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On Exploring Temporal Graphs of Small
Pathwidth

Hans L. Bodlaender∗ Tom C. van der Zanden†

Abstract

We show that the Temporal Graph Exploration Problem is
NP-complete, even when the underlying graph has pathwidth 2 and
at each time step, the current graph is connected.

1 Introduction

Networks can change during time: roads can be blocked or built, friendships
can wither or new friendships are formed, connections in a computer network
can go down or be made available, etc. Temporal graphs can serve as a model
for such changing networks.

In this note, we study the complexity of a problem on temporal networks:
the Temporal Graph Exploration problem. Recently, Akrida et al. [1]
showed that this problem is NP-complete, even when the underlying graph
is a star. An important special case, studied by Erlebach et al. [5], is when
at each point in time, the current graph is connected. This case is trivial
when the underlying graph is a tree; we show that it is already NP-complete
when the underlying graph has pathwidth 2.

A temporal graph G is given by a series of graphs G1 = (V,E1), G2 =
(V,E2), . . . , GL = (V,EL), each with the same vertex set, but the set of
edges can be different at different time steps. At time step i, only the edges
in Ei exist and can be used. Each i, 1 ≤ i ≤ L is called a time step, Gi is
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the current graph at time i. The underlying graph is formed by taking the
union of the graphs at the different time steps. I.e., if we have L time steps,
and graphs G1 = (V,E1), G2 = (V,E2), . . . , GL = (V,EL), the underlying
graph is (V,E1 ∪E2 ∪ · · · ∪EL), so an edge exists in the underlying graph if
it exists in at least one time step. Many graph properties can be studied in
the setting of temporal graphs; this note looks at the problem of exploring
the graph.

In temporal graphs, we can define a temporal walk: we have an explorer
who at time step 1 is at a specified vertex s; at each time step i she can move
over an edge in Gi or remain at her current location. In the Temporal
Graph Exploration problem, we are given a temporal graph and a start-
ing vertex s, and are asked if there exists a temporal walk starting at s that
visits all vertices within a given time L. A variant is when we require that
the walk ends at the starting vertex s; we denote this by RTB Temporal
Graph Exploration, with RTB the acronym of return to base. (See [1].)

Michail and Spirakis [9] introduced the Temporal Graph Explo-
ration problem. It is easy to see that even if the graphs do not change
over time, the exploration problem is NP-complete, as it contains Hamil-
tonian Path as a special case (set L = n − 1.) Michail and Spirakis [9]
showed that the problem does not have a c-approximation, unless P = NP ,
and obtained approximation algorithms for several special cases.

An important special case is when we require that at each time step,
the current graph Gi is connected. Now, if the time L is sufficiently large
compared to the number of vertices n, it is always possible to explore the
graph. Specifically, Erlebach et al. [5] showed that in this case, the graph
can be explored in O(t2n

√
n log(n)) time steps, where t is the treewidth of

the underlying graph. Similarly, if the underlying graph is a 2 by n grid then
O(n log3 n) time steps always suffice.

Recently, Akrida et al. [1] studied the Temporal Graph Exploration
problem when the underlying graph is a starK1,r. Even when each edge exists
in at most six time steps, the problem is NP-complete. We use the following
of their results as starting point.

Theorem 1 (Akrida et al. [1]). RTB Temporal Graph Exploration
is NP-complete, when the underlying graph is a star, and each edge exists in
at most six graphs Gi, and the start and end vertex is the center of the star.

For more results, including special cases, approximation algorithms and
inapproximability results, see [1, 5, 9], and see [8] for a survey.

It is well known that problems that are intractable (e.g., NP-hard) on
general graphs become easier (e.g., linear time solvable) when restricted to
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graphs of bounded treewidth (see e.g., [3, Chapter 7].) An example is Hamil-
tonian Path, which can be solved in O(2O(t)n) time on graphs of treewidth
t [2, 4]. Unfortunately, these positive results appear not to carry over to tem-
poral graphs: we show that the Temporal Graph Exploration problem
is NP-hard, even when the underlying graph has pathwidth 2 (and thus also
treewidth 2), and at each point in time, the graph is a tree, and thus con-
nected.

Interestingly, there are other problems on temporal graphs that do be-
come tractable when the treewidth is bounded. Specifically, Fluschnik et
al. [6] showed that finding a small temporal separator becomes tractable when
the underlying graph has bounded treewidth; the problem is NP-hard in gen-
eral [7].

The pathwidth of graphs was defined by Robertson and Seymour [11]. A
path decomposition of a graph G = (V,E) is a sequence of subsets (called
bags) of V (X1, . . . , Xr), such that

⋃
1≤i≤rXr = V , for all {v, w} ∈ E, there

is an i with v, w ∈ Xi, and if 1 ≤ i1 < i2 < i3 ≤ r, then Xi2 ⊆ Xi1 ∩ Xi3 .
The width of a path decomposition (X1, . . . , Xr) equals max1≤i≤r |Xi| − 1;
the pathwidth of a graph G is the minimum width of a path decomposition
of G. The pathwidth of a graph is an upper bound for its treewidth. (See
e.g. [3, Chapter 7].)

K1,r is a star graph with r+ 1 vertices, i.e., we have one vertex of degree
r which is adjacent to the remaining r vertices, which have degree 1.

2 Hardness result

We now give our main result.

Theorem 2. The Temporal Graph Exploration Problem is NP-
complete, even if each graph Gi = (V,Ei) is a tree, and the underlying graph
has pathwidth 2.

Proof. We use a reduction from RTB Temporal Graph Exploration
for star graphs. Suppose we have a temporal star K1,n−1, given by a series of
subgraphs of K1,n−1, G1 = (V,E1), . . ., GL = (V,EL), and a start vertex s,
which is the center of the star. We denote the vertices of K1,n by v0, . . . , vn−1,
with s = v0.

We now build a new temporal graph, as follows. Set Q = L · (n+ 3).
The vertex set of the new graph consists of V and Q + 1 new vertices.

These will form a path. The new vertices are denoted p0, . . . , pQ and called
path vertices; the vertices in V are called star vertices.
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We now define a temporal graph G ′, given by a series of graphs G′i, 1 ≤
i ≤ L′. G′i has the following edges:

• For each i, the vertices p0, . . . , pQ form a path: we have edges {pj, pj+1}
for 1 ≤ j < Q.

• If i ≤ L, all edges in Gi are also edges in G′i.

• If i ≤ L, for each star vertex vj ∈ V : if vj is the lowest numbered
vertex in a connected component of Gi, we have an edge {vj, pL·(j+2)}.

• If i > L, we have an edge from each star vertex vi 6= s to s, and an
edge from s to p0.

It is not hard to see that each G′i is a tree. If i ≤ L, then G′i is obtained
by adding the path to Gi and one edge from the path to each connected
component of Gi. If i ≥ L, then G′i is obtained taking a path and K1,n and
adding an edge between a path and star vertex.

2L L L L L 2L

p0 pQ

s

v1 vn−1

Figure 1: Illustration to the proof of Theorem 2. Note that edges between
path vertices are present at each time step; other edges are present in a subset
of the time steps.

The idea behind the proof is that during the first L time steps, we explore
the star vertices as normal, while the path serves to keep the graph connected
but can not be explored. To explore the path vertices, we must make one
single pass from p0 to pQ, as we do not have sufficient time to traverse either
the section from p0 to p2L−1 or that from pQ−2L+1 twice: traversing the
edges between star vertices and path vertices (other than edge {s, p0}) cannot
contribute to a solution.

Lemma 3. There is a temporal walk in G ′ that starts at s and visits all
vertices in G′ in at most L + Q + 1 time steps, if and only if there is a
temporal walk in the temporal star K1,n−1 that starts at s, ends in s and
visits all vertices in K1,n−1 in at most L time steps.
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Proof. First, suppose that there is a temporal walk in K1,n−1 that starts at
s, ends at s and visits all vertices in at most L time steps. Then, we visit
all vertices in G ′, by first making the temporal walk in the star, if necessary
wait in s until the end of time step L and at time L + 1 move from s to p1,
and then visit all path vertices by traversing the path in the remaining Q
time steps.

Suppose we have a temporal walk that starts at s and visits all vertices
in G ′ in at most L+Q+ 1 time steps.

Claim 4. If we are at a path vertex pi at the end of time step α ≤ L, then
L < i < Q− L.

Proof. If we are at a path vertex pi at the end of time step α ≤ L, then
we moved one or more times from a star vertex to a path vertex during the
first α time steps. Consider the last of these moves, say that we moved at
time step β ≤ α from a star vertex vj to a path vertex pj′ ; between time
step β + 1 and α we stay at path vertices. We have that j′ = L · (j + 2),
by construction of the temporal graph. We can make less than L steps
after reaching pj′ until time step α ≤ L, hence j′ − L < i < j′ + L. Now,
L = L · (0 + 2)−L ≤ L · (j+ 2)−L = j′−L < i < j′+L = L · (j+ 2) +L ≤
L · (n− 1 + 2) + L = (n+ 2) · L = Q− L.

Claim 5. At the end of time step L, we must be in vertex s.

Proof. Suppose not. Note that both p0 and pQ are not yet visited, by claim 4.
If we are at a star vertex vi 6= s at the end of time step L, then we can only
visit the path vertices by first moving to s, then to p0, and then visiting the
path vertices in order; this costs one time step too many. Suppose we are
at a path vertex pi at the end of time step L. Suppose we visit p0 before
pQ. Then, we must make at least i steps from pi to p0, and then Q steps
from p0 to pQ: in total i+Q > L+Q steps; contradiction. Suppose we visit
pQ before p0. Then we must make at least Q − i steps from pi to pQ, and
then Q steps from pQ to p0: in total 2Q − i > L + Q steps; this is again a
contradiction.

Claim 6. If we move at time step i ≤ L from a star vertex vi to a path
vertex pj, then the first star vertex visited after time step i is again vi, and
this move to vi will be made before the end of time step L.

Proof. By Claim 5, we must move to a star vertex before the end of time
step L. If pj′ is a neighbor of a star vertex and j 6= j′, then pj′ is at least L
steps on the path away from pj, so we cannot reach pj′ before time L, hence
we must move back to the star from pj, and thus move to vi.
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Now, we can finish the proof of Lemma 3. Take from the walk in G ′ the
first L time steps. Change this by replacing each move to a path vertex by a
step where the explorer does not move. I.e., when the walk in G ′ moves from
star vertex vi to a path vertex, then we stay in vi until the time step where
the walk in G′ moves back to the star — by Claim 6, this is a move to vi. In
this way, we obtain a walk in K1,n−1 that visits all vertices in L time steps.

It remains to show that the underlying graph has pathwidth 2. If we re-
move s from the underlying graph, then we obtain a caterpillar: a graph that
can obtained by taking a path, and adding vertices of degree one, adjacent
to a path vertex. These have pathwidth 1 [10]; now add s to all bags and we
obtain a path decomposition of the underlying graph of G ′ of width 2.

A minor variation of the proof gives also the following result.

Theorem 7. The RTB Temporal Graph Exploration Problem is
NP-complete, even if each graph Gi = (V,Ei) is a tree, and the underlying
graph has pathwidth 2.

Proof. Modify the proof of Theorem 2 as follows: add one time step; the
current graph in the last time step has one edge, from pQ to s.

3 Conclusions

In this note, we showed that the Temporal Graph Exploration Prob-
lem is NP-complete, even when we require that at each time step, the graph
is connected, or more specifically a tree, and the underlying graph (i.e., the
graph where an edge exists whenever it exists for at least one time step)
has pathwidth 2, and hence treewidth 2. This contrasts many other results
for graphs of bounded treewidth, including a polynomial time algorithm for
finding small temporal separators for graphs of small treewidth [6].

If we require that the graph is connected at each time step, the case
that the treewidth is 1 becomes trivial (as this deletes all temporal effects).
Interesting open cases are when the underlying graph is outerplanar, or an
almost tree, i.e, can be obtained by adding one edge to a tree.
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