

Event Log Naïve RAD Naïve RAD

[108] JUnit 4.12 25 18 9 9
[109] Crypto 1.0.0 8 8 8 8
[110] NASA CEV 3 3 3 3
[112] Alignments 14 7 7 7

[63] BPIC 2012 2 2
[174] BPIC 2013 2 2
[45] WABO 2 2

indirectly yields a good decomposition of the problem, aiding the divide and
conquer tactics of the underlying algorithms.

Looking at the actual running times again, in all cases, using the right
heuristic for hierarchy before discovery improves the running time as a side-
effect of discovering more hierarchical structures. In extreme cases, like the
Apache Crypto log, it even makes the difference between getting a result and
having no result at all. Note that, with a poorly chosen heuristic, we might
not discover any meaningful hierarchical structures. As a consequence, the
running time is also negatively affected, e.g., note the absence of models for
the Apache Crypto when using the Names heuristic.

Results – Model Quality
In Tables 6.12 and 6.13, the results of the model quality measurements are
given. The Fuzzy miner is absent due to the lack of semantics for fuzzy models.

Note that in all software cases, the NHD and RAD algorithms using the
Intervals hierarchy heuristics yield a big improvement in precision, with no
significant impact on fitness. Clearly, using the right heuristic for hierarchy
not only impacts the running time but also the model quality. Intuitively,
this makes sense: if hierarchical information is (implicitly) present in an event
log, using such information yields more accurate models. Note that there is
a tradeoff between including recursive behavior and precision. As we already
saw in Section 6.7.1, using the RAD approach can generalize and simplify a
model at the expense of some precision. Depending on the use case of the
model, such a small sacrifice in precision can be a good thing.

Observe that these results verify that our technique with paths at 1.0 main-
tains the model quality guarantees (perfect fitness). Overall, we can conclude
that the added expressiveness of modeling the hierarchy when present has a
positive impact on the model quality.
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In the non-software cases, when using a poorly chosen heuristic for hierar-
chy, the NHD and RAD algorithms can yield less fitting and precise models.
In these cases, there is a tradeoff between including more information via the
artificial hierarchy levels and fitness and precision. That is, there is a tradeoff
between the amount of information included in the model, understandability,
and fitness and precision.

Results – Hierarchy in the JUnit case
As an example of the usefulness of hierarchical models on large real-life event
logs, we consider the JUnit 4.12 case again. Figure 6.18 shows the discovered
model at various abstraction levels. By collapsing and expanding named sub-
trees, the discovered hierarchy can be used to manage the visual complexity
and aiding the user in exploring the discovered behavior. The model in Fig-
ure 6.18a can still be examined with a glance. But the model in Figure 6.18b
is already a bit more complex, even though only one level of named subtrees
have been collapsed.

When more detail is shown, like in Figure 6.18c, it becomes clear that
we need to enable the user to use the hierarchy to navigate between the dif-
ferent levels of complexity. In other words, one would not start looking at
Figure 6.18c. Instead, one starts with Figure 6.18a, and by interactively ex-
panding and collapsing parts of the model, knows where to zoom in on the
model in Figure 6.18c to investigate the details of the shown behavior. Chap-
ter 10 shows how we realized such user interactions.

Overall, we can conclude that the added expressiveness of modeling the
hierarchical behavior explicity has, in most cases, a positive impact on the
model. In addition, the interaction with hierarchical notions proves essential
for understanding large, complex (software) behavior.
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Table 6.10: Comparison of algorithm running times on software event logs
with hierarchies. Given are the average running times in milliseconds over
30 runs, with a 95% confidence interval shown in the bar plots. Note that
the plots use a logarithmic scale. For our hierarchical extensions, the used
hierarchy heuristic are shown in parenthesis. The paths column indicates the
value for the IMf infrequent threshold: 1.0 means all behavior, 0.8 means 80%
of the behavior (i.e., an 80/20 model), 0.5 means 50% of the behavior.

Algorithm Paths JUnit 4.12 Crypto 1.0.0 NASA CEV Alignments

[18] Alpha miner 9.2

10
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10
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10
3

183.1

10
3

10
4

37.8

10
2

10
3

10
4

15.6

10
1

10
2

10
3

10
4

[192] Heuristics 1349.7 −T 359.6 444.4
[75] Fuzzy miner 166.8 −T 4148.2 −T

[193] ILP miner −T −T −T −T

[204] ILP, filtering −T −T −T −T

[10] Genetic miner −T −T −T 21945.3
[46] ETMd miner −T −T −T −T

[16] TS Regions −T −T −T −T

[190] MINT, redblue k=1 243.9 −T 13426.0 −S

[190] MINT, redblue k=2 582.0 −T 22213.4 −S

[190] MINT, redblue k=3 751.8 −T −T −S

[190] MINT, ktails k=1 108.9 −T −T −S

[190] MINT, ktails k=2 371.6 −T −T −S

[190] MINT, ktails k=3 512.3 −T −T −S

[37] Synoptic −T −T −T −T

[130] IM (baseline) 1.0 232.1 12055.5 911.3 4560.6
[130] IM (baseline) 0.8 291.9 9998.9 912.6 3995.8
[130] IM (baseline) 0.5 276.3 10237.2 676.2 2602.7

S
ec
ti
on

6.
4

NHD (Intervals) 1.0 11.6 1519.8 382.7 453.7
NHD (Intervals) 0.8 8.8 1537.0 310.7 420.1
NHD (Intervals) 0.5 8.4 1525.2 368.4 177.6
NHD (Names) 1.0 27.0 11876.3 1352.3 207.9
NHD (Names) 0.8 25.6 6315.9 1375.6 191.0
NHD (Names) 0.5 24.9 6308.4 1377.6 192.2

S
ec
ti
on

6.
5

RAD (Intervals) 1.0 11.1 1757.3 418.1 2452.0
RAD (Intervals) 0.8 10.4 2202.8 458.1 2642.8
RAD (Intervals) 0.5 9.4 1968.6 418.4 2359.1
RAD (Names) 1.0 27.3 12414.6 1548.2 190.2
RAD (Names) 0.8 26.5 6340.2 1488.6 186.9
RAD (Names) 0.5 24.6 6350.2 1588.6 214.7

Avg. runtime (in milliseconds) with 95% conf. int.
S Stack overflow T Time limit exceeded (30 sec.)
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Table 6.11: Comparison of algorithm running times on non-software event
logs with hierarchies. Given are the average running times in milliseconds over
30 runs, with a 95% confidence interval shown in the bar plots. Note that
the plots use a logarithmic scale. For our hierarchical extensions, the used
hierarchy heuristic are shown in parenthesis. The paths column indicates the
value for the IMf infrequent threshold: 1.0 means all behavior, 0.8 means 80%
of the behavior (i.e., an 80/20 model), 0.5 means 50% of the behavior.

Algorithm Paths BPIC 2012 BPIC 2013 WABO

[18] Alpha miner 150.1

10
2

10
3

10
4

73.5

10
2

10
3

10
4

8.8

10
2

10
4

[192] Heuristics 840.2 278.0 49.2
[75] Fuzzy miner 2858.5 827.4 159.9
[193] ILP miner −T 3259.9 233.9
[204] ILP, filtering 7234.3 1154.7 236.3
[10] Genetic miner −T 22145.4 26029.7
[46] ETMd miner −T −T −T

[16] TS Regions −T 1572.9 −T

[190] MINT, redblue k=1 −T −T 302.1
[190] MINT, redblue k=2 −T −T 276.8
[190] MINT, redblue k=3 −T −T 325.0
[190] MINT, ktails k=1 −T −T 76.4
[190] MINT, ktails k=2 −T −T 138.2
[190] MINT, ktails k=3 −T −T 160.1
[37] Synoptic −T −T −T

[130] IM (baseline) 1.0 4083.8 1269.5 113.9
[130] IM (baseline) 0.8 3436.7 477.8 62.1
[130] IM (baseline) 0.5 3969.9 999.7 55.2

S
ec

.
6.

4 NHD (Names) 1.0 4172.3 1098.5 166.1
NHD (Names) 0.8 2128.6 797.1 143.5
NHD (Names) 0.5 1912.5 841.3 111.4

S
ec

.
6.

5 RAD (Names) 1.0 4996.0 1460.8 206.8
RAD (Names) 0.8 2528.7 880.6 148.2
RAD (Names) 0.5 2178.5 930.1 112.1

Avg. runtime (in milliseconds) with 95% conf. int.
T Time limit exceeded (30 sec.)
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Table 6.12: Comparison of model quality scores on software event logs with
hierarchies. Given are the fitness and precision values for the discovered mod-
els. These values range from 0.0 to 1.0, higher is better.

JUnit 4.12 Crypto 1.0.0 NASA CEV Alignments

Algorithm Paths Fitness Precision Fitness Precision Fitness Precision Fitness Precision

[18] Alpha miner −U −U −U −U 0.91 0.06 1.00 0.01

[192] Heuristics −U −U n/a n/a −U −U −U −U

[193] ILP miner n/a n/a n/a n/a n/a n/a n/a n/a

[204] ILP, filtering n/a n/a n/a n/a n/a n/a n/a n/a

[10] Genetic miner n/a n/a n/a n/a n/a n/a −U −U

[46] ETMd miner n/a n/a n/a n/a n/a n/a n/a n/a

[16] TS Regions n/a n/a n/a n/a n/a n/a n/a n/a

[190] MINT, redblue k=1 0.00 −R n/a n/a 0.79 0.44 n/a n/a

[190] MINT, redblue k=2 0.48 0.17 n/a n/a 0.81 0.45 n/a n/a

[190] MINT, redblue k=3 0.13 0.06 n/a n/a n/a n/a n/a n/a

[190] MINT, ktails k=1 0.00 −R n/a n/a n/a n/a n/a n/a

[190] MINT, ktails k=2 0.43 0.16 n/a n/a n/a n/a n/a n/a

[190] MINT, ktails k=3 0.12 0.06 n/a n/a n/a n/a n/a n/a

[37] Synoptic n/a n/a n/a n/a n/a n/a n/a n/a

[130] IM (baseline) 1.0 1.00 0.33 1.00 0.35 1.00 0.55 −T −T

[130] IM (baseline) 0.8 0.96 0.32 0.88 0.41 0.91 0.53 −T −T

[130] IM (baseline) 0.5 0.98 0.33 0.95 0.38 0.93 0.62 −T −T

S
ec
ti
on

6.
4

NHD (Intervals) 1.0 1.00 0.84 1.00 0.45 1.00 0.80 −T −T

NHD (Intervals) 0.8 0.90 0.87 0.99 0.45 1.00 0.81 −T −T

NHD (Intervals) 0.5 0.88 0.87 0.95 0.40 0.94 0.82 −T −T

NHD (Names) 1.0 −M −M −M −M −T −T −T −T

NHD (Names) 0.8 −M −M −M −M −T −T −T −T

NHD (Names) 0.5 −M −M −M −M −T −T −T −T

S
ec
ti
on

6.
5

RAD (Intervals) 1.0 1.00 0.83 1.00 0.45 1.00 0.80 −T −T

RAD (Intervals) 0.8 0.89 0.84 0.99 0.45 1.00 0.81 −T −T

RAD (Intervals) 0.5 0.86 0.85 0.95 0.40 0.94 0.82 −T −T

RAD (Names) 1.0 −M −M −M −M −T −T −T −T

RAD (Names) 0.8 −M −M −M −M −T −T −T −T

RAD (Names) 0.5 −M −M −M −M −T −T −T −T

T Time limit exceeded (15 min.)
M Out of memory (12 GB)
R Not reliable (fitness = 0)

U Unsound model
n/a No model (see Table 6.12)
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Table 6.13: Comparison of algorithm running times on non-software event
logs with hierarchies. Given are the fitness and precision values for the discov-
ered models. These values range from 0.0 to 1.0, higher is better.

BPIC 2012 BPIC 2013 WABO

Algorithm Paths Fitness Precision Fitness Precision Fitness Precision

[18] Alpha miner −U −U 0.36 0.88 −U −U

[192] Heuristics 0.72 0.95 −U −U 0.61 0.98

[193] ILP miner n/a n/a 1.00 0.36 1.00 0.12
[204] ILP, filtering 0.74 0.28 0.95 0.45 0.97 0.35

[10] Genetic miner n/a n/a −U −U −U −U

[46] ETMd miner n/a n/a n/a n/a n/a n/a

[16] TS Regions n/a n/a 0.56 0.96 n/a n/a

[190] MINT, redblue k=1 n/a n/a n/a n/a 0.73 0.55

[190] MINT, redblue k=2 n/a n/a n/a n/a 0.67 0.55

[190] MINT, redblue k=3 n/a n/a n/a n/a 0.67 0.56

[190] MINT, ktails k=1 n/a n/a n/a n/a 0.00 −R

[190] MINT, ktails k=2 n/a n/a n/a n/a 0.00 −R

[190] MINT, ktails k=3 n/a n/a n/a n/a 0.00 −R

[37] Synoptic n/a n/a n/a n/a n/a n/a

[130] IM (baseline) 1.0 1.00 0.37 1.00 0.62 1.00 0.62
[130] IM (baseline) 0.8 0.98 0.49 0.95 0.64 0.96 0.73
[130] IM (baseline) 0.5 0.84 0.54 0.35 0.82 0.96 0.77

S
ec

.
6.

4 NHD (Names) 1.0 −T −T −T −T −T −T

NHD (Names) 0.8 −T −T −T −T −T −T

NHD (Names) 0.5 −T −T −T −T −T −T

S
ec

.
6.

5 RAD (Names) 1.0 −T −T −T −T −T −T

RAD (Names) 0.8 −T −T −T −T −T −T

RAD (Names) 0.5 −T −T −T −T −T −T

T Time limit exceeded (15 min.)
R Not reliable (fitness = 0)

U Unsound model
n/a No model (see Table 6.12)
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(a) 3 levels (b) 4 levels (c) 13 levels

Figure 6.18: The NHD result for the JUnit 4.12 software event log, visualized
as statecharts with different number of levels in the hierarchy visualized by
collapsing lower-level named subtrees into activities (note the + and − signs
in Figure 6.18a).
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6.8 Conclusion and Open Challenges

In this chapter, we introduced a modeling notation and two discovery tech-
niques for hierarchical and recursive behavior (Contribution 2). With hier-
archical event logs, we can explicitly capture hierarchical behavior found in,
for example, software call stack behavior, relations between software compo-
nents or application interfaces, behavior described by high-level and low-level
activities, etc. We presented several heuristics for transforming an ordinary
event log into a hierarchical event log. With the hierarchical process tree we
provided extensions to capture named submodels and recursive behavior. The
naïve hierarchical discovery and recursion aware discovery algorithms discover
the named submodels and recursive references from hierarchical event logs and
capture this behavior in hierarchical process trees. These discovery algorithms
allow us to analyze software processes and other processes at multiple levels
of granularity while offering good discovery guarantees. Moreover, these algo-
rithms scale well and show a huge potential to speed up discovery by leveraging
hierarchical information.

With the hierarchical solutions presented in this chapter, there are several
interesting research directions for future work.

� Future Work 6.1 — Communication between Submodels. The definition of
named subtrees presented in this chapter captures block-structured and local
named submodels. Everything that happens inside or during a named sub-
model stays inside that named submodel, and there is no way to influence the
state of an external named submodel. However, in practice, one may wish to
influence the state of another non-nested submodel. Such communication be-
tween submodels is already supported in notations like BPMN and Statecharts,
and may be used for various types of behavior. For example, in multi-threaded
or multi-process software, concurrent threads or processes (named submodels)
may communicate via data structures or (network) channels. Typical exam-
ples include produce-consumer setups and network communication. Also in
business processes such patterns occur. Consider for example different orga-
nization units or artifacts, represented by named submodels, synchronizing on
particular states or phases.

� Future Work 6.2 — Instance-Aware Recursion Discovery. In the current Re-
cursion Aware Discovery, the recursion detection algorithm only looks at the
list of symbols in the Context Path. However, consider the case where we have
two instances of a class A and in A.f(), instance 1 invokes A.f() for instance 2
of class A. One can debate if, in such cases, a recursion should be detected.
In other words, should the object instances be taken into account when de-
tecting recursion patterns? The current algorithm does not take any notion of
instances into account and future work might explore this concept further.
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� Future Work 6.3 — Multi-Threaded/Multi-Process Fork and Join Identifica-
tion. The algorithms presented in this chapter work well for single-threaded
software, but have difficulties correctly modeling multi-threaded software. Al-
though concurrent behavior is supported via the concurrency operator (∧), in
practice the algorithms have difficulty deducing where concurrency operators
should be used in the modeled behavior. More concretely, the concurrency op-
erator indirectly points out fork and join points where behavior can happen and
stop happening concurrently. The current algorithms identify these points by
looking at strongly connected components in the directly-follows graph. Since
software behavior tends to consist of many small steps, observing enough possi-
ble interleavings to correctly form these concurrency footprints in the directly-
follows graph is highly unlikely. However, often there is enough non-causal
information in running software, like thread and process identification, to sug-
gest where behavior happens concurrently. Thus, using additional information
for detecting and modeling concurrency should allow us to correctly identify
fork and join points for multi-threaded and multi-process software.

� Future Work 6.4 — Multi-Instance Activities and Named Submodels. A fre-
quently used pattern in multi-threaded software is to invoke a function or sub-
routine in parallel for each element in a dataset. Likewise, in business processes,
a subprocess is dispatched for each element in an order or delivery. Such multi-
instantiation of activities or named submodels cannot be adequately modeled
using the tradition loop or concurrency constructs. Multiple instances are exe-
cuted concurrently and any number of instances may be executed at the same
time. Like with the nested intervals heuristic, it should be possible to detect
and discover multi-instance patterns based on how intervals of activities over-
lap. Special care should be taken when constructing subtrace hierarchies such
that subtraces are assigned to the correct events/submodels.

� Future Work 6.5 — Mixed, Multi-Dimensional Hierarchies. The above ap-
proach to modeling and discovering hierarchies is one dimensional. In practice,
one can adopt multiple different hierarchical views. For example, software be-
havior can contain a call hierarchy, a thread hierarchy, and a class or component
hierarchy. When analyzing such behavior, it could be useful and insightful to
look at a dissection of multiple hierarchies. For example, how are method calls
related (call hierarchy) across the different classes or components. One possi-
ble approach for discovering such multi-dimensional hierarchical models is to
choose one main dimension (e.g., a call hierarchy), and to discover annotations
or “colorings” for the other hierarchies (e.g., associated classes or components).
These annotations can be used after discovery to visually indicate how the
hierarchies mix, and in which component which part of a submodel belongs.
Possible visualization styles include color mappings and spatial layout regions
like those used by message sequence diagrams.
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� Future Work 6.6 — Hierarchy-Aware Alignments. The algorithms presented
in this chapter scale well for hierarchical event logs and are able to produce
larger models. These models are highly structured, with clear boundaries for
submodels. However, when performing alignments for conformance and per-
formance analysis, one has to flatten these models to regular Petri nets, losing
this structured information. As shown in Section 6.7.2, these flat Petri nets are
easily too large to be handled by the traditional alignments algorithm. Future
research should look into leveraging the structured information available in
hierarchical models to improve the scalability of alignments. For example, the
submodels in a hierarchical model can be used to apply a divide-and-conquer
strategy to alignments similar to the discovery approaches in this chapter.
Since the main bottleneck in alignments is the size of the model state space
and trace length, applying a divide and conquer on these dimensions should
significantly reduce the problem sizes. Hence, we conjecture that a hierarchy-
aware alignments approach has a huge potential to speed up computations by
leveraging hierarchical information.

� Future Work 6.7 — Hierarchical Visualization Layout. The layered nature of
the hierarchical models used in this chapter allow the user to interactively ex-
plore behavior across different abstraction layers. Named submodels can be
used to abstract from detailed behavior, and users should be able to interac-
tively inspect, collapse and expand named submodels. Chapter 10 shows how
we realized such user interactions. Due to the structured, hierarchical nature
of hierarchical process trees, there is a lot of information available on how to
layout such models. Hence, a visualization layout algorithm can use this infor-
mation to aid the user, ensuring that the same model elements are displayed
in the same fashion after a named submodel is expanded or collapsed. Such a
layout algorithm should use the tree structure to clearly and deterministically
position all model elements in a robust way.

� Future Work 6.8 — On-demand Discovery and Software Reruns. The layered
nature of the hierarchical models used in this chapter also lends itself well to
explore the dataset in multiple phases. At first, a user probably wants to an-
alyze a high-level picture of the behavior, excluding any obfuscating detailed
behavior. Afterwards, a user would probably be interested in a certain path
involving certain activities (e.g., software classes or methods) or properties
(e.g., certain performance characteristics). At the same time, a user would
ignore all the other paths. Hence, we can utilize the delayed discovery princi-
ple discussed in Section 6.5 to avoid unnecessary discovery computations. In
addition, with some integration with the underlying software being analyzed,
we could capture new behavioral data on demand by rerunning the software
whenever a user wishes to dig deeper in certain classes/methods, i.e., activities
and named submodels.
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Cancelation Discovery

In this chapter, we introduce a modeling notation and process discovery tech-
nique for cancelation behavior (Contribution 3). We start by motivating the
need for cancelation in Section 7.1. After that, we introduce the cancela-
tion process tree notation (Section 7.2) and the idea of an trigger oracle (Sec-
tion 7.3). Based on these concepts, Section 7.4 introduces the cancelation
discovery algorithm. In addition, Section 7.5 will elaborate on extending the
ideas to existing discovery extensions and to non-atomic event logs. Finally,
Section 7.6 will evaluate the introduced algorithms on rediscoverability and
performance. Section 7.7 wraps up this chapter and discusses open challenges.

7.1 Why We Need Cancelation – The Exceptional Case

When applying process mining on event data originating from software sys-
tems, new patterns and challenges pop up. Typically, the run-time behavior
of a software system is large, complex, and also contains some form of cance-
lation or error-handling behavior. For example, a web server needs to handle
a connection error, an X-ray machine may detect a sensor problem, a library
may encounter configuration, input, or parse errors, etc. Also in the context
of business processes, various errors and cancelation patterns can occur. For
example, a bank loan request may be canceled or declined, a pending road
fine reminder may be canceled upon payment, etc. This type of cancelation
behavior can easily be expressed in existing modeling formalisms, but few ex-
isting process discovery techniques actually take these cancelation features into
account. Without cancelation support, discovery algorithms can produce need-
lessly complex and imprecise models, as shown in Section 3.2 and Challenge 4.

As an example of cancelation behavior, consider the program in Listing 7.1.
The program starts its Main.main() function with invoking input(). Based on the
outcome of input(), either processA() or processB() is invoked. These process
functions can either succeed and return or fail by throwing an exception. If
the process method succeeds, the prepareResult() function is invoked. If the
process method throws an exception, we break out of the normal control flow
(i.e., a cancelation is performed), and continue with the recover() function in
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Listing 7.1 Running example Java code illustrating cancelation behavior. Upon
execution, this program is logged at the method level and the catch block.

1 public class Main {

2 // Entry point

3 public static void main(int i) {

4 boolean check = input(i);

5 // the try-catch block hints at a cancelation region

6 try {

7 if (check) {

8 processA(i); // can throw an exception

9 } else {

10 processB(i); // can throw an exception

11 }

12 prepareResult(); // only executed when no exception was thrown

13 } catch (Exception e) {

14 recover(); // only executed when an exception was thrown

15 }

16 output(); // always executed

17 }

18 private static boolean input(int i) { ... }

19 private static void processA(int i) throws Exception { ... }

20 private static void processB(int i) throws Exception { ... }

21 private static void prepareResult() { ... }

22 private static void recover() { ... }

23 private static void output() { ... }

24 }

the catch block. In both the success and fail (exception) case, afterwards we
finish with the output() function.

Observe how, in the above example, the jump to catch upon an exception
yields cancelation behavior. In this case, the try-catch block already hinted at
this pattern, but this is not always the case. For example, in (embedded) C
programs, a pattern like in Listing 7.2 can yield the same behavior. In other
cases, there may be no direct and obvious hints in the source code. Consider,
for example, null-pointers and divide-by-zero problems (i.e., runtime excep-
tions) or failure events and callback mechanisms used in APIs and component
interfaces.

Consider the program in Listing 7.1 again. Suppose we execute this pro-
gram a few times, where the first execution yields check = true and no exception
is thrown, but the second execution yields check = false and throws an excep-
tion. And suppose we trace and log the start and end of each called method
as well as the start of the catch block. Table 7.1 shows the resulting event
log describing the first two cases. In case 1, no exception is thrown, showing
“good weather behavior”. Due to the exception thrown in case 2, the function
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Listing 7.2 C version of the example program in Listing 7.1.
1 int input(int argc, const char* argv[]);

2 int processA(int argc, const char* argv[]);

3 int processB(int argc, const char* argv[]);

4 int prepareResult();

5 void recover();

6 void output();

7 // Entry point

8 int main(int argc, const char* argv[]) {

9 int check, result; // the result variable is used for error-handling

10 check = input(argc, argv);

11 if (check != 0) {

12 result = processA(argc, argv); // returns -1 upon error

13 } else {

14 result = processB(argc, argv); // returns -1 upon error

15 }

16 if (result != -1) {

17 result = prepareResult(); // only executed when no error was encountered

18 }

19 if (result == -1) {

20 recover(); // only executed when an error was encountered

21 }

22 output(); // always executed

23 }

processB() does not return but cancels. As a result, we see that event 2.4 is
recorded as a throws, and event 2.5 signals an exception is being caught. Note
that, in this way, we can deduce where a cancelation pattern is being trig-
gered and handled, but it is not immediately obvious where the corresponding
cancelation region starts.

In the next section, we will show how cancelation behavior can be modeled
and made explicit in event logs using an oracle. After that, we will discuss the
cancelation discovery algorithm and the challenge of finding the right cancela-
tion region.

7.2 Cancelation Process Trees
In this section, we extend the process tree notation (Section 2.2.6, page 38),
with support for cancelation in the form of cancelation regions and cancelation
triggers. In our extended notation, called the cancelation process tree, we add
two new tree operator ?→ and

?
	 to represent the sequence and loop cancelation

regions respectively, and we add a new tree leaf ?Ca to denote a cancelation trig-
ger. We will first explain the concept using an example model, and afterwards
we formally present the new syntax and semantics.
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Table 7.1: Example snippet of an event log for the program in Listing 7.1.
Each row is an event, and each column an attribute. Most events relate to the
start and end of each called method. The event labelled h relates to the start
of the catch block.

Attributes

Case id Event id Activity Lifecycle Timestamp Resource . . .

1 1.1 i Main.input() start 30-10-2017 11:02:45.000 main-thread . . .
1.2 i Main.input() complete 30-10-2017 11:02:45.200 main-thread . . .
1.3 a Main.processA() start 30-10-2017 11:02:45.400 main-thread . . .
1.4 a Main.processA() complete 30-10-2017 11:02:45.650 main-thread . . .
1.5 p Main.prepareResult() start 30-10-2017 11:02:45.690 main-thread . . .
1.6 p Main.prepareResult() complete 30-10-2017 11:02:45.730 main-thread . . .
1.7 o Main.output() start 30-10-2017 11:02:45.770 main-thread . . .
1.8 o Main.output() complete 30-10-2017 11:02:45.840 main-thread . . .

2 2.1 i Main.input() start 30-10-2017 11:02:48.150 main-thread . . .
2.2 i Main.input() complete 30-10-2017 11:02:48.470 main-thread . . .
2.3 b Main.processB() start 30-10-2017 11:02:48.600 main-thread . . .
2.4 b Main.processB() throws 30-10-2017 11:02:48.650 main-thread . . .
2.5 h Main.main()+handle handle 30-10-2017 11:02:48.690 main-thread . . .
2.6 r Main.recover() start 30-10-2017 11:02:48.720 main-thread . . .
2.7 r Main.recover() complete 30-10-2017 11:02:48.890 main-thread . . .
2.8 o Main.output() start 30-10-2017 11:02:48.960 main-thread . . .
2.9 o Main.output() complete 30-10-2017 11:02:49.210 main-thread . . .

3 3.1 i Main.input() start 30-10-2017 11:02:56.700 main-thread . . .
...

...
...

...
...

...
...

. . .

7.2.1 Example Model of a Program Execution
We will explain the cancelation extensions using the example cancelation tree
in Figure 7.1. This tree is modeled based on the event log in Table 7.1, see
also the program in Listing 7.1. The root node is a sequence (→) of input(),
a sequence cancelation operator ( ?→), and finally output(). The sequence can-
celation node has two subtrees. The left subtree models the normal behavior,
i.e., either processA() or processB() is performed, followed by prepareResults(). At
the same time this left subtree also denotes what is in the cancelation region.
Observe that processB() is modeled as a cancelation trigger leaf (?{h }b ), mean-
ing that either processB() is either executed successfully, or the corresponding
cancelation region is triggered. We will explain the meaning of the superscript
{h } later in the formal semantics. The right subtree models what happens
once the cancelation region is triggered. That is, when the cancelation re-
gion is triggered, we catch the exception (main()+handle), and execute recover().
Afterwards, we continue with output() as normal. Observe that, as a result,
we do not always execute the entire left subtree. That is, in the presence of
cancelation operators, we consider the prefix language of the left subtree.
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→

i
Main.

input()
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→

×

a

Main.
processA()

?
{h }
b

Main.
processB()

p

Main.prep
areResult()

→

h

Main.main()
+handle

r

Main.
recover()

o

Main.
output()

→ sequence

× exclusive choice

∧ concurrency

	 structured loop

a normal activity

τ silent activity

Cancelation extensions:

?→ sequence cancel

?
	 loop cancel

?Ca cancel trigger

Figure 7.1: Example cancelation process tree for the event log in Table 7.1.
This tree models concrete runtime behavior for the program in Listing 7.1.

In the tree in Figure 7.1, we used the sequence cancelation operator ?→. As a
result, after the right subtree is executed due to a cancelation, we continue with
output(). If instead we would replace the operator ?→ with the loop cancelation
operator

?
	, we get looping behavior. In such a tree, after the right subtree is

executed, we loop back and try executing the left subtree again. Hence, with
loop cancelation, we repeatedly retry the left subtree until no cancelation is
triggered.

The cancelation process tree in Figure 7.1 can also be represented textually:

→(i,
?→(→(×(a, ?

{h }
b ), p),→(h, r)), o)

7.2.2 Syntax and Semantics
To formalize cancelation process trees, we introduce the following syntax and
semantics.
Definition 7.2.1 — Cancelation Process Tree. We formally define cancelation
process trees recursively. We assume a finite alphabet A of activities with
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? /∈ A and a set
⊗

of operators to be given.
We define the following base cases for cancelation process trees:
a any a ∈ (A ∪ { τ }) is a (silent) activity leaf
?Ca Cancelation extension: denotes a cancelation trigger for ac-

tivity a ∈ A and the set of corresponding triggers C ⊆ A
Let Q1, . . . , Qn with n > 0 be cancelation process trees and let ⊗ ∈

⊗
be a cancelation process tree operator, then ⊗(Q1, . . . , Qn) is a cancelation
process tree. We consider the following cancelation process tree operators:
→ denotes a sequence or the sequential composition of all subtrees
× denotes an exclusive choice or XOR choice between one of the

subtrees
∧ denotes concurrency or the parallel composition of all subtrees
	 denotes the structured loop or redo loop with loop body Q1 and

alternative loop back paths Q2, . . . , Qn (with n ≥ 2)
?→ Cancelation extension: denotes the sequence cancelation with

cancelation body Q1 and mutually exclusive cancelation alter-
native paths Q2, . . . , Qn

?
	 Cancelation extension: denotes the loop cancelation with

cancelation body Q1 and mutually exclusive cancelation loop-
back paths Q2, . . . , Qn

The intuition behind the cancelation operators is as follows. We can put any
subtree in a cancelation region by assigning it as the first child of a sequence ?→
or loop

?
	 cancelation operator. The non-first subtrees of a cancelation operator

denote the possible cancelation paths after the cancelation region was triggered.
The start activities of these non-first subtrees represent the triggers for the
cancelation region. At any place in the first child of a cancelation operator,
a cancelation trigger leaf ?Ca can be used to link to specific cancelation region
triggers c ∈ C.

For example, in the tree Q2 = ×(→(b, c),→(d, e)), the set of start ac-
tivities is Start(Q2) = { b, d }. In the tree ?→(?

{ b }
a , Q2), we can trigger this

cancelation region at activity a since { b } ∩ Start(Q2) 6= ∅. However, in the
tree ?→(?

{ g }
a , Q2), we cannot trigger this cancelation region at activity a since

{ g } ∩ Start(Q2) = ∅, i.e., there are no matching, corresponding triggers.

As another example, consider Table 7.2. The leaf ?{ e,r }c can either execute c
as normal or trigger either the cancelation region starting with e or r. When a
cancelation region is triggered, activities d and g are skipped. If e was triggered,
we continue with activity h after e was performed. If r was triggered, we return
to the start activity b after r was performed. The leaf ?{ e }d can either execute d
as normal or trigger the cancelation region starting with e. Observe that, at
this leaf, we cannot trigger the cancelation region starting with r.
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Table 7.2: Example cancelation process tree on the left with its language
on the right. Shown are the traces in the language and the corresponding
triggers that are used to generate the trace. The grey arrows in the cancelation
process tree indicate the possible cancelation trigger “jumps”. At the bottom,
the corresponding Reset WF net (see Section 2.2.1, page 31) is shown.

→

?→

→

a ?
	

→

b ?
{ e,r }
c ?

{ e }
d

r

g

e

h
Triggers Trace

− 〈 a, b, c, d, g, h 〉
e 〈 a, b, c, e, h 〉
e 〈 a, b, c, d, e, h 〉
r 〈 a, b, c, r, b, c, d, g, h 〉
r, e 〈 a, b, c, r, b, c, e, h 〉
r, e 〈 a, b, c, r, b, c, d, e, h 〉
r, r 〈 a, b, c, r, b, c, r, b, c, d, g, h 〉
r, r, e 〈 a, b, c, r, b, c, r, b, c, e, h 〉
r, r, e 〈 a, b, c, r, b, c, r, b, c, d, e, h 〉

...

The semantics of cancelation process trees are formally defined by extend-
ing the language function L(Q) (see also Definition 2.2.12 on page 40).

Definition 7.2.2 — Cancelation Process Tree Semantics and Language. In this
definition, we will be using the notations from Definition 2.3.4 on page 47
and the semantics previously defined in Definition 2.2.12. Let A? = A ∪
{ ?Ca | a ∈ A ∧ C ⊆ A }. Below, we define a language of the type B((A?)∗),
i.e., a set of traces, where each event is an activity or error trigger.

First, we define the language of the cancelation trigger ?Ca leaf. At this
leaf, we can either execute activity a ∈ A as normal, or execute a and
trigger an cancelation region starting with c ∈ C. In case of the cancelation
trigger, we simply “mark” this leaf in the language and resolve this trigger
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marker at the first matching cancelation region ?→ or
?
	. We define:

L(?Ca ) =
{
〈 a 〉 ,

〈
?Ca
〉 }

for a ∈ A ∧ C ⊆ A

Next, consider the cancelation region operators ?→ and
?
	. For both

operators there are two common cases we can handle in the same way:
Case 1 No cancelation region is triggered
Case 2 A cancelation region is triggered, but not matched by this
operator. The trigger marker is propagated up the tree.

We define the language
?
⊗L to represent these common cases below. We will

use the function ΦL(L) = L′ to obtain the prefix of a language such that
any activities after a trigger marker ?Ca is removed.

?
⊗L(L1, . . . , Ln) = {σ1 | σ1 ∈ L1 ∧ ?Ca /∈ σ1 } Case 1

∪ {σ1 ·
〈
?C\Sa

〉
| σ1 ·

〈
?Ca
〉
∈ ΦL(L1) Case 2

∧ S = { head(t) | t ∈
⋃

2≤j≤n Lj }
∧ C \ S 6= ∅ }

The function ΦL(L) scans all traces, and returns the prefix upon encoun-
tering a trigger marker ?Ca . For example, ΦL({ 〈 a, b, c 〉 }) = { 〈 a, b, c 〉 } but
ΦL(

{ 〈
a, ?Cb , c

〉 }
=
{ 〈

a, ?Cb
〉 }

. We define:

ΦL(L) = {ΦL(σ) | σ ∈ L } for L ⊆ A∗

ΦL(〈 a 〉 · σ′) = 〈 a 〉 · ΦL(σ′) for a ∈ A
ΦL(

〈
?Ca
〉
· σ′) =

〈
?Ca
〉

for a ∈ A ∧ C ⊆ A
ΦL(ε) = ε

For the sequence cancelation operator ?→ we extend upon the generic
language

?
⊗L by allowing a matching cancelation path to be executed, after

which we continue with the rest of the process tree as normal.

?→L(L1, . . . , Ln) = {σ1 · 〈 a 〉 · σc | σ1 ·
〈
?Ca
〉
∈ ΦL(L1)

∧ head(σc) ∈ C ∧ σc ∈
⋃

2≤j≤n Lj }

∪
?
⊗L(L1, . . . , Ln)

For the loop cancelation operator
?
	 we extend upon the generic language

?
⊗L by allowing a matching cancelation loop-back path to be executed, after
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which we loop back and try executing Q1 again.

?
	L(L1, . . . , Ln) = {σ1 · 〈 a1 〉 · σ′1 · σ2 · 〈 a2 〉 · σ′2 · . . .

· σm−1 · 〈 am−1 〉 · σ′m−1 · σm

| σm ∈
?
⊗L(L1, . . . , Ln)

∧ ∀ i < m : σi ·
〈
?Ciai
〉
∈ ΦL(L1)

∧ head(σ′i) ∈ Ci ∧ σ′i ∈
⋃

2≤j≤n Lj }

∪
?
⊗L(L1, . . . , Ln)

� Example 7.1 To demonstrate the basics of the cancelation semantics, consider
the tree depicted in Table 7.2. The sequential subtree at the bottom yields the
following language:

L(→(b, ?{ e,r }c , ?
{ e }
d )) = { 〈 b, c, d 〉, 〈 b, c, ?{ e }d 〉,

〈 b, ?{ e,r }c , d 〉, 〈 b, ?{ e,r }c , ?
{ e }
d 〉 }

Consider the loop cancelation subtree. The right subtree starts with activ-
ity r. Hence, we can match the cancelation triggers on r, but have to propagate
the triggers on e up the tree. We will first take a look at the common cases.

ΦL(L(→(b, ?{ e,r }c , ?
{ e }
d ))) = { 〈 b, c, d 〉, 〈 b, c, ?{ e }d 〉, 〈 b, ?{ e,r }c 〉 }

L(
?
⊗(→(b, ?{ e,r }c , ?

{ e }
d ), r)) = { 〈 b, c, d 〉, 〈 b, c, ?{ e }d 〉, 〈 b, ?{ e }c 〉 }

Note how Case 2 removes the r in the last trace’s trigger set. Using this basis,
we can now deduce the complete loop cancelation language. Note that ?{ e,r }c

in the left subtree’s language is replaced by c followed by the loop-back over r.

L(
?
	(→(b, ?{ e,r }c , ?

{ e }
d ), r)) = { 〈 b, c, d 〉, 〈 b, c, ?{ e }d 〉, 〈 b, ?{ e }c 〉

〈 b, c, r, b, c, d 〉, 〈 b, c, r, b, c, ?{ e }d 〉,
〈 b, c, r, b, ?{ e }c 〉, 〈 b, c, r, b, c, r, b, c, d 〉, . . . }

Observe how the trigger sets with activity e are exposed in the above lan-
guage. The sequence cancelation further up the tree can now match on these
unresolved trigger markers, yielding the language shown in Table 7.2.

As another example, the tree from Figure 7.1 has the following language:

L(→(i,
?→(→(×(a, ?

{h }
b ), p),→(h, r)), o)) = { 〈 i, a, p, o 〉, 〈 i, b, p, o 〉,

〈 i, a, h, r, o 〉, 〈 i, b, h, r, o 〉 }

�
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� Example 7.2 Cancelation operators can be nested in various ways. When
a cancelation trigger occurs in a right subtree, it is propagated past the first
cancelation operator. This is because the semantics of the cancelation operator
only searches for trigger markers in the first or left subtree. For example:

L(
?→(

?→(?{ b }a ,→(?
{ b }
b , c)),→(b, d))) = { 〈 a 〉, 〈 a, b, c 〉, 〈 a, b, b, d 〉 }

Also cancelation operators can occur in the right subtree, modeling addi-
tional local cancelation regions. Consider for example:

L(
?→(

?→(?{ b }a , ?
{ c }
b ),

?→(?{ d }c , d))) = { 〈 a 〉, 〈 a, b 〉, 〈 a, b, c 〉, 〈 a, b, c, d 〉 }

�

Observe that cancelation process trees are not automatically sound. Below,
we define and discuss soundness for cancelation process trees.
Definition 7.2.3 — Sound Cancelation Process Tree. A cancelation process
tree Q is sound if and only if:

1. its language L(Q) does not contain unresolved trigger markers:

∀σ ∈ L(Q) : ¬(∃a ∈ A ∧ C ⊆ A : ?Ca ∈ σ)

2. every cancelation path in every cancelation subtree has a correspond-
ing cancelation trigger (i.e., Q does not contain dead subtrees):

∀
?
⊗(Q1, . . . Qn) ∈ enum(Q) ∧

?
⊗ ∈ { ?→,

?
	 } : for all cancel subtrees

∀ i ≥ 2 ∧ σi ∈ L(Qi) : for each cancel path

∃a ∈ A ∧ C ⊆ A ∧ σ1 ∈ L(Q1) ∧ ?Ca ∈ σ1 : exists a trigger marker
head(σi) ∈ C matching the cancel path

All of the example trees shown above are sound. The following trees, for
example, are not sound :

?
{ c }
a Issue: language contains an unresolved trigger marker

?→(?
{ c }
a , b) Issue: language contains an unresolved trigger marker and

the cancelation path b has no corresponding trigger
?→(a, b) Issue: the cancelation path b has no corresponding trigger

?→(?
{ c }
a ,×(b, c)) Issue: the cancelation path b has no corresponding trigger

Like with the original process tree operators, multiple cancelation process
trees can describe the same language. We extend the original reduction rules
from Table 2.1 on page 42 with the cancelation reduction rules in Table 7.3.
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Table 7.3: Reduction rules for cancelation process trees.

⊗(. . .1 ,×(. . .2), . . .3) = ⊗(. . .1 , . . .2 , . . .3) for ⊗ ∈
{

?→,
?
	
}

⊗(⊗(Q1, . . .2), . . .3) = ⊗(Q1, . . .3) for ⊗ ∈
{

?→,
?
	
}

if ¬∃c ∈ Start(. . .2) ∧ ?Ca ∈ enum(Q1) : c ∈ C 1

1 For the last rewrite rule, we have to make sure that the inner
cancelation region is not triggered (i.e., is a dead subtree) to preserve
semantics.

7.3 The Trigger Oracle

For the cancelation process tree presented in Section 7.2, we relied on explic-
itly modeling cancelation triggers and trigger activities. For the cancelation
discovery algorithm we present in Section 7.4, we also assume that the trigger
activities are explicit in the input. However, this is usually not the case for an
event log.

To capture the knowledge of cancelation trigger activities, we make trigger
activities explicit using the so-called trigger oracle as defined below.
Definition 7.3.1 — Trigger Oracle. Let A be a set of activities. A trigger
oracle is a function isTrigger : A 7→ { true, false } yielding true if and only
if an activity a ∈ A is a trigger activity.

In practice, there are many sources that can be used to instantiate a trigger
oracle. In this section, we will discuss a few common heuristics.

7.3.1 Trigger Oracles in Software

In software, there are various ways to identify where exceptions, errors, and
other type of cancelation or error behavior occur. Below, we discuss some of
the possible heuristics that can be used in a software setting.

Exception and Error Data

Often, in software, extra data can be recorded whenever an exception, error,
or other type of cancelation behavior occurs. For example, consider the event
log in Table 7.1. In this event log, we can clearly point out in case 2 where
the exception was thrown, and where it was caught, by only looking at the
lifecycle information and activity names.

In other cases, extra exception and error data attributes may be logged. For
example, for the program in Listing 7.2, we could track the value of the result

variable. In such a case, the trigger oracle would track what happens once the
variable is updated to result = -1. Recall also the exception data software event
data from page 107.
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Domain Knowledge and Naming Schemes
When no extra data is recorded, one can use external domain knowledge. For
example, an interface specification could identify certain activities as error
events, timed triggers, asynchronous events, etc. In such cases, one could use
a dictionary-based trigger oracle instantiation, listing the activities that are
known trigger activities.

In other cases, a specific naming scheme or domain-based patterns could
be used to parse activity names and identify trigger activities. For example, in
a particular domain, project, or company, one could adopt the convention to
label error callbacks using the following naming pattern: callback_<function>_nok

(nok stands for not ok). Any activity name that follows this pattern can hence
be identified as a trigger activity.

7.3.2 Non-software-specific Trigger Oracles
In non-software-specific settings, it is often also possible to identify the trigger
activities. Below, we discuss some possible heuristics that can be generally
applicable, be it software event logs, business event logs, or any other event
logs.

Naming Semantics
A simple heuristic that can often be applied is to have a domain expert or
semantic-based oracle identify trigger activities. In most cases, activities or
specific keywords in activity labels can be recognized as trigger activities. For
example, a negative activity name like “Canceled” or “Declined” is often a good
candidate for a trigger activity.

Activity Footprints
Another heuristic is to consider the footprints of specific activities in the event
log. For example, if an activity is independent of the state of a (sub)process and
can happen at rather arbitrary points, it could hint at cancelation behavior.
Techniques based on, for example, the entropy of activities [178], can be used
to identify (candidate) trigger activities.

Another approach is to use the fallback extension point from the Induc-
tive Miner, see Section 4.2.5. Observe that process trees only capture block-
structured behavior, and cancelation behavior often has a non-block-structured
footprint in the directly-follows graph. Therefore, as a fallback case, one could
identify the offending activity and mark it as a trigger activity.

Optimization Strategy
Alternatively, we can implement an optimization strategy based on the princi-
ple that process trees only capture block-structured behavior, and cancelation
behavior breaks this block-structuredness. The intuition is that, if cancela-
tion behavior is present, modeling this behavior with cancelation operators
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will yield a more fitting and possibly more precise process tree. Such an opti-
mization strategy would feed several candidate trigger oracle functions to the
discovery algorithm, compute the fitness and precision of the resulting model,
and use the best scoring candidate.

7.4 Cancelation Discovery

In this section, we introduce the cancelation discovery algorithm. In this
algorithm, we extend the Inductive miner (IM) framework (see Chapter 4)
with support for the cancelation operators introduced in Definition 7.2.1. Sec-
tion 7.4.1 gives an overview of the algorithm, Section 7.4.2 details our can-
celation extensions, Section 7.4.4 shows additional discovery examples, and
Section 7.4.5 covers the discovery guarantees maintained for our extension.

7.4.1 Algorithm Overview

For the cancelation discovery algorithm, we will mostly follow the traditional
IM divide and conquer approach (see also Section 4.2 on page 74). Given
a log L and trigger oracle isTrigger , we search for possible splits of L into
sublogs L1, . . . , Ln, such that these sublogs combined with a process tree op-
erator ⊗ ∈ {→,×,∧,	, ?→,

?
	 } can (at least) reproduce L again. The frame-

work then recurses on the corresponding sublogs, repeats the above process,
and returns the discovered submodels as normal. In the cancelation discovery
algorithm, we assume a trigger oracle isTrigger as additional input, we in-
clude the cancelation operator ?→,

?
	 in the log split search, and we will adopt

slightly different base cases. Note that we will assume atomic event logs for
the remainder of this section.

In the cancelation discovery, we will enrich the directly-follows graph with
information from the trigger oracle. Using this enriched graph, we can detect
the new cancelation operators and adapt the cut detection of existing operators
were needed to support the prefix-based semantics introduced by ΦL(L) in
Definition 7.2.2. We will reuse the existing empty log and empty traces base
case (i.e., Base Case 4.1). However, the single activity base case (i.e., Base
Case 4.2) is modified to consider the cancelation trigger leaf.

Below, we will discuss these adaptations in detail. We will be using the
example run in Table 7.4 as clarification.

7.4.2 Framework Extensions

Formally, in the cancelation discovery algorithm, we use most of the original cut
detections and log splits, and reuse all of the fallbacks as defined in Section 4.2
on page 74. In this addition, we will:
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• adapt the directly-follows graph definition slightly, such that we can in-
tegrate the trigger oracle knowledge,
• use alternative base cases as detailed below, and
• introduce new cut detections and log splits for the cancelation cases.

In the following formulas and examples, we will write CDiscover(L, isTrigger)
to refer to the cancelation discovery (CD) algorithm, i.e., the cancelation in-
stantiation of the IM framework (see Algorithm 7.1).

Algorithm 7.1: Cancelation Discovery (CD) Algorithm
Input: An event log L.
Output: A cancelation process tree Q such that L fits Q.
Description: The function CDiscover() recursively tries to discover a hierarchical

process tree capturing (at least) the behavior in L. We use ⊥ to model
when no valid base case or valid cut was found for the given log.

CDiscover(L)
1 Qbase = BaseCase(L) // Base Cases 4.1, 7.1, and 7.2
2 if Qbase 6= ⊥ then
3 return Qbase // Returns either τ , a, or ?triggers(a)

a

4 if ε /∈ L then
5 // Cut Detections 7.1 and 7.2 plus adapted versions of non-cancelation Cut

Detections 4.1, 4.2, 4.3, and 4.4
6 (⊗, (Σ1, . . . ,Σn)) = FindCut(L)
7 if (⊗, (Σ1, . . . ,Σn)) 6= ⊥ then
8 (L1, . . . , Ln) = SplitLog(L, (⊗, (Σ1, . . . ,Σn)))
9 return ⊗(CDiscover(L1), . . . , CDiscover(Ln))

10 return Fallback(L)

Directly-Follows Graph for Cancelation Discovery

In cancelation discovery, the directly-follows graph is still constructed as nor-
mal. However, using the knowledge from the trigger oracle isTrigger , we
slightly adapt the associated semantics as defined below.

Definition 7.4.1 — Trigger Edges and Cancelation Triggers. Let G(L) be the
directly-follows graph over L and let isTrigger : A 7→ { true, false } be a
trigger oracle.

An edge (a, b) ∈ G is a trigger edge, notation isTrigger(a, b), if and only
if node b is a trigger activity isTrigger(b).

A path a b ∈ G is a trigger path notation isTrigger(a, b), if and only
if at least one trigger edge is part of the path.

The set of cancelation triggers at a node a, notation triggers(a) =
C, is defined as the set of nodes that have an trigger edge from a, i.e.,
triggers(a) = { b | isTrigger(a, b) }.

In any subgraph G′ ⊆ G, a node a can only be an end node of G′ if and
only if it would be an end node without trigger edges, i.e., a ∈ End(G′)⇔
∃(a, b) ∈ G : ¬isTrigger(a, b).
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Table 7.4: Example Cancelation Discovery on the log L = [ 〈 i, a, p, o 〉 ,
〈 i, b, p, o 〉 , 〈 i, b, h, r, o 〉 ] with trigger oracle isTrigger(h) = true and for any
x 6= h we have isTrigger(x) = false. The rows illustrate how the discov-
ery progresses step by step. The highlights indicate the parts of the log and
directly-follows graph used, and relate them to the corresponding partial pro-
cess tree model that is discovered. The dashed arrow in directly-follows graph
indicates a trigger edge; the dashed lines indicate the cuts. The corresponding
Reset net is shown at the bottom. See also Figure 7.1.

Event Log Sublog View Directly-Follows Graph Disc. Model

1

i a p o

i b p o

i b h r o

[ 〈 i, a, p, o 〉 ,
〈 i, b, p, o 〉 ,
〈 i, b, h, r, o 〉 ]

B i
a

b

p o

h r

� →

i ? o

2

i a p o

i b p o

i b h r o

[ 〈 a, p 〉 ,
〈 b, p 〉 ,
〈 b, h, r 〉 ]

B i
a

b

p o

h r

�
→

i
?→

? ?

o

3

i a p o

i b p o

i b h r o

[ 〈h, r 〉 ]

B i
a

b

p o

h r

�

→

i
?→

? →

h r

o

4
&
5

i a p o

i b p o

i b h r o

[ 〈 a, p 〉 ,
〈 b, p 〉 ,
〈 b 〉 ]

B i
a

b

p o

h r

�

→

i
?→

→

×

a ?
{h }
b

p

→

h r

o
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For example, consider the directly-follows graph in Table 7.4. Since we
have isTrigger(h), the edge (b, h) is a trigger edge isTrigger(b, h), as indicated
by the dashed arrow. In the subgraph { a, b, p } in step 4 and 5, node p is
an end node, but node b is not (there is no non-trigger exit edge for node b).
Node b has a set of cancelation triggers (triggers(b) = {h }), but node p has
no associated cancelation triggers, i.e., the empty set (triggers(p) = ∅).

Base Cases

The cancelation discovery algorithm uses Base Case 4.1 as defined on page 75
and Base Cases 7.1 and 7.2 as defined below.

� Base Case 7.1 — Single Activity – No Cancelation Trigger.
Condition: L 6= [ ] ∧ (∃a ∈ A : triggers(a) = ∅ ∧ ∀σ ∈ L : σ = 〈 a 〉)
Return: a
Description: The Single Activity – No Cancelation Trigger base case applies
when the traces in the log contains only events with a single activity label a
and node a has no cancelation triggers in the original directly-follows graph.
This base case returns activity a as a leaf node.
Example: Consider step 1 in Table 7.4. After the sequence cut, we have a
sublog consisting of one event labelled i with no associated cancelation triggers.
Hence, this base case holds and we return i as a leaf node. Observe that
this base case does not apply in step 5 for the sublog with b since we have
triggers(b) = {h } (see the dashed arrow).

� Base Case 7.2 — Single Activity – Cancelation Trigger.
Condition: L 6= [ ] ∧ (∃a ∈ A : triggers(a) 6= ∅ ∧ ∀σ ∈ L : σ = 〈 a 〉)
Return: ?triggers(a)

a

Description: The Single Activity – Cancelation Trigger base case applies when
the traces in the log contains only events with a single activity label a. and node
a has no cancelation triggers in the original directly-follows graph. This base
case returns the cancelation trigger ?triggers(a)

a as a leaf node, allowing to trigger
any of the cancelation regions associated with a trigger activity b ∈ triggers(a).
Example: Consider step 5 in Table 7.4. After the sequence and choice cut, we
the sublog [ 〈 b 〉2 ], and from the directly-follows graph we conclude triggers(b) =
{h } (see the dashed arrow). Hence, this base case holds and we return the
cancelation trigger ?{h }b as a leaf node.

Finding Cuts

When no base case applies, the cancelation discovery algorithm searches for
possible log splits and corresponding process tree operators. We include sup-
port for our cancelation operators by adding new cut detections and slightly
adapting the existing cut definitions from Section 4.2.3 on page 76. For each
process tree operator, a different cut or footprint is characterized based on
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Figure 7.2: Cuts of the directly-follows graph for the cancelation discovery
algorithm. The grey areas indicate partitions; the arrows indicate required and
prohibited edges characterizing the cut. Dashed arrows indicate trigger edges,
solid arrows indicate non-trigger edges.

the edges between nodes in G(L). Figure 7.2 informally depicts cuts of the
directly-follows graph as used in the cancelation discovery algorithm. We for-
mally define these directly-follows graph cuts below. Recall that graph cuts,
partitions (Σi) and path in a graph ( ) were explained in Section 2.1.2 on
page 23.

In our cancelation discovery, any non-cancelation cut (i.e., for the opera-
tors →, ∧, ×, and 	) cannot have a trigger edge between two partitions. In
contrast, a cancelation cut (i.e., for the operators ?→ and

?
	) is characterized by

having trigger edges from its first partition (i.e., its cancelation region body)
to all non-first partitions (i.e., the cancelation paths).

Cut Detection Adaptation for Non-Cancelation Cuts. We assume
for all the non-cancelation cuts defined in Section 4.2.3 on page 76 that all the
rules are defined over non-trigger edges. In addition, we assume that there are
no trigger edges between any of partition Σi and Σj with i 6= j:

∀ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : ai  aj ∈ G⇒ ¬isTrigger(ai, aj)

� Cut Detection 7.1 — Sequence Cancelation ( ?→).
Description: Directly follows graph G can be partitioned with a partially or-
dered cut such that the first partition represents the cancelation body and the
non-first partitions represent the cancelation alternative paths.
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Definition: A sequence cancel ( ?→) cut is a partially ordered cut Σ1, . . . ,Σn of
a directly follows graph G such that:

1. All start activities are in the body Σ1:
Start(G) ⊆ Σ1

2. Every partition Σi has some end activities:
∀ i ≥ 1 : End(G) ∩ Σi 6= ∅

3. All edges from Σ1 to Σi, with i ≥ 2, are trigger edges:
∀ i ≥ 2 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (a1, ai) ∈ G⇒ isTrigger(a1, ai)

4. There are no edges from Σi to Σj , where i ≥ 2 ∧ j ≥ 1 ∧ i 6= j:
∀ i ≥ 2 ∧ j ≥ 1 ∧ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

Example: In step 2 in Table 7.4, a sequence cancel cut is detected in the
directly-follows graph, yielding two partitions: body Σ1 = { a, b, p } and can-
celation alternative Σ2 = {h, r }. Partition Σ1 is handled in recursive steps 4
and 5, partition Σ2 is handled in recursive step 3.

� Cut Detection 7.2 — Loop Cancelation (
?
	).

Description: Directly follows graph G can be partitioned with a partially or-
dered cut such that the first partition represents the cancelation body and the
non-first partitions represent the cancelation loop-back paths.
Definition: A loop cancel (

?
	) cut is a partially ordered cut Σ1, . . . ,Σn of a

directly follows graph G such that:
1. All start and end activities are in the body Σ1:

Start(G) ∪ End(G) ⊆ Σ1

2. All edges from Σ1 to Σi, with i ≥ 2, are trigger edges:
∀ i ≥ 2 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (a1, ai) ∈ G⇒ isTrigger(a1, ai)

3. There are only edges from Σi, with i ≥ 2, to start nodes in Σ1:
∀ i ≥ 2 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (ai, a1) ∈ G⇒ a1 ∈ Start(G)

4. There are no edges from Σi to Σj , where i ≥ 2 ∧ j ≥ 2 ∧ i 6= j:
∀ i ≥ 2 ∧ j ≥ 2 ∧ i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

5. If Σi with i ≥ 2 has an edge to Σ1, it connects to all start activities:
∀ i ≥ 2 ∧ ai ∈ Σi ∧ a1 ∈ Start(G) : (ai, a1) ∈ G

⇔ (∃a′1 ∈ Σ1 : (ai, a
′
1) ∈ G)

Example: Consider the log L = [ 〈 b, c, d 〉 , 〈 b, c, r, b, c, d 〉 , 〈 b, c, d, r, b, c, d 〉 ]
and trigger oracle isTrigger = { r 7→ true }. Figure 7.3 shows the loop cancel
cut in the corresponding directly-follows graph, yielding two partitions: body
Σ1 = { b, c, d } and cancelation loop-back Σ2 = { r }. Partition Σ1 can be
further partitioned by a normal sequence cut, partition Σ2 can be handled by
Base Case 7.1.
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B b c d

r

�

Figure 7.3: Example directly-follows graph with loop cancel cut for
the log L = [ 〈 b, c, d 〉 , 〈 b, c, r, b, c, d 〉 , 〈 b, c, d, r, b, c, d 〉 ] and trigger oracle
isTrigger = { r 7→ true }, derived from Example 7.1. The dashed arrows indi-
cate trigger edges; the dashed lines indicate the cuts. Note that the cancelation
trigger r can be triggered from both activity c and d.

7.4.3 Splitting Logs
Once a valid cut Σ1, . . . ,Σn has been found for a given process tree operator ⊗,
we split the log L according to the cut into sublogs L1, . . . , Ln such that these
logs combined with the operator⊗ can (at least) reproduce L again. We include
support for our cancelation operators by adding new log splits and slightly
adapting the existing log splits from Section 4.2.4 on page 79. We formally
define these log splits below. Recall that activity log-projection (A(σ)) was
explained in Definition 2.3.6 on page 48.

Log Split Adaptation for Non-Cancelation Cuts. We assume for all
the non-cancelation cuts defined in Section 4.2.4 on page 79 that no empty
traces are added as a result from trigger edges, i.e., we take into account the
prefix-based semantics introduced by ΦL(L). This can be achieved by marking
events upon log splitting if they are directly followed by trigger activities.
Whenever a trace only contains events marked in this way, and after a log-
split projection contains no events, then we can discard the resulting empty
trace.

For example, consider the example from Figure 7.3. Suppose we used a loop
cancelation cut, yielding the body partition Σ1 = { b, c, d } and sublog L1 =
[ 〈 b, c, d 〉4 , 〈 b, c 〉 ] where the last c is marked because it directly precedes r.
(see Log Split 7.2 below). Applying a sequence cut on sublog L1 would yield
the partitions Σ1,1 = { b }, Σ1,2 = { c }, and Σ1,3 = { d }. For the partition
Σ1,3, the sublog would not include the empty trace as a result of splitting 〈 b, c 〉
because in this trace the event labeled c is marked.

� Log Split 7.1 — Sequence Cancelation ( ?→).
Description: Each trace in the log is split into subtraces of the cancelation
body and the cancelation alternative partitions.
Definition: Given a sequence cancel cut Σ1, . . . ,Σn and event log L:
• Sublog L1 consists of all maximal prefix subtraces with activities in Σ1:

L1 = {σ1 | σ1 · σ2 ∈ L ∧A(σ1) ⊆ Σ1

∧ (σ2 = ε ∨ (σ2 = 〈 c, . . . 〉 ∧ c /∈ Σ1)) }
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• Sublog Li≥2 consists of all maximal postfix subtraces with activities in Σi:

Li>1 = {σ2 | σ1 · σ2 ∈ L ∧A(σ2) ⊆ Σi

∧ (σ1 = ε ∨ (σ1 = 〈 . . . , a1 〉 ∧ a1 ∈ Σ1)) }
Example: In step 2 in Table 7.4, we have the input log L = [ 〈 a, p 〉 , 〈 b, p 〉 ,
〈 b, h, r 〉 ] and sequence cancel cut Σ1 = { a, b, p } and Σ2 = {h, r }. As a result,
L is split into the sublogs L1 = [ 〈 a, p 〉 , 〈 b, p 〉 , 〈 b 〉 ] and L2 = [ 〈h, r 〉 ].

� Log Split 7.2 — Loop Cancelation (
?
	).

Description: Each trace in the log is split into subtraces of the cancelation
body and the cancelation loop-back partitions.
Definition: Given a loop cancel cut Σ1, . . . ,Σn and event log L:
• Sublog Li consists of all maximal subtraces with activities in Σi:

Li = {σ2 | σ1 · σ2 · σ3 ∈ L ∧A(σ2) ⊆ Σi

∧ (σ1 = ε ∨ (σ1 = 〈 . . . , a1 〉 ∧ a1 /∈ Σi))

∧ (σ3 = ε ∨ (σ3 = 〈 a3, . . . 〉 ∧ a3 /∈ Σi)) }
Example: In the example from Figure 7.3, we have the input log L = [ 〈 b, c, d 〉 ,
〈 b, c, r, b, c, d 〉 , 〈 b, c, d, r, b, c, d 〉 ] and loop cancel cut Σ1 = { b, c, d } and Σ2 =
{ r }. As a result, L is split into the sublogs L1 = [ 〈 b, c, d 〉4 , 〈 b, c 〉 ] and
L2 = [ 〈 r 〉2 ].

7.4.4 Discovery Examples
Table 7.4 shows a step-by-step example run of the cancelation discovery algo-
rithm. Consider the sequence cancel cut detected in step 2 and the cancelation
trigger discovered in step 5. Note the subtlety of the non-cancelation log splits
applying the prefix semantics on the subtrace 〈 b 〉 in step 4 and 5. If we would
use the original Inductive Miner without the cancelation operators, Fallback 4.6
would be used in step 2, yielding IMdiscover(L) =→(i,	(×(a, b, p, h, r), τ), o).

Below are some more example logs L and trigger oracles isTrigger together
with the discovered models. In addition, the IMdiscover result is given to
compare with the original Inductive Miner without the cancelation operators.

CDiscover(

L︷ ︸︸ ︷
[ 〈 a, b, c, d, f 〉 , 〈 a, b, c, d, e, b, r1, f 〉 ],

isTrigger︷ ︸︸ ︷
{ r1 7→ true })

=→(a, CDiscover([ 〈 b, c, d 〉 , 〈 b, c, d, e, b, r1 〉 ], { r1 7→ true }), f)

=→(a,
?→(CDiscover([ 〈 b, c, d 〉 , 〈 b, c, d, e, b 〉 ], { r1 7→ true }), r1), f)

=→(a,
?→(	(CDiscover([ 〈 b, c, d 〉 , 〈 b, c, d 〉 , 〈 b 〉 ], { r1 7→ true }), e), r1), f)

=→(a,
?→(	(→(?

{ r1 }
b , c, d), e), r1), f)
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IMdiscover([ 〈 a, b, c, d, f 〉 , 〈 a, b, c, d, e, b, r1, f 〉 ])
=→(a,∧(	(b, e), c, d),×(r1, τ), f)

CDiscover([ 〈 a, b, c, d, e, f 〉 , 〈 a, b, c, r1, g, b, c, d, e, f 〉 ,
〈 a, b, c, d, e, r1, g, b, c, d, e, f 〉 ], { r1 7→ true }︸ ︷︷ ︸

isTrigger

)

=→(a, CDiscover([ 〈 b, c, d, e 〉 , 〈 b, c, r1, g, b, c, d, e 〉 ,
〈 b, c, d, e, r1, g, b, c, d, e 〉 ], { r1 7→ true }), f)

=→(
?
	(CDiscover([ 〈 b, c, d, e 〉4 , 〈 b, c 〉 ], { r1 7→ true }),

CDiscover([ 〈 r1, g 〉2 ], { r1 7→ true })), f)

=→(
?
	(→(b, ?{ r1 }c , d, ?{ r1 }e ),→(r1, g)), f)

IMdiscover([ 〈 a, b, c, d, e, f 〉 , 〈 a, b, c, r1, g, b, c, d, e, f 〉 ,
〈 a, b, c, d, r1, g, b, c, d, e, f 〉 ])

=→(a,	(IMdiscover([ 〈 b, c, d, e 〉 , 〈 b, c, r1, g 〉 , 〈 b, c, d, e 〉 ,
〈 b, c, d, e, r1, g 〉 , 〈 b, c, d, e 〉 ]), τ), f)

=→(a,	(→(b, c,×(→(d, e), τ),×(→(r1, g), τ)), τ), f)

Observe how in the above examples skips (i.e., ×(. . . , τ)) are discovered
in the IMdiscover models to approximate the prefix-based patterns associated
with a cancelation body, as captured by ΦL(L) in Definition 7.2.2.

7.4.5 Guarantees
The cancelation discovery (CD) algorithm maintains the IM discovery guaran-
tees from Section 4.3 on page 84 and returns a sound cancelation process tree
(Definition 7.2.3). In this section, we will discuss these discovery guarantees
and properties. We refer the reader to Section A.4 on page 375 for the proofs.

Soundness and Termination
We start with two general properties of the CD algorithm: soundness is guar-
anteed (Theorem 7.4.1), termination is guaranteed (Theorem 7.4.2).

Theorem 7.4.1 — CD guarantees soundness. All models Q returned by the
CD algorithm are guaranteed to be sound.

Proof. See page 376. �
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Theorem 7.4.2 — CD guarantees termination. The CD algorithm is guaran-
teed to always terminate.

Proof. See page 376. �

Perfect Fitness
The perfect fitness guarantee in Theorem 7.4.3 states that all the log behavior
is in the model discovered by the CD algorithm.

Theorem 7.4.3 — CD guarantees fitness. The CD algorithm returns a model
that fits the log. That is, given an event log L, the CD algorithm returns a
model Q such that L ⊆ L(Q).

Proof. See page 376. �

Language Rediscoverability
The language rediscoverability property tells whether and under which condi-
tions a discovery algorithm can discover a model that is language-equivalent
to the original process. That is, given a ‘system model’ Q and an event log L
that is complete with respect to Q (for some notion of completeness), then we
rediscover a model Q′ such that L(Q′) = L(Q).

For the CD algorithm, we will prove the language rediscoverability prop-
erty for directly-follows complete (Definition 4.3.1) and trigger complete (see
Definition 7.4.2 below) logs and for all cancelation process trees that are:
• Sound cancelation process trees (Definition 7.2.3), and
• In the class of rediscoverable process trees (Definition 4.3.2).

Definition 7.4.2 — Trigger Completeness. A trigger oracle isTrigger is trig-
ger complete to a model Q, denoted as isTrigger �? Q, if and only if
isTrigger(a)⇔ a ∈ triggerSet(Q), where triggerSet(Q) is defined as:

triggerSet(Q) =



{ head(σ) | σ ∈
⋃
i≥2 L(Qi) } if Q =

?
⊗(Q1, . . . , Qn)

∪
⋃
i triggerSet(Qi) ∧

?
⊗ ∈ { ?→,

?
	 }⋃

i triggerSet(Qi) if Q = ⊗(Q1, . . . , Qn)

∧ ⊗ /∈ { ?→,
?
	 }

∅ otherwise

To prove language-rediscoverability, we will use the proof framework used
by the base Theorem 4.3.7 as listed on page 85:

1. Show that the base cases can be rediscovered.
2. Show that any root process tree operator can be rediscovered, proving

that the cut criteria are correct.
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3. Show that for all process tree operators, the graph cut yields the correct
activity division and the log is correctly subdivided.

4. Finally, Theorem 7.4.7 uses the above lemmas and base Theorem 4.3.7
to prove language rediscoverability using induction on the model size.

Reusing base Theorem 4.3.7, for the CD algorithm, we have to show that
the cancelation trigger can be rediscovered (Lemma 7.4.4), the root tree oper-
ator can still be rediscovered (Lemma 7.4.5), and that the log is still correctly
subdivided (Lemma 7.4.6).

Lemma 7.4.4 — CD rediscovers the cancelation trigger leaf. Let Q be a reduced
model that adheres to the above model restrictions with a leaf Q′ ∈ A∪{ τ }∪{
?Ca
∣∣ a ∈ A, C ⊆ A} , let L be a log such that L�df Q, and let isTrigger be a

trigger oracle such that isTrigger �?Q. Then CDiscover(L) returns a tree with
a leaf Q′.

Proof. See page 377. �

Lemma 7.4.5 — CD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn) be
a reduced model that adheres to the above model restrictions, let L be a log
such that L�dfQ, and let isTrigger be a trigger oracle such that isTrigger �?Q.
Then CDiscover(L) returns a tree with root ⊗.

Proof. See page 378. �

Lemma 7.4.6 — CD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions, let L be a log such that
L �df Q, and let isTrigger be a trigger oracle such that isTrigger �? Q. Then
for the resulting sublogs Li produced by CD we have Li �df Qi ∧ Li ⊆ L(Qi).

Proof. See page 378. �

Using the above lemmas and base Theorem 4.3.7, we can prove language
rediscoverability using induction on the model size.

Theorem 7.4.7 — CD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process tree Q, then CDiscover language-
rediscovers Q, i.e., L(Q) = L(CDiscover(L, isTrigger)) for any log L such
that L�dfQ∧L ⊆ L(Q) and any trigger oracle isTrigger such that isTrigger�?
Q.

Proof. See page 380. �
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Polynomial Runtime Complexity
The basic IM framework is implemented as a polynomial algorithm and scales
well with large event logs. The CD algorithm maintains a polynomial runtime
complexity.

Theorem 7.4.8 — CD has polynomial runtime complexity. The runtime com-
plexity of the CD algorithm is bounded by O(|A(L)|5 + |A(L)| · |L|).

Proof. See page 380. �

7.5 Compatibility with Other Extensions

The cancelation discovery, as presented in the above sections, allows for the
discovery of the new cancelation process tree operators. In this section, we will
revisit the existing inductive miner extensions listed in Section 4.4 on page 86
as well as the hierarchical extensions from Chapter 6 and discuss how they can
be used in combination with the cancelation discovery extensions.

The Inductive Miner – infrequent (IMf) extension handles deviating and
infrequent behavior by filtering the directly-follows graph according to some
user-chosen frequency threshold when no cut could be found. In addition, the
single activity base case and empty traces fallback are slightly altered to take
into account infrequent behavior. In our cancelation setting, we can easily
integrate with this extension by altering the base cases in a similar way to
take into account infrequent behavior. Since our cancelation cut detections
are just based on graph patterns as usual, we automatically benefit from the
frequency-based filtering on the directly-follows graph.

The Inductive Miner – incompleteness (IMc) extension handles incomplete
behavior by using probabilistic activity relations in the cut detection. For
each cut pattern, an accumulated probability is defined. During cut detection,
probabilities are estimated and the cut with the highest probability is selected.
For our cancelation operators, we can model a accumulated probability using
the definition for the loop accumulated probability as a basis.

By using the rich event logs from Definition 2.3.3, we can integrate with
the lifecycle aware extension. Special care should be taken in preprocessing
logs where the occurrence of a cancelation omits complete events, see also the
example log in Table 7.1.

Integration with the directly-follows abstraction variant for very large event
logs is possible but tricky. This variant recurses on sub directly-follows graphs
instead of sublogs. In our cancelation setting, we can integrate with this variant
by annotating directly-follows nodes with triggers from the trigger oracle.

The hierarchical extensions introduced in Chapter 6 only overlap on the
cancelation trigger base case. When mixing cancelation and naïve hierarchical
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or recursion aware discovery, one should allow cancelation triggers annota-
tions on the named subtree and recursive reference operators, i.e., the existing
base cases should be combined to discover named subtrees with cancelation
triggers ?COf and recursive references with cancelation triggers ?CMf . Table 7.5
presents the combined condition base cases for the hierarchical cancelation
discovery algorithm. See also Future Work 7.3 in Section 7.7.

Table 7.5: Combined conditions base cases for hierarchical cancelation discov-
ery. Each cell is a base case in the hierarchical cancelation discovery algorithm
and shows the returned model. The rows distinguish between the cancelation
conditions, the columns distinguish between the recusion aware conditions.

L 6= ∅ ∧ ∃f ∈ A : ∀σ ∈ L ∧ e ∈ σ : . . .
head(e) = f ∧ (∃σ ∈ L ∧ e ∈ σ : |e| ≥ 2)

σ = 〈 f 〉 f /∈ C f ∈ C

triggers(f) = ∅ f Of (?C′) Mf

triggers(f) 6= ∅ ?
triggers(f)
f ?

triggers(f)
Of (?C′) ?

triggers(f)
Mf

7.6 Evaluation
In this section, we compare the cancelation discovery (CD) algorithm against
related, implemented techniques. The CD algorithm is implemented in the
Statechart plugin for the ProM framework, see also Chapter 10. Section 7.6.1
investigates the discovery results on a controlled example. Section 7.6.2 pro-
vides a comparison on running time and model quality. For large, real-life case
studies and tool UI using the cancelation techniques, see Chapter 12.

7.6.1 Evaluation using Synthetic Logs
In this evaluation, we focus on model understandability. We use a small syn-
thetic example software log, mine a model with various discovery algorithms,
and compare the resulting models on structure and visual appearance. The
goal of this evaluation is to investigate how the CD algorithm compares to
existing algorithms in discovering accurate and understandable models when
cancelation behavior is present.

Methodology
For this evaluation, we revisit the program in Listing 7.1. We executed the
program three times: once for the successful execution of processA(), once for
the successful execution of processB(), and once while throwing an exception
during processA(). During execution, we traced and logged the start and end
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of each called method as well as the start of the catch block, resulting in an
event log similar to the one shown in Table 7.1. This event log has 3 traces,
31 events, 15 activities (including lifecycles), and 2 hierarchical levels. We
used the start of the catch block and associated exception data to instantiate
our trigger oracle. As a result, Main.main()+handle is marked as the only trigger
activity in our trigger oracle.

We use the program in Listing 7.1 and model in Figure 7.1 as a baseline
comparison. For the various discovered models, we use the default visualization
provided by the various tool implementations, and annotate the activities with
their one-letter acronyms, see Table 7.6 for a summary. For the Inductive
Miner and our cancelation discovery technique, we used the infrequent (IMf)
extensions and indicate the “path” threshold. For “path” threshold, 1.0 means
all behavior, 0.8 means 80% of the behavior (i.e., an 80/20 model, describing
80% of the behavior using a simpler 20% model).

For this evaluation, we provide the fitness and precision scores calculated
on the Petri net translation, using the alignments-based technique from [21].
Recall from Section 1.1.2 on page 7: Fitness expresses the part of behavior in
the event log that is also captured in the model. Precision expresses the part
of the behavior in the model that is also present in the event log. A fitness of
1.0 indicates all behavior in the event log can be reproduced by the model; a
lower fitness (minimum 0.0) means the modeled behavior less represents the
behavior in the event log. A precision of 1.0 indicates all behavior in the model
has been observed in the event log; a lower precision (minimum 0.0) means the
modeled behavior is less supported by observations in the event log.

Table 7.6: One-letter acronyms for the activities used in the cancelation
synthetic evaluation. These acronyms correspond with the baseline model in
Figure 7.1 for the program in Listing 7.1.

M Main.main() a Main.processA()

i Main.input() b Main.processB()

o Main.output() p Main.prepareResult()

h Main.main()+handle r Main.recover()

Lifecycle suffixes:
+s start
+c complete

Results
Figure 7.4 to 7.16 show the discovered models. Below, we will discuss each
model in turn.

Alpha miner [18] – The Alpha miner result in Figure 7.4 shows a very
disconnected model. Since no alpha-relations were inferred between most activ-
ities, most transitions are not connected to places and can fire at any time. This
model gives us no information about how the different activities are causally
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related. The very low fitness score reflects this lack of information. Hence, this
model does not aid in understanding the behavior.

Fuzzy miner [75] – The Fuzzy miner result in Figure 7.5 shows a reason-
ably structured model. This model correctly shows the normal and cancelation
branches, but only models it as a choice. In this result, activity a has to com-
plete normally before the cancelation signaled by h can be triggers. In reality,
activity a was aborted due to the thrown exception. Furthermore, this model
does not generalize, i.e., it does not allow activity b to throw an exception
and cancel with activity h. Using the significance cutoff in the Fuzzy miner to
cluster behavior reveals the same structures in this model.

Heuristics miner [192] – The Heuristics miner result in Figure 7.6 again
shows a reasonably structured model. This model has the same overall struc-
ture and issues as the Fuzzy miner model discussed above. However, this model
does recognize the unusual way in which activity a is completed/aborted in
the cancelation case. Sadly, the split-join semantics around the a, b, and o
activities are unclear, leading to soundness issues.

ILP miner [204] – The ILP miner result in Figure 7.7 again shows a
reasonably structured model. Unfortunately, the ILP prefix filtering removed
the branch with activity b. In addition, this model has the same issue with the
completion of activity a as the Fuzzy miner model discussed above.

Genetic miner [10] – The Genetic miner result in Figure 7.8 shows a
confusing model with disconnected parts. Parts of the main flow can be de-
duced, but the activities a, b, and r are modeled incorrectly. Hence, this model
gives an incorrect view on the recorded behavior.

ETMd miner [46] – The ETMd miner result in Figure 7.8 shows a mis-
leading picture. For one, this model does not show the choice between activ-
ities a and b. In addition, this model incorrectly allows for a mix between
activity p and the cancelation path h followed by r. Hence, this model does
not really aid in understanding the behavior.

TS Regions [16] – The Transition System miner using Regions result in
Figure 7.10 shows a reasonably structured model. This model has the same
overall structure and issues as the Heuristics miner model discussed above.
Observe how, due to the lack of lifecycle information, the fitness score dropped.

MINT ktails [190] – The MINT ktails result in Figure 7.12 shows a prefix-
based trace model fitted to all three traces. This model is too overfitting and
lacks any choice joins. In this result, like with the Fuzzy miner result, activity a
incorrectly has to complete normally before the cancelation signaled by h can
be triggers.

MINT redblue [190] – The MINT redblue result in Figure 7.13 shows
a slightly inaccurate model. In this model, it is possible to skip activities i, a
and b. Hence, this model yields an incorrect understanding of the behavior.

Synoptic miner [37] – The Synoptic miner result in Figure 7.11 again
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shows a reasonably structured model. This model has the same overall struc-
ture and issues as the Fuzzy miner model discussed above. Note how due to
the lack of lifecycle information (incorrect) self-loops are added to most states.

Inductive miner [130] – The Inductive miner result in Figure 7.14 shows
a structured but imprecise model. The path thresholds indicate the amount
of behavior included: 1.0 is all behavior, 0.8 yields an 80/20 model. Ignoring
the hierarchy issue involving activity M, we do see most of the behavior. Note
how, due to a misinterpretation of lifecycle information, activity h is hidden
in the loop with M and the activity r is put in a strange choice with the rest
of the behavior. The relatively low fitness and precision score reflects these
inaccuracies.

CD (this chapter) – The CD algorithm from this chapter yield the model
in Figure 7.15 and 7.16. This model correctly identifies the cancelation region
and generalized accordingly, thereby reducing the visual complexity. In addi-
tion, this model shows how the cancelation discovery algorithm can interplay
with the hierarchical discovery algorithms to produce a mixed hierarchical can-
celation process tree. Note that this model has perfect fitness and a very high
precision. Note that the discovered cancelation process tree in Figure 7.15
matches the baseline model shown in Figure 7.1. In addition, observe how the
statechart representation in Figure 7.16 visually separates the good weather
from the cancelation behavior.
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Figure 7.4: The Alpha
miner [18] result with
fitness 0,88 and preci-
sion 0,17. The model
is very disconnected and
does not aid in under-
standing the behavior.

(a) Significance: 0.0 (b) Significance: 0.4

Figure 7.5: The Fuzzy miner [75] result. The sig-
nificance cutoff threshold controls how much be-
havior is clustered (see the octagonal nodes). This
model correctly shows the normal and cancelation
branches, but only models this as a choice. Fur-
thermore, the model does not generalize.
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Figure 7.6: The Heuristics miner [192] result, model is unsound. This model
correctly shows the normal and cancelation branches, and recognizes the un-
usual way in which activity a is completed/aborted in the cancelation case.

Figure 7.7: The ILP miner [204] result with fitness 0,89 and precision 0,29.
This model is reasonably structured, but lacks the branch with activity b and
does not generalize the cancelation behavior.

Figure 7.8: The Genetic miner [10] result, model is unsound. This confusing
model has disconnected parts and gives an incorrect view on the recorded
behavior.
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Figure 7.9: The ETMd miner [46] result with fitness 0,97 and precision 0,93.
This model is misleading: it does not show the choice between activities a
and b, and it incorrectly allows for a mix between activity p and the cancelation
path h followed by r.
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Figure 7.10: The Transition System
miner using Regions [16] result with
fitness 0,59 and precision 0,79. This
model correctly shows the normal and
cancelation branches, and recognizes
the unusual way in which activity a is
completed/aborted when cancelling.
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miner [37] result with fitness 1,00 and
precision 0,71. This model correctly
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branches, but only models this as a
choice. Furthermore, the model does
not generalize.
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result with k=1, fitness 0,65 and pre-
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fitting, lacks joins, and does not fully
capture the cancelation behavior.
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Figure 7.13: The MINT red-
blue [190] result with k=1, fit-
ness 0,65, and precision 1,00. This
model yields an incorrect understand-
ing of the behavior: it is possible to
skip activities i, a and b.
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(a) Path 1.0, fitness 1,00, and precision 0,64.
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(b) Path 0.8, fitness 0,65, and precision 0,60.

Figure 7.14: The Inductive miner [130] result. The path thresholds indicate
the amount of behavior included: 1.0 is all behavior, 0.8 yields an 80/20 model.
Ignoring activityM, this models shows most of the behavior (read right to left).
However, activity h is missing (hidden in activity M ), and activity r is put in
a strange choice with the rest of the behavior.
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Figure 7.15: The Cancelation Discovery (CD) result visualized as a pro-
cess tree with path 0.8 (amount of behavior included), fitness 1,00, and preci-
sion 0,98. This model correctly identifies the cancelation region and generalized
accordingly, thereby reducing the visual complexity. In addition, this model
shows how the cancelation discovery algorithm can interplay with the hierar-
chical discovery algorithms to produce a mixed hierarchical cancelation process
tree. Note that this model has perfect fitness and a very high precision. In
the tool user interface, clicking on activity a results in a popup showing how a
and h are related, i.e., it shows the set of corresponding triggers C for a.
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Figure 7.16: The Cancelation Discovery (CD) result from Figure 7.15 vi-
sualized as a statechart with path 0.8, fitness 1,00, and precision 0,98. The
box around activities a, b, and p represents the cancelation region. Observe
how the statechart representation visually separates the good weather from
the cancelation behavior.
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7.6.2 Performance and Scalability Evaluation
In this section, we perform a comparative evaluation focusing on the per-
formance and scalability of the various discovery algorithms. The discovery
algorithms will be compared on running time and the resulting models will be
compared on model quality in terms of fitness and precision.

Methodology
All of the algorithms in this comparison are invoked from a Java benchmark
setup under the same operating conditions. For these experiments we used a
laptop with an i7-4700MQ CPU @ 2.40 GHz, Windows 8.1 and Java SE 1.7.0 67
(64 bit) with 12 GB of allocated RAM.

For the running time, we measured the average running time and associated
95% confidence interval over 30 micro-benchmark executions, after 10 warmup
rounds for the Java JVM. Each algorithm is allowed at most 30 seconds for
completing a single model discovery. The time for loading event logs or Java
classes is excluded from the measurements.

For the model quality, we use fitness and precision calculated on the Petri
net translations using the alignments technique from [21, 134] and set a time
limit of at most 15 minutes.

Event Logs
We selected five event logs for this evaluation, covering a range of input problem
sizes. The input problem size is typically measured in terms of four metrics:
number of traces, number of events, number of activities (size of the alphabet),
and the trace length. The event logs and their input sizes are shown in Table 7.7
and are divided into software and non-software logs.

For the software event logs we used an extended version of the instrumen-
tation tool developed for [119], yielding XES event logs with method-call level
and exception catch events. For the NASA CEV software [148], we executed

Table 7.7: The event logs used in the performance and scalability evaluation.
Shown are input size statistics, indicating the problem sizes of the event logs.

Trace length

Event Log # Traces # Events # Acts Min Mean Max

[110] NASA CEV 2 48 17 22 24 26
[112] Alignments 1 17, 912 90 17, 912 17, 912 17, 912

[45] WABO 1, 434 8, 577 27 1 6 25
[63] BPIC 2012, A 13, 087 60, 849 10 3 5 8
[174] Road Fines, a 150, 370 561, 470 11 2 4 20
[174] Road Fines, f 150, 370 404, 009 9 1 3 9



7.6 Evaluation

7

197

a unit test generated from the source code, covering all of the code branches.
The resulting NASA CEV [110] event log is filtered to describe two executions
(test cases 1 and 10) of a software process with errors. For the alignments
software [21, 187], we executed a alignment computation on a typical input
log and model. We feed the algorithm an unsound model to trigger a software
error.

The WABO [45] event log describes the receipt phase of an environmental
permit application process (‘WABO’) at a Dutch municipality. The BPIC12 [63]
event log is a BPI challenge log that describes three subprocesses of a loan ap-
plication process. In this evaluation, we only focus on the “A_” subprocess.
The Road fine [60] event log was obtained from an information system manag-
ing road traffic fines. We use two variants of this large event log. The Road fine,
a variant is the largest, most complex event log in our experimental setup. In
variant Road fine, f, we filtered out the asynchronous activities “no payment”
and “add penalty” to decrease the (directly-follows) complexity.

In Table 7.8, we have listed the trigger oracles we used in our cancelation
discovery techniques for the above event logs.

Table 7.8: The trigger oracles used for the event logs in the cancelation
evaluation.

Event Log Trigger Oracle Activities

[110] NASA CEV “cev.ErrorLog.last()”
[112] Alignments Exception detection based on catch-block handle events

[45] WABO “T15 Print document X request unlicensed”,
“T16 Report reasons to hold request”

[63] BPIC12, A “A_CANCELLED”, “A_DECLINED”
[60] Road fine, a “Send for Credit Collection”
[60] Road fine, f “Send for Credit Collection”

Results – Running Time
In Tables 7.9 and 7.10, the results for the runtime benchmark are given for the
software and non-software logs respectively.

The first thing we notice is that, in contrast to the TS Cancel technique, our
Cancelation algorithm always discovers a model within the allotted time, unlike
some other techniques (e.g., [97]). When compared to the baseline Inductive
Miner, there seems to be a small overhead in running time. There are two
explanations for this small overhead. One is the fact that more tree operator
cuts have to be checked at each recursive call of the algorithm. But more
importantly, the new cancelation operators potentially uncover more structures
in the directly follows graph. In cases where the original Inductive Miner might
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give up and falls back to loops with skips and/or flower models, we can find
a cancelation pattern, and recurse on a more structured subproblem. The end
result is that we have more recursive calls to uncover all the structures/tree
operators, and hence have a larger running time. Nevertheless, our technique
successfully scales to larger logs and consistently yields results within seconds.

Results – Model Quality
In Tables 7.11 and 7.12, the results of the model quality measurements are
given. The Fuzzy miner is absent due to the lack of semantics for fuzzy models.

Observe that, compared to the original Inductive Miner, our Cancelation
algorithm always yields an equal or more fitting model. Moreover, we preserve
the perfect fitness guarantee of the original Inductive Miner (for path 1.0). In
addition, in most cases, the resulting model is also more precise. Based on
these results, we find two properties when using cancelation discovery with
an appropriate trigger oracle. For one, the models produced do not degrade in
quality when cancelation behavior cannot be (correctly) uncovered. And second,
when cancelation behavior is present, the model quality is improved.

In all cases, we can see that we outperform the ILP algorithms on precision,
and we outperform the ETMd miner and TS based miners on fitness. Observe
that, in specific cases, the MINT and Synoptic model quality equals the model
quality of our cancelation models. However, as discussed in Section 7.6.1, such
models can be too overfitting. In addition, as can be seen in the running
times in this evaluation and the evaluation in Section 6.7.2, these techniques
do not scale well for larger problems. Overall, we can conclude that the added
expressiveness of modeling the cancelation region have a positive impact on
the model quality.

On the Simplicity of Models
Finally, we manually compared the discovered models based on the number
of visual elements such as nodes, arcs, and transitions. In most cases, the
discovered cancelation models are comparable in terms of its complexity with
the baseline non-cancelation models, where the cancelation models are usually
being slightly simpler. For example, in Figure 7.17, two discovered models for
the BPIC12 log at paths 0.8 are shown. Note that in the cancelation model
(Figure 7.17b), we see that the main, happy flow behavior is neatly discovered
inside the cancelation region, and the “negative” behavior is modeled separately
after triggering the cancelation region. In the IM model (Figure 7.17a), skips
obfuscate the normal happy flow behavior.

Overall, we can conclude that the added expressiveness of modeling the
cancelation region has, in most cases, a positive impact on the model simplicity.
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Table 7.9: Comparison of algorithm running times on software event logs
with cancelation. Given are the average running times in milliseconds over 30
runs, with a 95% confidence interval shown in the bar plots. Note that the
plots use a logarithmic scale. The paths column indicates the value for the IMf
infrequent threshold: 1.0 means all behavior, 0.8 means 80% of the behavior
(i.e., an 80/20 model), 0.5 means 50% of the behavior.

Algorithm Paths NASA CEV Alignments

[18] Alpha miner 0.3

10
0

10
2

10
4

15.6

10
1

10
2

10
3

10
4

[192] Heuristics 2.3 444.4
[75] Fuzzy miner 5.9 −T

[193] ILP miner 371.0 −T

[204] ILP, filtering 381.9 −T

[10] Genetic miner 3498.1 21945.3
[46] ETMd miner 27836.5 −T

[16] TS Regions 18.9 −T

[97] TS Cancel −T −T

[190] MINT, redblue k=1 8.7 −S

[190] MINT, redblue k=2 6.0 −S

[190] MINT, redblue k=3 5.6 −S

[190] MINT, ktails k=1 3.0 −S

[190] MINT, ktails k=2 2.4 −S

[190] MINT, ktails k=3 1.8 −S

[37] Synoptic 87.2 −T

[130] IM (baseline) 1.0 1.4 4560.6
[130] IM (baseline) 0.8 0.9 3995.8
[130] IM (baseline) 0.5 0.9 2602.7

S
ec

.
7.

4 Cancelation 1.0 2.0 457.3
Cancelation 0.8 1.5 362.1
Cancelation 0.5 1.7 181.2

Avg. runtime (in milliseconds) with 95% conf. int.
S Stack overflow T Time limit exceeded (30 sec.)
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Table 7.10: Comparison of algorithm running times on non-software event
logs with cancelation. Given are the average running times in milliseconds over
30 runs, with a 95% confidence interval shown in the bar plots. Note that the
plots use a logarithmic scale. The paths column indicates the value for the IMf
infrequent threshold: 1.0 means all behavior, 0.8 means 80% of the behavior
(i.e., an 80/20 model), 0.5 means 50% of the behavior.

Algorithm Paths WABO BPIC 2012, A Road fine, a Road fine, f

[18] Alpha miner 8.8

10
2

10
4

18.7

10
1

10
2

10
3

10
4

467.8

10
3

10
4

260.

10
3

10
4

[192] Heuristics 49.2 162.8 1641.7 1047.7
[75] Fuzzy miner 159.9 343.6 4292.3 2829.1
[193] ILP miner 233.9 501.5 3426.1 2517.8
[204] ILP, filtering 236.3 497.2 3395.1 2583.1
[10] Genetic miner 26029.7 3402.9 −T 25592.0
[46] ETMd miner −T 27130.5 28722.1 27557.6
[16] TS Regions −T 555.1 5089.5 3455.2
[97] TS Cancel −T 139.6 −T −T

[190] MINT, redblue k=1 302.1 76.4 5470.2 917.5
[190] MINT, redblue k=2 276.8 78.3 5273.8 891.1
[190] MINT, redblue k=3 325.0 71.0 5608.3 909.5
[190] MINT, ktails k=1 76.4 56.8 885.6 388.2
[190] MINT, ktails k=2 138.2 60.4 972.8 375.7
[190] MINT, ktails k=3 160.1 70.7 835.6 379.2
[37] Synoptic −T 16587.8 −T −T

[130] IM (baseline) 1.0 120.1 308.0 5668.9 2859.0
[130] IM (baseline) 0.8 138.1 300.7 4049.5 2540.2
[130] IM (baseline) 0.5 135.4 301.4 4132.9 2537.1

S
ec

.
7.

4 Cancelation 1.0 176.7 373.2 5972.5 3047.9
Cancelation 0.8 156.4 379.8 6145.4 3289.3
Cancelation 0.5 154.1 377.7 6180.8 3558.8

Avg. runtime (in milliseconds) with 95% conf. int.
T Time limit exceeded (30 sec.)
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Table 7.11: Comparison of model quality scores on software event logs with
cancelation. Given are the fitness and precision values for the discovered mod-
els. These values range from 0.0 to 1.0, higher is better.

NASA CEV Alignments

Algorithm Paths Fitness Precision Fitness Precision

[18] Alpha miner 0.89 0.08 1.00 0.01
[192] Heuristics −U −U −U −U

[193] ILP miner 1.00 0.33 n/a n/a

[204] ILP, filtering 1.00 0.33 n/a n/a

[10] Genetic miner −U −U −U −U

[46] ETMd miner 0.84 0.79 n/a n/a

[16] TS Regions 0.27 0.61 n/a n/a

[97] TS Cancel n/a n/a n/a

[190] MINT, redblue k=1 0.70 0.58 n/a n/a

[190] MINT, redblue k=2 0.69 0.64 n/a n/a

[190] MINT, redblue k=3 0.69 0.64 n/a n/a

[190] MINT, ktails k=1 0.70 0.80 n/a n/a

[190] MINT, ktails k=2 0.70 0.80 n/a n/a

[190] MINT, ktails k=3 0.66 1.00 n/a n/a

[37] Synoptic 1.00 0.74 n/a n/a

[130] IM (baseline) 1.0 1.00 0.69 −T −T

[130] IM (baseline) 0.8 0.74 0.73 −T −T

[130] IM (baseline) 0.5 0.62 0.75 −T −T

S
ec

.
7.

4 Cancelation 1.0 1.00 0.70 −T −T

Cancelation 0.8 0.76 0.58 −T −T

Cancelation 0.5 0.64 0.67 −T −T

T Time limit exceeded (15 min.)
R Not reliable (fitness = 0)

U Unsound model
n/a No model (see Table 6.12)
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Table 7.12: Comparison of algorithm running times on non-software event
logs with cancelation. Given are the fitness and precision values for the dis-
covered models. These values range from 0.0 to 1.0, higher is better.

WABO BPIC 2012, A Road fine, a Road fine, f

Algorithm Paths Fitness Precision Fitness Precision Fitness Precision Fitness Precision

[18] Alpha miner −U −U −U −U −U −U −U −U

[192] Heuristics 0.61 0.98 −U −U −U −U 0.74 1.00
[193] ILP miner 1.00 0.12 1.00 0.22 1.00 0.50 1.00 0.53
[204] ILP, filtering 0.97 0.35 1.00 0.28 0.78 1.00 0.81 1.00

[10] Genetic miner −U −U −U −U n/a n/a −U −U

[46] ETMd miner −U −U 1.00 0.86 0.79 1.00 1.00 0.41
[16] TS Regions −U −U 0.93 0.88 0.86 0.76 0.76 0.82

[97] TS Cancel n/a n/a 0.91 0.78 n/a n/a n/a n/a

[190] MINT, redblue k=1 0.73 0.55 0.98 0.44 0.11 0.32 0.12 0.48
[190] MINT, redblue k=2 0.67 0.55 0.98 0.44 0.11 0.32 0.46 0.37
[190] MINT, redblue k=3 0.67 0.56 0.98 0.86 0.11 0.32 0.46 0.37
[190] MINT, ktails k=1 0.00 −R 1.00 1.00 0.15 0.76 0.00 −R

[190] MINT, ktails k=2 0.00 −R 1.00 1.00 0.15 0.76 0.50 0.45
[190] MINT, ktails k=3 0.00 −R 1.00 1.00 0.15 0.85 0.50 0.36

[37] Synoptic n/a n/a 1.00 1.00 n/a n/a n/a n/a

[130] IM (baseline) 1.0 1.00 0.43 1.00 0.89 1.00 0.69 1.00 0.83
[130] IM (baseline) 0.8 0.94 0.64 1.00 0.92 0.99 0.48 1.00 0.82
[130] IM (baseline) 0.5 0.94 0.63 0.82 1.00 0.76 0.48 0.74 0.77

S
ec

.
7.

4 Cancelation 1.0 1.00 0.62 1.00 1.00 1.00 0.66 1.00 0.76
Cancelation 0.8 0.94 0.67 1.00 1.00 1.00 0.35 1.00 0.68
Cancelation 0.5 0.94 0.66 1.00 1.00 0.90 0.39 0.81 0.73

T Time limit exceeded (15 min.)
R Not reliable (fitness = 0)

U Unsound model
n/a No model (see Table 6.12)
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(a) IM (baseline) model result, no can-
celation. Skips obfuscate the happy flow.
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(b) Cancel model result, with cancela-
tion region. Happy flow in cancel region.

Figure 7.17: The Inductive Miner (IM) and Cancelation Discovery (CD)
result for the BPIC12 event log, visualized as a statechart. The encapsulating
box represents the cancelation region.
Legend: S) A_Submitted, PS) A_PartlySubmitted, PA) A_PreAccepted, A) A_Accepted,
F) A_Finalized, C) A_Cancelled, D) A_Declined, R) A_Registered, AP) A_Approved,
AC) A_Activated
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7.7 Conclusion and Open Challenges

In this chapter, we introduced a modeling notation and discovery technique
for cancelation behavior (Contribution 3). With the cancelation process tree
we provided extensions to capture sequential and loop-back based cancelation
regions. With a trigger oracle we made the start of cancelation behavior via
so-called trigger activities explicit in the input. The cancelation discovery
algorithm discovers multiple, possibly nested cancelation regions from event
logs using a trigger oracle and captures this behavior in cancelation process
trees. This discovery algorithm allows us to analyze software processes and
other processes containing cancelation behavior such as exceptions and error
handling. Moreover, the proposed algorithm offers good discovery guarantees
and scales well. In addition, we discussed how cancelation discovery can be
combined with the hierarchical discovery solutions from Chapter 6.

With the cancelation solutions presented in this chapter, there are several
interesting directions for future research.

� Future Work 7.1 — Trigger Oracle Updates during Discovery. Consider step 2
in Table 7.4, where a sequence cancelation is discovered. If the empty trig-
ger oracle would be used instead, none of the edges would be trigger edges,
no valid cut would be detected, and a fallback solution would be used (see
also Section 7.4.4). In these type of cases, one could use the directly-follows
graph to derive a trigger oracle. In such an approach, when no cut can be
found, a trigger oracle hypothesis can be constructed and tested. Alterna-
tively, entropy-based heuristics can check for potential trigger activities before
a cut is detected, optimizing for apriori cancelation detection. When the hy-
pothesis oracle allows a cancelation cut to be detected, the oracle is updated for
the remaining discovery process. It should be noted that there are many edge
cases to be investigated in such a setup. For example, what should happen
when the updated trigger oracle invalidates previously discovered tree opera-
tors? Recall that, for the normal tree operators, no trigger edges are allowed
between cut partitions. Due to the prefix-based semantics, such trigger oracle
updates are far from trivial.

� Future Work 7.2 — Efficient Optimization Strategy for Trigger Oracle Estima-
tion. Instead of updating trigger oracles during discovery, one can implement
an optimization strategy that selects trigger oracle hypotheses before discov-
ery. As discussed on page 174, the intuition is that, if cancelation behavior is
present, modeling this behavior with cancelation operators will yield a more
fitting and possibly more precise process tree. However, there are potentially
many trigger oracle hypotheses to check, and each check entails discovering a
complete model and computing fitness and precision. Hence, an efficient op-
timization strategy minimizes the amount of candidate hypotheses generated.
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On the one hand, smart heuristics (like the directly-follows based approach
discussed above) should be used to generate good initial candidates. On the
other hand, inclusion properties for oracle triggers should be investigated to
optimize the construction of better trigger oracles.

� Future Work 7.3 — Hierarchical Cancelation Discovery. As noted in Sec-
tion 7.5, the hierarchical extensions from Chapter 6 can be mixed with the
cancelation extensions from this chapter. Table 7.5 already presented the
combined conditions for the corresponding base cases. However, more research
is needed to successfully combine the prefix semantics with named submod-
els. For example, how should cancelations be propagated across hierarchies?
What are the semantics of a named subtree with cancelation triggers? Does
this mean that every activity in a named subtree has the corresponding can-
celation triggers? And what are the semantics of a recursive reference with
cancelation triggers?

� Future Work 7.4 — Cancelation Visualization Layout. As noted in Section 7.1,
cancelation features can separate good weather behavior from error/cancela-
tion behavior. Due to the structured, hierarchical nature of cancelation process
trees, we can easily identify and localize this separation of good weather be-
havior and error/cancelation behavior. Hence, a visualization layout algorithm
can use this information to aid the user in showing how these types of behavior
are separated. Such a layout algorithm should use the tree structure to clearly
and deterministically position the normal and mainstream behavior while at
the same time clearly indicate where alternative cancelation behavior can occur
in the model.
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In Part III, we further explore hierarchical process mining beyond
model discovery.
Chapter 8 introduces a hierarchical approach to performance analy-

sis, taking into account hierarchical, recursive, and cancelation
behavior.

Chapter 9 provides an extensive model to model transformation
framework, taking into account the hierarchical, recursive, and
cancelation semantics.



“Where’s the sense in promising
to achieve the achievable?”

— Terry Pratchett, Going Postal

8 |
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Hierarchical Performance Analysis

In this chapter, we introduce a framework and novel formalization for hier-
archical performance analysis. Our approach takes into account previously
unaddressed notions such as such as subprocesses and cancelation behavior
(Contribution 4). We start by motivating the need for hierarchical perfor-
mance analysis in Section 8.1. After that, we give a brief introduction to our
analysis foundation, Alignments, in Section 8.2. Based on this foundation, we
introduce our extended analysis framework in Section 8.3 and we propose a
novel formalization of existing and novel performance metrics in Section 8.4.
Finally, Section 8.5 will evaluate the introduced analysis approach and Sec-
tion 8.6 will conclude this chapter.

8.1 Why We Need Hierarchical Performance Analysis

In recent years, the process mining field made huge advances in terms of
scalability. Both process discovery [3, 4, 133, 186] and conformance check-
ing [3, 4, 133, 145] have become better at handling and analyzing larger and
more complex processes. Advances in preprocessing and process discovery en-
abled the application of process mining in complex settings such as relational
databases [55, 69], distributed systems, and software systems. In addition, the
work in Chapters 6 and 7 supports advanced process model constructs such
as subprocesses, recursive subprocess definitions and cancelation (e.g., excep-
tion patterns), and the work in [130] supports various notions of concurrency.
One has to realize that a simple, small, and flat process model will not suf-
fice anymore, especially when applied to analyzing software system processes.
However, state of the art performance analysis is still typically performed either
over the whole process model or at the level of an individual model element or
event, e.g., a process step, a place or queue, a software method or statement,
etc. Hence, there is a need for hierarchical performance analysis, taking into
account the notions of submodel abstractions and model execution semantics,
see Figure 8.1.

In this chapter, we 1) present a framework for establishing precise relation-
ships between events and submodels, taking into account execution semantics;
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?

Model
Single number for entire model

Submodel
Evaluation of parts of model

Model Element
Evaluation of activities, places, queues, etc.

Event
Evaluation of individual events

Figure 8.1: Our performance analysis approach positioned in the context of
the level at which metrics are computed.

and 2) present a novel formalization of existing and novel performance metrics.
We will use existing work on alignments [21] as a foundation for our approach,
which we will briefly introduce in Section 8.2. Using this foundation, we incor-
porate execution semantics via so-called enabler moves and execution intervals,
and project aligned event logs onto execution subtraces. We use Petri net se-
mantics to define and realize our approach, but the ideas are independent of
this. Using the semantic-aware execution subtraces, we compute our metrics
at various abstraction levels. The approach is outlined in Figure 8.2. In Chap-
ter 9, we will show how the results can be mapped between Petri nets, BPMN
models, statecharts, message sequence diagrams, and extended process trees.

Our approach is especially useful for analyzing software system processes,
as we will show in the evaluation in Section 8.5, but is generic enough to apply
to any kind of operational process, including business processes. This approach
enables performance analysis on a range of abstraction levels; submodels can be
identified and analyzed in isolation and in the context of the rest of the process
model. These submodels can arise from all kinds of (semantical) structures in
process models: subprocesses [55, 94], (Chapter 6), control-flow structures [97,
130], (Chapter 7), graph-based structures [145, 158], abstraction patterns [93,
94], business instance object relations [55, 69], activity semantics, etc.

We assume that all start and complete events are present in an event log,
with appropriate timestamp data available. This is not a limitation, as in

Figure 8.2: Outline of the hierarchical performance analysis approach.
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Listing 8.1 Running example Java code illustrating concurrent behavior. Upon
execution, this program is logged at the method level, excluding library calls.

1 import java.util.concurrent.ExecutorService;

2 import java.util.concurrent.Future;

3

4 public class Main {

5 // Entry point

6 public static void main(int i) {

7 setup();

8 boolean done = false;

9 while(!done) {

10 done = read_input();

11 if (!done) { calculate(); }

12 }

13 report();

14 }

15

16 public static void calculate() {

17 // Run two computations concurrently (multi-threaded), i.e.:

18 // parallel compute_f1()

19 // parallel compute_f2()

20 ExecutorService executor = Executors.newFixedThreadPool(2);

21 Future<Void> task1 = executor.submit(this::compute_f1);

22 Future<Void> task2 = executor.submit(this::compute_f2);

23

24 // synchronize and wait until both tasks are completed

25 task1.get();

26 task2.get();

27 }

28

29 private static void setup() { ... }

30 private static boolean read_input() { ... }

31 private static void report() { ... }

32 private static Void compute_f1() { ... }

33 private static Void compute_f2() { ... }

34 }

many cases information can be completed from the rest of the event log and/or
model where needed [21]. Various approaches have been proposed in literature
to address the lack of data. For example, the work in [22] assumes that miss-
ing events or timestamps indicate instantaneous activities. Alternatively, the
work in [147] estimates missing timestamps based on the notion of resource
availability [147].

As a running example, consider the program in Listing 8.1. During the
main() function, we start with setup(), followed by looping over read_input() and
calculate(), and we finish with report(). In compute(), we execute compute_f1() and
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Table 8.1: Example snippet of an event log for the program in Listing 8.1.
Note that, for the examples, case 3 intentionally captures deviating behavior.

Attributes

Case id Event id Activity Lifecycle Timestamp Resource . . .

1 1.1 m main() start 11:02:44.900 thread-1 . . .
1.2 s setup() start 11:02:45.000 thread-1 . . .
1.3 s setup() complete 11:02:45.230 thread-1 . . .
1.4 i read_input() start 11:02:45.250 thread-1 . . .
1.5 i read_input() complete 11:02:48.010 thread-1 . . .
1.6 r report() start 11:02:48.120 thread-1 . . .
1.7 r report() complete 11:02:49.000 thread-1 . . .
1.8 m main() complete 11:02:49.100 thread-1 . . .

2 2.1 m main() start 11:06:01.900 thread-1 . . .
2.2 s setup() start 11:06:02.000 thread-1 . . .
2.3 s setup() complete 11:06:02.470 thread-1 . . .
2.4 i read_input() start 11:06:02.510 thread-1 . . .
2.5 i read_input() complete 11:06:02.930 thread-1 . . .
2.6 c calculate() start 11:06:03.110 thread-1 . . .
2.7 f1 compute_f1() start 11:06:03.320 thread-2 . . .
2.8 f2 compute_f2() start 11:06:03.340 thread-3 . . .
2.9 f1 compute_f1() complete 11:06:03.850 thread-2 . . .
2.10 f2 compute_f2() complete 11:06:03.900 thread-3 . . .
2.11 c calculate() complete 11:06:04.070 thread-1 . . .
2.12 i read_input() start 11:06:04.160 thread-1 . . .
2.13 i read_input() complete 11:06:04.770 thread-1 . . .
2.14 c calculate() start 11:06:05.000 thread-1 . . .
2.15 f1 compute_f1() start 11:06:05.100 thread-2 . . .
2.16 f1 compute_f1() complete 11:06:05.210 thread-2 . . .
2.17 f2 compute_f2() start 11:06:05.280 thread-2 . . .
2.18 f2 compute_f2() complete 11:06:05.340 thread-2 . . .
2.19 c calculate() complete 11:06:05.510 thread-1 . . .
2.20 i read_input() start 11:06:05.600 thread-1 . . .
2.21 i read_input() complete 11:06:05.670 thread-1 . . .
1.22 r report() start 11:06:05.800 thread-1 . . .
1.23 r report() complete 11:06:05.850 thread-1 . . .
1.24 m main() complete 11:06:05.950 thread-1 . . .

3 3.1 m main() start 11:09:42.000 thread-1 . . .
3.2 s setup() start 11:09:42.050 thread-1 . . .
3.3 s setup() complete 11:09:45.230 thread-1 . . .
3.4 c calculate() start 11:09:47.110 thread-1 . . .
3.5 c calculate() complete 11:09:48.010 thread-1 . . .
3.6 r report() start 11:09:48.120 thread-1 . . .
3.7 r report() complete 11:09:49.000 thread-1 . . .
3.8 m main() complete 11:09:49.050 thread-1 . . .

4 4.1 m main() start 11:12:07.020 thread-1 . . .
...

...
...

...
...

...
...

. . .
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compute_f2() in parallel using multi-threading. Table 8.1 shows a corresponding
execution event log and Figure 8.3 shows a corresponding process model. Using
the hierarchical performance analysis introduced in this chapter, we will show,
amongst others, how we can investigate the efficiency of this multi-threading.

8.2 Introduction to Alignments
For performance analysis, we assume that a process model and an event log
are given. The model may have been discovered through process discovery or
handmade. One of the main challenges is to find the best way in which observed
behavior in an event log can be replayed on a process model. That is, given
an event log and a Petri net, to find a valid mapping between events in the log
to transition executions in the net. In a situation where the net is relatively
simple and only allows for the behavior observed in the event log and vice versa,
mapping events to transitions is trivial. Problems arise when the observed
behavior in the log is not following the same behavior as the behavior allowed
by the net. Another issue is that a Petri net may have invisible transitions
(which are not recorded in event logs) and multiple transitions with the same
label, i.e., duplicate transitions [21]. In the rich hierarchical models discovered
by the approaches in Chapters 6 and 7, all of these elements occur. Moreover,
when discovering an 80/20 model using the infrequent discovery extensions,
the behavior in the event log does not necessarily perfectly fit the model.

The work on alignments [21] provides a robust foundation for aligning ob-
served behavior in the log to a Petri net model and is, at the time of writing,
considered the state-of-the-art solution for reliable and robust alignment re-
sults. The produced alignments provide a robust mapping between events
in the log and transitions in the model, even in the presence of non-fitting
behavior, invisible transitions, and duplicate transitions in the Petri net. Fur-
thermore, the alignment approach shows explicitly where, when, and why de-
viations occur, thus providing a basis for further analysis.

8.2.1 Unfolding Hierarchical Models
Although the work on alignments [21] provides a robust foundation for align-
ing observed behavior to a Petri net, an alignment can only be computed over
a flat Petri net. Even though it should be feasible to adapt the alignments
algorithm to the type of hierarchical models discovered by the techniques in
this thesis (see Future Work 6.6 on page 161), we consider this out of scope
for now. Instead, we will rely on a simple reduction technique to flatten hier-
archical models to traditional Petri nets. We will use these flat Petri nets for
our internal computations only. For the end result presented to the user, we
can trace the results back to the original hierarchy-aware representations and
visualizations.
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(a) Model depicted as a hierarchical process tree.

(b) Model depicted as a Petri net with hierarchy.

Figure 8.3: Example model for the program in Listing 8.1. This model could
either be provided, or be discovered from the event log in Table 8.1 with, for
example, the technique from Chapter 6.
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Figure 8.4: The flat Petri net model corresponding to the model shown in
Figure 8.3. Note that we used the non-atomic lifecycle notation from Defini-
tion 2.3.7 on page 49: +s denotes the start lifecycle transition, +c denotes the
complete lifecycle transition. See Section 8.2.1 for more details.

As an example, consider the model in Figure 8.3 again. The corresponding
flat Petri net shown in Figure 8.4 is derived by applying two rewriting steps: 1)
unfolding each transition into a start and complete transition, and 2) gluing the
subprocess into the main process. Note that we used the non-atomic lifecycle
notation from Definition 2.3.7 on page 49. We refer to Section 9.2 for a detailed
description of how the various hierarchy constructs can be translated.

8.2.2 Alignments
To establish an alignment between a process model and event log, we need to
relate “moves” in the log to “moves” in the model, known as alignment moves.
In the case that some of the moves in the log cannot be mimicked by the model
and vice versa, we denote a no move (�). Such a no move models a mismatch
and possibly a deviation.
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Consider a single alignment move, i.e., a single mapping between an event
and a transition. In case an event is mapped to a �, we could not find a
corresponding transition in the model for that event. This case is also known
as a log move. In case a transition is mapped to a �, we could not find
a corresponding event in the event log. This case is also known as a model
move. In case an event is mapped to a transition, we denote such a move as
a synchronous move. Below, we formalise these notions of alignment moves.
Recall that system nets were introduced in Definition 2.2.5 on page 27.

Definition 8.2.1 — Alignment Moves. Let SN = (P, T, F,Mini ,Mfin , `) be a
system net, and let L ⊆ E∗ be an event log. Let � /∈ (E ∪ T ) denote “no
move”. We denote T� = T ∪ {�} and E� = E ∪ {�}.

Let A be a set of alignment move identifiers. Given an alignment move
m ∈ A, let #T (m) ∈ T� denote the associated move on model, and let
#L(m) ∈ E� denote the associated move on log. If an alignment move
m ∈ A has no move on model, then #T (m) = �; if an alignment move
m ∈ A has no move on log, then #L(m) =�. An alignment move m ∈ A
is a legal alignment move if and only if either:
• m is a log move, i.e., #L(m) ∈ E and #T (m) =�,
• m is a model move, i.e., #L(m) =� and #T (m) ∈ T , or
• m is a synchronous move, i.e., #L(m) ∈ E, #T (m) ∈ T , and both the

event and transition agree on the label λ#(#L(m)) = `(#T (m)).
The set of all legal alignment moves is denoted as:

AL,SN = {m ∈ A | (#L(m),#T (m)) 6= (�,�)

∧ (#L(m) =�∨#T (m) =�∨ λ#(#L(m)) = `(#T (m))) }

Using the above notions of alignment moves as building blocks, we can now
define the notion of an alignment, which relates an entire trace from an event
log to a full firing sequence in a model.

Definition 8.2.2 — Alignments. Let SN = (P, T, F,Mini ,Mfin , `) be a system
net, and let L ⊆ E∗ be an event log.

The alignment of a trace σ ∈ L and model SN is a sequence γ ∈ AL,SN
∗

such that no move is duplicated in γ, the projection on #L, ignoring �,
yields the original trace γ�L = σ, and the projection on #T , ignoring �,
yields a full firing sequence γ�SN ∈ SSN (recall Definition 2.2.6 on page 28).

Analogous to a firing sequence, we can define the Petri net markings
related to an alignment as follows. We define Mini = M0 and let γ =
〈m1, . . . ,mn 〉. We define the “firing” of a “no move” � as an identity
operation: M [�〉M . We relate markings to alignment moves as follows:
Mi−1[#T (mi)〉Mi.
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� Example 8.1 Consider event log in Table 8.1 and the Petri net in Figure 8.4.
For case 1, a possible alignment is given below. Note that we represent align-
ment moves vertically, with events on top and transitions below.

m1 m2 m3 m4 m5 m6 m7 m8

γ1 =
e1.1 e1.2 e1.3 e1.4 e1.5 e1.6 e1.7 e1.8

m+s s+s s+c i+s i+c r+s r+c m+c

For example, in move m1 of alignment γ1, the event e1.1 is mapped to
transition m+s, indicating that the log and model both start (+s) the main()

(m) function. Observe that, since there are no log and model moves, this
alignment shows that case 1 and the model can mimic each other perfectly.

Now consider case 3, which does not fit the Petri net model. The alignment
now has to account for non-fitting behavior. Two possible alignments are:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

γ3,1 =
e3.1 e3.2 e3.3 � � e3.4 e3.5 e3.6 e3.7 e3.8

m+s s+s s+c i+s i+c � � r+s r+c m+c
m1 m2 m3 m4 m5 m6 m7 m8 m9

γ3,2 =
e3.1 e3.2 e3.3 � � e3.4 � � �
m+s s+s s+c i+s i+c c+s t1 f1+s f1+c
m10 m11 m12 m13 m14 m15 m16 m17 m18

� � � e3.5 � � e3.6 e3.7 e3.8

f2+s f2+c t2 c+c i+s i+c r+s r+c m+c
In alignment γ3,1, the non-fitting behavior is explained by skipping the

deviating calculate() (c) from the log (moves on log m6, m7). In this case,
the model still has to fire the read_input() (i) to complete properly (moves on
modelm4,m5). In alignment γ3,2, the non-fitting behavior is explained by forc-
ing the model to accept the deviating calculate() (c) from the log (synchronous
moves m6, m13). In this case, the model fires read_input() (i) multiple times to
complete properly (moves on model m4, m5 and m14, m15), and the body of
calculate() has to be skipped (moves on model m7 through m12). Observe that
both γ3,1�L and γ3,2�L yield the original case 3. Likewise, both γ3,1�SN and
γ3,2�SN yields full firing sequences in the Petri net. �

8.2.3 Optimal Alignments
In the previous examples we showed that there are multiple possible alignments
for the same trace and model. In practice, some alignments may be more
desirable or likely than others. For example, alignment γ3,1 indicates only two
deviations: a move on model for read_input() (m4, m5) and a move on log for
calculate() (m6, m7). Alignment γ3,2 reported four deviations for the same
trace and process model: two moves on model for read_input() (m4, m5 and
m8, m9), a move on model for compute_f1() (m8, m9), and a move on model
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for compute_f2() (m10, m11). Both alignments are valid and it depends on the
application scenario which explanation is preferable.

In order to capture the explanation preferences, we can define the severity
or cost of a deviation. This way, we can reduce the problem to finding an
alignment with minimal deviation cost. Below, we will first introduce a cost
function over individual legal alignment moves and then generalize this cost
notion to complete alignments. The alignment with the lowest cost is called
an optimal alignment.
Definition 8.2.3 — Cost Function and Optimal Alignments. Let SN be a sys-
tem Petri net, and let σ ∈ L be a trace in an event log. Let AL,SN be the
set of all legal alignment moves. A cost function κ : AL,SN 7→ R+ assigns a
non-negative cost to each legal move.

The cost of an alignment γ ∈ AL,SN
∗ of trace σ and model SN is

computed as the sum of the costs for all alignment moves:

K(γ) = Σm∈γκ(m)

An alignment γ is an optimal alignment if and only if for any alignment
γ′ of σ and SN the cost of γ′ is greater or equal: K(γ) ≤ K(γ′).

Using an alignment oracle, we assume that the optimal alignment of σ
and SN is denoted as: opt(σ,SN ) = γ ∈ AL,SN

∗.

Many cost function schemes exist, favoring one type of explanation for
deviations over the other. For our puprpose, our goal is to find an alignment
with a minimal amount of deviations (log and model moves). Therefore, for
the remainder of this chapter, we will use the so-called standard cost function
defined below, which assigns cost 0 to synchronous moves and tau moves, and
cost 1 to log moves and non-tau model moves [21].

Definition 8.2.4 — Standard Cost Function for Alignments. The standard cost
function κs for alignments assigns equal cost to moves on log and non-tau
moves on model, as defined below.

κs(m) =


1 if #T (m) =� log moves
1 if #L(m) =�∧ `(#T (m)) 6= τ non-tau model moves
0 otherwise

Using the standard cost function, we can calculate the cost of the align-
ments γ3,1 and γ3,2 introduced before in Example 8.1. We have: Ks(γ3,1) = 4
and Ks(γ3,2) = 8. Hence, in this setting, we can conclude that alignment γ3,1

is preferred over alignment γ3,2. In fact, for case 3, alignment γ3,1 is an optimal
alignment. That is, we have opt(σ3,SN ) = γ3,1, where σ3 is case 3 and SN is
the model from Figure 8.4.
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8.3 Analysis Framework Definition
In this section, we present our hierarchical performance analysis framework
for establishing precise relationships between events and submodels, taking
into account execution semantics. The cornerstone of our framework is the
execution subtrace: we take an aligned event log and a given submodel, and
derive the parts of the aligned log that correspond to the given submodel.
These execution subtraces are used to calculate the metrics from Section 8.4.

Before we can define the execution subtraces in Subsection 8.3.4, we need
to address two subproblems: 1) how do we correlate subsequent alignment
moves, taking into account the model semantics, and 2) how do we correlate
alignment moves dealing with the same activity instance (start and complete)?
For problem 1, we rely on the notion of enabler moves (Subsection 8.3.1). For
problem 2, we rely on the notion of execution intervals (Subsection 8.3.2).
In addition, we will rely on the correlations and computations detailed in
Subsection 8.3.3. For an overview of the above concepts, see the outline in
Figure 8.2 on page 210 and the summary provided by Figure 8.6 on page 225.

8.3.1 Move Enablers and Execution Policies
Recall, in Petri nets, a transition t is considered enabled in a markingM if and
only if in that marking there are enough tokens on all the input places of t, see
also Definition 2.2.3 on page 27. Hence, this notion of enabledness reflects the
state where a transition can fire but is still waiting for the actual event where
it is fired. In a given alignment sequence γ, this can be interpreted as the
state between the alignment move m′ that enabled a given transition t and the
alignment move m in which transition t is actually fired. In this section, we
make this type of model-based semantical information explicit via the notion
of move enablers. That is, a move enabler captures the alignment move m′

that enabled a given alignment move m. In short, these move enablers combine
information from both the event log (firing of a transition) and the model
execution policy semantics (when is transition considered enabled).

Definition 8.3.1 — Move Enabler. A move enabler function en : AL,SN 7→
AL,SN ∪ {⊥} relates alignment moves m to preceding moves m′ denoting
the alignment move/transition that enabled the transition #T (m), or ⊥ if
no eligible preceding alignment move is available.

Execution Policies
In order to instantiate the move enabler function, we have to consider the
model execution policy semantics. For our purpose, the execution policy de-
termines when a transition is considered enabled. Below, we will first introduce
a motivating example, and afterwards discuss two common execution policies.



220 Chapter 8. Hierarchical Performance Analysis

Id Act T

x.1 a+s 1
x.2 a+c 2
x.3 a+s 3
x.4 a+c 4
x.5 b+s 5
x.6 b+c 6
x.7 b+s 7
x.8 b+c 8

Id Act T

y.1 a+s 1
y.2 a+c 2
y.3 c+s 3
y.4 c+c 4
y.5 b+s 5
y.6 b+c 6

Figure 8.5: Example Petri net with unbounded behavior, and two event log
traces x and y with event id (Id), activity label (Act) and timestamp (T).

Consider the Petri net and event log in Figure 8.5. Observe that this
model is unbounded: place p may contain multiple tokens. For this example,
the corresponding optimal alignments for traces x and y are:

m1 m2 m3 m4 m5 m6 m7 m8

γx =
ex.1 ex.2 ex.3 ex.4 ex.5 ex.6 ex.7 ex.8
a+s a+c a+s a+c b+s b+c b+s b+c

m1 m2 m3 m4 m5 m6

γy =
ey.1 ey.2 ey.3 ey.4 ey.5 ey.6
a+s a+c c+s c+c b+s b+c

In alignment γx, one can debate which moves enabled move m5 (transition
b+s). After all, transition a+c has fired twice, and there are two tokens in
place p before move m5 is performed. Some of the possible answers are:

1. move m5 is enabled by move m4 and move m7 is enabled by move m2.
2. move m5 is enabled by move m2 and move m7 is enabled by move m4.
3. both moves m5 and m7 are enabled by move m4.

In these type of situations, the move enabler function has to make a choice
and provide a consistent answer.

In alignment γy, another choice has to be made. After move m2, the
transition b+s is enabled. However, due to movem3, transition b+s is disabled
again. And after movem4, transition b+s is enabled again. Do we consider the
period between moves m2 and m3 for the purpose of when transition b+s was
enabled? Again, the move enabler function has to make a choice and provide a
consistent answer. If we only consider the period between movesm4 andm5, we
could calculate the waiting time for b+s as 5− 4 = 1 time units, see events y.5
and y.4 in Figure 8.5. If we also consider the period between movesm2 andm3,
we could calculate the waiting time for b+s as (5−4) + (3−2) = 2 time units.
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To provide a consistent move enabler function, we rely on an execution
policy. Various execution policies have been defined in the literature, in par-
ticular in the context of (generalized) stochastic Petri nets [140, 165]. Below,
we will discuss two of the most common execution policies.

� Execution Policy 8.1 — Continuoualy Enabled (Race with Enabling Memory).
In the continuously enabled policy, also known as the race with enabling mem-
ory policy, we look at the last move m′ from which point on a move m /
transition #T (m) is enabled, and not disabled until it is fired. We formally
define the associated move enabler function below, and give some concrete
examples afterwards.
Definition 8.3.2 — Continuously Enabled Move Enabler. Let γ ∈ AL,SN

∗ be
an alignment of trace σ ∈ L and system net SN = (P, T, F,Mini ,Mfin , `).

The continuously enabled move enabler is the last move that enabled the
transition #T (mi) ∈ T in alignment move mi ∈ γ. We define en(m1) = ⊥
as a base case. For 1 < i ≤ n we define en(mi) = mj such that:

1. move mj occurs before mi, i.e., 1 ≤ j < i,
2. move mj enables the transition #T (mi), i.e.:

¬(•(#T (mi)) ≤Mj−1) ∧ •(#T (mi)) ≤Mj

3. there does not exist an mk with j < k < i such that:

¬(•(#T (mi)) ≤Mk)

For example, under the continuously enabled policy, in alignment γx, both
moves m5 and m7 are enabled by move m4, as described in answer 3 on
page 220. Likewise, in alignment γy, for move m5 we only consider the pe-
riod between moves m4 and m5.

The continuously enabled move enabler is a simple model to capture the
waiting time between transitions, and can be used to calculate “hidden dura-
tions”. For example, consider Figure 8.4 and Table 8.1 again. Using the notion
of continuous enabledness, we can measure the time between c+s, f1+s and
f2+s, thus capturing the startup overhead of the multi-threadedness for the
program in Listing 8.1.

� Execution Policy 8.2 — Race with Age Memory.
In the race with age memory policy, we consider all intervals where a transition
is enabled and re-enabled. Hence, under the race with age memory policy, a
move enabler function would not yield a single alignment move, but a series
of enabled periods. In this policy, special care has to be taken to deal with
multiple firings of a transition in a loop. For example, consider the Petri net in
Figure 8.5 again. If transition c+s would fire multiple times, the enabled period
of c+s before the first firing should not be included in the enabled period of
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c+s before the second firing, i.e., different executions should be separated. For
example, under the race with age memory policy, in alignment γy, for move m5

we consider both the period between movesm2 andm3 and the period between
moves m4 and m5.

As an example of when to apply the race with age memory policy, suppose
that the example in Figure 8.5 models a multi-threaded producer-consumer.
Here, activity a models a producer, putting elements in queue p, and activity b
models a consumer, taking elements from queue p. In this setup, activity c
could represent a critical section that temporarily locks an element in queue p.
Hence, instead of re-enabling activity b, activity c merely puts activity b on
hold. Therefore, it makes sense to use all the intervals where transition b is
enabled and re-enabled to calculate the time it takes for a produced element
to be consumed. Note that, in order to correctly track each individual element
in queue p, the tokens should be colored, i.e., have an associated identifier.

For the remainder of this chapter, we will assume Execution Policy 8.1 and
the move enabler from Definition 8.3.2 for the sake of simplicity. Note that this
is not a limitation and the remainder of the definitions can easily be adapted
to alternative execution policies such as for example Execution Policy 8.2.

� Example 8.2 Consider the Petri net in Figure 8.4 and case 2 from the event
log in Table 8.1. Assume we use the following optimal alignment:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

γ2 =
e2.1 e2.2 e2.3 e2.4 e2.5 e2.6 � e2.7 e2.8 e2.9

m+s s+s s+c i+s i+c c+s t1 f1+s f2+s f1+c
m11 m12 m13 m14 m15 m16 m17 m18 m19 m20

e2.10 � e2.11 e2.12 e2.13 e2.14 � e2.15 e2.16 e2.17

f2+c t2 c+c i+s i+c c+s t1 f1+s f1+c f2+s
m21 m22 m23 m24 m25 m26 m27 m28

e2.18 � e2.19 e2.20 e2.21 e2.22 e2.23 e2.24

f2+c t2 c+c i+s i+c r+s r+c m+c

Using the continuously enabled move enabler function, we have:

en(m1) = ⊥ en(m2) = m1 en(m3) = m2 en(m4) = m3

en(m5) = m4 en(m6) = m5 en(m7) = m6 en(m8) = m7

en(m9) = m7 en(m10) = m8 en(m11) = m9 en(m12) = m11

en(m13) = m12 en(m14) = m13 en(m15) = m14 en(m16) = m15

en(m17) = m16 en(m18) = m17 en(m19) = m18 en(m20) = m17

en(m21) = m20 en(m22) = m21 en(m23) = m22 en(m24) = m23

en(m25) = m24 en(m26) = m25 en(m27) = m26 en(m28) = m27

Note the common move enabler for m8 and m9 and for m18 and m20 due
to the AND-split transition t1 in the model. �
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Observable Move Enablers

When dealing with τ -transitions (unobservable transitions), we make a distinc-
tion between normal and observable move enablers. In general, we can define
the observable move enablers in terms of the normal move enablers.
Definition 8.3.3 — Observable Move Enabler. Given a move enabler func-
tion en, an observable move enabler function en? : AL,SN 7→ AL,SN ∪ {⊥}
relates an alignment move m to a preceding move m′ denoting the observ-
able move (non-τ -transition) that enabled move m:

en?(m) =

{
en?(en(m)) if en(m) 6= ⊥ ∧ `(#T (en(m))) = τ
en(m) otherwise

Using the above example again, we have amongst others the following ob-
servable move enablers, which can differ from the normal move enablers:

en?(m7) = m6 en?(m8) = m6 en?(m9) = m6

en?(m12) = m11 en?(m13) = m11 en?(m14) = m13

8.3.2 Execution Intervals

In practice, activity instances are not atomic. Each execution of an activity has
a start and a completion, with associated data like start and complete time-
stamps. In event logs, we capture this information via multiple events using
lifecycle information, see also Table 8.1. Likewise, as explaned in Section 8.2.1,
we will explicitly use lifecycle information in the low-level Petri nets. In order
to interpret the analysis results in the original, high-level representation, we
need to know how to correlate start and complete alignment moves dealing
with the same activity instance.

In this subsection, we will correlate alignment moves via intervals. We
define execution intervals as a special type of interval that correlates alignment
moves dealing with the same activity instance.
Definition 8.3.4 — Interval. Let γ ∈ AL,SN

∗ be an alignment of σ and SN .
An interval i = (s, c), with s ∈ γ and c ∈ γ, is a tuple of alignment moves
such that s happened before c in γ.

The set of all intervals Iγ for an alignment γ, is denoted as:

Iγ = { (s, c) | s ∈ γ ∧ c ∈ γ ∧ γ = γ1 · 〈 s 〉 · γ2 · 〈 c 〉 · γ3 }

Given a set of intervals I ⊆ Iγ , we denote set(I) =
⋃

(s,c)∈I{ s, c }.

Execution intervals are a special subset of intervals that describe the start
and complete of activity instances. Since every activity instance is described
by one start event and one complete event, no two execution intervals can share
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an alignment move. That is, every alignment move is unique (i.e., occurs at
most once) in the set of execution intervals.

Definition 8.3.5 — Execution Interval. Let γ ∈ AL,SN
∗ be an alignment of a

trace σ and a model SN . Assume that the label of each transition t ∈ T
is defined by an activity and a lifecycle transition, i.e., `(t) ∈ (A × LC ).
Let `(t)�act ∈ A denote the projection of a label to an activity and let
`(t)�life ∈ LC denote the projection of a label to a lifecycle transition.

An execution interval i = (s, c) ∈ Iγ is a tuple of alignment moves that
describes the start and completion of an activity on the model, with start
before completion, i.e., we have a model or synchronous move (#T (s) ∈ T
and #T (c) ∈ T ) over the same activity (`(#T (s))�act = `(#T (c))�act) with
start and complete (`(#T (s))�life = start ∧ `(#T (c))�life = complete).

The set of all execution intervals for an alignment γ is denoted as the
set IEγ ⊆ Iγ such that:
• all non-τ moves are in IEγ , i.e.:

set(IEγ ) = {m ∈ γ | `(#T (m)) 6= τ }

• no two execution intervals (s, c), (s′, c′) ∈ IEγ share alignment moves:

∀(s, c), (s′, c′) ∈ IEγ : { s, c } ∩
{
s′, c′

}
6= ∅ ⇒ (s, c) = (s′, c′)

As an example, consider alignment γ2 from Example 8.2 on page 222 again.
The set of execution intervals for this alignment equals:

IEγ2 = { (m1,m28), (m2,m3), (m4,m5), (m6,m13), (m8,m10), (m9,m11),

(m14,m15), (m16,m23), (m18,m19), (m20,m21), (m24,m25),

(m26,m27) }

Using the above set, we can, for example, conclude that activity main() (m) has
one instance (execution interval (m1,m28)), while activity read_input() (i) has
three instances (execution intervals (m4,m5), (m14,m15), and (m24,m25)).

Observe that (m7,m8) ∈ Iγ2 and (m8,m11) ∈ Iγ2 are also valid intervals,
but they are not valid execution intervals, i.e., (m7,m8) /∈ IEγ2 and (m8,m11) /∈
IEγ2 because they do not describe the start and completion of the same activity.

Figure 8.6 depicts some execution intervals using events from Table 8.1
and the model shown in Figure 8.4. Note that, when only looking at the event
log, the start-complete pairing for activity f1 is ambiguous: there are two
events labeled f1+c. However, when using an aligned trace, we can rely on the
unfolded Petri net transitions to remove most of the ambiguity.
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m8 m9 m10 m11 m18 m19 m20 m21

e2.7 e2.8 e2.9 e2.10 e2.15 e2.16 e2.17 e2.18

f1+s f2+s f1+c f2+c f1+s f1+c f2+s f2+c

i1

i1

i2

i2

i3

i3

i4

i4

γ2 = · · ·· · · · · ·

IEγ = { }

dγ(IEγ ) = { { }, { } }

Alignment
Moves

Execution
Intervals

Execution
Subtraces

Aligned Trace

Execution Subtrace Execution Subtrace

Figure 8.6: The concepts and terminology of Section 8.3 depicted using the
optimal alignment γ2 of case 2, see Example 8.2 on page 222, and assuming
the submodel involving T ′ = { f1+s, f1+c, f2+s, f2+c }.

8.3.3 Interval Correlation and Computation
The intervals introduced in the previous section express a period between two
events. When we recognize the timing information and associated ordering in
an event log, we can express several interesting computations.

In this section, we start with a generic definition for interval correlation and
partitioning. We use this partitioning in Subsection 8.3.4 for grouping execu-
tion intervals into execution subtraces. In addition, we introduce several useful
computations, which we leverage for our performance metrics in Section 8.4.
Definition 8.3.6 — Interval Correlation and Partitioning. Let I ⊆ Iγ be a set
of intervals from an alignment γ.

An interval correlation is a relation Cγ ⊆ (Iγ × Iγ) that correlates in-
tervals in the set Iγ . We write C+

γ to denote the reflexive, symmetric and
transitive closure of Cγ .

We can partition an interval set I into a set of equivalence sets based
on an interval correlation Cγ , denoted Cγ(I) ⊂ P(I), such that:
• the union of all partitions equals the original set: I =

⋃
J∈Cγ(I) J ,

• for any partition J ∈ Cγ(I) we have ∀ i, i′ ∈ J : (i, i′) ∈ C+
γ , and

• for any J, J ′ ∈ Cγ(I) we have ∀ i ∈ J, i′ ∈ J ′ : (i, i′) ∈ C+
γ ⇒ J = J ′.

A useful interval correlation relation is the overlapping interval correlation.
This relation expresses whether two intervals overlap with respect to the timing
information and associated ordering. Recall that #time denotes the timestamp
attribute, see also Definition 2.3.1 on page 45.
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Definition 8.3.7 — Overlapping Interval Correlation. The interval correlation
]γ correlates intervals if and only if they overlap with respect to #time , i.e.:

(s, c) ]γ (s′, c′)⇔ #time(s�L) ≤ #time(c′�L) ∧#time(s′�L) ≤ #time(c�L)

For example, consider the execution intervals from Figure 8.6. Executions
intervals i1 = (m8,m10) and i2 = (m9,m11) are overlapping (i1 ]γ2 i2), but
i3 = (m18,m19) and i4 = (m20,m21) do not (¬(i3 ]γ2 i4)).

When working with sets of intervals I, we define the additional operations
detailed below. These operations enable interval arithmetics used for calculat-
ing some of the metrics in Section 8.4.

The smallest containing interval denotes the smallest interval that contains
all the intervals in I.
Definition 8.3.8 — Minimum, Maximum, and Smallest Containing Interval.
Let I ⊆ Iγ be a set of intervals. We define:

min(I) The minimum equals min(I) = s ∈ set(I) such that for all
s′ ∈ set(I) we have #time(s�L) ≤ #time(s′�L).

max (I) The maximum equals max (I) = c ∈ set(I) such that for all
c′ ∈ set(I) we have #time(c′�L) ≤ #time(c�L).

sci(I) The smallest containing interval equals:
sci(I) = (min(I),max (I)).

As an example, consider the intervals from Figure 8.6. We can calculate
the following minimum, maximum and smallest containing intervals:

min({ i1, i2 }) =m8 min({ i1, i3 }) =m8 min({ i2 }) =m9

max ({ i1, i2 }) =m11 max ({ i1, i3 }) =m19 max ({ i2 }) =m11

sci({ i1, i2 }) = (m8,m11) sci({ i1, i3 }) = (m8,m19) sci({ i2 }) = i2

The condensed overlapping intervals merges intervals in I that overlap ac-
cording to ], and returns the resulting set of intervals.
Definition 8.3.9 — Condensed overlapping intervals. Let I ⊆ Iγ be a set of
intervals and let ]γ be the overlapping interval correlation.

The set of condensed overlapping intervals coi(I) is denoted as:

coi(I) = { sci(I ′) | I ′ ∈ ]γ(Iγ) }

Note that ]γ(Iγ) is the set of equivalence sets in I under ]γ .

As an example, consider the intervals from Figure 8.6 again. We can cal-
culate the following condensed overlapping intervals:

coi({ i2 }) = { i2 } coi({ i1, i2 }) = { (m8,m11) }
coi({ i3, i4 }) = { i3, i4 } coi({ i1, i2, i3, i4 }) = { (m8,m11), i3, i4 }
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Observe that the resulting sets of smallest containing and condensed over-
lapping intervals are not necessarily a set of execution intervals anymore.

8.3.4 Execution Subtraces
The cornerstone of our framework is the execution subtrace: we take an aligned
event log and a given submodel, and derive the parts of the aligned log that
correspond to the given submodel. In this subsection, we will define execution
subtraces as a set of execution intervals, correlated using the model execution
policy semantics by relying on the move enabler function.

As explained in Subsection 8.3.1, multiple execution policies are possible.
For the continuously enabled move enabler policy from Definition 8.3.2, we
define the execution correlation relation below.
Definition 8.3.10 — Execution Correlation for Continuously Enabled. The ex-
ecution correlation dγ for the continuously enabled execution policy corre-
lates intervals if and only if they semantically represent the same instance
or subrun under said execution policy. More precisely, two intervals (s, c),
(s′, c′) semantically contribute to the same subrun ((s, c)dγ (s′, c′)) if either:

1. they are enabled by the same move (en(s) = en(s′)), or
2. they subsequently follow one another (en(s′) = c), or
3. they subsequently complete in a subprocess relation (en(c′) = c).

As an example, consider alignment γ2 from Example 8.2 on page 222 again.
Using the execution correlation dγ2 , we have:

(m8,m10) dγ2 (m9,m11) Condition 1: en(m8) = en(m9) = m7

(m2,m3) dγ2 (m4,m5) Condition 2: en(m4) = m3

(m7,m12) dγ2 (m6,m13) Condition 3: en(m13) = m12

However, the following pairs are not execution correlated:

¬((m4,m5) dγ2 (m25,m27)) ¬((m8,m11) dγ2 (m6,m13))

Using the execution correlation, we can now derive the execution subtraces
from a given trace in an event log and a given submodel. In Section 8.1 we
listed numerous ways of deriving submodels, be it subprocesses, semantical or
graph patterns, hierarchies, or other graph, data, or semantic based structures.
For our framework, we support all of the above structures by assuming a very
generic definition of a submodel: a subset of transitions T ′ ⊆ T .
Definition 8.3.11 — Execution Subtrace. Let SN = (P, T, F,Mini ,Mfin , `)
be a system net, and let σ ∈ L be a trace in an event log. Let dγ be an
execution correlation relation. Assume a submodel given by the subset of
transitions T ′ ⊆ T .
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The set of execution subtraces for trace σ and submodel T ′ ⊆ T , denoted
I = subtraces(σ,SN , T ′), is derived by filtering the execution intervals IEγ
on T ′, denoted IEγ �T ′ , and then partition the result using the execution
correlation dγ , i.e.:

I = subtraces(σ,SN , T ′) = dγ({ (s, c) ∈ IEγ �T ′ | γ = opt(σ,SN ) })
where IEγ �T ′ = { (s, c) ∈ IEγ | #T (s) ∈ T ′ ∧#T (c) ∈ T ′ }

Observe that each execution subtrace I ∈ I is a set of correlated execu-
tion intervals. We extend execution subtraces to event logs as follows:

subtraces(L,SN , T ′) = { subtraces(σ,SN , T ′) | σ ∈ L }
As an example, consider alignment γ2 from Example 8.2 on page 222 again.

Using the submodel T ′ = { s+s, s+c, i+s, i+c }, we get the following three
execution subtraces:

I = subtraces(σ2,SN , T ′) = {
execution subtrace I1︷ ︸︸ ︷

{ (m2,m3), (m4,m5) },
{ (m14,m15) }︸ ︷︷ ︸
exec. subtrace I2

, { (m24,m25) }︸ ︷︷ ︸
exec. subtrace I3

}

If we would use the submodel T ′ = { f1+s, f1+c, f2+s, f2+c } instead, we
would get the following two execution subtraces, see also Figure 8.6:

subtraces(σ2,SN , T ′) = { { (m8,m10), (m9,m11) } ,
{ (m18,m19), (m20,m21) } }

Note that, using the ordering imposed by the move enabler function, the
execution intervals in an execution subtrace are partially ordered. This in
contrast to an aligned trace, which is totally ordered. In the next section, we
will use the above framework notions to define metrics over execution intervals.

8.4 Metrics for Execution Intervals

In the previous section, we have defined our framework for semantic-aware
execution subtraces, taking into account model execution semantics. In this
section, we formalize a selection of existing and novel performance metrics
using the above framework. We will first discuss semantic-aware filters (Sub-
section 8.4.1). Next, we introduce the formulas to compute the proposed met-
rics (Subsection 8.4.2). After that, we discuss how to interpret metric results
(Subsection 8.4.3), and show an integrated example (Subsection 8.4.4).
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8.4.1 Semantic-aware Filters
Consider the incoming arcs for the input place of transition i+s in the model
from Figure 8.4. Semantically, two control-flow parts “flow” into transition i+s:
one flow originates from s+c and the other from c+c. When calculating metrics
on the incoming arcs, it is useful to be able to distinguish these two flows.
Semantic-aware filters enable this kind of filtering on (execution) intervals.
That is, instead of only looking at the event log, we leverage knowledge from
both the log and the model via the notions introduced in Section 8.3. Below,
we introduce a move enabler filter and an accept filter, which we will leverage
in the metric formalizations in Section 8.4.2.

The move enabler filter allows us to distinguish incoming flows. This filter
uses the enabler move notions from Definition 8.3.1 to check where alignment
moves “originate from” in the process model, and allows filtering based on this
information.
Definition 8.4.1 — Move Enabler Filter. Let SN = (P, T, F,Mini ,Mfin , `) be
a system net, let TF ⊆ T be a subset of transitions in SN , and let en be a
move enabler function.

In themove enabler filter, we accept an alignment move s ∈ AL,SN if and
only if it is enabled by a transition in TF . We accept an interval i = (s, c)
if and only if move s is accepted. And we accept a set of intervals I ⊆ Iγ if
and only if the “first” or minimum move is accepted.

filter(s, TF )⇔ #T (en(s)) ∈ TF where s ∈ AL,SN

filter(i, TF ) = filter(s, TF ) where i = (s, c)

filter(I, TF ) = filter(min(I), TF ) where I ⊆ Iγ

For example, consider the model in Figure 8.4 and the alignment γ2 from
Example 8.2 on page 222. When we use the submodel T ′ = { i+s, i+c }, and
the subset of transitions TF = { c+c }, we have:

I = subtraces(σ2,SN , T ′) = { { (m4,m5) }, { (m14,m15) }, { (m24,m25) } }
{ I ∈ I | filter(I, TF ) } = { { (m14,m15) }, { (m24,m25) } }

Note that execution interval (m4,m5) was dropped because en(m4) = m3

with #T (m3) = i+c /∈ TF .
The accept filter checks whether an interval contains event data (i.e., fil-

tering on synchronous moves).

Definition 8.4.2 — Accept Filter (Event Data Filter). In the accept filter, we
accept an interval i = (s, c) if and only if it is a synchronous move. We
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accept a set of intervals I if it contains a synchronous move.

accept(i)⇔ ( #L(s) 6=�∧#L(c) 6=� ) where i = (s, c)

accept(I) = (∃ i ∈ I : accept(i)) where I ⊆ Iγ

We combine the accept and move enabler filter as follows, where TF ⊆ T
is a subset of transitions as per Definition 8.4.1.

accept(I, TF ) = ( accept(I) ∧ filter(I, TF ) )

For example, consider the alignment γ3,1 from Example 8.1 on page 216.
When we use the submodel T ′ = { s+s, s+c, i+s, i+c }, and the subset of
transitions TF = { c+c }, we have:

I = subtraces(σ3,SN , T ′) = { { (m2,m3), (m4,m5) } }
{ I ∈ I | accept(I) } = { { (m2,m3) } }

{ I ∈ I | accept(I, TF ) } = ∅

Note that execution interval (m4,m5) was dropped by accept(I) because both
alignment moves m4 and m5 are model moves, i.e., the interval contains no
event data. Execution interval (m2,m3) was dropped by accept(I, TF ) because
en(m2) = m1 with #T (m1) = m+c /∈ TF .

8.4.2 Metric Formalizations

Below we formalize our performance metrics using the framework and filters
we defined before. We use the following input (left) and notations (right):

L An event log I A set of execution subtraces
SN A system net I ∈ I An execution subtrace

T ′, T ′′ Submodels in SN (s, c) ∈ I An execution interval
TF A set of incoming

transitions to filter on
s, c Alignment moves

For the example metric calulations below, we will reuse the model in Fig-
ure 8.4 and the log in Table 8.1. Recall that the optimal alignments γ1 and γ3,1

were introduced in Example 8.1 on page 216, and optimal alignment γ2 was
introduced in Example 8.2 on page 222.

Frequency-based Metrics

The frequency-based metrics described below count the occurrences of various
properties. The absolute and case frequencies are well-known metrics; they
illustrate the workings of the framework for simple metrics. The model-move
frequency illustrates a conformance metric, i.e., it measures local deviations
between an event log and a model. The resource frequency metric uses the
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resource classifier #res (see Definition 2.3.1 on page 45) to illustrate how ad-
ditional data in event logs can be used in metrics. The followed-by frequency
metric measures executions which are followed by a specific control-flow part
of the model.

� Performance Metric 8.1 — Absolute Frequency. [Numerical]
Description: Counts the number of submodel executions.
Definition:

AbsFreq(L,SN , T ′, TF ) =

|{ I | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I ∧ accept(I, TF ) }|

Example: Consider the submodel T ′ = { i+s, i+c }. With the identity move
enabler filter TF = T , we count one execution in alignment γ1 (subtrace
{ (m4,m5) }), three executions in alignment γ2 (subtraces { (m4,m5) }, { (m14,
m15) }, { (m24,m25) }), and zero executions in alignment γ3,1 (move on models
are filtered by accept()). Hence, we have AbsFreq(L,SN , T ′, TF ) = 4. With the
move enabler filter TF = { s+c }, we count one execution in alignment γ1 (sub-
trace { (m4,m5) }), one execution in alignment γ2 (subtrace { (m4,m5) }), and
zero executions in alignment γ3,1. Hence, we have AbsFreq(L,SN , T ′, TF ) = 2.

� Performance Metric 8.2 — Case Frequency. [Numerical]
Description: Counts the number of traces/cases with submodel executions.
Definition:

CaseFreq(L,SN , T ′, TF ) =

|{ I | I ∈ subtraces(L,SN , T ′) ∧ ∃ I ∈ I : accept(I, TF ) }|

Example: Consider the submodel T ′ = { i+s, i+c } and the identity move
enabler filter TF = T . There exists an execution in alignment γ1 (subtrace
{ (m4,m5) }), an execution in alignment γ2 (any of the subtraces { (m4,m5) },
{ (m14,m15) }, { (m24,m25) }), and no executions in alignment γ3,1 (move on
models are filtered by accept()). Hence, we have CaseFreq(L,SN , T ′, TF ) = 2.
Consider the submodel T ′ = { c+s, c+c }. There exists no executions in align-
ment γ1, an execution in alignment γ2 (subtraces { (m6,m13) }, { (m16,m23) }),
and no executions in alignment γ3,1 (move on logs yield no execution intervals).
Hence, we have CaseFreq(L,SN , T ′, TF ) = 1.

� Performance Metric 8.3 — Model-move Frequency. [Numerical]
Description: Counts the number of executions involving model-moves.
Definition:

ModelFreq(L,SN , T ′, TF ) =

|{ I | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I ∧ filter(I, TF )

∧ (∃m ∈ set(I) : #L(m) =�∧ `(#T (m)) 6= τ) }|
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Example: Consider the submodel T ′ = { i+s, i+c }. With the identity move
enabler filter TF = T , we count no model-move executions in alignment γ1, no
model-move executions in alignment γ2 (tau moves yield no execution inter-
vals), and one model-move execution in alignment γ3,1 (subtrace { (m4,m5) }).
Hence, we have ModelFreq(L,SN , T ′, TF ) = 1. With the move enabler fil-
ter TF = { c+c }, we count no model-move executions in alignment γ1, no
model-move executions in alignment γ2, and no model-move executions in
alignment γ3,1 (alignment move m4 is enabled by s+c and not by c+c). Hence,
we have ModelFreq(L,SN , T ′, TF ) = 0.

� Performance Metric 8.4 — Resource Frequency. [Multiset]
Description: Counts the number of resources involved in each execution.
Definition:

ResFreq(L,SN , T ′, TF ) =

[ |{#res(#L(m)) | m ∈ set(I) }|
| I ∈ subtraces(L,SN , T ′) ∧ I ∈ I ∧ accept(I, TF ) ]|

Example: Consider the submodel T ′ = { i+s, i+c }. With the identity move
enabler filter TF = T , we count one time 1 resource in alignment γ1 (sub-
trace { (m4,m5) } yields { thread-1 }), three times 1 resource in alignment γ2

(subtraces { (m4,m5) }, { (m14,m15) }, { (m24,m25) } each yield { thread-1 }),
and no resources in alignment γ3,1 (move on logs yield no execution inter-
vals). Hence, we have ResFreq(L,SN , T ′, TF ) =

[
14
]
. Consider the sub-

model T ′ = { f1+s, f1+c, f2+s, f2+c }. We count no resources in alignments γ1

and γ3,1 (no execution intervals for f1 and/or f2 ), and we count one time 1
and one time 2 resources in alignment γ2 (subtrace { (m8,m10), (m9,m11) }
yields { thread-2, thread-3 } and the subtrace { (m18,m19), (m20,m21) } yields
{ thread-2 }). Hence, we have ResFreq(L,SN , T ′, TF ) = [ 1, 2 ].

� Performance Metric 8.5 — Followed-by Frequency. [Number, Two Submodels]
Description: Calculates the number of executions of submodel T ′ that continue
with submodel T ′′.
Definition:

FollowFreq(L,SN , T ′, T ′′, TF ) =

|{ I | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I ∧ accept(I, TF )

∧ ∃I ′ ∈ subtraces(L,SN , T ′′) ∧ I′ ∈ I ′ : max (I) = en?(min(I′)) }|

Example: Consider the submodel T ′ = { i+s, i+c } and the submodel T ′′ =
{ c+s, c+c }. With the identity move enabler filter TF = T , we have one execu-
tion in alignment γ1 (subtrace { (m4,m5) }), three executions in alignment γ2

(subtraces { (m4,m5) }, { (m14, m15) }, { (m24,m25) }), and zero executions in
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alignment γ3,1 (move on models are filtered by accept()). In alignment γ1,
move m5 is followed by r+s /∈ T ′′ and hence the corresponding subtrace
is discarded (en?(m6) = m5, #T (m6) = r+s). Similarly, in alignment γ2,
move m25 is followed r+s and thus discarted, but moves m5 and m15 are fol-
lowed by c+s and thus the corresponding subtraces are counted. Hence, we
have FollowFreq(L,SN , T ′, T ′′, TF ) = 2. Note that this metric can prove es-
pecially usefull when the followed-by submodel T ′′ represents a meaningful or
insightful branch or choice. For example, this metric can be used to check how
often certain activities are followed by a cancelation trigger, e.g., see Figure 7.1
in Chapter 7 with T ′ = { a, b, p } and T ′′ = {h }.

Time-based Metrics
The time-based metrics described below use the time information available
via the time classifier #time (see Definition 2.3.1 on page 45). We denote the
difference in time between two events e, e′, notation δtime(e, e′), as:

δtime(e, e′) = (#time(e′)−#time(e))

The duration, waiting, and sojourn time are well-known time-based metrics,
and show how the (execution) intervals can be used in metric computation.
Note that the waiting time is based on observable move enablers. During the
analysis of software system event logs in various case studies, we have found
several additional performance metrics users found useful in their tasks. The
cumulative duration expresses the total time spent in a submodel per case, or
in software analysis terms, a single run of the entire software system process.
The own duration captures the “own time” notion commonly found in software
profilers: it denotes the time spent in a subprocess T ′, while ignoring the time
spent in lower-level subprocesses T ′′. The duration efficiency proved useful
for analyzing multi-threaded software systems: it expresses the “amount of
overlap” in execution intervals.

� Performance Metric 8.6 — Duration / Service Time. [Multiset]
Description: Calculates the time spent during each submodel execution.
Definition:

Dur(L,SN , T ′, TF ) =

[ δtime(#L(s),#L(c)) | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I
∧ accept(I, TF ) ∧ (s, c) = sci(I) ]|

Example: Consider the submodel T ′ = { f1+s, f1+c, f2+s, f2+c }. With the
identity move enabler filter TF = T , we have no subtraces in alignments γ1

and γ3,1 (no execution intervals for f1, f2 ), and we have two subtraces in align-
ment γ2: { (m8,m10), (m9,m11) } and { (m18,m19), (m20,m21) }. The smallest
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containing intervals (sci(I)) for these subtraces are (m8,m11) and (m18,m21)
respectively. The duration for these intervals are calculated as follows:

δtime(#L(m8),#L(m11)) = #time(e2.9)−#time(e2.7)

= 11:06:03.850− 11:06:03.320 = 0.530

δtime(#L(m18),#L(m21)) = #time(e2.18)−#time(e2.15)

= 11:06:05.340− 11:06:05.100 = 0.240

Hence, we have Dur(L,SN , T ′, TF ) = [ 0.530, 0.240 ].

� Performance Metric 8.7 — Waiting Time. [Multiset]
Description: Calculates the time spent between enablement and start.
Definition:

Wait(L,SN , T ′, TF ) =

[ δtime(#L(en?(s)),#L(s)) | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I
∧ accept(I, TF ) ∧ (s, c) = sci(I) ]|

Example: Consider the submodel T ′ = { f1+s, f1+c, f2+s, f2+c }. With the
identity move enabler filter TF = T , we have no subtraces in alignments γ1

and γ3,1 (no execution intervals for f1, f2 ), and we have two subtraces in align-
ment γ2: { (m8,m10), (m9,m11) } and { (m18,m19), (m20,m21) }. The smallest
containing intervals (sci(I)) for these subtraces are (m8,m11) and (m18,m21)
respectively, and we have en?(m8) = m6 and en?(m18) = m16. We calculate:

δtime(#L(m6),#L(m8)) = #time(e2.7)−#time(e2.6)

= 11:06:03.320− 11:06:03.110 = 0.210

δtime(#L(m16),#L(m18)) = #time(e2.15)−#time(e2.14)

= 11:06:05.100− 11:06:05.000 = 0.100

Hence, we have Wait(L,SN , T ′, TF ) = [ 0.210, 0.100 ].

� Performance Metric 8.8 — Sojourn Time. [Multiset]
Description: Calculates the time spent between enablement and completion.
Definition:

Sojourn(L,SN , T ′, TF ) =

[ δtime(#L(en?(s)),#L(c)) | I ∈ subtraces(L,SN , T ′) ∧ I ∈ I
∧ accept(I, TF ) ∧ (s, c) = sci(I) ]|

Example: Consider the submodel T ′ = { f1+s, f1+c, f2+s, f2+c }. With the
identity move enabler filter TF = T , we have no subtraces in alignments γ1
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and γ3,1 (no execution intervals for f1, f2 ), and we have two subtraces in align-
ment γ2: { (m8,m10), (m9,m11) } and { (m18,m19), (m20,m21) }. The smallest
containing intervals (sci(I)) for these subtraces are (m8,m11) and (m18,m21)
respectively, and we have en?(m8) = m6 and en?(m18) = m16. We calculate:

δtime(#L(m6),#L(m11)) = #time(e2.9)−#time(e2.6)

= 11:06:03.850− 11:06:03.110 = 0.740

δtime(#L(m16),#L(m21)) = #time(e2.18)−#time(e2.14)

= 11:06:05.340− 11:06:05.000 = 0.340

Hence, we have Sojourn(L,SN , T ′, TF ) = [ 0.740, 0.340 ].

� Performance Metric 8.9 — Cumulative Duration. [Multiset]
Description: Calculates the total time spent per trace during executions.
Definition:

CulDur(L,SN , T ′, TF ) =

[ Σ I∈I ∧ accept(I,TF )∧ (s,c)=sci(I) δtime(#L(s),#L(c))

| I ∈ subtraces(L,SN , T ′) ]|

Example: Consider the submodel T ′ = { f1+s, f1+c, f2+s, f2+c }. With the
identity move enabler filter TF = T , we have no subtraces in alignments γ1

and γ3,1 (no execution intervals for f1, f2 ), and we have two subtraces in align-
ment γ2: { (m8,m10), (m9,m11) } and { (m18,m19), (m20,m21) }. We derive
δtime(#L(m8),#L(m11)) = 0.530 and δtime(#L(m18),#L(m21)) = 0.240 (see
also the Duration metric example above). Thus, for alignment γ2, we calculate:
0.530 + 0.240 = 0.770. Hence, we have CulDur(L,SN , T ′, TF ) = [ 0.770 ].

� Performance Metric 8.10 — Own Duration. [Multiset, Subset-model]
Description: Calculates the time spent during execution of submodel T ′ minus
time spent during execution of subset T ′′.
Definition:

OwnDur(L,SN , T ′, T ′′, TF ) =

[ δtime(#L(s),#L(c))−
(
Σ(s′,c′)∈J δtime(#L(s′),#L(c′))

)
| I ∈ subtraces(L,SN , T ′ ∪ T ′′) ∧ I ∈ I ∧ accept(I, TF )

∧ (s, c) = sci(I�T ′) ∧ J = coi(I�T ′′) ]|

Example: Consider the submodel T ′ = { c+s, c+c } with the subset-model
T ′′ = { f1+s, f1+c, f2+s, f2+c }. With the identity filter TF = T , we have
no subtraces in alignments γ1 and γ3,1 (no execution intervals for c), and
we have two subtraces I�T ′ in alignment γ2: { (m6,m13) } and { (m16,m23) }.
The corresponding subset subtraces I�T ′′ are: { (m8,m10), (m9,m11) } and
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{ (m18,m19), (m20,m21) } respectively. For each subtrace, we compute the
smallest containing interval sci(I�T ′), and for each subset subtrace we compute
the set of condenced overlapping intervals coi(I�T ′′). We derive: sci interval
(m6,m13) with coi subset interval { (m8,m11) } and sci interval (m16,m23)
with coi subset intervals { (m18,m19), (m20,m21) }. We calculate:

δtime(#L(m6),#L(m13))− ( δtime(#L(m8),#L(m11)) )

= (#time(e2.11)−#time(e2.6))− ( (#time(e2.10)−#time(e2.7)) )

= (11:06:04.070− 11:06:03.110)− (11:06:03.900− 11:06:03.320)

= 0.960− 0.580 = 0.380

δtime(#L(m16),#L(m23))−
( δtime(#L(m18),#L(m19)) + δtime(#L(m20),#L(m21)) )

= (#time(e2.19)−#time(e2.14))−
( (#time(e2.16)−#time(e2.15)) + (#time(e2.18)−#time(e2.17)) )

= (11:06:05.510− 11:06:05.000)−
( (11:06:05.210− 11:06:05.100) + (11:06:05.340− 11:06:05.280) )

= 0.510− (0.110 + 0.060) = 0.340

Hence, we have OwnDur(L,SN , T ′, T ′′, TF ) = [ 0.380, 0.340 ].0

� Performance Metric 8.11 — Duration Efficiency. [Multiset, Subset-model]
Description: Calculates the amount of work performed during execution of
subset T ′′ divided by the associated execution timespan of T ′.
Definition:

DurEff (L,SN , T ′, T ′′, TF ) =

[
Σ(s′,c′)∈J δtime(#L(s′),#L(c′))

δtime(#L(s),#L(c))
| I ∈ subtraces(L,SN , T ′ ∪ T ′′)

∧ I ∈ I ∧ accept(I, TF ) ∧ (s, c) = sci(I�T ′) ∧ J = I�T ′′ ]|

Example: Consider the submodel T ′ = { c+s, c+c } with the subset-model
T ′′ = { f1+s, f1+c, f2+s, f2+c }. With the identity move enabler filter TF =
T , we have no subtraces in alignments γ1 and γ3,1 (no execution intervals
for c), and we have two subtraces I�T ′ in alignment γ2: { (m6,m13) } and
{ (m16,m23) }. We derive the corresponding subset subtraces I�T ′′ : { (m8,m10),
(m9,m11) } and { (m18,m19), (m20,m21) } respectively. For each subtrace,
we compute the smallest containing inteval sci(I). We derive sci intervals
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(m6,m13) and (m16,m23) respectively. We calculate:

δtime(#L(m8),#L(m10)) + δtime(#L(m9),#L(m11))

δtime(#L(m6),#L(m13))

=
(#time(e2.9)−#time(e2.7)) + (#time(e2.10)−#time(e2.8))

#time(e2.11)−#time(e2.6

=
(11:06:03.850− 11:06:03.320) + (11:06:03.900− 11:06:03.340)

11:06:04.070− 11:06:03.110

=
0.530 + 0.560

0.960
= 1.135

δtime(#L(m18),#L(m19)) + δtime(#L(m20),#L(m21))

δtime(#L(m16),#L(m23))

=
(#time(e2.16)−#time(e2.15)) + (#time(e2.18)−#time(e2.17))

#time(e2.19)−#time(e2.16)

=
(11:06:05.210− 11:06:05.100) + (11:06:05.340− 11:06:05.280)

11:06:05.510− 11:06:05.000

=
0.110 + 0.060

0.510
= 0.334

Hence, we have DurEff (L,SN , T ′, T ′′, TF ) = [ 1.135, 0.334 ]. Observe that the
first execution subtrace ({ (m6,m13) }) has a duration efficiency (1.135) greater
than 1, indicating that during this run the multi-threading was effective. The
second execution subtrace ({ (m16,m23) }) has a duration efficiency (0.334) less
than 1, indicating that during this run the multi-threading was not effective.

8.4.3 Interpreting Metric Results

The metrics defined in Section 8.4.2 provide either a single numerical value
or a multiset of values for a given submodel. Here, a numerical metric counts
the occurrences of some property, for example, the number of executions of
a specific submodel. A multiset metric derives a specific property for each
execution or subrun of a submodel. Interpreting such results in the right
way has a large impact on the actual performance analysis. In some cases,
an average value is appropriate, in other cases, one can derive a histogram,
heatmap, box-and-whisker plot, apply statistical significance tests, etc.

As we will show in Section 8.5, for a given model, usually an array of
abstraction levels or submodels can be identified and analyzed in isolation.
An effective strategy is to evaluate a performance metric for each and every
identifiable submodel, and projecting the results across all elements in the
(abstraction) hierarchy using, for example, a heatmap. This way, we enable
the user to compare and evaluate all parts of the model at each abstraction
level and across the abstraction levels as they need.
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8.4.4 Example Metric Applications
In Section 8.4.2, we have detailed a collection of performance metrics taking
into account model execution semantics. The detailed examples for each metric
showed how the metric values are computed using the model from Figures 8.3
and 8.4 and event log from Table 8.1. In Figure 8.7, we put these example
metric calculations into context, by projecting them back onto the model.

For example, the duration efficiency anontation on the subprocess for tran-
sition c show how this entire submodel performs in the various executions. In-
stead of looking at the individual executions of f1 and f2, we now have brought
the event data and performance metrics to the abstraction level of submodels.

Likewise, by using the execution semantics via the followed-by annotation,
we have systematically calculated the frequency relations between activities i
and c. In the evaluation on the next page, we will show how this followed-by
metric can also be used in combination with cancelation model elements to
determine the root causes for cancelation region triggers.

Figure 8.7: Hierarchical Petri net model from Figure 8.3 annotated with
performance metrics. The used metric values are computed in detail in Sec-
tion 8.4.2 and based on the event log data given in Table 8.1. The metrics
express performance characteristics taking into account model execution se-
mantics and using the modeled hierarchical subprocesses.
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8.5 Evaluation
In this section, we evaluate and compare our technique against related imple-
mented performance analysis techniques. The proposed framework and metrics
are implemented in the Statechart plugin for the ProM framework, which will
be explained in more detail in Chapter 10. Section 8.5.1 compares our approach
against related performance analysis techniques. Section 8.5.2 evaluates the
performance and scalability of our approach. For large, real-life case studies
and tool UI using the hierarchy techniques, see Chapter 12.

8.5.1 Comparative Evaluation
In this section, we compare our technique against related, implemented per-
formance analysis techniques. The goal of this evaluation is to investigate if
and how the added notions of hierarchical submodels and control-flow based
performance analysis can aid in performance analysis.

Methodology
Even though we focus on software system processes in this thesis, recall that
our approach is generic enough to apply to any kind of operational process,
including business processes. For this evaluation, we investigate the following
event logs of two software systems and one business process:
• The Alignments algorithm implements the foundation introduced in Sec-

tion 8.2. This piece of software is a nice, self-contained multi-threaded
example: the algorithm computes multiple alignments in parallel.
• The JUnit library is a single-threaded software example with a rich hier-

archical structure and many interacting classes.
• The BPIC 2012 business log describes three subprocesses of a loan appli-

cation process. In this evaluation, we only focus on the “A_” subprocess,
which contains a nice structured example of cancelation behavior.

We analyzed the above processes using the Yourkit Profiler [136] (for the
software examples only), the Dotted Chart [172], “traditional” alignments [21]
(our baseline), and the framework introduced in this chapter. We guide this
performance analysis with the following performance questions:

1. Where are the main bottlenecks in the process in terms of duration?
2. What are the root causes for these bottlenecks and how can they be

broken down across control flow, method calls, and class objects?
3. Where does multi-threading occur, and is this used efficiently?
4. Where do exceptions or cancelations occur, and which activities cause

these cancelations?

Analysis Results
Figures 8.9 to 8.18 on pages 246 to 252 show the analysis results. Below, we
will discuss each analysis technique in turn.
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Yourkit Profiler [136] – Figure 8.8 shows two screens obtained after
profiling the alignment algorithm with Yourkit. The stack-trace analysis (Fig-
ure 8.8a) shows various stacks with a breakdown of the total time spent in each
method. The stacks are all rooted in <All threads>, with most stacks sharing a
root in Thread.run(). From this view, we cannot derive which stacks are sequen-
tial (e.g., two different methods called one after another from Thread.run()) or
which stacks are concurrently (i.e., executions from different threads).

Zooming in on the two stacks visible in Figure 8.8a, we recognize a stack
with the method BalancedDataXAlignmentPlugin.alignLog() and another stack with
the method BalancedReplayResultProcess.call(). Code inspection on these meth-
ods reveals that BalancedDataXAlignmentPlugin.alignLog() schedules a parallel com-
putation, which is implemented by BalancedReplayResultProcess.call() on another
thread. That is, these methods are the stack-trace points where control is
switched between threads, but the profiler visualizes these points as two dis-
connected stack-traces. As a result, the stack-trace analysis view fails to show
how the two threads are related control-flow wise (performance question 3). A
direct consequence is that we cannot use this view to investigate performance
characteristics across these thread-boundaries. In addition, the aggregate tim-
ing values also limit further investigation. Since we have no notion of thread
interactions, we cannot reliably find bottlenecks (performance question 1) or
examine an accurate breakdown of such bottlenecks (performance question 2).

Switching to the thread state analysis (Figure 8.8b), we get a view of all
threads and their status. We can see at which point in time threads are ac-
tive, and when they are blocked. From this view, we can deduce that the
BalancedReplayResultProcess.call() method was executed from multiple threads.
Moreover, we see that there is little interruption in the threads, indicating ef-
ficient concurrent computations (performance question 3). However, this view
fails to link the thread status back to the main thread and the invoking method
BalancedDataXAlignmentPlugin.alignLog() in terms of performance or control-flow.

For the JUnit software, the stack-trace analysis view shown in Figure 8.9
provides only a single stack-trace: everything is executed from the same thread.
We can get a feeling for which methods account for most of the computational
time, but these aggregated timing values again limit further investigation. For
example, for the JUnit case, we see that the string manipulation libraries,
reflection libraries and class loading account for most of the running time
(performance question 1). However, we cannot tell the context in which these
libraries are used. Hence, it is difficult to determine the root cause for these
delays (performance question 2).

Since the BPIC 2012 case is only an event log and not a runnable program,
we cannot investigate this process using the Yourkit Profiler.

Dotted Chart [172] – Figure 8.11 shows a dotted chart analysis on the
alignment algorithm event log. Each dot in this scatterplot resembles a method
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call or return, and the lines indicate the directly-follows relation between such
calls and returns. Using time on the x-axis, the spacing of the dots in the
zoomed-out view (Figure 8.11a) gives us an idea for where delays occur (per-
formance question 1). For example, we see large gaps around the method
AbstractBalancedDataConformancePlugin.createMaxCostHelper(), indicating a large de-
lay. By using the logged thread-id information for coloring, the dotted chart
can give us an idea for where thread-interaction occurs (performance ques-
tion 3). For example, we see several colors/thread-ids clustered near the top
right of the chart, where the BalancedReplayResultProcess.call() methods occur.
However, since the dotted chart gives us only a high-level overview without any
abstractions applied, it is difficult to see the (hierarchical) relations between
different parts of the process. Zooming in or using the detailed tooltip event
information (Figure 8.11b) does not help. That is, we get a good overall idea of
how time is spent across the various methods, but it is difficult to identify root
causes for bottlenecks and delaying paths (performance question 2). Likewise,
we are able to explicitly see and investigate thread interactions (in contrast
to the profiler approach above), but we cannot make any solid conclusions
regarding multi-threading efficiency (performance question 3).

For the JUnit software event log, the dotted chart analysis view shown in
Figure 8.10 provides a view similar to the one for the alignment algorithm event
log. We can again identify some general patterns, such as the delays around the
methods AllDefaultPossibilitiesBuilder.junit4Builder() and AllDefaultPossibilities

Builder.junit3Builder(). However, the same issue apply: the scatterplot gives
a good overview and a feeling for what the data looks like, but it is difficult
to identify root causes and efficiencies of various parts of the software process
without any hierarchical control-flow context.

When applying the dotted chart analysis to the BPIC 2012 event log, we
start to see the real potential of the dotted chart approach. Figure 8.12 shows
the corresponding overview across all traces (case ids are plotted on the y-axis
now). In this view, we can clearly see patterns across cases, such as arrival
rates (visible as the diagonal line with starting activities), batched processing
(visible as vertical lines), and more. When using the dotted chart overview
for investigating the causes for the cancelation activities A_DECLINED and
A_CANCELLED, we can use the colors to quickly identify where these ac-
tivities occur and see examples of what preceded these activities. For ex-
ample, we can see that A_CANCELLED is sometimes directly preceded by
A_PREACCEPTED. But we cannot conclude that this order happens signif-
icantly frequently. Although this addresses performance question 4 to some
degree, this does not give us a complete overview at a glance.

Although we do not have the proper event logs at the time of writing, we
hypothesize that if one would record an event log for a software system like
a web server, a dotted chart analysis would be highly valuable. For example,



242 Chapter 8. Hierarchical Performance Analysis

effects like load on a web server, and the corresponding performance impacts,
would be visible in a dotted chart, just like the global cross-case patterns in
Figure 8.12. However, when investigating more detailed questions, like the
performance questions posed in this analysis, the dotted chart is less suited.

Alignments [21] – Figure 8.13 shows a part of the replay for perfor-
mance result on the alignment algorithm event log produced by the “tradi-
tional” alignments algorithm itself [21]. The model used for this alignment
replay is a flattened Petri net version of the hierarchical model mined using
the techniques from Chapter 6. Only a part/snippet of the entire model is
shown here; the complete, flattened result is too large to show. In this re-
play for performance result, the transitions and places of the Petri net are
highlighted using a heatmap based on durations and waiting times. These
durations and waiting time are only computed between directly succeeding
transitions. Since each method start/call and complete/return is a transi-
tion, and methods may be nested according to their call relation, we can
only investigate delays between directly-succeeding calls and returns. That
is, there is no way to investigate, for example, the duration of a method m
if that method m invokes other methods m′. As a result, very few parts in
the model actually indicate any performance issues. That is, most transi-
tions and places are colored the same, and no significant performance differ-
ences are highlighted (performance questions 1 and 2). Only some low-level
methods like AbstractBalancedDataConformancePlugin.createMaxCostHelper() are high-
lighted, but these results cannot be trusted for aforementioned reasons. By
closely inspecting the control-flow of the model, we can locate the meth-
ods BalancedDataXAlignmentPlugin.alignLog() and BalancedReplayResultProcess.call().
Hence, using the process models together with the replay approach, we can
determine where the multi-threading occurs. However, we cannot derive a
duration or multi-threaded efficiency (performance question 3).

For the JUnit software, the replay for performance result in Figure 8.14
shows similar issues. The model used for this alignment replay is a flat-
tened Petri net version of the hierarchical model mined using the techniques
from Chapter 6. Again, since each method start and end is a transition, very
few parts in the model actually indicate any performance issues. Upon fur-
ther inspection of the entire model, we find possible performance issue indi-
cators: the low-level methods AllDefaultPossibilitiesBuilder.junit4Builder() and
AllDefaultPossibilitiesBuilder.junit3Builder() show a relatively large delay (per-
formance question 1). However, without an explicit hierarchical call relation,
it is difficult to place the above results in context and determine root causes
(performance question 2).

When applying the replay for performance analysis to the BPIC 2012 event
log, we get better results. Figure 8.12 shows the corresponding replay for per-
formance result. The model used for this alignment replay is a flattened Petri
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net version of the cancelation model mined using the techniques from Chap-
ter 7. We used the activities A_DECLINED and A_CANCELLED for our
cancelation error oracle. Since this model has little hierarchy, the replay tech-
nique is much better suited for this case, and we can get reliable duration
results (performance question 1). That is, we can reliably investigate where
most of the time is spent in this model. In addition, we can determine which
activities lead up to the problematic areas, allowing for some root-cause an-
alysis (performance question 2). However, when using a frequency overlay to
investigate the cancelation behavior, we again start to see the limit of the re-
play technique. Yes, we can determine how often our cancelation activities
A_DECLINED and A_CANCELLED are executed, and what might have
preceded these activities. However, to gain any more detailed, non-local in-
formation, we would have to switch to a log-view and inspect the result event
by event. Hence, it is difficult to explain the causes for the above cancelation
activities on a model-centric view (performance question 4).

Hierarchical Performance Analysis (this chapter) – Figure 8.16
shows a part of the results for the alignment algorithm event log produced by
the hierarchical performance analysis techniques from this chapter. By lever-
aging the subprocesses and applying our metrics at every level in this hierarchy,
we get a very accurate breakdown of the performance across various parts of the
software process. For example, the process tree in Figure 8.16a shows a dura-
tion breakdown across different abstraction levels. Using this visualization, we
can quickly see at a high abstraction level where most of the time is spent in this
model (performance question 1). Using this annotated model, we can quickly
spot where the alignment computation start, and which methods during the
computation contribute the most to the running time. See for example the
indicated path A, B, C in Figure 8.16a. Next, we can interactively unfold the
highlighted submodels and explore lower levels in the model. This way, we get a
performance breakdown of the duration in the context of both the call relation
(hierarchy) and the control flow (choices, loops, recursions, etc.). For example,
at the lower levels in the path from Figure 8.16a, we see that most of the run-
ning time is spent in AbstractBalancedDataConformancePlugin.createMaxCostHelper() at
the beginning of the process and in BalancedReplayResultProcess.call() later during
the actual alignment computations itself. Hence, this performance breakdown
allows a user to reliably investigate root causes for performance issues (perfor-
mance question 2).

Likewise, a duration efficiency overlay, as shown in Figure 8.16b, quickly
shows the user where the modeled software is single threaded (indicated by neu-
tral white-yellow color), and where multi-threading occurs (indicated by green
or red). Using such an overlay, we can see the relation between threads as we go
down the call relation hierarchy. We recognize the BalancedDataXAlignmentPlugin.

alignLog() and BalancedReplayResultProcess.call() methods we saw in the Yourkit
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Profiler, but now the control-flow threads are linked together. Furthermore, the
heatmap based on duration efficiency highlights whether the multi-threading
is efficient, indicated by green for > 100%, or where computational time is
potentially lost, indicated by red for < 100% (performance question 3). In
our case, we see an efficiency of 161,8%, so the multi-threading is efficient. By
investigating the performance metrics around the corresponding submodels,
we can further investigate how efficient this part of the software is. Observe
that the analyses in Figure 8.13 and Figure 8.16 use the same model language
and event data. However, by leveraging the hierarchical structure in our per-
formance analysis, we gain much more insight at various levels of granularity
in a user-friendly way, even for large models.

Figure 8.17 shows a message sequence diagram derived for the JUnit soft-
ware event log. The vertical lifelines in this model are based on the class
names recorded in the event log and the model is overlayed with the Duration
metric. Using a combination of class names, control-flow, and call-relation,
we get an insightful breakdown of performance across multiple perspectives.
For example, Figure 8.17 shows that in this part of the model, most time
is spent in the class Request (B) as a result of invocation JUnitCommand-
LineParser.createRequest() (A). Such a view can aid in determining root causes
in the context of various architectural structures such as classes, components,
etc. (performance question 2).

Figure 8.18 shows a statechart derived for the BPIC 2012 event log. We
used the techniques from Chapter 7 and marked the activities A_DECLINED
and A_CANCELLED in our cancelation error oracle. Note how most of the
model is wrapped in a cancelation region. We overlay this model with the
Followed-by Frequency metric configured to show how often an activity is fol-
lowed by a cancelation region trigger. The effective result is that activities are
highlighted when they often trigger the modeled cancelation region. We can
clearly see that the activities indicated by A, B, and C account for most of the
A_DECLINED and A_CANCELLED cancelation triggers. Hence, by using
the semantics of the model, we are able to determine where these cancelations
occur and which activities cause these cancelations (performance question 4).

Overall, we can conclude that the added expressiveness of our hierarchical
performance metrics are beneficial for various performance questions. Espe-
cially when analyzing larger models with hierarchical constructs such as sub-
processes and cancelation region, one needs to 1) include the semantics in the
model to get more meaningful and reliable performance results, and 2) lever-
age the hierarchical constructs to navigate the large amount of performance
results. The interaction with hierarchical notions, guided by the hierarchical
performance analysis results, proved essential for understanding large, complex
(software) behavior.
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(a) Stack-trace analysis. Highlighted are the methods BalancedDataXAlignmentPlugin.

alignLog() in the main thread and BalancedReplayResultProcess.call() in child threads.
These stacks show a breakdown of the total time spent in each method. However,
from this view, we cannot derive which stacks are sequential or which stacks are con-
currently: the stack-trace analysis view fails to show how the two threads are related
control-flow wise.

(b) Corresponding thread state analysis. This view shows all threads and their status,
indicating when threads are active and when they are blocked. We get an idea of the
efficiency of concurrent computations, but we cannot link these results back to the
invoking methods in terms of performance or control-flow.

Figure 8.8: The Yourkit Profiler [136] results on the alignments algorithm.
The two views shown each tell a part of the story (i.e., control-flow, computa-
tion times, or thread efficiency), but do not allow to link the results together.
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Figure 8.9: The Yourkit Profiler [136] result on the JUnit software. We can
get a feeling for which methods account for most of the computational time,
but due to the aggregated values and lack of control-flow context it is difficult
to determine the root cause for the observed delays.

Figure 8.10: The Dotted Chart [172] results on the JUnit event log. Each
dot in this scatterplot is an event, with time on the x-axis and activities on
the y-axis. The colors indicate thread-ids, the shapes the lifecycle-transition,
and the lines indicate the directly-follows relation. This dotted chart gives us
a good high-level overview without any abstractions applied, but it is difficult
to see the detailed control-flow relations and performance root causes.
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(a) Complete overview of event log

(b) Zoomed in view on top right part.

Figure 8.11: The Dotted Chart [172] results on the alignments event log.
Each dot in this scatterplot is an event, with time on the x-axis and activities on
the y-axis. The colors indicate thread-ids, the shapes the lifecycle-transition,
and the lines indicate the directly-follows relation. These dotted charts give us
a good high-level overview without any abstractions applied, but it is difficult
to see the detailed control-flow relations and performance root causes.
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Figure 8.12: The Dotted Chart [172] results on the BPIC 2012 event log.
Each dot in this scatterplot is an event, with time on the x-axis and case id
on the y-axis. The colors indicate activity names and the shapes the lifecycle-
transition. We can clearly see patterns across cases, such as arrival rates (visi-
ble as the diagonal line with starting activities), batched processing (visible as
vertical lines), and more.

Figure 8.13: Snippet of the Replay for Performance Alignment [21] result on
the alignments event log. The transitions are colored according to the sojourn
time, the places are colored according to the waiting time. Only a part/snip-
pet of the entire model is shown here; the complete, flattened result is too
large to show. Very few parts in the model actually indicate any performance
issues: most transitions and places are colored the same, and no significant
performance differences are highlighted.
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Figure 8.14: Snippet of the Replay for Performance Alignment [21] result on
the JUnit event log. The transitions are colored according to the sojourn time,
the places are colored according to the waiting time. Only a part/snippet of the
entire model is shown here; the complete, flattened result is too large to show.
Very few parts in the model actually indicate any performance issues: most
transitions and places are colored the same, and no significant performance
differences are highlighted.

Figure 8.15: Snippet of the Replay for Performance Alignment [21] result
on the BPIC 2012 event log. The transitions are colored according to the
absolute frequency, the places are colored according to the waiting time. We
can reliably investigate where most of the time is spent in this model. In
addition, we can determine which activities lead up to the problematic areas,
allowing for some root-cause analysis. However, to gain any more detailed,
non-local information, we would have to switch to a log-view and inspect the
result event by event.
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(a) A process tree overlayed with the Duration metric. By leveraging the subprocesses
and applying our metrics at every level in this hierarchy, we get a very accurate
breakdown of the performance across various parts of the software process. The
indicated path A, B, C show a duration breakddown of the alignment computation.

(b) A statechart overlayed with the Duration Efficiency metric. The heatmap based
on duration efficiency highlights whether the multi-threading is efficient, indicated by
green for > 100%. We see an efficiency of 161,8%, so the multi-threading is efficient.

Figure 8.16: The hierarchical performance analysis results on the alignments
event log. Shown is the same model using two different visualizations and two
different hierarchical performance metric overlays.
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Figure 8.17: The hierarchical performance analysis results on the JUnit event
log. Shown is a message sequence diagram (the vertical lifelines are based on
the class names) overlayed with the Duration metric. Using a combination
of class names, control-flow, and call-relation, we get an insightful breakdown
of performance across multiple perspectives. In this part of the model, most
time is spent in the class Request (B) as a result of invocation JUnitComman-
dLineParser.createRequest() (A).
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A

B

C

Figure 8.18: The hierarchical performance analysis results on the BPIC 2012
event log. Shown is a statechart overlayed with the Followed-by Frequency
metric configured to show how often an activity is followed by a cancelation
region trigger (Error Freq.). That is, activities are highlighted when they
often trigger the modeled cancelation region. We can clearly see that the
activities indicated by A, B, and C account for most of the A_DECLINED
and A_CANCELLED cancelation triggers.
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8.5.2 Performance and Scalability Evaluation

In this section, we evaluate the computational overhead of applying our hier-
archical performance analysis on top of the alignment framework.

Computational Phases
To accurately measure the overhead of calculating hierarchical performance
metrics, we will look at an end-to-end computation time. That is, we will
consider the time from discovering a process model to an actual visualization
of the model plus various performance metric annotations. In this end-to-end
setup, we recognize the computational phases below, in order:

1. During the Process Discovery phase, an event log is processed, and a
process tree is derived. In this phase, the algorithms from Chapters 6
and 7 are applied.

2. After discovery theAligning Log and Model phase is performed. Dur-
ing this phase, the process tree is translated to a flattened Petri net
model, and the alignment algorithm (Section 8.2) is applied.

3. After aligning all traces in the event log, the Alignment Projection
phase projects the results back onto the process tree. Essentially, this
phase precomputes several data-structures to implement the enabler moves,
execution intervals, and execution subtraces notions from Section 8.3.

4. Next, in theGraph Layout phase, the actual visualization is determined
and computed. In this phase, the process tree is converted to a statechart
graph for which a layout is computed using Graphviz DOT [32]. In this
step, some levels of the hierarchy are excluded based on user input, e.g.,
some submodels are “collapsed” to hide details, see also Chapter 10.

5. Lastly, the Compute Metrics phase evaluates the metrics from Sec-
tion 8.4 for all visible model elements and submodels. Note that the
data-structures from the Alignment Projection phase can be reused when
switching between various visualizations and metrics.

Note that in the Aligning Log and Model phase, no notion of hierarchy or
filtering is introduced yet, we just align the complete event log on the complete,
flattened model. See also Section 8.2.

Measurement Setup
All of the algorithms evaluated in this comparison are invoked from a Java
benchmark setup under the same operating conditions. For these experiments
we used a laptop with an i7-4700MQ CPU @ 2.40 GHz, Windows 8.1 and Java
SE 1.7.0 67 (64 bit) with 12 GB of allocated RAM.

For the running time, we measured the average running time and associated
95% confidence interval over 30 micro-benchmark executions, after 10 warmup
rounds for the Java JVM. The time for loading event logs or Java classes is
excluded from the measurements.
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As input, we selected the JUnit 4.12 software event log [108]. For this event
log, the JUnit 4.12 software [67] was executed once, using the example input
found at [40]. The resulting event log has one trace of 946 events and consists
of 182 unique activities (including lifecycles) across 25 levels of hierarchy. This
large hierarchical depth allows us to investigate the influence of the number of
hierarchical constructs on the overall performance.

Results

Table 8.2 shows the average running times for the end-to-end performance
metric computation across the different computational phases for various model
sizes. In Figure 8.19, the stacked bars show how the total running time is
composed of the different phases. Note that the computational phases are
stacked from bottom to top in the order detailed on the previous page, starting
with Process Discovery on the bottom.

The phases Process Discovery, Aligning Log and Model, and Alignment
Projection are not dependent on the percentage of hierarchical depth included
in the visualization, i.e., these phases are always computed over the entire
model. Furthermore, for these three phases, the running time for Process
Discovery is negligible (between 0.21% and 0.27% or around 13 ms), while
the running time for Aligning Log and Model (i.e., the alignments algorithm)
dominates the entire computation time (between 72.66% and 94,20% or around
4 seconds). Note how the Alignment Projection, although computed over the
entire model, only accounts for a small, affordable fraction of the total running
time (between 1.83% and 2.37% or around 111 ms).

The phases Graph Layout and Compute Metrics are dependent on the
percentage of hierarchical depth included in the visualization. We immediately
see that the running time for computing the layout of the resulting statechart
graphs increases with the model size. This makes sense: the more levels of
hierarchical depth are included, the more graph elements for which a layout
needs to be computed. Note however that the layout computation of these
graph can take up a considerable portion of the computation time (ranging
from 2.88% to 23,65% or between 135 ms and 1,4 seconds). In comparison,
the running time of the actual metric computation is negligible (ranging from
0.28% to 1,66% or between 13 ms and 101 ms).

Overall, when looking at the end-to-end performance metric computation
time, we can conclude that the added computational overhead of our hier-
archical performance metrics (i.e., phases Alignment Projection and Compute
Metrics) is essentially negligible. Most of the computation time is spent on the
alignment and graph layout algorithm (i.e., phases Aligning Log and Model and
Graph Layout). However, the added benefits of our hierarchical performance
metrics are significant, as we will discuss in the next section.
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Table 8.2: Average running time for the end-to-end performance metric com-
putation across the different computational phases for various model sizes.
Given are the average running times in milliseconds over 30 runs (left) and the
percentage of the total running time (right) for each phase and model size.

Percentage of hierarchical depth included in visualization

20% 40% 60% 80% 100%

Process Discovery 13 0.27% 13 0.26% 13 0.25% 13 0.23% 13 0.21%
Aligning Log and Model 4,408 94.20% 4,408 90.30% 4,408 86.63% 4,408 79.17% 4,408 72.66%
Alignment Projection 111 2.37% 111 2.27% 111 2.18% 111 1.99% 111 1.83%
Graph Layout 135 2.88% 330 6.76% 525 10.31% 983 17.66% 1,435 23.65%
Compute Metrics 13 0.28% 20 0.40% 32 0.63% 53 0.96% 101 1.66%

Total 4,679 ms 4.881 ms 5,088 ms 5,568 ms 6,067 ms
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Figure 8.19: Stacked bar chart showing a breakdown of the running times for
the end-to-end performance metric computation across the different computa-
tional phases for various model sizes. Given are the average running times in
milliseconds over 30 runs, with a 95% confidence interval shown for each bar.

8.6 Conclusion and Open Challenges

In this chapter, we introduced a hierarchical approach to performance analy-
sis, taking into account notions such as subprocesses and cancelation behav-
ior (Contribution 4). Building upon the work on alignments, we introduced
a hierarchical performance analysis framework for semantic-aware execution
subtraces, taking into account model execution semantics. These execution
subtraces are based on the parts of an aligned log that correspond to a given
submodel. Based on this analysis framework, we formalized a selection of ex-
isting and novel performance metrics. We evaluated the proposed framework
against existing analysis approaches and showed the benefits of the added ex-
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pressiveness of our hierarchical performance metrics. Moreover, the interaction
with hierarchical notions, guided by the hierarchical performance analysis re-
sults, proved essential for understanding large, complex (software) behavior.
In addition, we showed that the added computational overhead of our hierar-
chical performance metrics, compared to the end-to-end performance metric
computation time, is essentially negligible.

Given the hierarchical performance analysis framework and evaluation re-
sults presented in this chapter, there are several interesting directions for future
research.

� Future Work 8.1 — Extended Lifecycle-Aware Performance Analysis. The an-
alysis framework introduced in this chapter includes the notion of start and
complete events as well as the notion of enabledness available via models and
their execution semantics. However, as already stated in Section 2.3.1 on
page 43, the transactional lifecycle model [8] supports many more detailed
transitions, such as schedule, pause, resume, abort, and reassign. Some of
these notions have already been investigated in, for example, the work on
queue mining [169]. However, to the best of our knowledge, no integrated ap-
proach has been defined. We propose to investigate and integrate the above
notions into an analysis framework in a similar fashion as we have done for
the notions like enabledness, enabling richer metrics and performance analysis
techniques.

� Future Work 8.2 — Multi-Threaded/Multi-Process Software Analysis. In Fu-
ture Work 6.3 and 6.4 on page 159 we already argued that support is needed
for rediscovering multi-threaded/multi-process forks and joins as well as multi-
instance constructs. After all, there is enough non-causal information in run-
ning software, like thread and process identification, to suggest where behavior
happens concurrently. Similar available information can be used to enhance
the multi-threaded/multi-process performance analysis. For example, the in-
formation from a thread state analysis (see the Yourkit Profiler result in Fig-
ure 8.8b) can and should be used in a model-centric performance analysis. In
this example, one should be able to discover a model with known points where
multi-threading occurs, and be able to overlay such a model with for example
a metric indicating when and where a lot of thread-blocking occurs. This way,
one could combine the knowledge of concepts like a thread state analysis in
the richer context of a multi-threaded aware control-flow model.

� Future Work 8.3 — Hierarchy-Aware Graph Layout Computation. As discussed
in Section 8.5.2 and shown in Figure 8.19, the main bottlenecks for our hierar-
chical performance analysis are the alignments algorithm and the graph layout
algorithm. In Future Work 6.6 on page 161, we already suggested to inves-
tigate the use of hierarchical structures for computing alignments to improve
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performance. Similarly, future research should look into leveraging the struc-
tured information available in hierarchical (process tree) models to improve the
scalability of computing graph layouts. We already suggested to use the avail-
able structured information for the sake of a robust and deterministic layout in
Future Work 6.7 on page 161 and Future Work 7.4 on page 205. However, we
foresee that there is also an opportunity to greatly improve the computation
time needed for calculating the layout for such highly structured end-to-end
process models.

� Future Work 8.4 — Alignment Approximations. The Inductive Miner discovery
framework used throughout this thesis splits logs until a base case applies. The
net result of this divide and conquer approach is that we get an approximate
mapping between discovered transitions and events in the event log for free.
Note that in the case of fallbacks, frequency filtering, and the like, we cannot
trust this mapping completely. However, we hypothesize that the discovered
mapping is still an accurate approximation of the mapping between events and
transitions that the alignment algorithm searches for. Since in many cases one
wishes to both discover a model and analyze various performance aspects for
this discovered model, the approximate mapping we get for free could poten-
tially reduce the computation time for an end-to-end process analysis (see also
Section 8.5.2). Therefore, future work should investigate 1) the accuracy of
the event-transition mapping produced by this type of process discovery, and
2) investigate how such approximated mappings can be used for computing
alignments and/or performance metrics.

� Future Work 8.5 — Include Source Code and other Static Artifacts. When log-
ging and analyzing software systems, we usually have some form of traceability
back to the source code, see also Section 5.3.3 on page 105. In Chapter 9, we
will discuss this type of tracabilty in more detail. When analyzing models ob-
tained from such software systems, this link back to the source code can and
should be used. A trivial use is to allow the user to open and view the location
(method, code line, etc.) in the source code corresponding to a model element,
as we will show in Chapter 10. However, this traceability can also be used in
the opposite direction. For example, one could overlay the discovered software
process model with metrics derived from the source code. A typical exam-
ple is to highlight parts in the model with high complexity (for some source
code based complexity metric), indicating where in the control-flow errors or
mistakes are more likely. Taking this traceability link one step further, one
could link the discovery and results back to various design and architecture
models. One useful analysis could be to use the techniques in the chapter to
replay event logs onto parts of a design or architecture model, showing which
components or classes were instantiated at which time during execution.
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� Future Work 8.6 — Include Conformance Results in Performance Analysis.
As stated in Section 8.2, the observed behavior in the log does not always
precisely align with the behavior allowed by the net. As a result, log moves
and model moves are introduced into an alignment, hinting at conformance
issues. Consequently, performance metrics calculated in the vicinity of such
conformance issues are less reliable. For example, what does the waiting time
between two synchronous moves mean when several non-conforming log and
model moves happen in between? Therefore, one should investigate the notion
of reliability of performance metrics, combining the worlds of conformance and
performance analysis. Such a combination can help by informing the user when
metrics are less reliable due to non-conforming behavior, thus aiding the users
and preventing them from making the wrong conclusions.

� Future Work 8.7 — Metric-Guided Model Exploration. So far, performance
metrics are only used as static overlays. The user analyzing a model tries
to navigate and find points of interest, and queries more detailed information
once an interesting point is found. Especially in larger, hierarchical models,
this task of finding points of interest becomes more difficult. Performance met-
rics could help the user here by taking a more active role in the performance
analysis. For example, performance metrics can be used to automatically focus
the user view on certain parts of the model, suggesting where to start an ana-
lysis. In addition, performance metrics can be used to automatically collapse
and expand different hierarchical submodels in the initial view. Moreover,
based on user-determined thresholds, one can automatically hide/summarize
and emphasize/highlight different parts of the model, further reducing the vi-
sual complexity. Such thresholds can be relative, absolute, or based on some
form of desired service-level value [8] or Apdex-style score [25]. Additionally,
long waiting times can be emphasized by modeling such “hidden delays” as spe-
cial performance-based control-flow elements (e.g., transitions annotated with
a time/clock-symbol).
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Translations and Traceability

In this chapter, we provide an extensive model translation framework, taking
into account the hierarchical, recursive, and cancelation semantics (Contribu-
tion 5). In addition, we will show how these translations maintain traceability
across models and event logs. Section 9.1 starts with a high-level discussion
of our model translation and traceability framework, and the role of extended
process trees within this framework. After that, Section 9.2 discusses the
translations and tradeoffs for interpreting extended process trees as basic and
extended Petri nets. Next, Section 9.3 presents translation schemes from ex-
tended process trees to YAWL, BPMN, Statecharts, and Message Sequence
Diagrams. Finally, Section 9.4 will conclude this chapter.

9.1 The Translations and Traceability Framework

Recall the software process analysis lifecycle from Chapter 1 as depicted in
Figure 1.1 on page 4. On one hand we wish to discover various types of
models and perform an range of different analyses, and on the other hand
we wish to relate these results back to the software system artifacts, thereby
closing the loop. The translation and tracebility framework presented here
is a powerful and flexible way to close this analysis loop. This framework
uses translations (Section 9.1.1) to go from event logs to various models and
analysis results, and uses traceability (Section 9.1.2) to go from the models
back to event logs and the software system artifacts such as the underlying
source code. Figure 9.1 summarizes our approach and shows the artifacts and
their relations in a software process analysis context.

9.1.1 Translations
As stated in Challenge 5, process mining techniques require a representational
bias to make assumptions about the modeled behavior. However, the modeled
behavior can be visualized in many different formalisms. In traditional business
process mining, visual notations like BPMN, EPC and Petri nets are common.
In software engineering, visual notations like UML sequence diagrams, finite
state machines, and call graphs are used instead. In practice, a combination
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Figure 9.1: The Translations and Traceability Framework. Shown are the
artifacts, their derivation relation, and their traceability in a software process
analysis context. The traceability from visual elements presented to the end
user via the extended process tree and event log back to the original software
system artifacts completes the circle in the software process analysis lifecycle,
see also Figure 1.1 on page 4.

of different visual notations should be used for different process analysis ques-
tions. Ideally, process mining techniques should not be limited by the bias
and constraints arising from these visual notations. Rather, they should use
an internal representation whose bias is the “greatest common denominator”
of the supported visual representations.

In Chapters 6 and 7 we extended the notion of process trees with hierar-
chical, recursive, and cancelation constructs and semantics. In this way, we
extended process trees to be the greatest common denominator of the type of
behavior we want to support. By using these extended process trees as a com-
mon representation, not for visualization purposes but to model the behavior
itself, we effectively separate visualization and representation bias. The trans-
lations detailed in Sections 9.2 and 9.3 are all defined in terms of extended
process trees. This translation approach allows us to integrate with existing
techniques like, for example, alignments and allow us to map our results to
more user-friendly visualizations. Moreover, we can easily add new visual no-
tations by defining a mapping from extended process trees, and get all the
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data and analysis capabilities associated with the underlying tree for free. In
addition, this translation approach allows us to define a mapping between any
pair of the supported (visual) notations, using the extended process trees as
an intermediate format, capturing the intended language or behavior.

9.1.2 Traceability
To close the loop in the software process analysis lifecycle, we need a link
from visual elements presented to the end user back to the original software
system artifacts. The notion of traceability provides these links. We again refer
to Figure 9.1 for a summarization of the artifacts and their traceability in a
software process analysis context.

We start with the software artifacts and software execution. As discussed
in Chapter 5, there are various ways to observe and log software behavior and
interpret this logged behavior as an event log. At the end, we obtain an event
log detailing the observed software behavior. The recorded events provide
traceability back to the source code. By simply recording which locations in the
software artifacts were responsible for generating an event (e.g., a method or a
specific line in a source code file, see also Section 5.3.3 on page 105), the first
link of traceability can be created.

Given a software event log, we can apply our process discovery and analysis
techniques. With discovery, we derive an extended process tree, which we
will use as a common representation (see also the discussion above). This
extended process tree plays a key role in the traceability relations. All of the
end user visualizations derived from this extended process tree are annotated
with traceability, mapping visual elements to specific nodes in the process tree.
This enables us to use any of the information available from the extended
process tree in all the end user visualizations.

Via the relations build by the alignments technique (see Chapter 8), we
obtain a traceability from the extended process tree back to events in the event
log. Hence, for any process tree node, we can derive a set of corresponding
events, and thus also have traceability back to the source code. In Chapter 10,
we show how these traceability relations can be used to allow the user to open
the line in the source code corresponding to a selected visual element.

9.2 Basic and Extended Petri net Interpretations
Many existing process mining techniques rely on the basic Petri net notation
(see Section 2.2.1 on page 25) and do not accept an extended process tree as
input. Unfortunately, some of the concepts introduced with extended process
trees cannot be fully mapped to these basic Petri nets without loss of semantics.

In practice, a smart basic Petri net interpretation of our extended process
trees still allows us to reuse and integrate with existing process mining tech-
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Table 9.1: From the basic process tree operators to a basic Petri net. Shown
are both the atomic Petri net interpretation and the unfolded Petri net inter-
pretation with explicit start and complete transitions.

Process
Tree Basic Petri net

→

a b

Atomic:

Unfold:

×

a b

Atomic:

Unfold:

∧

a b

Atomic:

Unfold:

	

a b

Atomic:

Unfold:
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niques. One example is the integration with the alignments algorithm [21] as
was discussed in Section 8.2. Below, we will show how we can construct both
an extended Petri net and a smart basic Petri net interpretation which can be
used in, for example, calculating alignments.

9.2.1 Basic Process Trees to Basic Petri nets
The four basic process tree operators, sequence (→), exclusive choice (×), con-
currency (∧), and structured loop (	), are easily translated to a basic Petri
net. In Table 9.1 we show two translations of these basic operators. The first
translation assumes atomicity, i.e., an activity is completed as soon as it is
fired. The second translation unfolds each transition into a start and complete
transition. There are two reasons to consider the unfolded version: 1) unfolding
allows us to accurately add the notions of named submodels and recursive ref-
erences later on, and 2) unfolding is explicitly used in the performance analysis
techniques in Chapter 8, see also Section 8.2.1 on page 213.

9.2.2 Mapping Named Submodels and Recursive References
The basic Petri net notation has no concept of named submodels or recursive
references. However, for the purpose of, for example, computing alignments,
it is possible to encode these notions using an unfolded basic Petri net.

The first row in Table 9.2 shows a possible translation of the named sub-

Table 9.2: From the hierarchical process tree operators to a basic Petri net.

Process
Tree Basic Petri net

Ox

a

Ox

×

Mx a

Inhibitor:

Plain:
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model operator (Ox) introduced in Section 6.3. Observe how the places pxs
and pxc mark the start and end of the named submodel. The actual submodel
boundary transitions x+s and x+c use these places to start the named sub-
model and wait for completion. Hence, the named submodel x can only be
completed (transition x+c) after the body (activity a) has been executed.

The translation of the recursive reference operator (Mx) is more involved.
The second row in Table 9.2 shows two possible translations, one with the use of
an inhibitor arc1, and one with only basic Petri net arcs. To model a recursive
reference Mx, we are going to reuse the places pxs and pxc we introduced for
the referenced named submodel operator Ox. The idea is to have a second set
of transitions x+s and x+c, called the recursion transitions, inside the named
submodel. These recursion transitions do two things: 1) they use the places pxs
and pxc to mark the start and end of a nested named submodel execution, and
2) they use an internal place pxr to count the number of active recursions. We
attach an inhibitor arc from the original named submodel transition x+c to
place pxr to check whether all recursive executions have finished.

When performing alignments on a basic Petri net without inhibitor arcs,
we can use the plain version shown in the second row in Table 9.2. In this case,
we still need to model the constraint that all recursive executions are finished
before we perform the original named submodel transition x+c. In practice, we
can often rely on the alignment cost function (see Definition 8.2.3) to ensure
place pxr is emptied. After all, the alignment algorithm tries to reach the final
marking, and thus needs proper completion without tokens left behind. Hence,
there is a high likelihood that the recursion transitions are used in the intended
order. However, deviations might cause problems for such alignments.

9.2.3 Mapping Sequence Cancelations and Loop Cancelations
Table 9.3 shows two possible translations for both cancelation operators ( ?→,
?
	) introduced in Section 7.2. One translation uses the cancelation region or
reset semantics2, the other translation only uses basic Petri net arcs. We model
the body of the cancelation operator, the left/first subtree, as normal. Here,
we can reuse the atomic or unfolded approaches introduced before. Next, with
the resulting model we 1) wrap this body in a cancelation region (places p1
to p4 ) and 2) add an exit τ -transition te, marking the non-cancelation end of
this submodel. For each of the places following a cancelation trigger operator
(?Ca ), we add a τ -transition tc firing the cancelation region. We model each
of the cancelation paths (non-first subtrees) reusing the atomic or unfolded
approach again. The starting place or source for a cancelation path is the
output place of the tau-transition tc firing the cancelation region, i.e., place pc

1 Recall, inhibitor arcs were explained in Section 2.2.1 on page 31.
2 Recall, cancelation regions and reset arcs were explained in Section 2.2.1 on page 31.
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Table 9.3: From the cancelation process tree operators to a basic Petri net.
Below, we used the atomic translation for brevity.

Process Tree Basic Petri net

?→

→

a ?
{ e }
b

c

→

e f

Reset:

Plain:

?
	

→

a ?
{ e }
b

c

→

e f

Reset:

Plain:

in our examples. For the sequence cancelation operator ( ?→), the final place
or sink for a cancelation path is the output place of the exit tau-transition te,
i.e., place pe in our examples. For the loop cancelation operator (

?
	), the final

place or sink for a cancelation path is the starting place of the cancelation
body, i.e., place p1 in our examples.

When performing alignments on a basic Petri net without cancelation re-
gions or reset arcs, we can use the plain versions shown in Table 9.3. In this
case, we still need to model the constraint that a cancelation path is executed
once all tokens inside the cancelation region are consumed, i.e., places p1 to p4
are empty. In practice, we can often rely on the alignment cost function (see
Definition 8.2.3) and the grey tau-transitions shown in Table 9.3. As the align-
ment algorithm tries to reach the final marking without tokens left behind, if
possible, the grey τ -transitions can and will clean up the tokens inside the
cancelation. However, deviations might again cause problems.
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9.3 Model to Model Translations
As stated before, we use the extended process trees as a common representa-
tion. In this section, we present translation schemes from extended process
trees to YAWL, BPMN, Statecharts, and Message Sequence Diagrams.

9.3.1 Extended Process Trees to YAWL
Table 9.4 shows the translation from the extended process tree operators to
a YAWL model. For the hierarchical operators, we define the named sub-
model Ox as a separate model. Using the notion of composite tasks, we can
reference this model definition from outside (named submodel Ox) and within
the model (recursive reference Mx). For the cancelation operators, we use the
native support for cancelation regions, yielding a solution comparable to the
reset Petri nets in Table 9.3.

9.3.2 Extended Process Trees to BPMN
Table 9.5 shows the translation from the extended process tree operators to
a BPMN model. For the hierarchical operators, we define the named sub-
model Ox as a separate model. Using the notion of subprocess tasks, we can
reference this model definition from outside (named submodel Ox) and within
the model (recursive reference Mx).

Translating the cancelation operators is a bit more involved since BPMN
has no direct support for cancelation regions. Instead, we rely on boundary
events of a subprocess. We wrap the contents of a cancelation region in a
subprocess and define a boundary catch cancel event to mark the start of a
cancelation path. Inside the subprocess, we define a throw cancel event after
each cancelation trigger operator (?Ca ). These throw events are linked to the
catch events of the corresponding cancelation region. For the sequence cance-
lation operator ( ?→), we connect the end of a cancelation path with a XOR-join
gateway just after the cancelation subprocess. For the loop cancelation oper-
ator (

?
	), we connect the end of a cancelation path with a XOR-join gateway

at the start of the cancelation subprocess.

9.3.3 Extended Process Trees to Statecharts
Table 9.6 shows the translation from the extended process tree operators to a
Statechart model. Note the use of AND super-states to model parallelism (∧).

For the hierarchical operators, we use a named XOR super-state to model
a named submodel Ox. There are several options to connect states in the
presence of a named submodel. The examples in Table 9.6 connect non-super
state directly. As an alternative, one can indicate starting states for each super-
state, and connect transitions from outside to the named super-state itself.
A third possibility is to use pseudo-states representing entering and exiting
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named super-states. Each of the above possibilities is equally valid. However,
when overlaying a statechart model with detailed performance information,
the additional transitions in the second and third option can be useful for
visualizing waiting times. For modeling the recursive reference Mx, we decorate
the nested state x, indicating this state is defined in terms of the corresponding
super-state. Formally, one would rely on the object-oriented extension defined
in [154] to instantiate a nested version of the XOR super-state object named x.

For the cancelation operators ( ?→,
?
	) we use a nameless XOR super-state

to denote the cancelation region. For each cancelation trigger operator (?Ca ),
we decorate the nested state b, indicating this state captures a cancel trigger.
For modeling the actual cancelation behavior we have two options: 1) we
model a transition from each cancel trigger state to the cancelation paths, or
2) we model only a single transition from the cancelation region XOR super-
state to the cancelation paths. The first approach is more accurately modeling
the intended semantics, while the second approach typically results in less
transitions and thus a visually simpler model. We model the cancelation paths
again as normal. For the sequence cancelation operator ( ?→), we connect the
end of a cancelation path with the first state after the cancelation region. For
the loop cancelation operator (

?
	), we connect the end of a cancelation path

with the first state inside the cancelation region.

9.3.4 Extended Process Trees to Message Sequence Diagrams
Table 9.7 shows the translation from the extended process tree operators to a
Message Sequence Diagram (MSD). Fragments are used to model the various
control-flow concepts. Observe how the loop semantics are only approximated.
To the best of our knowledge, it is not possible to capture the loop-retry
semantics of the loop operator (	) with the standard MSD fragments.

The named subtree operator (Ox) can be represented using a nested activity
box and a combination of an activation and reply message. The recursive
reference operator (Mx) cannot be represented in MSD. As an approximation,
we can use another nested activity box plus a recursive call annotation.

The cancelation operators ( ?→,
?
	) also do not have a native MSD represen-

tation. However, with the introduction of the try and catch fragment, we can
accurately model a sequence cancelation ( ?→). The loop cancelation (

?
	) can

only be approximated, the cancelation loopback path suffers from the same
problems as the loop-retry discussed above. Alternatively, we can introduce a
new retry-catch fragment.

The real strength of the Message Sequence Diagram is its use of lifelines.
In the examples in Table 9.7, we only used one lifeline labeled C. However,
one can use a secondary event log classifier to determine on which lifeline
an event “lives”. A typical example is to use method names as the primary
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activity classifier, and class names, library packages, or component names as
the secondary lifeline classifier. Figure 2.11 on page 37 and Figure 8.17 on
page 251 are a good example of this. Another useful secondary classifier is
a resource (group) identifier or a data attribute encoding a domain property
such as a location or object involved or claimed during the indicated events.
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Table 9.4: From the extended process tree to a YAWL model.

Process Tree YAWL

→

a b

×

a b

∧

a b

	

a b

Ox

a

Ox

×

Mx a

?→

→

a ?
{ e }
b

c

→

e f

?
	

→

a ?
{ e }
b

c

→

e f
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Table 9.5: From the extended process tree to a BPMN model.

Process Tree BPMN

→

a b

×

a b

∧

a b

	

a b

Ox

a

Ox

×

Mx a

?→

→

a ?
{ e }
b

c

→

e f

?
	

→

a ?
{ e }
b

c

→

e f
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Table 9.6: From the extended process tree to a Statechart.

Process Tree Statechart

→

a b start end

a b

×

a b start end

a

b

∧

a b start end

a

b

	

a b
start end

a

b

Ox

a start end

x

a

Ox

×

Mx a start end

x

a

x

?→

→

a ?
{ e }
b

c

→

e f

start end

a cb

e f

?
	

→

a ?
{ e }
b

c

→

e f

start end

a cb

ef
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Table 9.7: From the extended process tree to a Message Sequence Diagram.

Process
Tree MSD Process Tree MSD

→

a b

Ox

a

×

a b

Ox

×

Mx a

∧

a b

?→

→

a ?
{ e }
b

c

→

e f

	

a b

?
	

→

a ?
{ e }
b

c

→

e f
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9.4 Conclusion and Open Challenges
In this chapter, we provided an extensive model translation framework, taking
into account the hierarchical, recursive, and cancelation semantics (Contribu-
tion 5). In addition, we showed how these translations maintain traceability
across models and event logs. In Chapter 10, we will show how this traceabil-
ity can be leveraged to close the loop in the software process analysis lifecycle
from Chapter 1 (see Figure 1.1 on page 4). In Chapter 12, we will show how
the various visual notations covered by Section 9.3 can be used and combined
for comprehensive software analyses.

With the model translation and traceability framework presented in this
chapter, there are several interesting research directions for future work.

� Future Work 9.1 — Extend Common Representation. As we argued in Sec-
tion 9.1.1, there is a need for a common representation whose bias is the “great-
est common denominator” of the supported visual representations. With the
extended process trees we made a first attempt at such a common represen-
tation. However, there are various types of behavior we have not considered
yet. Some examples include: workflow patterns like the milestone [15], multi-
instance patterns, various environment triggers like the BPMN events or MSD
external messages, and the statechart history and communication concepts.
Additionally, one should consider extending such a common representation
with a data perspective (variables, guards, etc.) and data flow relations.

� Future Work 9.2 — Extend Transformations. The current framework includes
extended process trees, Petri nets, YAWL, BPMN, Statecharts, and Message
Sequence Diagrams. However, there are various other useful notations, both
for visualization and for tool integration, which one might consider. Obvious
examples include automata, labeled transition systems, and UML flow dia-
grams. However, one might also consider derived models focussing on specific
perspectives, such as resource allocation schemas, call graphs, class diagrams,
and network graphs. The trick is to maintain traceability across all models,
linking and combining results between the various notations. For example,
control-flow models and performance analysis results should allow one to trace
bottlenecks from these models to derived class diagrams and network graphs.

� Future Work 9.3 — Integrate Existing Static Artifacts as a First-Class Citizen.
The recorded events provide traceability back to the source code. However,
these software artifacts are currently not fully integrated in this framework.
For example, it can be desirable to add relations between event from an event
log and existing architecture artifacts. This would enable, for example, a
traceability link between the performance metrics calculated over a discovered
model and a class diagram, showing which classes and packages contribute the
most to the overall running time.
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In Part IV, we discuss applications of the techniques and algorithms
presented, and discuss the way they are supported by our tools.
Chapter 10 presents the implemented tools, their interactions, and

how our tools integrate with existing software artifacts.
Chapter 11 presents a methodology for obtaining and analyzing soft-

ware event log data in a structured way.
Chapter 12 presents various case studies, showing how our tech-

niques can be used in practice.
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Tool Implementations

https://youtu.be/xR4XfU3E5mk

Figure 10.1: Scan the above
QR code or use the shown url to
see the Statechart Workbench
and SAW tools in action.

In the previous chapters, we presented vari-
ous techniques, heuristics, and algorithms. In
this chapter, we present three tools that im-
plement and consolidate the work discussed
(Contribution 6). All of the tools are open
source and publicly available. In addition, we
provided a tool screencast showing the tools
in action, scan the QR code or use the link
in Figure 10.1 to the right. Section 10.1 gives
a global introduction to the proposed tools,
and puts the tools into context. Afterwards,
Sections 10.2 to 10.4 discuss each of the tools.
Section 10.5 presents a small user experience
evaluation for the presented tools. Finally,
Section 10.6 concludes this chapter.

10.1 Introduction

In this chapter, we present three tools that implement and consolidate the
discussed work: the Statechart Workbench, the Instrumentation Agent, and
the SAW Eclipse plugin. Figure 10.2 schematically shows the implemented
tools, their context, and the interaction between the tools.

The core of our work is the Statechart Workbench tool, a novel software
process discovery, analysis, and exploration tool. The Statechart Workbench
implements the techniques from Chapters 6 to 9, and provides a rich, mature,
and interactive integration of these techniques. With the Statechart Work-
bench, one can use both business and software event logs to analyse hierar-
chical behavior, performance (timings), frequency (usage), conformance and
reliability in the context of various formal models.

Next to the Workbench, we implemented the Instrumentation Agent tool,
a Java agent capable of producing a ready-to-use event log when loaded with
a Java program. This Instrumentation Agent consolidates some of the tech-

https://youtu.be/xR4XfU3E5mk
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Figure 10.2: The implemented tools, their context, and the interaction be-
tween tools. The Statechart Workbench implements the techniques from Chap-
ters 6 to 9. The Instrumentation Agent produces ready-to-use event logs when
loaded with a Java JAR. The SAW Eclipse plugin provides a user interface for
both the Instrumentation Agent and the source code traceability link.

niques and structures discussed in Chapter 5. The provided Instrumentation
Agent is a reference implementation providing logging for the Java program-
ming language. However, note that the ideas from this Instrumentation Agent
can easily be transferred to other programming languages, as discussed in Sec-
tion 5.1.1 on page 93.

Finally, we provide the SAW Eclipse plugin. This Eclipse plugin provides
a user interface for the Instrumentation Agent, allowing users to get started
right away with their own software by providing a user interface for software
logging in the Eclipse IDE. In addition, the SAW Eclipse plugin enables the
user to interactively link the results from the Statechart Workbench back to
the source code locations inside the software system (Chapter 9).

Tool Availability – The Statechart Workbench is available via ProM [159].
In addition, the source code, readme file [114], user manual [116], and screen-
cast [115] for the Statechart Workbench are also publicly available. The In-
strumentation Agent and SAW Eclipse plugin are available via [113].

10.2 The Statechart Workbench
As indicated in the introduction, the Statechart Workbench tool represents the
core of our work. In this section, we will first give an overview of the tool
and some of the key design decisions (Section 10.2.1) and overall architecture
(Section 10.2.2). After that, we present a walkthrough of the tool, showing the
various capabilities and user interface choices (Section 10.2.3).

10.2.1 Overview and Design Decisions
With the Statechart Workbench, we implemented and combined the techniques
from Chapters 6 to 9. In order to lower the threshold for users to use the pro-
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posed techniques, we designed the Statechart Workbench around the following
guiding principle:

The user should be able to easily, quickly and seamlessly explore
the behavior in an event log using an array of chained algorithms.
Moreover, the user should be able to interact with the produced mod-
els and results and inspect the effects of different parameter settings
in a near real-time fashion.

Many of the more mature process mining tools follow this guiding principle.
Examples include but are not limited to: the Inductive Visual Miner [132], the
Interactive Data-aware Heuristic Miner [138], Disco [76], and Celonis [51].

Following this guiding principle, the Statechart Workbench is designed as a
process exploration workflow tool. We put the discovered model central in the
tool and we allow users to interactively change various parameters in near real-
time, thus encouraging the exploration of the parameter space and observed
behavior. We use an automated chain of algorithms, i.e., a workflow, to limit
the number of user interactions needed. Furthermore, to quickly provide the
user with initial results, we provided configuration presets for common use cases
and tuned certain parameter defaults to reduce initial computation times.

The Statechart Workbench is available as a plugin for the Process Mining
Toolkit ProM [187], leveraging existing work inside ProM and allowing users
to use our work together with the various other process mining techniques. In
the architecture description below, we will highlight key examples of the above
design decisions.

10.2.2 Software Architecture
At the core of the Statechart Workbench is the Workbench Workflow, as de-
picted in Figure 10.3. This workbench workflow implements the automated
chain of algorithms and tasks. Each of the depicted tasks (the chevrons in the
figure) has some parameters. To encourage exploration, a user can change any
parameter at any time. Whenever a user changes one of the inputs, automatic
background computations are triggered such that as few tasks as possible are
recomputed.

Each step in the Workbench Workflow has a well-defined functional inter-
face based on its input-output models. This setup allows us to easily switch
individual algorithms and extend the workbench with new features. Note how
the tasks compare to the artifacts in the Translations and Traceability Frame-
work in Figure 9.1 on page 260. Below, we will discuss each step in turn.

Prepare Hierarchy – In this step, we allow the user to select a heuristic
for hierarchy for the hierarchical and recursion aware discovery. Based on the
discussion in Section 6.2.4 on page 116, we implemented the heuristics and
options listed below.
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Figure 10.3: The Statechart Workbench workflow. The chevrons indicate
algorithms and tasks chained into the workflow. Beneath the chevrons, de-
scriptions regarding the user input or used algorithms are displayed. The
tasks are grouped based on the main type of model involved. Whenever an
input changes, only the minimal number of tasks are recomputed.

• The Nested Calls heuristic is a preconfigured variant of the nested inter-
vals, which by default looks for nested method calls based on lifecycle
information, a common pattern in software logs.
• The Structured Names heuristic uses a split symbol approach over activ-

ity names. By default, this heuristic is configured on the dot (.) symbol to
split package-class names like org.processmining.Main.main() into a hierarchy
over the static package structure or “architecture”.
• The Pattern Names heuristic matches an exact pattern, using regular

expressions, over activity names to form a hierarchy.
• The Multi Attributes heuristic uses a sequence of classifiers or attribute

names to infer a hierarchical event label sequence. This heuristic is very
effective where events have been annotated with external information
such as source code information, domain knowledge, or patterns inferred
by domain experts or other (ProM) tools.
• The Single Classifier option essentially allows one to bypass or disable

the hierarchical discovery, by inferring a single level of hierarchy.
• The Existing List Classifier option assumes an existing atomic, list-based

structure in the event log, encoding hierarchical information much like
Definition 6.2.2 on page 114.

In addition, we provided two presets to allow users to quickly bypass the heuris-
tics configurations and just get an initial model discovered.
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• The Normal Log preset assumes regular, flat (business) event logs. In
this preset, we use a default single classifier setup without any cancelation
trigger oracle (see next step). This preset allows users to just get started
with most (non-software) event logs.
• The Software Log preset assumes a typical software event log focussing on

internal software behavior, such as the logs produced by our Instrumen-
tation Agent. In this preset, we use a default nested calls setup with the
default software cancelation trigger oracle (see next step). This preset
allows users to just get started with typical software event logs.

Prepare Cancelation – In this step, we allow the user to select a trigger
oracle for the cancelation discovery. Based on the heuristics discussion in
Section 7.3 on page 173, we implemented the options listed below.
• The Handle Exception heuristic is designed to work together with the
Nested Calls hierarchy heuristic, utilizing software domain knowledge.
We assume that the start of an exception catch region is logged via a
so-called handle event and detectable via a special lifecycle transition.
The Nested Calls hierarchy heuristic detects and prepares such events,
and the Handle Exception heuristic extracts these events to populate the
cancelation trigger oracle. This heuristic covers typical software event
log cases, such as the ones produced by our Instrumentation Agent.
• The Manual option allows users to select specific activities for the trigger

oracle, using, for example, naming semantics or their domain knowledge.
Apply Filters – After the heuristics are applied, we apply a simple activ-

ity frequency filter and prepare the event log data-structures for the adapted
Inductive Miner discovery framework.

Discovery – In the discovery step, we can either execute the Naive Hier-
archical Discovery (Section 6.4) or Recursion Aware Discovery algorithm (Sec-
tion 6.5), and we can optionally mix in the Cancelation Discovery (Section 7.4)
and existing Inductive Miner extensions like infrequent discovery (Section 4.4).
Note that we used the two hierarchical discovery algorithms as a basis, and
mix in the cancelation as an option. This is because the hierarchical discovery
is, implementation wise, much more involved, especially when considering the
delayed discovery from Algorithm 6.2. For the hierarchy-cancelation mix ap-
proach, we used the approach suggested in Table 7.5. The result is an extended
process tree with both hierarchical and cancelation features.

Connect Model and Log – After discovery, we establish a relation be-
tween the model and log. For this step, we provided two implementations:
approximation-based and alignment-based connections. The alignment-based
approach uses the normal alignments algorithm using a Petri net view of the
discovered extended process tree, as discussed in Section 8.2. After an align-
ment has been computed, the results are projected back onto the process tree by
precomputing several data-structures, see also the discussion in Section 8.5.2.
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Since these alignments computations can be quite expensive, we also pro-
vide an alternative. The approximation-based approach is a first attempt at
the concept discussed in Future Work 8.4 (see page 257). We use the suggested
event-model mappings provided by the log splitting inside the Inductive Miner
framework. The advantage is that these computations are very fast, hence it is
the default setting when first discovering a model. The disadvantage is that we
have no guarantee that the resulting mapping and derived metrics are accurate
and reliable.

Metric Annotations – Based on the user selected performance/confor-
mance metrics, several data-structures are preconfigured for the right metrics
to be computed. We use a delayed computation implementation for the actual
metric computation itself. This way, metrics are only computed when used in
the visualization. The main reason for this design choice is the post-processing
in the next step: if parts of the model are hidden, then we do not have to
compute the metrics for the hidden parts. Note that when a different metric
is selected, most of the data-structures can be reused without recomputations.

Post-Processing – During post-processing, we apply two transformations
to the discovered extended process tree. First of all, we apply the reduction
rules from Tables 2.1 and 7.3. This helps in providing a visually simpler model.
Next, we apply user-chosen hierarchical depth filters. In Section 10.2.3, we will
discuss a coarse-grained and a fine-grained way for setting up the hierarchical
depth filters. For now, the idea of depth filtering is illustrated in Figure 10.4. A
minimum depth filter trims parts near the root of the process tree. This can be
useful when interesting (software) behavior is obfuscated by initial abstraction
layers such as main() and run() functions. A maximum depth filter hides details
of named subprocesses. This can be useful when one initially starts exploring
a model by hiding unnecessary details.

Model to Model Transformations – After the post-processing, we can
start visualizing the discovered and annotated model. The first step is a model-
to-model transformation, to show the results in a model of the users choice.
This step implements the transformations from Section 9.3. By default, the
Statechart visualization is selected, hence the name Statechart Workbench1.

Layout – For the graph-based models (Statecharts, Petri nets) we use
Graphviz DOT [32] for computing a layout, which was already embedded inside
the ProM framework. For the Message Sequence Diagrams, we implemented
a simple layout algorithm that uses the structure in the process tree to order
and arrange MSD messages vertically. For the Process Tree visualization, we
used the compact tree layout algorithm provided by Abego TreeLayout [19].

1 The original reason for choosing the Statechart visualization as default was the earlier
research ideas resulting from a visit by David Harel. Although no real collaboration resulted
from these earlier ideas, we stuck to the Statechart idea as it was a simple, hierarchical
visualization with which we could easily perform various experiments.
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Figure 10.4: Illustration of hierarchical depth filtering. Left is the model
before filtering, and right is the model after filtering. In this example, we hide
everything above x and below y. The dashed arrows relate the changed tree
nodes between both models.

Rendering – After obtaining layout coordinates, the model is rendered as
a SVG vector image. This allows us to provide seamless zooming without loss of
quality. Furthermore, during rendering, we use various decorators to determine
the labels and colors for the visual elements. Note that these decorators use
the prepared metric annotations, kicking of the delayed metric computations.
Using the SVG objects, various user interactions are linked to the shown model,
such as info popups, selections, etc. For more details, see Section 10.2.3 below.

10.2.3 Tool Walkthrough

In the previous sections, we discussed the technical side of the Statechart
Workbench. In this section, we will discuss the user interface, showing how
everything connects and can be used by end users. We will be using the JUnit
software event log [108] as an example in the provided screenshots.

Starting the Statechart Workbench
To open the Statechart Workbench, load an XES event log, and then either
launch the Statechart Workbench log visualizer or start the Discover using the
Statechart Workbench plugin action. See the user manual for more detailed
steps on how to do this in ProM [116].

When the user opens the Statechart Workbench, the user first has to inform
the tool how to interpret their data. The initial screen, as shown in Figure 10.5,
corresponds to the Prepare Hierarchy and Prepare Cancelation tasks in the
Statechart Workbench workflow. In the user interface, the tool provides the
user with both presets to skip all settings and quickly get to the model as well
as a documented and illustrated wizard to set up the details of the heuristics
discussed in Section 10.2.2. Shown on top are the two quick presets to get
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Figure 10.5: The initial Statechart Workbench for setting up the heuristics.
Shown is the list of available heuristics for hierarchy. Presets allows the user
to skip all settings and quickly get to the model.

started with most event logs. If the user chooses to configure the heuristics
manually, the user gets the option to select a hierarchy heuristic, and afterwards
a cancelation heuristic. Note that the activity classifier used for discovery is
set in the hierarchy heuristic, as an activity classifier is already needed for log
preprocessing. Upon selecting a preset or setting up the heuristics, a model is
discovered and the tool switches to the Discovery & Analysis screen.

Discovery and Analysis
After the initial heuristics setup, the user is presented with the Discovery &
Analysis screen as shown in Figure 10.6. In the center of this screen, the
discovered model is shown. On the left, a list of all the activities is shown in
a hierarchical tree view. And on the right, various options and settings are
shown. Using the three big chevrons at the top, the user can go back to select
different hierarchy and cancelation heuristics.

Center panel: Discovered Model – The center panel shows the dis-
covered model. By dragging the screen (left-click and hold on the model), the
user can move through the model. By using the scroll wheel, the user can zoom
in and out. Thanks to the underlying vector image, the user can seamlessly
zoom in and out (see also Section 10.2.2). We provide the user with a minimap
of the shown model to help navigation in larger models.
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Figure 10.6: The Discovery & Analysis screen in the Statechart Workbench.
To the left, global metrics and a searchable activity list are given. In the
middle, an interactive, zoomable model with minimap is given. The model
and list views are linked. To the right, the user can change various settings.

Figure 10.7: Info popup screen in the Statechart Workbench. By clicking on
a model element, the user can access an info popup with several tabs showing
detailed information.
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In the case of hierarchical models, the tool presents plus and minus icons
on named submodels. Via these icons, the user can expand and collapse a
subprocess/hierarchy level. This allows the user to intuitively influence the
hierarchical depth filters in a fine-grained manner.

By left clicking on a node, the user can open up a detailed popup with
more information (Figure 10.7). Here, various details from the selected model
element and the underlying events are shown. The popup includes metrics,
information about the modeled hierarchy and cancelation, and the traceability
information linking back to the source code.

As we will discuss in more detail in Section 10.4, we provided a link between
the Statechart Workbench and the Eclipse IDE. By using the detailed popup
or by double clicking on a model element, the user can open the corresponding
source code line in Eclipse. This action simply uses the available traceability
information as discussed in Section 9.1.2.

Left panel: Activity overview and selection – The panel on the
left shows all the activities in a hierarchical tree view. The search bar at the
top allows the user to lookup specific activities: it filters the shown list. By
selecting activities (left click), the corresponding parts in the center model will
be outlined in red. With control-click, the user can select and deselect multiple
activities at the same time.

In the case of hierarchical models, the user can expand and collapse a
subprocess/hierarchy level by clicking on the tree icons left of the activity
names. These actions again update the hierarchical depth filters accordingly.
Furthermore, the activity list on the left and model in the center are linked:
expanding or collapsing elements in one view updates the other, and vice versa.

Below the activity overview, various model metrics are given. When the
model and log are aligned, the fitness and precision of the discovered model are
shown. In addition, some simple model statistics are given, such as the number
of activities, the discovered hierarchy depth, and the cyclomatic complexity of
the visualized graph.

Right panel: Settings – The right panel shows all the options to ma-
nipulate the discovery settings and analysis overlays. These settings help the
user understand the logged behavior by providing near real-time interactions
for filtering, reducing the visible complexity, and adjusting the model quality.

The three big sliders on top manipulate the activity, path, and level depth
filters for discovery. The activities slider controls the fraction of activities
that is included in the log and corresponds to the Apply Filters step in the
Workbench Workflow. The paths slider controls the amount of noise filtering
applied and corresponds to the infrequent discovery extension in the Discovery
step in the Workbench Workflow. The level depth slider controls the amount
of hierarchy levels shown/collapsed in the model. When exploring hierarchical
models, the level depth slider allows for a coarse-grained depth filtering.
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Below the sliders are several setting buttons. These buttons show the
current settings for discovery and analysis. When you click on these buttons,
a popout allows you to set detailed settings. There are four such settings
buttons: Discovery, Visualization, Analysis, and Export.

Discovery settings – In the discovery settings, the user can switch be-
tween the Naive Hierarchical Discovery and Recursion Aware Discovery dis-
covery algorithms. In addition, the user can change the cancelation trigger
oracle from here. This way, the user can interactively experiment with the
trigger oracle when needed. Furthermore, the cancelation extension as well as
the process tree rewriting can be enabled/disabled from this menu.

Visualization settings – In the visualization settings, the user chooses
the type of model to model transformation to be used. Figure 10.8a shows
the visualization settings panel and the available options. In Figures 10.6
and 10.8a, the statechart visualization is shown in action. In Figure 10.8b,
the process tree visualization is shown in action. In addition, the user can
choose the model layout orientation. Furthermore, the user can toggle the use
of statechart rewrite rules (similar to the process tree rewrite rules), as well as
a visual aid for recursions.

For software logs, several heuristics are available for reducing the size of the
depicted activity labels/names without changing the discovered model, such
as removing the package name from package.class.method() labels. Such reduced
activity names can help simplify the model when using long labels as classifiers.
This setting only changes the displayed/rendered labels via the label decorator
in the Rendering Workbench Workflow step. The underlying model discovery
still uses the canonical names provided by the original classifiers to distinguish,
for example, similarly named classes in different packages.

Analysis settings – In the analysis settings, the user can set up the metric
overlays displayed on the model. Figure 10.8b shows the analysis settings panel
and the available options. Different metrics can be calculated using either the
fast approximation algorithm or the accurate alignment-based algorithms. The
following metrics are provided in the Statechart Workbench:
• Absolute Frequency How often did an activity or method call occur

in the entire event log? Implements Metric 8.1.
• Case Frequency In how many traces/cases did an activity or method

call occur? Implements Metric 8.2.
• Log/Model Frequency Howmany deviations from the discovered model

are present in the log? Implements Metric 8.3.
• Error/Cancel Frequency How many times did a cancel or exception

trigger occur after a given activity? Implements Metric 8.5, configured
to show how often an activity is followed by a cancelation region trigger.
• Duration What was the total duration of an activity or method call?

Uses Metric 8.6 on the nodes, and uses Metric 8.7 on the arcs.
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(a) Shown is the Statechart model visualization with the Frequency metric overlay.
In addition, the Visualization settings panel is opened.

(b) Shown is the Process tree model visualization with the Own Duration metric
overlay. In addition, the Analysis settings panel is opened.

Figure 10.8: Various model visualizations and settings panels available in
the Discovery & Analysis screen in the Statechart Workbench.
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• Own Duration What was the duration of an activity or method call,
minus the time spent in lower method calls or submodels? Implements
Metric 8.10.
• Duration Efficiency How much work was performed divided by how

much time? This can give an efficiency indication in case of multi-
threaded code. Implements Metric 8.11.
• Resource Count How many resources or threads were used to perform

the activity or method call? Implements Metric 8.4.
For the above metrics, the user can choose which event log attributes are to
be used for resources and timestamps, allowing the use of, for example, the
predefined nanotime in our XES extensions from Section 5.3. In addition,
one can choose how to interpret multiset metrics (e.g., min, max, mean, etc.).
Based on the chosen metric setup, the model will be overlayed with a heatmap
via the color decorator in the Rendering workbench workflow step.

To complement the model move frequencies overlay, the user can toggle
whether log moves should be rendered in the model. Based on the underlying
Petri net places and markings, reusing the work from [21, 130], log moves are
positioned inbetween the discovered control-flow elements.

Export as – In the Export as panel, the user can export the model and/or
processed event log either as an image, or as a ProM object for further analysis.

Finally, we included the user manual within the tool itself. See the Manu-
al/Help button with pdf icon in the top right corner in Figures 10.5 through 10.8.

10.3 The Instrumentation Agent
The Instrumentation Agent tool provides a way to instrument Java programs,
and log their execution to XES event logs. This Agent is a reference imple-
mentation to demonstrate how software event logging can be added to existing
programs, and the ideas can easily be transferred to other programming lan-
guages. In Section 10.3.1, we will look at the Agent in more detail, explaining
how the tool instruments a software system and generates events. In Sec-
tion 10.3.2, we will briefly look at the accompanied Event Log Server. This
server records the generated software events into an XES event log, which is di-
rectly usable inside the Statechart Workbench and other process mining tools.
Figure 10.9 provides a schematic overview of the instrumentation process and
shows the Instrumentation Agent and Event Log Server in context.

10.3.1 Inside the Instrumentation Agent
The Instrumentation Agent is a so-called Java Agent, a special Java binary
designed to hook into the Java Virtual Machine (JVM). Via this hook, the
Agent can observe and manipulate classes as they are loaded. The user can
configure which classes should be manipulated to generate log events via a
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Figure 10.9: The Instrumentation Agent process. Schematically is shown
how the Agent is attached to a software system, also known as instrumentation.
Next, when running the instrumented system, software events are generated
and streamed to an event log server for processing.

configuration file. In this way, the Agent uses concepts from Aspect-Oriented
Programming (AOP) to add software event logging to existing programs with-
out modifying the code itself [65]. The generated log events are streamed to
an external program to limit the amount of overhead on the instrumented/ob-
served program. To attach the Instrumentation Agent binary log_agent.jar

to a program binary called myapp.jar, one uses a command like the following:

java -javaagent:log_agent.jar -jar myapp.jar

Now, the Instrumentation Agent can manipulate the bytecode of the classes
to be loaded for myapp.jar. The Javassist [52, 53] library is used to ease the
manipulation of class bytecode. Via a special Instrumentation Configuration
file, we can inform the Agent how the observed classes should be manipulated
via instrumentation rules. Below, we discuss some of these AOP-inspired rules
that can be used in the Instrumentation Configuration file. In these rules, we
will reuse the terminology and event types first introduced in Section 5.3.1 on
page 102. In addition, we will refer to Listing 10.1 for examples.

Method Pointcut
The Method Pointcut2 searches for specific method definitions, and instru-
ments these methods such that the beginning/start and end/complete of these

2 In Aspect-Oriented Programming terminology, a pointcut is a set of joinpoints or loca-
tions in a program where behavior or code such as event generation can be inserted.
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Listing 10.1 Example code snippet showing when which event types are generated
where. This example was first introduced in Section 5.3.1 on page 102

1 class A {

2 void f(int y) { - - - - - - - - - - - - - - - - - - - - - - - - - - call A.f

3 try {

4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - calling B.g

5 int r = b.g(12, y);

6 - - - - - - - - - - - - - - - - - - - - - - - - - - - returning B.g

7 } catch (Exception e) { - - - - - - - - - - - - - - - - - handle in A.f

8 ...

9 }

10 } - - - - - - - - - - - - - - - - - - - - - - - - - - - - return/throws A.f

11 }

12 class B {

13 int g(int x, int y) { - - - - - - - - - - - - - - - - - - - - - - - call B.g

14 return x / y;

15 } - - - - - - - - - - - - - - - - - - - - - - - - - - - - return/throws B.g

16 }

methods generate events. The start, before the first line in the method defini-
tion, generates a call event. The end, right before a method returns or throws
an exception, generates a return or throws event respectively. In the Method
Pointcut, the user can configure specific name patterns for inclusion, option-
ally using wildcards. These name patterns are matched against the canonical
package.class.method(parameters) name. Hence, the Method Pointcut can be used
to instrument entire classes and (sub)packages. For example, in Listing 10.1,
using * as a wildcard, the pattern A.* matches the method A.f(int) but not
B.g(int,int). In this example, the instrumentation would generate the events
call A.f and returns/throws A.f, but not call B.g or returns/throws B.g.

Optionally, the user can indicate whether constructor methods and method
parameters should be included in the event generation. In addition, the user
can indicate if the start of catch(Exception) blocks should generate handle events,
for example for cancelation discovery (Chapter 7). See for example handle in

A.f on line 7 in Listing 10.1.

Method-Call Pointcut
The Method-Call Pointcut searches for specific method calls in specific con-
texts. In contrast to the Method Pointcut above, a Method-Call Pointcut event
is generated at the place where a method f calls a method g. The Method-Call
Pointcut instruments a method f such that it generates calling and returning

events for called/invoked methods g. In the Method-Call Pointcut, the user
configures two name patterns for inclusion, optionally using wildcards. The
include pattern searches for context methods f to consider for instrumenta-
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tion. The call pattern searches for called/invoked methods g inside the body
of method f for generating software events. Like before, the patterns are
matched against the canonical package.class.method(parameters) name. For ex-
ample, in Listing 10.1, using * as a wildcard, the include pattern A.* matches
the method A.f(int) and the call pattern B.* matches the method B.g(int,int).
In this example, the instrumentation would generate the events calling B.g

and returning B.g inside method A.f(int).
There is a subtle difference between the Method and Method-Call ap-

proaches. Both trace the execution of called or invoked methods. However,
the Method-Call Pointcut approach observes from the place where the method
is being called, while the Method Pointcut approach observes from inside the
called method. Recall the software location information from Section 5.3.3 on
page 105. The Method-Call approach can track the callee and caller location,
whereas the Method approach can only track the callee location. In addition,
the Method approach resolves the location to the actual method being exe-
cuted, whereas the Method-Call approach only records the referenced method
definition, without any dynamic effects like overloading being resolved. For
example, suppose that variable b on line 5 in Listing 10.1 is declared as type
class B but points to an instance of class C extends B. Using the Method-Call
approach, we would generate a calling B.g event, containing information from
callee B.g and caller A.f. Next, using the Method approach, we would generate
a call C.g event, containing only information from callee C.g.

Interface Pointcut

The Interface Pointcut searches for implementations of specific interface meth-
ods. The instrumentation works exactly the same like the Method Pointcut
and Method-Call Pointcut above. However, instead of matching on canonical
method names, we specify an include pattern over canonical interface names
package.interface. Whenever we consider a class A for instrumentation, we check
all the interfaces I implemented by that class. Whenever an interface I matches
the specified include pattern, we retrieve all the methods declared in that in-
terface. For each of the interface methods retrieved this way, we instrument
the corresponding method implementation in class A as if it were matched by a
Method Pointcut or Method-Call Pointcut. Hence, this Pointcut can be used
to instrument specific interfaces or APIs.

Endpoint Pointcut

The Endpoint Pointcut searches for specific endpoint communication classes
such as Sockets and classes implementing the Servlet interface. By using knowl-
edge of the corresponding interfaces, this Pointcut generates call and return

events with explicit communication details such as the local and remote IP ad-
dress and port numbers used in the observed communications. This way, this
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special Pointcut allows us to log enough information to track and correlate
software events across application boundaries. We can leverage this additional
information to, for example, infer business transactions, as discussed in Sec-
tion 5.1.3 on page 95. See also the work in [119].

10.3.2 Logging Software Events

In the previous section, we discussed how the Instrumentation Agent can gener-
ate software events for specific locations in a program. When the instrumented
software is running, a stream of software events is being broadcasted. One
possible use of this software event stream is to apply online profiling analytics
(e.g., like gprof [73] or Yourkit Profiler [136]), or applying online/streaming
process mining techniques [8, 203, 205]. Another approach is to simply record
the generated software events into an XES event log. The Event Log Server
does exactly this, providing a XES log file which is directly usable inside the
Statechart Workbench and other (traditional) process mining tools.

As simple as the concept of the Event Log Server sounds, there are various
design decisions and challenges to account for. Although the details are out of
scope for this thesis, we will sketch some of the challenges below.

First of all, one has to consider how the Instrumentation Agent and the
Event Log Server communicate. Which technique and protocols should be
used? What is the incurred overhead, and what effect does this have on (the
performance of) the observed software system? How can the chosen technique
and protocol be used to simultaneously track and log multiple concurrent ex-
ecution threads? For example, our (naïve) Event Log Server implementation
simply uses TCP or UDP sockets to listen to broadcasted software events.
However, (Java) TCP connections are thread unsafe, and require a sychro-
nization mechanism, introducing (performance) overhead on the side of the
observed software.

Secondly, one has to consider how the Event Log Server tracks cases/traces.
Do we allow the server to receive and observe software events from multiple
software instances at the same time? Such features can be useful when we
observe multiple users simultaneously interacting with our observed software
systems. If we allow the tracking of multiple cases/traces, how do we buffer
the software events and write the resulting (completed) cases/traces to disk?
What are the limitations of the chosen approach in terms of the number of
simultaneous cases/traces and maximum trace length we can track? Consider
the size characteristics of software logs discussed in Section 5.2 on page 96.

With the Event Log Server, one can experiment with implementations of
buffered and non-buffered XES loggers using both TCP and UDP implemen-
tations. As we will further discuss in Chapter 11, more research is needed on
the scalability and tradeoffs of such (software) logging methods.
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10.4 The SAW Eclipse Plugin

The SAW Eclipse plugin3 enables the user to interactively link the results
from the Statechart Workbench back to the source code of the system. More-
over, this Eclipse plugin integrates the Instrumentation Agent tool into the
Eclipse IDE. In Section 10.4.1, we will briefly discuss the Instrumentation
Agent integration provided by SAW. In Section 10.4.2, we will briefly discuss
the Statechart Workbench integration provided by SAW.

10.4.1 The SAW Instrumentation Agent Integration

The SAW Eclipse plugin embeds the Instrumentation Agent and Event Log
Server tools discussed in Section 10.3. Via convenient Eclipse Run As UI ele-
ments named Java Application – Instrumented and JUnit Test – Instrumented,
the SAW plugin takes care of properly attaching the Instrumentation Agent
binary to a selected program or unit test run respectively. In addition, the
SAW plugin can automatically start and manage the accompanied Event Log
Server in the background. This way, users can run their program or unit test
as they normally would from their Eclipse IDE. The corresponding XES event
log will simply appear in the Eclipse project folder upon termination, and can
directly be imported into ProM.

The points in the software that will be instrumented and observed by the
Agent is managed by the Instrumentation Configuration file as normal. The
SAW Eclipse plugin can provide the user with visual aids, showing which lo-
cations in the source code will be instrumented upon run based on the actual
Instrumentation Configuration file. Figure 10.10 shows these instrumentation
visual aids in the various Eclipse views, such as the source code editor, the
package explorer and the code outline.

10.4.2 The ProM-Eclipse Link

The SAW Eclipse plugin also provides a link to the Statechart Workbench in
ProM. Via a simple TCP connection, dubbed the ProM-Eclipse link, the SAW
plugin can receive information and requests from the Statechart Workbench.
Below, we will discuss two use cases using this ProM-Eclipse link.

First of all, the link allows the Statechart Workbench to request a specific
source code line to be brought into focus. Upon receiving such a request, the
SAW Eclipse plugin can locate the corresponding source code resource, and
open an editor at the indicated line number. This way, the user can open
specific locations in the source code corresponding to model elements in ProM
using the available traceability information as discussed in Section 9.1.2. This

3 SAW stands for Software Analysis Workbench. It reflects the vision to incorporate the
Statechart Workbench tool into the Eclipse IDE, providing an integrated analysis solution.
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Figure 10.10: The SAW Eclipse plugin. The SAW View panel at the bottom
provides settings for the ProM-Eclipse link (SAW Connection) and the Instru-
mentation Agent and Log Server integration. The annotations in the Package
Explorer and Outline to the left as well as the source code annotations to
the right show the user which points/locations in the source code will be in-
strumented when executed. The background color and information tooltips
provide additional details for each source code location, including information
from the Statechart Workbench in ProM such as execution frequency.

allows users to, for example, inspect the source code corresponding to interest-
ing control-flow elements, particular performance hotspots such as bottlenecks,
or deviations such as outliers.

In addition, the ProM-Eclipse link allows the SAW plugin to receive infor-
mation from the Statechart Workbench, and project it onto the source code
resources. For example, Figure 10.10 shows how the frequency metrics calcu-
lated in the Statechart Workbench can be projected over source code locations
using background colors and annotations with detailed tooltips.

Finally, the ProM-Eclipse link also allows information to be sent from
Eclipse back to ProM. Although not used in the current implementations,
this link allows, for example, to highlight parts in the process model with high
complexity (for some source code based complexity metric), indicating where
in the control-flow errors or mistakes are more likely. See also the discussion
in Future Work 8.5 on page 257.
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10.5 User Experience Evaluation
In this section, we present a preliminary user study of our tool and the user
feedback obtained during this user experience evaluation. Rather than a large
tool or user experience evaluation, this evaluation focusses on a small-scale as-
sessment of the tools with the goal of gaining initial insight into the usefulness
of and possible improvements for the proposed approaches and implementa-
tions. Below, we first present our methodology and setup (Section 10.5.1), after
which we discuss the evaluation results and initial insights (Section 10.5.2). We
conclude with a brief discussion on the threats to validity (Section 10.5.3).

10.5.1 Methodology
In this user study, we observed six participants using our tools and provided
them with a little questionnaire before and afterwards. The participants were
selected to have at least a master’s degree in computer science, and to have
several years of experience in developing software. At the start of the user
study, we asked participants to rate their prior knowledge on a four-point Likert
scale and list their expectations prior to seeing or using the tools. Figure 10.11
shows the obtained background knowledge distribution of the participants.

0% 20% 40% 60% 80% 100%

Experience writing software

Experience debugging software

Experience profiling software

Understanding somone else's code

Experience reverse engineering

Familiarity Process Mining

Experience Process Mining

Very much Much Not so much Not at all

Figure 10.11: Background knowledge distribution of the participants.

After the initial questionnaire, we provided the participants with a prein-
stalled setup of our tool, the JUnit dataset [108], a list of instructions, and
a short tutorial manual similar to the user manual [116]. Recall, the JUnit
dataset consists of 946 events describing 182 unique activities (method call/re-
turn) with a discovered hierarchy depth of 25 nested submodels (i.e., nested
method calls). The list of instructions explained the general purpose of the
tools, the context, and lists several tips and questions designed to encourage
participants to use and explore the tool. The provided tutorial manual explains
how to access the plugin in ProM, explains the main screens, and describes the
tool features to help users get started.
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During the user study, we observed the participant’s interaction with our
tool and recorded what they were doing at which time. For these observa-
tions, we focussed on what the participants tried to do, what worked, what
participants found confusing, and what they were missing.

After completing the tool tasks, we asked the participants to give feedback
on the tool. We used this open-answer type of feedback to check hypotheses
formed during observations, and obtain a view of how users experienced the
tools. In addition, we asked the participants to fill out a user experience
questionnaire using the methodology from [106]. In this questionnaire, user
experience is rated via 26 items on a seven-stage scale, each represented by
two terms with opposite meanings. These items are weighted and combined to
rate the user experience on six scales:
• Attractiveness – What is the overall user impression of the tool? Do

users like or dislike the tool?
• Perspicuity – Is it easy to get familiar with the tool? Is it easy to learn

how to use the tool? Is there a (steep) learning curve?
• Efficiency – Can users solve their tasks with the tool without unneces-

sary effort? Is the tool perceived as responsive and practical?
• Dependability – Does the user feel in control of the interaction? Is the

tool predictable and supportive?
• Stimulation – Is it exciting and motivating to use the tool?
• Novelty – Is the tool innovative and creative? Does the tool catch the

interest of users?
To evaluate the overall user experience, we use the benchmark from [106],

comparing our tool on the six scales mentioned above against a dataset from
246 product evaluations across 9905 participants4. This benchmark compari-
son gives us a better picture on the quality of our tool and offers a first indicator
for what is perceived as good and what types of improvements can be made
to improve the user experience.

10.5.2 Evaluation Results
Below, we first discuss the observations and the feedback obtained during the
user study (Section 10.5.2). After that, we evaluate the user experience eval-
uation, and relate these results to the made observations (Section 10.5.2).

Observations and Feedback
Based on our observations, we could divide the participant’s efforts into clear
tasks. Participants approached each question in the list of instructions by a
serie of tasks, divisible into initial tasks and later tasks. We noted that the

4 Users form expectations during interactions with various software products. The ques-
tion whether a product’s user experience is sufficient can be estimated by comparing it to
many other commonly used products [106].
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initial tasks are more explorative: before diving into specific questions and de-
tails, the participants first needed to get their bearings and get an overview of
the behavior and performance aspects. Later tasks are more focussed : the par-
ticipants used their obtained overview to effectively zoom in to specific parts of
the model. Here, we noted that for the initial tasks participants switched often
between different types of model visualizations (e.g., statecharts, process trees,
etc.). We concluded that for different kind of analysis efforts and questions,
participants preferred different types of model visualizations. In later tasks,
participants inspected the model visualizations in more detail. The named sub-
model expansion and collapsing and metric heatmaps were extensively used
to manage and navigate the process complexity. Occasionally, participants
switched and compared different model visualizations and the corresponding
source code locations to confirm observations. That is, in the later tasks,
participants build hypotheses based on one visualization, and check these hy-
potheses across different visualizations and between models and the underlying
source code (in both directions). When asking participants about their favorite
visualization settings, we were surprised by the popularity of the process tree
visualization. Especially when annotated with various metric overlays, partic-
ipants found this visualization very insightful. We expected to use the process
tree visualization only internally for tool debugging purposes, but the partic-
ipants informed us this tree visualization closely represents the software call
graphs they were familiar with.

During the feedback session, the participants recognized and confirmed the
initial and later task approach sketched above. Furthermore, the participants
commented that the search, highlight and level depth filter (both sliders and
the named submodel expand/collapse) aids were of great use. However, the
participants also commented that these model exploration and filtering aids
should be further improved. In particular, the search functionality should not
only highlight parts of the model, but actively pan and zoom areas of inter-
est into view focus. Furthermore, participants advised to include model-level
filters, going beyond simple named submodel expand/collapse functionality
and allowing them to hide and dismiss uninteresting areas in the control-flow
model. Moreover, participants noted that such model-level filters could help
them explore local performance metrics by excluding known or uninteresting
bottlenecks in other parts of the model and rescaling performance heatmaps.

The participants noted that, although the basics of the tool were not per-
ceived as difficult, many of the more advanced features and settings could
benefit from more explanation, for example via legends, examples, and tooltips
inside the UI. In addition, participants advised to improve the graph layout
algorithm (Graphviz DOT [32]) to provide more consistent and predictable
visualizations, especially for named submodel expand/collapse interactions.
Furthermore, participants found the source code link to Eclipse really useful,
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and suggested to improve and expand this type of integration between models
and source code artifacts. Lastly, participants provided several suggestions for
visualization improvements and different performance metrics. The cumulative
duration metric (Metric 8.9) is one example result from this feedback session.

User Experience Evaluation
Figure 10.12 shows the user experience questionnaire (UEQ) results for the
tool user study. The comparison of the results for the tool with the data in
the benchmark allows us to derive conclusions about the relative quality of the
tool compared to other tools [106].

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

Excellent

Good

Above Average

Below Average

Bad

Mean

Figure 10.12: User experience questionnaire (UEQ) results for the tool user
study. The black diamonds indicate the UEQ results with 95% confidence
intervals. The background colors provide a comparison against the benchmark
from [106], indicating the relative quality of the tool compared to other tools.

Overall, we got very positive feedback from our participants, as confirmed
by the UEQ results in Figure 10.12. As we also observed, the participants really
explored the data and rated our tool as very attractive, efficient, stimulating
and novel. In particular, participants rated the multiple, linked visualizations
and source code integration, as well as the interactive hierarchy folding and
unfolding as indispensable, novel, and stimulating. This confirms the benefits
of our guiding principle on page 279: it is worth the effort to provide a seamless
integration and near real-time interaction with various models and an array of
algorithms and techniques.

In the UEQ results, we noted a slightly lower dependability score, around
the above/below average division. Based on the feedback results, we attribute
this lower dependability score to a combination of several factors. The per-
ceived learning curve and the need for more explanation (e.g., legends, ex-
amples, tooltips, etc.) cause the user to perceive the tool as less predictable
and supportive. The non-determenism of the used graph layout algorithm
(Graphviz DOT [32]) as well as the subtlety of the discovery parameters cause
the user to feel less in control of the interactions.
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Lastly, we noted a relatively low perspicuity score, with a relatively large
confidence interval. This suggests a large variety in the perceived learning
curve amongst participants. Participants noted two reasons for the perceived
learning curve: 1) the extensiveness and complexity of the tool itself, and
2) the complexity of the discovered process models. We already commented
on reason 1 with the need for more in-tool explanations. Reason 2 explains
the large confidence interval. Participants have different expectations regard-
ing how software should be visualized based on their prior experiences and
backgrounds. When the visualizations did not match their expectations, they
reported the presented process model as more complex and difficult, and thus a
higher learning curve and lower perspicuity score. Although we accounted for
these expections with the various model visualizations provided, the UEQ re-
sults stressed how much these visualizations influence the usability of the tool.
Despite these results, participants still indicated that they considered the tool
to be more accessible than average (academic) tools and ProM plugins.

10.5.3 Threats to Validity

This section discusses the validity threats in our experiment and the manners
in which we have addressed them.

Internal Validity – There exist two major validity threats with the above
case study: 1) the objectivity of the users, and 2) the number of participants.

Naturally, due to our involvement and the use of open-answer type of ques-
tions at the end of the study, we risk affecting the objectivity of the users. We
mitigated this treat by taking into the account the more unbiased responses
users gave on the a priori expectations questions (written form) and the re-
sponses to the user experience questionnaire (filled in before the open-answer
type of questions).

Secondly, the small sample of participants (six) also threatens the validity of
the above results. Recall that the goal of this user study is to gain initial insight
into the usefulness of and possible improvements for the proposed approaches
and implementations. Hence, to (partly) mitigate this treat, we performed a
quick confidence interval-based analysis, as provided by the user experience
questionnaire framework [106]. Based on this analysis, we can conclude that
only for the perspicuity scale we would need more participants for an accurate
result; all other scales show a sufficient high agreement amongst participants.
The low accuracy/large confidence interval of the perspicuity scale was already
taken into account in the discussed above.

External Validity – The major external validity threat is the selection
of the participants, i.e., to which degree can the conclusions from our user
study can be generalized? We partly addressed this thread by diversifying our
participants on background knowledge, as discussed in Section 10.5.1 (see Fig-
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ure 10.11). However, we acknowledge that with a larger follow-up user study,
special care should be taken to select participants with more diversification in
terms of background knowledge, experience, and demographics.

10.6 Conclusion

In this chapter, we presented three tools that implement and consolidate the
discussed work (Contribution 6). The Statechart Workbench tool is a novel
software process discovery, analysis, and exploration tool and implements the
techniques from Chapters 6 to 9. The Instrumentation Agent tool is a Java
agent capable of producing a ready-to-use XES event log when loaded with a
Java program. The SAW Eclipse plugin provides a user interface for the In-
strumentation Agent and enables the user to interactively link the results from
the Statechart Workbench back to the source code locations inside the soft-
ware system. A preliminary user experience evaluation showed the strengths
and weaknesses of the proposed tools, and showed how the ideas from Chap-
ters 6 to 9 are relevant and useful in practice. All of the above tools are open
source and publicly available. In addition, documentation, readmes, and a tool
screencast are provided.

With the tools and evaluation results presented in this chapter, there are
several interesting research directions for future work.

� Future Work 10.1 — Investigate Log Architecture Scalability and Tradeoffs.
As suggested in Section 10.3.2, there is a tradeoff between completeness and
accuracy in logging software. To improve the scalability of logging, certain
companies have employed a distributed logging infrastructure to mitigate some
of the logging overhead. Typically, such distributed logging infrastructures are
used to collect and store so-called clickstreams, i.e., streams of events capturing
how a large number of users interact with a software system such as an online
webservice. In such setups, an observed software system generating events
distributes these events over multiple logging systems/servers, thus reducing
the impact of high-velocity event generation [26]. However, to the best of our
knowledge, no investigations have been made in employing such techniques for
fine-grained software sampling and tracing. In short, how can such scalable
logging architectures help in capturing more fine-grained software behavior
with minimal impact on the observed performance? And what tradeoffs exist
between scaling the logging infrastructure and the accuracy and completeness
of observed events?

� Future Work 10.2 — Model-Level Filters. With the discovery techniques and
tools in this thesis, larger and more complex process models can be discov-
ered and investigated. These large and complex process models call for novel
techniques and aids in assisting the user to navigate the modeled behavior and
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performance characteristics. As noted in Section 10.5.2, tool users found there
is a need to apply model-level filters. That is, filters on parts of the model that
help users explore local behavior and performance metrics, by excluding known
or uninteresting behavior in other parts of the model, and thereby rescaling
performance heatmaps. Such model-level filters should hide parts of the model
indicated by the user, and not remove the corresponding event data from the
analysis workflow. Ideally, the user is visually reminded of the hidden model
elements in a fashion similar to the collapsed named submodels.

� Future Work 10.3 — Custom Traceability Annotations. In Future Work 8.5,
we already suggested to include traceability to the source code and other static
artifacts. In the evaluation in this chapter, we observed the added benefit of
source code traceability from the model to the code artifacts. In this case,
the traceability was directly derived from available location information in
the logged software events. However, system analysts and domain experts
also have other types of traceability information available, for example from
API descriptions, code generators, and domain-specific models. Hence, we
propose to allow the software analysis tools to accept such notions via custom
traceability annotations, possibly using an oracle or dictionary-like approach.
This way, the discovered process models can be further enriched with links to
other (static) artifacts and domain concept annotations.

� Future Work 10.4 — Linked Views. In the evaluation in this chapter, we
observed the added benefit of viewing the same behavior via different types
of model visualization. In addition, we observed how users can benefit from
the linking between the activity list on the left and model in the center of
the Statechart Workbench (see page 286). Hence, we propose to extend these
ideas to more advanced linked views, by allowing users to see different types
of model visualization side by side, synchronizing focus, selections, highlights,
and more across the different views.
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The Software Process Analysis
Methodology

In this chapter, we present a methodology for obtaining and analyzing software
event log data in a structured way (Contribution 1). Section 11.1 motivates
the need for a software process analysis methodology. After that, Section 11.2
introduces and describes the proposed methodology. Next, Section 11.3 dis-
cusses some practical concerns associated with the software process analysis
methodology. Finally, Section 11.4 wraps up this chapter.

11.1 Introduction and Positioning

In this section, we introduce and position the need for a methodology for
analysing software processes. Below, Section 11.1.1 starts by motivating the
need for such a methodology. After that, Section 11.1.2 presents a small dis-
cussion of related work methodologies.

11.1.1 Why we Need a Software Process Analysis Methodology
Analyzing software starts with the actual, runnable software system itself.
From this running software system, one needs to extract event data before
any process mining can be applied. Extracting such event logs from running
software systems is far from trivial (Challenge 6). Moreover, extracted software
behavior and event data differ from business process event logs in several ways.
Software event data has different properties and contains different patterns and
structures not commonly found in business process event logs. In addition, the
transformation of software logging data to event log traces is far from trivial.
In practice, one has to decide on what constitutes a software event, and how
events are grouped into cases/traces in a software-analysis setting. Chapter 5
already discussed some of these challenges. In addition, for a true round-
trip analysis, any insights gained from the process mining analysis need to be
related back to the software system domain. Hence, there is a need for tracing
process mining results back to software artifacts like the actual source code
that generated the event data (Challenge 1).
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In industry, like with data mining some years ago [198], there is the expecta-
tion that process mining is a push-button technology. This is not true: process
mining is complex and requires various tools, steps, and people. Moreover,
as discussed above, when applying process mining for analyzing software, the
process becomes even more complex. A methodology can help to understand,
structure, and manage the interactions along such a complex process.

11.1.2 Related Methodologies
Within the fields of data and process mining, efforts have been made to es-
tablish methodologies to support practitioners, guide planning and execution,
and save time and costs. Two widely used data mining methodologies are
CRISP-DM [198] and SEMMA [102]. However, these methodologies are very
high-level and provide little guidance for software or process mining specific
activities [8]. Well-known process mining methodologies are the Process Di-
agnostics Method (PDM) [41], the L∗ life-cycle model [8], and PM2 [64]. The
scope of PDM is limited to smaller projects; only a small number of techniques
is covered. L∗ is mainly designed for analyzing structured processes, but covers
more techniques than PDM. To the best of our knowledge, PM2 is the first
process mining methodology to explicitly encourage iterative analysis, which
is vital in any large and complex analysis project.

When analyzing large and complex software system processes, an iterative
approach is vital. In contrast to traditional data and process mining projects,
the software system under study can and should be included in the iterative
analysis methodology. For large software systems, it is often infeasible and too
costly to log everything and a scoping selection has to be made. By including
the system under analysis, we can quickly obtain new data where needed, and
investigate the system in different configurations and at different abstraction
levels. To the best of our knowledge, no existing methodology includes and
leverages data generation (i.e., the software on the run) together with explicit
knowledge about the software system (e.g., the source code) in the analysis.

11.2 The Software Process Analysis Methodology
The Software Process Analysis Methodology is described in terms of six phases,
and is summarized in Figure 11.1. For each phase, we collected a list of concrete
tasks, and provide some pointers and common questions to consider. Observe
that, in contrast to existing methodologies discussed above, the software system
and the data extraction phase are included in the analysis cycle. By including
the instrumentation of the system in the analysis cycle, we can quickly obtain
new data where needed, and investigate the system in different configurations
and at different abstraction levels. This way, the methodology allows for a fast
feedback loop. The remainder of this section discusses each phase in detail.
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Figure 11.1: The Software Process Analysis Methodology. Shown are the six
phases and main artifacts involved. The solid arrows indicate only the most
important and frequent dependencies between phases. The dashed arrows
suggest how the analysis results are related back to the software artifacts.
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11.2.1 Phase 1 – Planning and Scoping

This initial phase focusses on understanding the business and project problem
and goals as well as understanding the involved domain, software system, and
the scope of the analysis. At the end of this phase, one has defined: a) a
project plan, and b) a scoping of the software system included in the analysis.
We recognize the following concrete tasks.

Determine Goal – First of all, one should determine the goal of the soft-
ware analysis project. That is, one should agree upon an analysis direction,
and select the right research questions. With every project, there are vari-
ous stakeholders with different business goals and business objectives. Why
does one want a software process analysis? What are the expectations? What
outcomes and results are expected, and is there a deployment vision? Are
we reengineering and documenting a legacy system? Are we seeking a formal
model for some model-driven engineering efforts? Are we analyzing perfor-
mance aspects for maintenance? Etc.

After a clear picture of the high-level goals and objectives is obtained, one
needs to consider how these goals and objectives can be translated to process
mining goals. Which software processes are we going to analyze? Are certain
types of models expected to be discovered (e.g., behavioral process models,
prediction models, etc.)? Are certain performance insights, behavioral pattern
insights, or deviation insights expected? Together with establishing the process
mining goals, one should agree upon an analysis direction and formulate a set
of research questions. These research questions should be formulated such that
they are related to the selected processes can be answered based on event data.
That is, what are we be looking for in the data? On which process or software
elements should we focus? Etc.

Project Plan and Project Team – Before starting the analysis project,
also a preliminary project plan and initial assessment should be made, taking
into account all stakeholders. Based on the goals and objectives we determined
above, one should make an inventory of the available resources. In addition,
one should assess if there are additional requirements for the analysis, and
which constraints need to be taken into account. For example, for our analysis,
do we need access to certain systems? Are there special hardware platforms,
machines, or computing time involved? Do we need time with specific domain
experts, and do we have an associated cost, budget, or time constraint? Note
that the process analysts are often not the domain experts for the system
under study [41, 64]. Hence, the analysis should be performed in a project
team, involving stakeholders and domain experts. In such a team, the domain
expert does not need to completely understand the specific software being
analyzed in detail. Instead, the expert could save time and effort in setting up
the basic infrastructure and providing context for the analysis results. Based
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on the above observations, we also need to investigate the associated costs
and benefits as well as the involved risks and develop contingency plans where
needed. E.g., what will we do if we cannot access the required domain expertise,
tools, machines, or software platforms?

System Assessment and System Scoping – For a software process an-
alysis, one should also perform a system assessment and scoping to get familiar
with the domain terminology and knowledge as well as the system architecture
and design. Not only should the analyst be able to translate analysis results to
domain concepts to which the involved experts can relate. The analyst should
also be able to make informed (analysis) decisions taking into account the
software and system context. In addition, one should investigate the means by
how data can be retrieved, i.e., a data retrieval strategy should be chosen [119].
Some examples of possible data sources were listed in Section 5.1.1 on page 91.
Based on the above assessments, we need to perform the associated initial tool
assessments. For example, are there certain software stacks or platforms we
need to work with? Is there a specific environment needed for triggering the
intended behavior? Is there a production, acceptance, or development envi-
ronment that can be used? Is there a simulation or an adequate test suite that
can be used? See also Section 5.1.2 on page 93. Note that a domain expert
could save time and effort in setting up the basic observation infrastructure
and data retrieval.

When selecting a data retrieval strategy, one should note the characteris-
tics and limits of the obtained data. That is, an assessment of the quality of
the logging infrastructure and the retrieved data should be made. For exam-
ple, what is observed and logged, and what is not observed? Is the logging
technique lossy, i.e., is it dropping events? Are there specific components that
cannot be observed? Are specific hidden I/O channels influencing the data or
control-flow, such as databases, files, etc.? How accurate is the obtained tim-
ing information, and which logging overhead is introduced? Is there a tradeoff
between completeness and accuracy, e.g., to which degree is the granularity
of logging affecting the observed timings? In a distributed system, are there
local clocks and clock/timing synchronization issues to take into account? In
Section 11.3 we will elaborate further on the above issues.

11.2.2 Phase 2 – Instrumentation and Data Extraction

Phase 2 is the first phase of the analysis cycle. This phase focusses on data
generation: how and which log data is collected? At the end of this phase, one
has a reproducible and documented dataset to be used in the upcoming data
and process mining tasks. We recognize the following concrete tasks.

Data Extraction Scoping – First of all, a data extraction scoping should
be determined. In the overall goal and system assessment of Phase 1, a spe-
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cific software process and data retrieval strategy was selected. This process
can be observed from many different angles at different levels of granularity.
Furthermore, the exact scoping can differ per research question. That is, not
all research questions can be answered with the same scoping and resulting
data set. For example, which parts of the software, which components, and
which interfaces should be logged? Are there different software versions and
configurations to consider? When observing a software component, are we
logging the internals of the component or only its external interfaces? Which
data aspects do we include, e.g., interface parameters, data structures, etc.?
Recall that there might be a tradeoff between completeness and accuracy. For
broader comprehension and control-flow questions, a detailed scoping might
be necessary, while for specific performance questions, a less intrusive scoping
and sampling can be useful.

Data Collection – Next, data collection can start by running and observ-
ing the system. Care should be taken to verify if the correct data is logged. For
example, when using logging with rotating logs, where log files are periodically
archived or deleted, one should check no crucial information is missing or the
wrong information is included. A good practice in such situations is to clear
and reset the logging setup to a known state. When several logging sources are
used, one should check how event data can be merged and combined. Main-
taining the correct order of events when merging data sources is not trivial,
especially when dealing with possible clock synchronization issues.

When collecting data about user or customer behavior, one should consider
how long the data collection should last. That is, what is a good time window
to observe? When collecting data about internal software behavior, one should
consider if certain setups (e.g., test suites, simulations, etc.) should be exe-
cuted multiple times. Especially when collecting data for performance research
questions and when dealing with multi-threaded software, a statistically stable
dataset should be created. In addition, one should be aware of possible sources
of noise or deviating event data, and account for accordingly. For example, are
there any background or scheduled tasks? What is the current network, cpu,
and memory load on the used computing platform? Should we take warmup
rounds into account (e.g., dynamic CPU clocking, binary and class loading,
virtual machine optimizations, etc.)?

Reporting – For reproducibility and evaluation purposes, the actual in-
strumentation and data extraction process used, as well as the data gener-
ated, should be reported. One should record which software stack was used,
which software versions, and in which configuration. In addition, one should
record which deployment setup was used. Did one use any (API) mockups
or simulated components? On which platform, with which hardware, was the
software deployed? What environment was set up, including external libraries,
databases, etc.? How was the data collected, and what choices were made?
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Finally, one should also provide a short description and statistics of the ob-
tained dataset. How many events, traces, or lines are there in the dataset?
At which granularity was the data logged, and for which research questions
was this data intended? By reporting these choices and properties during data
extraction, one can clearly explain decisions and assumptions at a later stage
to the involved domain experts.

11.2.3 Phase 3 – Data Understanding and Preparation

After obtaining the raw log data, one has to understand and preprocess the
data. By selecting a case and event class/activity identification, one projects
the data onto event logs according to different views. Note that the tasks in
this phase are crucial for the success of the mining and analysis efforts. These
tasks are often very time-consuming: we are dealing with large and complex
data, and data preparation is an error-prone process. After this phase, one has
various reproducible and documented event logs. We recognize the following
concrete tasks.

Understanding and Quality Verification – First, one has to under-
stand and verify the quality of the obtained data. Does the data make sense,
considering the software system and setup used for extracting the data? Are
common log size statistics within the expected range (e.g., number of events,
traces/lines, labels/activities, etc.)? What patterns are there in the dataset?
Are there any data quality problems? And what could be interesting projec-
tions and views for event logs? A good approach is to start with performing a
quick spreadsheet analysis of the data to get a feeling for the log size statistics,
and inspect a few sample data points. After that, a quick dotted chart ana-
lysis [172] using various interpretations can help to get a feeling of the overall
dataset. The goal at this point is not to perform a detailed analysis, but rather
to perform a quick sanity check to catch data extraction mistakes, determine
useful data preparations, and save time later on.

Filtering, Cleaning, and Constructing Data – Usually, one has to
filter and clean the dataset, and construct additional data [8, 64, 119]. This
task can be performed both on the unprocessed data and on the obtained
event logs. When a dataset was obtained from an existing logging or tracing
infrastructure, one usually first needs to parse and reformat the data, and
optionally add typing and semantical information. This is especially true when
analysing an industrial software system, where unprocessed data is likely stored
in a proprietary logging format. A simple model-to-model transformation or
import script usually suffices for this task.

Filtering and selecting data is a frequently used data preparation task for
reducing the logged complexity or focus the analysis on specific parts of the
dataset. As one considers various research questions, one often needs to return
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to the filtering to adjust the focus or try a different selection. In this task,
events, traces, and/or attributes are removed based on various selection cri-
teria and filters. For this task, many different ready-to-use filtering tools are
implemented in ProM. One commonly used approach is borrowed from the pro-
cess cubes approach [5]: slice and dice operations. These operations are based
on attribute filtering. A slice produces a “slice” of the dataset by focussing on
a specific value range for selected data attributes. In contrast, a dice divides
a dataset into multiple smaller datasets by discriminating specific values for
the selected data attributes. For example, one may slice a software dataset by
focussing on specific interface names, and dice the dataset into different logs
based on specific configurations, software versions, or product types. Another
commonly used approach is to group similar traces, also known as variants,
through techniques like clustering. In addition, certain rules can be used to
select and filter event data, such as compliance rules and the windowing and
protocol run techniques introduced in Section 5.1.3 on page 95.

In some cases, not all data is logged, and missing data has to be recon-
structed or completed based on the rest of the dataset. Usually, some merging
and aggregation of data has to be done. Events are sometimes logged at a too
low abstraction level, or crucial parameters and data attributes are distributed
over multiple events. For example, a sequence of interface calls might be about
a particular product id, while only the first call (e.g., a define function, a con-
structor, etc.) explicitly provides the involved product id. In such cases, data
can be inferred from the context and propagated accordingly. Lastly, one may
also need to enrich the log and construct data. Newly added data can be de-
rived from information in the log itself, or it can be added based on external
datasets, external models, or domain knowledge. For example, an architectural
description model could divide interface functions into conceptual phases or
protocols. Such data is usually not (directly) logged, but can be easily added
afterwards. On the one hand, such data could help in transferring insights
between the process analyst and domain expert. And on the other hand, such
data can help in the actual analysis phase by providing additional structure
and information. In this example, such architectural phases or protocols can
be used together with the hierarchical discovery techniques from Chapter 6
to discover more structured process models. For a practical example, see the
industrial case study in Section 12.3.4 on page 343.

Data Projection and View Selection – Next, one applies a data projec-
tion and view selection. Depending on the research questions to be answered,
obtained datasets can be projected onto multiple event logs, each focusing on
a different view. A key question here is how to construct a case notion. Sec-
tion 5.1.3 on page 94 already listed three common approaches for determining
a case notion: instance identifiers, business transactions, and windowing/pro-
tocol runs. In addition, during projection, one defines event class identifiers,
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i.e., what are the activity attributes? In a software event log, one typically can
identify function names or process phases as an event class, but any other com-
bination of attributes is also valid. Depending on the chosen projection and
view, one can annotate the obtained cases with various meta attributes. For
example, is a particular case referencing a product id, a particular batch, or a
specific user? Is this case representing a particular configuration or simulation
setup, and are there other context indicators?

Reporting – For reproducibility and evaluation purposes, the actual pre-
processing and projection used, as well as the data produced, should be re-
ported. From which datasets did we start? What is the quality of this dataset,
and which fixes, if any, were applied? Which filterings and projections were
used to narrow down the dataset? Which view was adopted and for which
research questions was this event log intended? By reporting these choices
and properties during data preparation, one can clearly explain decisions and
assumptions at a later stage to the involved domain experts.

11.2.4 Phase 4 – Mining, Modeling, and Analysis

After obtaining event logs, the actual data and process analysis can take place.
In this phase, various mining, modeling, and analysis techniques are applied.
The different models and analysis results produced yield new insights and new
questions. After this phase, one has various reproducible and documented
results. We recognize the following concrete tasks.

Model Construction – One usually starts with model construction, since
most process mining techniques use a control-flow model as a basis. The model
can either be discovered automatically or a reference model can be constructed.
Reference models can originate from existing documentation and static arti-
facts, domain knowledge, be a result of process repairment, or a manual (re-
construction) effort. Ready-to-use discovery tools like the discovery techniques
in this thesis, various ProM plugins (e.g., the Inductive Miner), or tools like
Disco [76] are often very useful for obtaining a model of software behavior.

Note that, after discovering a software process model, one usually can per-
form a quick sanity check to verify if the preprocessing and discovery were
performed correctly. For example, when a windowing or protocol run tech-
nique was used, one can verify whether the expected patterns are rediscovered.
In addition, if certain patterns or constraints are described in existing (data)
models, one can check if the discovered model complies with such patterns. For
example, if one would observe an I/O software interface, the discovered model
should require a constructor or a method named open() before a method named
close() or release() is allowed. In short, parts of the observed software behavior
is often known or can be inferred, and the the discovered model should a) make
sense, b) verify the known parts, and c) elaborate on the missing details.
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Conformance Checking – One can perform conformance checking to
“confront” process models with real-life behavior captured in event logs. By
aligning observed behavior with modeled behavior, one can gain detailed in-
sight into commonalities and deviations between the logged and modeled be-
havior [21]. In addition, the model quality can be assessed (e.g., fitness and
precision), and compliance rules can be automatically checked. In business
processes, deviations or infrequent behavior often indicate certain situations
where humans deviated from the prescribed process. In software processes, de-
viations or infrequent behavior is still generated by the underlying process and
could indicate interesting edge cases. For example, if one would discover an
80/20 model to describe the mainstream (80%) behavior using a simple (20%)
model, one could align the complete event log to spot where infrequent edge
cases occur. Hence, one could argue that, in a software context, infrequent
behavior can be more interesting than the mainstream behavior.

Finally, when using conformance techniques on a preconstructed model,
deviation analysis can be used to perform automated model repair. In model
repairment, the model is adapted to fit the logged behavior better. For exam-
ple, in the context of software evolution, one could use model repairment to up-
date existing documentation and models, incorporating the observed changes
in the implementation. In contrast to discovery, one would keep the knowledge
already contained in the documentation and improve where needed.

Analyzing Additional Perspectives – By aligning a control-flow model
and event log, additional perspectives can be analyzed. Generally, it is advisable
to first check if the model is as intended and correct, and only afterwards start
the more costly alignment-based analyses. In such an alignment-based analysis,
one is adviced to first perform a quick sanity check using frequency analysis
to see if the numbers for the main parts in the model make sense. After that,
one can move on to an analysis addressing specific research questions.

Frequency, usage, and probability statistics can be projected onto various
parts of the model. Such frequency analyses on software processes can reveal
which control-flow paths are executed frequently. By using the additional loca-
tion information such as package and class names, one can analyze frequency
properties of various artifacts such as classes, see for example the Message
Sequence Diagram approach from Section 9.3.4 on page 267. By using the
traceability information available in the event log, one can analyze code exe-
cution coverage and frequency properties like code branches.

Next, also performance characteristics such as throughput times, dura-
tions, and other timing properties can be investigated in the context of the
model. For a fine-grained software process analysis, we advise using the hier-
archical performance analysis techniques from Chapter 8. That is, to cope
with the complexity of the underlying software process model, one can use the
hierarchical performance breakdown of, for example, the duration in the con-
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text of both the call relation (hierarchy) and the control flow (choices, loops,
recursions, etc.). This way, one starts with a coarse-grained overview of the
performance, with most of the control-flow hidden in the hierarchy. Upon find-
ing points of interest, one can unfold various parts of the hierarchy to perform a
fine-grained performance analysis and investigate root causes for performance
issues. For a practical example of such an analysis, see the JUnit case study
in Section 12.2.3 on page 327.

In addition, using the recorded event attributes, decision (guard-condition)
mining can be performed on the various modeled branches. Note that a mod-
eled branch does not have to correspond to an if-else statement in the source
code. Sometimes, a choice construct can emerge from, for example, a design
pattern, where the different branches emerge from different implementation
subclasses. For example, see the Composite design pattern in the JUnit case
study in Section 12.2.4 on page 333. In other cases, a modeled branch can
indicate differences in implementations across different software versions, con-
figurations, or different types of input.

Next, based on recorded resource involvement, resource behavior and usage
can be derived and analyzed. Depending on the meaning of recorded resources,
this enables various types of analyses. For example, when using organizational
mining techniques like social network mining [17], one can investigate how
resources collaborate. In a software event log where the resources represent
computing nodes (i.e., deployment resources), such a “social” network could
explain how a collection of programs, servers, databases, and more are linked
together and perform, much like the approach used in application performance
management (APM) suites. By tracing the social network nodes via the un-
derlying event log back to a control-flow model, one can relate deployment
resources to a control-flow perspective. Alternatively, in a software event log
where the resources represent threads or processes, such a social network could
explain how multi-threaded software interacts, and complement notions such
as duration efficiency (see Section 8.4.2 on page 230).

Finally, the reliability of various parts of the modeled behavior can be as-
sessed by exploiting domain knowledge. For example, consider a software event
log that recorded triggered and caught exceptions. By using a combination of
cancelation discovery (Chapter 7) and a cancelation-trigger frequency metric
(Followed-by Frequency, Section 8.4.2), one can get a breakdown across hi-
erarchies of where in the software most of the exceptions occur, in terms of
control-flow, packages, classes, etc.

Process and Data Analytics – In addition to the process mining tasks
described above, various process and data analytics may prove useful. Typi-
cally, simple statistics such as averages, data mining techniques like clustering,
and visual analytics such as scatter plots and histograms can quickly answer
many simple research questions and provide a lot of insight. For example, as
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noted already in Phase 3 above, a dotted chart analysis [172] is a simple and
effective visual analytics approach to investigate various patterns.

Reporting – Again, for reproducibility and evaluation purposes, the ac-
tual mining and analysis process, as well as the models and results obtained
should be reported. From which event logs did we start? Which log and which
settings were used for model discover? Which logs were used in the various
alignment-based analyses? When using the analysis tools, which assumptions
were made? Based on the data, how can the various research questions be
answered, and which hypotheses can be formulated? Based on the analysis
results, which unexpected results were discovered? Which results should be
discussed with domain experts? And which issues should be investigated in
more detail using a different dataset? By reporting these choices and observa-
tions during the analysis, one has a good starting point for the evaluations in
the next phase.

11.2.5 Phase 5 – Evaluation and Rescoping

At this phase in the project, one has produced various models, insights and an-
alysis results. Before proceeding, one has to evaluate and discuss these results
as well as the used analysis process. New insights and questions may yield new
deployment efforts (Phase 6) and new data extraction and preparation efforts
through rescoping (Phases 2 and 3). At the end of this phase, a decision should
be reached on the deployment and the next steps to be taken. We recognize
the following concrete tasks.

Review Process – Before proceeding, one has to review the analysis pro-
cess. Do domain experts agree with the system scoping, the data extraction
scoping, and the method of data collection? Were the right software versions
and configuration used? Do the domain experts have any concerns based on
the used approach? Are there known implementation or deployment quirks
experts often deal with? Are there known software communication or timing
issues experts point out? Furthermore, assumptions made during preparation
and analysis should be verified. Are the used projections, views, filters and
cleanup steps correct? And are there known issues with the logging infras-
tructure used which might have been overlooked? Often, such issues pop up
in hindsight when reviewing the process and assumptions made. However, by
leveraging the documentation from previous phases, and by performing multi-
ple smaller analysis iterations, such issues can be detected during the process
review and quickly be dealt with in a future iteration.

Evaluate Results – Next, it is important to evaluate and discuss the
analysis results. Are the analysis results sound and explainable, i.e., do they
make sense? Are the produced models and insights logical and do they make
sense? One simple check is to compare the model sizes to metrics from the
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underlying source code. For example, do the number of discovered activities
match the expected number of software function calls? Although existing doc-
umentation might be absent or not up-to-date with their actual realization,
domain experts can often point out if certain domain rules or expectations
are violated in the discovered models. For example, consider the I/O software
interface mentioned above in the model construction task of Phase 4. One
should discuss, check and verify these results with various stakeholders and
domain experts. In addition, often, the discussions based on the produced mod-
els and results are more valuable than the actual models and results themselves.
Confronting domain experts with the analysis results can improve the domain
expert’s understanding of the system. In addition, the obtained results can re-
sult in key follow-up research questions or the need for verification on different
settings and datasets. Such evaluation conclusions can lead to the rescoping
and iteration efforts discussed below.

In addition to rescoping and iterating, a result evaluation can result into
deployment efforts. Based on the obtained analysis results and answers to
the research questions, which follow up actions can be formulated? That is,
how can the original business objectives and deployment vision formulated in
Phase 1 be realized using the obtained analysis results? We will elaborate
further on possible follow-up actions in Phase 6 below.

Rescoping and Iteration – Based on the above results, evaluations, and
discussions, new questions might arise and new rescoping and iteration may
be in order. New research questions may result in new data projection and
preparation efforts, focusing on different views. For example, consider the
analysis of a dataset from an industrial software process where the case id was
formed based on a product id and certain windowing rules. After discussion
with domain experts, the question may arise what the discovered process looks
like from a product batch perspective, or when using different windowing rules
(i.e., using different assumptions).

Additionally, analysis results may prompt to observe and log the software at
different abstraction levels, selecting different parts of the software for the data
extraction scoping. For example, after analyzing a particular software interface
or API, one might want to know what happens on a lower level during each of
the observed interface functions. In such a situation, the corresponding lower-
level data might not have been recorded upfront, and a new dataset has to
be collected. As another example, after discussing the results of a particular
software process, domain experts might be interested to see if the derived
conclusions are specific for the chosen configuration or hold in general. In
such a case, the analyst has to return to the software system, select a different
software configuration, and repeat the analysis.

Performance investigations might call for different environment enactments,
yielding new data collection setups. As was noted in Chapter 5, observing a
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system changes the system [168]. Hence, it might be desirable to first discover
a process model from a detailed tracing of a software system to obtain a highly
accurate control-flow model. In a second iteration, one might want to use
a less intrusive observation method such as sampling to obtain more reliable
performance characteristics. The second, sampled log might not fit the original
control-flow model perfectly, but gives a better indication of where the actual
performance bottlenecks occur.

Reporting – At the end of this phase, the evaluation should be reviewed
and reported, and a documented decision should be reached on the deployment
and the next steps to be taken. Such reporting can be as simple as meeting
minutes highlighting decision outcomes and listing the agreed upon action
points plus responsibilities. In addition, one could also formulate common
mistakes and lessons learned document to speed up future analysis efforts.

11.2.6 Phase 6 – Deployment

The models and insights obtained are typically the starting point for changes,
and therefore not the end of the project. Usually, the knowledge gained needs
to be presented and adopted. In addition to final reporting, software evolu-
tion projects (e.g., redesigning or adaptation) and operational support (e.g.,
monitoring or armoring) may need to be deployed. In many cases it will be
the user, not the analyst, who will carry out the deployment steps [198]. We
recognize the following concrete tasks.

Software Evolution – The analysis results can support and guide soft-
ware evolution. For one, the discovered models can support redesigning and
refactoring efforts. For example, suppose a control-flow and performance ana-
lysis revealed certain bottlenecks or inefficiencies in communication or multi-
threading. The source code traceability can be used to quickly identify the
related lines in source code artifacts, and thus where redesigning or refactoring
is needed. Observe that, in contrast to profilers, process mining results can
reveal that certain classes and methods are only problematic in certain states
of the overall process, under specific control-flow states, conditions, or inputs.

Additional, analysis results can be used and adapted for future model-driven
engineering efforts. Discovered control-flow models could be adapted for use
in model-driven toolchains. Existing models can be adapted or repaired using
the analysis results. Mined resource-oriented (social) networks can be used to
improve deployment models.

Detailed analysis of test environment event logs and comparisons with pro-
duction environment event logs can guide test suite adaptations. For example,
anlaysis results based on operational, user, or factory conditions can be used
to generate more complete test suites. Additionally, analysis of error logs can
be used to create new bug-reproducing test code.
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Lastly, other insights can be used for future investigations. For example,
if an analysis was focussed on component X, and that component is somehow
related to component Y, then the analysis could reveal potential problems,
issues, or unexpected results about component Y. Hence, by analyzing compo-
nent X, one might conclude that future investigations into component Y could
be useful.

Operational Support – The models, results, and insights can be deployed
in operational support. For one, identified problematic patterns, observed errors
or other irregularities can be formulated for detection at runtime using online
monitoring. For example, suppose that analysis reveals that in 10% of the
cases, a software interface was used incorrectly or not as intended. In such a
case, one could decide to setup a monitoring rule to detect the incorrect usage.
Upon detection, one could log the events leading up to the problem, create a
memory dump, signal an administrator, etc.

Alternatively, one could also deploy dedicated conformance observer com-
ponents based on the analysis results and identified patterns. Such a com-
ponent could actively check for correct interface or API usage, and halt the
software when certain conformance rules are violated. Using such a setup,
one could run various test suites, scenarios, and simulations to search for non-
conforming software components.

Another usage is to use future prediction and recommended actions to help
optimize production deployments. For example, suppose that, based on his-
torical observation logs, after computation A happens, also computation B
is likely to happen, e.g., based on common user patterns, external process
elements, etc. When detecting computation A, one could also predict that
computation B is likely to be requested, and hence we can preemptively com-
pute the result for B where possible. Alternatively, suppose that historical
API usage logs show common errors or mistakes made by API users. Then
the API provider could use the historical data and analysis results to deploy
a recommender that detects erroneous API usage, and recommend actions to
solve the problems.

Finally, modeled behavior can be used in component armoring, i.e., to iso-
late software component faults such that components are protected from other,
less-trusted components. Such an armoring can be designed based on both the
intended behavior (possibly discovered from event logs) and the observed er-
roneous behavior (thus armoring against known issues).

Reporting – Knowledge and insights gained need to be organized, pre-
sented and reported in a way that the user or customer can use it. Note that,
in many cases, it will be the user/domain expert, and not the analyst, who will
carry out the above deployment steps [198]. This reporting can be as simple
as a final presentation, or it can be an experience report, updated software
documentation, or a deployment plan.
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11.3 Practical Concerns

In the previous section, we detailed the different phases and tasks in the soft-
ware process analysis methodology. As was already indicated via the questions
mentioned throughout the methodology description, there are various issues
to consider when analyzing software processes. In this section, we will dis-
cuss some of the more practical concerns in more detail. Section 11.3.1 will
address problems related to incompleteness when observing software systems.
Section 11.3.2 elaborates further on observing timings and performance in a
software process context. Section 11.3.3 provides practical tips on including
the software system and the data extraction phase in the analysis cycle. Fi-
nally, Section 11.3.4 suggests the use of visual workflows for reproducible and
(partially) self-documenting (pre)processing.

11.3.1 Completeness of Software Observations

As discussed before, there are various ways to observe and log software behav-
ior. When using an existing logging or tracing infrastructure, it is important to
know not only what is observed, but also what is not observed. That is, which
behavior and points in the software are not recorded? When using a custom
or dedicated sampling or instrumentation technique, the same questions arise:
what can we observe, and what is excluded? Moreover, especially when us-
ing sampling techniques, we need to take into account that some events are
dropped and not recorded. That is, we need to be aware if the logging tech-
nique is lossy, and take appropiate actions. On the one hand, this may imply
that we need to collect more data and run the software system multiple times,
to minimize the risk of missing key observations. Simple metrics like code
coverage can help in assessing the completeness of the obtained datasets. On
the other hand, we need to take this type of noisiness into account when per-
forming our preprocessing and process analysis. For example, when we know
some events are dropped during logging, we should not aim for discovering
a perfectly fitting process model. Otherwise, we would obtain a model that
overfits to a noisy data source.

Elaborating on the notion of unobserved behavior sketched above, when
observing software processes, one needs to be aware of possible hidden influ-
ences. For example, are there specific hidden (I/O) channels influencing the
data or control-flow? One common hidden influence is the actions triggered
by data in a database system or the signals resulting from updates in such a
database system. Another common hidden influence is the exchange of data
and action control signals across software processes via shared files. In addition,
within a software process, shared data-structures are often used to influence
the data and control-flow inside a process. For example, consider the queue
data structure used in a typical producer-consumer setup to queue and trigger
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computations. Besides being tricky to observe, such hidden channels create a
type of indirectness in the control flow that is difficult to infer and analyze.

Another consideration when observing (distributed) software is that the
logged behavior may be over-complete. For example, suppose a client invokes
a remote procedure call, but due to some error (e.g., network communication
failure), an error is returned and the remote procedure is not actually invoked.
In such a case, the logged behavior may have recorded a start activity corre-
sponding to invoking the remote procedure, possible followed by an abort event
or a complete event with a complementary error attribute to indicate that the
remote call failed. When analyzing such over-complete event logs, one needs
to choose how such failed actions are taken into account when discovering a
model. One solution is to drop any failed remote procedure call event, includ-
ing the associated incomplete start event. Note that such a solution is not
always valid. Another solution could be to drop traces containing failed calls
in order to mine the good weather behavior from completely successfull traces
only. In other cases, one might want to explicitly analyse such failures.

11.3.2 Timings and Clock Considerations

Another consideration is the accuracy of the observed timings. On the one
hand, we need to consider how much the granularity of logging is affecting the
observed timings. After all, observing, tracking, and recording behavior takes
time and resources. In addition, in a distributed system, local clocks (i.e. the
time on different platforms) can be different. In some situations, solutions like
distributed clocks or a so-called heartbeat signal send over a common channel
can mitigate timing issues. In other cases, one needs to (a-priori) adjust local
clocks using, for example, a technique like the Network Time Protocol (NTP),
as described in RFC 5905 [142].

When investigating performance issues, for example in a performance ex-
periment setup, various other sources of inaccurate timings need to be consid-
ered. For example, are there any background or scheduled tasks? And what is
the current network, cpu, and memory load on the computing platform used?
When analysing logged timing data, we need to make sure the observed tim-
ings are due to the observed software system, and not some external tasks. In
addition, one should consider if warmup rounds need to be taken into account.
That is, is the used setup, programming language, and platform subjected to
things like dynamic cpu clocking, binary and class loading, virtual machine
optimizations (e.g., as in the Java JVM), etc. One possible solution is to close
background tasks and bring the environment in rest, and run a performance
experiment multiple times to get stable results. Another solution might be to
run the performance experiment on multiple comparable (virtual) machines to
eliminate machine-local factors. Note that, by using an event log as a basis
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for performance analysis, we can combine the results from multiple traces and
multiple software runs, and apply appropiate statistical analyses. Hence, we
should make sure we collect a large enough dataset to draw statistically valid
conclusions. One way to verify the statistical stability is by simply applying
common outlier and distribution analyses on the obtained dataset before any
more advanced (process mining) techniques are applied.

11.3.3 Iterate and Iterate Often

In practice, the road from system and data extraction scoping to actual process
and data analysis is complicated. Usually, there is no straightforward way to
select the right scoping, projection, and view, even though these decisions are
critical for a successful process and data analysis. An analyst first has to get
to know the system being analysed, and build up the knowledge required to
achieve a high-quality analysis. In addition, as we already observed in Chap-
ter 5, software data tend to be large and complex, which further complicates
the job of the software analyst. Therefore, we advise to perform a so-called
dry-test analysis first. That is, to start with a highly-controllable environment,
such as a development environment, and relatively small dataset. This way,
one can get a sample of the type of problems that need to be overcome, and
it is easier to perform the various sanity-checks mentioned in the methodology
above. The purpose of such a dry-test analysis is not to (directly) answer the
formulated research questions, but rather to build trust in the analysis and con-
structed assumptions, preprocessing, and analysis setups. Following up on a
dry-test analysis, we recommend to use multiple smaller iterations rather than
a few large big-bang iterations. Especially in software process analysis, the
size and complexity of the obtained datasets can easily be overwhelming. Do
not attempt to log everything the first time, but build trust in the performed
analysis steps, and go back to the software system to generate and collect more
data only when needed. In addition, it is important to remember that there
usually is no single golden model and event log that can clearly and accurately
explain the whole software behavior. In a software process analysis, we often
can and should return to the software system on the run to collect different
datasets, discover different models, and focus on various views. That is, we
often can and should iterate, and we should iterate often in small increments.

11.3.4 Visual Analysis Workflow

In the methodology above, we noted the need for proper reporting for re-
producibility and evaluation purposes as well as documenting decisions and
assumptions. In addition, as discussed above, we noted that in practice, many
iterations of data extraction, data preparation, and analysis will be needed.
Visual workflow tools such as KNIME [99], RapidMiner [161], and Rapid-
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ProM [160] allow for reproducible and (partially) self-documenting (pre)pro-
cessing. Such tools provide a block-based visual workflow where common tasks
and algorithms can visually be chained together. This way, such tools provide
an easy way of keeping track of all the applied data preparation and analysis
algorithms. In addition, such block-based approaches often allow for templat-
ing or the construction of custom, domain-specific building blocks. This way,
domain-specific tasks can be isolated, defined, templated, and documented.

11.4 Conclusion

In this chapter, we presented a methodology for obtaining and analyzing soft-
ware event log data in a structured way (Contribution 1). In contrast to
existing methodologies, the software process analysis methodology actively in-
cludes the system under analysis. In addition, this chapter addressed various
practical concerns such as timing issues in software systems, log completeness,
and the notion of dry-test analysis.

With the methodology and approaches presented in this chapter, there are
several interesting research directions for future work.

� Future Work 11.1 — Investigate Logging Scalability and Tradeoffs. As sug-
gested in Phase 1 of the above methodology, there is a tradeoff between com-
pleteness and accuracy in logging software. That is, the granularity of log-
ging can affect the observed behavior and the observed timings. In Future
Work 10.1, we already suggested to investigate possible techniques for im-
proving the logging tools. However, tool improvements are only part of the
solution. How is a software analyst to know how much can be observed and
logged, and what the effect is of fine-grained software sampling and tracing on
the observed behavior and performance? What scalability concerns should a
software analyst be aware of? What guidelines can be established in aiding a
software analyst in selecting the right tradeoffs? To the best of our knowledge,
no investigations have been made in such scalability concerns and tradeoffs.

� Future Work 11.2 — Investigate Process-Oriented Code Coverage Notions. As
noted in Section 11.3.1, when sampling software behavior, we can collect more
data and run the software system multiple times, to minimize the risk of miss-
ing key observations. We suggested to employ simple metrics like code coverage
to help in assessing the completeness of the obtained datasets. However, tradi-
tional code coverage metrics, such as line and statement coverage, are focussed
on the source code artifacts. As we have discussed in this thesis, when an-
alyzing the processes, there exist various other notions of completeness. See
for example the directly-follows completeness presented in Definition 4.3.1 on
page 85. Therefore, we suggest that future work should look into completeness
or (code) coverage metrics that strike a balance between a source code ori-
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ented view and a process oriented view. That is, how do we define the notion
of completeness of a software event log, possible with respect to the underlying
source code, for the purpose of software process analysis?
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Case Studies

In this chapter, we present two case studies, showing how our techniques can be
used in practice. Section 12.1 provides a short introduction to the case study
and evaluation setup in general. After that, Section 12.2 presents an open
source software case study on the JUnit 4.12 library. Section 12.3 presents an
industrial software case study on the wafer handling process inside ASML’s
lithography machines. Finally, Section 12.4 wraps up this chapter.

12.1 Introduction

In this chapter, we discuss two software process analysis case studies. The first
case study (Section 12.2) analyzes the JUnit 4.12 library, which is publicly
available and open source. The second case study (Section 12.3) analyzes part
of the wafer handling process inside ASML’s lithography machines. This in-
dustrial case study was conducted by the author in collaboration with a team
of ASML software engineers. Both case studies are typical software process
analyses: in accordance with the discussion in Section 5.2 on page 96, these
analyses illustrate how the observed behavior complexity and log size charac-
teristics in software process analysis differs from traditional business process
analysis. In these case studies, we show how the ideas from this thesis can be
used to perform software process analyses on real-life open source and indus-
trial software systems. In the case studies below, we focus on the validation
and applicability of the proposed techniques, tools, and methodology.

The methodology discussed in Chapter 11 will be used to structure the
case studies. Note that the methodology descriped in the previous chapter is
actually a result from the experiences obtained during these case studies.

12.2 Open Source Software Case Study – The JUnit 4.12 Library

In this case study, we analyzed the inner workings of the JUnit 4.12 library.
This case study is related to the setup used in the user experience evaluation
from Chapter 10. Below, Section 12.2.1 gives an introduction to the case study.
Section 12.2.2 describes how the initial data extraction and understanding was
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performed. Section 12.2.3 presents the initial high-level process exploration
and understanding. Section 12.2.4 presents some of the detailed findings in
the context of well-known software design patterns. Finally, Section 12.2.5
briefly discusses the threats to validity.

12.2.1 Case Description
JUnit is an open source unit testing framework for the Java programming lan-
guage. A programmer writes and annotates special unit test methods alongside
a Java program. In order to run these unit tests, the JUnit library is linked
to a software project at compile time and inspects the software at runtime for
the annotated test methods to execute. After running the unit tests, the JUnit
Library outputs the test results: which unit tests succeeded, which failed, and
optionally the exception stack trace for a failed unit test. In JUnit, test meth-
ods are organized into test classes, and several test classes can be combined
into test suites.

In this case study, we looked at the inner workings of the JUnit 4.12 library.
During the case study, we leveraged the access and traceability to the under-
lying source code by using the ProM-Eclipse source code link in our tools. In
terms of existing documentation, we only relied on general descriptions like
the one in the previous paragraph.

For this case study, we aimed to perform an exploratory analysis. The
main research questions in this case study are: What is the global process of
the observed software? And what parts of the software are the main contributors
to the total runtime duration? In addition, during a more detailed exploration,
we tried to uncover how various aspects of the JUnit behavior is implemented,
and if specific design patterns are used to realize this behavior.

12.2.2 Initial Data Extraction and Understanding
As stated above, we looked at the inner workings of the JUnit 4.12 library,
available via [67]. We used the example input found at [40] to trigger actual
unit test behavior. Based on a quick source code package inspection, we con-
figured the Instrumentation Agent tool to record a XES event log capturing
method-call level events for all classes inside the org.junit.* package and its
subpackages. Since we are focussing on the overall behavior in this first analy-
sis iteration, we tried to trace all behavior for a small input, and we take any
performance overhead incurred by the tracing for granted.

The obtained XES event log contains 1 trace with 946 events covering 182
unique methods/activities. A quick scan of the traced events and the recorded
activity and lifecycle information using the ProM Log Visualizer suggest that
a nested call pattern was recorded as expected from the tracing setup, and
that no software exceptions were recorded.
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Figure 12.1: The time-based Dotted Chart [172] view of the JUnit event log.
Each dot in this scatterplot is an event, with the timestamps of events on the
x-axis and activities on the y-axis. The shapes the lifecycle-transition, and the
lines indicate the directly-follows relation.

In order to get a feeling for the overall event log and to perform a quick
sanity check, as suggested by the methodology from Chapter 11, we performed
an initial Dotted Chart analysis. Since we wanted to get a feeling for the type
of events recorded in the single software run, we projected the method activity
names onto the y-axis. We used the default timestamp on the x-axis. To further
inspect the nested call pattern, we used shapes for the method call/start and
return/complete. Figure 12.1 shows the resulting Dotted Chart scatterplot.
Time-wise, we can draw a vertical division at approximately three-quarters
on the x-axis. To the left of this division, there are only a couple of method
calls, and to the right of the division, we see a dense collection of method calls.
This indicates most of the time is spent on the first few method calls, i.e., the
startup phase of the observed JUnit software process. With the tracing setup
used for obtaining this event log, it is likely that the initial overhead we observe
here is caused by the class loading or initial tracing performance overhead.

In the current Dotted Chart, the x-axis does not allow us to inspect in-
dividual software events using time: events happen within milliseconds after
another and are drawn on the same x-location, visually overlapping each other.
By switching the x-axis to the index of events in the trace, we obtain the scat-
terplots shown in Figure 12.2. These plots show the rather structured passing
of control between the various methods. After zooming in, Figure 12.2b seems
to confirm a nested call pattern in the data: various methods are being started
and completed between the start (square) and complete (circle) of a specific
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(a) Complete overview of the event log.

(b) Zoomed in view on top left part.

Figure 12.2: The index-based Dotted Chart [172] view of the JUnit event log.
Each dot in this scatterplot is an event, with the index of events in the trace
on the x-axis and activities on the y-axis. The shapes the lifecycle-transition,
and the lines indicate the directly-follows relation.
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method. For example, see the start-start-complete-complete pattern at the
bottom in Figure 12.2b, near x = 15 and x = 18.

Based on the above observations, we have gained an idea of the quality and
overall characteristics of the obtained event log. We conclude that the software
behavior is recorded as intended, although the recorded performance informa-
tion is probably less reliable. Based on the observed nested call patterns and
number of unique activities, we predict that traditional process discovery algo-
rithms will have difficulties discovering a meaningful process model.1 However,
a hierarchical discovery approach is likely to be more successful. At this stage,
we have found no reason to apply custom filtering or preprocessing steps on
this event log, and proceed with process discovery.

12.2.3 High-Level Process Understanding
To obtain an initial, hierarchical process model, we loaded the JUnit event
log into our Statechart Workbench tool and used the Software Log preset.
We shortened the shown activity labels by removing the package names and
obtained the initial model shown in Figure 12.3. We immediately observe
that, without much effort, we get a sensible model. The Statechart model
depicted is well-structured, and contains a nice hierarchy based on the method
call relations: there are no large self-loops or parallel compositions, which are
often indicative for non-block-structured or non-fitting behavior.2 Hence, we
hypothesize that the obtained model is a well-structured representation of the
obtained event log, and thus also fits the underlying software process well.

Based on this initial model, we can address one of our main research ques-
tions. The global process of the software starts with the JUnitCore.main() method
invoking the JUnitCore.runMain() method. During this runMain(), four actions are
performed in order. First, the command-line input is parsed via the method
JUnitCommandLineParseResult.parse(). Next, the JUnit internals are set up and con-
figured via JUnitCore.addListsener() and JUnitCore.defaultComputer(). After that,
a test request is prepared by invoking the method JUnitCommandLineParseResult

.createRequest() and runned via JUnitCore.run(). After runMain() returned, the
overall unit test result is checked and reported via Result.wasSuccessful(). Using
the expand/collapse functionality for named submodels, we can inspect each
of the above methods in further detail. For example, by inspecting the method
JUnitCommandLineParseResult.createRequest() in detail, we can clearly see how, dur-
ing request creation, the test classes are scanned for annotated test methods
to run as unit tests, e.g., see TestClass.scanAnnotatedMembers() in Figure 12.4.

1 Recall the observations and lessons learned regarding nested interval patterns from the
sythetic hierarchical discovery evaluation in Section 6.7.1 on page 138.

2 Large self-loops and parallel compositions are often introduced by the Fallback cases
from Section 4.2.5 on page 81, and thus indicate non-block-structured or non-fitting behavior.
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Figure 12.3: The initial model for the JUnit log obtained via the Statechart
Workbench. The Software Log preset and default parameter settings are used.
The activity labels depicted are shortened by removing the package names.
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(a) Model visualized as a Statechart. (b) Model visualized as a process tree.

Figure 12.4: Part of the JUnit model, showing when annotated methods are
scanned. The Software Log preset and default parameter settings are used.
The activity labels shown are shortened by removing the package names. The
absolute frequency metric overlay is computed via approximations.

Using this initial model as a basis, we turned on the alignment-based du-
ration metric overlay to investigate the overall duration. Based on the align-
ments, we obtained a fitness score of 89,7% and a precision score of 86,7%.
These scores confirm the hypothesis that the model shown is a well-structured
representation of the obtained event log, i.e., the model represents the behavior
in the event log well and in a structured manner.

Using the process tree visualization with the duration overlay, we expanded
parts of the hierarchy based on the named submodels that are highlighted red,
indicating a relatively high duration. Figure 12.5 shows part of the process
tree obtained in this way. In this model, we can clearly see a red vertical path
across the tree, showing a root cause breakdown for the main contributor to
the total runtime duration. During runMain(), the test request preparation in
the method JUnitCommandLineParseResult.createRequest() accounts for most of the
duration. Exploring the submodels for request preparation reveals that most
time is spent in the RunnerBuilder and AllDefaultPossibilitiesBuilder classes. A
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quick code inspection of these classes using the ProM-Eclipse link reveals that
during these process steps, data-structures are allocated and filled with infor-
mation based on reflection operations used on the unit test classes. From the
Java documentation for reflection, we know that reflection operations incur a
significant performance overhead [155]. Based on this information, it is likely
that the main causes for the majority of the runtime duration is a combination
of object creation and reflection operations used to scan test classes for anno-
tated unit test methods. However, recall from the Dotted Chart observations
that the overhead we observe here could be caused by the initial class loading
or tracing performance overhead. Hence, to confirm this hypothesis, we would
need to collect additional software event data using a sampling setup with
lower performance overhead and repeat this analysis. Note that the new event
log would be less detailed in terms of control flow. Obtaining a high-quality
performance-oriented event log is future work.

So far, we have shown how our hierarchical discovery and performance ana-
lysis techniques can be applied to overcome some of the challenges encountered
when dealing with software event logs. In addition, based on the performance
observations, we saw why the software system and the data extraction phase
should be included in the analysis cycle, as argued in the methodology dis-
cussed in Chapter 11. In the next section, we will highlight some of the detailed
findings in the context of well-known software design patterns.

12.2.4 Detailed Exploration and Design Patterns
Below, we will discuss two detailed explorations performed on the JUnit event
log, and relate the obtained findings to well-known design patterns.

Test Result Reporting and the Observer Design Pattern
When running a suite of unit tests using JUnit, we observe that, instead of
producing a large result report at termination, test results are being reported
as soon as unit tests are finished. Based on these observations and the global
process depicted in Figure 12.3, we hypothesize that these intermediate test
result reports are generated during JUnitCore.run(). In addition, the JUnitCore.

addListsener() in the global process model hints that the Observer design pat-
tern [68] is implemented. In the Observer design pattern, a subject or notifier
sends state change notification to all registered listeners or observers. Hence,
this pattern is a likely candidate for reporting intermediate test result reports.
A quick scan of the activities in the event log indeed reveals various Notifier

and Listener classes, confirming the presence of the Observer design pattern.
In order to better investigate the Observer pattern in isolation, we used

a projection of the event log, focussing on the listeners/observers and noti-
fiers/subjects part of the Observer pattern. We used the Filter Log by Event
Attributes ProM plugin to retain only the events dealing with a *Notifier or
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Figure 12.5: The Statechart Workbench process tree model for the JUnit
log, annotated with the duration metric. The Software Log preset and default
parameter settings are used. The activity labels depicted have been short-
ened by removing the package names. The duration metric is computed using
alignments.

*Listener class (where * is a wildcard) and we retained the JUnitCore methods
addListener(), removeListener(), and run() to provide context. Using this filtered
event log, we discovered the hierarchical model shown in Figure 12.6.

In the high-level Message Sequence Diagram (Figure 12.6a), we can clearly
see how the Observer design pattern is used to signal unit test progress. First,
listeners are registered via addListener() and addFirstListener(). Next, various
updates are propagated via the *Notifier.fire*() methods. Finally, a cleanup is
performed via removeListener(). The above process is a textbook example of the
Observer design pattern in action. Zooming in, the *Notifier.fire*() notifier
updates nicely follow a unit test execution pattern: a test run is started, then
tests are started and finished, and after that a test run is finished.

By expanding the various notifier update submodels, we gain more in-
sight in what happens in the various listeners/observers. Figure 12.6b shows
the detailed process tree corresponding to the EachTestNotifier.fireTestFinished

() and RunNotifier.fireTestRunFinished() notifications. The first thing we notice
is the RunNotifier and SafeNotifier wrappings, with the latter method calling
notifyListener() in a loop, probably for all the registered listeners. Based on this
part of the control flow, and by quickly inspecting the corresponding source
code using the ProM-Eclipse link, we conclude that these wrappings general-
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(a) High-level Message Sequence Diagram, providing a global overview.

(b) Part of a more detailed process tree, showing the TextListner in context.

Figure 12.6: Part of the projected JUnit model, focussing on the Observer
design pattern. The underlying event log is filtered on the listeners and notifiers
part of the Observer pattern. The Software Log preset and default parameter
settings are used, together with an absolute frequency overlay.
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ize the Observer pattern, allowing code reuse for the various *Notifier.fire*()

notifier updates. Going down in the hierarchy, we see the TextListener printing
unit test failure results during RunNotifier.fireTestRunFinished(). Hence, indeed
the Observer design pattern is used for printing intermediate unit test result
reports as soon as the unit test runs are finished.

Unit Test Hierarchy and the Composite Design Pattern
Going back to the original, unfiltered event log, we explored the model from
Figure 12.3 in more detail. We observed that during JUnitCore.run() and in
between the methods EachTestNotifier.fireTestRunStarted() and EachTestNotifier.

fireTestRunFinished(), the method ParentRunner.run() is used to actually execute
unit tests. While further exploring the process during ParentRunner.run(), we
noticed that ParentRunner.getDescription() calls itself.

Due to the above observations, we switched to the Recursion Aware Dis-
covery algorithm and obtained the model in Figure 12.7. In Figure 12.7a, we
see the context and subprocess definition of ParentRunner.run(). Notice how the
method ParentRunner.getDescription() refers to itself in the corresponding subtree,
confirming a recursive control-flow relation. Figure 12.7b, shows this recursive
behavior in more detail, with the dashed arrow making the recursive control-
flow relation explicit. Observe that we see two branches in an XOR split con-
figuration after the method Description.createSuiteDescription(): the left branch
uses the BlockJUnit4ClassRunner class, while the right branch uses the Suite class.
The left branch represents a recursion base case, while the right branch recurses
on the ParentRunner.getDescription() method. A quick source code inspection on
the BlockJUnit4ClassRunner and Suite model elements using the ProM-Eclipse link
reveals that both classes are subclasses of ParentRunner.

Recall from Section 12.2.1 that test methods are organized into test classes,
and several test classes can be combined into test suites. In the above-mentioned
ParentRunner subclasses, we see this unit test organization structure reflected as
well. In fact, based on the observed recursive control-flow and ParentRunner class
name, we can conclude that there is a tree structure of these so-called unit test
runners. Hence, we are dealing with an implementation of the Composite de-
sign pattern [68]: the ParentRunner and its subclasses compose unit test runners
into a tree structure. This tree structure represents a part-whole hierarchy and
allowing other code to treat individual test runners and compositions of run-
ners/test suites uniformly. The discovered recursive behavior nicely captures
this recursive design pattern in action.

12.2.5 Threats to Validity
At the end of Section 12.2.3, we already discussed how the used instrumentation
and tracing overhead threaten the validity of the performance analysis and how
we can mitigate this threat. Another threat to validity is that the used example
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(a) Part of the high-level process tree, providing a global overview.

(b) Part of the Statechart model, showing the recursion control-flow explicitly.

Figure 12.7: Part of the JUnit model, focussing on recursive behavior. The
unfiltered event log is used together with the Recursion Aware Discovery al-
gorithm. The red bordered ParentRunner.getDescription() methods model the re-
cursive control-flow behavior resulting from the Composite design pattern.
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input might be too simple and too small, i.e., it might not trigger all interesting
behavior. However, in the above analysis, we already could identify various
structured loops and recursion patterns used for processing the input, thus
(partly) mitigating this thread. We do acknowledge that a larger follow-up
study is needed to confirm this.

12.3 Industrial Software Case Study – The Wafer Handling Process
In the previous case study, we investigated the JUnit 4.12 library in a controlled
setup, showing how the techniques, tools, and methodology proposed in this
thesis can be used in practice on open source software. In the next case study,
we will look at the wafer handling process inside ASML’s lithography machines,
an industrial case study driven by the author in collaboration with a team of
ASML software engineers. We will show how we can deal with more complex
(industrial) behavior in less controlled setups. Below, Section 12.3.1 gives an
introduction to the case study. Section 12.3.2 describes how the initial data
extraction and understanding was performed. Section 12.3.3 presents the basic
process discovery and evaluation results. After that, Section 12.3.4 presents a
more detailed follow-up process analysis. Section 12.3.5 presents some follow
up explorations, broadening the scope and suggesting possible future case study
efforts. Finally, Section 12.3.6 briefly discusses the threats to validity.

12.3.1 Case Description
Since 2015, we performed a multitude of process mining case studies at ASML,
a large high-tech company. In the case study discussed below, we analyzed the
control-flow of the wafer handling process in ASML’s lithography machines.
This case study is just a representative example: it covers complex software
behavior with multiple abstraction levels and perspectives, contains normal
and error handling behavior as well as asynchronous behavior.

Lithography machines are used in the production process of integrated cir-
cuits or chips. These machines process silicon wafers (the product) by exposing
patterns on them using a mask and a light source with nano-scale precision
at very high throughput. Figure 12.8 provides a schematic view of a typical
lithography machine. Wafers are processed in batches, called lots, and flow
through multiple physical positions inside the machine as they are processed.
In a typical wafer processing lifecycle, wafers enter via the wafer handler, go
through the wafer stage where they are exposed, and exit via the wafer han-
dler again, see Figure 12.8. This wafer handler system implements the wafer
handling process, the focus of this case study.

The wafer handler system is a large, complex piece of software, which has
evolved over time as new requirements, constraints, and hardware became
available [194]. For this system, existing documentation was written for differ-
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ent versions (older and newer) of different machine types (product variants A,
B, and C) from different perspectives (interface provider or user). The docu-
mentation is written using natural language (English), which sometimes leaves
room for multiple interpretations. The text is supported by (UML) diagrams,
for which the (dynamic) semantics is not always precise enough either. As a
result, sufficient, up-to-date, and detailed knowledge about the actual imple-
mented behavior for specific versions and configurations of this ever-evolving
system is not readily available. Hence, we are dealing with legacy software.
Therefore, we needed to investigate the implemented software and observe and
analyze the actual software behavior. Hence, our main research question is:
what is the actual wafer handling process currently implemented and how does
it compare against documented behavior?

12.3.2 Initial Data Extraction and Understanding

In contrast to the JUnit case study presented before, obtaining and under-
standing the software event data in this industrial case study proved much
more challenging. Below, we discuss the first two phases of understanding we
went through while analyzing the implemented wafer handling process.

System Scoping and Data Extraction
As stated above, we investigated the wafer handling process. Due to the size
and complexity of the complete software system, and the focus of this case
study, we cannot simply log all observable behavior. Hence, we needed to
investigate the software architecture and select software interfaces specifically
dealing with this wafer handling process. At the start of the case study, we

Figure 12.8: Schematic view of the lithography machine in the ASML case
study, illustrating the position of the wafer handling and wafer stage. Wafers
(the product) enter via the wafer handler, go through the wafer stage, and exit
via the wafer handler again. Figure courtesy of ASML.
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Figure 12.9: The analyzed interface in the ASML case study in the context
of the larger software system. The WHxSTREAM interface is used by the
higher-level machine control components and trigger hardware instructions via
the so-called logical actions.

collaborated with a team of software engineers at ASML to select appropri-
ate interfaces (i.e., a system scoping) and determine how to observe and log
the software behavior (i.e., a data retrieval strategy). In collaboration, we se-
lected the WHxSTREAM software interface (WH stands for Wafer Handler);
Figure 12.9 illustrates this interface in context. We leveraged the existing trac-
ing/logging infrastructure at ASML to obtain interface-level events detailing
the call and return of interface functions. This existing infrastructure was
originally developed in-house for, amongst others, debugging purposes, and
the resulting logs were not used in formal model-based process analysis. Due
to time and cost constraints, we could not observe the software in an industrial
production environment: it was too expensive to run the software on the ac-
tual lithography hardware. In collaboration, we chose to use a well-established
simulation environment used internally for software development and debug-
ging. In addition, we chose a software configuration setup used for a frequently
deployed release (a so-called NXT machine type). We used scenario-based re-
gression test suite to trigger typical wafer batch processing behavior.

First Iteration – Global Dataset Inspection
After executing the above setup, we obtained raw interface function call event
data in a proprietary format, containing 2,044 event lines describing 25 different
interface functions/activities. After a quick investigation of the structuring and
format of event data, we wrote a custom parsing and conversion script to allow
inspection of the event data in ProM. Note that, at this point, we only aimed
to get a feeling for the overall event dataset and to perform a quick sanity
check, as suggested by the methodology from Chapter 11. Thus, at this point,
we did not apply any data preprocessing or interpretation. Moreover, no case
notion was given: all events are simply grouped into one trace.
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(a) Complete overview of the event data.

(b) Zoomed in view on the left part.

Figure 12.10: The time-based Dotted Chart [172] view of the ASML event
data. Each dot in this scatterplot is an event, with the timestamps of events on
the x-axis and activities on the y-axis. The shapes correspond to the lifecycle-
transitions, and the lines indicate the directly-follows relation.
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We started by inspecting the data in the ProM Log Visualizer by looking
at various events in the dataset. We note that for each interface function call,
a start and a complete was recorded, as well as a result attribute. In case the
result attribute recorded a negative value, a second function call was recorded
afterwards. In addition, various function call events recorded lot and wafer id
parameters under various names (e.g. wafer_number, input_wafer_id, etc.).

In order to get an overall feeling of the recorded behavior, we performed a
preliminary Dotted Chart analysis. We projected the method activity names
onto the y-axis, and used the default timestamp on the x-axis. We used shapes
for the method call/start and return/complete. Figure 12.10 shows the result-
ing Dotted Chart scatterplot. In the overview from Figure 12.10a, we im-
mediately see a lot of repeating patterns. These patterns, together with the
parameter observations discussed before, suggest that there are multiple in-
stances recorded one after another. After zooming in, Figure 12.10b shows us
various details of the repeating patterns. Based on these observations, we infer
that an example run starts with a call to the define lot interface function to
initialize a batch of wafers, and ends with a call to clear lot to finish a batch
of wafers. In between there are several function calls to handle the individual
wafers in a batch, such as request wafer. We captured the above observations
in so-called windowing rules, grouping events and creating traces by indicat-
ing the start and end activities of an example run of the software interface
usage. Recall that in Section 5.1.3 on page 94 we already discussed how such
windowing or protocol run rules can be used for case identification.

12.3.3 Basic Process Understanding
With the above observations, we progressed into getting a basic understanding
of the wafer handling process. Below, we report the preliminary processes we
discovered, and briefly discuss the accompanied result evaluation.

Second Iteration – Preliminary Process Discovery
Using the above observations, we adapted the conversion script to clean up the
event data (e.g., taking into account the result value), and create cases/traces
using the windowing rules. In addition, we used the standard XES extensions
to identify key attributes such as activity names, timestamps, and lifecycle
transitions (i.e., start/complete or call/return). After reapplying the improved
conversion script, we obtained an event log consisting of 54 cases, 1,906 events,
and 25 activities describing interface functions.

We loaded the revised event log with windowed events into our Statechart
Workbench tool and used the Normal Log preset. Note that, based on the
previous log inspections and dotted chart analysis, we did not find nested call
behavior: we observed only one “slice” of the software stack, the WHxSTREAM
interface. When setting the path slider at 100% (no infrequent behavior filter),
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Figure 12.11: The initial model for the ASML log obtained via the Statechart
Workbench. The Normal Log preset is used with the path slider at 100%.
Legend: 1) define lot, 2) request, 3) input and start prealign, 4) set jit parameters, 5) load,
6) unload, 7) clear lot, 5+6) exchange.

we obtained the model shown in Figure 12.11. Clearly, this model shows large
self-loops, indicative of non-block-structured behavior.3 This apparent lack
of structure in the discovered process model is unexpected. After all, we are
dealing with software behavior, which should follow the implicit process in the
source code. We do not expect the presence of, for example, noise introduced
by deviations commonly found human-originated business logs.

In an attempt to find more structure, we set the path slider at 80% and
obtained the model shown in Figure 12.12. This model already shows more
structured behavior. There are still more loops and skips in the model than
expected, but this 80/20 model does reveal more process structures. We iden-
tified a couple of interface function calls which explicitly refer to the processing
of a lot (i.e., a batch) or an individual wafer, based on their name and their
data parameters. These interface functions, labeled 1 through 7, together de-
scribe the main sequence of behavior of the wafer handling process, see also
the sequence description on the next pages.

3 Large self-loops and parallel compositions are often introduced by the Fallback cases
from Section 4.2.5 on page 81, and thus indicate non-block-structured or non-fitting behavior.
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Figure 12.12: The initial model for the ASML log obtained via the Statechart
Workbench. The Normal Log preset is used with the path slider at 80%.
Legend: 1) define lot, 2) request, 3) input and start prealign, 4) set jit parameters, 5) load,
6) unload, 7) clear lot, 5+6) exchange.
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The activities labeled 1 through 7 appear mostly in a nice sequential order
and roughly describe the following main process flow:

1. define lot, initializing a batch of wafers;
2. request a new input wafer from the environment;
3. input and start prealign, move a wafer into the wafer handler and perform

prealign measurements on the wafer;
4. set jit parameters, prepares data structures based on prealign sensor re-

sults, readying the wafer for processing;
5. load a wafer from the handler onto the stage;
6. unload a wafer from the stage back onto the handler, the wafer is auto-

matically outputted when finished;
7. clear lot, finishing a batch of wafers.
The loops in the discovered model reveal a loopback from 7 to 1 (lot clear

and define), and a smaller inner loop from 6 back to 2 (wafer processing).
Further inspection of the discovered structures and the underlying event data
reveal that within one case window, multiple lots and wafers are being ref-
erenced. In addition, the so-called exchange function (labeled 5+6) refers to
two wafers at the same time. Furthermore, we see that there are several error-
handling function interfaces interleaved with the normal process behavior, such
as abort all wafers, prepare for recovery, and cancel request. Based on these
observations, we hypothesize that we would get a more structured model if we
take these observations and patterns into account.

Evaluation of the Preprocessing and Preliminary Results

We discussed the above results and observations with software engineers at
ASML. In addition, we compared the results with the descriptions found in
the various documentation. We noted that we have more interface functions/-
activities than were documented. Most of the logged activities are “mappable”
to documented interface functions based on name similarities. Using this map-
ping, the discovered patterns and overall wafer handling sequence (i.e., steps 1
to 7 in Figure 12.12) made sense according to the engineers and documenta-
tion. In addition, we noted that engineers and documentation have a hardware-
centric view of the studied interface: most interface functions are described in
terms of how it affects a wafer on a logical or physical location. Furthermore,
from a hardware perspective, the WHxSTREAM interface was designed to pro-
cess multiple wafers concurrently where the hardware allowed it. As a result,
certain interface functions are designed to optimize throughput. For example,
the exchange function we noted before is an optimized version for loading a
wafer x and unloading a wafer y at the same time.

Based on the above observations and evaluation, we revised and refined
our research questions: Can we confirm the overall wafer handling sequence,
and explain/elaborate on the differences between the observed and documented
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process? Can we relate the wafer handling sequence to the logical locations
view? And can we get a better view on the observed abort behavior?

12.3.4 Detailed Process Understanding
With the above observations and refined research questions, we proceeded to
gain a deeper understanding of the wafer handling process. First, we investi-
gated the observed abort behavior. After that, we further explored the core
wafer handling process without taking errors like abort all wafers into account.

Investigating Abort Behavior and Cancelations
We revisit the preliminary model discovered in our Statechart Workbench tool.
We reuse the Normal Log preset and 80% path slider, and configured a cance-
lation trigger oracle for the Cancelation Discovery. Based on the above results,
evaluation, and by using a simple activity-name heuristic, we marked the ac-
tivities cancel request, lot clear, and abort all wafers as cancelation triggers.
Figure 12.13 shows the resulting model with three cancelation regions.

In this model, we can clearly see that the entire process is wrapped in a
cancelation region associated with A) abort all wafers. This shows that this
abort interface function is a global effect, which can be triggered at any point
in the wafer handling process. Using the Followed-by Frequency cancelation
metric overlay, we discover that in particular after the 1) lot define, 2) request,
and 3) input and start prealign interface functions, an abort all wafers is trig-
gered. Apparently, these interface functions resemble critical go-no-go points
in the overall wafer handling process. From the existing interface documenta-
tion, we learned that during interface functions 1, 2, and 3, wafers are inserted
into the machine and measured using sensors. From the discovered model, we
learned that following up on interface functions 1, 2, and 3, an abort is possi-
ble, likely in response to critical errors or failures in the measurements made
during functions 1, 2, and 3.

In the cancelation model, we see a second cancelation region associated
with the interface function C) cancel request. Using the Followed-by Frequency
cancelation metric overlay, we observed that this cancelation region is in partic-
ular triggered during the recovery and resync interface function calls. From the
existing interface documentation, we learned that via recovery and resync, one
can attempt to reset the hardware and internal process state to a known con-
figuration. From the discovered model, we learned that, as a result, requested
wafers (e.g., via function 2) can be canceled during this process.

The third cancelation region is associated with 7) clear lot. This cancelation
region is wrapped only around the core wafer handling process, i.e., steps 2
to 6. We observe that a clear lot is most often triggered after an unload,
which corresponds to the normal sequence of wafer handling. However, we
also observe that, in some cases, a clear lot is triggered after 2) request or start
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Figure 12.13: The cancelation model for the ASML log obtained via the
Statechart Workbench. The Normal Log preset is used with the path slider at
80%. Legend: 1) define lot, 2) request, 3) input and start prealign, 4) set jit parameters,
5) load, 6) unload, 7) clear lot, 5+6) exchange, C) cancel request, A) abort all wafers
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output. Hence, we learned that after a request, it is not guaranteed that a
wafer is loaded into the machine. Instead, we may have reached the end of a
batch of wafers and the lot may be cleared.

Third Iteration – Domain Knowledge and Hierarchy

Using the insights obtained thus far, we again adapted the conversion script
for interpreting the raw event data. We extended the case identification to
use the windowing rules in combination with a normalized wafer and lot id.
We preprocessed the exchange function events (labeled 5+6) by duplicating
these events: one exchange for the loaded wafer and one for the unloaded
wafer. In addition, we created a dictionary that maps interface function to
the logical locations/protocols mentioned by engineers and documentation. We
enriched the events with a so-called protocol annotation based on this dictio-
nary. For example: define and clear lot are annotated with the Lot protocol,
request, input and start prealign, and set jit parameters are annotated with Re-
quest/Input, and load, unload, and exchange are annotated with Load/Unload.
From a logical locations view, the Request/Input annotation relates to the in-
put robots manipulating wafers, while the Load/Unload relates to the robots
putting wafers on wafer stages. See also the schematic view in Figure 12.8.

We loaded the above, revised event log with protocol annotations into our
Statechart Workbench tool. For the hierarchical discovery algorithm, we con-
structed a two-level hierarchy based on the custom protocol annotations and
interface function name attributes. With the path slider at 80% we obtained
the model shown in Figure 12.14. This model has two levels: low-level interface
functions are grouped into named submodels labeled with protocol annotations.

In the discovered hierarchical model, we immediately observe that the wafer
handling process, excluding Lot, is very well structured: interface functions 2
to 6 all happen in sequential order. In addition, we observe that the wafer and
lot subprocesses are separated, an artifact introduced by the use of normalized
wafer and lot id in case identification: interface function 1 and 7 define no
wafer id, while function 2 to 6 do. The artificial hierarchy based on protocol
annotations has various benefits. For one, the hierarchy provides more struc-
ture to the discovered model based on this protocol domain knowledge. In
addition, the annotations made it easier to relate the discovered model to the
documented concepts and explain it to the engineers.

When zooming in on various parts of the model, we could better explain
the mismatch in the number of observed and documented interface functions/
activities we noted before. Figure 12.15 shows such a zoom-in on interface
functions 2) request, 3) input and start prealign, and 4) set jit parameters. For
example, for the request interface function, we note that three functions/activ-
ities have been modeled with an XOR choice: either a client executes the plain
request function, or a client executes the request_fcn function, followed by
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Figure 12.14: The hierarchical model for the ASML log obtained via the
Statechart Workbench. The Normal Log preset is used with the path slider at
80%. A hierarchy was constructed based on the custom protocol annotations
and interface function names. Legend: 1) define lot, 2) request, 3) input and start
prealign, 4) set jit parameters, 5) load, 6) unload, 7) clear lot, 5+6) exchange
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Figure 12.15: Zoomed in version of the hierarchical statechart model in
Figure 12.14. Shown are the choice constructs between the various implemen-
tations of the interface functions 2) request and 3) input and start prealign.

an execution of the local_fcn_handler_request. The _fcn is a domain-specific
postfix to denote an interface implementation variant where a so-called function
completion notification is used. That is, instead of a blocking call to the request
function, which only returns once the corresponding actions are completed, a
_fcn call returns directly, and triggers a callback (local_fcn_handler_request
in this case) once the corresponding actions are completed. Hence, the re-
quest interface function is modeled with three activities; a developer can choose
which implementation to use, possibly allowing for performance optimizations.

For the input and start prealign interface function, we observe three inter-
face implementation variants in a XOR choice configuration: either a client
executes the normal input_and_start_prealign, or a client executes the func-
tion completion notification variant input_and_start_prealign_fcn, or a client
executes the variant input_and_start_center. We observe that, in this part
of the process, the observed software process did not block and wait for the
local_fcn_handler_input_and_start_prealign callback to synchronize. From
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the documentation, we learn that for some input wafer types, the complete
prealign actions are not necessary, and only a center is needed, hence the in-
put_and_start_center variant.

In this model, we see that sometimes in the implementation, developers
have introduced non-blocking and alternative implementation interface func-
tion variants. These non-blocking variants allow a client to queue up action
requests at lower levels in the software, without blocking the rest of the pro-
cess. These alternative implementation variants differ from the documented
process and reflect the evolution of the software over time, introducing new
functionality while maintaining backward compatibility for the original inter-
face signatures. The artificial hierarchy aids in putting these alternative inter-
face function variants into context, and relate them to known domain concepts.
In addition, via this artificial hierarchy, we incorporated the protocol annota-
tions in the control-flow context, relating the observed wafer handling sequence
to the logical locations view.

12.3.5 Follow-up Process Explorations

In the above case study discussion, we have looked at the WHxSTREAM soft-
ware interface from the perspective of the so-called NXT machine type with a
scenario-based regression test suite. We discussed the above results and obser-
vations with the software engineers at ASML, and performed various follow-up
investigations. In [124], we detailed how we extended the above analysis with
additional event data from different machine type configurations and different
execution setups (other test suites, so-called load testers, etc.). By looking at
additional event data, we obtained a more complete overview of the interface
function variants, detailing the commonalities and differences between the doc-
umented and implemented interfaces. By investigating and comparing event
data from different machine types, we gained insight into the commonalities
and differences between machine types from a software interface perspective.
And by using conformance checking and model repair techniques, we were
able to reconstruct a model incorporating the one-to-many relation between
lots (batches) and wafers, showing a more complete overview of the complex
software behavior. In a related case study, we observed multiple software inter-
faces across different architectural layers. By combining such event data with
the nested calls hierarchy heuristics, we could extract used-by and runtime
dependency relations amongst interfaces.

During these case studies, we also investigated various performance aspects.
However, software engineers found such insights unreliable when obtained from
the used simulation environment. Hence, for future work, one should develop
a plan for extracting performance data from either the industrial production
environment itself, or a platform that better mimics such a setup.
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12.3.6 Threats to Validity
There exist two major validity threats with the above case study: 1) the used
simulation setup, and 2) the used test suites for triggering behavior.

Using a simulation setup instead of analyzing actual machine/production
behavior threatens the validity of our case study. For a more accurate perfor-
mance analysis, we agree that a simulation setup would be insufficient. How-
ever, for the purpose of the control-flow analysis presented above, we argue
the used simulation setup is sufficient. The main argument for this claim is
the fact that most developers at ASML do not have access to an industrial
production environment either. Hence, the used simulation environment is
well-established and is actively being used for development and (integration)
testing at the company.

Secondly, the use of test suites for triggering behavior also threatens the
validity of our case study. In this case, we noted that the test suites in-
clude scenarios checking typical batch wafer processing, as was discussed in
Section 12.3.2. Furthermore, though the use of various filter and discovery
techniques, we were able to separate the main behavior from erroneous behav-
ior paths, see for example the abort behavior investigation in Section 12.3.4.
Hence, we argue that this threat, for the purpose of this case study analysis,
is sufficiently mitigated.

12.4 Conclusion
In this chapter, we discussed two software process analysis case studies. We
showed how one can obtain event data and analyze software processes in both
an open-source and an industrial setting.

In the JUnit case study, we have shown how the hierarchical discovery
and hierarchical performance analysis can be used to investigate behavior and
performance patterns across layers of method calls. In addition, we briefly
looked at how our techniques and tools can be used to investigate software
design patterns and how generating new event data from software is needed
for obtaining reliable analysis results for different perspectives.

In the ASML case study, we have shown how the hierarchical and cance-
lation discovery can be used in combination with domain knowledge to obtain
various detailed insights and relate these insights back to domain concepts.
We showed how one can make sense of complex software event data, and how
our proposed methodology and case identification techniques can aid in this
task. In addition, we also noted that generating new event data from software
is needed to investigate different perspectives and software configurations.

These case studies have shown how our techniques and solutions can be
used in practice, some of the challenges we encountered, and how we addressed
those challenges.
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Conclusion

In this thesis, we have presented techniques and tools based on process mining
for analyzing software behavior. At the core of this thesis, we presented hierar-
chical, recursion aware, and cancelation discovery techniques based on exten-
sions of the process tree notation and Inductive Miner framework. In addition,
we reused and built upon the mature alignments technique [21] to provide a
complementary hierarchical performance analysis. All the proposed techniques
have been implemented and integrated in the Statechart Workbench, which is
part of the Statechart plugin for the process mining framework ProM [187].
Furthermore, all techniques have been evaluated with respect to performance,
applicability and with experiments and case studies using business event logs,
open-source software event logs, and industrial software event logs.

In this chapter, conclude this thesis. Section 13.1 revisits and summarizes
the contributions in this thesis. In Section 13.2, we discuss the limitations of
the presented work. Section 13.3 recaps the suggested future work directions
presented throughout this thesis. Finally, Section 13.4 concludes this thesis by
reflecting on the broader context and outlook on process mining and software
engineering.

13.1 Contributions

In Part I, we provided an introduction to process mining and software engi-
neering, positioned our work and presented a basic process mining foundation
upon which the techniques in the rest of the thesis build. As stated in Sec-
tion 1.3, we addressed two types of challenges arising with the application of
process mining for analyzing actual software system behavior. On the one
hand, there is the lack of support for the type of behavior present in software
system settings. On the other hand, there is a lack of support for integrating
process mining in the software process analysis lifecycle (see also Figure 1.1
on page 4). The thesis contributions, as listed in Section 1.5, address these
challenges on both a technical note and in a broader, more practical context.

In the remainder of this section, we revisit the contributions made in the
three main parts of this thesis and reflect on these contributions.
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13.1.1 Part II – Hierarchical Process Discovery

In Part II, we presented our novel hierarchical process discovery techniques.
These hierarchical techniques were inspired by the challenges and properties
of software event log data. For these techniques, we build on an existing
process discovery foundation to discover process trees, and extend the modeling
notation and discovery technique where needed. We selected the well-known
Inductive Miner (IM) framework as it offers good discovery guarantees, scales
well, and provides clear extension points for our adaptations. To recap, Part II
made the following three contributions.

Discussion of Software Data and Behavior – Software behavior and
event data differ from business process event logs in several ways. Chapter 5
presented a detailed discussion comparing business and software logs on both
log size characteristics and type of behavior (Contribution 1). We concluded
that, unlike business event logs, software event logs tend to have more unique
activities and longer traces, which can potentially be problematic for process
mining techniques. However, we also observed that data which becomes avail-
able with observing and logging software executions is “richer” than usual.
Using these data in smart ways can provide various interesting process mining
solutions, such as the hierarchical techniques presented in this thesis. In ad-
dition, in Chapter 5, we discussed the various sources of software event data,
how to interpret such data, and how to structure such data.

Hierarchical and Recursion Aware Discovery – In Chapter 6, we in-
troduced a modeling notation and two discovery techniques for hierarchical and
recursive behavior (Contribution 2). With hierarchical event logs, we explicitly
captured hierarchical behavior found in, for example, software call stack be-
havior, relations between software components or application interfaces, behav-
ior described by high-level and low-level activities, etc. We presented several
heuristics for transforming an ordinary event log into a hierarchical event log.
With the hierarchical process tree we provided extensions to capture named
submodels and recursive behavior. The naïve hierarchical discovery and re-
cursion aware discovery algorithms discover named submodels and recursive
references from hierarchical event logs and capture this behavior in hierar-
chical process trees. These discovery algorithms allow us to analyze software
processes and other processes at multiple levels of granularity while offering
good discovery guarantees. Moreover, these algorithms scale well and show a
huge potential to speed up discovery by leveraging hierarchical information.

Cancelation Discovery – In Chapter 7, we introduced a modeling nota-
tion and discovery technique for cancelation behavior (Contribution 3). With
the cancelation process tree, we provided extensions to capture sequential and
loop-back based cancelation regions. With a trigger oracle we made the start
of cancelation behavior via so-called trigger activities explicit in the input.
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The cancelation discovery algorithm discovers multiple, possibly nested cance-
lation regions from event logs using a trigger oracle and captures this behavior
in cancelation process trees. This discovery algorithm allows us to analyze
software processes and other processes containing cancelation behavior such
as exceptions and error handling. Moreover, the proposed algorithm offers
good discovery guarantees and scales well. In addition, we showed how these
cancelation discovery solutions can be combined with the previously discussed
hierarchical discovery solutions from Chapter 6.

13.1.2 Part III – Beyond Model Discovery

In Part III, we further explored hierarchical process mining beyond model
discovery. First of all, we extended the notions of hierarchy introduced in this
thesis to performance analysis. In addition, we explored how the introduced
hierarchical notions can be used across various visualization models to both
improve understanding and increase visual scalability. To recap, Part III made
the following two main contributions.

Hierarchical Performance Analysis – In Chapter 8, we introduced
a hierarchical approach to performance analysis, taking into account notions
such as subprocesses and cancelation behavior (Contribution 4). Building upon
the work on alignments, we introduced a hierarchical performance analysis
framework for semantic-aware execution subtraces, taking into account model
execution semantics. These execution subtraces are based on the parts of an
aligned log that correspond to a given submodel. Based on this analysis frame-
work, we formalized a selection of existing and novel performance metrics. We
evaluated the proposed framework against existing analysis approaches and
showed the benefit of the added expressiveness of our hierarchical performance
metrics. Moreover, the interaction with hierarchical notions, guided by the
hierarchical performance analysis results, proved essential for understanding
large, complex (software) behavior. In addition, we showed that the added
computational overhead of our hierarchical performance metrics, compared to
the end-to-end performance metric computation time, is essentially negligible.

Model Translations and Traceability – In Chapter 9, we provided an
extensive model translation framework, taking into account the hierarchical,
recursive, and cancelation semantics (Contribution 5). In addition, we showed
how these translations maintain traceability across models and event logs. The
implementation leverages this traceability to close the loop in the software
process analysis lifecycle (see Figure 1.1 on page 4).

13.1.3 Part IV – Applications

In Part IV, we discussed tools and applications of the techniques and algo-
rithms presented in this thesis. By providing tools, a methodology, and exem-
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plary case studies, we helped to address the lack of structure and support for
applying software process mining in a round-trip software process analysis. To
recap, Part IV made the following contributions.

Extensive Tool Support for Round-trip Software Analysis – In
Chapter 10, we presented three implemented tools, their interactions, and how
our tools allow for integration with existing software artifacts (Contribution 6).
With the instrumentation agent, we provided a structured way for recording
and logging software event data. Independent of the agent, with the Statechart
Workbench we implemented and integrated all of the techniques proposed in
this thesis. This workbench is part of the Statechart plugin for the process
mining framework ProM [187], and provides export functionality to integrate
the results with other ProM plugins and other tools. Finally, with the Soft-
ware Analysis Workbench (SAW) Eclipse plugin, we closed the software process
analysis loop. This Eclipse plugin integrates the instrumentation agent and in-
terfaces with the ProM plugin to relate results back to the source code.

Methodology Support for Software Event Data – In Chapter 11, we
presented a software process analysis methodology for obtaining and analyzing
software event log data in a structured way (Contribution 1). The presented
methodology actively includes the system under analysis and is based on prac-
tical experiences in applying process mining on open-source software and legacy
software in industry.

Software Case Studies – In Chapter 12, we applied the proposed tech-
niques, tools, and methodologies in both an open-source and an industrial case
study. We showed how our techniques and solutions can be used in practice,
some of the challenges we encountered, and how we addressed those challenges.

13.2 Limitations

In this section, we discuss the limitations of the presented techniques, tools,
and methodology. We summarize the most important challenges in each of
the three main parts of this thesis. In addition, we provide references to the
corresponding future work discussions presented in the various chapters.

13.2.1 Part II – Hierarchical Process Discovery

The hierarchical process discovery techniques presented in Part II, although
already useful in practice (as demonstrated in Part IV), have some inherent
limitations. Below, we summarize the most important limitations.

Representational Bias Limitations – Our hierarchical and recursion
aware discovery algorithms assume a relatively simple interpretation of hierar-
chies and named submodels. We assume only one hierarchical dimension where
each named submodel describes an independent subprocess with a single entry
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and a single exit, without any relation to the world outside the named sub-
process. In various situations, discovering such a simple hierarchical model is
already very valuable, as we have seen in the various evaluation experiments
and case studies. However, in some cases, one may wish to have a richer no-
tion of hierarchical behavior. For example, one may wish to influence the state
of another non-nested submodel, possibly via communication mechanisms (see
Future Work 6.1). In other cases, one may wish to drop the single entry and sin-
gle exit restriction inherited from the underlying Inductive Miner. In addition,
it can be useful to adopt multiple hierarchical views (see Future Work 6.5).

Unsupported Software Behavior – The hierarchical and cancelation
support presented in this thesis are a very generic approach to support some
of the more common behavioral patterns observable in running software. How-
ever, there are various other behavioral patterns which are currently not sup-
ported. For one, we completely ignored the notion of objects and object in-
stances (see Future Work 6.2). Current algorithms are limited in inferring
interactions amongst objects, and current recursion detection ignores object
instances. In addition, multi-threaded behavior lacks discovery and analysis
support. Current discovery algorithms have difficulty detecting where behav-
ior happens concurrently across different computational threads and have diffi-
culty discovering the appropriate fork and join constructs (see Future Work 6.3
and Future Work 8.2). Furthermore, we currently cannot adequately discover
multi-instance patterns where a function or subroutine is invoked in parallel
for each element in a dataset (see Future Work 6.4).

Oracle Instantiations – The presented hierarchical and cancelation dis-
covery algorithms rely on external knowledge via heuristics and oracles. In
some cases, it is not immediately clear which settings should be used, and
selecting the right heuristic can be error-prone. These limitations raise the
threshold for applying the proposed techniques. Although part of the heuristic
and oracle selection could be automated (e.g., see Future Work 7.1 and Future
Work 7.2), the current techniques do not support this.

13.2.2 Part III – Beyond Model Discovery

The techniques presented in Part III put the hierarchical ideas in a broader
context. By leveraging and adapting existing notations (Petri nets) and algo-
rithms (the alignments algorithm), we automatically inherited some of their
limitations.

Alignment Computation Time – In our performance techniques, we
rely on the alignments algorithm for computing a mapping between model
elements and logged events. However, calculating an alignment can be pro-
hibitively expensive in certain cases. Especially when dealing with the large
and complex models our hierarchical discovery techniques can produce, the
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traditional alignment algorithm can be a limiting factor during an analysis
(see Future Work 6.6 and Future Work 8.4).

Analysing Nonfitting Behavior – In our performance techniques, we
assume a certain degree of fitting behavior: the various performance metrics are
mostly defined in terms of synchronous alignment moves (i.e., fitting behavior).
This approach is rather binary and limits the applicability of our approach:
either we have fitting behavior, and we can compute metrics on it, or we do
not (see Future Work 8.6).

13.2.3 Part IV – Applications
The methodology and the case studies performed with the tools implementing
our techniques revealed several practical issues.

Layout Limitations – The introduced discovery techniques allow for the
exploration and analysis of larger and more complex process models. Various
tool techniques, such as expanding and collapsing named submodels, aid the
user in exploring these type of models. However, the graph layout algorithms
currently used are not ideal for this type of usage. These graph layout algo-
rithm has a significant computation time and the produced layouts are not
robust or deterministic, limiting the usability of our approaches (see Future
Work 6.7, Future Work 7.4, and Future Work 8.3).

Unclear Tradeoffs in Observing Software – When observing a soft-
ware system, one has to make various system scoping and data extraction
decisions. What are we going to observe? At which granularity are we going
to observe? And what will be the effect of the selected observation setup on the
accuracy and reliability of the obtained software event data? In the presented
case studies, we relied on external knowledge to make the above decisions.
However, there is a lack of a structured and informed way to decide what to
observe and log, what not, and why. In short, this reliance on external knowl-
edge and expertise is a limiting factor for more novice software analysts. To
the best of our knowledge, there are no established theories and guidelines on
such tradeoffs in observing software (see Future Work 10.1, Future Work 11.1,
and Future Work 11.2).

Lack of Source Artifact Integration – During the case studies, we saw
the value of relating software process analysis results back to known domain
concepts and artifacts. We recognized such a need by providing a proof-of-
concept source code traceability in the developed tools. However, the current
prototypical realization is limited to a specific source code location formatting
and a specific Eclipse plugin for an Eclipse Java project. Currently, there is no
support for a broader set of source artifacts integration beyond the (bidirec-
tional) model-to-source-code link (see Future Work 8.5, Future Work 9.3, and
Future Work 10.3).
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13.3 Future Work

Throughout this thesis and in the above limitation discussions, we have touched
upon various future work directions. Below, we summarize the most promising
future work ideas for each of the three main parts of this thesis.

13.3.1 Part II – Hierarchical Process Discovery

With the foundations in hierarchical and cancelation process discovery pre-
sented in this thesis, we foresee several interesting future work directions.

Extend Notation and Discoverable Behavior – As already noted in
the limitations above, there is still ample of room for extending the notations
and discovery capabilities with richer behavior. The goal of such future work is
to improve the accuracy and simplicity of the discovered process models as well
as presenting end users with familiar and understandable notations (see Future
Work 9.2). For one, we can extend upon the current hierarchical notations by
including concepts such as communicating submodels (see Future Work 6.1),
mixed, multi-dimensional hierarchies (see Future Work 6.5), and a notion of
submodel history as introduced in the Statechart notation. In addition, we
can include workflow patterns like the milestone [15], multi-instance patterns,
and various environmental triggers like the BPMN events or MSD external
messages (SEE Future Work 9.1).

Data-Based Software Behavior Support – The process discovery al-
gorithms discussed in this thesis discover the modeled behavior mainly based
on causality relations, e.g., by looking for patterns in a directly-follows graph.
In software event logs, there is often a lot of additional information available,
such as object instance identifiers (see Future Work 6.2), execution thread
identifiers, and more, see also Section 5.3 on page 102. Not only is using such
additional information a nice future work direction, in some cases, it is also
necessary to consider such information. For example, when observing multi-
threaded software, we often do not observe enough interleaving and causal
relations to infer concurrency based on a directly-follows pattern. However,
the recorded thread-id data (see Section 5.3.6 on page 106) in such software
event logs can be accurate enough to infer the exact concurrency patterns (see
Future Work 6.3, Future Work 6.4, and Future Work 8.2).

(Semi-)Automated Oracle Instantiations – As already discussed in
the limitations above, there are various possible future work directions to au-
tomate the oracle instantiations for hierarchical and cancelation discovery. On
the one hand, one could use the observations during discovery to automati-
cally tune oracles. For example, special fallback cases could detect cancelation
patterns, and thus aid in instantiating a cancelation trigger oracle (see Future
Work 7.1). On the other hand, one could use heuristics to select a config-
uration for an oracle, and validate this configuration via metrics like fitness
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and precision (see Future Work 7.2). In addition, one could use heuristics to
guide users to likely correct configuration settings for a hierarchy heuristic or
cancelation trigger oracle.

13.3.2 Part III – Beyond Model Discovery

With the proposed techniques and observations in Part III, we foresee several
interesting future work directions for analyzing complex processes.

Extended Performance Analysis –With the notion of hierarchical per-
formance analysis, we have shown the advantages of extending performance
analysis with notions beyond a simple duration or waiting time. Likewise,
we foresee potential in further extending performance analysis. On the one
hand, there is a wealth of additional information to include in performance
analysis. For example, one could include additional lifecycle information via
concepts like queue mining, or include thread-activity information to enable
thread state execution analysis (see Future Work 8.1 and Future Work 8.2). On
the other hand, one could investigate how performance analysis can be made
conformance-aware. We already noted the limitations in analyzing non-fitting
behavior. However, one could consider non-fitting behavior as an additional
source of information instead of information absence (see Future Work 8.6).

Improved Model Exploration – With the larger and more complex
models produced by the techniques in this thesis, there is the opportunity for
future work to improve model exploration. One possible direction to investigate
is how performance metrics could actively aid the user in exploring a model and
doing a performance analysis. For example, performance metrics can be used
to automatically focus the user view on certain parts of the model, suggesting
where to start an analysis (see Future Work 8.7). In addition, filtering on the
model level, instead of the event log level, could be investigated in more detail.
User interactions or specific algorithms could hide less interesting parts of the
discovered models (see Future Work 10.2). Furthermore, future work could
investigate how multiple notations or views can be used together in exploring
the discovered behavior and performance (see Future Work 10.4).

Alternative Alignment Computations – As already discussed in the
limitations above, calculating alignments for performance analysis can be pro-
hibitively expensive. This is especially true when dealing with the large and
complex models our discovery techniques can produce. However, when ap-
plying performance analysis on models discovered by our discovery techniques
or similar approaches, there is additional information available. Future work
could investigate how the modeled hierarchies and the information obtained
during log splitting can be used to speed up alignment computations (see Fu-
ture Work 6.6). Future work could also look into alternatives to optimal align-
ments, such as estimation and approximation techniques (see Future Work 8.4).
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Explore Source Integration Opportunities – As noted several times
throughout this thesis, there is a large potential in combining software process
mining with available source artifacts such as the source code. The ProM-
Eclipse source-code link is a nice example, but many other opportunities re-
mained to be explored. Future work could investigate how the source code
traceability can be used to generate additional data on demand, making the
software process mining more interactive (see Future Work 6.8). In addition,
one could explore how to integrate and use source code and software-quality
metrics on discovered process models (see Future Work 8.5). The other way
around, future work could also investigate how software process mining can
be used in the realm of source artifacts such as source code, DSL models, and
class diagrams (see Future Work 9.3 and Future Work 10.3).

13.3.3 Part IV – Applications
The methodology and the case studies performed with the tools implementing
our techniques revealed an interesting future work direction.

Process Tree Guided Layout – As we already noted, the current layout
algorithm for graph models like the Statechart limits the useability of our ap-
proaches. Not only is the graph layout computation relatively slow, it also is
not robust or deterministic: changing a small part of the model (e.g., collaps-
ing a named submodel) or simply redrawing a model can have a large effect on
the model layout. The fact that our graph models are backed by the extended
process tree notation, and thus a hierarchical structure, could provide interest-
ing future work possibilities for creating fast, robust, and deterministic layout
algorithms (see Future Work 6.7, Future Work 7.4, and Future Work 8.3).

Investigate Logging Tradeoffs – As noted in the limitation above, there
is a lack of a structured and informed way to decide what to observe and log in
a software system, what not, and why. First of all, future work should investi-
gate the tradeoffs and scalability of observing software (see Future Work 11.1).
At what granularity should software be observed? What impact do such obser-
vations have on the quality of the obtained data? And which logging architec-
tures and setups are best suited for the various software observation scenarios
(see Future Work 10.1)? Such future work efforts should lay the groundwork,
theory, and experiments for how to observe software and the involved trade-
offs. In addition, there should be improved tool support to help users obtain
software event data and measure/estimate the quality of the obtained data
(see Future Work 11.2).

13.4 Broader Outlook on Process Mining and Software Engineering
We conclude this thesis with a broader outlook on process mining and software
engineering, reflecting on our contributions in a broader context.
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As we already acknowledged in Chapter 1, in today’s world, we increas-
ingly rely on information technology. Complex software-driven systems can
be found in all sectors: communication, production, distribution, healthcare,
transportation, education, entertainment, government, trade, etc. [7] More-
over, many complex problems and automation challenges are increasingly being
solved by data mining, machine learning, artificial intelligence, data science,
and big data technologies. However, when these software-driven systems fail
or do not behave as expected, they can have an incredible impact on society,
organizations, and users. Although considerable amounts of data are recorded
by software, machines, and organizations, such problems are typically only ad-
dressed in a trial-and-error and ad-hoc fashion. This is in stark contrast to
the recent trend of data-driven machine learning type of solutions for complex
problems.

In the field of business intelligence and process mining, we see an increasing
trend of relying on data-driven analysis, designing, and optimizations. Busi-
ness processes are seen as complex, living things, which we must observe and
monitor to make evidence-based improvements. This trend is supported by
the rise of commercial business intelligence and process mining tools as well as
specialized (process mining) consultancy companies. The field of software en-
gineering could borrow some of these practices and insights from the business
process domain: complex software-driven systems should be seen as complex,
living things, which we must observe and monitor to make evidence-based im-
provements. After all, software continues to evolve and be used long after the
initial code is written.

Already, we see some progress in the direction of evidence-based software
engineering. For example, recent developments in artificial intelligence and
machine learning focuses on making decision and classification algorithms “ex-
plain themselves” based on observable, real-life data [79, 135, 167]. The field
of process mining could borrow some ideas from this concept: process mining
algorithms should explain why certain models or analysis results are derived
and provide a justification, i.e., it is not sufficient to just mine results that
“look right” (Figure 13.1).

Software-driven companies more and more realize the impact of their ex-
isting software, as well as their lack of understanding of their own systems,
i.e., their legacy. We need to move from “developing software once” to “under-
standing software in the field”, and adopt an evidence-based maintenance and
improvement paradigm. Rather than fixing bugs after costly failures in pro-
duction, we should understand, predict, and prevent such system failures. The
question is, how can we move towards an evidence-driven software engineering
and maintenance paradigm in a reliable, scalable, and ethical way?
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Figure 13.1: xkcd: Machine Learning. It is not sufficient to just mine results
that “look right”. Source: https://xkcd.com/1838/.

https://xkcd.com/1838/




“Why do you go away? So that you can come back.
So that you can see the place you came from with
new eyes and extra colors. And the people there see
you differently, too. Coming back to where you
started is not the same as never leaving.”

— Terry Pratchett, A Hat Full of Sky

A |

A

Proofs

In this appendix, we provide detailed proofs for the various theorems and
lemmas found throughout this thesis, ordered by chapter.

A.1 Proof for Chapter 4 – A Process Discovery Foundation
The Inductive Miner (IM) framework, as introduced in Chapter 4, offers good
discovery guarantees, scales well, and provides clear extension points for our
adaptations. In this section, we will briefly cover the proofs for the discovery
guarantees provided by the basic framework as described in Chapter 4. We
refer the reader to [130, 131] for the full proofs.

A.1.1 Soundness and Termination
Theorem 4.3.1 — IM guarantees soundness. All models returned by the IM
framework are guaranteed to be sound.

Sketch of Proof. The framework returns process trees, which are sound by con-
struction. �

Theorem 4.3.2 — IM guarantees termination. The IM framework is guaran-
teed to always terminate.

Sketch of Proof. Termination follows from two facts: 1) the sublogs get smaller
in each recursion, and 2) there are finitely many recursions for each recursion
step. By construction of SplitLog(L, (⊗, (Σ1, . . . ,Σn))), fact 1 holds. By con-
struction of FindCut(L), finitely many partitions or log divisions are created,
hence the number of recursions is also finite and fact 2 holds. See [131, Theo-
rem 2, page 7] for the full proof. �

A.1.2 Perfect Fitness
Theorem 4.3.3 — IM guarantees fitness. The IM framework returns a model
that fits the log. That is, given an event log L, the IM framework returns a
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model Q such that L ⊆ L(Q).

Sketch of Proof. The fitness proof is based on induction on the log size. As
induction hypothesis, we assume that for all sublogs, the discovery framework
returns a model able to reproduce all traces, and then prove that the step
maintains this property. That is, for all sublogs Li we have a corresponding
submodel Qi such that Li ⊆ L(Qi).

Using the induction hypothesis (IH) and the process tree language-join
functions (⊗L, see Definition 2.2.12 on page 40), we can show that the join
operator ⊗ in the step maintain the fitness property. That is, since by IH
∀ i : Li ⊆ L(Qi) we can conclude ⊗L(L1, . . . , Ln) ⊆ L(⊗(Q1, . . . , Qn)). And
since L ⊆ ⊗L(L1, . . . , Ln) and ⊗(Q1, . . . , Qn) = Q, we can conclude L ⊆ L(Q).

See [131, Theorem 3, page 7] for the full proof. �

A.1.3 Language Rediscoverability
Lemma 4.3.4 — IM rediscovers base cases. Let Q = a for some a ∈ A or let
Q = τ ; let L be a log such that L�df Q∧L ⊆ L(Q). Then IMdiscover(L) = Q.

Sketch of Proof. The proof follows from a case distinction on the base cases,
and code inspection. See [131, Lemma 12, page 21] for the full proof. �

Lemma 4.3.5 — IM selects right tree operator. Let Q = ⊗(Q1, . . . , Qn) be a
reduced model that adheres to the model restrictions in Definition 4.3.2 and
let L be a log such that L �df Q ∧ L ⊆ L(Q). Then FindCut(L) selects ⊗.

Sketch of Proof. The proof strategy is to prove for all operators that given a
log L that is directly-follows complete to the complete model, ⊗ will be the
only operator for which G(L) satisfies all the cut criteria. See [131, Lemma 11,
page 20] for the full proof. �

Lemma 4.3.6 — IM splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the model restrictions in Definition 4.3.2 and let L be a
log such that L �df Q ∧ L ⊆ L(Q). Let ⊗ be the result of FindCut(L) and let
(L1, . . . , Ln) be the corresponding result of SplitLog. Then for the resulting
sublogs Li we have ∀ i : Li �df Qi ∧ Li ⊆ L(Qi).

Sketch of Proof. The proof strategy is to prove for all operators using the fol-
lowing three steps. First, we check that for each operator, the cut detection
returns the correct activity division. Next, using that division, we prove that
the log split returns sublogs valid for their submodels. Finally, we can show
that each resulting sublog produces a log that is directly-follows complete with
respect to its submodel. See [131, Lemma 13, page 21] for the full proof. �
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Theorem 4.3.7 — IM guarantees language rediscoverability. If the model re-
strictions in Definition 4.3.2 hold for a process tree Q, then IMdiscover

language-rediscovers Q, i.e., L(Q) = L(IMdiscover(L)) for any log L such
that L �df Q ∧ L ⊆ L(Q).

Sketch of Proof. The proof for this theorem relies on showing that a reduced
version Q′ of Q is isomorphic to the model returned by IMdiscover using in-
duction on model sizes. Lemma 4.3.4 proves isomorphism of the base cases.
In the induction step, Lemma 4.3.5 ensures that IMdiscover(L) has the same
root operator as Q, and Lemma 4.3.6 ensures that the subtrees of Q′ are iso-
morphically rediscovered as subtrees of IMdiscover(L). See [131, Theorem 14,
page 23] for the full proof. �

A.1.4 Polynomial Runtime Complexity

Theorem 4.3.8 — IM has polynomial runtime complexity. The runtime com-
plexity of the IM framework is bounded by O(|A(L)|5 + |A(L)| · |L|).

Proof. As stated on [130, page 198], the runtime complexity of the IM frame-
work depends on the number of traces in the event log c = |L| and on the
size of the activity alphabet n = |A(L)|. The cut detection for the normal
process tree operators can be defined as common graph problems for which
polynomial algorithms exist. The exclusive choice, concurrency and loop cuts
can be translated to finding connected components, the sequence cut to finding
strongly connected components. There are three recursive paths we need to
consider:
• The base cases stop recursion and have a runtime complexity of O(c).
• The cut detection involves the construction of a directly-follows graph

(runtime complexity O(c)), cut detection (runtime complexity O(n3) for
computing reachability for the sequence cut detection) and log splitting
(runtime complexity O(c)). In this step, the size of the alphabet is de-
creased by at least one.
• Most fallback cases have a runtime complexity O(c). Fallback 4.3 has

runtime complexity O(n ·n3) = O(n4) for performing a cut detection for
each activity in the alphabet. In this step, the size of the alphabet is
decreased by at least one.

Based on these recursive paths, we conclude that the number of recursions
made is bounded by the number of activities: O(n) = O(|A(L)|).

We get the following recurrence for the IM runtime complexity T (n):

T (n) =


c if a base case was applied (n = 1)
c+ n3 + c+ T (n− 1) if a cut was detected (n > 1)
c+ n4 + T (n− 1) if a fallback was used (n > 1)



368 Chapter A. Proofs

Since this runtime complexity is dominated by the fallback cases, we hypoth-
esize for any non-negative integer k:

T (n) = T (n− k) + k · n4 + k · c

We prove this new recurrence holds by induction on n:

Base: for k = 1

T (n) = T (n− 1) + n4 + c

Step: using the induction hypothesis on k − 1

T (n) = T (n− (k − 1)) + (k − 1) · n4 + (k − 1) · c
{Substituting original fallback recurence for T (n− (k − 1))}

= (T (n− k) + n4 + c) + (k − 1) · n4 + (k − 1) · c
= T (n− k) + k · n4 + k · c

Hence, the new recurrence holds. Using k = n, with T (0) = c, we get:

T (n) = c+ n · n4 + n · c
= n5 + n · c

Therefore, the runtime complexity of the IM framework is bounded by:

O(n5 + n · c)
= O(|A(L)|5 + |A(L)| · |L|)

Note that this runtime complexity is tighter than the original runtime com-
plexity provided in [130, page 198]. �

A.2 Proof for Section 6.4 – Naïve Hierarchical Discovery
The naïve hierarchical discovery (NHD) algorithm maintains the IM discovery
guarantees from Section 4.3 on page 84 and returns a sound hierarchical process
tree (Definition 6.3.3). In this section, we will discuss the proofs for these
discovery guarantees and properties.

A.2.1 Soundness and Termination
Theorem 6.4.1 — NHD guarantees soundness. All models Q returned by the
NHD algorithm are guaranteed to be sound.

Proof. According to Definition 6.3.3, a hierarchical process tree is not sound
if its language contains unresolved recursion markers or a resolved recursion
has no option to terminate. Since the NHD algorithm does not support the
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recursive reference operator, neither of these cases can occur in a model Q
returned by NHDiscover. Hence, all returned hierarchical process trees are
sound. �

Theorem 6.4.2 — NHD guarantees termination. The NHD algorithm is guar-
anteed to always terminate.

Proof. Consider Base Case 6.1: Single Activity – No Hierarchy. Observe that
this base case returns a leaf and does not recurse. Hence, this base case ter-
minates.

Consider Base Case 6.2: Single Activity – Lower Level in the Hierarchy.
Observe that the log L has a finite depth, i.e., a finite number of levels in the
hierarchy. Note that the sequence projection L�∗1 yields strictly smaller event
logs, i.e., the number of levels in the hierarchy strictly decreases. Therefore,
we can conclude that this base case yields only finitely many recursions and
thus terminates.

By the base Theorem 4.3.2, we know termination is guaranteed for the
original step and fallback cases. Hence, the NHD algorithm is guaranteed to
always terminate. �

A.2.2 Perfect Fitness
Theorem 6.4.3 — NHD guarantees fitness. The NHD algorithm returns a
model that fits the log. That is, given an event log L, the NHD algorithm
returns a model Q such that L ⊆ L(Q).

Proof. Based on the proof from the base Theorem 4.3.3, as induction hypoth-
esis (IH), we assume that for all sublogs, the discovery framework returns a
fitting model, and then prove that the step maintains this property. That
is, for all sublogs Li we have by IH a corresponding submodel Qi such that
Li ⊆ L(Qi), and we have to prove L ⊆ L(Q).

Consider Base Case 6.1: Single Activity – No Hierarchy. This proof is
analogous to the base Theorem 4.3.3 proof for Base Case 4.2.

Consider Base Case 6.2: Single Activity – Lower Level in the Hierarchy.
That is, we have NHDiscover(L) = Of (NHDiscover(L�∗1)) = Q, and we have to
prove L ⊆ L(Q). We deduce:

Q1 = NHDiscover(L�∗1)
Induction Hypothesis on L�∗1 and Q1

L�∗1 ⊆ L(Q1)
Apply f.(L�∗1) = L

L ⊆ f.L(Q1)
By semantics of Of : f.L(Q1) = L(Of (Q1))

L ⊆ L(Of (Q1))
Apply Q1 = NHDiscover(L�∗1)

L ⊆ L(Of (NHDiscover(L�∗1)))
Apply Of (NHDiscover(L�∗1)) = Q

L ⊆ L(Q)
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Hence, we conclude that for the named subtree operator we return a process
model that fits the log L.

By the base Theorem 4.3.3, we know fitness is guaranteed for the original
step and fallback cases. Hence, the NHD algorithm guarantees fitness. �

A.2.3 Language Rediscoverability
Lemma 6.4.4 — NHD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn)
be a reduced model that adheres to the above model restrictions and let L be
a log such that L �df Q. Then NHDiscover(L) returns a tree with root ⊗.

Proof. By construction of the base IM framework, base cases are checked before
any cut detection or fallback cases. Suppose Q = Of (Q1) for some f ∈ A, then
by L �df Q we know that every event e in L starts with f and there exists an
event with a lower level in the hierarchy. Therefore, Base Case 6.2 applies, and
NHDiscover(L) returns a tree with root Of .

In all other cases, base Lemma 4.3.5 applies. Hence, NHDiscover(L) returns
a tree with root ⊗. �

Lemma 6.4.5 — NHD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions and let L be a log such
that L �df Q∧L ⊆ L(Q). Then for the resulting sublogs Li produced by NHD
we have LI �df Qi ∧ Li ⊆ L(Qi).

Proof. Consider Base Case 6.2. Then we know that Q = Of (Q1) for some f ∈
A and we know that L1 = L�∗1. We have to prove that L1 �df Q1∧L1 ⊆ L(Q1).
We deduce:

L �df Q ∧ L ⊆ L(Q)
Apply Q = Of (Q1)

L �df Of (Q1) ∧ L ⊆ L(Of (Q1))
Apply L�∗1 and semantics of Of

L �∗1 �dfQ1 ∧ L�∗1 ⊆ L(Q1)
Apply L1 = L�∗1L1 �df Q1 ∧ L1 ⊆ L(Q1)

Therefore, we conclude that Base Case 6.2 splits the log correctly. In all other
cases, base Lemma 4.3.6 applies. Hence, NHD splits logs correctly. �

Theorem 6.4.6 — NHD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process treeQ, then NHDiscover language-
rediscovers Q, i.e., L(Q) = L(NHDiscover(L)) for any log L such that L �df
Q ∧ L ⊆ L(Q).

Proof. By Lemmas 6.4.4 and 6.4.5, and base Theorem 4.3.7, the NHD algo-
rithm guarantees language rediscoverability. �
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A.2.4 Polynomial Runtime Complexity

Theorem 6.4.7 — NHD has polynomial runtime complexity. The runtime com-
plexity of the NHD algorithm is bounded by O((‖A(L)‖+ ‖L‖) · ‖A(L)‖4 +
(‖A(L)‖+ ‖L‖) · |L|).

Proof. We will be reusing the basic IM runtime complexity from Theorem 4.3.8
on page 86. The runtime complexity of the NHD algorithm depends not only on
the number of traces in the event log c = |L| and on the hierarchical alphabet
size n = ‖A(L)‖, but also on the number of hierarchy levels h = ‖L‖. Based
on the new Base Cases 6.1 and 6.2, we conclude that the number of recursions
made is bounded by: O(n+ h) = O(‖A(L)‖+ ‖L‖).

We get the following recurrence for the NHD runtime complexity T (n+h):

T (n+ h) =


c for Base Case 4.1 (n = 1 ∧ h = 1)
c+ T (n+ h− 1) for Base Case 6.1 or 6.2 (n = 1 ∧ h > 1)
c+ n3 + c+ T (n+ h− 1) if a cut was detected (n > 1)
c+ n4 + T (n+ h− 1) if a fallback was used (n > 1)

Since this runtime complexity is dominated by the fallback cases, we hy-
pothesize for any non-negative integer k:

T (n+ h) = T (n+ h− k) + k · n4 + k · c

Reusing the proof from Theorem 4.3.8 on page 86, and using k = n+h, with
T (0) = c, we get:

T (n+ h) = c+ (n+ h) · n4 + (n+ h) · c
= (n+ h) · n4 + (n+ h) · c

Therefore, the runtime complexity of the IM framework is bounded by:

O((n+ h) · n4 + (n+ h) · c)
= O((|A(L)|+ ‖L‖) · |A(L)|4 + (|A(L)|+ ‖L‖) · |L|)

�

A.3 Proof for Section 6.5 – Recursion Aware Discovery
The recursion aware discovery (RAD) algorithm maintains the IM discovery
guarantees from Section 4.3 on page 84 and returns a sound hierarchical process
tree (Definition 6.3.3). In this section, we will discuss the proofs for these
discovery guarantees and properties.

A.3.1 Soundness and Termination
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Theorem 6.5.1 — RAD guarantees soundness. All models Q returned by the
RAD algorithm are guaranteed to be sound.

Proof. According to Definition 6.3.3, a hierarchical process tree is not sound if
its language contains unresolved recursion markers or a resolved recursion has
no option to terminate.

Since Base Case 6.4 checks f ∈ C for the involved context path, there is
always a matching named subtree Of for a recursive reference Mf . Hence, any
model Q returned by RADiscover cannot yield unresolved recursion markers.

Since Base Case 6.4 will continue updating the involved sublog L(C′) until
all observed behavior is included, there will always be an activity or a tau
leaf for the empty recursion (e.g., see Example 6.4) to provide a termination
option. Hence, any model Q returned by RADiscover always has an option to
terminate.

Hence, all returned hierarchical process trees are sound. �

Theorem 6.5.2 — RAD guarantees termination. The RAD algorithm is guar-
anteed to always terminate.

Proof. Consider Base Cases 6.3 and 6.4. Observe that these base cases do
not recurse. Hence, these base cases terminate. By the base Theorem 4.3.2,
we know termination is guaranteed for the original step and fallback cases.
Hence, the recursion aware instantiation RADstep(L,C) is guaranteed to always
terminate.

Observe that the event log L has a finite depth, i.e., a finite number of
levels in the hierarchy. Note that the sequence projection L�∗1 yields strictly
smaller event logs, i.e., the number of remaining levels in the hierarchy strictly
decreases. Hence, Base Cases 6.3 and 6.4 can only change sublogs finitely
often. In addition, since a context path C is derived from the log depth, and
thus finite in size, we also have finitely many sublogs L(C) that are being used.

Consider the RAD algorithm as given in Algorithm 6.2. Observe that the
loop on line 4 is bounded by the number of sublog changes, which are finite,
and thus terminates. Observe that the loop on line 7 is bounded by the size of
the context path, which is finite, and thus also terminates. Hence, the RAD
algorithm is guaranteed to always terminate. �

A.3.2 Perfect Fitness
Theorem 6.5.3 — RAD guarantees fitness. The RAD algorithm returns a
model that fits the log. That is, given an event log L, the RAD algorithm
returns a model Q such that L ⊆ L(Q).
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Proof. Based on the proof from the base Theorem 4.3.3, as induction hypoth-
esis (IH), we assume that for all sublogs, the discovery framework returns a
fitting model, and then prove that the step maintains this property. That
is, for all sublogs Li we have by IH a corresponding submodel Qi such that
Li ⊆ L(Qi), and we have to prove L ⊆ L(Q).

Consider Base Case 6.3: Single Activity – Named Subtree. That is, we
have RADiscover(L) = Of (Q〈 ...,f 〉) = Q, and we have to prove L ⊆ L(Q). We
deduce:

RADstep(L,C) = Of (?〈 ...,f 〉)
Use L(C′) = L�∗1 and Alg. 6.2, line 5

Q1 = RADstep(L�∗1,C
′)

Induction Hypothesis on L�∗1 and Q1
L�∗1 ⊆ L(Q1)

Apply f.(L�∗1) = L
L ⊆ f.L(Q1)

By semantics of Of : f.L(Q1) = L(Of (Q1))
L ⊆ L(Of (Q1))

Apply Q1 = Q〈 ...,f 〉 and Alg. 6.2, line 9
L ⊆ L(Of (Q〈 ...,f 〉)) Apply Of (Q〈 ...,f 〉) = Q

L ⊆ L(Q)

Hence, we conclude that for the named subtree operator we return a process
model that fits the log L.

Consider Base Case 6.4: Single Activity – Recursive Reference. That is,
we have RADiscover(L) = Q with Mf somewhere in Q, and we have to prove
L ⊆ L(Q). We deduce:

Mf somewhere in Q
Use f ∈ C from Base Case 6.4

∃Q1 = Of (Q〈 ...,f 〉) with Mf in Q1
Use L�∗1 ⊆ L(C′) and Alg. 6.2, line 5

Q1 = RADstep(L�∗1,C
′)

Apply proof for Base Case 6.3
L ⊆ L(Q)

Hence, we conclude that for the recursive reference operator we return a
process model that fits the log L.

By the base Theorem 4.3.3, we know fitness is guaranteed for the original
step and fallback cases. Hence, the RAD algorithm guarantees fitness. �

A.3.3 Language Rediscoverability
Lemma 6.5.4 — RAD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn)
be a reduced model that adheres to the above model restrictions and let L be
a log such that L �df Q. Then RADiscover(L) returns a tree with root ⊗.

Proof. By construction of the base IM framework, base cases are checked before
any cut detection or fallback cases. Suppose Q = Of (Q1) for some f ∈ A, then
by L �df Q we know that every event e in L starts with f and there exists an
event with a lower level in the hierarchy. Therefore, Base Case 6.3 applies in
the run Qroot = RADstep(L, ε), and RADiscover(L) returns a tree with root Of .
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In all other cases, base Lemma 4.3.5 applies. Hence, RADiscover(L) returns
a tree with root ⊗. �

Lemma 6.5.5 — RAD rediscovers the recursive reference leaf. Let Q = ⊗(Q1,
. . . , Qn) be a reduced model that adheres to the above model restrictions
with a leaf Mf somewhere in Q and let L be a log such that L �df Q. Then
RADiscover(L) returns a tree with a leaf Mf .

Proof. Since by the above model restrictions we only consider sound hierar-
chical process trees, there must exist a named subtree Of on the path from Q
to Mf . Hence, as a result of Base Case 6.3, at some point, Base Case 6.4 with
f ∈ C must apply. Therefore, at some point, there exists a subtree Q′ with the
leaf Mf . Since during discovery sublogs are only changed by adding behavior,
once a leaf Mf is discovered for a submodel Q′, it will always be rediscovered
in subsequent runs. Therefore RADiscover(L) returns a tree with a leaf Mf . �

Lemma 6.5.6 — RAD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions and let L be a log such
that L �df Q ∧ L ⊆ L(Q). Then for the resulting sublog L(C′) produced by
RAD we have L(C′) �df QC′ ∧ L(C′) ⊆ L(QC′).

Proof. Consider Base Cases 6.3 and 6.4. Then we know that L�∗1 ⊆ L(C′). We
have to prove that L(C′) �df QC′ ∧ L(C′) ⊆ L(QC′). We deduce:

L �df Q ∧ L ⊆ L(Q)
Apply Q = Of (QC′)

L �df Of (QC′) ∧ L ⊆ L(Of (QC′)) Apply L�∗1 and semantics of Of
L �∗1 �dfQC′ ∧ L�∗1 ⊆ L(QC′) Apply L�∗1 ⊆ L(C′)

L(C′) �df QC′ ∧ L(C′) ⊆ L(QC′)

Therefore, we conclude that Base Case 6.2 splits the log correctly. In all other
cases, base Lemma 4.3.6 applies. Hence, RAD splits logs correctly. �

Theorem 6.5.7 — RAD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process treeQ, then RADiscover language-
rediscovers Q, i.e., L(Q) = L(RADiscover(L)) for any log L such that L �df
Q ∧ L ⊆ L(Q).

Proof. By Lemmas 6.5.4, 6.5.5 and 6.5.6, and base Theorem 4.3.7, the RAD
algorithm guarantees language rediscoverability. �

A.3.4 Polynomial Runtime Complexity
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Theorem 6.5.8 — RAD has polynomial runtime complexity. The runtime com-
plexity of the RAD algorithm is bounded by O(‖L‖·‖A(L)‖5+‖L‖·‖A(L)‖·
|L|)

Proof. We will be reusing the basic IM runtime complexity from Theorem 4.3.8
on page 86. Like with the NHD algorithm in Theorem 6.4.7, the runtime
complexity of the RAD algorithm depends not only on the number of traces
in the event log c = |L| and on the hierarchical alphabet size n = ‖A(L)‖, but
also on the number of hierarchy levels h = ‖L‖.

Consider the RADstep() algorithm. Based on the new Base Cases 6.1, 6.3
and 6.4, due to the delayed discovery, we conclude that the number of recur-
sions made is bounded by: O(n) = O(‖A(L)‖). Reusing the proof from The-
orem 4.3.8 on page 86, we conclude that the runtime complexity of RADstep()
is bounded by:

O(n5 + n · c)
= O(|A(L)|5 + |A(L)| · |L|)

Consider the RAD algorithm as presented in Algorithm 6.2. The loop on
line 4 is bounded by the number of sublog changes. A sublog can only change
when new information is found at a lower level in the hierarchy. Therefore, the
loop on line 4 is bounded by: O(h) = O(‖L‖). During each iteration of this
loop, RADstep() is called. The loop on line 7 is bounded by O(h) = O(‖L‖)
as well, and each tree substitution can be performed in constant time using
a lookup map. Hence, we conclude that the runtime complexity of the RAD
algorithm is bounded by:

O(h · (n5 + n · c) + h)

= O(h · n5 + h · n · c)
= O(‖L‖ · ‖A(L)‖5 + ‖L‖ · ‖A(L)‖ · |L|)

�

A.4 Proof for Chapter 7 – Cancelation Discovery
The cancelation discovery (CD) algorithm maintains the IM discovery guaran-
tees from Section 4.3 on page 84 and returns a sound cancelation process tree
(Definition 7.2.3). In this section, we will discuss the proofs for these discovery
guarantees and properties.

A.4.1 Soundness and Termination
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Theorem 7.4.1 — CD guarantees soundness. All models Q returned by the
CD algorithm are guaranteed to be sound.

Proof. According to Definition 7.2.3, a cancelation process tree is not sound
if its language contains unresolved trigger markers, or if there is a cancelation
path in a cancelation subtree that has no corresponding cancelation trigger
(i.e., a dead subtree).

Consider a cancelation path in a cancelation subtree starting with activ-
ity b. Then, by Log Splits 7.1 and 7.2, there are traces in the first sublog that
end in an activity a with b ∈ triggers(a) 6= ∅. Therefore, Base Case 7.2 applies
eventually. Hence, there exists a cancelation trigger ?triggers(a)

a that enabled
the cancelation path starting with activity b.

Consider a cancelation trigger ?Ca . Then, by Log Splits 7.1 and 7.2, and
Definition 7.4.1, there exists an edge (a, b) ∈ G with isTrigger(a, b) for ev-
ery b ∈ C. Therefore, Cut Detection 7.1 or 7.2 was applied. Hence, there
exists a cancelation subtree providing a cancelation path starting with activ-
ity b, ensuring that every b ∈ C is resolved.

Hence, all returned cancelation process trees are sound. �

Theorem 7.4.2 — CD guarantees termination. The CD algorithm is guaran-
teed to always terminate.

Proof. Consider Base Cases 7.1 and 7.2. Observe that these base cases return
a leaf and do not recurse. Hence, these base cases terminate.

Consider the cancelation cut detection and log splits. By the construction
of Log Splits 7.1 and 7.2, the sublogs get strictly smaller upon recursion. By
the construction of Cut Detections 7.1 and 7.2, only finitely many partitions
or log divisions are created. Hence, the new cancelation operators maintain
the termination guarantees.

By the base Theorem 4.3.2, we know termination is guaranteed for the
original step and fallback cases. Hence, the CD algorithm is guaranteed to
always terminate. �

A.4.2 Perfect Fitness
Theorem 7.4.3 — CD guarantees fitness. The CD algorithm returns a model
that fits the log. That is, given an event log L, the CD algorithm returns a
model Q such that L ⊆ L(Q).

Proof. Based on the proof from the base Theorem 4.3.3, as induction hypoth-
esis (IH), we assume that for all sublogs, the discovery framework returns a
fitting model, and then prove that the step maintains this property. That
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is, for all sublogs Li we have by IH a corresponding submodel Qi such that
Li ⊆ L(Qi), and we have to prove L ⊆ L(Q).

Consider Base Cases 7.1 and 7.2. This proof is analogous to the base
Theorem 4.3.3 proof for Base Case 4.2.

Consider the sequence ( ?→) and loop (
?
	) cancelation join operators. We

have to show that these step cases maintain the fitness property. That is,
we have CDiscover(L, isTrigger) =

?
⊗(CDiscover(L1, isTrigger), CDiscover(L2,

isTrigger), . . . , CDiscover(Ln, isTrigger)) = Q with
?
⊗ ∈

{
?→,

?
	
}
, and we

have to prove L ⊆ L(Q). We deduce:

Q1 = CDiscover(L1, . . .) IH, Def. 7.2.2
L1 ⊆ ΦL(L(Q1))

Qi≥2 = CDiscover(Li≥2, . . .)
IH

Li≥2 ⊆ L(Qi≥2)
Def. 7.2.2?

⊗L(L1, . . . , Ln) ⊆ L(
?
⊗(Q1, . . . , Qn)) = L(Q)

Cut Dect. 7.1, 7.2
L ⊆

?
⊗L(L1, . . . , Ln) ⊆ L(Q)

L ⊆ L(Q)

Hence, we conclude that for the cancelation operators we return a process
model that fits the log L.

By the base Theorem 4.3.3, we know fitness is guaranteed for the original
step and fallback cases. Hence, the CD algorithm guarantees fitness. �

A.4.3 Language Rediscoverability
Lemma 7.4.4 — CD rediscovers the cancelation trigger leaf. Let Q be a reduced
model that adheres to the above model restrictions with a leaf Q′ ∈ A∪{ τ }∪{
?Ca
∣∣ a ∈ A, C ⊆ A} , let L be a log such that L�df Q, and let isTrigger be a

trigger oracle such that isTrigger �?Q. Then CDiscover(L) returns a tree with
a leaf Q′.

Proof. Apply case distinction on Q′.
Case Q′ = τ . Base Case 4.1 applies, thus CDiscover(L) returns a tree with

a leaf τ holds by Lemma 4.3.4.
Case Q′ = a with a ∈ A. We assumed L �df Q, so at some point L′

must be { a }. We assumed isTrigger �? Q, so triggers(a) = ∅. Hence, Base
Case 7.1 must apply at some point, and CDiscover(L′) = a holds. Therefore
CDiscover(L) returns a tree with a leaf a.

Case Q′ = ?Ca with a ∈ A, C ⊆ A. We assumed L �df Q, so at some
point L′ must be { a }. We assumed isTrigger �?Q, so triggers(a) 6= ∅. Hence,
Base Case 7.2 must apply at some point, and CDiscover(L′) = ?

triggers(a)
a = ?Ca

holds. Therefore CDiscover(L) returns a tree with a leaf ?Ca . �
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Lemma 7.4.5 — CD selects the right tree operator. Let Q = ⊗(Q1, . . . , Qn) be
a reduced model that adheres to the above model restrictions, let L be a log
such that L�dfQ, and let isTrigger be a trigger oracle such that isTrigger �?Q.
Then CDiscover(L) returns a tree with root ⊗.

Proof. Let ⊗′ be the operator selected after cut detection. Let Σ1, . . . ,Σn be
the corresponding cut of G(L). Apply case distinction on ⊗.

Case ⊗ =
?→. As L is directly-follows complete, and by the above model

restrictions, G is connected and therefore the cut detection does not return ×.
Take any submodel Qi with i > 1. By semantics of ?→, and since isTrigger �?Q,
G only contains trigger-edges from Q1 to Qi, and no edges from Qi to Q1.
Hence, the cut detection does not select →, ∧, 	 or

?
	. Since no τ ’s are

allowed, no Qj (for any j) can produce the empty trace. Therefore all traces
in L start with activities from Q1. Hence, we have Start(Q1) = Start(Q).
Since also no duplicate activities are allowed, all the cut criteria from Cut
Detection 7.1 are satisfied. Hence CDiscover(L) returns a tree with root ?→.

Case ⊗ =
?
	. Because of L �df Q, G is a single strongly connected com-

ponent. Hence, the cut detection does not return ×, and by the semantic
definitions, also not → or ?→. By semantics of

?
	, and since isTrigger �? Q, G

only contains trigger-edges from Q1 to Qi, and there exist edges from Qi to
Start(Q1). Hence, the cut detection doesn’t select → or 	. We identify the
following clusters in G(L): S = Start(L), E = End(L) and R =

⋃
i≥2A(Qi).

By the model restrictions, these clusters are disjoint. As ⊗ =
?
	, there is no

edge from any node in R to any node in E. Therefore, by the semantic defini-
tions, the cut detection does not return ∧. Since no τ ’s are allowed, no Qj (for
any j) can produce the empty trace. Therefore, all traces in L start and end
with activities from Q1. Hence Start(Q) = Start(Q1) and End(Q) = End(Q1).
For any i ≥ 2, j ≥ 2, i 6= j, by semantics of

?
	, no activity of Qi can directly

follow any activity of Qj . Since also L �df Q holds, all the cut criteria from

Cut Detection 7.2 are satisfied. Hence findCut ′ returns
?
	.

In all other cases, base Lemma 4.3.5 applies, taking into account the trigger
edges. Hence, CDiscover(L) returns a tree with root ⊗. �

Lemma 7.4.6 — CD splits logs correctly. Let Q = ⊗(Q1, . . . , Qn) be a reduced
model that adheres to the above model restrictions, let L be a log such that
L �df Q, and let isTrigger be a trigger oracle such that isTrigger �? Q. Then
for the resulting sublogs Li produced by CD we have Li �df Qi ∧ Li ⊆ L(Qi).

Proof. Let G′ be the undirected version of graph G. Apply case distinction
on ⊗.
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Case ⊗ =
?→. By semantics of ?→, G can be seen as having a body

A(Q1) and mutually exclusive cancelation alternative parts A(Qi≥2). Take
two activities ai, a′i ∈ A(Qi≥2). By the reduction rules, Qi≥2 is not a ×, and
therefore the directly-follows graph for Qi≥2 is connected. By semantics of ?→,
for any a1 ∈ A(Q1), there is no edge (ai, a1) ∈ G . Hence, ai and a′i will end up
in the same partition Σk. Take two activities ai ∈ A(Qi≥2), aj ∈ A(Qj≥2) with
i 6= j. By semantics of ?→, there cannot be a path ai  aj ∈ G′. Therefore,
there cannot be an edge connecting Σi≥2 and Σj≥2 in G. Hence, ai and aj end
up in Σk and Σl with k 6= l. Let a1 ∈ A(Q1). Then there exists as ∈ Start(Q)
such that as  a1 ∈ G′∧¬isTrigger(as, a1). By Log Split 7.1, we have a1 ∈ Σ1.
Hence ∀ i : A(Li) = A(Qi), where without loss of generality the order of the
non-first children is arbitrary.

Pick any i ≤ n and pick any trace σ ∈ Li. By the construction of Log
Split 7.1, there must be a trace σ′ ∈ L such that σ is a projection of σ′. By
lemma assumption, σ′ ⊆ L(Q). Since no duplicate activities are allowed, the
activities of σ in σ′ can only be produced by Qi. Therefore Q′i must have
produced σ, and hence, Li ⊆ L(Qi).

Left to prove: ∀ i : Li �df Qi. We prove the clauses of �df separately. Pick
any two activities a, b ∈ A(Qi) such that 〈 . . . , a, b, . . . 〉 ∈ L(Qi). As L �df Q,
and the fact that Q can produce a trace 〈 . . . , a, b, . . . 〉, there must be a trace
σ ∈ L such that σ = 〈 . . . , a, b, . . . 〉. By construction of Log Split 7.1, then
there will be a trace 〈 . . . , a, b, . . . 〉 ∈ Li. Pick an activity a ∈ Start(Qi). As
L �df Q, there must be a trace σ · 〈 a 〉 · σ′ ∈ L, such that A(σ)∩Σi = ∅. Then,
by construction of Log Split 7.1, there is a trace in Li that starts with a. Hence
Start(Qi) ⊆ Start(Li). A similar argument holds for End(Qi) ⊆ End(Li).

Case ⊗ =
?
	. By semantics of

?
	, G can be seen as having a body A(Q1)

and mutually exclusive cancelation loop back parts A(Qi≥2). Take two activ-
ities ai, a′i ∈ A(Qi≥2). By the reduction rules, Qi≥2 is not a ×, and therefore

Qi≥2 is connected. By semantics of
?
	, for any ae ∈ End(Q1), there is no edge

(ai, ae) ∈ G . Hence, ai and a′i will end up in the same partition Σk. Take two

activities ai ∈ A(Qi≥2), aj ∈ A(Qj≥2) with i 6= j. By semantics of
?
	, there

cannot be a path ai  aj ∈ G′. Therefore, there cannot be an edge connecting
Σi≥2 and Σj≥2 in G. Hence, ai and aj end up in Σk and Σl with k 6= l.

Let a1 ∈ A(Q1). Then there exists as ∈ Start(Q) such that as  a1 ∈
G′ ∧ ¬isTrigger(as, a1). By Cut Detection 7.2, we have a1 ∈ Σ1. Hence
∀ i : A(Li) = A(Qi), where without loss of generality the order of the non-first
children is arbitrary.

Pick any i ≤ n and trace σ ∈ Li. Apply case distinction on i to prove that
Li ⊆ L(Qi). Case i = 1. By construction of Log Split 7.2, there exists a trace
σ′ ·σ ·σ′′ ∈ L, such that σ′ = ε or ends with an activity a′ /∈ Σ1, and σ′′ = ε or
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starts with an activity a′′ /∈ Σ1. Case i > 1. Be construction of Log Split 7.2,
there exists a trace σ′ · 〈 a′ 〉 · σ · 〈 a′′ 〉 · σ′′ ∈ L, such that a′, a′′ /∈ Σi. Since
there are no duplicate activities, in both cases, by the semantics of

?
	 and the

assumption that L ⊆ L(Q), it holds that σ must have been produced by Qi.
Hence, Li ⊆ L(Qi).

Left to prove: ∀ i : Li �df Qi. We prove the clauses of �df separately. Pick
any two activities a, b ∈ A(Qi) such that 〈 . . . , a, b, . . . 〉 ∈ L(Qi). As L �df Q,
and the fact that Q can produce a trace 〈 . . . , a, b, . . . 〉, there must be a trace
σ ∈ L such that σ = 〈 . . . , a, b, . . . 〉. By construction of Log Split 7.2, then
there will be a trace 〈 . . . , a, b, . . . 〉 ∈ Li. Pick an activity a ∈ Start(Qi). As
L �df Q, there must be a trace σ · 〈 a 〉 · σ′ ∈ L, such that A(σ)∩Σi = ∅. Then,
by construction of Log Split 7.2, there is a trace in Li that starts with a. Hence
Start(Qi) ⊆ Start(Li). A similar argument holds for End(Qi) ⊆ End(Li).

In all other cases, base Lemma 4.3.6 applies, taking into account the trigger
edges. Hence for the resulting sublogs Li produced by CD we have Li �df Qi ∧
Li ⊆ L(Qi). �

Theorem 7.4.7 — CD guarantees language rediscoverability. If the model re-
strictions detailed above hold for a process tree Q, then CDiscover language-
rediscovers Q, i.e., L(Q) = L(CDiscover(L, isTrigger)) for any log L such
that L�dfQ∧L ⊆ L(Q) and any trigger oracle isTrigger such that isTrigger�?
Q.

Proof. By Lemmas 6.5.4, 6.5.5 and 6.5.6, and base Theorem 4.3.7, the CD
algorithm guarantees language rediscoverability. �

A.4.4 Polynomial Runtime Complexity

Theorem 7.4.8 — CD has polynomial runtime complexity. The runtime com-
plexity of the CD algorithm is bounded by O(|A(L)|5 + |A(L)| · |L|).

Proof. The new Base Cases 7.1 and 7.2 have a runtime complexity of O(|L|).
The new Cut Detections 7.1 and 7.2 have runtime complexity O(|A(L)|3) for
computing reachability, similar to the sequence cut detection. The new Log
Splitting 7.1 and 7.2 have runtime complexity O(|L|). In this step, the size of
the alphabet is decreased by at least one.

Hence, reusing the proof for Theorem 4.3.8 on page 86, the runtime com-
plexity of the CD algorithm is bounded by O(|A(L)|5 + |A(L)| · |L|). �
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Summary

Hierarchical Process Mining for Scalable Software Analysis

In today’s world, we increasingly rely on information technology. Complex
software-driven systems are supporting and automating all kinds of tasks and
such systems can be found in all sectors. In this thesis, we aim to understand
and analyze such software systems using process mining techniques. That
is, we see such software systems as complex processes which we can analyze
using recorded observations known as execution data. The idea is that we can
use such process execution data to gain insights about the real execution of
these processes. So far, process mining techniques have had great success in
understanding and analyzing organizational/business processes, but there has
been little work on using process mining on software systems.

In this thesis, we addressed research challenges in using process mining
techniques for analyzing software. First of all, we looked into obtaining exe-
cution data from running software. How can we record such data, what does
this data look like, and what are the various properties of such data? Next,
we looked into using such execution data for process discovery. In process dis-
covery, we automatically discover a process model from the recorded execution
data. Such a discovered process model explains what tasks or activities actu-
ally happened in which order in the observed/recorded process. In addition, we
investigated how we can use such discovered models together with the recorded
execution data to analyze various additional perspectives. We looked at which
parts of the software are executed more frequently, where various bottlenecks
or other performance issues are, and more. Finally, we investigated various
ways of showing such models and results to end users.

To summarize, this thesis presents the following contributions:
• We provided a detailed discussion of software execution data, how to use

such data for process mining, as well as tool support for obtaining and
recording such data.
• We acknowledged that, in software, reality is not flat. Typically, the soft-

ware behavior is large, complex, and contains some form of hierarchical
or layered structure. Therefore, we developed a modeling notation and
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discovery techniques for hierarchical and recursive behavior, exploiting
hierarchical models.
• In addition, we accept that software can produce errors and this needs to

be analyzed. Therefore, we developed a modeling notation and discovery
techniques for cancelation or error-handling behavior.
• With the more complex models introduced by the above discovery tech-

niques, we needed to revisit the way we can perform frequencies and per-
formance analysis. Therefore, we introduced a framework for visualization-
independent performance analysis, supporting hierarchy, recursion, and
cancelation.
• In the software domain, there are various ways to model software behav-

ior, and there is not one correct standard or solution for all use cases.
Therefore, we developed a family of model translations, supporting hier-
archy, recursion, and cancelation. This way, we can show results to end
users in the type of model they prefer.
• To make the ideas and theories in this thesis useable, we developed and

made available extensive tool support for round-trip software analysis.
All methods have been implemented in various tools (in the context of ProM
and XES), which are publicly available with documentation. In addition, all
techniques have been systematically evaluated and have been applied in real-
life situations in the context of several case studies.



Samenvatting

Hiërarchische Process Mining voor Schaalbare Software Analyse

In de hedendaagse wereld zijn we steeds meer afhankelijk van informatie
technologie. Complexe software-gedreven systemen ondersteunen en automa-
tiseren verscheidende taken en zulke systemen zijn te vinden in alle sectoren.
In deze dissertatie streven we ernaar om zulke softwaresystemen te begrijpen
en te analyseren door middel van process mining technieken. Dat is, we zien
zulke softwaresystemen als complexe processen die we kunnen analyseren met
behulp van vastgelegde observaties, ook wel executie data genoemd. Het idee
is dat we zulke procesexecutie data kunnen gebruiken om inzicht te creëren in
de daadwerkelijke executie van dergelijke processen. Tot nu toe hebben pro-
cess mining technieken veel succes geboekt in het begrijpen en analyseren van
organisatorische/bedrijfsprocessen, maar is er weinig gekeken naar hoe process
mining kan ingezet worden voor software systemen.

In deze dissertatie behandelen we onderzoeksvragen over het gebruik van
process mining voor software analyse. Ten eerste hebben we gekeken naar
hoe men executie data kan vergaren van draaiende software. Hoe kunnen we
zulke data opslaan, hoe ziet zulke data eruit, en wat zijn de eigenschappen
van dergelijke datasets? Daarnaast hebben we gekeken naar hoe we zulke ex-
ecutie data kunnen gebruiken voor process discovery (proces ontdekken). In
process discovery gebruiken we opgeslagen executie data om automatisch pro-
ces modellen te ontdekken. Een dergelijk ontdekt model verklaart welke taken
of activiteiten daadwerkelijk gebeuren in het geobserveerde proces, en in welke
volgorde deze activiteiten plaats vonden. Verder hebben we onderzocht hoe we
zulke ontdekte modellen en executie data kunnen combineren voor het anal-
yseren van diverse perspectieven. We hebben gekeken naar welke onderdelen
van de software vaker worden uitgevoerd, waar diverse knelpunten en andere
prestatieproblemen zitten, en meer. Tot slot hebben we diverse manieren on-
derzocht hoe we zulke data en modellen aan eindgebruikers kunnen tonen.

Samenvattend, deze dissertatie beschrijft de volgende bijdragen:
• We geven een gedetailleerde discussie van software executie data, hoe we

zulke data kunnen gebruiken voor process mining, en we leveren tool-



404 Samenvatting

ing/software voor het observeren en opslaan van zulke data.
• We erkennen dat, in software, de realiteit niet plat is. Typisch voor

software is groot en complex gedrag met een vorm van hiërarchie of een
gelaagde structuur. Daarom hebben we een model notatie en discov-
ery techniek ontwikkeld die hiërarchisch en recursief gedrag ondersteunt,
gebruik makend van gelaagde modellen.
• Daarnaast erkennen we dat software ook fouten kan produceren. Daarom

hebben we model notatie en discovery techniek ontwikkeld welke annu-
lering en fout afhandelend gedrag ondersteunt.
• Met de meer complexe modellen geïntroduceerd door de bovenstaande

technieken waren we genoodzaakt om de manier van frequentie en prestatie
analyse te herzien. Daarom introduceren we een raamwerk voor visualisatie-
onafhankelijke prestatie analyse, die ondersteuning biedt voor hiërar-
chisch, recursief, en annulerend gedrag.
• Om de ideeën en theorieën uit deze dissertatie toepasbaar te maken

hebben we uitgebreide tooling/software beschikbaar gesteld voor com-
plete software analyse, van begin tot eind.

Alle methodieken zijn geïmplementeerd in diverse tooling/software, welke
publiekelijk beschikbaar zijn met documentatie. Daarnaast zijn alle technieken
systematisch geëvalueerd en toegepast in praktische situaties via diverse case
studies.
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