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Abstract—Object detection and classification of traffic signs in
street-view imagery is an essential element for asset management,
map making and autonomous driving. However, some traffic signs
occur rarely and consequently, they are difficult to recognize
automatically. To improve the detection and classification rates,
we propose to generate images of traffic signs, which are then
used to train a detector/classifier. In this research, we present
an end-to-end framework that generates a realistic image of a
traffic sign from a given image of a traffic sign and a pictogram
of the target class. We propose a residual attention mechanism
with dense concatenation called Dense Residual Attention, that
preserves the background information while transferring the
object information. We also propose to utilize multi-scale discrim-
inators, so that the smaller scales of the output guide the higher
resolution output. We have performed detection and classification
tests across a large number of traffic sign classes, by training the
detector using the combination of real and generated data. The
newly trained model reduces the number of false positives by
1.2 - 1.5% at 99% recall in the detection tests and an absolute
improvement of 4.65% (top-1 accuracy) in the classification tests.

I. INTRODUCTION

Detection and classification of traffic signs in street-view
imagery is vital for public object maintenance, map making
and autonomous driving. This is particularly challenging when
certain classes or categories of objects are scarce. Challenging
cases occur in the automated detection and classification
of traffic signs at a country-wide level on high-resolution
street-view imagery. Manual efforts to find traffic signs in
millions of high-resolution images is cumbersome and the
detection/classification algorithm fails if it is not trained with
the class-specific data or when traffic signs rarely occur. A
possible approach to alleviate this problem is to generate re-
alistic data using generative modeling and expand the training
sets that have low amount of data or low recognition scores.
However, generation of photo-realistic samples of traffic signs
is difficult due to large variations in pose, lighting conditions
and varying background.

Recent developments in deep learning can be applied to
modeling of image-to-image translation problems. Generative
Adversarial Network (GAN) is a class of deep learning
algorithms that is used for generative modeling [1]. GANs
formulate the generative modeling problem as zero-sum game

between two networks. A GAN consists of a generator network
that produces samples from a given input sample or noise
and a discriminator network that tries to distinguish if the
generated sample is from the real or fake data distribution.
Although Convolutional Neural Networks (CNNs) may be
used to perform image-to-image translations, many of them
apply a stochastic approximation to minimize an objective
function and require paired data [2][3]. Alternatively, GANs
try to achieve Nash equilibrium by generating a distribution
that is close to the empirical one.

Conditional variants of GANs have recently produced im-
pressive results in image-to-image translation applications
[4][5][6][7][8]. A conditional GAN tries to map a Domain A
to another Domain B, instead of using a noise vector as
input. It learns to translate an underlying relationship between
the Domains A and B without explicitly pairing inputs and
outputs. To have a better consistency for the mapping, most
Conditional GANs also reconstruct the output back to the
input [4][7]. Apart from the mapping from Domain A to B,
Domain B is also reconstructed back to A. The loss from the
inverse mapping is also added to the objective function as a
regularizer during training. Image analogy problems can be
modeled using a Conditional GAN by providing an auxiliary
piece of information [9]. The auxiliary information could be
text, image or other data modalities. For example, an input
image of a traffic sign can be paired with a pictogram to obtain
an output image of a new traffic sign.

In this paper, we thus explore a conditional GAN for traffic
sign generation, while using an auxiliary information of a
pictogram. Specifically, we address the problem of retaining
the original background while altering only the object infor-
mation. In more detail, we propose a conditional GAN with
Dense Residual Attention. To further improve the texturing
and details of the generated traffic sign, we use multi-scale dis-
criminators. We reduce the dependency of the mask generation
process that is used in recent work [9]. Our method produces
perceptually acceptable results without the implicit generation
of a mask. However, we are able to obtain better results with
a weak supervision on the traffic signs that have a complex
pose. Finally, we improve classification and detection rates of
rare traffic signs in high-resolution street-view imagery.
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II. RELATED WORK

Unsupervised generative modeling using GANs has
achieved state-of-the-art results in recent years. Many works
have produced perceptually realistic images for problems
such as image-to-image translation [4][5][6][7][8], image in-
painting [10], super-resolution [3][11][12] and conditional
analogy [9]. Deep Convolution GANs (DCGANs) introduced
the convolutional architecture GANs that improve visual qual-
ity of generated images [13]. Recently, Wasserstein GANs
(WGANs) introduced an objective function that improves
model stability and provides a meaningful measure of con-
vergence [14]. However, they require the discriminator (also
known as critic) to lie within the space of 1-Lipschitz func-
tions. To enforce the Lipschitz constraint, the weights are
clipped to a compact space. To circumvent weight clipping,
improved WGAN have proposed to add a gradient penalty
term to the WGAN training objective. This gradient penalty
term is the product of the penalty coefficient term and gradient
norm of the critic’s output. This approach results in a better
performance and stability [15].

Recently, GANs have gained popularity in image-to-image
translation problems. GANs have been applied in a conditional
setting to generate text, labels and images. Image-conditional
models such as “pix2pix”, use a Conditional Adversarial
Network to learn paired mappings between domains [6].
CycleGAN performs an unpaired domain transfer by adding
a cycle consistency loss to the training objective [7]. Simi-
larly, DiscoGAN also proposes an unpaired domain transfer
where two reconstruction losses are added to the objective
function [4]. Conditional Analogy GAN (CAGAN) propose
to swap clothing articles on people [9]. Given a human model
and a given fashion article, it produces a human model wearing
the fashion article. The generator of the CAGAN architecture
generates both the image and an implicit segmentation mask.
The final output image is a convex combination of both the
generated image and input image. However, in scenarios where
the background is complex, the generation of an implicit mask
becomes a challenging task. This is addressed in [9].

Attention mechanisms are necessary for proper guidance of
feature propagation. Many efforts have been made towards
incorporating an attention mechanism in deep neural net-
works [16][17][18]. Attention mechanisms have been widely
adopted in Recurrent Neural Networks (RNNs) and Long
Short Term Memory (LSTM) [19] for modeling sequential
tasks. Residual Attention Networks propose an attention mech-
anism by stacking multiple attention modules for various
classification tasks [20][21]. Each attention module consist of
a mask and a trunk branch. The trunk branch performs feature
processing using residual units and the mask branch uses a
bottom-up top-down structure to guide the feature learning.
Densely Connected Convolutional Network (DenseNet) pro-
poses an architecture where every layer is connected to all
higher layers [22]. This type of connectivity enables reusable
features and provides high parameter efficiency, as low-
dimensional feature maps are reused recursively. Concurrent

to our work, a multi-scale discriminator approach has been
explored in [8] for image synthesis from semantic labels. In
our method, we use a multi-scale discriminator to learn the
finer details of the pictogram and the global features such
as the pose and lighting condition of the traffic sign. The
methodology is described in the following section.

III. METHOD

The task of transferring a pictogram to a given traffic sign
can be formulated as follows. Given an image xi of a traffic
sign and pictogram p of the target class, the generator net-
work G tries to produce a traffic sign image of the target class
xp
i . The discriminator network D distinguishes between xp

i

and xj , where xj is sampled from the real data distribution.
For training, we use the improved WGAN objective with

cycle consistency loss at multiple scales [15][7]. The final
training objective Ls at a given scale s is expressed as:

Ls = min
G

max
Ds
Ls

WGAN-GP(G,Ds) + Ls
cyc(G), (1)

where LWGAN-GP(G,D) is the WGAN loss function LWGAN
with gradient penalty and Lcyc(G) is the cycle loss. The
training objective LWGAN is expressed as the difference of
the expected values of the fake and real outputs from the
discriminator D. The WGAN adversarial loss with gradient
penalty for our problem now becomes:

Ls
WGAN-GP(G,Ds) = E

xp
i ∼Pg

[Ds(xp
i )]− E

xp
j ∼Pr

[Ds(xj)]

+λ E
x̂i∼Px̂i

[(‖∇x̂iDs(x̂i)‖2 − 1)2].

(2)
Here, the output from the generator G(xi|p) ≈ xp

i and x̂i

is a sampling from the distribution Px̂i . The sample x̂i is an
interpolation between a pair of samples from the generated and
real distributions Pg and Pr. The gradient penalty coefficient
term λ is set to 10 for all the experiments in this research,
which was adequate for our work and in accordance with [15].
To push the norm of the gradient towards unity, the gradient
penalty is applied. For the cycle consistency loss, we use the
same generator network to map multiple classes in a given
category. Hence, cycle loss for our objective is defined as:

Ls
cyc(G) = E

xpa
i ∼Pg

‖xpa

i − G(G(xpa

i |pb)|pa)‖2, (3)

where pa and pb are pictograms of different traffic signs. The
samples xpa

i and xpb

i are traffic signs conditioned on pa and
pb. Note that G(xpa

i |pb) ≈ xpb

i and G(xpb

i |pa) ≈ xpa

i .
By transitive relation, G(G(xpa

i |pb)|pa) ≈ xpa

i . Therefore
we also minimize the L2 distance between the input and
reconstructed examples. An overview of the proposed network
is presented in Figure 1. The generator has an encoder-
decoder structure with a residual attention mechanism and
dense connectivity at each scale. To discriminate between the
real and generated samples at multiple scales, a discriminator
is applied at each scale. The specifics of our contributions are
addressed in the following subsections.



Fig. 1. Proposed network with multiple discriminators (D1, D2, D3). The network uses a Dense Residual Attention module and a discriminator at each
scale. The Dense Residual Attention module receives the input from the feature maps Fe at the encoder side and outputs F out

d . The output image generated
from the auxiliary branch is supplied to the discriminator at a given scale. When the mask is applied, an element-wise product of the mask and the generated
image is fed to the discriminator. The cycle loss is also obtained using the same generator network. Cycle loss not shown in figure. (Best viewed in color).

A. Dense connectivity

To enhance the feature propagation, we apply a dense
connection between the encoder and decoder of the generator
network. The dense connectivity is achieved by concatenating
feature maps of the same size from the encoder to the decoder.
Since the convolution over concatenated feature tensors is
computationally expensive, we apply a 1 × 1 convolution
across channels to reduce dimensionality [23]. The output
feature tensor F c

d at the decoder side is given as

F c
d = [Fd, Fe]1×1, (4)

where Fe and Fd are the feature maps at a given scale
in the encoder and decoder. The expression [., .]1×1 denotes
the 1× 1 convolution followed by the concatention operation
[., .]. The 1×1 convolution reduces the dimensionality of F c

d

to the same size as Fe.

B. Attention mechanism through residual connections

The attention mechanism is necessary for learning the
relevant features that must be passed to the subsequent layers.
To retain the background of the input image, the features
closer to the input should be preserved. The encoder side
of the generator has features closer to the input and hence
the information from the encoder is transferred to the decoder
through a residual attention mechanism. Our method is similar
to the approach proposed in [21]. However, we do not require
a mask or trunk branch for feature processing, instead we
couple the output feature maps from encoder and decoder. The
proposed attention mechanism does not require any additional
trainable parameters. The updated feature maps F a

d after the
attention mechanism is expressed as:

~ +

Concatenation

Sigmoid

1 x 1 
Convolution

Convolution 
Layers

Concatenation 
of pictogram

Fig. 2. Dense Residual Attention module followed by concatenation of
the pictogram. Feature maps from the encoder Fe are concatenated with
Fd, followed by 1×1 convolution to produce F c

d . The Hadamard product
of Fe and F c

d followed by the addition of F c
d , results in Fa

d . The output
obtained from the Dense Residual Attention module Fa

d with the pictogram
p represents F out

d .

F a
d = F c

d + σ(Fe)� F c
d , (5)

where σ denotes the sigmoid activation and � denotes the
Hadamard product. At a given scale, we update the feature
tensor in the decoder by the element-wise product of σ(Fe)
and F c

d followed by the addition of F c
d . We have also found

that concatenating the pictogram p of the desired traffic sign
at each scale improves the performance. The output tensor
F out
d at the decoder side is [F a

d , p]. At larger scales, the
concatenation of the traffic sign pictogram preserves the finer
details of the target traffic sign. We refer to the combination of
residual attention mechanism and dense connectivity as Dense
Residual Attention. The Dense Residual Attention module is
illustrated in Figure 2.



C. Multi-scale discriminators

To understand both the global and finer details, we train
a discriminator at each scale. Concurrent to our work, multi-
scale discriminators are used in [8]. However, our generator
has auxiliary branches that generate an output image at each
scale. We use multiple optimizers which are optimized jointly.
We generate outputs after up-sampling the outputs from the
previous layer by a factor of two. The generated image at a
given scale is fed to the corresponding discriminator. To reduce
computational cost, the generated image at a smaller scale use
a discriminator of smaller depth. We use three discriminator
networks (D1, D2, D3) which receive the input from the
auxiliary branches of the generator. The discriminator at the
smallest scale attends to global features such as lighting
condition and pose of the traffic sign, whereas the concate-
nated pictogram p along with the discriminator at the largest
scale captures the finer details of the traffic sign. Multi-scale
discriminators simplify the transition going from the coarsest
to the finest scale by retaining the global features.

Fig. 3. Given an image of a traffic sign (center) and a pictogram, the trained
model generates an image of a new traffic sign. Orange and blue arrows
represent classes (not examples) inside and outside the training set.

D. Mask for weak supervision

In previous work [9], an implicit mask is generated to attend
to the desired object. A convex combination of the input and
the generated image produces the output image. This implicit
mask generation is a tedious task when the desired object
has varying light conditions and a cluttered background. With
the methods described in the previous subsections, we have
obtained perceptually appealing results when the pose of the
traffic sign is not too skewed. However, we have found it
beneficial to apply a mask to improve the performance. We use

Fig. 4. Examples of generated traffic signs using our method.

a rectangular bounding box on the desired object that intensity
set to unity. The region of the mask around the bounding box
has an intensity range within the unit interval, which changes
during training starting from one. The final output that is
supplied to the discriminator is the element-wise product of
the mask and the generated image. The provided mask is only
required during training and is not used during testing.

IV. EXPERIMENTS

A. Dataset

We have obtained the images of Dutch traffic signs within
high-resolution street-view images from the company Cy-
clomedia and the pictograms from [24]. Out of a total of
313 classes, we select images of traffic signs from 55 classes
that have a low amount of data and low recognition rates. We
broadly partition the images into three categories, based on the
appearance of the traffic signs as white triangles, white circles
and blue rectangles. Each of the image and the pictogram has
a resolution of 80 × 80 pixels.

B. Implementation details

We found that it is easier to transfer traffic signs from a
pictogram within a category rather than transferring it across
categories. Therefore, we use a model for each category
(each category has several classes). For the generator network,
a ResNet with encoder-decoder structure is applied as the
backbone architecture. The residual connection is replaced
by Dense Residual Attention, while multi-scale discriminators
are applied. The generator up-samples the output at each
scale using bilinear up-sampling, followed by convolution
with residual units. We use a discriminator at each scale,



TABLE I
Classification performance of three categories of traffic signs that consist of 55 classes. Each class is approximately expanded by 300 examples.

Category information Amount of training data Classification performance (Top-1 score)
Category Number of classes Real training data Generated training data Real data Real + Generated data Difference

White triangles 26 6498 7828 50.0% 55.3 % +5.3%
White circles 23 19100 7200 68.6% 70.1% +1.5%

Blue rectangles 6 6679 2074 65.1% 66.5% +1.4%
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Fig. 5. Overview of the classification performance of traffic signs across 55 classes. The y axis represents the absolute difference of top-1 accuracy with
respect to the baseline (trained with real data). The x axis represents the class of traffic sign which is described in [24].

resulting in a total of three discriminators. The discriminators
have networks of varying complexity depending on the image
scale. We use three residual units for the image generated at
the highest resolution (80 × 80 pixels), two residual units
at 40 × 40 pixels and a single residual unit at 20 × 20
pixels. The last layer of each of the discriminator network
is a fully-connected layer. Adam optimizer [25] is applied
to each discriminator. For the mask, we conduct experiments
with both rectangular and circular masks across all classes.
However, we have found that the circular mask around the
desired object offers the best performance, irrespective of the
shape of the traffic sign. Depending on the class of traffic sign,
we have trained the model between 60K and 100K iterations.
Generation of 1000 images took approximately 57 seconds on
a NVIDIA Tesla P100 GPU (12 GB).

C. Ablation study

With a standard ResNet structure for the generator, we
observe that the generated traffic sign has a poor geometry
and texture. It also produces backgrounds that are unrealistic
and have low perceptual quality. Besides this, we note that
noise present at the lower scales of the network is up-sampled,
resulting in large noisy patches. This is shown in Figure 6.
We conduct an ablation study to understand the contribution
of each component of the proposed network. The results using
our method are illustrated in Figures 3 and 4.

1) Dense Residual Attention: The addition of residual at-
tention mechanisms suppress the noise and produce a clearer
background. We have observed a further improvement in the
detail of the visual quality after concatenating the encoder
feature maps. The dense concatenation partially improves the

geometry of the traffic sign. However, the dense concatenation
without residual attention does not retain the background
information from the input image.

2) Multi-scale discriminators: The multi-scale discrimina-
tor captures both the global and local details of the desired
image from the input image and pictogram. Without the multi-
scale discriminator, the edges and other geometrical features
of the traffic sign are not sharp. The outputs at the smaller
scale produce consistent geometries which guide the higher-
resolution outputs. At the smallest scale, the details of traffic
sign texture are absent, whereas the lighting condition and
pose are learned. The concatenation of the pictogram at every
scale captures the texture of the traffic sign.

3) Mask: With the addition of a mask, we can observe an
improved performance in replacing the texture of the traffic
sign. We also observe a better performance in situations where
the traffic sign has a complex pose (skewed angle) or texture.

D. Detection and classification results using generated data

We have generated samples using our method and added
the new data to the existing training set. For training, we use
an ensemble of HOG-SVM and CNN detectors [26][27]. For
detection, the baseline recall is 99% on the test set and we
did not notice any significant improvement in the recall with
the addition of generated sets. However, the number of false
positives decreased between 1.2% - 1.5% in the detection tests.
This is beneficial in reducing manual efforts to remove false-
positives from the automatically extracted detections. We have
also conducted classification tests using the generated data.
The details of the classification results are shown in Table 1.
Out of the 313 classes, 55 classes that have a low amount of



data, are expanded. Among the 55 classes, 41 classes produced
a higher classification rate when trained with the combination
of real and generated samples. The lowest score obtained
for a class is 8.3% (average decrement by 2.92%) below
the baseline, whereas the highest gain has 20.8% absolute
improvement (average increment by 4.65%) over the baseline.
We do not conduct detection and classification performance
analysis of classes outside the training set as there is no real
test set.

E. Failure cases and comparison with other methods

Figure 6 demonstrates examples of failure cases with our
method. In the first and second row, we observe lack of details
when the traffic sign in the pictogram are not thick or when
traffic signs have a skewed angle. At the bottom row (Figure
6), we observe noisy outputs that progressively become larger,
as the network scale increases in the generator. However, the
residual attention mechanism exhibits a certain amount of
robustness to this type of noise. We observed fewer cases with
such noise compared to Conditional GANs.

We conducted experiments with other methods as well and
results are presented in Figure 7. WGAN-GP generates images
from noise, which results in smeared backgrounds and traffic
signs. Boundary Equilibrium GAN (BEGAN) often results in
mode collapse (image generated from noise) that produce a
low variety of samples. Conditional Analogy GAN (CAGAN)
uses an implicit mask generation fails with street-view images
due to complex backgrounds which result in poor outputs.
Conditional GANs (cGANs) produces outputs, which are often
smudged and have the incorrect geometry of the traffic sign.

Fig. 6. Examples of failure using our method. Top row: Generated output
lacks details in the traffic sign and background. Middle row: Skewed angled
traffic signs have difficulty producing pictogram textures. Bottom row: Noise
present in the lower layers progressively grow into a large noise.

V. CONCLUSIONS

We have presented a conditional GAN with Dense Residual
Attention, which generates a new traffic sign conditioned on a
given pictogram. The network utilizes multiple Dense Residual
Attention modules that are composed of a residual attention
mechanism and a dense concatenation. The Dense Residual

Fig. 7. Row 1 (top): WGAN-GP (generated from noise), Row 2: Boundary
Equilibrium GAN (generated from noise), Row 3: Conditional Analogy GAN,
Row 4: Conditional GAN, Row 5 (bottom): Conditional GAN with Dense
Residual Attention and multi-scale discriminators (our method).

Attention module improves the visual quality of the traffic
signs and suppresses the cases with progressively growing
noise. We propose the use of multi-scale discriminators, which
result in images of traffic signs that are both globally and
locally coherent. The discriminator at smaller scale captures
global features and steers the high-resolution output to produce
images with more accurate geometries. The discriminator
at the larger scale along with the concatenated pictogram
assists in producing images of traffic signs with finer details.
Comparison other methods reveals that the proposed method
produces visually appealing results with finer details in the
traffic signs and has fewer geometrical errors. We have further
conducted detection and classification tests across a large
number of traffic sign classes, by training our detector with
the combination of real and generated data. The trained model
reduces the number of false positives by about 1.2 - 1.5% at a
recall of 99% in the detection tests while improving the top-1
accuracy on the average by 4.65% in classification tests.
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