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In the biomanufacturing industry, production and planning decisions are often challenging owing to

batch-to-batch variability and uncertainty in the production yield, quality, cost, and lead times. To improve

biomanufacturing efficiency, a multidisciplinary team of researchers collaborated over five years to develop

a portfolio of decision support tools. The developed tools provide a data-driven, operations research-based

approach to reduce biomanufacturing costs and lead times. These decision support tools comprise multiple

deterministic and stochastic optimization models to optimize production and planning decisions. To optimize

production decisions related to fermentation and protein purification, optimization tools were developed

to provide a decision support mechanism that links the underlying biological and chemical processes with

business risks and financial trade-offs. To optimize planning decisions, interactive scheduling and capacity

planning tools were developed to enable efficient use of the expensive and limited resources. Although

developed in collaboration with Aldevron, these tools address common industry challenges, and they have

been shared with a wider industry community through working group sessions.

Key words : Biomanufacturing, new drug development, engineered proteins, Markov decision processes,

scheduling, cost and lead time reduction, innovative applications of OR.

More than 325 million patients worldwide have benefited from next generation drugs

(e.g., recombinant proteins and monoclonal antibodies) to treat various types of cancer,

diabetes, cardiovascular diseases, and other health issues (The European Biopharmaceu-

tical Enterprises 2015). These drugs are produced using biomanufacturing technologies.

The biomanufacturing industry is growing rapidly and becoming one of the key drivers of

personalized medicine and life sciences. As such, these drugs constitute up to 70% of the

global pharmaceutical research and development pipeline (Pharmaceutical Research and

Manufacturers of America 2016), and the global biopharmaceutical market is projected to

reach $291 billion by 2021 (Mordor Intelligence 2017).

Despite its success, biomanufacturing is a challenging environment. It is labor and cost

intensive, and it involves high risk of failures. In contrast to conventional pharmaceutical

manufacturing, where medicines are chemically synthesized, biomanufacturing methods use
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living systems (i.e., bacteria, virus, or animal cells) to produce these drugs. The use of live

systems introduces several manufacturing challenges, such as batch-to-batch variability in

terms of quality, production yield, and processing time. Owing to these challenges, the cost

of developing a new biopharmaceutical drug can reach up to $1.2 billion, with an average

lead time of 10 years (Long and Works 2013).

To hedge against manufacturing challenges and risks, most large pharmaceutical compa-

nies work with small and medium-sized enterprises (SMEs) to subcontract various phases of

their biomanufacturing research and development operations. Market analysis shows that

70% of biotechnology companies are SMEs (The European Biopharmaceutical Enterprises

2015). There are two main reasons for this. First, many of these SMEs are spinoffs/startups

from research labs that have unique expertise in the therapy being developed. They are

therefore uniquely positioned to conduct such research and development. Second, subcon-

tracting the work to these SMEs allows large pharma companies to pursue multiple lines of

research in parallel, increasing the probability of eventual success while transferring much

of the failure risk to individual SMEs. Therefore, for these SMEs, reducing costs and lead

times is vital to their business profitability, but their success has a cascading effect on the

rest of the supply chain involved in the drug development process. As Tom Foti, the Vice

President of Aldevron, one such SME, states “We are producing 50 liter cultures here, but

our clients [large pharmaceutical companies] are dealing with 5,000 liter cultures. If we

can build optimization models here and demonstrate the feasibility of how it works, our

clients could also do that.”

However, the application of operations research (OR) methodologies to the biomanufac-

turing industry is in its infancy. One of the main reasons is that, to date, the competi-

tive advantage in biomanufacturing has been driven by the scientific advances related to

the underlying biological and chemical processes. With rapid industry growth and grow-

ing competition, there is an increasing need for a data-driven, OR-based decision-making

mechanisms to improve manufacturing efficiency and to reduce costs and timelines.

This paper describes the development of optimization models and decision support tools

to reduce costs and lead times in the manufacturing of custom engineered proteins at Alde-

vron. Aldevron is a provider of plasmid DNA, proteins, enzymes, antibodies, and other

biologicals throughout a variety of life science applications at every stage of new drug

development and manufacturing. Although this paper focuses on the OR applications at
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Figure 1 Protein manufacturing process is classified into two main steps, upstream and downstream operations.

Aldevron, the true impact of this work extends to similar SMEs in biomanufacturing and

other industries. This research has been shared with the broader biomanufacturing indus-

try through working group sessions (BioWGS 2016), and the research outcomes have been

recognized by government agencies, media, and professional societies, i.e., the Wisconsin

Economic Development Corporation (WEDC 2014), Xconomy (Engel 2014), BioForward

(Foti et al. 2016), the Institute for Operations Research and the Management Sciences

(INFORMS 2017, 2016), and the Production and Operations Management Society (Marta-

gan et al. 2016a).

Overview of Protein Manufacturing Operations

Figure 1 presents a high-level process map of protein manufacturing operations. The pro-

duction process can be broadly classified into two main steps, upstream and downstream

operations. Upstream operations include culture preparation, fermentation, and storage.

Downstream operations comprise a series of purification processes and quality control.

Upstream Operations: The production process starts with preparing raw materials (i.e.,

plasmid preparation and cell re-engineering). For example, foreign DNA is often introduced

into insect or mammalian cells to make them express the protein of interest. Once raw

materials are ready, fermentation is carried out in flasks or stainless steel vessels, where

the cell culture grows and produces the protein of interest (which is also called the “tar-

get protein”). Fermentation is a highly controlled process where physical and chemical
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parameters (e.g., temperature, pH, oxygen transfer rate) are closely monitored through

online/offline controls. Each production order has a unique manufacturing protocol that

provides a “recipe” for the fermentation process. This includes specific instructions on

how to conduct the process (e.g., adding cells, adding fresh media, feeding cells, adjusting

the process parameters, making corrective actions, setting specification limits for critical

parameters). The outcome of the fermentation process is a batch mixture that consists of

a limited amount of target protein mixed with numerous unwanted impurities (e.g., host

cells, byproducts such as ammonia).

Downstream Operations: The main objective of downstream operations is to eliminate

all unwanted impurities from a given batch. Downstream operations are also called protein

purification operations, and they often consist of centrifugation (i.e., separating impurities

through spinning), virus inactivation and lysis (i.e., disintegrating a cell by rupturing

the cell wall or membrane), chromatography (i.e., separation by exploiting physical and

chemical properties), and ultrafiltration/diafiltration (i.e., a dilution process) followed by

the final quality control. Among these operations, chromatography is critical and is one of

the focuses of this paper.

Most often, each client order has a yield requirement (i.e., the minimum amount of target

protein) and purity requirement (i.e., the minimum acceptable quality, where purity is a

measure of batch quality based on the protein and impurity amounts present in a batch).

If the final product does not satisfy these production requirements, the biomanufacturer

incurs large penalties. For example, clients often do not purchase the final batch if it does

not comply with the purity requirement. Other penalties can be associated with the cost

of disappointing the clients, changes in the planned manufacturing lead time, the impact

on potential future orders, and yield penalty costs per each unit of protein in short. The

degree of success and failure often depends on how well the upstream fermentation and

downstream chromatography operations were conducted.

In the paragraphs below, we provide a high-level description of the fermentation and

chromatography operations and highlight the challenges encountered in practice. This

description is intentionally kept at a high level, without going into the specifics of the biol-

ogy/chemistry and the associated challenges. While there are several scientific publications

that elaborate on these challenges (e.g., Ngiam et al. (2003), Gnoth et al. (2007), McNeil

and Harvey (2008), GE Healthcare (2010)), our goal here is to highlight the manufacturing
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Figure 2 The cell culture goes through several metabolic phases during fermentation. Target protein (IgG1) and

unwanted impurities (ammonia) accumulate at a non-stationary rate due to these metabolic phases.

and planning challenges (i.e., those relevant to OR) that are layered on top of the other

scientific challenges.

Fermentation Operations

During the fermentation process, the cell culture goes through several metabolic phases,

as shown in Figure 2a. First, the cells adjust to their new environment (lag phase). Next,

their growth rate steadily increases for a period of time (exponential growth phase), after

which it slows down (deceleration phase) and reaches a steady state (stationary phase)

followed by cell death (death phase). Owing to these metabolic phases, the target protein

and unwanted impurities accumulate at a non-stationary rate. For example, Figure 2b and

2c plot the expected amount of ammonia (unwanted impurity) and IgG1 (the final product

of interest) obtained over time. We see that IgG1 and ammonia accumulate simultane-

ously during fermentation. This phenomenon is referred to as the purity–yield trade-off in

the fermentation process, and it presents an important challenge. Waiting “too long” to

stop the process, in anticipation of a higher yield of the target protein, may result in a

higher amount of impurities. In turn, this could increase the difficulty of the downstream

purification operations.

In addition, the fermentation process is subject to randomness in the process outcome.

Although fermentation is highly controlled, the process relies on live cells, such as viruses

or bacteria, and this leads to variability in terms of yield (amount of target protein), qual-

ity (amount of unwanted impurities), processing time, and operating costs. In addition,
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the fermentation process can also be subject to multiple failure processes through random

shocks. A random shock could be attributable to machine breakdowns, human error, or

the underlying biological and chemical dynamics (e.g., cell mutation). In practice, a ran-

dom shock is detected through an abrupt change in one or more of the critical process

parameters. For example, a random shock could lead to a sharp, unexpected drop in the

viable cell concentration. If a random shock occurs, the operator adopts a corrective action

prescribed in the manufacturing protocol. However, these random shocks still add another

layer of challenge in practice because they can lead to batch failures.

In this work, we focus on two types of batch failure: sudden failure and progressive

failure. Sudden failure represents a catastrophic failure caused by the underlying biological

and chemical dynamics. Examples of sudden failure are bacterial contamination and cell

mutation. On the other hand, progressive failure happens if the amount of impurities

present in the batch exceeds a predetermined specification limit imposed by regulations.

As part of natural cell growth, it is expected that impurities will accumulate over time (see

Figure 2b). However, a random shock can accelerate the rate at which unwanted impurities

accumulate and, in turn, can increase the risk of progressive failure. If a batch fails because

of sudden or progressive failure, it is completely discarded.

In this setting, it is important to determine the best harvesting policies (stopping time)

within the guidelines of the approved manufacturing protocol. There is an important need

for a formal decision-making framework that can simultaneously account for the failure

risks, purity–yield trade-offs, and relevant economic parameters. Current practice either

ignores such key manufacturing trade-offs or adopts conservative suboptimal policies to

hedge against financial risks. Both strategies increase costs and lead times.

Chromatography Operations

Chromatography is a separation technique that relies on the difference in the physical and

chemical characteristics between the target protein and impurities. For example, anion-

exchange chromatography separates molecules based on their charges, while hydropho-

bic interaction chromatography separates molecules based on hydrophobicity. Chromato-

graphic separation is carried out in columns packed with special resins binding to either the

target protein or impurities. The scientist collects the material flowing through the chro-

matography column at various time intervals (e.g., one minute) as illustrated in Figure 3a.
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(a) Dynamics of chromatography

Starting material:
55 mg target protein

100 mg impurity

Time 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10

(p,i) (1, 35) (2, 20) (3,15) (6,10) (10,6) (10,6) (8,5) (7,3) (5,0) (3,0)

(b) Example of chromatography data

Target protein

Impurity

t1 t2     t3 t4 t5 t6 t7 t8 t9 t10

Pooling window
Figure 3 Collected samples are labeled as (p,i) in Figure 3a where p is the amount of target protein (mg)

and i is the amount of impurity (mg) in the sample. Chromatography output is analyzed using gel

electrophoresis to determine the amount of target protein and impurities in the collected samples as

given in Figure 3b.

Starting material in the column contains target protein (represented as black) along with

many impurities (represented as white). After the completion of chromatography, the sci-

entist uses techniques such as gel electrophoresis to determine the amount of target protein

and impurities that flow through the column during each time interval. (In practice, there

are several different techniques for collecting and analyzing chromatography data, and gel

electrophoresis is only one of them.) Figure 3b shows the output of gel electrophoresis for

the collected samples given in Figure 3a. In this figure, each column on the x-axis repre-

sents a lane and corresponds to the volume flowing through the chromatography equipment

during a specified time interval of the process. The material collected in each lane contains

a fraction of the target protein and varying amounts of other impurities, as shown by the

arrows in Figure 3b. Since gel electrophoresis sorts molecules based on size, the y-axis in

Figure 3b describes the composition of the volume collected as a function of the molecular

size of the protein and impurity constituents. The size of the black pixels in Figure 3b is

correlated with the amount of the target protein present in a lane.

Based on the scouting data, the scientist decides to collect material flowing through only

certain lanes. We refer this problem as the pooling window selection problem. A pooling

window represents a selection of consecutive lanes to be collected during the chromatog-

raphy process. Figure 3b illustrates one potential pooling window that collects lanes t4 to

t10. In practice, selecting the right pooling window could be challenging owing to several

factors:
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• Purity–yield trade-off: A purity–yield trade-off is often inevitable in chromatography,

implying that the scientist stands to lose some fraction of the target protein at each chro-

matography step to improve the batch purity. For example, if she pools lanes t4 − t10 in

Figure 3b, then she collects a large portion of the target protein and impurities. However,

if she pools lanes t8− t10, then she collects lesser of amount of target protein and impurity.

This implies that a smaller (larger) pooling window might help to meet the purity (yield)

requirement, but there is a risk of not meeting the yield (purity) requirement.

• Multiple dependent steps: Protein purification often requires multiple chromatography

steps in series. Therefore, suboptimal decisions made at an earlier chromatography step

could have a limiting effect on the best possible outcome of subsequent steps.

• Randomness: Because of the underlying biological and chemical dynamics, the amount

of target protein and impurities obtained at a chromatography step involves randomness.

• Engineered proteins: Each project represents an engineer-to-order protein, and hence,

operating decisions need to be customized for each order.

• Starting batch: The quality of the starting material is one of the critical factors for

success. For example, the starting material could involve “too little” target protein or “too

much” impurity, such that the final purity and yield requirements can never be achieved

even though the biomanufacturer makes the best operational decisions during the chro-

matography process.

Our objective in this research is to develop a formal, rigorous decision support tool that

addresses the manufacturing challenges during the chromatography process.

Capacity Planning and Scheduling Challenges

Protein manufacturing operations are performed by highly skilled scientists using spe-

cialized equipment. Capacity planning for these limited specialized resources is critical

for successful and timely completion of orders. Recognizing the manufacturing challenges

described above, for each client order, the amount of labor and equipment needed for each

step in fermentation and chromatography is estimated and incorporated into a capacity

plan and production schedule that determines the lead time and delivery date to the client.

Failing to satisfy delivery dates results in penalty costs and loss of credibility and reputa-

tion. Capacity planning in the biomanufacturing setting is particularly challenging because

of the custom nature of orders. Effective capacity planning requires extensive data collec-

tion and capacity estimation based on the unique requirements of each order. Although
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Figure 4 This diagram summarizes the input and output of the developed tools.

the biomanufacturer collects detailed data about the operations for regulatory compliance

and quality control, the data are typically not structured for use in data-driven capacity

planning decisions.

In addition, biomanufacturers also face unique challenges in operational scheduling. Each

client order requires several tasks to be completed, namely, preparation, fermentation,

chromatography, quality control, validation, and testing. The tasks and their durations

differ between orders depending on the final product requirements, quality of the starting

material, and required quality certifications. The use of live cells often introduces “no-wait”

constraints between steps. The engineered nature of these products adds uncertainty at

each step and imposes simultaneous requirements on highly skilled labor resources and

specialized equipment to guarantee the best outcome.

If the planned schedule fails to achieve the expected outcome in terms of yield and purity,

additional steps have to be planned into the schedule to meet the customer requirements.

This can impact the schedules for other orders. Investigating different schedules to identify

the best schedule that reacts to these dynamics is a challenge.

Operations Research Methods Provide Solutions

A portfolio of OR tools (see Figure 4) have been developed over a period of five years of

collaboration with a team of researchers from the University of Wisconsin-Madison and



Authors’ names blinded for peer review
10 Article submitted to Interfaces; manuscript no.

Aldevron to support various phases of protein manufacturing operations. The cell cul-

ture optimization tool addresses the harvesting decisions during fermentation, and the

chromatography optimization tool was developed to optimize chromatography operating

decisions. The capacity planning and interactive scheduling tools were created to support

production planning decisions. These tools are designed so that they can operate indepen-

dently of each other. This would allow other biomanufacturers to use one or multiple of

these tools as needed. Aldevron has been an active participant in the testing and implemen-

tation of several of these tools. The resulting research outcomes have also been validated

and disseminated to a broader group of biomanufacturers (BioWGS 2016).

Theoretical analysis of these problems has been reported in previous work (Martagan

et al. 2016b, 2018). However, these studies focus only on a particular aspect, either fer-

mentation or chromatography operations. In contrast, this work elaborates on the variety

of problems that SMEs in the biomanufacturing industry face and describes the imple-

mentation of the theory through special decision support tools. It also focuses on practical

aspects, such as the development of efficient solution procedures, challenges faced during

implementation over the last five years, and benefits realized from implementation. We

hope that this study will show how SMEs in related industries can benefit from OR to

improve their business.

The Cell Culture Optimization Tool

The cell culture optimization tool helps to determine optimal harvesting policies (i.e., the

best time to stop). The cell culture optimization tool uses the theory of Markov decision

processes (MDP) and combines the cell-level dynamics (i.e., biology and chemistry of the

underlying operations, as shown in Figure 2) with the manufacturing-level dynamics (i.e.,

purity–yield trade-offs, failure risks, and financial implications) to support decision making.

The states of the MDP model capture the time elapsed since the last shock, amount of

target protein, and amount of impurities present in the batch. Possible actions are either

to stop the process (i.e., harvest) or to continue to operate based on the predetermined

protocol. Transition probabilities are defined based on the probability density distributions

that describe the evolution of the amount of target protein and impurity over time. These

probability distributions are non-stationary because of the different phases of cell growth.

Other inputs to the MDP model are operating costs and rewards, specification limits on
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the amount of impurities, and parameters required to model batch failures (e.g., shock

arrival rate, probability of surviving a sudden failure). The objective is to identify an

optimal harvesting policy that maximizes the value function defined as the expected total

discounted profit (see Appendix A and Martagan et al. 2016b for details).

The optimization tool uses the policy iteration algorithm to solve the optimization prob-

lem. It is developed using the MATLABR© software and provides a user-friendly interface

with Microsoft Excel where the scientists can easily enter the problem parameters and

view the outputs.

Table 1 The tool generates a lookup table showing optimal

policy and expected profit for each system state.

Time (hr) State (n,w,m)a Profit Policyb

200 (4, 2, 30) 514 C

200 (4, 2, 35) 522 H

200 (4, 2, 40) 529 H

200 (4, 2, 45) 533 H

200 (4, 2, 50) 541 H

200 (4, 3, 0) 468 C

200 (4, 3, 5) 476 C

a System state is (n,w,m), where n denotes the time elapsed since
the last shock, w is the amount of impurity present in the batch,
and m is the amount of target protein in the batch.

b “C” means to continue the fermentation, and “H” is to harvest.
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Figure 5 Optimal policies have

control-limit structure and provide guidelines

that are easy to implement in practice.

As an output, the tool generates a lookup table, where optimal actions and the corre-

sponding expected profit are reported for each possible system state (see Table 1 for an

illustrative example). In addition, the team observed that the optimal policy can have a

control-limit structure under some realistic conditions on costs and state transitions (see

Martagan et al. 2016b for details). Figure 5 illustrates the optimal policies at time t= 50 hr

for a case study on IgG1 production. In this figure, we observe that it is optimal to continue

the process if the amount of protein and impurity is below a certain threshold value. For

example, the bottom left of Figure 5 suggests to continue the fermentation process because

the amount of protein and impurity in this region is too little. However, the optimal policy

switches from continue to harvest as the amount of impurity increases at a given protein

amount (e.g., top left of Figure 5). This is mainly because of the increased risk of failure
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at higher levels of impurity. On the other hand, the optimal policy in the bottom right of

Figure 5 suggests to harvest as the amount of target protein is already high in this region

(i.e., due to limitations in cell culture, quality–yield trade-offs, failure risks, etc.). The tool

helps to identify the amount that is just right. We also note that the tool can be adapted

to accommodate multiple types of impurities, and the illustration with respect to IgG1 and

ammonia is only an example of the application of this tool.

Discussions with Aldevron and other industry practitioners during working group ses-

sions revealed that the current common industry practice for harvesting decisions is to

stop the process during the deceleration or stationary phase in order to get the highest

possible yield. When we compared the optimal harvesting policy obtained from the opti-

mization tool with the harvesting strategies typically used in practice, we observed that the

optimal policy recommends harvesting earlier than typical practice. At first, this finding

was counterintuitive to the practitioners involved in the discussions since the established

practice in industry today is used to maximize the protein amount in a batch as a way

to increase profit. However, this completely ignores the financial risk arising from failures

in the process. Our optimization tool helped to illustrate this trade-off and to convince

the practitioners that harvesting earlier could lead to higher expected profit owing to the

combined impact of the failure risks involved in operations, purity–yield trade-offs, and

randomness in process outcomes.

The Chromatography Optimization Tool

As described earlier, the main challenge in chromatography operations is to carefully select

pooling windows to achieve the yield and purity requirements for the customer. The chro-

matography optimization tool helps to optimize pooling windows at each chromatography

step. We formulate this problem as an MDP model with decision epochs corresponding

to the beginning of a chromatography step (see Appendix B for the details of the MDP

model). The states of the MDP model represent the amount of protein and impurity at the

beginning of a chromatography step, and the action space at each epoch comprises a set

of candidate pooling windows that can be used for that chromatography step. The model

also includes the option of terminating the process at any decision epoch. Chromatography

data from the scouting run are used to determine state transitions. The MDP model takes

into account chromatography operating costs, penalty costs (e.g., yield shortage and/or
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quality failure), and revenue obtained from the final batch as a function of the production

requirements (i.e., The client purchases the protein only if the purity requirement is satis-

fied. The biomanufacturer does not obtain revenue from proteins manufactured in excess

of the yield requirement and incurs a yield penalty cost for each unit of protein in short).

The tool uses a backward induction algorithm to determine optimal pooling windows at

each chromatography step. The user interface and the underlying model are developed in

Java. As the output, the tool generates a lookup table where the optimal pooling windows

and optimal profit associated with each state are reported (see Table 2 for an example).

Table 2 The tool generates a lookup table showing

optimal pooling windows and expected profit for each

system state.

Step Protein (mg) Impurity (mg) Profit Policy

1 10 0 40 Stop

1 10 1 40 Stop

1 10 2 25 Lanes 4-16

1 10 4 -2 Lanes 4-12

1 10 12 -48 Stop
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Figure 6 State space is partitioned into decision zones

having similar financial characteristics.

We exploited the structural characteristics of the MDP model to derive guidelines on

high/low quality starting materials. We showed that the state space can be partitioned into

distinct subsets called the failure zone, risk zone, and target zone (see Martagan et al. 2018

for details). Figure 6 illustrates the decision zones generated for a case study at Aldevron.

In this figure, if the starting material is an element of the failure zone, this implies that

the biomanufacturer has no financial incentives to continue that chromatography step. In

contrast, if the starting material is an element of the target zone, then the biomanufacturer

can guarantee success in achieving the production requirements of the customer. The risk

zone implies that the project might lead to either financial losses or profit, depending on

the condition of the starting material and outcomes of individual chromatography steps.

The solid line in Figure 6 corresponds to the break-even points. Note that these decision

zones are uniquely defined for each order since the target protein is custom engineered.

Prior to the use of the chromatography optimization tool, scientists relied on their expe-

rience and domain knowledge to select pooling windows. Decisions related to guaranteeing
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a successful outcome or stopping at an intermediate point because of a low chance of even-

tual success were purely based on experience and intuition. The tool provides an analytic

approach for making decisions and effectively incorporating the various financial trade-offs

related to chromatography operations. The tool also enables easier communication with

clients if additional starting material and/or chromatography steps are needed.

The Capacity Planning Tool

The capacity planning tool helps to develop a data-driven capacity planning process and

provides a capacity assessment for managerial decisions. It estimates the utilization of key

labor and equipment assets and signals bottlenecks that could produce long lead times and

late deliveries. This enables management to take actions to prevent long lead times and

meet customer due date commitments.

The tool consists of a resource database on available capacity, a demand database, and

an analysis toolpack for capacity assessment. The demand database records the project,

labor, and equipment information for each activity in the protein manufacturing process.

The resource database stores the capacities and capabilities of different equipment and

labor assets.

The capacity analysis toolpack calculates resource utilization over a specified period

based on information from the demand and resource databases using an aggregate plan-

ning framework and identifies potential bottlenecks. The capacity analysis toolpack also

performs what-if analysis to assess managerial decisions such as the need for investments

in new capital equipment, requirements for overtime, or the need to adjust due dates for

projects. As an illustration, Figure 7 shows the analysis of 60 projects during the devel-

opment phase of the tool. Our analysis revealed that 14 of 60 projects needed more than

20 days for completion. This was an issue since Aldevron expects their projects to be

completed within 2 weeks. To understand the causes for long lead times, we conducted

brainstorming sessions and discussed possible root causes such as absenteeism, nature of

projects, quality issues, and resource bottlenecks. Using the tool and discussions, the group

identified the high utilization of three specific chromatography machines as the root cause

for the long lead times on several projects. Several possible solutions, including introducing

overtime, hiring new employees, and purchasing new equipment, were evaluated using the

capacity analysis toolpack to address this challenge. The tool suggested that purchasing
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new chromatography equipment would be the best way to address the challenge. The deci-

sion was made, and the new equipment purchased enabled Aldevron to cut the lead times

on several projects. Only 8 of the next 60 projects had more than 20 days of lead time,

yielding a 50% reduction in the number of projects with long times.

High project lead 
times due to 
bottlenecks

Lead Time Equipment Utilization

Le
ad

 ti
m
e

Projects

U
til
iz
at
io
n

Equipment

Figure 7 The tool identified bottlenecks as the root cause for long lead times of the projects completed in a

quarter of the year.

The capacity planning tool generates resource utilization graphs that are actively used

at the company. The current implementation shows that the tool has formed a strong

basis for effective capacity management at Aldevron. The development of this tool led, in

part, to the implementation of Protein Production Management –a work flow management

platform with online documentation. This platform enables users to monitor the status of

ongoing projects according to their scheduled tasks, due dates, start/end dates of each task,

required labor/equipment hours, actual labor/equipment hours, and assigned scientists.

Additionally, the details regarding the tasks, including material costs, purification results,

quality specifications, quality test results, and client requirements, are documented for

future reference. This has had a significant impact on not only planning capacity but also

tracking performance variations across projects.

The Interactive Scheduling Tool

While the capacity planning tool provides planning support, the successful delivery of

biomanufacturing projects to clients also requires the effective scheduling of projects and

lab resources. The scheduling tool helps create schedules for projects with several tasks

and gives users the flexibility to create customized schedules in response to the uncertainty

related to each task and additional constraints. The objective of the tool is to provide

an interactive scheduling system that optimizes resource assignments and that effectively

schedules projects to meet delivery commitments. Although the capacity planning tool
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and interactive scheduling tool do not interact with each other as they may be used for

different time frames, the tools can be used together if needed.

A typical protein manufacturing process starts with plasmid prep, followed by cell cul-

ture, purification, and finally quality assessment. Each client project may include some or

all of these tasks depending on their requirements, and the labor hours required for each

task can vary between projects. As explained earlier, the custom nature of each project,

differences in the priority given to various projects, no-wait constraints between tasks, and

the preferred allocation of scientists to certain tasks and projects complicate the scheduling

process. To find a good and feasible schedule at Aldevron, a team of scientists would often

meet as a group for three hours each week. This process was becoming inefficient with

the increasing volume and complexity of projects. The time spent for scheduling meetings

increased and so did the need for revising schedules to accommodate the uncertainties in

protein manufacturing operations.

The interactive scheduling tool models the scheduling problem at Aldevron as a mixed-

integer linear program (details in Appendix C). The inputs of the tool are project lists

with the associated tasks and scientist capabilities and capacities. The project list given

in Table 3 includes the tasks performed for each project in sequence. The duration of each

task (in weeks) and the labor hours required each week to complete that task are also

given as inputs. The tool recognizes that each task can be assigned to any scientist from

a set of scientists who are capable of performing the task. The number of hours that each

scientist is available to work each week is stored in an input database. The tool determines

scientist assignments for the tasks of each project as an output. It ensures the sequential

completion of the required tasks, considers and incorporates scientists availability, and

accounts for no-wait and preferred scientist constraints while determining the schedule.

It runs the mathematical model with CPLEX in Java through Concert Technology and

generates schedules. A simple illustration is given in Table 4, which shows the order and

due dates for each project, assigned scientists along with their tasks, and number of hours

that they need to spend each week. “Update” and “Priority” columns are filled to revise

the schedules in the subsequent runs of the tool.

A key aspect of the tool is that the schedules can be revised by running the model

iteratively and interactively using the revision features. The revision features of the tool

allow users to specify high-priority projects, preferred scientist and time assignments and
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Table 3 This table shows a sample project list used as an input to the interactive scheduling tool.

Project Task Order date Due date Number of hours in a week Number of weeks

A1 Purification 12/06/2016 2/27/2017 20 1

A2 Eukaryotic expression 12/28/2016 2/28/2017 10 2

A2 Purification 12/28/2016 2/28/2017 30 1

A2 Quality control 12/28/2016 2/28/2017 8 1

A3 Purification 1/10/2017 3/8/2017 20 1

A3 Quality control 1/10/2017 3/8/2017 16 1

Table 4 This table shows a portion of the schedule generated by the tool.

Project No Order Date Due Date Update Priority Status 01/08/2017 01/15/2017 01/22/2017 01/29/2017 02/05/2017 02/12/2017 02/19/2017

A1 12/30/2016 02/05/2017 High Late CR-EuE-30 CR-EuE-30 MM-Pur-20

A2 12/28/2016 02/28/2017 Freeze On time KR-EuE-10 KR-EuE-10 JG-Pur-30 JG-QC-8

A3 12/06/2016 02/27/2017 Freeze On time MS-Pur-20

A4 01/10/2017 03/08/2017 Change On time JR-Pur-40 MM-QC-16

to explore different schedules. The user can also freeze portions of the schedule, update

scientist availabilities, and optimize the rest of the schedule. In this manner, schedules can

be iteratively improved following the steps given in Figure 8.

The interactive scheduling tool captures the needs of several small biomanufacturing

companies that face complex scheduling challenges. Incorporating the ability to interac-

tively revise schedules gives managers an opportunity to consider different objectives while

generating feasible schedules iteratively. Feedback from users at working group sessions

suggests that the flexible structure of the tool will enable efficient scheduling in many

biomanufacturing companies.

Implementation

A four-phased approach was adopted for the implementation of each of the tools, cell

culture and chromatography optimization, capacity planning, and interactive scheduling.

Recognizing that users of these tools will be scientists with several other responsibilities,

particular attention was devoted to automatizing the inputs and outputs of these tools

and enhancing the tools to provide flexibility in decision making.

• Phase 1: Data collection. The team worked on the methods of collecting input data

and improving data quality.

• Phase 2: Tool validation. Pilot runs were done with chromatography, cell culture, and

demand data to test the validity of the tools.

• Phase 3: Automation of inputs and outputs. Simple graphical user interfaces were

created to enable scientists to run the tools efficiently.
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Figure 8 The revision features of the tool provide flexibility for scheduling decisions.

• Phase 4: Tool enhancement. New features were introduced to improve the use of the

tools, based on the feedback obtained from pilot runs.

Implementation of the Chromatography Optimization Tool

Data collection: Scientists performed initial small-scale experiments called scouting runs

to understand the feasibility of the customer requirements after receiving an order. Data

collected from these scouting runs provided the inputs regarding protein and impurity

amounts for the chromatography optimization tool. Revenue and cost inputs were obtained

from management at Aldevron. The cell culture data, including protein and impurity

amounts, were obtained in collaboration with scientists at UW-Madison for the develop-

ment of the cell culture optimization tool.

The chromatography optimization tool in particular required preprocessing the collected

data to be used as inputs. The first step in the data preprocessing is to measure the protein

and impurity percentages in each lane from the gel images shown in Figure 3. Scientists

use gel imaging software to identify the percentage of target protein and impurity in each

lane. To calculate the distribution of target protein across the lanes, they measured the

total protein in each lane by applying additional techniques/assays. The total protein

includes the target protein and impurities. The percent distribution of the target protein
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and impurities across the lanes was determined by using the total protein obtained from

this assay, and the percentage of target protein in each lane was calculated using gel

imaging software.

Tool validation: For the chromatography optimization tool, after the procedures to col-

lect inputs were defined, the team conducted several trial runs where the optimal policies

generated by the tools were compared with the actions performed by the scientists. Ini-

tial comparisons revealed a few inconsistencies. In these few cases, the team found that

the presence of compromised target protein (i.e., misfolded, aggregated) could mislead

the inputs of the chromatography optimization tool, as these species could have the same

molecular weight as the target protein but are not functionally useful and consequently are

considered an impurity. To overcome this challenge, guidelines were established to flag these

species as impurities. In a few other cases, the team observed that the chromatography

optimization tool suggested pooling lanes in addition to those selected by the scientists,

indicating that a higher yield is possible while satisfying the purity requirement.

To test the robustness of the tools, the team conducted sensitivity runs with differ-

ent cost parameters and probability distributions. For instance, the team studied how an

optimal decision related to a chromatography step would change for different probability

distributions. These robustness tests were instrumental in building user confidence in the

use of these tools.

Automation of inputs and outputs: After the completion of the validation phase, graph-

ical user interfaces were created for the chromatography optimization tool to enable the

scientists to use the tools with minimal knowledge of the underlying MDP. Although these

scientists have advanced degrees, their knowledge of OR is minimal. These user interfaces

were critical for making the power of OR models accessible to these scientists. Figure 9

shows an overview of the user interface for the chromatography optimization tool. Data

are entered in four main modules by using a drop-down menu. More specifically, each

sub-figure in Figure 9 represents a data entry module and corresponds to an item in the

drop-down menu. The tool dynamically generates the output based on the input entered.

Tool enhancement : During the tool validation runs, the team realized that for some

orders, cost estimates related to penalty costs in particular may exhibit significant uncer-

tainty. To overcome this challenge, we introduced a modified version of the chromatography

optimization tool in which we added an alternative feature to evaluate the chromatography
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Figure 9 The user enters the required inputs into four main modules in the chromatography optimization tool.

performance without cost parameters. This feature generates optimal policies with the aim

of maximizing yield while satisfying purity instead of maximizing profit. This version of

the tool provides the maximum protein amount that can be collected. For example, if the

starting protein and impurity amounts are in the target zone, the tool lists at least one

pooling strategy that satisfies the customer requirements even if the scientist experiences

the worst-case scenario with respect to chromatography outcomes. The points in the fail-

ure zone shown in this version indicate that it is impossible to satisfy the requirements

even with the best-case purification capabilities. Consequently, the tool provides a quick

check regarding whether the desired yield and purity are satisfied with the given starting

protein and impurity amounts when the cost estimation is difficult. Figure 10 provides an

overview of the user interface of this version of the chromatography optimization tool.

Implementation of the Capacity Planning and Interactive Scheduling
Tools

Data collection: Prior to the implementation of the capacity planning and interactive

scheduling tools, the scientists were recording project information on lab notebooks for

traceability purposes. The team initiated electronic data entry to overcome the difficulties

of physical documentation and emphasized that this information was also used for capac-

ity planning and scheduling. Our tools raised the importance of good inputs. Aldevron
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Figure 10 This figure shows the user interface for the chromatography tool lite tool.

launched the Protein Production Management as an offshoot of our collaboration, and this

platform provides the required inputs for the capacity planning and interactive scheduling

tools.

Tool validation: To validate the capacity planning tool, the team first ensured the accu-

racy of the input data by comparing labor and equipment hours against values recorded by

the scientists. While the equipment hours were tracked with reasonable accuracy, under-

reporting of labor hours was common, which impeded their ability to obtain accurate

estimates of labor utilization. With the help of continuous monitoring of the recorded data

and clear communication in weekly meetings, procedures were established for training the

scientists to record the necessary data and prevent under-reporting. After the data validity

was ensured, the team discussed the utilization results obtained by the capacity planning

tool. For instance, the team investigated whether a machine/scientist presented as highly

utilized by the tool was actually a constraint in the lab, as well as the potential solutions

for these constraints. These discussions built confidence in the tool outputs.

The team conducted several validation runs for the interactive scheduling tool with dif-

ferent project lists and different planning periods to check whether the schedules presented

as an output of the tool satisfied all the constraints. After validating the accuracy of the

schedules, the team discussed the effectiveness of the generated schedules and compared

them with the actual schedules planned by management at Aldevron. We concluded that

the generated schedules were effective and could be implemented. One issue, however, was

that the tool could delay the start of a project much later than a manager at Aldevron
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would in reality, if doing so did not violate any constraints or induce late deliveries. How-

ever, management felt that such schedules are undesirable, as they might limit Aldevron’s

ability to accept more orders in future weeks. To address this issue, the tool was modified so

that projects would be finished as early as possible. In addition, the team discovered that

some of the scientists time assignments were not feasible because they were on vacation

and had other responsibilities. To address this constraint, the team introduced additional

features.

Tool enhancement : After understanding the need for flexible inputs for capacity during

the validation runs, the team added scientist capacities as an input to the model in order to

specify the available labor hours each week. Moreover, in the case of new hires, changes to

scientists responsibilities, or new task definitions, the team introduced scientist capabilities

to describe which tasks can be assigned to each scientist. Both scientist capacities and

capabilities were recorded in the same Excel file, and users can modify them before running

the tool. The flexibility of the interactive scheduling tool has been further enhanced with

the revisions that can be made to the resulting schedules. The improved version of the

tool was rolled out after adding the options of specifying high priority projects, freezing

assignments, and exploring different schedules.

Automation of inputs and outputs: As with the cell culture and chromatography opti-

mization tools, the interactive scheduling tool was set up so that users do not have to

interact with the mathematical model. However, the input data were set up so that they

can be easily retrieved from the Protein Production Management. The interactive schedul-

ing tool generates schedules and workload summary graphs, and users can run the model

again after revising the resulting schedules in the same file.

Benefits of OR Tools in Biomanufacturing Operations

The suite of OR tools has provided a formal framework that enables Aldevron to improve its

manufacturing operations, planning, and scheduling. The tools were deployed at Aldevron

with the help of regular meetings with Aldevron and necessary IT support. They have also

been shared with local biomanufacturing firms (BioWGS 2016).

The suite of OR tools offers the following three major benefits:

Formal assessment of risks and manufacturing capabilities: The capacity planning tool

identifies bottleneck resources that may have immediate effects on manufacturing and



Authors’ names blinded for peer review
Article submitted to Interfaces; manuscript no. 23

scheduling decisions. The capacity planning and interactive scheduling tools help clar-

ify capacity needs and thus the feasibility of client agreements regarding lead time and

delivery. The interactive scheduling tool incorporates unique biomanufacturing scheduling

constraints into the model and allows users to enter additional constraints and task defi-

nitions as required. Both of these tools help Aldevron anticipate risks of late delivery and

explore corrective strategies. The chromatography optimization tool captures the uncer-

tainties in the processes and the financial implications of operating strategies. The tool

provides a formal assessment of starting material and manufacturing capabilities using a

novel zone-based decision-making approach, allowing companies such as Aldevron to both

guarantee performance when possible and warn clients to decide to fail early and thus

minimize losses.

Increased flexibility in manufacturing and scheduling: The use of OR tools at Aldevron

has reduced the risks of failing client requirements. These tools quantify the manufactur-

ing trade-offs and challenges for the clients. Providing performance guarantees through

the decision zones has resulted in higher client satisfaction and business growth. From a

scheduling point of view, the revision features embedded in the scheduling tool enable man-

agers to investigate different scenarios and find the best schedules that improve on-time

deliveries and client satisfaction. The capacity planning and interactive scheduling tools

also enable managers to deal with more consistent operations and dynamically respond

to resource utilization issues, resource unavailability, and rescheduling needs for tasks in

order to prevent late deliveries.

Data-driven decision making: The approach taken to develop the OR tools demonstrates

the power of data-driven manufacturing optimization in the biomanufacturing industry.

The capacity planning and interactive scheduling tools provide solutions for efficient plan-

ning and resource utilization. The chromatography optimization tool integrates bioscience

with the process economics and financial trade-offs by examining the amounts of target

protein and impurities obtained during operations. The outputs of the developed tools not

only help improve the cell culture, chromatography, planning, and scheduling processes

but also establish better communication with clients.

Conclusions

In the biomanufacturing industry, there is an increasing need for OR-based decision support

mechanisms to reduce production costs, lead times, and failure risks. This paper presents a
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systematic application of OR methodologies to improve biomanufacturing efficiency. Close

collaboration with an interdisciplinary team of researchers at Aldevron resulted in a port-

folio of OR tools that rigorously respond to common industry challenges. The portfolio

of OR tools proposes solutions for the optimal use of resources in terms of cost and lead

time. For example, the cell culture and chromatography optimization tools capture the

batch-to-batch variability and uncertainty in the production processes and thus enable

the integration of cell-level dynamics (i.e., biological and chemical processes) with higher

level manufacturing decisions (e.g., optimal operating policies) to reduce failure risks and

costs. The capacity planning and interactive scheduling tools enable effective use of limited

capacity with increased flexibility in manufacturing and scheduling. Since 2013, these tools

have been validated and enhanced using Aldevron data. The insights obtained from these

tools have directly affected business metrics, resulting in a roughly 20% reduction in time-

lines and costs. These tools have also played an important role as Aldevron has grown 3x

since 2013. In addition to the financial impact on the business, during the implementation

of the OR tools, Aldevron experienced a systematic change in encouraging increased use of

data-driven decision making and use of OR culture within the company. The development

of the work flow management platform has also encouraged the adoption of a systematic,

OR-based approach to optimize manufacturing and planning decisions.

OR methodologies have not yet been widely used in the biomanufacturing industry.

However, we strongly believe that the true impact of this work extends beyond Alde-

vron’s operations. Complementing societal advances in biological research with sound OR

methodologies will significantly help the industry accelerate early phase drug development

research. The benefits will be significant for the industry as a whole and its customers

—patients needing life-saving drugs.
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Appendix A. MDP Model for the Cell Culture Optimization Tool

• Decision epochs: Decision are made at time t, T = {t : 0, τ,2τ,3τ, . . . , T}. The length τ > 0 could vary

for each bioprocess. Time t ∈ T also represents the age of the process. The maximum age is bounded by T

because of the biological constraints (e.g., limitations in cell growth and culture lifetime).

• States: The system state is represented by (n,w,m) in finite state space N ×W ×M. State n ∈ N

denotes the time elapsed since the last shock, N = {0, τ,2τ,3τ, . . . , T}. State w ∈W represents the amount

of impurity present in the batch, W ≡
[
0, W̄

)
∪{∆}, where W̄ is a specification limit imposed by regulatory

requirements to ensure quality and ∆ denotes batch failure. State m ∈M represents the amount of target

protein present in the batch, M≡
[
0, M̄

]
. The highest protein amount that can be achieved is M̄ owing to

limitations in cell cultures. The process starts at time t= 0, with states n= 0,w= 0, and m= 0.

• Actions: The scientist can either continue the fermentation process (C) or harvest (H) at each decision

epoch. Hence, A = {C,H}. Let a∗t (n,w,m) denote an optimal action at time t and state (n,w,m). Then,

it is optimal to harvest if a batch fails (i.e., a∗t (n,∆,m) =H for t ∈ T , n ∈N , and m ∈M) or if it reaches

either the maximum age T (i.e., a∗T (n,w,m) =H for n ∈N , w ∈W, and m ∈M) or the specification limit

W̄ (i.e., a∗t (n, W̄ ,m) =H for t∈ T , n∈N , and m∈M).

• State transitions: Let Xt be a random variable with realization xt and probability density function

fxt (·) (general distribution) in the interval [xLt , x
U
t ] for t∈ T . Note that fxt (·) is time dependent. If the process

continues at time t, then the amount of protein at time t+ 1 is modeled with the additive function:

mt+1 =

{
0 if the batch is harvested at time t,

mt +xt if the batch is not harvested at time t.

We define ζ(n,ρ) as the probability of a shock arrival after n periods of no shocks, where ρ is a vector of

parameters of the unspecified distribution of the time between two shocks. In addition, random variable Bt

with general distribution f bt (·) and realization bt represents the increase in the impurity amount during period

[t, t+ 1). Et is a random variable with general distribution f εt (·) and realization et, and it represents the

increase in the impurity amount because of shocks during period [t, t+1). αt is the probability of surviving a

sudden failure. Note that f εt (·), f bt (·), and αt are time dependent. If a batch continues at time t, the impurity

amount at time t+ 1 is given by

wt+1 =

{
wt + bt + et if there is a shock during [t, t+ 1) ,

wt + bt if there are no shocks during [t, t+ 1) .

The reliability function isRt(n,w) = ζ(n,ρ)αt
∫ W̄−w

0
f ε+bt (z) dz+(1−ζ(n,ρ))

∫ W̄−w
0

f bt (y) dy, and it represents

the batch survival probability at state (n,w)∈N ×W during period [t, t+ 1). The convolution Zt =Et +Bt

has the density function f e+bt (z)dz = f et ∗ f bt .

• Costs and rewards: The cost of operating during one period is rc(w,m). The operating cost is nonde-

creasing in w and m. The revenue obtained from harvesting at state (w,m) is rh(w,m), and it is nondecreasing

in m and nonincreasing in w. The penalty cost of failure is r(∆).

• Value function: Vt(n,w,m) represents the expected total discounted profit when the batch is in state

(n,w,m) at time t. For all (n,w,m)∈N ×W ×M, the value function is
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Vt(n,w,m) =

{
−r(∆) +V0(0,0,0) if w= ∆,

max{rh(w,m) +V0(0,0,0), −rc(w,m) +β Ct(n,w,m)} otherwise ,
(1)

where

Ct(n,w,m) = [1−Rt(n,w)] [−r(∆) +V0(0,0,0)]

+ζ(n,ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)Vt+1(0,w+ z,m+x) dxdz

+ [1− ζ(n,ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)fxt (x)Vt+1(n+ 1,w+ b,m+x) dxdb. (2)

The discount factor is 0< β < 1. The function Ct(n,w,m) denotes the expected rewards obtained from the

action of continuing at time t and state (n,w,m). This is an infinite-horizon problem where a harvested or

failed batch is immediately replaced with a new one, leading to the expression V0(0,0,0) in Equations (1)-(2).

Appendix B. MDP Model for the Chromatography Optimization Tool

• Decision Epochs: Decisions are made at the beginning of chromatography step t, T = {t : 1, . . . , T −1},

where T − 1 denotes the last chromatography step. The end of the planning horizon is T .

• States: The system state is represented by (pt, it) in finite state space P ×I ∪∆. State pt ∈P denotes

the amount of protein available in the batch at the beginning of the tth chromatographic step. State it ∈ I

is the amount of impurity at the beginning of the tth chromatographic step. Stopping state ∆ represents a

batch that is either shipped or scrapped. ∆ is an absorbing state with no rewards.

• Actions: wt ∈ Wt denotes the choice to use pooling window wt to run chromatography step t ∈ T .

Action S denotes the choice to stop the chromatography process. Hence, At =Wt ∪S at t ∈ T . At the end

of planning horizon T , the only available action is to stop.

• State transitions for the protein: At each chromatography step t ∈ T , random fraction Θt|wt of

protein pt is carried over to the next chromatography step t+ 1, i.e., pt+1 = (θt|wt)pt. Random fraction Θt

has general distribution ft(·|wt) with finite support [θ`t |wt, θut |wt] for wt ∈Wt, t∈ T .

• State transitions for the impurity: At each chromatography step t ∈ T , random fraction Ψt|wt of

impurity it is carried over to the next chromatography step t+ 1, i.e., it+1 = (ψt|wt)it. Random fraction Ψt

has general distribution gt(·|wt) with finite support [ψ`t |wt,ψut |wt] for wt ∈Wt, t∈ T .

• Production requirements: pd denotes the yield requirement, and γd is the purity requirement. Batch

purity γt at step t∈ T ∪T is defined as γt = pt
pt+it

.

• Operating and penalty costs: The operating cost of chromatography step t is denoted by ct. The

penalty cost of failure is cf . The yield penalty cost at t∈ T is c`(pd− pt) if pd > pt and zero otherwise.

• Stopping costs and rewards: Revenue obtained per unit of protein pt is r(pt). Let rS(pt, it) be the

reward obtained from stopping the process at state (pt, it)∈P ×I and chromatography step t∈ T . Then,

rS(pt, it) =

−cf if γt <γd,
r(pd) if γt ≥ γd and pt ≥ pd,
r(pt)− c`(pd− pt) if γt ≥ γd and pt < pd,

for t∈ T when at(pt, it) = S, and for t= T .
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• Value function: Vt(pt, it) represents the expected total profit when the batch is in state (pt, it)∈P×I

at chromatography step t∈ T . For all (pt, it)∈P ×I, the value function is defined as follows:

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it), −ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}
, for t= {1, . . . , T − 1}, and

VT (pT , iT ) = rS(pT , iT ),

where E
θt,ψt|wt

Vt+1(ptθt,ψtit) =

∫ ψu
t |wt

ψ`
t |wt

∫ θut |wt

θ`t |wt

ft(θt|wt)gt(ψt|wt)Vt+1(θtpt,ψtit)dθdψ. Note that Vt(∆) = 0

for t∈ T ∪T .

Appendix C. Mathematical Modeling of Scheduling Problems

We solved a mixed-integer linear problem to find schedules using project lists and scientist capacities and

capabilities. To simplify notation, we provide only the pseudo-code description of the problem formulation.

Minimize Total tardiness

s.t.

Capable scientist assignment to each task in project = 1{(Task is required for project)}

Weekly labor hours assigned to scientist≤ Scientist capacity

Completion time of task≤ Start time of task’s successor

Start time of task + Duration of task = Start time of task’s successor

(Completion time of project)≥ (Start time of project’s last task) + (Duration of project’s last task)
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