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Chapter 1 Introduction

The study of large networks, arising from applications in social, physical
and life sciences, has witnessed meteoric growth over the past two decades.
Recent technological innovations allow practitioners to access and study net-
work data of ever-increasing size. A thorough understanding of large net-
works can often provide deep insights into the workings of complex systems.
These networks are usually composed of two key components:

(1) Structure: The units/individuals are represented by nodes/vertices in the
network, whereas their connectivity represents some sort of interaction.
The connectivity structure or topology of these large networks are often
either unknown or highly complex. Therefore, probabilistic models of
graphs or random graphs have been used extensively to model real-world
networks, along with their diverse structural characteristics.

(2) Functionality: Each of these networks come with certain functionality
in the real world, such as information exchange or the spread of ru-
mors/diseases. The functionality of networks is often modeled as a
stochastic process acting upon the network.

From a mathematical perspective, the understanding of processes on random
networks is interesting due to the inherent double randomness: the random
structure produced by the random graph model, and the stochastic process
living on this random structure. The interplay between the random topology
and the stochastic process gives rise to novel behavior in the large network
regime in terms of scaling limits and their analysis demands new tools from
probability theory.

Network properties and universality.

Discovering fundamental principles that can describe large complex networks
has been a celebrated theme of research in network science. Below we discuss
the main conceptual strands related to this research area:

Sparsity and power-law degree distributions. Empirical analysis of a num-
ber of real-world systems such as the internet, citation networks, and protein-
protein interaction networks, seem to suggest that these networks are inher-
ently sparse in the sense that the number of edges scales linearly with the
number of vertices. Moreover, the empirical degree distributions follow ap-
proximately power-law distributions. Write Nk for the number of vertices
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Chapter 1 Introduction

with degree k and pk = Nk/n for the degree distribution with n being the
number of vertices in the network. Then for large k,

pk ≈ Ck−τ, for C > 0, and τ > 2.

The constant τ is called the degree exponent of the corresponding network.
This feature makes it impossible to model real-world networks by classical
homogeneous random graph models such as the Erdős-Rényi random graph
or the random regular graph. Extensive discussions of the veracity as well as
limitations of these findings, and the multitude of network models proposed
to understand real-world data can be found in [6, 55, 77, 98, 137, 140] and the
references therein.

Universality in the large network limit. The second major thread that has
emerged in network science, especially in the probability community, is the
notion of universality: asymptotics in the large network limit, for a wide
range of functionals, often depend mainly on the degree exponent τ. In turn,
this suggests that the qualitative behavior, across a plethora of models, can
be largely insensitive to the details of the network model.

Phase transition.

Many random graph models for real-world networks are observed to exhibit
a phase transition. For a communication network, where the link between any
two servers can fail with a certain probability, one may expect to observe a
transition in the connectivity structure of networks depending on the link
failure probability. One may also consider a computer virus spreading over
the internet, which becomes an epidemic over a short window of time. The
study of phase transitions is often interesting in numerous applications in
statistical physics as well. From the perspective of network science, the ob-
jective is to provide a framework for describing universality laws governing
the phase transition in terms of basic characteristics like the degree distribu-
tion. However, even defining rigorously the meaning of a phase transition is
a non-trivial task for the simplest models. Identifying the point and nature
of phase transitions has been a fundamental question in the development of
the current existing theory of random graphs and complex network models.
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Chapter 1 Introduction

Aim of this chapter.

We discuss how the phase transition occurs in random graphs when perco-
lation acts on them. This is a fundamental model for analyzing the effect of
link failure or spread of epidemics on a given network. A detailed analysis is
provided for the critical behavior in random graphs that generate networks
with arbitrary degree distributions. The idea is to establish key relations be-
tween the network statistics such as the power-law exponent, and the nature
of the critical behavior of this phase transition. In particular, we investigate
different universality classes for the critical behavior of percolation based
on the degree exponent τ. In particular, for τ > 4, the behavior lies in the
same universality class as classical homogeneous random graph models. This
shows that the inhomogeneity in the degree distribution does not influence
the percolation critical behavior as long as the degree distribution has a fi-
nite third-moment. The behavior is more intricate in the other regimes with
τ ∈ (3, 4) and τ ∈ (2, 3). In Section 1.1, we give an introduction to some of the
most studied random graph models that will be pivotal to the discussions in
this thesis. In Section 1.2, we define the percolation phase transition on finite
graphs. In Section 1.3, we provide an overview of the rich history of critical
behavior of percolation on finite graphs, and formulate the key questions as-
sociated to this literature. Different universality classes are also described in
this section. In the following sections, we then provide answers to the key
questions, and present our contributions to this literature. The overall goal
of this introductory chapter is to describe the results at a high level, and dis-
cuss the central ideas behind our methods. The main results, along with all
the associated technical details, will be discussed in full detail in subsequent
chapters.

1.1 Random graph preliminaries

A graph G = (V ,E) consists of a vertex set V , and a set of edges E ⊂ {{i, j} :
i, j ∈ V} specifying the connections between different vertices. For a multi-
graph, E is a multi-set possibly consisting of multiple-edges between vertices,
as well as self-loops. Throughout, we will assume that |V |, |E| <∞. A random
graph model specifies a probability distribution over the space of graphs. We
will consider n vertices labeled by [n] := {1, 2, ...,n}, which will serve as the
vertex set of the random graph. We now discuss some classical random graph
models, and some properties related to their connectivity structure.
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1.1 Random graph preliminaries

1.1.1 Random graph models

Erdős-Rényi random graph. The Erdős-Rényi random graph is the simplest
and most widely studied random graph model, where any two vertices share
an edge with some fixed probability p, independently across edges. We de-
note the graph generated by the above procedure on n vertices by ERRGn(p).
This model was studied in the earliest work on random graphs by [78, 79, 89].
The model in [78, 79] chooses M edges uniformly at random from all possi-
ble

(
n
2
)

edges, and thus is slightly different. However, for M ≈ np, the two
models are asymptotically equivalent [115]. Note that the degree of each ver-
tex is distributed as a Bin(n− 1,p) random variable. Thus for p = c/n, the
asymptotic degree of each vertex is Poisson(c), with fixed average degree c.

The configuration model. Consider a non-increasing sequence of degrees
d = (di)i∈[n] such that `n =

∑
i∈[n] di is even. The configuration model on

n vertices having degree sequence d is constructed as follows [22, 40]:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an
edge once they are paired. Therefore, initially we have `n =

∑
i∈[n] di

half-edges. Pick any one half-edge and pair it with a uniformly chosen
half-edge from the remaining unpaired half-edges and keep repeating
the above procedure until all the unpaired half-edges are exhausted.

Let CMn(d) denote the graph constructed by the above procedure. Note
that CMn(d) may contain self-loops or multiple edges. Given any degree
sequence, let UMn(d) denote the graph chosen uniformly at random from
the collection of all simple graphs with degree sequence d. It can be shown
that the law of CMn(d), conditioned on the graph being simple, is the same
as that of UMn(d) (see [98, Proposition 7.13]). Thus, in order to sample a
graph uniformly from the space of all simple graphs with a given degree
sequence d, we can keep on generating the configuration model until we
obtain a simple graph. It was shown in [18, 110] that, under very general
assumptions, the asymptotic probability of the graph being simple is positive,
so that with high probability we need to repeat the above algorithm only
a finite number of times to generate UMn(d). The graph UMn(d), in the
special case di = d for some fixed d, is in the literature also known as the
random d-regular graph.

Inhomogeneous random graph. An inhomogeneous random graph is gen-
erated by equipping each vertex i with weight a wi, and creating an edge
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Chapter 1 Introduction

between vertices i and j with probability pij = κ(wi,wj) independently, for
some function κ. Thus the special case where κ is a constant, i.e., pij = p

gives rise to ERRGn(p) defined above. A detailed analysis of the properties
of this random graph model has been provided in [44] under a very general
setup. Some choices of pij have been popular for their special properties:

B Norros-Reittu model [138]. pij = 1 − exp(−wiwj/Ln), where we define
Ln :=

∑
i∈[n]wi. This model is also referred to as Poissonian graph

model, or the Norros-Reittu random graph. We denote this model by
NRn(w).

B Chung-Lu model [61, 62]. pij = min{wiwj/Ln, 1}. This model will be
denoted by CLn(w).

B Generalized random graph [54]. pij = wiwj/(Ln +wiwj). We denote this
model by GRGn(w). This model has the property that the distribution
of this random graph, conditionally on the degree sequence d, is the
same as for UMn(d).

The weight wi plays a similar role as degree di for CMn(d). In fact, the
expected degree of vertex i is asymptotically wi in all the random graphs
NRn(w, 1), CLn(w), and GRGn(w) under some regularity conditions. These
models are often asymptotically equivalent. We refer the reader to [98, Chapter
6] for a detailed account of these properties.

In the subsequent sections, we will consider a sequence of degrees se-
quences (dn)n>1 and weight sequences (wn)n>1 while generating sequences
of graphs. For notational convenience, we suppress the dependence of the
degree and the weight sequences on n.

1.1.2 Existence of a giant component

A giant component exists if, in the large network limit, the proportion of ver-
tices in the largest connected component stays bounded away from zero. In
the sparse regime, where the number of edges scales linearly as the number
of vertices, a unique giant component exists with high probability for most
random graph models. Interestingly, global properties such as the existence
of the giant component can be approximated by local properties, owing to the
well-behaved topology of random graphs. To understand this more precisely,
let C (v) denote the component containing vertex v and let Vn denote a vertex
chosen uniformly at random. Then the existence of the giant component can
be characterized by the following two fundamental properties:

6



1.1 Random graph preliminaries

Branching process approximation. For all random graph models described
above, the proportion of vertices involved in a cycle of length at most 2k is
negligible, so that for any fixed k > 1, the k-neighborhood of Vn is a tree
with high probability. Therefore the finite neighborhoods of a randomly cho-
sen vertex can be approximated by the neighborhoods of the root of an infi-
nite random rooted tree. In all the random graph models mentioned above,
the random tree is a branching process with a suitable progeny distribution.
However, there are examples of random graph models where the approx-
imating tree is not a simple branching process [26, 44]. The above notion
of approximation can be formalized in terms of local weak convergence, intro-
duced by Benjamini and Schramm [25] (see also the survey [16]). We refer
the reader to [100] for local weak convergence results for random graphs.
Thus, the so-called local events (events depending on finite neighborhoods of
Vn) can be described by functionals of a branching process that are often
tractable.

Approximating global events by local events. The components having size
[ω(n),n/ω(n)], for any ω(n) → ∞, span an asymptotically negligible pro-
portion of vertices, so that with high probability, either |C (Vn)| must have
finite size, or C (Vn) is the giant component. Therefore, when a long path
exists from Vn, then Vn must be in the giant component, and C (Vn) is the
giant. This is the reason why for random graph models in this section a
unique giant component exists with high probability if and only if the mean
of the progeny distribution of the approximating branching process is larger
than one.

For ERRGn(c/n), it is not difficult to see that the progeny distribution
of the approximating branching process is Poisson(c), and indeed a giant
component exists precisely when c > 1 [79, 89]. For CMn(d), note that while
pairing the k-th half-edge, the probability of pairing to a vertex of degree
r is approximately rnr/`n. Thus the degree of a neighbor of a vertex is
approximately given by the size-biased distribution

P(D∗n = r) =
rnr

`n
. (1.1)

Therefore, the approximating branching process has progeny D∗n − 1, since
one edge is connected to the parent of a vertex. The expectation of D∗n − 1 is

νn :=

∑∞
r=1 r(r− 1)nr

`n
=

∑
i∈[n] di(di − 1)

`n
.
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Chapter 1 Introduction

It was established in [114, 133] (see also the recent results [120]) that the giant
component exists precisely when

lim
n→∞νn = ν > 1, (1.2)

again confirming the local weak-limit heuristics. It can also be shown that
for the inhomogeneous random graph models, the mean of the approximat-
ing branching process turns out to be

∑
i∈[n]w

2
i/
∑
i∈[n]wi, and the giant

component exists [44, 98] when

lim
n→∞

∑
i∈[n]w

2
i∑

i∈[n]wi
> 1.

1.2 Percolation on finite graphs

Percolation process and Harris coupling. Given a graph G, bond (site) per-
colation refers to deleting each edge (vertex) independently with probability
1−p. Throughout, we will be interested in bond percolation; thus we simply
write percolation which refers to bond percolation, and the obtained graph
is denoted by G(p). In case of percolation on random graphs, the deletion of
edges is also independent from the underlying random graph. With the per-
colation process, we refer to the graph-valued stochastic process (G(p))p∈[0,1]

coupled through the so-called Harris coupling. More precisely:

Associate an independent uniform [0, 1] random variable Ue to each
edge e of the graph G. G(p) can be generated by keeping edge e iff
Ue 6 p. Keeping the uniform random variables fixed while varying p,
gives a coupling between the graphs (G(p))p∈[0,1].

Classically, percolation has been extensively studied on infinite connected
graphs such as the hypercubic lattice. This is the simplest known model
that exhibits a phase transition. If p is small, then G(p) consists of con-
nected components of finite size only. On the other hand, if p is close
to 1, then G(p) contains an infinite cluster. Since for p1 < p2, G(p1) is a
subgraph of G(p2) under the Harris coupling, there exists a unique value
pc such that G(p) contains an infinite cluster if and only if p > pc. Thus
pc can also be defined as the unique point of discontinuity of the func-
tion P(∃ an infinite component in G(p)). The quantity pc is called the critical
value for the phase transition of the percolation process. Several questions
like finding the value of pc, establishing the uniqueness of the infinite com-
ponents and behavior of different functionals close to pc for infinite transitive
graphs have been discussed extensively in [47, 92, 96, 125].
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1.2 Percolation on finite graphs

Phase transition on finite graphs. It is not evident how to define the phase
transition for a fixed finite graph Gn with n vertices. For any f : Gn 7→ R,
the expectation E[f(Gn(p))] is a smooth function in p, and therefore none of
the functionals of the graph experience a transition. The phase transition can
only arise when the graphs become large, i.e., it should be related to the large-
network limit. For this reason, the phase transition is defined for a sequence
of graphs (Gn)n>1 rather than a given fixed graph, and the transition is
captured in terms of the limit limn→∞E[f(Gn(p))]. Let C(k)(p) denote the
k-th largest connected component of Gn(p). The critical value pc = pc(n) is
defined such that the following holds given any ε > 0:

lim
n→∞P(|C(1)(p)| > δn) =

0 for p < pc(1 − ε), (subcritical)

1 for p > pc(1 + ε), (supercritical)
(1.3)

where the first limit should hold for all δ > 0, and the second one for some
δ = δ(p) > 0 sufficiently small. In most cases, |C(1)(p)|/n converges in
probability to some positive constant η that depends on the graph sequence
(Gn)n>1 and p, and more importantly |C(1)(p)| � |C(2)(p)|, so that the giant
component is unique. We will stick to the above definition of the phase tran-
sition and critical value throughout this thesis. It is worthwhile mentioning
that there is a substantial literature on how to define the critical value, and
the phase transition. See [48, 96, 99, 118, 134] for different definitions of crit-
ical probability and related discussions. One could also note that pc is not
unique for finite graphs. This is due to the fact that pc is allowed to depend
on n and the phase transition is only an asymptotic notion.

The study of random graphs practically started with the question of iden-
tifying the critical value of pc. Note that percolation on a complete graph
yields an Erdős-Rényi random graph, and in the early works [79, 89], it was
shown that pc = 1/(n− 1). Over the past 60 years of development of the
random graph literature, identifying the critical value and the asymptotics of
the giant component has been one of the guiding questions, not only for the
percolation process, but for any sequence of dynamically growing graph pro-
cesses. The threshold has been identified under fairly general conditions, for
example when the underlying graph is an expander [23], converges in a cut
metric to an irreducible graphon [43], or even general sequences of graphs
[10, 60]. For more details we refer to [10, 17, 23, 42–44, 60, 85, 98, 109, 115, 145]
and the references therein.
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Chapter 1 Introduction

Percolation on random graphs. For a sequence of random graphs, the phase-
transition of the percolation process occurs when (1.3) holds with high prob-
ability with respect to the joint distribution of the random graph and the
percolation process. The percolation process is viewed as a dynamic process
living on a disordered medium, i.e., the random graph. In a sense, this may
appear paradoxical, since percolation itself often serves as a model for gener-
ating a disordered medium on which stochastic processes like random walks
act. However, when viewing random graphs as models for real-world net-
works, percolation serves as a model for robustness of internet or communi-
cation networks when the nodes/edges of the underlying network experience
random damage. Percolation has also been used to model the vaccination on
a network to prevent the growth of an epidemic. A detailed account of these
applications can be found in [21, 137].

Of particular interest to this thesis is the phase transition result for uni-
formly chosen graphs with given degree UMn(d), and the configuration
model CMn(d). For random d-regular graphs [17], pc = 1/(d − 1). The
percolation phase transition on UMn(d) and on CMn(d) was studied in
[85, 109] when the empirical degree distribution has a finite second moment
in the large network limit, as n→∞. It was shown that pc = 1/ν, where the
parameter ν is defined by (1.2). See also [86, 119] for some recent results on
more general degree sequences.

Relation to branching process approximation. The critical probability pc is
intimately related to the branching process approximation. Indeed, when the
number of edges in Gn(p) scales linearly with n, the typical local neighbor-
hoods of Gn(p) can be approximated by a branching process in the sense of
Section 1.1.2 for most sequences of (random) graphs (Gn)n>1. The value pc
is then such that the mean of this approximating branching process is 1. In-
deed, that turns out to be the case for ERRGn(c/n), random regular graphs,
and CMn(d). Heuristically, these results complement Schramm’s conjecture
about infinite transitive graphs stating that the local weak limit determines
the percolation threshold. Without going into further details, we refer the
interested reader to [24, 27, 75] and the references therein for a beautiful line
of work initiated with Schramm’s conjecture.

Formation of a complex structure. Around the critical value, the phase
transition happens not only with respect to the size of C(1), but also with
respect to the complexity of its connectivity structure. To measure complexity,

10



1.2 Percolation on finite graphs

let us define for a connected graph G the number of surplus edges as the
number of edges to be deleted to turn G into a tree. Thus # surplus edges
of G = # edges − # vertices + 1, denoted by SP(G). Note that SP(G) = 0
means that G is a tree, and a large value of SP(G) means that G has many
(possibly overlapping) cycles with a more complex structure. In the subcrit-
ical regime, any component has at most one surplus edge [42, 71, 94, 115],
and there are finitely many surplus edges in the whole graph, so that the
subcritical components are mostly trees. On the other hand, the giant com-
ponent in the supercritical regime satisfies SP(C(1)(p)) → ∞ [114, 115] with
high probability, so that the structure of the giant is highly complex. See
[72] for a detailed result about the giant component of ERRGn(c/n). Thus
the percolation process starts adding cycles and the complex structure of the
giant component begins to form precisely around the critical value pc. This
explains the interest in the percolation critical behavior.

1.2.1 Some definitions and notation.

In the next section, we discuss the critical window of phase transition. We
now define some basic notation used throughout this thesis. We will use
the standard notation P−→, d−→ to denote convergence in probability and in
distribution or law, respectively. We often use the Bachmann Landau notation
O(·), o(·), Θ(·) for large n asymptotics of real numbers. The topology needed
for the distributional convergence will always be specified unless it is clear
from the context. A sequence of events (En)n>1 is said to occur with high
probability with respect to probability measures (Pn)n>1 if Pn

(
En
)
→ 1.

Denote fn = OP(gn) if (|fn|/|gn|)n>1 is tight; fn = oP(gn) if (|fn|/|gn|)n>1

converges in probability to zero; fn = ΘP(gn) if fn = OP(gn) and gn =

OP(fn). Denote by

`
p
↓ :=

{
x = (x1, x2, x3, ...) : x1 > x2 > x3 > ... and

∞∑
i=1

x
p
i <∞},

the subspace of non-negative, non-increasing sequences of real numbers with
square norm metric d(x, y) = (

∑∞
i=1(xi − yi)

p)1/p. Let (`2↓)
k denote the k-

fold product space of `2↓ . With `2↓ ×N∞, we denote the product topology of
`2↓ and N∞, where N∞ denotes the collection of sequences on N, endowed
with the product topology. Define also

U↓ :=
{
((xi,yi))∞i=1 ∈ `

2
↓ ×N∞ :

∞∑
i=1

xiyi <∞ and yi = 0 whenever xi = 0
}

11



Chapter 1 Introduction

with the metric

dU((x1, y1), (x2, y2)) :=

( ∞∑
i=1

(x1i − x2i)
2
)1/2

+

∞∑
i=1

∣∣x1iy1i − x2iy2i
∣∣.

Further, we introduce U0
↓ ⊂ U↓ as

U0
↓ :=
{
((xi,yi))∞i=1 ∈ U↓ : if xk = xm,k 6 m, then yk > ym

}
.

We usually use the boldface notation X for a time-dependent stochastic pro-
cess (X(s))s>0, unless stated otherwise, C[0, t] denotes the set of all con-
tinuous functions from [0, t] to R equipped with the topology induced by
sup-norm || · ||t. Similarly, D[0, t] (resp. D[0,∞)) denotes the set of all càdlàg
functions from [0, t] (resp. [0,∞)) to R equipped with the Skorohod J1 topol-
ogy [37].

1.3 Critical window and emergence of the giant

The critical regime lies on the boundary between the subcritical and super-
critical regimes, where the system exhibits an intermediate behavior. From a
statistical physics perspective, this is the interesting regime to study because
the properties in the critical regime help to answer the question “How did the
phase transition happen?”. Here, one tries to identify principles that govern
the phase transition, which not only depend on the specifics of the system,
but hold universally for a large class of systems. From a mathematical per-
spective, critical behavior often gives rise to novel scaling limit results. In this
section, we first discuss the importance and relevance of studying the critical
behavior for percolation processes. Then we state some key questions about
the critical behavior of percolation in Section 1.3.1. In Section 1.3.2, we de-
scribe three fundamental types of critical behavior, i.e., universality classes,
that will be crucial throughout this thesis. We finish this section with a review
of the related literature and the relevance of our work; see Section 1.3.3.

Critical window. To observe the critical behavior, one must take p = pc(1∓
εn) in (1.3), for some εn → 0 as n → ∞. Interestingly, the critical behavior
is not observed for any εn; there is a range of εn where the graph shows
qualitatively similar features as the sub/supercritical regimes and the critical
behavior is observed only when εn is chosen appropriately. In most situ-
ations, this means that εn = Θ(n−η), where η > 0 is a model-dependent
constant. To be more precise, recall that C(i)(p) denotes the i-th largest com-
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1.3 Critical window and emergence of the giant

ponent of Gn(p). The following are classical results [42, 115] for Gn(p) =

Erdős-Rényi random graph (i.e., Gn is the complete graph), where η = 1/3:

(a) Barely subcritical regime: p = pc(1 − εn) with εnnη → ∞. Then for each
fixed i > 1, as n→∞,

|C(i)(p)|

2ε−2
n log(nε3

n)

P−→ 1, and P(∃i : SP(C(i)(p)) > 1)→ 0.

Thus, Gn(p) shows the two characteristic features of the subcritical regime:
|C(1)(p)| is not distinctively larger than |C(2)(p)|, and Gn(p) is essentially
a collection of trees. Thus, even if p ≈ pc, Gn(p) is subcritical in this
regime. This regime is often referred to as the barely subcritical regime
in the literature.

(b) Barely supercritical regime: p = pc(1 + εn) with εnn
η → ∞. Then, as

n→∞,

|C(1)(p)|

2nεn
P−→ 1,

SP(C(1)(p))

nε3
n

P−→ 2
3

,
|C(2)(p)|

|C(1)(p)|

P−→ 0,

and P(∃i > 2 : SP(C(i)(p)) > 1)→ 0.

See [112, Section 23], [42, 115]. Thus, Gn(p) exhibits two characteristic
features in the supercritical regime: |C(1)(p)| is considerable larger than
all other components, and C(1)(p) is complex in the sense that there is a
growing number of surplus edges, while all other components are trees.

Although the above formulations are stated for the Erdős-Rényi random
graph, the recent literature has provided many interesting results about the
barely subcritical regimes [31, 33, 108] and supercritical regimes [101, 114]
for graphs with general degree sequence (see also [94, 123, 144] for results
in both regimes). Now, the phase transition takes place between the barely
subcritical and supercritical regimes when εn ∼ n−η. This regime is known
as the critical window for the phase transition. More precisely, the critical
window is defined to be the values of p given by

pc(λ) = pc(1 + λn−η), −∞ < λ <∞. (1.4)

In this regime, the largest components exhibit features that are completely
different than the subcritical, or the supercritical regime: There exists a model-
dependent exponent ρ > 0 such that

n−ρ(|C(i)(p)|)i>1 converges to a non-degenerate random vector. (1.5)
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ε > 0 εn � n−η εn ∼ n−η εn � n−η ε > 0
Subcritical Critical window Supercritical

Mostly trees Components merge Birth of giant

Further, for any i > 1, lim infn→∞P(SP(C(i)(p)) > 1) > 0, but SP(C(i)) is
tight, so that the surplus-edge count for large components starts to grow in
the critical window. The above two properties hold for all values of λ in (1.4);
in this sense there is not a single critical value, but a whole “window” of
critical values over which the phase transition happens. This is due to finite-
size effects and the joint scaling of εn and n, a feature that is typically absent
in the case of the phase transition on infinite graphs. The exponent η in (1.4)
is chosen as largest value such that the limit of (1.5) depends on λ, so that η
is uniquely defined.

Paul Erdős described the percolation process as the race between the com-
ponents to become the giant [2]. The mental picture is that the collection of
trees in the barely subcritical regime are the participants of this race and the
component that outnumbers the other components in terms of the number
of vertices wins the race. As the percolation parameter transitions through
the critical window with λ increasing with the Harris coupling in place, com-
ponents grow in size and complexity, and the race is on. C(1)(pc(λ1)) and
C(1)(pc(λ2)) can be completely disjoint sets of vertices for λ1 6= λ2. How-
ever, at the end of the critical window, when λ becomes sufficiently large,
the leader C(1)(pc(λ)) stops changing and this leader becomes the young gi-
ant component at the end of the critical window. At the barely supercritical
phase, the race ends and the largest component stays the largest through-
out the future of the percolation process. See [2] for a formalization of this
picture under a general setup.

It is worthwhile to highlight the fact in (1.5) that the component sizes,
after proper rescaling, converge to non-degenerate random variables. This
is a special feature of the critical window that is never observed in the
sub/supercritical regime. In fact, to the best of our knowledge, all dynamic
graph processes that show phase transition with respect to its component
sizes, exhibits this feature. Thus, this property could be considered as a po-
tential definition of the critical window.
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1.3 Critical window and emergence of the giant

1.3.1 Key questions

We now describe the key questions about the percolation process in the criti-
cal window that we address in this thesis.

(1) Component sizes and surplus edges. The phase transition typically
happens with respect to functionals such as the size of the largest compo-
nents and their surplus edges. Therefore, the most natural approach in this
context is to find limit theorems for these functionals. For each fixed λ, con-
sider pc(λ) defined in (1.4), and define

Zn(λ) := (n−ρ|C(i)(pc(λ))|, SP(C(i)(pc(λ))))i>1

for some model-dependent constant ρ > 0. As discussed in (1.5), Zn(λ) is
expected to converge in distribution to some non-degenerate random vector.
Since one deals with convergence of infinite-dimensional random vectors, the
topology for the underlying distributional convergence turns out to be im-
portant, because one gets convergence of more functionals under a stronger
topology. The results of this thesis will be discussed under the U0

↓ topology,
defined in Section 1.2.1.

(2) Evolution when passing through the critical window. As mentioned
before, there is not a single critical value here, but a whole window of criti-
cal values. It is thus interesting to explore the relation between the relevant
component functionals for different values of λ. Now, under the Harris cou-
pling, Zn(λ) can be viewed as a stochastic process in −∞ < λ < ∞. As λ
increases, more and more edges get added in Gn(pc(λ)), and Zn(λ) evolves.
In the context of the “race to become a giant”, (Zn(λ))λ∈R is the movie of
this race. Therefore it is desirable to study the limit of the stochastic process
(Zn(λ))λ∈R. This is a U0

↓-valued process, and we will consider the topology
(U0
↓)

N for convergence of this process.

(3) Global metric structure. A recent direction in this literature aims to
find the global structure, and characterize the distance-related functionals
of the components. The motivation comes from understanding the minimal
spanning tree on a random network, which is important in many contexts like
the spread of epidemics. Of course, the term global structure is a bit vague;
however, this can be formalized. Each component C ⊂ Gn((pc(λ)) can be
viewed as a metric space, equipped with a measure on the associated Borel
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sigma algebra. The metric on C is the graph-distance where (i) each edge
has length one, (ii) the measure being proportional to the counting measure,
i.e., for any A ⊂ C , the measure of A is given by µct(A) = |A|/|C |. Then,
C(i)(pc(λ)) can be viewed as a random element from M , the space of metric
spaces with an associated probability measure. For M = (M, d,µ) ∈M and
a > 0, define aM to be the measured metric space (M,ad,µ). Then the goal
is to

find the distributional limit of
(
n−δC(i)(pc(λ))

)
i>1.

Since the limit is obtained after rescaling of graph-distances by nδ, and the
limit is usually a compact metric space, the distances in C(i)(pc(λ) scale as
nδ. The above quantity is an M -valued sequence. Of course, the topology
on M is important, and we will explore two different topologies, namely, the
Gromov weak-topology and the Gromov-Hausdorff-Prokhov topology.

Another key question, which should have been stated as question (0) but
will not be a topic of our discussion, is finding the value of η. For graphs,
and in particular those with an underlying geometric structure, finding η is
a highly non-trivial task. An interested reader is referred to [82, 104] and the
references therein. In the context of the models in this thesis, values of η are
described below while discussing the different universality classes.

1.3.2 Major universality classes

In a seminal work, Aldous [8] studied the first two questions above in the con-
text of Erdős-Rényi random graphs. It turns out that η = 1/3, and ρ = 2/3.
Along with identifying the limiting object for the component sizes, Aldous
observed that the evolution of the rescaled component sizes can be described
by a process called the multiplicative coalescent; see Chapter 2 for a pre-
cise definition. The first result about the convergence of the global structure
was provided recently in [3] for the critical Erdős-Rényi random graphs with
δ = 1/3. Subsequently, there has been a surge in the literature to understand
the most general cases under which one can establish qualitatively similar
behavior as the Erdős-Rényi random graph, and identify the cases when the
behavior is different. Following the above discussion, two universality classes
have emerged in the literature. It turns out that, when the asymptotic degree
distribution follows a power-law with exponent τ, there is a transition in the
critical behavior with respect to the exponent τ.
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Erdős-Rényi universality class. For τ > 4, the asymptotic empirical degree
distribution has a finite third moment. In this case, the critical window turns
out to be p = pc(1 + λn−1/3), the maximal component sizes |C(i)(pc(λ))|, for
any fixed i, are of the order n2/3 in the critical regime, whilst typical distances
in these maximal connected components scale like n1/3. Thus ρ = 2/3 and
η = δ = 1/3. Moreover, the scaling limits are the same as for the Erdős-Rényi
random graphs up to constant factors of adjustment in the parameters.

Heavy-tailed behavior. For τ ∈ (3, 4), the asymptotic degree distribution
has an infinite third moment, but a finite second moment. Here the crit-
ical window turns out to be p = pc(1 + λn−(τ−3)/(τ−1)), |C(i)(pc(λ))| is
of the order n(τ−2)/(τ−1), whilst distances scale like n(τ−3)/(τ−1). Thus
ρ = (τ − 2)/(τ − 1) and η = δ = (τ − 3)/(τ − 1). The scaling limits turn
out to be completely different in this regime. For example, it turns out that
the high-degree vertices play a crucial role in the connectivity structure of
C(i)(pc(λ)) in the sense that a deliberate deletion of the k-th highest degree
vertex changes the scaling limit completely. This is in sharp contrast with the
behavior for the τ > 4 regime.

Universality in the evolution of the components. To intuitively understand
the evolution of the component sizes and surplus edges, let us consider the
Erdős-Rényi case. After increasing p slightly, a new edge might appear in the
graph, and due to the homogeneity in the connectivity structure of Erdős-
Rényi random graphs, this edge selects two end-points uniformly at ran-
dom. For this reason, two components C(i)(pc(λ)) and C(j)(pc(λ)) merge at
rate |C(i)(pc(λ))|× |C(j)(pc(λ))| and create a component of size |C(i)(pc(λ))|+

|C(j)(pc(λ))|. Moreover, a surplus edge is created in C(i)(pc(λ)) at rate
|C(i)(pc(λ))| × (|C(i)(pc(λ))| − 1)/2. This merging dynamics of a collection
of particles according to the product of their weights is known as the multi-
plicative coalescent [8, 9]. The creation of surplus edges can also be augmented
in the evolution of the component sizes [30]. In both the τ > 4 and τ ∈ (3, 4)
regimes, the above merging dynamics describes the evolution of the compo-
nent sizes and surplus edges over the critical window for a wide array of
models, in-spite of the dependence in the connectivity structure. Thus, even
if the scaling limits for τ > 4 and τ ∈ (3, 4) are completely different for each
fixed λ, the merging dynamics as λ varies is guided by the same dynamics.
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1.3.3 Literature review and the relevance of our work

Each of the key questions (1)–(3) in Section 1.3.1 have posed novel theoretical
challenges in probability theory and combinatorics over the past decades.
The study of critical random graphs began in the 1990’s with the early works
[41, 112, 129, 130] on critical Erdős-Rényi random graphs, where it was shown
that the critical window is p = n−1(1+ λn−1/3), and the component sizes are
of the order n2/3, whereas the surplus edges are O(1). In a seminal work [8],
Aldous derived the exact scaling limits of the rescaled component sizes and
surplus edges, and showed that the evolution of the component sizes over
the critical window can be described by the multiplicative coalescent process.
This initiated the program for a large body of subsequent work [15, 30, 32, 57,
66, 83, 97, 103, 106, 121, 135, 136, 144], showing that the behavior of a wide
array of random graphs at criticality is universal in the sense that it does
not depend on the precise description of the model. Of particular relevance
to this thesis are the works on CMn(d) [121, 135, 144]. The question (1), for
the d-regular case, was extensively analyzed in [135], and the scaling limit for
Zn(λ) was derived for the critical CMn(d) with bounded maximum degree in
[144] under the product topology. The results in [121] considered the special
case that the degrees are an iid sample from a distribution having finite third-
moment. Scaling limit results were derived for the component sizes; however
there is no notion of “critical window” in this set up. In Section 1.4.2, we
discuss the joint convergence of the component sizes and the surplus edges
when the degree distribution satisfies a finite third-moment condition.

The second major universality class emerged with the study of dynami-
cally evolving random networks given by the Norros-Reittu random graph
model, with a heavy-tailed empirical distribution of average degrees. In
[33, 97], the critical window was identified, along with scaling limit results
for component sizes. In Section 1.4.3, we will show that the scaling limit of
Zn(λ) for CMn(d) under the heavy-tailed setup lies in the universality class
of [33]. In fact, the results are stronger than [33] in terms of the topology of
convergence. Joseph [121] studied the iid degree case, where the scaling limit
turns out to be somewhat different than [33].

In the context of the evolution of the component sizes, Aldous [8] first
studied the evolution of the component sizes. The evolution of the compo-
nent sizes was also studied in the context of random graphs with immigrat-
ing vertices [15], and the Norros-Reittu random graph [33]. See also [57] for
a construction of the multiplicative coalescent. A complete description of
this process, along with its entrance boundary conditions, was provided in
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[11]. This was generalized to augmented multiplicative coalescent processes
in [30] to capture the evolution of the surplus edges as well. In Section 1.5,
we describe the evolution of Zn(λ) in both universality classes.

The study of the global metric structure is a recently emerging direction in
this field, which started with the pioneering work [3] on critical Erdős-Rényi
random graphs. The scaling limit identified in [3] was shown to be universal
for the τ > 4 regime in a recent line of work [29, 34, 35]. In the context of crit-
ical random graphs with degree-exponent τ ∈ (3, 4), candidate limit laws of
maximal components with each edge rescaled to have length 1/n(τ−3)/(τ−1)

were established in [36]. In Section 1.6, we describe a “universality principle”
for the τ ∈ (3, 4) regime, which yields the scaling limits for CMn(d,pc(λ)).

1.3.4 A new universality class.

All the above literature assumes a finite second-moment condition on the de-
gree distribution, and thus does not include the τ ∈ (2, 3) case, where the
asymptotic degree distribution has an infinite second moment but a finite
first moment. These networks are known in the literature as scale-free networks
[21]. One of the popular features of scale-free networks is that these networks
are robust under random edge-deletion, i.e., for any sequence (pn)n>1 with
lim infn→∞ pn > 0, the graph obtained by applying percolation with proba-
bility pn is always supercritical. This feature has been studied experimentally
in [7], using heuristic arguments in [58, 63, 64, 74] (see also [51, 52, 95] in the
context of optimal paths in the strong disorder regime), and mathematically
in [45]. Thus, in order to observe the percolation critical behavior, one needs
to take pc → 0 with the network size, even if the average degree of the net-
work is finite. It was predicted from the physics literature that the critical
value should be pc ∼ n−(3−τ)/(τ−1): Detailed properties of the component
sizes and structures remained as open question.

In Section 1.7, we discuss the first mathematically rigorous results in the
τ ∈ (2, 3) regime for component sizes and their complexity. The most strik-
ing thing about the results in the τ ∈ (2, 3) regime is that the critical value
changes depending on whether the underlying random graph has the so-
called single-edge constraint, i.e., the critical value when the underlying graph
is a random multigraph generated by the configuration model is different
than that under models like the erased configuration model ECMn(d) and
the generalized random graph GRGn(w), where the underlying graph is
simple. This feature was never observed in the finite second-moment sce-
nario. For CMn(d) the critical value indeed turns out to be pc ∼ n−(3−τ)/(τ−1),
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whereas for ECMn(d) or GRGn(w), we find that pc ∼ n−(3−τ)/2. The largest
component sizes in both regimes are of the order nαpc, and the scaling limits
are in a completely different universality class than in the τ ∈ (3, 4) and τ > 4
cases.

1.3.5 Discussion

Relation to branching process approximations. The distinction between
the universality classes τ > 4 and τ ∈ (3, 4) can also be seen in terms of
the branching process approximation. Recall that for CMn(d) or UMn(d),
the local neighborhoods can be approximated by a branching process. The
progeny distribution is D∗n − 1, where D∗n is given by (1.1). This distribu-
tion has asymptotically finite variance if and only if the third moment of
the asymptotic degree distribution is finite (i.e., τ > 4). It is known that
for critical branching processes the growth rate of the neighborhoods cru-
cially depends on the variance [1, 126]. In fact the height scales as |T |1/2 and
|T |(τ−3)/(τ−2) in the τ > 4 and τ ∈ (3, 4) regimes, respectively, where |T |

is the total progeny of the branching process. Now, heuristically speaking,
if C(1)(pc(λ)) was a tree, then from the theory of branching processes, one
would expect the following relations to be true:

η =
ρ

2
, for τ > 4, and η =

τ− 3
τ− 2

ρ, for τ ∈ (3, 4). (1.6)

Following [92], we refer to the identities in (1.6) as scaling relations. This
aligns with the exponents suggested above for the two regimes. Intuitively,
the above relations should hold since C(1)(pc(λ)) is a tree, i.e.,
SP(C(1)(pc(λ))) = 0, with probability bounded away from zero. A disclaimer
to the reader is that the bounds in [1, 126] are proved for a fixed branching
process rather than a sequence of those. For a more rigorous explanation
(1.6), an interested reader is referred to [97]. For τ ∈ (2, 3), the branching
process approximation does not work for CMn(d) due to the presence of
multiple edges.

About the U0
↓-topology. The distributional convergence of Zn(λ) under the

U0
↓-topology implies convergence of many interesting functionals. Let C (v)

denote the connected component containing vertex v in Gn(p), and let Vn de-
note a vertex chosen uniformly at random from [n], independently of Gn(p).
One example is a quenched version of the susceptibility function defined as
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1.3 Critical window and emergence of the giant

E[|C (Vn)||Gn(p)]. Note that

E
[
|C (Vn)|

∣∣ Gn(pc(λ))] = 1
n

∑
v∈[n]

|C (v)| =
1
n

∑
i>1

|C(i)(pc(λ))|
2, (1.7)

and therefore the convergence in U0
↓-topology implies the convergence of

n−1/3E[|C (Vn)||Gn(pc(λ))]. We also get the convergence of the quantity
n−2/3∑

i>1 |C(i)(pc(λ))|SP(C(i)(pc(λ))), which in particular implies that the
components of small size cannot contain too many surplus edges.The rele-
vance of this topology is also discussed in [30] (see also [1]), because this
turns up naturally in defining the augmented multiplicative coalescent, and
establishing a version of the Feller property.

Scaling relation. The following scaling relation is true in both the regimes
τ > 4 and τ ∈ (3, 4):

1 + η = 2ρ. (1.8)

This can be understood intuitively. Since the component sizes converge in
the `2↓-topology, one can expect that the expected value of

∑
i>1 |C(i)(pc(λ))|

2

is of the order n2ρ. One may also use (1.7) to calculate this expectation.
In fact, (1.7) implies the scaling relation (1.8) if E[|C (Vn)|] = O(nη). Now
|C (Vn)| 6

∑
l>1 Pl, where Pl is the expected number of paths of length

l starting from vertex v. Using the branching process approximation for
CMn(d), E[Pl] 6 C(pcνn)l, for some constant C > 0. Summing this estimate
over l, one gets

E[C (Vn)] 6 C
∑
l>1

(pcνn)
l 6 C

∑
l>1

(
1 +

λ

nη

)l
6 Cnη,

for λ < 0, which yields a heuristic derivation of (1.8). The above path count-
ing technique has been formalized in [31, 111, 116].

Effect of slowly-varying corrections. Suppose that the asymptotic degree
distribution satisfies P(D > x) ∼ L(x)x−(τ−1) with L(·) some slowly-varying
function. For τ > 4, the scaling limits, as well as the exponents, are insensitive
to L(·). On the contrary, the component size, or even the critical window,
depends crucially on the slowly-varying function for τ ∈ (3, 4). The critical
window becomes p = pc(1+ λL∗(n)2n−η), and the component sizes turn out
to be of the same order as nρ/L∗(n), for some slowly varying L∗. However,
the scaling limits lie in the same universality class; see Chapter 3.
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Chapter 1 Introduction

1.4 Component sizes and surplus edges

In this section, we provide an outline of the proofs for establishing scaling
limits of Zn(λ) for the random graph CMn(d,pc(λ)). We provide the key
ideas, and the strategy of the proof, leaving many details for the later chap-
ters. In Section 1.4.1, we start by describing a construction of CMn(d,p) due
to Janson [109], which is a key tool throughout this thesis. This construction
allows us to treat CMn(d,pc(λ)) as a configuration model with a suitable
degree distribution, which can be easier to work with due to the sequential
construction provided in Section 1.1. In Section 1.4.2, we consider the scaling
limit for Zn(λ) for the finite third-moment case, and outline a detailed proof
strategy. The infinite third-moment case is considered in Section 1.4.3.

1.4.1 Janson’s construction

Suppose that d ′ is the random degree sequence obtained after percolation.
Fountoulakis [85] showed that, conditionally on d ′, the law of CMn(d,p)
is same as the law of CMn(d

′). Often asymptotics of different functionals
of d ′ can be calculated, which gives a powerful tool to deal with percola-
tion on random graphs with general degree sequence. The following explicit
construction of CMn(d,p) is due to Janson [109], provided in the context of
identifying the percolation phase transition on CMn(d). This construction
will be crucial in what follows.

Algorithm 1.1. (S1) For each half-edge e, let ve be the vertex to which e

is attached. With probability 1 −
√
p, one detaches e from ve and asso-

ciates e to a new vertex v ′ that we color red. This is done independently
for every half-edge. Let n+ be the number of red vertices created and
ñ = n+ n+. Suppose that d̃ = (d̃i)i∈[ñ] is the new degree sequence
obtained by the above procedure, i.e., d̃i ∼ Bin(di,

√
p) for i ∈ [n] and

d̃i = 1 for i ∈ [ñ] \ [n].

(S2) Construct CMñ(d̃), independently of (S1).

(S3) Delete all the red vertices. Alternatively, one can choose any n+ degree-
one vertices uniformly at random without replacement, independently
of (S1) and (S2), and delete them.

An edge is kept by Algorithm 1.1 if both its endpoints are not red, which
happens with probability p. Also, conditionally on the choice of non-red half-
edges, the pairing between these half-edges is a uniform perfect matching.
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1.4 Component sizes and surplus edges

Algorithm 1.1 indeed produces CMn(d,p) using Fountoulakis’ result [85]
mentioned above. Due to the uniform matching, it does not matter whether
we delete the red vertices, or n+ degree-one vertices chosen uniformly at
random. We end up with a sample from the same random graph distribution.

In what follows, directly setting up a technically tractable framework with
exploration processes on CMn(d,pc(λ)) turns out to be difficult even for
simple d-regular graphs [135]. On the other hand, due to the sequential
construction, the configuration model is often easier to handle. The above
construction allows us to study CMn(d,pc(λ)) via a suitable configuration
model.

1.4.2 Finite third-moment case

This section is based on [70], where the asymptotics of Zn(λ), under the
finite third-moment assumption, has been treated. To ensure that CMn(d)

has a giant component (otherwise there will be no phase transition for the
percolation process), we must assume that (1.2) holds. In this case, η = 1/3,
and pc = 1/νn, so that

pc(λ) =
1
νn

(1 + λn−1/3), −∞ < λ <∞.

Firstly, let us state the assumptions on the degree distribution, which includes
the empirical degree distribution to obey a power law with exponent τ > 4
as a special case.

Assumption 1.1. For each n > 1, let d = dn = (di)i∈[n] be a degree sequence
such that `n =

∑
i∈[n] di is even. We assume the following about (dn)n>1 as

n → ∞: Let Dn denote the degree of a vertex chosen uniformly at random
independently of the graph. Then,

(i) (Weak convergence of Dn) Dn
d−→ D, for some random variable D such

that E[D3] <∞.

(ii) (Uniform integrability of D3
n) E[D3

n] =
1
n

∑
i∈[n] d

3
i → E[D3].

We will use Algorithm 1.1 to reduce the analysis of CMn(d,pc(λ)) to CMñ(d̃).
In fact, the following holds for d̃ for p = pc(λ): Let Pnp denote the probability
measure induced on N∞ by Algorithm 1.1 (S1). Denote the product measure
of (Pnp)n>1 by Pp.
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Chapter 1 Introduction

Lemma 1.4.1. The statements below are true Pp almost surely: Assumption 1.1 is
satisfied by d̃ and∑

i∈[ñ] d̃i(d̃i − 1)∑
i∈[ñ] d̃i

= 1 + λn−1/3 + o(n−1/3).

The proof involves computing functionals of binomial distributions and their
concentration, see Section 2.6 for a proof. Further, while performing (S3), the
number of surplus edges within each component does not change, while the
component size changes by the amount of deleted degree-one vertices. The
latter can be estimated from the number of vertices of degree-one in each
of the connected components. Thus without loss of generality, our study
reduces to finding the scaling limit of Zn(λ) on CMn(d) satisfying

νn :=

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λn−1/3 + o(n−1/3), for some λ ∈ R. (1.9)

Another technical assumption that we make is that P(D = 1) > 0, which is
required for the phase transition result in [114, 133], as well as in some tech-
nical parts of our proof. Formally, we aim to prove the following theorem:

Theorem 1.4.2. Consider CMn(d) satisfying Assumption 1.1, and (1.9) for some
λ ∈ R. As n→∞,

Zn(λ)
d−→ Z(λ)

with respect to the U0
↓ topology. Here Z(λ) is some non-degenerate random vector

which will be defined in the proof ideas and more formally in Theorem 2.2.2.

In the subsequent sections, we describe the proof idea for Theorem 1.4.2.

The exploration process

The central idea to prove scaling limits of critical component sizes was intro-
duced by Aldous [8] in the context of the Erdős-Rényi random graph. The
idea is to explore the graph sequentially and encode the relevant information
in terms of a walk called the exploration process. Then the idea is to establish
scaling limits of the exploration process and then try to read off, if possible,
the relevant property from the limit of the exploration process. Let us explore
CMn(d) sequentially using depth-first exploration. At each step k, we find a
new vertex with degree d(k). This vertex may create c(k) edges to the vertices
which are already explored. Thus d(k) − c(k) half-edges can give new ver-
tices during the exploration. Once all the half-edges of a vertex are explored,
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1.4 Component sizes and surplus edges

Time

Sn(t)

|C1|

|C2|

−2

−4

Figure 1.1: Component sizes as excursions of the exploration process

the vertex is declared dead, meaning that the complete neighborhood of that
vertex has been identified. The precise description of the exploration algo-
rithm is given in Section 2.4. Based on this exploration algorithm, define the
exploration process by

Sn(0) = 0, Sn(i) =

i∑
j=1

(d(j) − 2 − 2c(j)). (1.10)

The minus two is due to the fact that an edge (i.e. two half-edges) is explored
at each step. The process Sn = (Sn(i))i∈[n] “encodes the component sizes as
lengths of path segments above past minima” as discussed in [8]. Suppose Ci
is the i-th connected component explored by the above exploration process.
Define

τk = inf
{
i : Sn(i) = −2k

}
.

Then Ck is discovered between the times τk−1 + 1 and τk and |Ck| = τk −

τk−1. Therefore, the excursion lengths of the exploration process correspond
to the sizes of the explored components, see Figure 1.1. This property allows
one to recover the scaling limits of the component sizes from the scaling limit
of the exploration process.

Size-biased exploration

During the above mentioned exploration process, the vertices are explored
in a size-biased manner with sizes proportional to their degrees, i.e., if we
denote by v(i) the i-th explored vertex, then

P
(
v(i) = j|v(1), v(2), ..., v(i−1)

)
=

dj∑
k/∈Vi−1

dk
, ∀j ∈ Vi−1,
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Chapter 1 Introduction

where Vi denotes the first i vertices to be discovered in the above exploration
process. The following lemma is a consequence of the size-biased order-
ing, which keeps track of sum of the degrees and square of degrees of the
explored vertices. This will allow us to track the drift and the quadratic
variation of the exploration process (1.10):

Lemma 1.4.3. Suppose that Assumption 1.1 holds and denote σr = E[Dr]. Then
for all t > 0, as n→∞,

sup
u6t

∣∣∣n−2/3
bn2/3uc∑
i=1

d(i) −
σ2u

σ1

∣∣∣ P−→ 0, sup
u6t

∣∣∣n−2/3
bn2/3uc∑
i=1

d2
(i) −

σ3u

σ1

∣∣∣ P−→ 0.

(1.11)

Analysis of the exploration process

The next step is to obtain the scaling limit of the exploration process. Firstly,
let us consider the simplified process

sn(0) = 0, sn(i) =

i∑
j=1

(d(j) − 2),

which ignores the effect of cycles in the exploration process. Due to the
close relation to the size-biased exploration, we can more easily describe the
scaling limit of sn(t):

Proposition 1.4.4. Let s̄n = (sn(t))t>0 be given by s̄n(t) = n−1/3sn(btn2/3c).
Under Assumption 1.1, as n→∞,

s̄n
L−→ B (1.12)

with respect to the Skorohod J1 topology, where B(t) = c0W(t) + λt− c1t
2 with W

a standard Brownian motion.

The contribution
∑i
j=1 c(j) counts the number of surplus edges created

upto time i, and one can expect it to be negligible from earlier heuristics
about small number of surplus edges. Thus Proposition 1.4.4 also provides
the scaling limit of Sn, after corresponding rescaling. The time scaling n2/3

is due to our prior prediction that the component sizes are of this order. The
space scaling n1/3 is the usual square root fluctuation with respect to the
time component that arises for Brownian scaling limits.

Let us now give some details as to how Proposition 1.4.4 can be proved.
Let Fj denote the natural sigma algebra which contains all the information
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1.4 Component sizes and surplus edges

about the explored graph up to time j. The Doob-Meyer decomposition yields
that

sn(i) =Mn(i) +An(i),

where

An(i) =

i∑
j=1

E
[
d(j) − 2|Fj−1

]
, Bn(i) =

i∑
j=1

Var
(
d(j)|Fj−1

)
, (1.13)

(Bn(i))i>1 being the quadratic variation process of (Mn(i))i>1. We consider
the convergence of the drift part An and the martingale part Mn separately.

Convergence of the drift part. The negative quadratic drift in the limit of
s̄n is a consequence of the size-biased reordering stated in Lemma 1.4.3. Note
that

E
[
d(i) − 2|Fi−1

]
=

∑
j/∈Vi−1

dj(dj − 2)∑
j/∈Vi−1

dj

=

∑
j∈[n] dj(dj − 2)∑

j∈[n] dj
−

∑
j∈Vi−1

dj(dj − 2)∑
j∈[n] dj

+

∑
j/∈Vi−1

dj(dj − 2)
∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

=
λ

n1/3 −

∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

+ o(n−1/3).

Therefore,

An(k) =

k∑
i=1

E
[
d(i) − 2|Fi−1

]
=

kλ

n1/3 −

k∑
i=1

∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

k∑
i=1

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

+ o(kn−1/3).

Now,
∑
j∈Vi−1

dj = o(`n) uniformly over i 6 tn2/3, since maxi∈[n] di =

o(n1/3), by the uniform integrability of the third moment in Assumption 1.1.
Therefore

∑
j/∈Vi−1

dj ≈ `n, and a similar argument yields that
∑
j/∈Vi−1

d2
j ≈∑

j∈[n] d
2
j . Combining this with (1.11), it follows that

n−1/3An(bun2/3c) ≈ λu− c1u
2, (1.14)

where c1 = (σ3σ1 − σ
2
2)/σ

3
1. Notice that c1 = Var (D∗) /E[D] > 0, where D∗

is the size-biased version of the random variable D appearing in Assump-
tion 1.1. Thus, the drift term is negative and parabolic. In the above calcula-
tions, we see that the negative drift term arises from the depletion of degrees
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Chapter 1 Introduction

in the size-biased exploration. As more vertices are explored, E[d(i)|Fi−1]

decreases by an amount proportional to
∑
j∈Vi−1

d2
j . Due to the finite third

moment condition, Lemma 1.4.3 ensures that
∑
j∈Vi−1

d2
j increases linearly

with time. Thus the negative part in the drift term, which is just the sum
of
∑
j∈Vi−1

d2
j , is quadratic. In this sense, the negative quadratic drift is re-

lated to the effect of depletion of degrees in sampling from the size-biased
distribution without replacement.

Convergence of the martingale part. The proof relies on the celebrated
Martingale Functional Central Limit theorem (FCLT). The Martingale FCLT
ensures convergence of martingales to Brownian motion provided that the
limiting process has continuous sample paths, and the quadratic variation
converges to a constant multiple of t. The latter condition arises due to Lévy’s
characterization of Brownian motion as the unique process with quadratic
variation t. In this case, it is enough to show that

n−2/3Bn(bun2/3c) P−→ c
1/2
0 u.

Again this can be deduced using Lemma 1.4.3. The increments of Bn(bun2/3c)
in (1.13) are given by the asymptotic finite variance of the size-biased distri-
bution, which is equivalent to the finite third moment of the degree distri-
bution. Thus, the finite third moment is essential from the point of view
of the functional invariance principle. The technical conditions for ensuring
that the limiting process has continuous sample paths are explicitly stated in
Section 2.4.

Large components are explored early

To learn about the largest component sizes from Proposition 1.4.4, one first
needs to check that the ordered vector of excursion lengths is a continuous
function on a set G ⊂ D(R+, R), and the limiting process in (1.12) lies in G al-
most surely. This part of the argument follows using properties of Brownian
motion with a negative parabolic drift, see [8, 11, 136]. In order to ensure that
the largest excursions of B in (1.12) correspond to the largest components in
the critical random graph, it must be ensured that the largest components
are explored in O(n2/3) time. This is because, due to the time scaling by
n2/3, we loose information about the components explored in Ω(n2/3) time.
The following lemma ensures that no large component is explored after time
Ω(n2/3):
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1.4 Component sizes and surplus edges

Lemma 1.4.5. Let C >T
max denote the largest component which is started to be explored

after time Tn2/3. Then, for any δ > 0,

lim
T→∞ lim sup

n→∞ P
(
|C >T

max| > δn
2/3
)
= 0. (1.15)

The idea for the proof of Lemma 1.4.5 is that due to the sequential match-
ing of the half-edges after exploring the graph upto time Tn2/3, the rest of
the graph is again a configuration model. Moreover, the νn parameter for
this new configuration model becomes

νn,Tn2/3 = νn −C0Tn
−1/3 + oP(n

−1/3). (1.16)

Thus, as we keep on exploring the graph, the rest of the graph becomes a
configuration model that is more and more subcritical. Now the fact that the
component sizes of a barely subcritical configuration model are o(n2/3) can
be leveraged. However, the iterated limit in (1.15) requires explicit bounds on
the required functionals of a “slightly subcritical” configuration model. For
a formal deduction, see Lemma 2.4.11.

Component sizes and surplus edges in the product topology

Let us now investigate how the exploration process can yield convergence of
the surplus edges. At step k+ 1, we have discovered vertex v(k+1) with degree
d(k+1), and since one half-edge has been used to discover v(k+1), d(k+1)−1 half-
edges can create surplus edges. There are Ak = Sn(k) − minj6k Sn(j) many
half-edges associated to the vertices that are discovered, but not yet explored
completely. Due to the uniform matching, c(k+1), defined in (1.10) satisfies

E[c(k+1)|Fk, v(k+1)] ≈
(d(k+1) − 1)Ak

`n
.

Now,

E[d(k+1) − 1|Fk] =

∑
j/∈Vk

dj(dj − 1)∑
j/∈Vk

dj
≈
∑
j∈[n] dj(dj − 1)∑

j∈[n] dj
+ oP(1) ≈ 1,

so that ∑
k6tn2/3

E[c(k+1)|Fk] ≈
∑

k6tn2/3

Ak
σ1n

≈ 1
σ1

∫t
0
Ān(u)du, (1.17)

where Ān(u) = n−1/3An(bun2/3c). Here (Ān(u))u>0 converges to (R(u))u>0,
where R(u) = B(u) − infs6u B(s) is the reflected version of the limit in (1.12).
This proves the following lemma:
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Lemma 1.4.6. Let Nn(k) be the number of surplus edges discovered up to time k
and N̄n(u) = Nn(bun2/3c). Then, as n → ∞, N̄n

d−→ N, where N is the unique
counting process such that the following is a martingale:

N(t) −
1
σ1

∫t
0
R(u)du.

Thus, the number of points Ni in the i-th largest excursion γi of B is dis-
tributed as a mixed Poisson random variable with parameter (σ1)

−1 ∫
γ R(u)du

(see Chapter 2 for a formal definition of excursions). At this moment, Propo-
sition 1.4.4 and Lemma 1.4.6 yield the convergence of the component sizes
and surplus edges that are explored before time O(n2/3). The scaling limits
of the component sizes are the largest excursions of B in Proposition 1.4.4,
and those of the surplus edges are given by mixed Poisson random variables
with parameters being proportional to the areas under those excursions as
given by Lemma 1.4.6. On the other hand, Lemma 1.4.5 ensures that the
largest components are explored in time O(n2/3) during the exploration pro-
cess. This implies the finite-dimensional convergence of Zn(λ):

Theorem 1.4.7. Consider CMn(d) satisfying Assumption 1.1 and (1.9) for some
λ ∈ R. As n→∞,

Zn(λ)
d−→ Z(λ)

with respect to the product topology, where Z(λ) is the vector (γi,Ni)i>1 ordered as
an element of U0

↓ .

Convergence in the U0
↓ topology

In order to complete the proof of Theorem 1.4.2, it is now sufficient to show
that (Zn(λ))n>1 is tight in U0

↓ , owing to the convergence in product topol-
ogy in Theorem 1.4.7. The tightness is more technical, and the details will
be provided in Section 2.4.4. However, let us state here the conditions that
we need to verify in order to complete the proof. Let Ci denote the i-th ex-
plored component, and Yni = n−2/3|Ci|, Nni = SP(Ci). It is sufficient for the
tightness of probability measures on U0

↓ to prove that for any δ > 0

lim
ε→0

lim sup
n→∞ P

( ∑
Yni 6ε

(Yni )
2 > δ

)
= 0,

lim
ε→0

lim sup
n→∞ P

( ∑
Yni 6ε

Yni N
n
i > δ

)
= 0.

(1.18)

30



1.4 Component sizes and surplus edges

Degree distribution within components

Define vk(G) as the number of vertices of degree k in the connected graph G.
Then,

vk
(
C(j)

)
=
krk

E[D]

∣∣C(j)

∣∣+OP

(
(k−1n1/3)

)
. (1.19)

Again this can be deduced from the size-biased exploration process. If Nk(t)
denotes the number of vertices of degree k discovered up to time t, then for
any t > 0, uniformly over k,

sup
u6t

∣∣n−2/3Nk(un
2/3) −

knk
`n

u
∣∣ = OP((kn

1/3)−1).

This is due to the fact that, at each step during the exploration, we discover
a vertex of degree k with probability roughly knk/`n. Obviously, there will
be depletion in the total number of half-edges and the total number of half-
edges attached to vertices of degree k, but that depletion does not matter in
the n2/3 scale. Now an application of Lemma 1.4.5 yields (1.19).

The above analysis provides a detailed picture of the size and complexity
of the critical components for percolation on CMn(d). Whenever the degree
distribution satisfies an asymptotic finite third-moment condition, the scaling
limit lies in the same universality class as for the Erdős-Rényi random graph
identified in [8]. For Erdős-Rényi random graphs the negative drift term
takes a simpler form as the size-biased version of a Poisson random variable
again has a Poisson distribution.

1.4.3 Infinite third-moment case

We now continue with the case where E[D3] = ∞. Since E[D3] appears
explicitly in the scaling limit of the exploration process in Section 1.4.2 (see
e.g. (1.14)), the scaling limit must be different in this case. This section is
based on the results for Zn(λ) from [69]. Throughout this section we will use
the notation

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (τ− 3)/(τ− 1),

an = nαL(n), bn = nρ(L(n))−1, cn = nη(L(n))−2,

where τ ∈ (3, 4) and L(·) is a slowly-varying function. The results for Zn(λ)
are derived under the following assumptions on the degree sequence:

Assumption 1.2. Fix τ ∈ (3, 4). Let d = (d1, . . . ,dn) be a degree sequence
(ordered in a non-increasing manner) such that the following conditions hold:
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(i) (High-degree vertices) For any fixed i > 1, di/an → θi, where θ =

(θ1, θ2, . . . ) ∈ `3↓ \ `2↓ .

(ii) (Moment assumptions) Let Dn denote the degree of a vertex chosen uni-
formly at random from [n], independently of CMn(d). Then, Dn

d−→ D,
for some integer-valued random variable D and

1
n

∑
i∈[n]

di → µ := E [D] ,
1
n

∑
i∈[n]

d2
i → E[D2],

lim
K→∞ lim sup

n→∞ a−3
n

n∑
i=K+1

d3
i = 0.

(iii) (Critical window) For some λ ∈ R,

νn(λ) :=

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λc−1

n + o(c−1
n ).

(iv) Let n1 be the number of vertices of degree-one. Then n1 = Θ(n), which
is equivalent to assuming that P (D = 1) > 0.

Assumption 1.2 can be understood intuitively. As in Section 1.4.2, we will
set up an exploration process, which explores the components of CMn(d) in
a size-biased manner. In this setting, we will see that the exploration pro-
cess keeps on exploring vertices of high degree, resulting in jumps in the
exploration process. Assumption 1.2 (i) is used to control the magnitude of
these jumps. The scaling an has the same order as maxi∈[n]Di, where Di’s
are i.i.d. random variables satisfying P(D1 > x) ∝ L0(x)x

−(τ−1) for some
slowly-varying function L0(·). The expectation and variance of the incre-
ments of the exploration process are governed by the moment assumptions
in Assumption 1.2. Of particular interest is the assumption on the third mo-
ment, which basically says that the variance of the increments is dictated by
the contributions from the high-degree vertices only. The condition in As-
sumption 1.2 (iii) is the same criticality condition as in (1.9). The fact that the
above set-up covers CMn(d,pc(λ)) can be established using an analogue of
Lemma 1.4.1 in this setting. A key thing to note here is that if the degrees
are an iid sample from a distribution D with P(D > x) ∝ L0(x)x

−(τ−1), for
some τ ∈ (3, 4) and L0(·) a slowly-varying function, then Assumption 1.2 is
satisfied; see Section 3.3.

Recall that Zn(λ) denotes the vector of rescaled component sizes and sur-
plus edges, ordered as an element of U0

↓ . In this section, we rescale the
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1.4 Component sizes and surplus edges

component sizes by bn. The following theorem describes the scaling limit of
Zn(λ) in the infinite third moment case:

Theorem 1.4.8. Consider CMn(d) satisfying Assumption 1.2. As n → ∞,

Zn(λ)
d−→ Z(λ) with respect to the U0

↓ topology, where Z(λ) is some non-degenerate
random vector which will be defined in the proof ideas and more formally in Theo-
rem 3.2.2.

The proof of Theorem 1.4.8 can be approached by the steps outlined in Sec-
tion 1.4.2. However, the techniques involved are substantially different, be-
cause, for example, the exploration process does not have a finite variance
of the increment distribution. Below, we outline the analysis of the explo-
ration process, and the necessary modifications to conclude that the largest
components are explored in time O(bn). The asymptotics for the surplus
edges follow identically, since (1.17) holds here as well, the only difference
arises due to different scaling limit of the exploration process. We also dis-
cuss the scaling limit when the underlying graph is UMn(d), i.e., when the
configuration model is conditioned to be simple. This problem was stated as
a conjecture in [121] when the degrees are an iid sample from a power-law
distribution with τ ∈ (3, 4).

The size-biased exploration process

For technical tractability, we modify the exploration process. We sequentially
take active half-edges, pair them uniformly with an unpaired half-edge. If
the new half-edge is incident to a new vertex, then we declare all of its half-
edges to be active. The paired half-edges are killed. If there are no active half-
edges in the system, then we choose one unexplored vertex with probability
proportional to its degree and declare all its half-edges active. See Section 3.5
for an exact description. The only difference with the exploration process in
Section 1.4.2 is that only one edge is created per step, and it is not necessary
that new vertices are found at each step. Let Vl denote the set of vertices
discovered up to time l and Ini (l) := 1{i ∈ Vl}. The exploration process is
given by Sn(0) = 0, and

Sn(l) = #active half-edges at l− 2× #components explored upto l

=
∑
i∈[n]

diI
n
i (l) − 2l. (1.20)

Suppose that Ck is the kth connected component explored by the above ex-
ploration process and define τk = inf

{
i : Sn(i) = −2k

}
. Then Ck is discov-

33



Chapter 1 Introduction

ered between the times τk−1 + 1 and τk, and τk − τk−1 − 1 gives the total
number of edges in Ck. However, since the surplus edges will be shown to
be tight, the number of edges and the component sizes are asymptotically
the same, after rescaling by bn. Note that we can write

Sn(l) =
∑
i∈[n]

diI
n
i (l) − 2l =

∑
i∈[n]

di

(
Ini (l) −

di
`n
l

)
+ (νn(λ) − 1) l.

Define the re-scaled version S̄n of Sn by S̄n(t) = a−1
n Sn(bbntc). Then, by

Assumption 1.2,

S̄n(t) = a
−1
n

∑
i∈[n]

di

(
Ini (tbn) −

di
`n
tbn

)
+ λt+ o(1). (1.21)

Analysis of the exploration process

The exploration process given by (1.21) has the following scaling limit:

Theorem 1.4.9. As n → ∞, S̄n
d−→ S̄∞ with respect to the Skorohod J1 topology.

The limit S̄∞ := (S̄∞(t))t>0 is given by

S̄∞(t) = ∞∑
i=1

θi (Ii(t) − (θi/µ)t) + λt, (1.22)

where Ii(s) := 1{ξi 6 s} for ξi ∼ Exp(θi/µ) independently, and Exp(r) denotes
the exponential distribution with rate r.

The limit (1.22) is a jump-process. The vertices of degree Θ(an) keep getting
explored with time O(bn), and since the space has been rescaled by an, these
create macroscopic jumps in the exploration process. Notice that S̄∞ does not
have independent increments and therefore it is not a Lévy process. This was
termed as thinned Lévy process in [33], since Ii(s) can be seen as a thinning
of a Poisson process, with all points discarded except the first one. Due to
the absence of independent increments, most standard techniques from the
stochastic-process limits literature do not work here.

However from (1.22), it is evident that the scaling limit only depends on
the asymptotics of the high-degree vertices given in Assumption 1.2 (i), and
the contributions coming from the lower-degree vertices should be asymp-
totically negligible. With this in mind, define the truncated sum

MKn(l) = a
−1
n

∑
i>K

di

(
Ini (l) −

di
`n
l
)

. (1.23)
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1.4 Component sizes and surplus edges

Recall that we have ordered the degree sequence in Assumption 1.2, so that
the sum in (1.23) takes into account all the contributions in the exploration
process except for the K largest degrees. With a proper estimate of the vari-
ance and the expectation of MKn(l), along with maximal inequalities for su-
permartingales, it can be shown that (see Section 3.5) for any ε > 0 and
T > 0,

lim
K→∞ lim sup

n→∞ P
(

sup
l6Tbn

|MKn(l)| > ε
)
= 0.

This implies that if we truncate the sum in (1.21) at any fixed K, then it suffices
to establish the iterated limit as n→∞ and then K→∞. Finally, to complete
the proof of Theorem 1.4.9, it suffices to consider the joint distributional limit
of the processes (Ini (tbn))i∈[K],t>0, since for any fixed K > 1,

a−1
n

K∑
i=1

di

(
Ini (tbn) −

di
`n
tbn

)
=

K∑
i=1

θi

(
Ini (tbn) −

di
`n
tbn

)
+ o(1).

The following lemma characterizes the limit of (Ini (tbn))i∈[K],t>0:

Lemma 1.4.10. Fix any K > 1. As n→∞,

(Ini (tbn))i∈[K],t>0
d−→ (Ii(t))i∈[K],t>0 .

Proof. By noting that (Ini (tbn))t>0 are indicator processes, it is enough to
show that

P (Ini (tibn) = 0, ∀i ∈ [K])→ P (Ii(ti) = 0, ∀i ∈ [K]) = exp
(
− µ−1

K∑
i=1

θiti

)

for any t1, . . . , tK ∈ R. Now,

P (Ini (mi) = 0, ∀i ∈ [K]) =

∞∏
l=1

(
1 −

∑
i6K:l6mi

di
`n −Θ(l)

)
,

= exp
(
−

∞∑
l=1

∑
i6K:l6mi

di
`n

+ o(1)
)
= exp

(
−
∑
i∈[K]

dimi
`n

+ o(1)
)

.

Putting mi = tibn, Assumption 1.2 gives

midi
`n

=
θiti
µ

(1 + o(1)),

which completes the proof of Lemma 1.4.10.
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Convergence of component sizes and surplus edges

As in the finite third moment case, one must ensure that the largest com-
ponents are explored early during the exploration process, i.e., we need
Lemma 1.4.5 to hold under Assumption 1.2 after replacing n2/3 by bn. One
may try to adapt the argument of Lemma 1.4.5, but there is a more direct and
simpler approach. The idea is that since the critical behavior is primarily gov-
erned by the asymptotics of the high-degree vertices, removing the vertices
of high degree makes the graph more and more subcritical, a feature that is
not present in the finite third moment case. This idea can be leveraged to
obtain the proof that large connected components are with high probability
explored in time O(bn), as well as showing the `2↓ tightness for the vector of
component sizes; see Proposition 3.5.1.

Let G[K] be the random graph obtained by removing all edges attached to
vertices 1, . . . ,K and let d ′ be the obtained degree sequence. Now, condition-
ally on the set of removed half-edges, G[K] is still a configuration model with
some degree sequence d ′ with d ′i 6 di for all i ∈ [n] \ [K] and d ′i = 0 for
i ∈ [K]. Further, the criticality parameter of G[K] satisfies

ν[K]
n =

∑
i∈[n] d

′
i(d
′
i − 1)∑

i∈[n] d
′
i

6

∑
i∈[n] di(di − 1) −

∑K
i=1 di(di − 1)

`n − 2
∑K
i=1 di

= νn −C1n
2α−1L(n)2

∑
i6K

θ2
i = νn −C1c

−1
n

∑
i6K

θ2
i

(1.24)

for some constant C1 > 0. Since θ /∈ `2↓ , K can be chosen large enough such
that ν[K]

n becomes arbitrarily small uniformly for all n. (1.24) plays the same
role in the infinite third-moment case as (1.16) in the finite third-moment
case. We refer the reader to Lemma 3.5.5 for the exact details.

In Section 1.4.2, we have expressed the limiting number of surplus edges
in Lemma 1.4.6 in terms of the reflected version of the scaling limit of the
exploration process. This deduction holds in the infinite third moment case
as well, but we have to replace R(t) by the reflected version of S∞. Thus, the
finite-dimensional convergence of Zn(λ) follows. The tightness argument
involves establishing (1.18). Finally, an analogue of (1.19) also holds in this
case; see Proposition 3.6.2.

Proof for uniform simple graphs

All the scaling limit results for component sizes and surplus edges hold for
the critical configuration model. Let us now outline the strategy to transfer
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1.4 Component sizes and surplus edges

those results to the case of UMn(d), the uniformly chosen simple graph with
given degree distribution. Recall that the law of UMn(d) is the same as
CMn(d), conditionally on the graph being simple. However, since the results
about Zn(λ) are distributional convergence results, it is not evident whether
the results are still true conditionally on the graph being simple. Particularly,
in the infinite third-moment case, a related question about critical CMn(d)

with iid degree sequence was stated as a conjecture in [121].

Theorem 1.4.11. Conditionally on CMn(d) being simple, Zn(λ)
d−→ Z(λ), where

Z(λ) is the scaling limit for CMn(d).

We refer the reader to Section 3.7 for the technical details and only explain
the idea here. Recall from [110, Theorem 1.1] that

lim inf
n→∞ P (CMn(d) is simple) > 0.

Thus, the tightness of Zn(λ) in the U0
↓ topology follows directly, and we only

need to prove that the finite-dimensional convergence remains valid. Note
that the graph UMn(d) can be generated by sampling CMn(d) until we get
a uniform simple graph. Suppose one can show that the exploration process
does not encounter any self-loops or multiple edges in time O(bn) with high
probability. Then, we can keep the graph explored up to time O(bn) and re-
sample the uniform perfect matching on the half-edges explored after time
Ω(bn), until the latter one gives a simple graph. This will give us a sample
from UMn(d) with high probability. However, the large components are ex-
plored in time O(bn), and these components remain fixed under re-sampling
for the latter construction. Therefore, the finite-dimensional scaling limit for
Zn(λ) does not change, conditionally on the graph being simple. Let us now
argue that no self-loops or multiple edges are explored before time O(bn).

Let ` ′n := `n − 2Tbn. Let v be a vertex being explored before time O(bn),
and (e1, . . . , er) the set of half-edges of v. Note that, while pairing ei, it creates
a self-loop with probability at most (dv − i)/` ′n and creates a multiple edge
with probability at most (i − 1)/` ′n. Therefore, conditionally on Fl−1, the
expected number of self-loops/multiple edges discovered while exploring
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the vertex vl at the l-th step is at most 2d2
vl
/` ′n. Thus, for any T > 0,

E [#{self-loops or multiple edges discovered up to time Tbn]

6
2
` ′n

E

[ ∑
i∈[n]

d2
iI
n
i (Tbn)

]

=
2
` ′n

E

[ K∑
i=1

d2
iI
n
i (Tbn)

]
+

2
` ′n

E

[ n∑
i=K+1

d2
iI
n
i (Tbn)

]
,

where Ini (l) = 1{i ∈ Vl}. Now, for every fixed K > 1,

2
` ′n

E

[ K∑
i=1

d2
iI
n
i (Tbn)

]
6

2
` ′n

K∑
i=1

d2
i → 0,

since 2α− 1 < 0. Moreover, the size-biased ordering of the vertices implies
that

P (Ini (Tbn) = 1) 6 Tbndi/` ′n. (1.25)

Therefore, for some constant C > 0,

2
` ′n

E

[ n∑
i=K+1

d2
iI
n
i (Tbn)

]
6
Tbn

` ′2n

n∑
i=K+1

d3
i 6 C

(
a−3
n

n∑
i=K+1

d3
i

)
,

which, by Assumption 1.2, tends to zero if we first take lim supn→∞ and then
take limK→∞. Consequently, for any fixed T > 0, as n→∞,

P (at least one self-loop/multiple edge is discovered before time Tbn)→ 0,

which yields Theorem 1.4.11.
One may note that Theorem 1.4.11 implies that the scaling limit of a crit-

ical CMn(d) is the same as that of a critical UMn(d). Using Janson’s con-
struction, this yields the scaling limit of CMn(d,pc(λ)), conditioned to be
simple. This is different than UMn(d,pc(λ)), since here first the graph is
conditioned on simplicity, and after that percolation is performed. However,
the above argument goes through if we perform the exploration process on
CMn(d,pc(λ)) directly.

1.5 Evolution over the critical window

In this section, we will aim to describe the evolution of the vector Zn(λ)
asymptotically. We discuss the following theorem:
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1.5 Evolution over the critical window

Theorem 1.5.1. Fix any k > 1, −∞ < λ1 < · · · < λk < ∞. Then, there exists
a version AMC = (AMC(λ))λ∈R of the augmented multiplicative coalescent such
that, as n→∞,

(Zn(λ1), . . . Zn(λk))
d−→ (AMC(λ1), . . . , AMC(λk))

with respect to the (U0
↓)
k topology.

This will be based on the analysis in [69, 70]. We first introduce the can-
didate for the limit, the augmented multiplicative coalescent (AMC). Next we
describe an alternative construction for the percolation process on CMn(d).
The main problem with the percolation process (Gn(p))p∈[0,1] on a random
graph Gn is that this process is non-Markovian, unless the information about
Gn is incorporated into the starting sigma-algebra. However, in the context
of CMn(d), this special construction allows us to compare the percolation
process over the critical window with another dynamically growing Marko-
vian graph process. Then we discuss how the new graph process gives rise
to AMC. The proof outline in this section is illustrated for the infinite third-
moment case. Although the proof for the finite third-moment case [70] was
given for the evolution of the component sizes only, a similar proof holds
there as well (See Remark 18). Also, for sake of simplicity, we will only con-
sider the convergence of (Zn(λ1), Zn(λ2)), and the finite-dimensional conver-
gence follows similarly.

1.5.1 Augmented multiplicative coalescent

Let us now describe in detail a Markov process (Z(λ))λ∈R, called the aug-
mented multiplicative coalescent (AMC) process. Think of a collection of parti-
cles in a system with X(λ) describing their masses (corresponding to limiting
component sizes) and Y(λ) describing an additional attribute (corresponding
to surplus edges) at time λ. Let K1,K2 > 0 be constants. The evolution of the
system at time λ takes place according to the following rule:

B For i 6= j, at rate K1Xi(λ)Xj(λ), the i-th and j-th components merge and
create a new component of mass Xi(λ) + Xj(λ) and attribute Yi(λ) +
Yj(λ).

B For any i > 1, at rate K2X
2
i(λ), Yi(λ) increases to Yi(λ) + 1.

Of course, at each event time, the indices are re-organized to give a proper
element of U0

↓ . The case when ignoring Y(λ) is called the multiplicative
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coalescent which was studied extensively in [8, 11] in the context of under-
standing the evolution of the component sizes. The augmented version was
proposed in [30] to study the joint evolution of component sizes and sur-
plus edges. In [30], the authors showed in [30, Theorem 3.1] that this is a
nearly Feller process. To understand this precisely, let (Tλ)λ∈R denote the
semigroup of operators corresponding to augmented multiplicative coales-
cent. Let f : U0

↓ 7→ R be a bounded continuous function, and (zn)n>1 be a
sequence in U0

↓ such that zn → z. Further assume that z = (xi,yi)i>1 ∈ U0
↓

is such that
∑
i xi =∞. Then, as n→∞

Tλ(f(zn))→ Tλ(f(z)). (1.26)

Thus, (1.26) does not hold for any z ∈ U0
↓ , which is the reason why this is

called a nearly Feller property.

1.5.2 An alternative construction of the percolation process

Consider the percolation process (CMn(d,p))p∈[0,1], coupled through the
Harris coupling. We give an alternative construction of the percolation pro-
cess (CMn(d,p))p∈[0,1], that allows us to study the evolution of the perco-
lated graphs.

Algorithm 1.2. Let (Ue)e∈[ `n2 ]
be a finite collection of iid uniform [0, 1] ran-

dom variables. Construct a collection of graphs (Gn(p))p∈[0,1] using the fol-
lowing two steps:

(S0) Construct the process of edge arrivals En = (En(p))p∈[0,1], where
En(p) = #{e : Ue 6 p}.

(S1) Initially, Gn(0) is a graph only consisting of isolated vertices with no
paired half-edges. At each time point p where En(p) has a jump,
choose two unpaired half-edges uniformly at random and pair them.
The graph Gn(p) is obtained by adding this edge to Gn(p−).

Algorithm 1.2 (S0) can be regarded as the birth of edges, and (S1) ensures
that the edges of the graph Gn(p) are obtained from a uniform perfect match-
ing of the corresponding half-edges. The fact that (Gn(p))p∈[0,1] has the
same distribution as the percolation process can be proved by showing that
the finite-dimensional distributions are equal. The special case that Gn(p)
has the same distribution as CMn(d,p) was proved in [85] for each fixed p.
The finite-dimensional convergence requires generalizing those arguments,
which is done in Section 2.7.1.
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1.5 Evolution over the critical window

1.5.3 Comparison to a Markovian dynamic construction

The problem with the alternative construction in Algorithm 1.2 is that (S1)
depends on the arrival of edges during the whole process. Thus the graph
process is non-Markovian. Let us now describe a dynamically evolving graph
process from [29] which is Markovian and at the same time approximates the
percolation process over the critical window.

Algorithm 1.3. Let s1(t) denote the number of unpaired half-edges at time t.
Thus s1(0) = `n. Let Ξn be an inhomogeneous Poisson process with rate
s1(t) at time t.

(S1) At each event time of Ξn, choose two unpaired half-edges uniformly at
random and pair them. Thus s1(t) decreases by two. The graph Gn(t)

is obtained by adding this edge to Gn(t−).

Note that (Gn(t))t>0 is Markovian. In fact, many properties of this graph
process such as the number of unpaired half-edges can be represented using
the random time change of a unit-rate Poisson process [80], and thus can be
shown to converge to some solution of a differential equation. The reader is
referred [152] for an introduction to this differential equation method.

The graph process (Gn(t))t>0 turns out to approximate the percolation
process in the critical regime. To state this formally, let us define

tc(λ) =
1
2

log
(

νn

νn − 1

)
+

1
2(νn − 1)

λ

cn
.

Proposition 1.5.2. Fix −∞ < λ1 < λ2 < ∞. There exists a coupling such that
with high probability

Gn(tc(λ) − εn) ⊂CMn(d,pc(λ)) ⊂ Gn(tc(λ) + εn), ∀λ ∈ [λ1, λ2],

CMn(d,pc(λ) − εn) ⊂ Gn(tc(λ)) ⊂ CMn(d,pc(λ) + εn), ∀λ ∈ [λ1, λ2],

where εn = n−γ0 , for some η < γ0 < 1/2.

Notice the similarity between Algorithm 1.2 (S1) and Algorithm 1.3 (S1). In
both processes, two unpaired half-edges, chosen uniformly at random with-
out replacement, are paired. We can couple the k-th uniform choice to be
exactly the same for both processes. Thus, it is enough to compare the total
number of edges, i.e., the total number of times (S1) has been executed in
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both algorithms. Since one edge is created per execution of (S1), it is enough
to show that with high probability the following holds: For all λ ∈ [λ1, λ2]

e(Gn(tc(λ) − εn)) 6 e(CMn(d,pc(λ))) 6 e(Gn(tc(λ) + εn)). (1.27)

The quantity e(Gn(tc(λ)∓ εn)) can be estimated using the differential equa-
tion method. After some computations, it can be shown that the sandwiching
inequality in (1.27) holds with expectation of e(CMn(d,pc(λ))) (see Propo-
sition 2.7.4). Therefore, it is enough to establish suitable concentration in-
equalities for e(CMn(d,pc(λ))), uniformly over λ ∈ [λ1, λ2]. We can think of
#{Ue 6 p}/(`n/2) as an empirical distribution function on [0, 1]. Thus, con-
centration inequalities of empirical measures such as the Dvoretzky-Kiefer-
Wolfowitz inequality [132] can be applied to conclude (1.27).

As a consequence of Proposition 1.5.2, it is also enough to prove The-
orem 1.5.1 for (Gn(tc(λ)))λ∈R. This is very handy, because the Markovian
nature allows us to keep track of our functionals of interest. Further, Theo-
rem 1.4.8 also holds for Gn(tc(λ)). Therefore, in the later parts of this section,
we consider Zn(λ) for the graph Gn(tc(λ)) instead.

1.5.4 Convergence to AMC

We write C(i)(λ) for the i-th largest component of Gn(tn(λ)), and define Oi(λ)

to be the number of unpaired half-edges in C(i)(λ). Think of Oi(λ) as the mass
of C(i)(λ). Let Zon(λ) denote the vector in U0

↓ , where the |C(i)(λ)|’s are replaced
by Oi(λ)’s. Firstly, using the differential equation method, it can be shown
that with high probability

`on(λ) :=
∑
i>1

Oi(λ) =
nµ(ν− 1)

ν
(1 + oP(1)).

Moreover, during the evolution of Algorithm 1.3, between time [tc(λ), tc(λ+
dλ)], the i-th and j-th largest components merge at rate

2Oi(λ)Oj(λ)×
1

`on(λ) − 1
× 1

2(νn − 1)cn
≈ ν

µ(ν− 1)2

(
b−1
n Oi(λ)

)(
b−1
n Oj(λ)

)
,

and create a component with open half-edges Oi(λ) +Oj(λ) − 2 and surplus
edges SP(C(i)(λ)) + SP(C(j)(λ)). Also, a surplus edge is created in C(i)(λ) at
rate

Oi(λ)(Oi(λ) − 1)× 1
`on(λ) − 1

× 1
2(νn − 1)cn

≈ ν

2µ(ν− 1)2

(
b−1
n Oi(λ)

)2,
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1.6 Global metric structure in the infinite third-moment case

and C(i)(λ) becomes a component with surplus edges SP(C(i)(λ)) + 1 and
open half-edges Oi(λ) − 2. Thus (Zon(λ))λ∈[λ1,λ2] does not exactly evolve as
an AMC process, but it is close. Let us now outline two key steps for reaching
the proof of Theorem 1.5.1 from the above heuristics.

Comparison to an exact AMC. If (Zon(λ))λ∈[λ1,λ2] would evolve as an exact
multiplicative coalescent, then (Zon(λ1), Zon(λ2)) would converge by an appli-
cation of the nearly Feller property in (1.26). Unfortunately, that is not the
case, since two half-edges are lost after each pairing, which makes the masses
deplete. If there were no such depletion of mass, then the vector of open half-
edges, along with the surplus edges, would in fact merge as an exact AMC.
Thus, one can modify the graph process, where after time tc(λ1), the paired
half-edges are replaced with a newly born half-edge to the corresponding
vertex; see Section 2.7.3. Let (Z̄on(λ))λ∈[λ1,λ2] denote the corresponding quan-
tity under this modified algorithm. Then, Zon(λ1) = Z̄on(λ1) and the nearly
Feller property of AMC yields that (Z̄on(λ1), Z̄on(λ2)) converges. Finally the
convergence of (Zon(λ1), Zon(λ2)) is concluded by establishing that

dU(Zon(λ2), Z̄on(λ2)))
P−→ 0,

where dU denotes the metric corresponding to the U0
↓-topology. We refer the

reader to Section 3.10 for the formal deduction.

Open half-edge vs component sizes. Finally, Theorem 1.5.1 is about the
joint convergence of component sizes and surplus edges. Thus, in order to
conclude Theorem 1.5.1, it needs to be shown that, for each fixed λ, as n→∞,

dU(Zon(λ), κZn(λ))
P−→ 0,

for some κ > 0. This can be proved using our exploration process and mar-
tingale arguments. See Section 3.10 for further details.

1.6 Global metric structure in the infinite third-moment case

In this section, we consider the metric structure of C(i)(pc(λ)) for CMn(d)

in the infinite third-moment setting. This section is based on the results
in [31] Chapter 4. The global metric structure limit in the finite third-moment
case has been derived in [29, 34]. Suppose that CMn(d) satisfies Assump-
tion 1.2 (i), (ii). For simplicity, we ignore the slowly-varying functions here.
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The percolation parameter satisfies

pc(λ) =
1
νn

(
1 + λn− τ−3

τ−1
)
, −∞ < λ <∞.

We simply write C(i)(λ) to denote the i-th largest component of CMn(d,pc(λ)).
Recall from Section 1.3.1 that C(i)(λ) can be viewed as a random measured
metric space. Write S∗ for the space of all measured metric spaces equipped
with the Gromov weak topology (see Section 4.3) and let S N

∗ denote the
corresponding product space with the accompanying product topology. The
goal is to show the following theorem:

Theorem 1.6.1. There exists a sequence of random measured metric spaces
(Mi(λ))i>1 such that on S N

∗ , as n→∞,(
n−ηC(i)(λ)

)
i>1

d−→
(
Mi(λ)

)
i>1. (1.28)

The description of the limiting metric space appearing in Theorem 1.6.1
requires several definitions and concepts. An interested reader is referred to
Section 4.3 for an explicit description. The organization of this section is as
follows: In Section 1.6.1 we start by describing the results and proof ideas
from [36], where the above theorem was established in the context of Norros-
Reittu random graphs. The results allow us to explain a universality theorem
in Section 1.6.2, which identifies a domain of attraction for the same scaling
limits as [36]. In Section 1.6.3, we argue how this universality theorem can
be applied to deduce the scaling limit in Theorem 1.6.1. In Section 1.6.4, we
describe the idea of establishing the so-called global mass lower bound which
can be used to improve the underlying topology of convergence in Theo-
rem 1.6.1. Due to the technical nature of these results, the proof ideas will be
more sketchy than the previous sections, with the detailed treatment left to
Chapters 4, and 5.

1.6.1 Scaling limit for Norros-Reittu model

Before going into the proof ideas in [31], let us briefly describe the results
from [36], along with key proof ideas. In this section, we write Gn(x,q)
to denote the random graph obtained by keeping edge (i, j) independently
with probability 1 − e−qxixj . Thus this is same as the Norros-Reittu model
defined in Section 1.1, where the normalization has been changed for the
sake of simplicity. The scaling limit result in (1.28) was derived for Gn(x,q),
and the candidate scaling limit was identified for the heavy-tailed regime.
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1.6 Global metric structure in the infinite third-moment case

p-trees and their limit. To create the context, first let us describe a random
tree known as a p-tree. Fix m > 1, and a non-increasing sequence p =

(pi)i∈[m] with pi > 0 for all i ∈ [m], and
∑
i∈[m] pi = 1. Then the law of the

p-tree, denoted by T
p
m, is given by

P(T
p
m = t) =

∏
v∈[m]

p
dv(t)
v , for any tree t on m vertices.

In an ordered p-tree, children of each individual are assigned a uniform
order. It was shown in [59, 142] that the random tree T

p
m, after assigning

length σ(p) := (
∑
i∈[m] p

2
i)

1/2 to each edge, converges in distribution to the
so-called inhomogeneous continuum random tree in the Gromov-Hausdorff
topology. If for each fixed i > 1, pi/σ(p) → βi, for some (βi)i>1 ∈ `2↓ \ `1↓ ,
then the limiting object turns out to be structurally completely different from
the classical Brownian continuum random tree. This case exhibits the heavy-
tail effect, in the sense that the limiting structure contain vertices, so-called
hubs, of infinite degree almost everywhere.

A construction of the components of Gn(x,q). A novel construction of
the connected components of Gn(x,q) in the critical regime was proposed in
[35, 36]. Let C(i)(q) denote the i-th largest component of Gn(x,q). Define, for
i > 1,

p(i)
n :=

(
xv∑

v∈C(i)(q)
xv

)
v∈C(i)(q)

, a(i)
n := q

( ∑
v∈C(i)(q)

xv

)2
. (1.29)

Then, C(i)(q) can be informally generated in the following two steps:

Algorithm 1.4. (S1) Generate a tilted p-tree with pin in (1.29), and some tilting
function L(·).

(S2) Generate a mixed Poisson random variable N, and add N many surplus edges.

The formal description of the above algorithm is given in Section 4.3, which
requires several technical definitions. It turns out that all the functionals
involved in the formal construction of Algorithm 1.4 depend only on the
quantities defined in (1.29). Thus, the graph in Algorithm 1.4 can be gener-
ated for any p and a instead of specific choices in (1.29). We denote such a
graph by Gm(p,a).
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Scaling limits for critical Gn(x,q). The graph Gm(p,a) is generated from a
p-tree T

p
m, after tilting the distribution by the function L(·) = Lm(·), and then

adding only finitely many shortcuts. Thus, provided that (Lm)m>1 is uni-
formly integrable, it is not difficult to imagine that the distance in Gm(p,a)
should scale similarly as the p-tree, which is σ(p). However, one needs to es-
tablish a distributional convergence result which turns out to be significantly
harder. The following result was proved in [36], and the limiting object was
identified as a function of the inhomogeneous continuum random tree after
an appropriate tilt:

Theorem 1.6.2. Suppose that σ(p) → 0, and for each fixed i > 1, pi/σ(p) → βi,
where β = (βi)i>1 ∈ `2↓ \ `1↓ . Moreover, there exists a constant γ > 0 such that
aσ(p)→ γ. Then, as m→∞,

σ(p)Gm(p,a) converges in distribution in the Gromov-weak topology.

The proof of Theorem 1.6.2 consists of showing that the tilting functions are
converging in distribution, and the operation of creating shortcuts on the
space of “trees” is continuous. Next, the idea is to apply Theorem 1.6.2
with the parameters in (1.29). Therefore, one needs to prove distributional
convergence results for these parameters and also obtain the asymptotics of
σ(p(i)

n ). These asymptotics can be obtained using exploration processes on
Gn(x,q). We refer to [36] for further details.

1.6.2 The universality theorem

In this section, we describe the universality theorem which forms the basis of
the results in [31]. A similar result for the Erdős-Rényi universality class was
established in [29]. Let us first describe the universality theorem, and then
discuss how this can be applied to obtain the proof of Theorem 1.6.1.

The idea is to replace each of the vertices in the graph Gm(p,a) by so-
called blobs. Blobs are a collection {(Mi, di,µi)}i∈[m] of connected, com-
pact measured metric spaces. Consider an independent collection of random
points X := (Xi,j)i,j∈[m] such that Xi,j ∼ µi for all i, j. Further, X is indepen-
dent of Gm(p,a). Put an edge of length one between the pair of points

{(Xi,j,Xj,i) : (i, j) is an edge of Gm(p,a)},

and denote the resulting graph by G̃bl
m(p,a). G̃bl

m(p,a) inherits the metric
from the graph-distance and the distances within blobs; see Section 4.4 for

46



1.6 Global metric structure in the infinite third-moment case

an exact description. Let ui := E[di(Xi,X ′i)] where Xi,X ′i ∼ µi independently,
Bm :=

∑
i∈[m] piui and ∆i = diameter(Mi).

Theorem 1.6.3 (Universality theorem). Suppose that the assumptions of Theo-

rem 1.6.2 hold, and additionally limm→∞ σ(p)maxi∈[m]∆i
Bm+1 = 0. As m→∞,

σ(p)
Bm + 1

G̃bl
m(p,a), and σ(p)Gm(p,a) have the same limit

with respect to the Gromov-weak topology.

The proof of Theorem 1.6.3 studies the effect of introducing surplus edges,
or shortcuts in a p-tree. The proof uses the birthday construction of p-trees
from [59]. A detailed proof is provided in Section 4.4.

To this end, let us observe that Norros-Reittu random graphs have a di-
rect relation to multiplicative coalescence in the following sense: Consider
a system of n vertices, with vertex i having mass xi. Now, at rate xixi, an
edge is created between i and j. The obtained graph at time q is distributed
as Gn(x,q), defined in Section 1.6.1. Also, if we track the sum of xi’s in
each component, it evolves as an exact multiplicative coalescent. Thus the
multiplicative coalescence evolution essentially gives rise to Norros-Reittu
random graphs. Next consider Algorithm 1.3, and the modification of re-
placing open half-edges after time tc(λ1) given in Section 1.5.4, where now
λ1 = λ1(n)→ −∞. Therefore, at the beginning of the modification, the graph
process is in the barely subcritical regime. The modified process runs as an
exact multiplicative coalescent, essentially giving rise to a superstructure of
a Norros-Reittu graph on top of the barely subcritical components. Let us
denote this graph by H̄n, and denote the graph produced by Algorithm 1.3
by Hn. Now one can apply Theorem 1.6.3 to the graph H̄n, with the compo-
nents in the barely subcritical regime serving as blobs. Finally, we obtain the
metric structure of Hn by comparing its structures with H̄n.

1.6.3 Final steps in completing the proof

Properties at the barely subcritical regime. In order to estimate several
functionals like the quantities in (1.29), and in Theorem 1.6.3, we need to
obtain precise asymptotics of functionals of a barely subcritical configuration
model, whose components serve as blobs. This is an interesting question in
its own right, which was not studied previously for CMn(d), in the τ ∈ (3, 4)
universality class. In order to calculate the quantities in (1.29), we wish to
verify the entrance boundary conditions for the “behavior at −∞” of the
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multiplicative coalescent [11], which characterize asymptotics of several func-
tionals related to the multiplicative coalescent in terms of the asymptotics on
the entrance boundary. The barely subcritical regime lies on the entrance
boundary, and the verification of the Aldous-Limic entrance boundary yields
the desired asymptotics. Further, one also needs to obtain bounds on the
maximum diameter of the barely subcritical components maxi∈[m] ∆i, and
the within component average distance Bm in order to apply Theorem 1.6.3.

Structural comparison ofHn and H̄n. With the asymptotics obtained in the
barely subcritical regime, Theorem 1.6.3 applies to H̄n. Finally, a structural
comparison between the components of Hn and H̄n completes the proof of
Theorem 1.6.1. Let C(i) and C̄(i) denote the i-th largest component of Hn
and H̄n respectively. Then the following structural comparisons allow us to
conclude that the limit of largest connected components are the same in the
Gromov-weak topology:

B For any i > 1, C(i) ⊂ C̄(i) with high probability. Note that, under
the replacement scheme of open half-edges, ∪j6iC(j) ⊂ ∪j6iC̄(j) almost
surely for any i > 1. Therefore, this statement can be concluded by
showing that the component sizes (|C(i)|)i>1 and (|C̄(i)|)i>1 have the
same limit.

B The “mass” of C̄(i) \C(i) converges to zero in probability.

B For any pair of vertices u, v ∈ C(i)(λ), with high probability, the shortest
path between them is exactly the same in C(i) and C̄(i). This is obtained
by showing that the number of surplus edges with at least one endpoint
in C̄(i) \C(i) converges to zero in probability.

For further details about the formal statements and the verification of the
above properties, the reader is referred to Section 4.5.

1.6.4 Gromov-Hausdorff-Prokhorov convergence of the critical
components

We now describe the so-called global lower mass-bound property of the
critical components. The property basically establishes a lower bound on
the number of vertices within small neighborhood of the connected compo-
nents. If there is a single path of length nη log(n), then since ρ > η and
|C(i)(pc(λ))| = ΘP(n

ρ), we do not see any members from that path if we
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1.6 Global metric structure in the infinite third-moment case

sample finitely many points from C(i)(pc(λ)) uniformly at random. For this
reason, the Gromov-weak convergence does not take into whether there is
a thin long path in the component. Further, since the Gromov-weak conver-
gence is defined on the space of complete separable metric spaces, the limit
may not be a compact metric space. The global lower mass bound rules out
the existence of such thin long paths. Consequently, this implies that the
scaling limit in Theorem 1.6.1 holds with respect to the Gromov-Hausdorff-
Prokhorov (GHP) topology, the limiting metric space is compact, and the
global distance related functionals (e.g. the diameter) converges after the ap-
propriate rescaling. This relation between the Gromov-weak convergence
and GHP convergence was studied in [20].

We consider a critical configuration model and denote the i-th largest
connected component of CMn(d) by C(i). For each v ∈ [n] and δ > 0, let
Nv(δ) denote the δnη neighborhood of v in CMn(d). For each i > 1, define

mni (δ) = inf
v∈C(i)

n−ρ|Nv(δ)|.

Theorem 1.6.4 (Global lower mass-bound). For any δ > 0, (mni (δ)
−1)n>1 is a

tight sequence.

In Chapter 5, Theorem 1.6.4 is proved under a more general setting, but
the proof requires some additional technical assumptions on the degree dis-
tribution on top of Assumption 1.2 (see Assumption 5.1). The additional
assumption is satisfied for power law degrees. Following the above heuristic
description, Theorem 1.6.4 now yields several interesting corollaries. Us-
ing the results from [20], Theorem 1.6.4 establishes that the convergence in
Theorem 1.6.1 holds with respect to the GHP topology. This in particular es-
tablishes that the limiting metric spaces in [31, 36] are compact almost surely.
Due to technical reasons, some additional conditions are imposed on θ. For
example, the assumption is satisfied for θi ∈ [L1(i)i

−a1 ,L2(i)i
−a2 ], where

a1,a2 ∈ (1/3, 1/2), and L1,L2 are slowly varying functions. This is much less
restrictive than assuming θi = i−α as in [36]. The compactness of the limiting
metric spaces in [31, 36] was also established under some regularity condi-
tions in a very recent preprint [56] using a completely independent method
as in this paper. In addition to the compactness of the limiting metric space,
we also have the convergence of the diameters, i.e.,

(
n−ηdiam(C(i)(pc(λ)))

)
i>1

d−→ (Xi)i>1
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with respect to the product topology, where (Xi)i>1 is a non-degenerate ran-
dom vector. In fact Xi corresponds to the diameter of the limiting object of
C(i)(pc(λ)) from [31].

Let us just briefly describe the key ideas in the proof of Theorem 1.6.4,
which consists of two main steps. The first step is to show that the neighbor-
hoods of the high-degree vertices, or hubs, have mass Θ(nρ). Secondly, the
probability of any small εnη neighborhood not containing hubs is arbitrarily
small. These two facts, summarized in Propositions 5.2.1 and 5.2.2 below,
together ensure that the total mass of any neighborhood of C(i) of radius εnη

is bounded away from zero. These facts were proved in [36] in the context
of inhomogeneous random graphs. The main advantage in [36] was that the
breadth-first exploration of components could be dominated by a branching
process with mixed Poisson progeny distribution that is independent of n. The
above facts allow one to use existing literature and estimate the probabilities
that a long path exists in the branching process in [36]. However, such a
technique is specific to rank-one inhomogeneous random graphs and does
not work in the cases where the above stochastic domination is not possible.
This was partly a motivating reason for this work. Moreover, along the way
we derive results about exponential bounds for the number of edges in the
large components (Proposition 5.4.1), and a coupling of the neighborhood
exploration with a branching process with stochastically larger progeny dis-
tribution (Section 5.4.2), which is interesting in its own right. The details are
left to Chapter 5.

1.7 Analysis in the infinite second-moment case

We next discuss the critical behavior for percolation when the asymptotic
empirical degree distribution is approximately a power law with exponent
τ ∈ (2, 3), i.e., the degree distribution has infinite second moment, but finite
second moment. As canonical random graph models on which percolation
acts, we take CMn(d), ECMn(d) and GRGn(w). The latter two models only
allow for single edges, which is the reason for referring to them as models
with a single-edge constraint. In Section 1.7.1, we describe the results for
CMn(d), and in Section 1.7.2 those for ECMn(d) and GRGn(w). The results
are based on ongoing work [68].
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1.7 Analysis in the infinite second-moment case

1.7.1 Results for the configuration model

We start by describing the assumptions on the degree distribution. Fix any
τ ∈ (2, 3). We denote

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (3 − τ)/(τ− 1). (1.30)

Note that the η in (1.30) is different than in Section 1.4.3. We assume the
following about the degree sequences (dn)n>1:

Assumption 1.3. (i) (High-degree vertices) For any i > 1, n−αdi → θi,
where the vector θ = (θ1, θ2, . . . ) ∈ `2↓ \ `1↓ .

(ii) (Moment assumptions) limn→∞ 1
n

∑
i∈[n] di = µ, and

lim
K→∞ lim sup

n→∞ n−2α
n∑

i=K+1

d2
i = 0.

Assumption 1.3 (i) fixes the asymptotics of the high-degree vertices in a sim-
ilar manner as Assumption 1.2 (i), and characterizes jumps of an associated
exploration process that we describe in detail below. As before, we will con-
sider a size-biased exploration process. Assumption 1.3 (ii) says that the
expectation of this size-biased distribution is carried predominantly by the
contribution due to the hubs. Note that, under Assumption 1.3, α > 1/2, and
consequently the criticality parameter for CMn(d) satisfies νn = Θ(n2α−1),
which tends to infinity as n → ∞. The critical behavior for percolation on
CMn(d) is observed for values of p given by

pc = pc(λ) :=
λ

νn
(1 + o(1)), λ ∈ (0,∞). (1.31)

The nature of the critical window for τ ∈ (2, 3) is fundamentally different
than in the finite second-moment case. Here, the graph becomes more and
more subcritical (or supercritical) as λ → 0 (or λ → ∞), contrary to the
λ→ ∓∞ scenario for τ > 4 and τ ∈ (3, 4).

To describe the results for the component sizes and the surplus edges,
recall that Zn(λ) denotes the vector (n−ρ|C(i)(pc(λ))|, SP(C(i)(pc(λ))))i>1, or-
dered as an element of U0

↓ . A vertex is called isolated if it has degree zero in
the graph CMn(d,pc(λ)). We define the component size corresponding to an
isolated vertex to be zero. This is required because in this case 2ρ < 1. When
we perform percolation with probability pc(λ), we see order n isolated ver-
tices and thus n−2ρ × (# isolated vertices) tends to infinity, which destroys
the `2↓-tightness of the component sizes. The following theorem gives the
asymptotics for the component sizes and the complexity for CMn(d,pc(λ)):
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Theorem 1.7.1 (Component sizes and complexity). Under Assumption 1.3, as
n→∞,

Zn(λ)
d−→ Z(λ)

with respect to the U0
↓ topology, where Z(λ) is some non-degenerate random de-

scribed in detail in Theorem 6.1.1.

Our next result shows that the diameter of the largest connected compo-
nents is of constant order, which yields further insight into the distance struc-
ture of these critical components. Let ∆ni denote the diameter of C(i)(pc(λ)).

Theorem 1.7.2 (Diameter of largest clusters). Under Assumption 1.3, (∆ni )n>1

is a tight sequence of random variables, for any i > 1.

In order to establish that (1.31) gives the critical value, we further inves-
tigate the barely sub/supercritical regimes which are defined respectively
by pn � pc(λ) and pn � pc(λ). We prove the following theorem for the
barely-subcritical regime:

Theorem 1.7.3 (Barely subcritical regime). Suppose that log(n)
`n

� pn � pc(λ)

and Assumption 1.3 holds. Then, for each fixed i > 1, as n→∞,

|C(i)(pn)|

nαpn

P−→ θi.

For the result about the barely supercritical regime, we need one further
mild technical assumption, which is as follows: Let D∗n denote the degree
of a vertex chosen in a size-biased manner with the sizes being (di/`n)i∈[n].
Then, there exists a constant κ > 0 such that

1 − E[e−tp
1/(3−τ)
n D∗n ] = κtτ−2p

(τ−2)/(3−τ)
n (1 + o(1)). (1.32)

Condition (1.32) is related to the Abel-Tauberian theorem [84, Chapter XIII.5],
but due to the joint scaling of pn and D∗n, this has to be stated as an assump-
tion. In Chapter 6, we show that (1.32) is satisfied if di = (1 − F)−1(i/n)

for some distribution function F supported on non-negative integers, and
(1 − F)(x) = Ck−(τ−1), for k 6 x < k+ 1. The next theorem considers the
barely supercritical regime:

Theorem 1.7.4 (Barely supercritical regime). Suppose that pn � pc(λ), and
Assumption 1.3 and (1.32) holds. Then, as n→∞,

|C(1)(pn)|

np
1/(3−τ)
n

P−→ µκ1/(3−τ)

2(τ−2)/(3−τ) ,
E(C(1)(pn))

np
1/(3−τ)
n

P−→ µκ1/(3−τ)

2(4−τ)/(3−τ) ,
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and for all i > 2, |C(i)(pn)| = oP(np
1/(3−τ)
n ), E(C(i)(pn)) = oP(np

1/(3−τ)
n ),

where E(G) denotes the number of edges in the graph G.

In the next section, we will briefly discuss the main challenges in proving
Theorem 1.7.1. The reader is referred to Chapter 6 for a further rigorous
treatment of all the above mentioned results.

Proof ideas for Theorem 1.7.1.

The proof consists of two key steps: Set up a suitable exploration process
which converges to a stochastic process; and analyze the scaling limit of the
exploration process.

The exploration process. In Section 1.4.1, Janson’s construction in Algo-
rithm 1.1 played a crucial role in representing the percolated configuration
model as a configuration model, and thus one could use the exploration
process on a configuration model to make conclusions about the percolated
graph. Unfortunately, this technique does not work anymore when pc → 0,
because in that case red vertices outnumber non-red vertices, which makes
the discovery of the non-red vertices rare during the exploration process.
However, we can still approximate CMn(d,pc(λ)) by a suitable configuration
model, which is described as follows:

Algorithm 1.5. (S0) Retain each half-edge with probability pn. If the total
number of retained half-edges is odd, attach a dummy half-edge with
vertex 1.

(S1) Perform a uniform perfect matching between the half-edges retained
in (S0). Pair unpaired half-edges sequentially with a uniformly chosen
unpaired half-edge until all half-edges are paired. The paired half-
edges create edges in the graph, and we call the resulting graph Gn(pn).

Let d̃ = (d̃1, . . . , d̃n) be the degree sequence induced by Algorithm 1.5 (S1).
Then Gn(pn) is distributed as CMn(d̃). Moreover, the following proposition
states that it is enough to consider the scaling limit of Zn(λ) in Gn(pn):

Proposition 1.7.5. Let pn be such that `npn � log(n). Then there exists a
sequence (εn)n>1 with εn → 0, and a coupling such that, with high probability,

Gn(pn(1 − εn)) ⊂ CMn(d,pn) ⊂ Gn(pn(1 + εn)).
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The proof of Proposition 1.7.5 is provided in Proposition 6.2.4. We can now
set up the exploration process on CMn(d̃). Consider the same exploration
algorithm and process as in the τ ∈ (3, 4) case defined in (1.20) on the graph
CMn(d̃). Recall that if Ini (l) denotes the indicator that vertex i is discovered
before time l, then the exploration process is given by

Sn(l) =
∑
i∈[n]

d̃iI
n
i (l) − 2l.

Define the re-scaled version S̄n of Sn by S̄n(t) = n−ρSn(btnρc). Then,

S̄n(t) = n
−ρ
∑
i∈[n]

d̃iI
n
i (tn

ρ) − 2t+ o(1). (1.33)

Now, using the estimate of the exploration probability in the above explo-
ration process from (1.25)

n−ρE

[∑
i>K

d̃iI
n
i (tn

ρ)
∣∣∣d̃] 6 t∑i>K d̃2

i

˜̀
n − 2tnρ

. (1.34)

Using Assumption 1.3, along with the fact that d̃i ∼ Bin(di,pn) indepen-
dently over i ∈ [n], it is not difficult to show that the probability that the final
term in (1.34) is more than ε tends to zero in the iterated limit
limK→∞ lim supn→∞. See Lemma 6.2.5 for more details. Therefore, it is
enough to find the scaling limit of (1.33) by truncating the sum upto the first
K terms and then taking the iterated limit as n→∞ and then K→∞. Upon
a closer inspection, one can verify that an analogue of Lemma 1.4.10 is true
for this case as well, which yields the following result:

Theorem 1.7.6. Under Assumption 1.3, as n→∞,

S̄n
d−→ S̄∞

with respect to the Skorohod J1 topology, where the limiting process is defined by

Sλ∞(t) = λ
∞∑
i=1

θiIi(t) − 2t, (1.35)

for Ii(s) := 1{ξi 6 s} with ξi ∼ Exp(θi/µ) independently,

Analysis of the limiting process. The limiting process (1.35) has turned up
for the first time in the critical random graph literature, and its description
is not covered by the general framework provided by Aldous and Limic [11].
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1.7 Analysis in the infinite second-moment case

One needs to establish several properties of the Sλ∞ process to conclude that
the rescaled component sizes converge to its ordered excursion lengths. For
example, one first needs to show whether it is at all possible to order the
excursion lengths. Further, the function mapping a càdlàg function to its
largest excursion is only continuous on a subset of good càdlàg functions
under the Skorohod J1 topology, see Definition 1. Therefore, one needs to
verify that the sample paths of (1.35) are good almost surely. The following
proposition allows us to establish all those good properties:

Proposition 1.7.7. (P1) As t → ∞, Sλ∞(t) a.s.−→ −∞. Thus, Sλ∞ does not have an
excursion of infinite length almost surely.

(P2) For any δ > 0, Sλ∞ has only finitely many excursions of length at least δ
almost surely.

(P3) Let R denote the set of excursion end-points of Sλ∞. Then R does not have an
isolated point.

(P4) For any t > 0, P(Sλ∞(t) = infu6t Sλ∞(u)) = 0.

The proof is mostly technical and is provided in Section 6.2.1.

Completing the proof. Let us now briefly outline the final ingredients of
the proof of Theorem 1.7.6. Firstly, if Al denotes the number of active half-
edges after stage l while implementing the exploration algorithm, then note
that the probability of creating a surplus edge at time i conditionally on Fi−1

is given by
Ai−1 − 1

˜̀
n − 2i− 1

=
Ai−1

˜̀
n

(1 +O(i/n)) +O(n−1),

uniformly for i 6 Tnρ for any T > 0. Therefore, the instantaneous rate of
creating surplus edges at time tnρ, conditional on the past, is

nρ
Abtnρc

n2ρ µ2∑
i>1 θ

2
i

(1 + o(1)) + o(1) =

∑
i>1 θ

2
i

µ2 refl(S̄n(t)) (1 + o(1)) + o(1).

As in the τ > 4 and τ ∈ (3, 4) cases, this gives the asymptotics for the sur-
plus edges within components. Finally, as in Sections 1.4.2, 1.4.3, to conclude
that the largest component sizes and surplus edges converge to ordered ex-
cursion lengths of Sλ∞, one needs to show that the largest components are
explored before time O(nρ), and Zn(λ) is tight in U0

↓ . The reader is referred
to Section 6.2 for the final details of this proof.
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1.7.2 Effect of the single-edge constraint

In this section, we will consider two random graph models that do not allow
for self-loops and multiple-edges: the generalized random graph GRGn(w)

and the erased configuration model ECMn(d). The critical window for per-
colation is given by

pc = pc(λ) := λn
− 3−τ

2 (1 + o(1)), λ ∈ (0,∞). (1.36)

Note that the critical value in (1.36) is strictly larger in order than (1.31). In
fact, this is the only regime of τ where the exponent for the critical window
changes after deleting the self-loops and multiple edges of CMn(d).

Let us first state the result for GRGn(w). We assume the following about
the sequence of weights:

Assumption 1.4. For some τ ∈ (2, 3), consider the distribution function sat-
isfying (1 − F)(x) = Cx−(τ−1) and let wi = (1 − F)−1(i/n).

In the above case, if Wn denotes the weight of a vertex chosen uniformly at
random from [n], then

E[Wn] =
1
n

∑
i∈[n]

wi → µ = E[W].

Moreover,

n−αwi = cFi
−α,

for some constant cF > 0. Throughout cF will denote the special constant
appearing above. Assumption 1.4 is strictly stronger than Assumption 1.3 in
the sense that Assumption 1.4 specifies not only the high-degree vertices but
all the wi’s. This is required in the proofs as one needs precise estimates of
quantities like E[Wn1{Wn > Kn}]. See Lemma 6.3.1 for many such required
estimates.

Let C(i)(p) denote the i-th largest component of GRGn(w,p), and define
W(i)(p) :=

∑
k∈C(i)(p)

wk. We will consider the scaling limits of (W(i)(pc))i>1

and (C(i)(pc))i>1. To describe the limiting object, consider the graph G∞(λ)
on the vertex set Z+, where the vertices i and j are joined independently by
Poisson(λij) many edges with λij given by

λij := λ
2
∫∞

0
θi(x)θj(x)dx, θi(x) :=

c2
Fi

−αx−α

µ+ c2
Fi

−αx−α
.
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1.7 Analysis in the infinite second-moment case

Let W∞(i)(λ) denote the i-th largest element of the set{∑
i∈C

θi : C is a connected component of G∞(λ)}.

The following describes the component sizes of GRGn(w,pc(λ)):

Theorem 1.7.8 (Critical regime for GRGn(w)). There exists an absolute con-
stant λ0 such that for any λ ∈ (0, λ0), under Assumption 1.4, as n→∞,

n−α(W(i)(pc(λ)))i>1
d−→ (W∞(i)(λ))i>1,

and
(nαpc)

−1(|C(i)(pc(λ))|)i>1
d−→ (W∞(i)(λ))i>1,

with respect to the `2↓ topology.

For the erased configuration model, we will assume that d satisfies As-
sumption 1.4. Since d can only take integer values, the support of F is taken
to be the set of non-negative integers. The limiting object for ECMn(d) is
similar to that in GRGn(w) by now taking

θi(x) := 1 − e−
c2
F
i−αx−α

µ . (1.37)

Theorem 1.7.9 (Critical regime for ECMn(d)). There exists an absolute constant
λ0 such that for any λ ∈ (0, λ0), under Assumption 1.4, the scaling limit results in
Theorem 1.7.8 holds for ECMn(d,pc(λ)) with identical limit objects described by
(1.37) above.

Next, we state the result about the barely subcritical regime under the
single-edge constraint. The following result holds for percolation on both
GRGn(w) and ECMn(d):

Theorem 1.7.10. Suppose that Assumption 1.4 holds and pn � pc(λ). Then, for
any fixed i > 1, as n→∞,

|C(i)(pn)|

nαpn

P−→ cFi
−α, and

W(i)(pn)

nα
P−→ cFi

−α.

Under the single-edge constraint, the exact asymptotics in the barely super-
critical case is left to future work. In the proofs under the single-edge con-
straint, coming up with a tractable exploration process for the clusters seems
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Chapter 1 Introduction

challenging. The only tool we have is an estimate of the connection proba-
bilities of hubs via an intermediate vertex, which allows us to estimate ex-
pectations of several moments of component sizes and total weights of those
component. These are often referred to as susceptibility functions. The sus-
ceptibility functions allow us to ignore negligible contributions on the total
weights of cluster using the first-moment method. Unfortunately, the first-
moment method does not work in the barely-supercritical regime, or for high
values of λ in Theorems 1.7.8, 1.7.9. This is the reason for assuming λ ∈ (0, λ0)

in those theorems. The proof for general λ is an open question.
The critical window changes due to the single-edge constraint, as noted

in (1.31) and (1.36). However, in both cases, the critical window is the regime
where hubs start getting connected. More precisely, the critical window is
given by those values of p such that for any fixed i, j > 1

lim
n→∞P(i, j are in the same component of the p-percolated graph) ∈ (0, 1).

For the configuration model, hubs are connected directly with strictly pos-
itive probability. In CMn(d), vertices i and j share didj/(`n − 1) edges in
expectation. Thus for hubs with di = O(nα) and dj = O(nα), O(1) many
edges survive after percolation in expectation in the critical window (1.31).
On the other hand, whenever p→ 0, hubs are never connected directly under
the single-edge constraint. We will see in Chapter 6 and in the heuristic argu-
ments below that the value pc in (1.36) is such that the hubs are connected to
each other via intermediate vertices which have degree Θ(nρ). Intuitively, in
the barely subcritical regime, all the hubs are in different components. Hubs
start forming the critical components as p varies over the critical window,
and finally in the barely super-critical regime the giant component is formed
which contains all the hubs. This feature is also observed in the τ ∈ (3, 4)
case [33].

In the next section, we only outline the proof of Theorem 1.7.8. The proof
of Theorem 1.7.9 uses similar arguments, but additional complications arise
due to the dependence between occurrence of edges. We refer the reader to
Section 6.3 for rigorous derivations of the above results.

Proof ideas for Theorem 1.7.8.

The key idea of the proof is to first consider total weights of components. In
this section, we will use the notation C as a generic notation for a positive con-
stant that may only depend on F. Let C (i) denote the component containing
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1.7 Analysis in the infinite second-moment case

vertex i and W(i) =
∑
v∈C (i)wv. Further, let Wk(i) :=

∑
v∈C (i), d(i,v)=kwv,

where d(·, ·) denotes the graph-distance. The idea is to show that the pri-
mary contribution to W(i) comes from vertices at finite, even distance. This
is because hubs are not connected directly, but via intermediate vertices. To
identify negligible contributions to W(i), we use the first-moment method.
Note that E[Wk(i)] 6

∑
j∈[n]wjfk(i, j), where fk(i, j) denotes the probability

that there is a path of length k from i to j. The key ingredient in our proof is
the following lemma which allows us to compute fk(i, j).

Lemma 1.7.11 (Two-hop connection probabilities). For all n > 1, and i, j ∈ [n],

pij(2) := p2
c

∑
v∈[n]

wiw
2
vwj

(`n +wiwv)(`n +wjwv)
6

Cλ2

(i∧ j)1−α(i∨ j)α
. (1.38)

Note that pij(2) is the expected number of connections between i and j
via an intermediate vertex. The upper bound in (1.38) is exactly the same
as the connection probabilities in a preferential attachment model [46, 73]
(See [73, Lemma 2.2]). Therefore, existing path-counting estimates for the
preferential attachment model [73, Lemma 2.4] yield, for 1 −α < b < α,

f2k(i, j) 6
(Cλ2)k

(i∧ j)b(i∨ j)1−b . (1.39)

The geometric bound in (1.39) gives

E[W2k(i)] 6
∑
j∈[n]

wjf2k(i, j)

6 nα(c0λ
2)k
[∑
j<i

1
jα

1
jbi1−b

+
∑
j>i

1
jα

1
ibj1−b

]

6 Cnα(c0λ
2)k
[ 1
i1−b

+
1
iα

]
6 C(c0λ

2)k
nα

i1−b

6 C(c0λ
2)kwii

b−(1−α).

The final term decays geometrically with k when c0λ
2 < 1. This is the precise

reason why the condition λ ∈ (0, λ0) is needed in Theorem 1.7.8. Suitable
upper bounds on E[W2k+1(i)] can also be obtained using (1.39). Thus the
next proposition follows using the first-moment method:
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Proposition 1.7.12. For any fixed i > 1, ε > 0, and λ ∈ (0, λ0)

lim
K→∞ lim sup

n→∞ P

(∑
k>K

W2k(i) > εn
α

)
= 0,

lim
n→∞P

( ∞∑
k=0

W2k+1(i) > εn
α

)
= 0.

Hence, the primary contribution to W(i) comes from weights of vertices
at finite, even distance. The next proposition goes one step further and says
that, even among the vertices at finite, even distance, the major contribution
comes from the hubs. For δ > 0, define VL(δ) := {v : wv > δnα}, and
Wk(i, δ) :=

∑
v/∈VL(δ),d(v,i)=kwv.

Proposition 1.7.13. For any fixed i > 1, K > 1, and ε > 0,

lim
δ→0

lim sup
n→∞ P

( K∑
k=1

W2k(i, δ) > εnα
)

= 0.

Combining Propositions 1.7.12, 1.7.13, obtaining asymptotics ofW(i) now
boils down to identifying the hubs which are in C (i). From (1.38), hubs
are connected to each other via some intermediate vertices with probability
bounded away from zero. Let Xij denote the number of paths of length 2
from i to j. Note that, for any i, j ∈ VL(δ) (i 6= j),

Xij =
∑
v 6=i,j

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
, (1.40)

with the different Bernoulli random variables in the sum (1.40) being inde-
pendent. Now, the primary contribution in the sum (1.40) comes from ver-
tices with weight Θ(nρ). In fact using some estimates of the moments of w,
we can show that∑

v:wv<δnρ

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
6 Cδ3−τ,

∑
v:wv>δ−1nρ

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
6 Cδτ−1,

see Section 6.3.3. Thus,

Xij =
∑

v:wv∈[δnρ,δ−1nρ]

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
+ E(δ,n)

= Xij(δ) + E(δ,n),
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1.8 Summary of contributions

where for any ε > 0 limδ→0 lim supn→∞P(E(δ,n) > ε) = 0. Define

λij(δ) =
∑

v:wv∈[δnρ,δ−1nρ]

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)
.

Thus, the above term can be approximated by a Poisson random variable
using Stein’s method and

lim
δ→0

lim
n→∞ λij(δ) = λ2

∫∞
0
θi(x)θj(x)dx, θi(x) :=

c2
Fi

−αx−α

µ+ c2
Fi

−αx−α
.

Recall the description of the graph G∞(λ) from Theorem 1.7.8. The above
proves that the limit of n−αW(i) is basically

∑
v∈C(i) v

−α, C(i) being the
connected component containing i in G∞(λ). |C (i)| = pc(λ)W(i)(1 + oP(1))
is proved using the second-moment method. Finally, to prove the scaling
limit of the ordered vector of component sizes and weights, we show that the
vectors are tight in `2↓ in Section 6.3.5. This completes the sketch of the proof
of Theorem 1.7.8.

1.8 Summary of contributions

In summary, we analyze the critical window for the percolation process on
random graph models such as CMn(d), UMn(d), ECMn(d) and GRGn(w).
When the degree distribution satisfies a power law with exponent τ, three
universality classes arise depending on whether τ > 4 (finite third moment),
τ ∈ (3, 4) (infinite third moment) and τ ∈ (2, 3) (infinite second moment). Let
us summarize the main contributions of this thesis below:

Component sizes and complexity for finite third-moment case. In Chap-
ter 2, we obtain precise asymptotics for the component sizes and the sur-
plus edges for CMn(d,pc(λ)) and UMn(d,pc(λ)) in the critical window of the
phase transition under a finite third-moment condition. The main contribu-
tion of this work is that we derive the strongest scaling limit results in the lit-
erature under optimal assumptions. This finite third-moment assumption is
also necessary for Erdős-Rényi type scaling limits, since, amongst other rea-
sons, the third-moment appears in the scaling limit. Also, we prove the joint
convergence of the component sizes and the surplus edges under a strong
topology namely the U0

↓-topology, which improves the previously known re-
sults [121, 135, 144] substantially. The re-scaled vector of component sizes
(ordered in a decreasing manner) is shown to converge to the ordered excur-
sion lengths of a reflected inhomogeneous Brownian motion with a negative
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parabolic drift. Moreover, the surplus edges converge jointly with the compo-
nent sizes under U0

↓-topology to Poisson random variables with parameters
being the areas under the above mentioned ordered excursion lengths.

Component sizes and complexity for infinite third-moment case. In Chap-
ter 3, we consider the critical behavior for the component sizes and surplus
edges in the infinite third-moment case. We consider a general set of as-
sumptions, which include the case that the empirical degree distribution
satisfies P (Dn > k) ∼ L0(k)/k

τ−1 for some τ ∈ (3, 4) and L0(·) a slowly-
varying function. The largest connected components turn out to be of the
order n(τ−2)/(τ−1)L(n)−1 and the width of the scaling window is of the
order n(τ−3)/(τ−1)L(n)−2 for some slowly-varying function L(·). The joint
distribution of the re-scaled component sizes and the surplus edges is shown
to converge in distribution to a suitable limiting random vector under U0

↓-
topology. The scaling limits for the re-scaled ordered component sizes can
be described in terms of the ordered excursions of a certain thinned Lévy
process that only depends on the asymptotics of the high-degree vertices.
This universality class was first identified in [33] in the context of Norros-
Reittu random graphs. Further, the scaling limits for the surplus edges can
be described by Poisson random variables with the parameters being the ar-
eas under the excursions of the thinned Lévy process. The results also hold
conditioned on the graph being simple, thus solving an open question [121,
Conjecture 8.5].

Evolution of components and surplus edges. As λ increases over the criti-
cal window, the component sizes and surplus edges jointly evolve, with com-
ponents merging with each other, and more surplus edges getting created.
In Chapters 2 and 3, the evolution of the component sizes and surplus edges
is shown to converge to a version of the augmented multiplicative coalescent
process both in the finite third-moment and infinite third-moment regimes.
In fact, in the τ ∈ (3, 4) case, our results imply that there exists a version of
the augmented multiplicative coalescent process whose one-dimensional dis-
tribution can be described by the excursions of a thinned Lévy process and
a Poisson process with the intensity being proportional to the thinned Lévy
process, which is also novel.

Metric structure of critical components in the infinite third-moment case.
In Chapter 4, we consider the metric structure of the critical components for
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1.8 Summary of contributions

CMn(d,pc(λ)), with degree-exponent τ ∈ (3, 4). In this context, candidate
limit law of maximal components with each edge rescaled to have length
1/n(τ−3)/(τ−1) was established recently in [36]. In this work, we establish
sufficient uniform asymptotic negligibility (UAN) conditions for a random
graph model in the barely subcritical regime which, in combination with the
appropriate merging dynamics of components as one increases edge density
through the critical regime, implies convergence to limits obtained in [36].
This result identifies the domain of attraction for the limit laws established
in [36], which holds for general sequences of dynamically evolving graphs.
As a canonical example, we analyze the critical regime for percolation on
the uniform random graph model (and the closely associated configuration
model) with prescribed degree distribution that converges to a heavy-tailed
degree distribution. In order to carry out the above analysis and in partic-
ular check the UAN assumptions, we establish refined bounds for various
susceptibility functionals and diameter in the barely subcritical regime of the
configuration model which are of independent interest. In Chapter 5, we
prove the global lower mass-bound property for these critical components,
which proves the convergence of the largest components with respect to the
Gromov-Hausdorff-Prokhorov topology. The latter yields the compactness of
the scaling limit in Chapter 4, as well as scaling limits of global functionals
like diameter.

Component sizes in the infinite second-moment case. In Chapter 6, we
consider a new universality class which corresponds to the degree exponent
τ ∈ (2, 3). In this regime, the critical behavior is observed when the percola-
tion probability tends to zero with the network size. We identify the critical
window for the configuration model, the erased configuration model and the
generalized random graph. The critical window for graphs with single-edges
is given by pc ∼ λn−(3−τ)/2, which is much larger than pc ∼ n−(3−τ)/(τ−1)

for the multigraph CMn(d). This feature is unique to the critical behavior in
the τ ∈ (2, 3) regime. The component sizes in both cases scale as nαpc. For
the configuration model multigraph, we obtain scaling limits for the largest
component sizes and surplus edges under a strong topology. Further, the di-
ameter of the largest components is shown to be a tight sequence of random
variables. To establish that the scaling limits correspond to the critical behav-
ior, we further look at the near-critical behavior and derive the asymptotics
for the component sizes in the so-called barely sub/supercritical regimes.
On the other hand, under the single-edge constraint, we identify the scaling
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limit of the largest component sizes in the part of the critical window, where
the criticality parameter is sufficiently small. The proof where the criticality
parameter can be arbitrary is an ongoing work.

This is the first work on critical percolation on random graphs in the
τ ∈ (2, 3) setting, thus the techniques are novel. The primary difficulty in
this setting is that the exploration process approach does not work. For the
configuration model, this difficulty is circumvented by sandwiching the per-
colated graphs by two configuration models, which yield the same scaling
limits for the component sizes. The main novelty in the proof of the con-
figuration model is the analysis of the limiting exploration process. On the
other hand, in the single-edge constraint scenario, the proofs require a more
detailed understanding of the structure of the critical components. It turns
out that the hubs do not connect to each other directly, but there are some
special vertices that interconnect hubs. This interconnected structure forms
the core of the critical components, and the 1-neighborhood of the core spans
the critical components. We primarily use path counting techniques here
since the exploration process approach does not seem to work anymore. For
path-counting, we compare the connection probabilities between the hubs
to the connection probabilities in a preferential attachment model, which is
interesting in its own right.
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Chapter 2

Critical window for the
configuration model: finite third
moment degrees

Abstract. We investigate the component sizes of the critical configuration model,

as well as the related problem of critical percolation on a supercritical configuration

model. We show that, at criticality, the finite third moment assumption on the asymp-

totic degree distribution is enough to guarantee that the component sizes are O(n2/3)

and the re-scaled component sizes converge to the excursions of an inhomogeneous

Brownian Motion with a parabolic drift. This identifies the minimal condition for the

critical behavior to be in the Erdős-Rényi universality class. We use percolation to

study the evolution of these component sizes while passing through the critical win-

dow and show that the vector of percolation cluster-sizes, considered as a process in

the critical window, converge to the multiplicative coalescent process in finite dimen-

sions. This behavior was first observed for Erdős-Rényi random graphs by Aldous

(1997) and our results provide support for the empirical evidences that the nature of

the phase transition for a wide array of random-graphs are universal in nature. Fur-

ther, we show that the re-scaled component sizes and surplus edges converge jointly

under a strong topology, at each fixed location of the scaling window.

Based on the manuscript: Souvik Dhara, Remco van der Hofstad, Johan S.H. van Leeuwaarden,

and Sanchayan Sen, Critical window for the configuration model: finite third moment degrees (2016),

Electronic Journal of Probability 22, no. 16, 1–33
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Chapter 2 Critical window: Finite third moment

In this chapter, we focus on the critical behavior of the configuration model,
and critical percolation on these graphs when the empirical degree distribu-
tion satisfies a finite third-moment condition. We include detailed proofs of
all scaling limit results mentioned in Chapter 1 about the finite third-moment
case. The scaling limit result for the component sizes and surplus edges holds
for the critical configuration model which includes critical percolation on the
configuration model as a special case. We also study percolation on a super-
critical configuration model to show that the scaled vectors of component
sizes at multiple locations of the percolation scaling window converge jointly
to the finite-dimensional distributions of a multiplicative coalescent process.
The scaling limit results show that component sizes and surplus edges of
CMn(d) in the critical regime, for a large collection of possible degree se-
quences d, lie in the same universality class as for the Erdős-Rényi random
graph [8]. Before stating the main results, we need to introduce some nota-
tion and concepts.

2.1 Definitions and notation

Recall the definitions from Chapter 1.2.1. For a triangular array of random
variables (fk,n)k,n>1, we write phrases like fk,n = OP(n

α) (respectively
oP(n

α)), uniformly over k 6 nβ to mean that supk6nα |fk,n| = OP(n
α) (re-

spectively oP(n
α)). We also write fn = OE(an) (respectively fn = oE(an)) to

denote that supn>1 E
[
a−1
n fn

]
<∞ (respectively limn→∞E

[
a−1
n fn

]
= 0).

In this chapter, Bλµ,η denotes an inhomogeneous Brownian motion with a
parabolic drift, given by

Bλµ,η(s) =

√
η

µ
B(s) + λs−

ηs2

2µ3 , (2.1)

where B = (B(s))s>0 is a standard Brownian motion, and µ > 0, η > 0 and
λ ∈ R are constants. Define the reflected version of Bλµ,η as

Wλ(s) = Bλµ,η(s) − min
06t6s

Bλµ,η(t). (2.2)

For a function f ∈ C[0,∞), an interval γ = (l, r) is called an excursion above
past minima or simply an excursion of f if f(l) = f(r) = minu6r f(u) and
f(x) > f(r) for all l < x < r. |γ| = r(γ) − l(γ) will denote the length of the
excursion γ.

Also, define the counting process of marks Nλ = (Nλ(s))s>0 to be a unit-
jump process with intensity βWλ(s) at time s conditional on (Wλ(u))u6s so
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that

Nλ(s) −

s∫
0

βWλ(u)du (2.3)

is a martingale (see [8]). For an excursion γ, let N(γ) denote the number of
marks in the interval [l(γ), r(γ)].

Remark 1. By [8, Lemma 25], the excursion lengths of Bλµ,η can be rearranged
in decreasing order of length and the ordered excursion lengths can be con-
sidered as a vector in `2↓ , almost surely. Let γλ = (|γλj |)j>1 be the ordered
excursion lengths of Bλµ,η. Then, (|γλj |,N(γλj ))j>1 can be ordered as an ele-
ment of U0

↓ almost surely by [30, Theorem 3.1 (iii)]. We denote this element
of U0

↓ by Z(λ) = ((Yλj ,Nλj ))j>1 obtained from (|γλj
∣∣,N(γλj ))j>1.

Finally, we define a Markov process X := (X(s))s∈R on D(R, `2↓), called
the multiplicative coalescent process. Think of X(s) as a collection of masses of
some particles (possibly infinite) in a system at time s. Thus the ith particle
has mass Xi(s) at time s. The evolution of the system takes place according
to the following rule at time s: At rate Xi(s)Xj(s), particles i and j merge
into a new particle of mass Xi(s) + Xj(s). This process has been extensively
studied in [8, 11]. In particular, Aldous [8, Proposition 5] showed that this is
a Feller process.

2.2 Main results

In this section, we discuss the main results in this chapter. We start by recall-
ing the definition of the configuration model from Chapter 1.1, which is de-
noted by CMn(d). Our results are twofold and concern (i) general CMn(d) at
criticality, and (ii) critical percolation on a super-critical configuration model,
both under a finite third moment assumption.

2.2.1 Configuration model results

For each n > 1, let d = dn = (di)i∈[n] be a degree sequence such that
`n =

∑
i∈[n] di is even. We suppress n in the notation of the degree se-

quence to simplify writing. We consider a sequence of configuration models
(CMn(d))n>1 satisfying the following conditions:

Assumption 2.1. Let Dn denote the degree of a vertex chosen uniformly at
random independently of the graph. Then the following holds as n→∞:
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Chapter 2 Critical window: Finite third moment

(i) (Weak convergence of Dn) Dn
d−→ D for some random variable D such

that E[D3] <∞.

(ii) (Uniform integrability of D3
n) E

[
D3
n

]
= 1
n

∑
i∈[n] d

3
i → E

[
D3].

(iii) (Critical window) νn :=

∑
i∈[n] di(di−1)∑

i∈[n] di
= 1 + λn−1/3 + o(n−1/3), for

some constant λ ∈ R,

(iv) P (D = 1) > 0.

Suppose that C(1), C(2),... are the connected components of CMn(d) in
decreasing order of size. In case of a tie, order the components according to
the values of the minimum indices of vertices in those components. For a
connected graph G, let SP(G):= (number of edges in G) − (|G|− 1) denote the
number of surplus edges. Intuitively, this measures the deviation of G from
a tree-like structure. Let σr = E [Dr] and consider the reflected Brownian
motion, the excursions, and the counting process Nλ as defined in Section
2.1 with parameters

µ := σ1, η := σ3µ− σ
2
2, β := 1/µ. (2.4)

Let γλ denote the vector of excursion lengths of the process Bλµ,η, arranged
in non-increasing order. The next two theorems are our main results for the
critical configuration model:

Theorem 2.2.1. Fix any λ ∈ R. Under Assumption 2.1,

n−2/3(|C(j)|
)
j>1

L−→ γλ

with respect to the `2↓ topology.

Recall the definition of Z(λ) from Remark 1. Order the vector component
sizes and surplus edges

(
n−2/3

∣∣C(j)

∣∣, SP(C(j))
)
j>1 as an element of U0

↓ and
denote it by Zn(λ).

Theorem 2.2.2. Fix any λ ∈ R. Under Assumption 2.1,

Zn(λ)
L−→ Z(λ)

with respect to the U0
↓ topology.

In words, Theorem 2.2.1 gives the precise asymptotic distribution of the
component sizes re-scaled by n2/3 and Theorem 2.2.2 gives the asymptotic
number of surplus edges in each component jointly with their sizes.
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2.2 Main results

Remark 2. The strength of Theorems 2.2.1 and 2.2.2 lies in Assumption 2.1.
Clearly, Assumption 2.1 is satisfied when the distribution of D satisfies an
asymptotic power-law relation with finite third moment, i.e., P(D > x) ∼

x−(τ−1)(1 + o(1)) for some τ > 4. Also, if a random degree-sequence sat-
isfies Assumption 2.1 with high probability, then Theorems 2.2.1 and 2.2.2
hold conditionally on the degrees. In particular, when the degree sequence
consists of an i.i.d sample from a distribution with E[D3] < ∞ [121], then
Assumption 2.1 is satisfied almost surely. We will later see that degree se-
quences in the percolation scaling window also satisfy Assumption 2.1.

2.2.2 Percolation results

Bond percolation on a graph G refers to deleting edges of G independently
with equal probability p. In the case G is a random graph, the deletion of
edges is also independent of G. Consider bond percolation on CMn(d) with
probability pn, yielding CMn(d,pn). We assume the following:

Assumption 2.2. (i) Assumption 2.1 (i) and (ii) hold for the degree se-
quence and CMn(d) is super-critical, i.e.

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
→ ν =

E [D(D− 1)]
E [D]

> 1.

(ii) (Critical window for percolation) For some λ ∈ R,

pn = pn(λ) :=
1
νn

(
1 +

λ

n1/3

)
.

Note that pn(λ), as defined in Assumption 2.2 ii, is always non-negative
for n sufficiently large. Now, suppose d̃i ∼ Bin(di,

√
pn), n+ :=

∑
i∈[n](di −

d̃i) and ñ = n+ n+. Consider the degree sequence d̃ consisting of d̃i for
i ∈ [n] and n+ additional vertices of degree 1, i.e. d̃i = 1 for i ∈ [ñ] \ [n].
We will show later that the degree D̃n of a random vertex from this degree
sequence satisfies Assumption 2.1 (i), (ii) almost surely for some random
variable D̃ with E[D̃3] < ∞. Moreover, ñ/n → 1 + µ(1 − ν−1/2) = ζ almost
surely. Now, using the notation in Section 2.1, define γ̃λj = ζ2/3γ̄λj , where
γ̄λj is the jth largest excursion of the inhomogeneous Brownian motion Bλµ,η

with the parameters

µ = E[D̃], η = E[D̃3]E[D̃] − E2[D̃2], β = 1/E[D̃]. (2.5)

Define the process Ñ as in (2.3) with the parameter values given by (2.5).
Denote the jth largest cluster of CMn(d,pn(λ)) by C p(j)(λ). Also, let Zpn(λ)
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Chapter 2 Critical window: Finite third moment

denote the vector in U0
↓ obtained by rearranging critical percolation clusters

(re-scaled by n2/3) and their surplus edges and Z̃(λ) denote the vector in U0
↓

obtained by rearranging ((
√
ν|γ̃λj |, Ñ(γ̃λj )))j>1.

Theorem 2.2.3. Under Assumption 2.2,

Zpn(λ)
L−→ Z̃(λ)

with respect to the U0
↓ topology.

Next we consider the percolation clusters for multiple values of λ. There
is a very natural way to couple (CMn(d,pn(λ))λ∈R described as follows:
Suppose that each edge (ij) of CMn(d) has an associated i.i.d uniform ran-
dom variableUij, and theUij’s are also independent of CMn(d). Now, delete
edge (ij) if Uij > pn(λ). The obtained graph is distributed as CMn(d,pn(λ)).
Moreover, if we fix the set of uniform random variables and change λ, this
produces a coupling between the graphs (CMn(d,pn(λ))λ∈R. The next the-
orem shows that the convergence of the component sizes holds jointly in
finitely many locations within the critical window, under the above described
coupling:

Theorem 2.2.4. Let us denote Cn(λ) = (n−2/3|C p(j)(λ)|)j>1. Suppose that As-
sumption 2.2 holds. For any k > 1 and −∞ < λ0 < λ1 < · · · < λk−1 <∞,(

Cn(λ0), Cn(λ1), . . . , Cn(λk−1)
) L−→

√
ν(γ̃λ0 , γ̃λ1 , . . . , γ̃λk−1)

with respect to the (`2↓)k topology.

Remark 3. The coupling for the limiting process in Theorem 2.2.4 is given
by the multiplicative coalescent process described in Section 2.1. This will
become more clear when we describe the ideas of the proof. To understand
this intuitively, notice that the component C p(i)(λ) consists of some paired
half-edges which form the edges of the percolated graph, and some open
half-edges which were deleted due to percolation. Denote by O

p
i (λ), the total

number of open half-edges of C p(i)(λ). One can think of O
p
i as the mass of

C p(i). Now, as we change the value of the percolation parameter from pn(λ)

to pn(λ+ dλ), exactly one edge is added to the graph and the two endpoints
are chosen proportional to the number of open half-edges of the components
of CMn(d,pn(λ)). By the above heuristics, C p(i) and C p(j) merge at rate pro-
portional to O

p
i O
p
j and creates a component of mass O

p
i +O

p
j − 2. Later, we

will show that the mass of a component is approximately proportional to the
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2.3 Discussion

component size. Therefore, the component sizes merge approximately like the
multiplicative coalescent over the critical scaling window.

Remark 4. Janson [109] studied the phase transition of the maximum compo-
nent size for percolation on a super-critical configuration model. The critical
value was shown to be p = 1/ν. This is precisely the reason behind tak-
ing pn of the form given by Assumption 2.2 (ii). The width of the scaling
window is intimately related to the asymptotics of the susceptibility func-
tion

∑
i |C(i)|

2/n. In fact, if
∑
i |C(i)|

2 ∼ n1+η, then the width of the critical
window turns out to be nη and the largest component sizes are of the order
n(1+η)/2. This has been universally observed in the random graph literature
[8, 32, 66, 121, 135, 144], even when the scaling limit is not in the same uni-
versality class as Erdős-Rényi random graphs [33, 69] and the same turns out
to be the case in this chapter.

Remark 5. Theorems 2.2.1 and 2.2.2 also hold for configuration models con-
ditioned on simplicity. We do not give a proof here. The arguments in [121,
Section 7] can be followed verbatim to obtain a proof of this fact. As a result,
Theorems 2.2.3 and 2.2.4 also hold, conditioned on simplicity.

The rest of the chapter is organized as follows: In Section 2.3.1, we give a
brief overview of the relevant literature. This will enable the reader to under-
stand better the relation of this work to the large body of literature already
present. Also, it will become clear why the choices of the parameters in As-
sumption 2.1 (iii) and Assumption 2.2 (ii) should correspond to the critical
scaling window. We prove Theorems 2.2.1 and 2.2.2 in Section 2.4. In Sec-
tion 2.5 we find the asymptotic degree distribution in each component. This
is used along with Theorem 2.2.2 to establish Theorem 2.2.3 in Section 2.6. In
Section 2.7, we analyze the evolution of the component sizes over the perco-
lation critical window and prove Theorem 2.2.4.

2.3 Discussion

2.3.1 Relation to precious work

Erdős-Rényi type behavior. We first explain what ‘Erdős-Rényi type behav-
ior’ means. The study of critical window for random graphs started with the
seminal paper [8] on Erdős-Rényi random graphs with p = n−1(1+ λn−1/3).
Aldous showed in this regime that the largest components are of asymptotic
size n2/3 and the ordered component sizes (scaled by n2/3) asymptotically
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Chapter 2 Critical window: Finite third moment

have the same distribution as the ordered excursion lengths of a Brownian
motion with a negative parabolic drift. Aldous also considered a natural cou-
pling of the re-scaled vectors of component sizes as λ varies, and viewed it
as a dynamic `2↓-valued stochastic process. It was shown that the dynamic
process can be described by a process called the standard multiplicative coa-
lescent, which has the Feller property. This implies the convergence of the
component sizes jointly for different λ values. In Theorem 2.2.4, we show
that similar results hold for the configuration model under a very general set
of assumptions. Of course, for general configuration models, there is no obvi-
ous way to couple the graphs such that the location parameter in the scaling
window varies and percolation seems to be the most natural way to achieve
this. By [85, 109], percolation on a configuration model can be viewed as a
configuration model with a random degree sequence and this is precisely the
reason for studying percolation in this chapter.

Universality and optimal assumptions. In [32] it was shown that, inside the
critical scaling window, the ordered component sizes (scaled by n2/3) of an
inhomogeneous random graph with

pij = 1 − exp
(
−(1 + λn−1/3)wiwj∑

k∈[n]wk

)
converge to the ordered excursion lengths of an inhomogeneous Brownian
motion with a parabolic drift under only a finite third-moment assumption
on the weight distribution. We establish a counterpart of this for the con-
figuration model in Theorem 2.2.1. Later Nachmias and Peres [135] studied
the case of percolation scaling window on random regular graphs; for per-
colation on the configuration model similar results were obtained by Rior-
dan [144] for bounded maximum degrees. Joseph [121] obtained the same
scaling limits as Theorem 2.2.1 for the component sizes when the degrees
form an i.i.d. sample from a distribution having finite third moment. Theo-
rems 2.2.2 and 2.2.3 prove stronger versions of all these existing results for
the configuration model under the optimal assumptions. Further, in The-
orem 2.2.4, we give a dynamic picture for percolation cluster sizes in the
critical window and show that this dynamics can be approximated by the
multiplicative coalescent.

Comparison to branching processes. In [114, 133] the phase transition for
the component sizes of CMn(d) was identified in terms of the parameter
ν = E[D(D− 1)]/E[D]. The local neighborhoods of the configuration model
can be approximated by a branching process X which has ν as its expected
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progeny and thus, when ν > 1, CMn(d) has a component Cmax of approxi-
mate size ρn, where ρ is the survival probability of X. Further, the progeny
distribution of X has finite variance when E[D3] < ∞. Now, for a branching
process with mean ≈ 1 + ε and finite variance σ2, the survival probability is
approximately 2σ−2ε for small ε > 0. This seems to suggest that the largest
component size under Assumption 2.1 should be of the order n2/3 since
ε = Θ(n−1/3). Theorem 2.2.1 mirrors this intuition and shows that in fact all
the largest component sizes are of the order n2/3.

2.3.2 Proof ideas

The proof of Theorem 2.2.1 uses a standard functional central limit theorem
argument. Indeed we associate a suitable semi-martingale with the graph
obtained from an exploration algorithm used to explore the connected compo-
nents of CMn(d). The martingale part is then shown to converge to an in-
homogeneous Brownian motion, and the drift part is shown to converge to a
parabola. The fact that the component sizes can be expressed in terms of the
hitting times of the semi-martingale implies the finite-dimensional conver-
gence of the component sizes. The convergence with respect to `2↓ is then con-
cluded using size-biased point process arguments formulated by Aldous [8].
Theorem 2.2.2 requires a careful estimate of the tail probability of the dis-
tribution of surplus edges when the component size is small and we obtain
this using martingale estimates in Lemma 2.4.17. Theorem 2.2.3 is proved by
showing that the percolated degree sequence satisfies Assumption 2.1 almost
surely. Finally, we prove Theorem 2.2.4 in Section 2.7. The key challenges
here are that, for each fixed n, the components do not merge according to
their component sizes, and that the components do not merge exactly like a
multiplicative coalescent over the scaling window. Thus the main theme of
the proof lies in approximating the evolution of the component sizes over the
percolation scaling window with a suitable dynamic process that is an exact
multiplicative coalescent.

2.4 Proofs of Theorems 2.2.1 and 2.2.2

2.4.1 The exploration process

Let us explore the graph sequentially using a natural approach outlined
in [144]. At step k, divide the set of half-edges into three groups; sleeping
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Chapter 2 Critical window: Finite third moment

half-edges Sk, active half-edges Ak, and dead half-edges Dk. The depth-first
exploration process can be summarized in the following algorithm:

Algorithm 2.1 (DFS exploration). At k = 0, Sk contains all the half-edges and
Ak, Dk are empty. While (Sk 6= ∅ or Ak 6= ∅) we do the following at stage
k+ 1:

S1 If Ak 6= ∅, then take the smallest half-edge a from Ak.

S2 Take the half-edge b from Sk that is paired to a. Suppose b is at-
tached to a vertex w (which is necessarily not discovered yet). Declare
w to be discovered, let r = dw − 1 and bw1,bw2, . . .bwr be the half-
edges of w other than b. Declare bw1, bw2,..., bwr,b to be smaller
than all other half-edges in Ak. Also order the half-edges of w among
themselves as bw1 > bw2 > · · · > bwr > b. Now identify Bk ⊂
Ak ∪ {bw1,bw2, . . . ,bwr} as the collection of all half-edges in Ak paired
to one of the bwi’s and the corresponding bwi’s. Similarly identify
Ck ⊂ {bw1,bw2, . . . ,bwr} which is the collection of self-loops incident
to w. Finally, declare Ak+1 = Ak ∪ {bw1,bw2, . . . ,bwr} \

(
Bk ∪ Ck

)
,

Dk+1 = Dk∪ {a,b}∪Bk∪Ck and Sk+1 = Sk \
(
{b}∪ {bw1,bw2, ...,bwr}

)
.

Go to stage k+ 2.

S3 If Ak = ∅ for some k, then take out one half-edge a from Sk uniformly
at random and identify the vertex v incident to it. Declare v to be
discovered. Let r = dv − 1 and assume that av1, av2,..., avr are the
half-edges of v other than a and identify the collection of half-edges
involved in self-loops Ck as in Step 2. Order the half-edges of v as
av1 > av2 > · · · > avr > a. Set Ak+1 = {a,av1, av2,..., avr} \ Ck,
Dk+1 = Dk ∪ Ck, and Sk+1 = Sk \ {a,av1,av2, ...,avr}. Go to stage
k+ 2.

In words, we explore a new vertex at each stage and throw away all the
half-edges involved in a loop/multiple edge/cycle with the vertex set already
discovered before proceeding to the next stage. The ordering of the half-
edges is such that the connected components of CMn(d) are explored in the
depth-first way. We call the half-edges of Bk ∪ Ck cycle half-edges because
they create loops, cycles or multiple edges in the graph. Let

Ak := |Ak|, c(k+1) := (|Bk|+ |Ck|)/2, Uk := |Sk|. (2.6)

Let d(j) be the degree of the jth explored vertex and define the following
process:
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2.4 Proofs of Theorems 2.2.1 and 2.2.2

Sn(0) = 0, Sn(i) =

i∑
j=1

(d(j) − 2 − 2c(j)).

The process Sn = (Sn(i))i∈[n] “encodes the component sizes as lengths
of path segments above past minima” as discussed in [8]. Suppose Ci is the
ith connected component explored by the above exploration process. Define

τk = inf
{
i : Sn(i) = −2k

}
. (2.7)

Then Ck is discovered between the times τk−1 + 1 and τk and |Ck| = τk −

τk−1.

2.4.2 Size-biased exploration

The vertices are explored in a size-biased manner with sizes proportional to
their degrees, i.e., if we denote by v(i) the ith explored vertex in Algorithm 2.1
and by d(i) the degree of v(i), then ∀j ∈ Vi−1,

P
(
v(i) = j|v(1), v(2), ..., v(i−1)

)
=

dj∑
k/∈Vi−1

dk
=

dj∑
k∈[n] dk −

∑i−1
k=1 d(k)

,

where Vi denotes the first i vertices to be discovered in the above explo-
ration process. The following lemma will be used crucially in the proof of
Theorem 2.2.1:

Lemma 2.4.1. Suppose that Assumption 2.1 holds and denote σr = E[Dr] and
µ = E[D]. Then for all t > 0, as n→∞,

sup
u6t

∣∣∣n−2/3
bn2/3uc∑
i=1

d(i) −
σ2u

µ

∣∣∣ P−→ 0, (2.8)

and

sup
u6t

∣∣∣n−2/3
bn2/3uc∑
i=1

d2
(i) −

σ3u

µ

∣∣∣ P−→ 0. (2.9)

The proof of this lemma follows from the two lemmas stated below:

Lemma 2.4.2 ([35, Lemma 8.2]). Consider a weight sequence (wi)i∈[n] and let
m = m(n) 6 n be increasing with n. Let {v(i)}i∈[n] be the size-biased reordering
of indices [n], where the size of index i is di/`n. Define γn =

∑
i∈[n]widi/`n
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and Y(t) = (mγn)
−1∑bmtc

i=1 wv(i). Further, let dmax = maxi∈[n] di, and wmax =

maxi∈[n]wi. Assume that

lim
n→∞mdmax/`n = 0, and lim

n→∞(mγn)−1wmax = 0. (2.10)

Then, for any t > 0, as n→∞, supu6t |Y(t) − t|
P−→ 0.

Lemma 2.4.3. Assumption 2.1 implies

lim
k→∞ lim

n→∞ 1
n

∑
j∈[n]

1{dj>k}d
r
j = 0, r = 1, 2, 3.

For r = 3, in particular, this implies d3
max = o(n).

2.4.3 Estimate of cycle half-edges

The following lemma gives an estimate of the number of cycle half-edges
created up to time t. This result is proved in [144] for bounded degrees. In
our case, it follows from Lemma 2.4.1 as we show below:

Lemma 2.4.4. For Algorithm 2.1, if Ak =
∣∣Ak∣∣, Bk :=

∣∣Bk∣∣, and Ck :=
∣∣Ck∣∣, then

E
[
Bk|Fk

]
= (1 + oP(1))

2Ak
Uk

+OP(n
−2/3) (2.11)

and
E
[
Ck|Fk

]
= OP(n

−1) (2.12)

uniformly for k 6 tn2/3 and any t > 0, where Fk is the sigma-field generated by
the information revealed up to stage k. Further, all the OP and oP terms in (2.11)
and (2.12) can be replaced by OE and oE.

Proof. Suppose Uk :=
∣∣Sk∣∣. First note that by (2.8)

Uk
n

=
1
n

∑
j∈[n]

dj −
1
n

k∑
j=1

d(j) = E[D] + oP(1)

uniformly over k 6 tn2/3. Let a be the half-edge that is being explored
at stage k + 1. Now, each of the (Ak − 1) half-edges of Ak \ {a} is equally
likely to be paired with a half-edge of v(k+1), thus creating two elements of
Bk. Also, given Fk and v(k+1), the probability that a half-edge of Ak \ {a} is
paired to one of the half-edges of v(k+1) is (d(k+1) − 1)/(Uk − 1). Therefore,

E
[
Bk|Fk, v(k+1)

]
= 2(Ak − 1)

d(k+1) − 1
Uk − 1

= 2
(
d(k+1) − 1

) Ak
Uk − 1

− 2
d(k+1) − 1
Uk − 1

.
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Hence,

E
[
Bk|Fk

]
= 2E

[
d(k+1) − 1|Fk

] Ak
Uk − 1

− 2
E
[
d(k+1) − 1|Fk

]
Uk − 1

. (2.13)

Now, using (2.8) and (2.9),

E
[
d(k+1) − 1|Fk

]
=

∑
j/∈Vk

dj(dj − 1)∑
j/∈Vk

dj
=

∑
j∈[n] d

2
j∑

j∈[n] dj
− 1 + oP(1) = 1 + oP(1).

uniformly over k 6 tn2/3, where the last step follows from Assumption 2.1 (iii).
Further, using the fact P(D = 1) > 0, Uk > c0n for some constant c0 > 0 uni-
formly over k 6 tn2/3. Thus, (2.13) gives (2.11). The fact that all the OP, oP

can be replaced by OE, oE follows from
∑
j∈[n] d

r
j − kd

r
max 6

∑
j/∈Vk

drj 6∑
j∈[n] d

r
j for r = 1, 2, together with dmax = o(n1/3). To prove (2.12), note

that

E
[
Ck|Fk, v(k+1)

]
= 2(d(k+1) − 2)

d(k+1) − 1
Uk − 1

.

By Assumption 2.1 and (2.8)

E[d2
(k+1)|Fk] =

∑
j/∈Vk

d3
j∑

j/∈Vk
dj
6

∑
j∈[n] d

3
j∑

j∈[n] dj + oP(n2/3)
= OP(1),

uniformly for k 6 tn2/3. Therefore,

E
[
Ck|Fk

]
= OP(n

−1)

uniformly over k 6 tn2/3. Again, the OP term can be replaced by OE, as
argued before.

2.4.4 Key ingredients

For any D[0,∞)-valued process Xn define X̄n(u) := n−1/3Xn(bn2/3uc) and
X̄n := (X̄n(u))u>0. The following result is the main ingredient for proving
Theorem 2.2.1. Recall the definition of Bλµ,η from (2.1) with parameters given
in (2.4).

Theorem 2.4.5 (Convergence of the exploration process). Under Assumption 2.1,
as n→∞,

S̄n
L−→ Bλµ,η

with respect to the Skorohod J1 topology.
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As in [121], we will prove this by approximating Sn by a simpler process
defined as

sn(0) = 0, sn(i) =

i∑
j=1

(d(j) − 2). (2.14)

Note that the difference between the processes Sn and sn is due to the cycles,
loops, and multiple-edges encountered during the exploration. Following the
approach of [121], it will be enough to prove the following:

Proposition 2.4.6. Under Assumption 2.1, as n→∞,

s̄n
L−→ Bλµ,η

with respect to the Skorohod J1 topology.

Remark 6. It will be shown that the distributions of S̄n and s̄n are very close
as n → ∞, and therefore, Proposition 2.4.6 implies Theorem 2.4.5. This is
achieved by proving that we will not see too many cycle half-edges up to the
time bn2/3uc for any fixed u > 0.

From here onwards we will look at the continuous versions of the pro-
cesses S̄n and s̄n by linearly interpolating between the values at the jump
points and write it using the same notation. It is easy to see that these contin-
uous versions differ from their càdlàg versions by at most n−1/3dmax = o(1)
uniformly on [0, T ], for any T > 0. Therefore, the convergence in law of the
continuous versions implies the convergence in law of the càdlàg versions
and vice versa. Before proceeding to show that Theorem 2.4.5 is a conse-
quences of Proposition 2.4.6, we will need to bound the difference of these
two processes in a suitable way. We need the following lemma. Recall the
definition of c(k+1) := (Bk +Ck)/2 from (2.6).

Lemma 2.4.7. Fix t > 0 and M > 0 (large). Define the event

En(t,M) :=
{

max
s6t

{s̄n(s) − min
u6s

s̄n(u)} < M
}

.

Then
lim sup
n→∞

∑
k6tn2/3

E
[
c(k)1En(t,M)

]
<∞.

Proof. Lemma 2.4.7 is similar to [121, Lemma 6.1]. We add a brief proof here.
Note that, for all large n, Ak 6Mn1/3 on En(t,M), because

Ak = Sn(k) − min
j6k

Sn(j) = sn(k) − 2
k∑
j=1

c(j) − min
j6k

Sn(j) 6 sn(k) − min
j6k

sn(j),
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where the last step follows by noting that minj6k sn(j) 6 minj6k Sn(j) +
2
∑k
j=1 c(j). By Lemma 2.4.4,

E
[
c(k)1En(t,M)

]
6
Mn1/3

µn
+ o(n−2/3) =

M

µ
n−2/3 + o(n−2/3)

uniformly for k 6 tn2/3. Summing over 1 6 k 6 tn2/3 and taking the lim sup
completes the proof.

The proof of the fact that Theorem 2.4.5 follows from Proposition 2.4.6
and Lemma 2.4.7 is standard (see [121, Section 6.2]) and we skip the proof
for the sake of brevity. From here onward the main focus of this section will
be to prove Proposition 2.4.6. We use the martingale functional central limit
theorem in a similar manner as [8].

Proof of Proposition 2.4.6. Let {Fi}i>1 be the natural filtration defined in Lemma
2.4.4. Recall the definition of sn(i) from (2.14). By the Doob-Meyer decom-
position [124, Theorem 4.10] we can write

sn(i) =Mn(i) +An(i), s2
n(i) = Hn(i) +Bn(i),

where

Mn(i) =

i∑
j=1

(
d(j) − E

[
d(j)|Fj−1

])
,

An(i) =

i∑
j=1

E
[
d(j) − 2|Fj−1

]
,

Bn(i) =

i∑
j=1

(
E
[
d2

(j)|Fj−1
]
− E2[d(j)|Fj−1

])
.

Recall that for a discrete-time stochastic process (Xn(i))i>1, we denote
X̄n(t) = n−1/3Xn(btn2/3c). Our result follows from the martingale func-
tional central limit theorem [151, Theorem 2.1] if we can prove the following
four conditions: For any u > 0,

sup
s6u

∣∣Ān(s) − λs+ ηs2

2µ3

∣∣ P−→ 0, (2.16a)

n−1/3B̄n(u)
P−→ η

µ2u, (2.16b)

E
[

sup
s6u

∣∣M̄n(s) − M̄n(s−)
∣∣2]→ 0, (2.16c)
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and
n−1/3E

[
sup
s6u

|B̄n(s) − B̄n(s−)|
]
→ 0. (2.16d)

Indeed (2.16a) gives rise to the quadratic drift term of the limiting dis-
tribution. Conditions (2.16b), (2.16c), (2.16d) are the same as [151, Theorem
2.1, Condition (ii)]. The facts that the jumps of both the martingale and the
quadratic-variation process go to zero and that the quadratic variation pro-
cess is converging to the quadratic variation of an inhomogeneous Brownian
Motion, together imply the convergence of the martingale term. The vali-
dation of these conditions is given separately in the subsequent part of this
section.

Lemma 2.4.8. The conditions (2.16b), (2.16c), and (2.16d) hold.

Proof. Denote by σr(n) = 1
n

∑
i∈[n] d

r
i , r = 2, 3 and µ(n) = 1

n

∑
i∈[n] di. To

prove (2.16b), it is enough to prove that

n−2/3Bn(bun2/3c) P−→
σ3µ− σ

2
2

µ2 u.

Recall that E[d2
(i)|Fi−1] =

∑
j/∈Vi−1

d3
j/
∑
j/∈Vi−1

dj. Further, uniformly over
i 6 un2/3, ∑

j/∈Vi−1

dj =
∑
j∈[n]

dj +OP(dmaxi) = `n + oP(n). (2.17)

Assume that, without loss of generality, j 7→ dj is non-increasing. Then,
uniformly over i 6 un2/3,

∣∣∣∣ ∑
j/∈Vi−1

d3
j −nσ3(n)

∣∣∣∣ 6 un
2/3∑

j=1

d3
j . (2.18)

For each fixed k,

1
n

un2/3∑
j=1

d3
j 6

1
n

un2/3∑
j=1

1{dj6k}d
3
j +

1
n

∑
j∈[n]

1{dj>k}d
3
j

6 k3un−1/3 +
1
n

∑
j∈[n]

1{dj>k}d
3
j = o(1),

where we first let n → ∞ and then k → ∞ and use Lemma 2.4.3. Therefore,
the right-hand side of (2.18) is o(n) and we conclude that, uniformly over
i 6 un2/3,

E
[
d2

(i)|Fi−1
]
=
σ3

µ
+ oP(1).
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A similar argument gives

E
[
d(i)|Fi−1

]
=
σ2

µ
+ oP(1),

and (2.16b) follows by noting that the error term is oP(1), uniformly over
i 6 un2/3. The proofs of (2.16c) and (2.16d) are rather short and we present
them below. For (2.16c), we bound

E
[

sup
s6u

|M̄n(s) − M̄n(s−)|2
]
= n−2/3E

[
sup

k6un2/3
|Mn(k) −Mn(k− 1)|2

]
= n−2/3E

[
sup

k6un2/3

∣∣d(k) − E[d(k)|Fk−1]
∣∣2]

6 n−2/3E
[

sup
k6un2/3

d2
(k)

]
+n−2/3E

[
sup

k6un2/3
E2[d(k)|Fk−1

]]
6 2n−2/3d2

max.

Similarly, (2.16d) gives

n−1/3E
[

sup
s6u

|B̄n(s) − B̄n(s−)|2
]
= n−2/3E

[
sup

k6un2/3
|Bn(k) −Bn(k− 1)|

]
= n−2/3E

[
sup

k6un2/3
var
(
d(k)|Fk−1

)]
6 2n−2/3d2

max,

and Conditions (2.16c) and (2.16d) follow from Lemma 2.4.3 using dmax =

o(n1/3).

Next, we prove Condition (2.16a) which requires some more work. Note
that

E
[
d(i) − 2|Fi−1

]
=

∑
j/∈Vi−1

dj(dj − 2)∑
j/∈Vi−1

dj

=

∑
j∈[n] dj(dj − 2)∑

j∈[n] dj
−

∑
j∈Vi−1

dj(dj − 2)∑
j∈[n] dj

+

∑
j/∈Vi−1

dj(dj − 2)
∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

=
λ

n1/3 −

∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

+ o(n−1/3), (2.19)
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where the last step follows from Assumption 2.1 (iii). Therefore,

An(k) =

k∑
i=1

E
[
d(i) − 2|Fi−1

]
=

kλ

n1/3 −

k∑
i=1

∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

k∑
i=1

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

+ o(kn−1/3).

(2.20)

The following lemma estimates the sums on the right-hand side of (2.20):

Lemma 2.4.9. For all u > 0, as n→∞,

sup
s6u

∣∣∣∣n−1/3
bsn2/3c∑
i=1

i−1∑
j=1

d2
(j)

`n
−
σ3s

2

2µ2

∣∣∣∣ P−→ 0 (2.21)

and

sup
s6u

∣∣∣∣n−1/3
bsn2/3c∑
i=1

i−1∑
j=1

d(j)

`n
−
σ2s

2

2µ2

∣∣∣∣ P−→ 0. (2.22)

Consequently,

sup
s6u

∣∣∣∣n−1/3
bsn2/3c∑
i=1

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

−
σ2

2s
2

2µ3

∣∣∣∣ P−→ 0. (2.23)

Proof. Notice that

sup
s6u

∣∣∣n−1/3
bsn2/3c∑
i=1

i−1∑
j=1

d2
(j)

`n
−
σ3s

2

2µ2

∣∣∣ = sup
k6un2/3

∣∣∣n−1/3
k∑
i=1

i−1∑
j=1

d2
(j)

`n
−

σ3k
2

2µ2n4/3

∣∣∣
6

1
`n

sup
k6un2/3

∣∣∣n−1/3
k∑
i=1

( i−1∑
j=1

d2
(j) −

σ3(i− 1)
µ

)∣∣∣
+ sup
k6un2/3

∣∣∣ kσ3

2µ`nn1/3

∣∣∣+ sup
k6un2/3

∣∣∣ k2σ3

2µ`nn1/3 −
k2σ3

2µ2n4/3

∣∣∣
6

1
`n
n−1/3un2/3 sup

i6un2/3

∣∣∣ i∑
j=1

d2
(j) −

σ3i

µ

∣∣∣+ o(1) + σ3n
−1/3

2µ

∣∣∣ 1
`n

−
1
nµ

∣∣∣u2n4/3

6
u

µ+ o(1)
sup
s6u

∣∣∣(n−2/3
bsn2/3c∑
j=1

d2
(j) −

σ3s

µ

)∣∣∣+ o(1).
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and (2.21) follows from (2.9) in Lemma 2.4.1. The proof of (2.22) is similar and
it follows from (2.8). We now show (2.23). Recall that σ2(n) = 1

n

∑
i∈[n] d

2
i

and observe

1
n

∑
j/∈Vi−1

d2
j = σ2(n) −

1
n

∑
j∈Vi−1

d2
j = σ2(n) + oP(1)

uniformly over i 6 un2/3 where we use Lemma 2.4.1 to conclude the unifor-
mity. Similarly, (2.17) implies that

∑
j/∈Vi−1

dj = `n + oP(n) uniformly over
i 6 un2/3. Therefore,

n−1/3
k∑
i=1

∑
j/∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j/∈Vi−1

dj
∑
j∈[n] dj

=
nσ2(n) + oP(n)

`n + oP(n)
n−1/3

k∑
i=1

∑
j∈Vi−1

dj

`n

and Assumption 2.1, combined with (2.22), completes the proof.

Lemma 2.4.10. Condition (2.16a) holds.

Proof. The proof follows by using Lemma 2.4.9 in (2.20).

2.4.5 Finite-dimensional convergence of the ordered component
sizes

Note that the convergence of the exploration process in Theorem 2.4.5 implies
that, for any large T > 0, the k-largest components explored up to time
Tn2/3 converge to the k-largest excursions above past minima of Bλµ,η up to
time T . Therefore, we can conclude the finite dimensional convergence of the
ordered components sizes in the whole graph if we can show that the large
components are explored early by the exploration process. The following
lemma formalizes the above statement:

Lemma 2.4.11. Let C >T
max denote the largest component which is started exploring

after time Tn2/3 in Algorithm 2.1. Then, for any δ > 0,

lim
T→∞ lim sup

n→∞ P
(
|C >T

max| > δn
2/3
)
= 0. (2.24)

Let us first state the two main ingredients to complete the proof of Lemma 2.4.11:

Lemma 2.4.12 ([111, Lemma 5.2]). Consider CMn(d) with νn < 1 and let
C (Vn) denote the component containing the vertex Vn, where Vn is a vertex chosen
uniformly at random independently of the graph CMn(d). Then,

E [|C (Vn)|] 6 1 +
E [Dn]

1 − νn
.
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Lemma 2.4.13. Define, νn,i =
∑
j/∈Vi−1

dj(dj−1)/
∑
j/∈Vi−1

dj. There exists some
constant C0 > 0 such that for any T > 0,

νn,Tn2/3 = νn −C0Tn
−1/3 + oP(n

−1/3). (2.25)

Proof. Using a similar split up as in (2.19), we have

νn,i = νn +

∑
j∈Vi−1

dj(dj − 1)

`n
−

∑
j/∈Vi−1

dj(dj − 1)
∑
j∈Vi−1

dj

`n
∑
j/∈Vi−1

dj
. (2.26)

Now, (2.8) and (2.9) give that, uniformly over i 6 Tn2/3,∑
j/∈Vi−1

dj(dj − 1)∑
j/∈Vi−1

dj
=

∑
j∈[n] dj(dj − 1) + oP(n

2/3)∑
j∈[n] dj + oP(n2/3)

= 1 + oP(n
−1/3),

∑
j∈Vi−1

dj(dj − 2) =
(σ3

µ
− 2
)
(i− 1) + oP(n

2/3).

Further, note that σ3 − 2µ = E[D(D− 1)(D− 2)] + E[D(D− 2)] > 0, by As-
sumption 2.1 (iii), and (iv). Therefore, (2.26) gives (2.25).

Proof of Lemma 2.4.11. Let iT := inf{τk : τk > Tn
2/3}, where τk is defined by

(2.7). Thus, iT denotes the first time we finish exploring a component after
time Tn2/3. Note that, conditional on the explored vertices up to time iT , the
remaining graph Ḡ is still a configuration model. Let ν̄n =

∑
i∈Ḡ di(di −

1)/
∑
i∈Ḡ di be the criticality parameter of Ḡ. Then, using (2.25), we can

conclude that
ν̄n 6 νn −C0Tn

−1/3 + oP(n
−1/3). (2.28)

Thus, as we explore more vertices, the graph becomes more subcritical. Take
T > 0 such that λ − C0T < 0. Thus, with high probability, ν̄n < 1. De-
note the component corresponding to a randomly chosen vertex from Ḡ by
C >T (Vn), and the ith largest component of Ḡ by C >T

(i) . Also, let P̄ denote the
probability measure conditioned on FiT , and let Ē denote the corresponding
expectation. Now, for any δ > 0,

P̄

(∑
i>1

|C >T
(i) |

2 > δ2n4/3
)
6

1
δ2n4/3

∑
i>1

Ē
(
|C >T

(i) |
2)

6
1

δ2n1/3 Ē
(
|C >T (Vn)|

)
6

1
δ2(−λ+C0T + oP(1))

,

where the second step follows from the Markov inequality and the last step
follows by combining Lemma 2.4.12 and (2.28). Noting that ν̄n < 1 with high
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probability, we get

lim sup
n→∞ P

(
|C >T

max| > δn
2/3
)
6

C

δ2T
,

for some constant C > 0 and large T > 0 and the proof follows.

Theorem 2.4.14. The convergence in Theorem 2.2.1 holds with respect to the prod-
uct topology.

Proof. The proof follows from Theorem 2.4.5 and Lemma 2.4.11.

2.4.6 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 follows using a similar argument as [8, Section
3.3]. However, the proof is a bit tricky since the components are explored
in a size-biased manner with sizes being the total degree in the components
(not the component sizes as in [8]). For a sequence of random variables
Y = (Yi)i>1 satisfying

∑
i>1 Y

2
i < ∞ almost surely, define ξ := (ξi)i>1 such

that ξi|Y ∼ Exp(Yi) and the coordinates of ξ are independent conditional
on Y. For a > 0, let S (a) :=

∑
ξi6a

Yi. Then the size biased point process
is defined to be the random collection of points Ξ := {(S (ξi), Yi)}i>1 (see
[8, Section 3.3]). We will use Lemma 8, Lemma 14 and Proposition 15 from
[8]. Let C := {C : C is a component of CMn(d)}. Consider the collection
ξ := (ξ(C ))C∈C such that conditional on (

∑
k∈C dk, |C |)C∈C, ξ(C ) has an ex-

ponential distribution with rate n−2/3∑
k∈C dk independently over C . Then

the order in which Algorithm 2.1 explores the components can be obtained
by ordering the components according to their ξ-value. Recall that Ci de-
notes the ith explored component by Algorithm 2.1 and let Di :=

∑
k∈Ci

dk.
Define the size-biased point process

Ξn :=
(
n−2/3

i∑
j=1

Dj, n−2/3Di

)
i>1

.

Also define the point processes

Ξ
′
n :=

(
n−2/3

i∑
j=1

∣∣Cj∣∣, n−2/3∣∣Ci∣∣)
i>1

,

Ξ∞ :=
{(
l(γ), |γ|

)
: γ an excursion of Bλµ,η

}
,

where we recall that l(γ) are the left endpoints of the excursions of Bλµ,η and
|γ| is the length of the excursion γ (see (2.2)). Note that Ξ ′n is not a size-biased
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point process. However, applying [8, Lemma 8] and Theorem 2.4.5, we get
Ξ
′
n

L−→ Ξ∞. We claim that

Ξn
L−→ 2Ξ∞. (2.29)

To verify the claim, note that (2.8) and Assumption 2.1 (iii) together imply,
for any t > 0,

sup
u6t

∣∣n−2/3
bun2/3c∑
i=1

d(i) −
σ2

µ
u
∣∣ = sup

u6t

∣∣n−2/3
bun2/3c∑
i=1

d(i) − 2u
∣∣ P−→ 0, (2.30)

since σ2/µ = E[D2]/E[D] = 2. Thus, (2.29) follows using (2.30). Now, the
point process 2Ξ∞ satisfies all the conditions of [8, Proposition 15] as shown
by Aldous. Thus, [8, Lemma 14] gives{

D(i)

}
i>1 is tight in `2↓ . (2.31)

This implies that
(
n−2/3

∣∣C(i)

∣∣)
i>1 is tight in `2↓ by simply observing that

|Ci| 6
∑
k∈Ci

dk + 1. Therefore, the proof of Theorem 2.2.1 is complete using
Theorem 2.4.14.

2.4.7 Proof of Theorem 2.2.2

The proof of Theorem 2.2.2 is completed in two separate lemmas below. In
Lemma 2.4.15 we first show that the convergence in Theorem 2.2.2 holds with
respect to the `2↓ ×N∞ topology. The tightness of (Zn)n>1 with respect to
the U0

↓ topology is ensured in Lemma 2.4.16.

Lemma 2.4.15. Let Nλn(k) be the number of surplus edges discovered up to time k
and N̄λn(u) = Nλn(bun2/3c). Then, as n→∞,

N̄λn
d−→ Nλ,

where Nλ is defined in (2.3).

Proof. Recall the definitions of a, b, Ak, Bk, Ck, Sk from Section 2.4.1. Recall
also that Ak :=

∣∣Ak∣∣, Bk :=
∣∣Bk∣∣, Ck :=

∣∣Ck∣∣, Uk :=
∣∣Sk∣∣, c(k+1) := (

∣∣Bk∣∣+∣∣Ck∣∣)/2 from Section 2.4.1. Notice that Ak = Sn(k) − minj6k Sn(j). From
Lemma 2.4.4, we can conclude that, uniformly over k 6 un2/3,

E
[
c(k+1)|Fk

]
=
Ak
µn

+OP(n
−1). (2.32)
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The counting process Nλn has conditional intensity (conditioned on Fk−1)
given by (2.32). Writing the conditional intensity in (2.32) in terms of S̄n, we
get that the conditional intensity of the re-scaled process N̄λn is given by

1
µ
[S̄n(u) − min

ũ6u
S̄n(ũ)] + oP(1).

Denote by W̄n(u) := S̄n(u) − minũ6u S̄n(ũ) which is the reflected version
of S̄n. By Theorem 2.2.1,

W̄n
d−→Wλ,

where Wλ is defined in (2.2). Therefore, we can assume that there exists a
probability space such that W̄n →Wλ almost surely. Using [128, Theorem 1;
Chapter 5.3], and the continuity of the sample paths of Wλ, we conclude the
proof.

Lemma 2.4.16. The vector (Zn)n>1 is tight with respect to the U0
↓ topology.

The proof of Lemma 2.4.16 makes use of the following crucial estimate of
the probability that a component with small size has a very large number of
surplus edges:

Lemma 2.4.17. Assume that λ < 0. Let Vn denote a vertex chosen uniformly at
random, independent of the graph CMn(d) and let C (Vn) denote the component
containing Vn. Let δk = δk−0.12. Then, for δ > 0 (small),

P
(

SP(C (Vn)) > K, |C (Vn)| ∈ (δKn
2/3, 2δKn2/3)

)
6

C
√
δ

n1/3K1.1 ,

where C is a fixed constant independent of n, δ,K.

Proof of Lemma 2.4.16. To simplify the notation, we write Yni = n−2/3|C(i)| and
Nni =# {surplus edges in C(i)}. Let Yi, Ni denote the distributional limits of
Yni and Nni respectively. Recall from Remark 1 that Z(λ) is almost surely
U0
↓-valued. Using Lemma 2.4.15, the proof of Lemma 2.4.16 is complete if we

can show that, for any η > 0

lim
ε→0

lim sup
n→∞ P

( ∑
Yni 6ε

Yni N
n
i > η

)
= 0. (2.33)
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First, consider the case λ < 0. For every η, ε > 0 sufficiently small

P

( ∑
Yni 6ε

Yni N
n
i > η

)
6

1
η

E

[ ∞∑
i=1

Yni N
n
i 1{Yni 6ε}

]

=
n−2/3

η
E

[ ∞∑
i=1

|C(i)|N
n
i 1{|C(i)|6εn2/3}

]
=
n1/3

η
E
[
SP(C (Vn))1{|C (Vn)|6εn2/3}

]
=
n1/3

η

∞∑
k=1

∑
i>log2(1/(k0.12ε))

P

(
SP(C (Vn)) > k, |C (Vn)| ∈

(
n2/3

2i+1k0.12 ,
n2/3

2ik0.12

])

6
C

η

∞∑
k=1

1
k1.1

∑
i>log2(1/(k0.12ε))

2−(1/2)i 6
C

η

∞∑
k=1

√
ε

k1.04 = O(
√
ε),

where we have used Lemma 2.4.17. Therefore, (2.33) holds when λ < 0. Now
consider the case λ > 0. For T > 0 (large), let

Kn := {i : Yni 6 ε, C(i) is explored before Tn2/3}.

Then, by applying the Cauchy-Schwarz inequality,∑
i∈Kn

Yni N
n
i 6

( ∑
i∈Kn

(Yni )
2
)1/2

×
( ∑
i∈Kn

(Nni )
2
)1/2

6
( ∑
i∈Kn

(Yni )
2
)1/2

× (# surplus edges explored before Tn2/3)

(2.34)

For the case λ > 0, we can use similar ideas as the proof of Lemma 2.4.11,
i.e., we can run the exploration process till Tn2/3 and the unexplored graph
becomes a configuration model with negative criticality parameter for large
T > 0, by (2.25). Thus, the proof can be completed using (2.34), the `2↓ con-
vergence of the component sizes given by Theorem 2.2.1 and Lemma 2.4.15,
and the proof for the case λ < 0.

Proof of Lemma 2.4.17. To complete the proof of Lemma 2.4.17, we will use
martingale techniques coupled with Lemma 2.4.12. Fix δ > 0 (small). First we
describe another way of exploring C (Vn) which turns out to be convenient
to work with.

Algorithm 2.2 (Exploring components of uniform vertices). Consider the fol-
lowing exploration of C (Vn):

(S0) Initialize all half-edges to be alive. Choose a vertex from [n] uniformly
at random and declare all its half-edges active.
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2.4 Proofs of Theorems 2.2.1 and 2.2.2

(S1) In the next step, take any active half-edge and pair it uniformly with
another alive half-edge. Kill these paired half-edges. Declare all the
half-edges corresponding to the new vertex (if any) active. Keep re-
peating (S1) until the set of active half-edges is empty.

Unlike Algorithm 2.1, we need not see a new vertex at each stage and
we explore only two half-edges at each stage. In this proof, Fl denotes the
sigma-field containing information revealed up to stage l by Algorithm 2.2
and Vl denotes the vertex set discovered up to time l. Recall that we denote
by Dn the degree of Vn. Define the exploration process s ′n by,

s ′n(0) = Dn, s ′n(l) =
∑
i∈[n]

diI
n
i (l) − 2l,

where Ini (l) = 1{i ∈ Vl}. Therefore, s ′n(l) counts the number of active half-
edges at time l, until C (Vn) is explored. Note that C (Vn) is explored when
s ′n hits zero and the hitting time to zero gives the number of edges in C (Vn),
since exactly one edge is being explored at each time step. We will use
a generic constant C to denote a positive constant that can be different in
different equations. For H > 0, let

γ := inf{l > 1 : s ′n(l) > H or s ′n(l) = 0} ∧ 2δn2/3.

Note that

E[s ′n(l+ 1) − s ′n(l)|Fl] =
∑
i∈[n]

diP (i ∈ Vl+1|Fl, Ini (l) = 0) − 2

=

∑
i/∈Vl

d2
i

`n − 2l− 1
− 2 6

∑
i∈[n] d

2
i

`n − 2l− 1
− 2

=
λ

n1/3 + o(n−1/3) +
2l+ 1

`n − 2l− 1
×
∑
i∈[n] d

2
i

`n
6 0

uniformly over l 6 2δn2/3 for all small δ > 0 and large n, where the last
step follows from the fact that λ < 0. Therefore, {s ′n(l)}

2δn2/3

l=1 is a super-
martingale. The optional stopping theorem now implies

E [Dn] > E
[
s ′n(γ)

]
> HP

(
s ′n(γ) > H

)
.

Thus,

P
(
s ′n(γ) > H

)
6

E [Dn]

H
. (2.35)
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Chapter 2 Critical window: Finite third moment

We put H = n1/3K1.1/
√
δ. To simplify the notation, we write s ′n[0, t] ∈ A to

denote that s ′n(l) ∈ A, for all l ∈ [0, t]. Notice that, for K > 1,

P
(

SP(C (Vn)) > K, |C (Vn)| ∈ (δKn
2/3, 2δKn2/3)

)
6 P

(
s ′n(γ) > H

)
+ P

(
SP(C (Vn)) > K, s ′n[0, 2δKn2/3] < H, s ′n[0, δKn2/3] > 0

)
.

(2.36)

Here we have used the fact that if there is at least one surplus edge in C (Vn),
the number of edges in C (Vn) is at least C (Vn). Therefore, |C (Vn)| >

δKn
2/3 implies s ′n[0, δKn2/3] > 0. Let us denote the event that surplus

edges appear at times l1, . . . , lK, s ′n[0, 2δKn2/3] < H, and s ′n[0, δKn2/3] > 0
by SPB(l1, . . . , lK). Now,

P
(

SP(C (Vn)) > K, s ′n[0, 2δKn2/3] < H, s ′n[0, δKn2/3] > 0
)

6
∑

16l1<···<lK62δKn2/3

P (SPB(l1, . . . , lK))

=
∑

16l1<···<lK62δKn2/3

E
[
1
{

0 < s ′n[0, lK − 1] < H, SP(lK − 1) = K− 1
}
Y
]

,

where

Y = P
(
Kth surplus occurs at lK, s ′n[lK, 2δKn2/3] < H, s ′n[lK,γ] > 0 | FlK−1

)
6
CK1.1n1/3

`n
√
δ
6

CK1.1

n2/3
√
δ

.

Therefore, using induction,

P
(

SP(C (Vn)) > K, s ′n[0, 2δKn2/3] < H, s ′n[0, δKn2/3] > 0
)

6 C

(
K1.1
√
δn2/3

)K (2δn2/3)K−1

K0.12(K−1)(K− 1)!

2δKn2/3∑
l1=1

P (|C (Vn)| > l1)

6 C
δK/2

K1.1n2/3 E [|C (Vn)|] ,

(2.37)

where we have used the fact that

#{1 6 l2 < · · · < lk 6 2δn2/3} 6 (2δn2/3)K−1/(K− 1)!

and the Stirling approximation for (K− 1)! in the last step. Since λ < 0, we
can use Lemma 2.4.12 to conclude that for all sufficiently large n

E [|C (Vn)|] 6 Cn
1/3,
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2.5 Degree distribution within components

for some constant C > 0 and we get the desired bound for (2.36). The proof
of Lemma 2.4.17 is now complete by applying (2.35) and (2.37) in (2.36).

2.5 Degree distribution within components

In this section, we compute the number of vertices of degree k in each con-
nected component at criticality. This will be useful in Sections 2.6 and 2.7.
Such an estimate was proved in [114, Theorem 2.4] for supercritical graphs
under stronger moment assumptions.

Lemma 2.5.1. Denote by Nk(t) the number of vertices of degree k discovered up to
time t. For any t > 0, uniformly over k,

sup
u6t

∣∣n−2/3Nk(un
2/3) −

knk
`n

u
∣∣ = OP((kn

1/3)−1).

Proof. By setting wi = 1{di=k} in Lemma 2.4.2 we can directly conclude that

sup
u6t

∣∣n−2/3Nk(un
2/3) −

knk
`n

u
∣∣ P−→ 0.

However, one can repeat same arguments as leading to the proof of Lemma 2.4.2
and obtain that

P
(

sup
u6t

∣∣∣n−2/3Nk(un
2/3) −

knk
`n

u
∣∣∣ > A

kn1/3

)

6
3
(
k3s2 rk

(E[D])2 +
√
s k

3rk
E[D]

)
A

+ o(1).

Now, we can use the finite third-moment assumption to conclude that the
numerator in the right hand side can be taken to be uniform over k. Thus,
the proof follows.

Define vk(G) := the number of vertices of degree k in the connected graph
G. As a corollary to Lemma 2.5.1 and (2.24), we can deduce that

vk
(
C(j)

)
=
krk

E[D]

∣∣C(j)

∣∣+OP

(
(k−1n1/3)

)
. (2.38)

Moreover, the following holds: Let ord(x) denote the vector with elements of
x ordered in a non-increasing manner.

Lemma 2.5.2. For each k > 1 denote by Vnk := (n−2/3vk(Cj))j>1. Then, the
sequence {ord(Vnk )}n>1 is tight in `2↓ .
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Chapter 2 Critical window: Finite third moment

Proof. Note that for any j > 1, vk(C(j)) 6 |C(j)| uniformly over k. The proof
now follows from (2.38) and `2↓ tightness of the component sizes given in
Theorem 2.2.1.

Remark 7. Define Vn := (n−2/3vk(Cj))k,j>1. Then {ord(Vn)}n>1 is also tight
in `2↓ .

2.6 Critical percolation

Let p = pn ∈ (0, 1) be the percolation parameter. Recall the notation CMn(d,p)
for the random graph obtained after deleting edges of CMn(d) indepen-
dently with probability 1 − p. Suppose, d ′ is the random degree sequence
obtained after percolation. Fountoulakis [85] showed that, given d ′, the law
of CMn(d,p) is same as the law of CMn(d

′). We will use the following
construction of CMn(d,p) due to Janson [109]:

Algorithm 2.3. (S1) For each half-edge e, let ve be the vertex to which e is
attached. With probability 1 −

√
p, one detaches e from ve and asso-

ciates e to a new vertex v ′. Color the new vertex red. This is done
independently for every existing half-edge. Let n+ be the number of
red vertices created and ñ = n+n+. Suppose, d̃ = (d̃i)i∈[ñ] is the new
degree sequence obtained by the above procedure, i.e. d̃i ∼ Bin(di,

√
p)

for i ∈ [n] and d̃i = 1 for i ∈ [ñ] \ [n].

(S2) Construct CMñ(d̃), independently of (S1).

(S3) Delete all the red vertices.

Remark 8. It was argued in [109] that the obtained multigraph also has the
same distribution as CMn(d,p) if we replace (S3) by

(S3 ′) Instead of deleting red vertices, choose any n+ degree-one vertices uni-
formly at random, independently of (S1) and (S2), and delete them.

Remark 9. The construction of CMñ(d̃) in Algorithm 2.3 consists of two
stages of randomization, the first one is described by (S1), and the second
one by (S2). We will consider the following probability space to describe the
randomization arising from Algorithm 2.3 (S1): Suppose we have a sequence
of degree sequences (d)n>1. Let Pnp denote the probability measure induced
on N∞ by Algorithm 2.3 (S1). Denote the product measure of (Pnp)n>1 by
Pp. Thus (S1) is performed independently on d = d(n) as n varies. All the
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2.6 Critical percolation

almost sure statements in this section will be with respect to the probability
measure Pp.

Remark 10. The idea of the proof of Theorem 2.2.3 is as follows. We show
that d̃, under Assumption 2.2, satisfies Assumption 2.1 Pp almost surely
and then estimate the number of vertices to be deleted from each component
using Lemma 2.5.1. Since deleting a degree-one vertex does not break up any
component, we can just subtract this from the component sizes of CMñ(d̃)

to get the component sizes of CMn(d,pn(λ)). Since the degree-one vertices
do not get involved in surplus edges, deleting degree-one vertices does not
change the number of surplus edges.

2.6.1 Proof of Theorem 2.2.3

We now consider the critical window corresponding to percolation. The goal
is to prove Theorem 2.2.3. Let nj and ñj be the number of vertices of degree
j before and after performing Algorithm 2.3 (S1) respectively. Further let

ν̃n =

∑
i∈[ñ] d̃i

(
d̃i − 1

)∑
i∈[ñ] d̃i

.

For convenience we write rj = P(D = j). Denote by ñjl, the number of
vertices that had degree l before and have degree j after performing Al-
gorithm 2.3 (S1). Therefore, ñjl ∼ Bin

(
nl,blj(

√
pn)

)
, where blj(

√
pn) =(

l
j

)
(
√
pn)

j(1−
√
pn)

l−j. Using the strong law of large numbers for triangular
arrays, note that Pp almost surely, ñjl = nlblj(

√
pn)+o(nl) = nrlblj(

√
pn)+

o(nl). Now,
∑
l>1 |nl/n − rl| → 0 and therefore, for all j > 2, Pp almost

surely
ñj

n
=

∑∞
l=j ñjl

n
=

∞∑
l=j

rlblj(
√
pn) + o(1). (2.39)

Also, n+ =
∑
i∈[n]

(
di − d̃i

)
∼ Bin(`n, 1 −

√
pn). Therefore, using similar

arguments as (2.39) again, Pp almost surely,

n+

n
= E(D)

(
1 −
√
pn
)
+ o(1),

ñ1

n
=

∑∞
l=1 ñ1l +n+

n
=

∑∞
l=1 ñ1l

n
+ E(D)

(
1 −
√
pn
)
+ o(1),

and
ñ

n
= 1 +

n+

n
= 1 + E(D)

(
1 −
√
pn
)
+ o(1). (2.40)
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Chapter 2 Critical window: Finite third moment

Denote r̃l = P(D̃ = l) = limn→∞ ñl/ñ. Let D̃n denote the degree of a
uniformly chosen vertex from [ñ], independently of the graph CMñ(d̃). Thus,
(2.39) and (2.40) imply that D̃n

d−→ D̃. The following lemma verifies the rest
of the conditions for d̃ in Assumption 2.1:

Lemma 2.6.1. The statements below are true Pp almost surely:

1. Under Assumption 2.2 i and for r = 1, 2, 3,

1
ñ

∑
i∈[n]

d̃ri =
1
ñ

∑
j∈[n]

jrñj
n→∞−−−−→ E[D̃r].

2. Under Assumption 2.2,

ν̃n = 1 + λn−1/3 + o(n−1/3).

Proof. We will make use of [115, Corollary 2.27]. Suppose Z1, Z2, ..., ZN are
independent random variables with Zi taking values inΛi and f :

∏N
i=1Λi →

R satisfies the following: If two vectors z, z ′ ∈
∏N
i=1Λi differ only in the ith

coordinate, then |f(z) − f(z ′)| 6 ci for some constant ci. Then, for any t > 0,
the random variable X = f(Z1,Z2, . . . ,ZN) satisfies

P
(∣∣X− E[X]

∣∣ > t) 6 2 exp
(
−

t2

2
∑N
i=1 c

2
i

)
. (2.41)

Now let Iij denote the indicator of the jth half-edge corresponding to vertex
i to be kept after Algorithm 2.3 (S1). Then Iij ∼ Ber(

√
pn) independently for

j ∈ [di], i ∈ [n]. Let

I := (Iij)j∈[di],i∈[n] and f1(I) :=
∑
i∈[n]

d̃i(d̃i − 1).

Note that f1(I) =
∑
i∈[ñ] d̃i(d̃i − 1) since the degree-one vertices do not con-

tribute to the sum. One can check that, by changing the status of one half-
edge corresponding to vertex k, we can change f1(·) by at most 2(dk + 1).
Therefore, (2.41) yields

Pp

(∣∣∣ ∑
i∈[n]

d̃i(d̃i − 1) − pn
∑
i∈[n]

di(di − 1)
∣∣∣ > t)

6 2 exp
(
−

t2

8
∑
i∈[n] di(di + 1)2

)
.
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2.6 Critical percolation

By setting t = n1/2+ε for some suitably small ε > 0, using the finite third mo-
ment conditions and the Borel-Cantelli lemma we conclude that Pp almost
surely, ∑

i∈[n]
d̃i(d̃i − 1) = pn

∑
i∈[n]

di(di − 1) +O(n1/2+ε),

and in particular,∑
i∈[ñ]

d̃i(d̃i − 1) =
∑
i∈[n]

d̃i(d̃i − 1) = pn
∑
i∈[n]

di(di − 1) + o(n2/3). (2.42)

Similarly, take f2(I) =
∑
i∈[n] d̃i(d̃i − 1)(d̃i − 2) and note that changing the

status of one bond changes f2(·) by at most [2(dk + 1)]2. Thus, (2.41) gives

Pp

(∣∣∣f2(I) − p3/2
n

∑
i∈[n]

di(di − 1)(di − 2)
∣∣∣ > t)

6 2 exp
(
−

t2

32
∑
i∈[n] di(di + 1)4

)
6 exp

(
−

t2

32dmax(dmax + 1)
∑
i∈[n](di + 1)3

)
,

which implies that, Pp almost surely,∑
i∈[ñ]

d̃i(d̃i − 1)(d̃i − 2) =
∑
i∈[n]

d̃i(d̃i − 1)(d̃i − 2)

= p
3/2
n

∑
i∈[n]

di(di − 1)(di − 2) + o(n),
(2.43)

since d2
max
∑
i∈[n](di + 1)3 = o(n5/3). Now, to prove Lemma 2.6.1 (1), note

that the case r = 1 follows by simply observing that
∑
i∈ñ d̃i =

∑
i∈[n] di.

The cases r = 2, 3 follow from (2.42) and (2.43). Finally, to see Lemma 2.6.1 (2),
note that

ν̃n =

∑
i∈[ñ] d̃i(d̃i − 1)∑

i∈[ñ] d̃i
=
pn
∑
i∈[n] di

(
di − 1

)
+ o
(
n2/3)∑

i∈[n] di

=
pn
∑
i∈[n] di(di − 1)∑
i∈[n] di

+ o(n−1/3) = 1 +
λ

n1/3 + o(n−1/3),

by (2.42) and this completes the proof of Lemma 2.6.1.

We will denote by C̃(j), the jth largest component of CMñ(d̃). To con-
clude Theorem 2.2.3 we also need to estimate the number of deleted vertices
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Chapter 2 Critical window: Finite third moment

from each component. Recall from Remark 8 that CMn(d,pn(λ)) can be ob-
tained from CMñ(d̃) by deleting the relevant number of degree-one vertices
uniformly at random. Let vd1 (C̃(j)) be the number of degree-one vertices of
C̃(j) that are deleted while creating CMn(d,pn(λ)) from CMñ(d̃). Since the
vertices are to be chosen uniformly from all degree-one vertices, the num-
ber of vertices to be deleted from C̃(j) is asymptotically the total number of
degree-one vertices in C̃(j) times the proportion of degree-one vertices to be
deleted. Therefore,

vd1 (C̃(j)) =
n+

ñ1
v1(C̃(j)) + oP(n

2/3) =
n+

ñ1

ñ1∑∞
k=0 kñk

∣∣C̃(j)

∣∣+ oP(n
2/3)

=
n+

`n

∣∣C̃(j)

∣∣+ oP(n
2/3) =

E[D]
(
1 −
√
pn
)

E[D]

∣∣C̃(j)

∣∣+ oP(n
2/3)

=
(
1 −
√
pn
)∣∣C̃(j)

∣∣+ oP(n
2/3),

(2.44)

where the third equality follows from (2.38). The proof of Theorem 2.2.3
is now complete by using the `2↓ convergence in Lemma 2.5.2, (2.44) and
Remark 10.

2.7 Joint convergence at multiple locations in the critical
window

We will prove Theorem 2.2.4 in this section. In Section 2.7.1, we give a con-
struction of the joint distribution of the percolated graphs for different per-
colation parameters that are coupled in a way described in Theorem 2.2.4.
In Section 2.7.2, we compare the process of percolated graphs with a differ-
ent graph process that turns out to be easier to work with. As discussed in
Remark 3, let the mass of a component be the number of open half-edges (re-
scaled by n2/3). The alternatively constructed graph process can be modified
in such a way that the vector of masses evolves according to an exact multi-
plicative coalescent as discussed in Section 2.7.3. Thus the joint convergence
result at multiple locations of the scaling window can be deduced for the
modified process using the Feller property of the multiplicative coalescent.
Further, the modified process remains close to the dynamic construction. In
Section 2.7.4, the vector of masses are shown to be asymptotically propor-
tional to the component sizes and we combine all the above observations in
Section 2.7.5 to complete the proof of Theorem 2.2.4.
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2.7 Joint convergence at multiple locations in the critical window

2.7.1 Construction of the percolated graph process

We start by explaining a way to construct the graph process (CMn(d,p)p∈[0,1].
Fix any p1 < p2 < · · · < pm and consider (CMn(d,pi))i∈[m]. Recall that each
edge e of CMn(d) has an independent uniform [0, 1] random variable Ue as-
sociated to it and CMn(d,pi) is obtained from CMn(d) by keeping only
those edges e with Ue 6 pi. This couples the graphs (CMn(d,pi))i∈[m].
Moreover, under this coupling, CMn(d,pi) is distributed as the graph ob-
tained from edge percolation on CMn(d,pi+1) with probability pi/pi+1 for
all i < m. The following two lemmas are modifications of [85, Lemmas 3.1, 3.2]
that lead to the construction of Algorithm 2.4 below. For a graph G, let E(G)
denote the set of edges of G. For a sub-graph G of CMn(d), let H(G) denote
the set of half-edges that are part of some edge in G and H = H(CMn(d)).

Lemma 2.7.1. For k1 6 · · · 6 km, conditionally on {|E(CMn(d,pi))| = ki :

i 6 m}, the half-edges in CMn(d,pi) can be generated sequentially as follows:
Let k0 = 0, H(CMn(d,p0)) = ∅. For each i 6 m, declare H(CMn(d,pi)) =

H(CMn(d,pi−1)) ∪Hi, where Hi is uniformly chosen among all the subsets of
size 2ki − 2ki−1 of H \∪j<iHi.

Lemma 2.7.2. Let dk(i, i + 1) be the number of half-edges attached to vertex k
in the graph CMn(d,pi+1) that are not in CMn(d,pi). For any i > 1, condi-
tionally on the event {d(j, j+ 1) = d0(j, j+ 1) : j 6 m} and H(CMn(d,pi−1)),
the perfect matching of H(CMn(d,pi)) \H(CMn(d,pi−1)) constituting the edges
E(CMn(d,pi) \ CMn(d,pi−1)) is a uniform perfect matching, where we have as-
sumed that p0 = 0.

Algorithm 2.4. Let (Ui)i>1 be a finite collection of i.i.d uniform [0, 1] random
variables. Construct a collection of graphs (Gn(λ))λ∈R using the following
two steps:

(S0) Construct the process En = (En(λ))λ∈R, where En(λ) = #{i : Ui 6

pn(λ)}.

(S1) Initially, Gn(−∞) is a graph only consisting of isolated vertices with
no paired half-edges. At each time point λ where En(λ) has a jump,
choose two unpaired half-edges uniformly at random and pair them.
The graph Gn(λ) is obtained by adding this edge to Gn(λ−).

Algorithm 2.4 (S0) can be regarded as the birth of edges and Algorithm 2.4
(S1) ensures that the edges of the graph Gn(λ) are obtained from a uniform
perfect matching of the corresponding half-edges. Using Lemmas 2.7.1 and 2.7.2,
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Chapter 2 Critical window: Finite third moment

(Gn(λ))λ∈R and (CMn(d,pn(λ)))λ∈R have the same finite-dimensional dis-
tributions. Therefore, (Gn(λ))λ∈R and (CMn(d,pn(λ)))λ∈R have the ex-
act same distribution. We complete this section by adding proofs of Lem-
mas 2.7.1, and 2.7.2 which are in the same spirit as the arguments of [85,
Lemmas 3.1, 3.2].

Proof of Lemma 2.7.1. Assume that k = 2 for the sake of simplicity. Ob-
serve that the total number of perfect matchings of 2k objects is given by
2k!/(k!2k) = (2k− 1)!!. Let H1, H2 be two disjoint subsets of H with |H1| =

2k1, |H2| = 2k2 − 2k1. Let E1 denote the event that a uniform perfect matching
of all the half-edges contains also perfect matchings of the half-edges in H1

and H2. Then,

P (E1) =
(2k1 − 1)!!(2k2 − 2k1 − 1)!!(`n − 2k2 − 1)!!

(`n − 1)!!
.

Also, for percolation on any (random) graph, conditional on the set of edges
of the graph and the fact that k edges have been retained by percolation,
the choice of the retained edges is uniformly distributed among all subsets of
size k of the set of edges. Let E2 denote the event that |H(CMn(d,p1))| = 2k1,
and |H(CMn(d,p2))| = 2k2. It follows that

P (H(CMn(d,p2)) = H1 ∪H2 | E1,E2) =
1(`n/2
k2

) ,

P (H(CMn(d,p1)) = H1 | E1,E2,H(CMn(d,p2)) = H1 ∪H2) =
1(
k2
k1

) .

Thus, conditional on the event E2, the probability that H(CMn(d,p1)) = H1

and H(CMn(d,p2)) \H(CMn(d,p1)) = H2 is given by

(2k1 − 1)!!(2k2 − 2k1 − 1)!!(`n − 2k2 − 1)!!
(`n − 1)!!

1(`n/2
k2

)(
k2
k1

) =
1(

`n
2k1

)( `n−2k1
2k2−2k1

) ,

(2.45)

which does not depend on H1 or H2, and the proof follows.

Proof of Lemma 2.7.2. Fix two disjoint subsets H1, H2 of H such that |H1| =

2k1, |H2| = 2k2 − 2k1. As in the proof of Lemma 2.7.1, let E2 denote the
event that |H(CMn(d,p1))| = 2k1, and |H(CMn(d,p2))| = 2k2. An identical
argument as the proof of (2.45) now gives, conditionally on E2, the probability
that H(CMn(d,p1)) = H1, H(CMn(d,p2)) \H(CMn(d,p1)) = H2, and given
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2.7 Joint convergence at multiple locations in the critical window

perfect matchings on H(CMn(d,p1)), H(CMn(d,p2)) \H(CMn(d,p1)) have
been observed, is given by

1(`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!
(`n − 1)!!

.

Let D(H) denote the degree sequence induced by the set of half-edges H,
and S denote the collection of disjoint pairs (H1,H2) such that |H1| = 2k1,
|H2| = 2k2 − 2k1, D(H1) = d0(0, 1), and D(H2) = d0(1, 2). Then, condi-
tionally on E2, the probability that d(0, 1) = d0(0, 1), d(1, 2) = d0(1, 2), and
given particular perfect matchings have been observed on H(CMn(d,p1))

and H(CMn(d,p2)) \H(CMn(d,p1)), is∑
(H1,H2)∈S

1(`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!
(`n − 1)!!

=
|S|(`n/2

k2

)(
k2
k1

) (`n − 2k2 − 1)!!
(`n − 1)!!

. (2.46)

Moreover, by Lemma 2.7.1, the probability that d(0, 1) = d0(0, 1), d(1, 2) =

d0(1, 2), conditionally on E2, is given by

|S|(
`n
2k1

)( `n−2k1
2k2−2k1

) . (2.47)

Now, (2.46) and (2.47) together yield that the probability that two particu-
lar perfect matchings are observed on H(CMn(d,p1)) and H(CMn(d,p2)) \

H(CMn(d,p1)), conditional on d(0, 1) = d0(0, 1), d(1, 2) = d0(1, 2) is given
by

1(`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!
(`n − 1)!!

(
`n

2k1

)(
`n − 2k1

2k2 − 2k1

)
=

1
(2k1 − 1)!!(2k2 − 2k1 − 1)!!

,

and the proof is complete.

2.7.2 The dynamic construction

Let us now describe a dynamic construction of CMn(d) that turns out to
be easier to work with. This dynamic construction was introduced in [29]
to study the metric-space limits of the large components of the percolated
configuration model. It will be shown that the graphs generated by this
dynamic construction at a suitable range of time approximate the process
(CMn(d,pn(λ)))λ∈R.

Algorithm 2.5. At time t = 0, assume that there are di open half-edges associ-
ated with vertex i, for all i ∈ [n]. Associate i.i.d unit rate exponential clocks to
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each of the open half-edges. Each time an exponential clock rings, the corre-
sponding half-edge selects another open half-edge uniformly at random and
gets paired to it. The two paired half-edges are declared to be closed and the
associated exponential clocks are removed. The process continues until the
open half-edges are exhausted.

Let Gn(t) denote the graph generated upto time t. Notice that Gn(∞)

is distributed as CMn(d) since each half-edge chooses to pair with another
uniformly chosen open half-edge. Denote the total number of open-half-
edges remaining at time t while implementing Algorithm 2.5 by s1(t). The
graph process, given by Algorithm 2.5, can also be constructed as follows:

Algorithm 2.6. Let Ξn be an inhomogeneous Poisson process with rate s1(t)

at time t. Let e1 < e2 < . . . be the event times of Ξn.

(S1) At each event time, choose two unpaired half-edges uniformly at ran-
dom and pair them. The graph Gn(t) is obtained by adding this edge
to Gn(t−).

Notice the similarity between Algorithm 2.4 (S1) and Algorithm 2.6 (S1).
Now, the idea is to compare the number of half-edges that have been paired
by Algorithms 2.4 and 2.6. For that, we need the following lemma that de-
scribes the evolution of the count of the total number of open half-edges in
Algorithm 2.6:

Lemma 2.7.3 ([29, Lemma 8.2]). Let s1(t) denote the total number of open half-
edges at time t. Suppose that Assumption 2.2 holds. Then, for any T > 0 and some
1/3 < γ < 1/2,

sup
t6T

∣∣∣ 1
`n
s1(t) − e−2t

∣∣∣ = oP(n
−γ).

Notice that the proof of [29, Lemma 8.2] is stated only under some more
stringent assumptions, however the identical argument can be carried out
under Assumption 2.2. The next proposition ensures that the graphs gener-
ated by percolation in Algorithm 2.4 and the dynamic construction in Algo-
rithm 2.5 are uniformly close in the critical window. Define

tn(λ) =
1
2

log
(

νn

νn − 1

)
+

1
2(νn − 1)

λ

n1/3 . (2.48)
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2.7 Joint convergence at multiple locations in the critical window

Proposition 2.7.4. Fix −∞ < λ? < λ? < ∞. There exists a coupling such that
with high probability

Gn(tn(λ) − εn) ⊂ CMn(d,pn(λ)) ⊂ Gn(tn(λ) + εn), ∀λ ∈ [λ?, λ?]

where εn = cn−γ0 , for some 1/3 < γ0 < 1/2 and the constant c does not depend
on λ.

Proof. Notice the similarity between Algorithm 2.4 (S1) and Algorithm 2.6 (S1).
Let #E(G) denote the number of edges in a graph G. Suppose with high prob-
ability the following holds: ∀λ ∈ [λ?, λ?]

#E(Gn(tn(λ) − εn)) 6 #E(CMn(d,pn(λ))) 6 #E(Gn(tn(λ) + εn)), .(2.49)

On the event {#E(CMn(d,pn(λ))) 6 #E(Gn(tn(λ) + εn)),∀λ ∈ [λ?, λ?]}, the
choice of the uniform pair of half-edges at the kth pairing in Algorithm 2.4 (S1)
can be taken to be exactly the same as the kth pairing in Algorithm 2.6 (S1).
Under the above coupling CMn(d,pn(λ?)) ⊂ Gn(tn(λ?) + εn). Moreover,
since #E(CMn(d,pn(λ))) is dominated by #E(Gn(tn(λ) + εn)), uniformly
over λ ∈ [λ?, λ?], the above coupling also yields CMn(d,pn(λ)) ⊂ Gn(tn(λ)+

εn) for all λ ∈ [λ?, λ?]. Further, on the event
{#E(Gn(tn(λ) − εn)) 6 #E(CMn(d,pn(λ))),∀λ ∈ [λ?, λ?]}, under the same
coupling, Gn(tn(λ) − εn) ⊂ CMn(d,pn(λ)) for all λ ∈ [λ?, λ?]. Thus, it re-
mains to show (2.49). An application of Lemma 2.7.3 along with (2.48) yields,
for some 1/3 < γ0 < γ < 1/2, with high probability,∣∣∣∣#E(Gn(tn(λ))) −

(
`n

2νn
+

λ`n

2νnn1/3 +
nεn(νn − 1)

νn

)∣∣∣∣ 6 n1−γ, λ ∈ [λ?, λ?].

(2.50)
Notice that the total number of half-edges in CMn(d,pn(λ)) follows a bino-
mial distribution with parameters `n/2 and pn(λ). Thus, with high probabil-
ity,∣∣∣∣#E(CMn(d,pn(λ))) −

(
`n

2νn
+

λ`n

2νnn1/3

)∣∣∣∣ 6 n1−γ, λ ∈ [λ?, λ?]. (2.51)

The fact that the error can be chosen to be uniform over λ ∈ [λ?, λ?] follows
from the DKW inequality [132]. Thus, (2.50) and (2.51) together show that,
with high probability,

#E(CMn(d,pn(λ))) 6 #E(Gn(tn(λ) + εn)), ∀λ ∈ [λ?, λ?].

The other part follows similarly and the proof is now complete.
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Remark 11. Notice that the proof of Proposition 2.7.4 can be directly modi-
fied to show that there exists a coupling such that, with high probability,

CMn(d,pn(λ) − εn) ⊂ Gn(tn(λ)) ⊂ CMn(d,pn(λ) + εn), ∀λ ∈ [λ?, λ?],

where εn = cn−γ0 , for some 1/3 < γ0 < 1/2 and the constant c does not
depend on λ. Therefore, the scaling limits of different functionals like re-
scaled component-sizes, surplus edges for Gn(tn(λ)) and CMn(d,pn(λ)) are
the same.

2.7.3 The modified process

From here onward, we often augment λ to a predefined notation to empha-
size the dependence on λ. We write C(i)(λ) for the ith largest component of
Gn(tn(λ)) and define

Oi(λ) = # open half-edges in C(i)(λ).

Think of Oi(λ) as the mass of the component C(i)(λ). Define the vector
Cn(λ) = (n−2/3|C(i)(λ)|)i>1, and On(λ) = (n−2/3Oi(λ))i>1. Let `on(λ) =∑
i>1 Oi(λ). By Lemma 2.7.3 and (2.48), `on(λ) ≈ nµ(ν− 1)/ν. Now, observe

that, during the evolution of the graph process generated by Algorithm 2.5,
during the time interval [tn(λ), tn(λ + dλ)], the ith and jth (i > j) largest
components, merge at rate

2Oi(λ)Oj(λ)×
1

`on(λ) − 1
× 1

2(νn − 1)n1/3

≈ ν

µ(ν− 1)2

(
n−2/3Oi(λ)

)(
n−2/3Oj(λ)

)
,

and create a component with Oi(λ) + Oj(λ) − 2 open half-edges. Thus the
open half-edges (On(λ))λ∈R does not evolve as a multiplicative coalescent,
but it is close. The fact that two half-edges are killed after pairing, makes the
masses (the number of open half-edges) of the components deplete. If there
were no such depletion of mass, then the vector of open half-edges would in
fact merge as multiplicative coalescent. Let us formalize this idea below:

Algorithm 2.7. Initialize Ḡn(tn(λ?)) = Gn(tn(λ?)). Let O denote the set of
open half-edges in the graph Gn(tn(λ?)), s̄1 = |O | and Ξ̄n denote a Poisson
process with rate s̄1. At each event time of the Poisson process Ξ̄n, select two
half-edges from O and create an edge between the corresponding vertices.
However, the selected half-edges are kept alive, so that they can be selected
again.
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2.7 Joint convergence at multiple locations in the critical window

Remark 12. The only difference between Algorithm 2.6 and Algorithm 2.7,
is that the paired half-edges are not discarded and thus more edges are cre-
ated by Algorithm 2.7. Thus, there is a natural coupling between the graphs
generated by Algorithms 2.6 and 2.7 such that Gn(tn(λ)) ⊂ Ḡn(tn(λ)) for
all λ ∈ [λ?, λ?], with probability one. In the subsequent part of this section,
we always work under this coupling. The extra edges that are created by
Algorithm 2.7 will be called bad edges.

Remark 13. In the subsequent part of this chapter, we shall augment a
predefined notation with a bar to denote the corresponding quantity for
Ḡn(tn(λ)). Denote βn = (s̄1(νn − 1)n1/3)1/2 and Ō ′n(λ) denote the vec-
tor ord((β−1

n Ōi(λ))i>1). By the description in Algorithm 2.7, (Ō ′n(λ))λ>λ?
evolves as a standard multiplicative coalescent. Further, note that there exists
a constant c > 0 such that βn = cn2/3(1+ oP(1)) which enables us to deduce
the scaling limit results for (Ōn(λ))λ>λ? from (Ō ′n(λ))λ>λ? .

Multiplicative coalescent with mass and weight

The Feller property of the multiplicative coalescent [8, Proposition 5] ensures
the joint convergence of the number of open half-edges in each component of
Ḡn(tn(λ)) at multiple values of λ as we shall see below. To deduce the scaling
limits involving the components sizes let us consider a dynamic process that
is further augmented by a certain weight. Initially, the system consists of
particles (possibly infinitely many) where particle i has mass xi, and weight
zi. Let (Xi(t),Zi(t))i>1 denote the vector of masses, and weights at time t.
The dynamics of the system is described as follows:

At time t, particles i and j coalesce at rate Xi(t)Xj(t) and create a par-
ticle with mass Xi(t) +Xj(t), and weight Zi(t) +Zj(t).

Denote by MC2(x, z, t) the vector (Xi(t),Zi(t))i>1 with initial mass x, and
weight z. We shall need the following theorem:

Theorem 2.7.5. Suppose that (xn, zn)→ (x, x) in (`2↓)
2. Then, for any t > 0

MC2(xn, zn, t) d−→MC2(x, x, t).

Proof. For xn = (xni )i>1 and zn = (zni )i>1, let w+
n = ord(xni ∨ zni ), w−

n =

ord(xni ∧ zni ), where ord denotes the decreasing ordering of the elements.
Notice that w+

n → x, and w−
n → x in `2↓ . Using the Feller property of the

multiplicative coalescent [8, Proposition 5], it follows that

MC2(w+
n , w+

n , t) d−→MC2(x, x, t), MC2(w−
n , w−

n , t) d−→MC2(x, x, t), (2.52)
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with respect to the (`2↓)
2 topology. Now suppose that MC2(w+

n , w+
n , t) and

MC2(w−
n , w−

n , t) are coupled through the subgraph coupling (see [8, Page
838]). For (x, z) ∈ (`2↓)

2, denote ‖(x, z)‖22 = (
∑
i>1 x

2
i)

1/2 + (
∑
i>1 z

2
i)

1/2. Un-
der the subgraph coupling, (2.52) yields

‖MC2(w+
n , w+

n , t)‖2
22 − ‖MC2(w−

n , w−
n , t)‖2

22
P−→ 0.

Moreover,

‖MC2(w−
n , w−

n , t)‖2
22 6 ‖MC2(xn, zn, t)‖2

22 6 ‖MC2(w+
n , w+

n , t)‖2
22.

Hence, using [8, Corollary 18 (a)], under the subgraph coupling,

‖MC2(w+
n , w+

n , t) − MC2(xn, zn, t)‖2
22

6 ‖MC2(w+
n , w+

n , t)‖2
22 − ‖MC2(xn, zn, t)‖2

22
P−→ 0,

and the proof follows.

2.7.4 Asymptotics for the open half-edges

In this section, we show that the open half-edges in the components of
Gn(tn(λ)) are approximately proportional to the component sizes. This will
enable us to apply Theorem 2.7.5 for deducing the scaling limits of the re-
quired quantities for the graph Ḡn(tn(λ)).

Lemma 2.7.6. There exists a constant κ > 0 such that, for any λ ∈ R and i > 1,

Oi(λ) = κ|C(i)(λ)|+ oP(bn). (2.53)

Further, (On(λ))n>1 is tight in `2↓ and consequently

n−4/3
∑
i>1

(Oi(λ) − κ|C(i)(λ)|)
2 P−→ 0.

Proof. Let (dλk)k∈[n] denote the degree sequence of CMn(d,pn(λ)) and de-
fine

O
p
i (λ) =

∑
k∈C p

(i)
(λ)

(dk − d
λ
k) =

∑
k∈C p

(i)
(λ)

dk − 2(|C p(i)(λ)|− 1 + SP(C p(i)(λ))).

Using Remark 11 and the fact that the surplus edges in the large compo-
nents is tight, it is enough to prove the lemma by replacing Oi(λ) by O

p
i (λ)

and C(i)(λ) by C p(i)(λ). For a component C̃ of CMñ(d̃), the corresponding
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2.7 Joint convergence at multiple locations in the critical window

component C̃ p in the percolated graph is obtained by cleaning up R(C̃ ) red
degree-one vertices, see Algorithm 2.3. Thus, the number of open half-edges
in C̃ p is given by ∑

k∈C̃∩[n]
dk −

∑
k∈C̃∩[n]

d̃k + R(C̃ ). (2.54)

Now, all the three terms appearing in the right hand side of (2.54) can be
estimated using Lemma 2.4.2. Indeed, we can consider weights wi1 = di,
wi2 = d̃i, and wi3 = the number of red neighbors of vertex i in CMñ(d̃). The
conditions in (2.10) are satisfied by Lemma 2.6.1, and observing that

max{max
i
wi1, max

i
wi2, max

i
wi3} 6 dmax = o(n1/3).

Note that, using an argument identical to Lemma 2.6.1, (1/n)
∑
i∈[ñ]wikd̃i

converges Pp almost surely, for all k = 1, 2, 3. Now, (2.53) is a consequence
of Lemma 2.4.11. Denote

Di =
∑

k∈C̃(i)∩[n]
dk, D̃i =

∑
k∈C̃(i)∩[n]

d̃k,

Dn = ord((Di)i>1), and D̃n = ord((D̃i)i>1).

Using (2.31), (D̃n)n>1 is tight in `2↓ . Further wi3 6 di for all i. Thus, for
the `2↓ tightness of (On(λ))n>1, it is enough to show the `2↓ tightness of
(Dn)n>1. Denote the conditional probability, conditioned on the uniform
perfect matching in Algorithm 2.3 (S2), by P̃(·). Notice that, since Algo-
rithm 2.3 (S1), and (S2) are carried out independently, D̃i ∼ Bin(Di,

√
pn)

under P̃. Using standard concentration inequalities [115, (2.9)], it follows
that

P̃(D̃i < Di
√
pn(1 −

√
pn)) 6 2e−Dip

3/2
n /3,

and thus for I = {k : Dk > n
ε}, the union bound yields

P(∃i ∈ I : Di > aD̃i)→ 0, (2.55)

for some constant a > 0. Let En denote the corresponding event in (2.55).
Thus, for any η > 0,

P

(
n−4/3

∑
k>K,k∈I

D2
k > η

)
6 P

(
n−4/3

∑
k>K

D̃2
k >

η

a

)
+ P(En)→ 0,

if we first take the limit as n → ∞, and then K → ∞, and use the `2↓ tight-
ness of (D̃n)n>1. Further,

∑
k/∈ID

2
k 6 n1+2ε = o(n4/3), if ε < 1/6. This

completes the proof of the `2↓ tightness of (Dn)n>1 and consequently that of
(On(λ))n>1.
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2.7.5 Proof of Theorem 2.2.4

We will consider the case k = 2 only, since the case for general k can be
proved inductively. Fix −∞ < λ0 < λ1 < ∞. Suppose that the modified
Algorithm 2.7 starts at time λ? = λ0. By Lemma 2.7.6 and Theorem 2.2.3,
(On(λ0), κCn(λ0)) converges in distribution to κ

√
ν(γ̃λ0 , γ̃λ0). Now, from

Remark 13, an application of Theorem 2.7.5 gives

(Cn(λ0), C̄n(λ1))
d−→
√
ν(γ̃λ0 , γ̃λ1). (2.56)

The fact that the limiting distribution corresponding to C̄n(λ1) is equal to
√
νγ̃λ1 follows from the Feller property of multiplicative coalescent, [11, The-

orem 2], and Theorem 2.7.5. For x, y ∈ `2↓ , denote x � y if x is the vector
in decreasing order of elements {yij : i, j > 1} such that

∑
j yij 6 yi for all

i > 1. Thus if y is obtained by coalescing elements of x, then x � y. Under the
coupling in Remark 12, it follows that Cn(λ) � C̄n(λ) almost surely, for each
λ > λ0. Using [8, Corollary 18 (a)], it follows that

‖C̄n(λ1) − Cn(λ1)‖2
2 6 ‖C̄n(λ1)‖2

2 − ‖Cn(λ1)‖2
2 , (2.57)

where ‖ · ‖2 denotes the `2-norm. The final ingredient is the following straight-
forward lemma:

Lemma 2.7.7. Suppose Xn, Yn are non-negative random variables such that Xn 6

Yn a.s. and Xn
L−→ X, Yn

L−→ X. Then,

Yn −Xn
P−→ 0.

Proof. Note that ((Xn, Yn))n>1 is tight in R2. Thus, for any (n ′i)i>1 there
exists a subsequence (ni)i>1 ⊂ (n ′i)i>1 such that (Xni , Yni)

L−→ (Z1,Z2). Us-
ing the marginal distributional limits we get Z1

L
= X, Z2

L
= X. Also the

joint distribution of (Z1,Z2) is concentrated on the line y = x in the xy
plane. Thus, (Xni , Yni)

L−→ (X,X). This limiting distribution does not depend
on the subsequence (ni)i>1. Thus the tightness of ((Xn, Yn))n>1 implies
(Xn, Yn)

L−→ (X,X). The proof is now complete.

Now, observe that ‖Cn(λ1)‖2
2 6 ‖C̄n(λ1)‖2

2 and ‖Cn(λ1)‖2
2 , and ‖C̄n(λ1)‖2

2

have the same distributional limit by Theorem 2.2.2, and (2.56). Thus, using
Lemma 2.7.7, it follows that ‖C̄n(λ1)‖2

2 − ‖Cn(λ1)‖2
2

P−→ 0, and (2.56), (2.57)
yield

(Cn(λ0), Cn(λ1))
d−→
√
ν(γ̃λ0 , γ̃λ1).

Finally, the proof of Theorem 2.2.4 is completed by applying Proposition 2.7.4.
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2.8 Conclusion

In this chapter, we have shown that whenever the third moment of the empir-
ical degree distribution converges, the critical window for the configuration
model is given by νn = 1 + λn−1/3, and the largest component sizes have
Θ(n2/3) vertices and O(1) surplus edges. Theorem 2.2.2 identifies the pre-
cise limiting distribution of the rescaled component sizes and surplus edges,
and the convergence results hold under U0

↓ topology. We apply these re-
sults to percolated CMn(d). Analyzing the exploration process directly on
percolated CMn(d) is difficult. This is because many paired half-edges are
not retained by percolation during the exploration, which changes the num-
ber of available half-edges of an unexplored vertex. For this reason, one has
to keep updating the degree distribution of unexplored vertices, which be-
comes difficult to track when the maximum degree is unbounded [135]. We
circumvent this difficulty by using Janson’s construction of the percolated
configuration model. Further, for the joint convergence of the percolated
clusters over the critical window, we give a construction of the percolation
process in Algorithm 2.4, which allows us to approximate percolated graphs
by a dynamically growing Markovian graph process. A further difficulty for
proving Theorem 2.2.4 was that even the later Markovian graph process is
only approximately multiplicative coalescent. The ideas for dealing with this
approximate multiplicative coalescent are general, and we believe that these
techniques are applicable to many other dynamic graph models.

107





Chapter 3

Heavy-tailed configuration models
at criticality

Abstract. We study the critical behavior of the component sizes for the configura-

tion model when the tail of the degree distribution of a randomly chosen vertex is a

regularly-varying function with exponent τ− 1 with τ ∈ (3, 4). The component sizes

are shown to be of the order n(τ−2)/(τ−1)L(n)−1 for some slowly-varying function

L(·). We show that the re-scaled ordered component sizes converge in distribution to

the ordered excursions of a thinned Lévy process. This proves that the scaling limits

for the component sizes for these heavy-tailed configuration models are in a different

universality class compared to those for the Erdős-Rényi random graphs. Also the

joint re-scaled vector of ordered component sizes and their surplus edges is shown to

have a distributional limit under a strong topology. Our proof resolves a conjecture

by Joseph, Ann. Appl. Probab. (2014) about the scaling limits of uniform simple graphs

with i.i.d. degrees in the critical window, and sheds light on the relation between the

scaling limits obtained by Joseph and in this chapter, which appear to be quite differ-

ent. Further, we use percolation to study the evolution of the component sizes and

the surplus edges within the critical scaling window, whose finite-dimensional dis-

tributions are shown to converge to the augmented multiplicative coalescent process

introduced by Bhamidi et al., Probab. Theory Related Fields (2014). The main results of

this chapter are proved under rather general assumptions on the vertex degrees. We

also discuss how these assumptions are satisfied by some of the frameworks that have

been studied previously.

Based on the manuscript: Souvik Dhara, Remco van der Hofstad, Johan S.H. van Leeuwaarden,

and Sanchayan Sen, Heavy-tailed configuration models at criticality (2016), arXiv:1612.00650
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Chapter 3 Critical window: Infinite third moment

In this chapter, we focus on the critical behavior of the configuration
model, and critical percolation when the third moment of the empirical de-
gree distribution tends to infinity. We include detailed proofs of the scaling
limit results related to component sizes and surplus edges described in Chap-
ter 1. As in Chapter 2, the scaling limit result are shown to hold for critical
percolation on the configuration model. We also study the evolution of both
component sizes and surplus edges over the critical window, and describe
its asymptotic distribution by a version of the augmented multiplicative co-
alescent process. The scaling limits lie in the universality class identified in
[33], and are fundamentally different than in Chapter 2. The results in this
chapter provide a detailed understanding of the component sizes and sur-
plus edges for heavy-tailed graphs in the critical window. Before stating the
main results, we need to introduce some notation and concepts.

3.1 Definitions and notation

Recall the definitions from Chapter 1.2.1. Let (U0
↓)
k denote the k-fold product

space of U0
↓ . For any z ∈ U↓, ord(z) will denote the element of U0

↓ obtained
by suitably ordering the coordinates of z. We often use the boldface notation
X for the process (X(s))s>0, unless stated otherwise. D[I,E] will denote the
space of càdlàg functions from an interval I to the metric space E = (E, d)
equipped with Skorohod J1-topology. Consider a decreasing sequence θ =

(θ1, θ2, . . . ) ∈ `3↓ \ `2↓ . Denote by Ii(s) := 1{ξi 6 s} where ξi ∼ Exp(θi/µ)
independently, and Exp(r) denotes the exponential distribution with rate r.
Consider the process

S̄λ∞(t) =
∞∑
i=1

θi (Ii(t) − (θi/µ)t) + λt, (3.1)

for some λ ∈ R,µ > 0 and define the reflected version of S̄λ∞(t) by

refl(S̄λ∞(t)) = S̄λ∞(t) − min
06u6t

S̄λ∞(u). (3.2)

The process of the form (3.1) was termed thinned Lévy processes in [33] (see
also [5, 102]), since the summands are thinned versions of Poisson processes.
For any function f ∈ D[0,∞), define

¯
f(x) = infy6x f(y). D+[0,∞) is the

subset of D[0,∞) consisting of functions with positive jumps only. Note that

¯
f is continuous when f ∈ D+[0,∞). An excursion of a function f ∈ D+[0, T ]

110
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is an interval (l, r) such that

min{f(l−), f(l)} =
¯
f(l) =

¯
f(r) = min{f(r−), f(r)}

and f(x) >
¯
f(r), ∀x ∈ (l, r) ⊂ [0, T ].

Excursions of a function f ∈ D+[0,∞) are defined similarly. We will use γ
to denote an excursion, as well as the length of the excursion γ to simplify
notation.

Also, define the counting process N to be the Poisson process that has
intensity refl(S̄λ∞(t)) at time t conditional on (S̄λ∞(u))u6t. Formally, N is
characterized as the counting process for which

N(t) −

t∫
0

refl(S̄λ∞(u))du (3.3)

is a martingale. We use the notation N(γ) to denote the number of marks in
the interval γ.

Finally, we define a Markov process (Z(s))s∈R on D(R, U0
↓), called the

augmented multiplicative coalescent (AMC) process. Think of a collection of
particles in a system with X(s) describing their masses and Y(s) describing
an additional attribute at time s. Let K1,K2 > 0 be constants. The evolution
of the system takes place according to the following rule at time s:

B For i 6= j, at rate K1Xi(s)Xj(s), the ith and jth component merge and
create a new component of mass Xi(s) + Xj(s) and attribute Yi(s) +
Yj(s).

B For any i > 1, at rate K2X
2
i(s), Yi(s) increases to Yi(s) + 1.

Of course, at each event time, the indices are re-organized to give a proper
element of U0

↓ . This process was first introduced in [30] to study the joint
behavior of the component sizes and the surplus edges over the critical win-
dow. In [30], the authors extensively study the properties of the standard
version of AMC, i.e., the case K1 = 1,K2 = 1/2 and showed in [30, Theorem
3.1] that this is a (nearly) Feller process, a property that will play a crucial
rule in the final part of this chapter.

Remark 14. Notice that the summation term in (3.1), after replacing θi by
µθi, is of the form Vθ(s) = µα

∑∞
i=1

(
θi1{ξi 6 s}− θ2

is
)
, where ξi ∼ Exp(θi)

independently over i and θ ∈ `3↓ \ `2↓ . Therefore, by [11, Lemma 1], the
process refl(S̄λ∞) has no infinite excursions almost surely and only finitely
many excursions with length at least δ, for any δ > 0.
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Chapter 3 Critical window: Infinite third moment

3.2 Main results

3.2.1 Main results for critical configuration models

Throughout this chapter we will use the shorthand notation

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (τ− 3)/(τ− 1),

an = nαL(n), bn = nρ(L(n))−1, cn = nη(L(n))−2,
(3.4)

where τ ∈ (3, 4) and L(·) is a slowly-varying function. We state our results
under the following assumptions:

Assumption 3.1. Fix τ ∈ (3, 4). Let d = (d1, . . . ,dn) be a degree sequence
such that the following conditions hold:

(i) (High-degree vertices) For any fixed i > 1,

di
an
→ θi,

where θ = (θ1, θ2, . . . ) ∈ `3↓ \ `2↓ .

(ii) (Moment assumptions) Let Dn denote the degree of a vertex chosen uni-

formly at random from [n], independently of CMn(d). Then, Dn
d−→ D,

for some integer-valued random variable D and

1
n

∑
i∈[n]

di → µ := E [D] ,
1
n

∑
i∈[n]

d2
i → E[D2],

lim
K→∞ lim sup

n→∞
(
a−3
n

n∑
i=K+1

d3
i

)
= 0.

(iii) (Critical window) For some λ ∈ R,

νn(λ) :=

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λc−1

n + o(c−1
n ).

(iv) Let n1 be the number of vertices of degree-one. Then n1 = Θ(n), which
is equivalent to assuming that P (D = 1) > 0.

Note that Assumption 3.1 (i)-(ii) implies lim infn→∞E[D3
n] = ∞. The

following three results hold for any CMn(d) satisfying Assumption 3.1:
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Theorem 3.2.1. Consider CMn(d) with the degrees satisfying Assumption 3.1.
Denote the ith-largest cluster of CMn(d) by C(i). Then,(

b−1
n |C(i)|

)
i>1

d−→ (γi(λ))i>1 ,

with respect to the `2↓-topology where γi(λ) is the length of the ith largest excur-
sion of the process S̄λ∞, while bn and the constants λ,µ are defined in (3.4) and
Assumption 3.1.

Theorem 3.2.2. Consider CMn(d) with the degrees satisfying Assumption 3.1. Let
SP(C(i)) denote the number of surplus edges in C(i) and define the vectors Zn :=

ord(b−1
n |C(i)|, SP(C(i)))i>1, Z := ord(γi(λ),N(γi))i>1. Then, as n→∞,

Zn
d−→ Z (3.5)

with respect to the U0
↓ topology, where N is defined in (3.3).

Theorem 3.2.3. The results in Theorems 3.2.1 and 3.2.2 also hold for uniform ran-
dom graphs with degree d.

Remark 15. The only previous work to understand the critical behavior of
the configuration model with heavy-tailed degrees was by Joseph [121] where
the degrees were assumed to be i.i.d an sample from an exact power-law dis-
tribution and the results were obtained for the component sizes of CMn(d)

(Theorem 3.2.1). We will see that Assumption 3.1 is satisfied for i.i.d degrees
in Section 3.3.2. Thus, a quenched version of [121, Theorem 8.3] follows from
our results. Further, if the degrees are chosen approximately as the weights
chosen in [33], then our results continue to hold. This sheds light on the re-
lation between the scaling limits in [33] and [121] (see Remark 24). Moreover,
Theorem 3.2.3 resolves [121, Conjecture 8.5].

Remark 16. The conclusions of Theorems 3.2.1, 3.2.2, and 3.2.3 hold for more
general functionals of the components. Suppose that each vertex i has a
weight wi associated to it and let Wi denote the total weight of the com-
ponent C(i), i.e., Wi =

∑
k∈C(i)

wk. Then, under some regularity condi-
tions on the weight sequence w = (wi)i∈[n], in Section 3.8 we will show
that the scaling limit for Zwn := ord(b−1

n Wi, SP(C(i)))i>1 is given by Z =

ord(κγi(λ),N(γi))i>1, where the constant κ is given by

κ = lim
n→∞

∑
i∈[n] diwi∑
i∈[n] di

.

Observe that, for wi = 1{di = k}, Wi gives the asymptotic number of vertices
of degree k in the ith largest component.
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Remark 17. It might not be immediate why we should work with Assump-
tion 3.1. We will see in Section 3.3.1 that Assumption 3.1 is satisfied by the
degree sequences in some important and natural cases. The reason to write
the assumptions in this form is to make the properties of the degree distribu-
tion explicit (e.g. in terms of moment conditions and the asymptotics of the
highest degrees) that jointly lead to this universal critical limiting behavior.
We explain the significance of Assumption 3.1 in more detail in Section 3.4.

3.2.2 Percolation on heavy-tailed configuration models

Percolation refers to deleting each edge of a graph independently with prob-
ability 1 − p. Consider percolation on a configuration model CMn(d) under
the following assumptions:

Assumption 3.2. (i) Assumption 3.1 (i), and (ii) hold for the degree se-
quence and CMn(d) is super-critical, i.e.,

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
→ ν =

E [D(D− 1)]
E [D]

> 1.

(ii) (Critical window for percolation) The percolation parameter pn satisfies

pn = pn(λ) :=
1
νn

(
1 + λc−1

n + o(c−1
n )
)

for some λ ∈ R.

Let CMn(d,pn(λ)) denote the graph obtained through percolation on CMn(d)

with bond retention probability pn(λ). The following result gives the asymp-
totics for the ordered component sizes and the surplus edges for CMn(d,pn(λ)):

Theorem 3.2.4. Consider CMn(d,pn(λ)) satisfying Assumption 3.2. Let S̃λ∞
denote the process in (3.1) with θi replaced by θi/

√
ν, and C p(i) denote the ith

largest component of CMn(d,pn) and let Zpn(λ) := ord(b−1
n |C p(i)|, SP(C p(i)))i>1,

Zp(λ) := ord((ν1/2γ̃i(λ),N(γ̃i(λ)))i>1, where γ̃i(λ) is the largest excursion of
S̃λ∞. Then, for any λ ∈ R, as n→∞,

Zpn(λ)
d−→ Zp(λ) (3.6)

with respect to the U0
↓ topology.

Now, consider a graph CMn(d) satisfying Assumption 3.2 (i). To any
edge (ij) between vertices i and j (if any), associate an independent uniform
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random variable U(ij). Note that the graph obtained by keeping only those
edges satisfying U(ij) 6 pn(λ) is distributed as CMn(d,pn(λ)). This con-
struction naturally couples the graphs (CMn(d,pn(λ)))λ∈R using the same
set of uniform random variables. Our next result shows that the evolution of
the component sizes and the surplus edges of CMn(d,pn(λ)), as λ varies, can
be described by a version of the augmented multiplicative coalescent process
described in Section 3.1:

Theorem 3.2.5. Suppose that Assumption 3.2 holds, and `n/n = µ+ o(n−ζ) for
some η < ζ < 1/2. Fix any k > 1, −∞ < λ1 < · · · < λk < ∞. Then, there exists
a version AMC = (AMC(λ))λ∈R of the augmented multiplicative coalescent such
that, as n→∞,

(Zpn(λ1), . . . Zpn(λk))
d−→ (AMC(λ1), . . . , AMC(λk))

with respect to the (U0
↓)
k topology, where at each λ, AMC(λ) is distributed as the

limiting object in (3.6).

Remark 18. Theorem 3.2.5 also holds when E[D3
n] → E[D3] < ∞ with α =

η = 1/3, ρ = 2/3 and L(n) = 1. This improves [70, Theorem 4], which was
proved only for the cluster sizes.

Remark 19. Theorem 3.2.5, in fact, shows that there exists a version of the
AMC process whose distribution at each fixed λ can be described by the ex-
cursions of a thinned Lévy process and an associated Poisson process. This
did not appear in [30, 57], since the scaling limits in their settings were de-
scribed in terms of the excursions of a Brownian motion with parabolic drift.

Remark 20. The additional assumption in Theorem 3.2.5 about the asym-
totics `n/n is required only in one place for Proposition 3.10.1 and the rest
of the proof works under Assumption 3.2 only. That is why we have sep-
arated this assumption from the set of conditions in Assumption 3.2. It is
worthwhile mentioning that the condition is not stringent at all, e.g., we will
see that this condition is satisfied under the two widely studied set-ups in
Section 3.3.1.

Remark 21. As we will see in Section 3.10, the proof of Theorem 3.2.5 can be
extended to more general functionals of the components. For example, the
evolution of the number of degree k vertices along with the surplus edges can
also be described by an AMC process. The key idea here is that these compo-
nent functionals become approximately proportional to the component sizes
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in the critical window and thus the scaling limit for the component func-
tionals becomes a constant multiple of the scaling limit for the component
sizes.

3.3 Important examples

3.3.1 Power-law degrees with small perturbation

As discussed in the introduction, our main goal is to obtain results for the
critical configuration model with P (Dn > k) ∼ L0(k)k

−(τ−1) for some τ ∈
(3, 4). In this section, we consider such an example and show that the con-
ditions of Assumption 3.1 are satisfied. Thus, the results in Section 3.2.1
hold for CMn(d) in the following set-up that is closely related to the model
studied in [33] for rank-1 inhomogeneous random graphs.

Fix τ ∈ (3, 4). Suppose that F is the distribution function of a discrete
non-negative random variable D such that

G(x) = 1 − F(x) =
CFL0(x)

xτ−1 (1 + o(1)) as x→∞, (3.7)

where L0(·) is a slowly-varying function so that the tail of the distribution is
decaying like a regularly-varying function. Recall that the inverse of a locally
bounded non-increasing function f : R → R is defined as f−1(x) := inf{y :

f(y) 6 x}. Therefore, using [38, Theorem 1.5.12],

G−1(x) =
C

1/(τ−1)
F L(1/x)
x1/(τ−1) (1 + o(1)) as x→ 0, (3.8)

where L(·) is another slowly-varying function. Note that [38, Theorem 1.5.12]
is stated for positive exponents only. Since our exponent is negative, the
asymptotics in (3.8) holds for x → 0. Suppose that the random variable D is
such that

ν =
E [D(D− 1)]

E [D]
= 1. (3.9)

Define the degree sequence dλ by taking the degree of the ith vertex to be

di = di(λ) := G
−1(i/n) + δi,n(λ), (3.10)

where the δi,n(λ)’s are non-negative integers satisfying the asymptotic equiv-
alence

δi,n(λ) ∼ λG
−1(i/n)c−1

n , as n→∞. (3.11)
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The δi,n(λ)’s are chosen in such a way that Assumption 3.1 (iv) is satisfied.
Fix any K > 1. Notice that (3.8) and (3.11) imply that, for all large enough n
(independently of K), the first K largest degrees (di)i∈[K] satisfy

di =

(
nαCαF L(n/i)

iα

)(
1 + λc−1

n + o(c−1
n )
)

. (3.12)

Therefore, dλ satisfies Assumption 3.1 (i) with θi = (CF/i)
α. The next two

lemmas verify Assumption 3.1 (ii), (iii):

Lemma 3.3.1. The degree sequence dλ defined in (3.10) satisfies Assumption 3.1 (ii).

Proof. Note that, by (3.12), d2
1 = o(n). Also, since G−1 is non-increasing∫1

0
G−1(x)dx−

d1

n
6

1
n

∑
i∈[n]

G−1(i/n) 6
∫1

0
G−1(x)dx.

Therefore,

1
n

∑
i∈[n]

di =
1
n

∑
i∈[n]

G−1(i/n)(1 +O(c−1
n ))

=

∫1

0
G−1(x)dx+O(d1/n) +O(c

−1
n ) = E [D] +O(b−1

n ).

(3.13)

Similarly,
∑
i∈[n] d

2
i = nE[D2] +O(d2

1) = nE[D2] + o(n). To prove the con-
dition involving the third-moment, we use Potter’s theorem [38, Theorem
1.5.6]. First note that 3α − 1 = (4 − τ)/(τ − 1) > 0 since τ ∈ (3, 4). Fix
0 < δ < α− 1/3 and A > 1 and choose C = C(δ,A) such that for all i 6 nC−1,
L(n/i)/L(n) < Aiδ. Therefore, (3.8) implies

a−3
n

∑
i>K

d3
i 6 A

∑
i>K

i−3α+3δ +
sup16x6C L(x)

3

L(n)3

∑
i>nC−1

i−3α. (3.14)

From our choice of δ, −3α + 3δ < −1 and therefore
∑
i>1 i

−3α+3δ < ∞.
By [38, Lemma 1.3.2], sup16x6C L(x)

3 < ∞. Moreover,
∑
i>nC−1 i−3α =

O(n1−3α) and 1− 3α < 0. Thus, the proof follows by first taking n→∞ and
then K→∞.

Lemma 3.3.2. The degree sequence dλ defined in (3.10) satisfies Assumption 3.1 (iii),
i.e., there exists λ0 ∈ R such that

νn(λ) = 1 + (λ+ λ0)c
−1
n + o(c−1

n ). (3.15)
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Proof. Firstly, Lemma 3.3.1 guarantees the convergence of the second moment
of the degree sequence. However, (3.15) is more about obtaining sharper
asymptotics for νn(λ). We use similar arguments as in [33, Lemma 2.2].
Denote νn := νn(0). Note that νn(λ) = νn(1+λc−1

n )+o(c−1
n ), so it is enough

to verify that
νn = 1 + λ0c

−1
n + o(c−1

n ).

Consider di(0) as given in (3.10) with λ = 0. Lemma 3.3.1 implies

νn =

∑
i∈[n] di(0)

2

nE [D]
− 1 + o(c−1

n ).

Fix any K > 1. We have∫1

K/n
G−1(u)2du−

d2
K

n
6

1
n

n∑
i=K+1

d2
i 6
∫1

K/n
G−1(u)2du.

Now by (3.10), d2
K/n = Θ(K−2αL(n/K)2n−η). Therefore,

ν− νn

=
1

E [D]

(
K∑
i=1

∫ i/n
(i−1)/n

G−1(u)2du−
1
n

K∑
i=1

d2
i

)
+O(K−2αL(n/K)2n−η).

(3.16)

Again, using (3.10),

1
n

K∑
i=1

d2
i = n

−η
K∑
i=1

(
CF
i

)2α
L(n/i)2 + o(c−1

n ) = c−1
n

K∑
i=1

(
CF
i

)2α
+ ε(cn,K),

(3.17)
where the last equality follows using the fact that L(·) is a slowly-varying
function. Note that the error term ε(cn,K) in (3.17) satisfies
limn→∞ cnε(cn,K) = 0 for each fixed K > 1. Again,

K∑
i=1

∫ i/n
(i−1)/n

G−1(u)2du = n−η
K∑
i=1

∫ i
(i−1)

(
CF
u

)2α
L(n/u)2du+ o(c−1

n )

= c−1
n

K∑
i=1

∫ i
(i−1)

(
CF
u

)2α
du+ ε ′(cn,K),

(3.18)

where limn→∞ cnε ′(cn,K) = 0 for each fixed K > 1. Thus combining (3.16),
(3.17), and (3.18) and first letting n→∞ and then K→∞, we get

lim
n→∞ cn(νn − ν) = λ0,
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where

λ0 = −
C2α
F

E [D]

∞∑
i=1

(∫ i
i−1

u−2αdu− i−2α

)
.

Using Euler-Maclaurin summation [88, Page 333] it can be seen that λ0 is
finite which completes the proof.

Remark 22. Note that if we add approximately cn1−η (c > 0 is a constant)
ones in the degree sequence given in (3.10), then we end up with another con-
figuration model for which limn→∞ nη(νn − ν) = ζ ′ with ζ > ζ ′. Similarly,
deleting cn1−η ones from the degree sequence increases the new ζ value.
This gives an obvious way to perturb the degree sequence in such a way
that the configuration model is in different locations within the critical scal-
ing window. In our proofs, we will only use the precise asymptotics of the
high-degree vertices. Thus, a small (suitable) perturbation in the degrees of
the low-degree vertices does not change the scaling behavior fundamentally,
except for a change in the location inside the scaling window.

Remark 23. If ν in (3.9) is larger than one, then the degree sequence satisfies
Assumption 3.2. Therefore, the results for critical percolation also hold in
this setting. (3.13) implies that the additional assumption in Theorem 3.2.5 is
also satisfied.

3.3.2 Random degrees sampled from a power-law distribution

We now consider the set-up discussed in [121]. Let D1, . . . ,Dn be i.i.d sam-
ples from a distribution F, where F is defined in (3.7). Therefore, the asymp-
totic relation in (3.8) holds. Consider the random degree sequence d where
di = D(i), D(i) being the ith order statistic of (D1, . . . ,Dn). We show that d
satisfies Assumption 3.1 almost surely under a suitable coupling. We use a
coupling from [53, Section 13.6]. Let (E1,E2, . . . ) be an i.i.d sequence of unit
rate exponential random variables and let Γi :=

∑i
j=1 Ej. Let

d̄i = D̄(i) = G
−1(Γi/Γn+1).

It can be checked that (d1, . . . ,dn)
d
= (d̄1, . . . , d̄n) and therefore, we will ig-

nore the bar in the subsequent notation. Note that, by the strong law of large
numbers, Γn+1/n

a.s.−→ 1. Thus, for each fixed i > 1, Γn+1/(nΓi)
a.s.−→ 1/Γi. Us-

ing (3.8), we see that d satisfies Assumption 3.1 (i) almost surely under this
coupling with θi = (CF/Γi)

α. The first two conditions of Assumption 3.1 (ii)
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are trivially satisfied by d almost surely using the strong law of large num-
bers. Using the third condition, we first claim that

P

( ∞∑
i=1

Γ−3α
i <∞) = 1. (3.19)

To see (3.19), note that Γi has a Gamma distribution with shape parameter i
and scale parameter 1. Thus, for i > 3α,

E[Γ−3α
i ] =

Γ(i− 3α)
Γ(i)

= i−3α(1 +O(1/i)),

where Γ(x) is the Gamma function and the last equality follows from Stir-
ling’s approximation. Therefore,

E

[ ∞∑
i=1

Γ−3α
i

]
=

∞∑
i=1

E
[
Γ−3α
i

]
<∞

and (3.19) follows. Now, using the fact that Γn+1/n
a.s.−→ 1, we can use argu-

ments identical to (3.14) to show that limK→∞ lim supn→∞ a−3
n

∑
i>K d

3
i = 0

on the event {
∑∞
i=1 Γ

−3α
i < ∞} ∩ {Γn+1/n → 1}. Thus, we have shown that

the third condition of Assumption 3.1 (ii) holds almost surely.
To see Assumption 3.1 (iii), an argument similar to Lemma 3.3.2 can be

carried out to prove that

lim
n→∞ cn(νn − ν)

a.s.−→ Λ0,

where

Λ0 := −
C2α
F

E [D]

∞∑
i=1

(∫Γi
Γi−1

u−2αdu− Γ−2α
i

)
. (3.20)

Therefore, the results in Section 3.2.1 hold conditionally on the degree se-
quence if we assume the degrees to be i.i.d samples from a distribution of the
form (3.7). For the percolation results, notice that the additional condition
in Theorem 3.2.5 is a direct consequence of the convergence rates of sums of
i.i.d sequences of random variables [122, Corollary 3.22].

Remark 24. Let us recall the limiting object obtained in [121, Theorem 8.1]
and compare this with the limiting object S̄Λ0∞ , defined in (3.1) with Λ0 given
by (3.20). We will prove an analogue of [121, Theorem 8.1] in Theorem 3.5.1.
Although we use a different exploration process from [121], the fact that the
component sizes are huge compared to the number of cycles in a component,
means that one can prove Theorem 3.5.1 for the exploration process in [121]

120
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also. This will indirectly imply that Joseph’s limiting exploration process
in [121, Theorem 8.1] obeys the law of S̄Λ0∞ , averaged out over the Γ -values.
This is counter intuitive, given the vastly different descriptions of the two
processes; for example our process does not have independent increments.
We do not have a direct way to prove the above mentioned claim.

3.4 Discussion

Assumptions on the degree distribution. Let us now briefly explain the
significance of Assumption 3.1. Unlike the finite third-moment case [70],
the high-degree vertices dictate the scaling limit in Theorem 3.2.1 and there-
fore it is essential to fix their asymptotics through Assumption 3.1 (i). As-
sumption 3.1 (iii) defines the critical window of the phase transition and As-
sumption 3.1 (iv) is reminiscent of the fact that a configuration model with
negligibly small amount of degree-one vertices is always supercritical. As-
sumption 3.1 (ii) states the finiteness of the first two moments of the degree
distribution and fixes the asymptotic order of the third moment. The order
of the third moment is crucial in our case. The derivation of the scaling limits
for the components sizes is based on the analysis of a walk which encodes
the information about the component sizes in terms of the excursions above
its past minima [8, 32, 33, 70, 144]. Now, the increment distribution turns out
to be the size-biased distribution with the sizes being the degrees. Therefore,
the third-moment assumption controls the variance of the increment distribu-
tion. Another viewpoint is that the components can be locally approximated
by a branching process Xn with the variance of the same order as the third
moment of the degree distribution. Thus Assumption 3.1 (ii) controls the
order of the survival probability of Xn, which is intimately related to the
asymptotic size of the largest components.

Connecting the barely subcritical and supercritical regimes. The barely
subcritical (supercritical) regime corresponds to the case when νn(λn) = 1 +

λnc
−1
n for some λn → −∞ (λn →∞) and λn = o(c−1

n ). Janson [108] showed
that the size of the kth largest cluster for a subcritical configuration model
(i.e., the case νn → ν and ν < 1) is dk/(1−ν) (see [108, Remark 1.4]). In [31],
we show that this is indeed the case for the entire barely subcritical regime,
i.e., the size of the kth largest cluster is dk/(1 − νn(λn)) = Θ(bn|λn|

−1). In
the barely supercritical case, the giant component can be locally approximated
by a branching process Xn having variance of the order a3

n/n and the size
of the giant component is of the order nρn, where ρn is the survival proba-
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Chapter 3 Critical window: Infinite third moment

bility of Xn [101]. The asymptotic size of the giant component turns out to
be Θ(bn|λn|). Therefore, the fact that the sizes of the maximal components
in the critical scaling window are Θ(bn) for λn = Θ(1) proves a continuous
phase transition property for the configuration model within the whole criti-
cal regime.

Percolation. The main reason to study percolation in this chapter is to un-
derstand the evolution of the component sizes and the surplus edges over the
critical window in Theorem 3.2.5. It turns out that a precise characterization
of the evolution of the percolation clusters is necessary for understanding
the minimal spanning tree of the giant component with i.i.d. weights on each
edge [4]. Also, since the percolated configuration model is again a configu-
ration model [85, 109], the natural way to study the evolution of the clusters
sizes of configuration models over the critical window is through percolation.

Universality. The limiting object in Theorem 3.2.1 is identical to that in [33,
Theorem 1.1] for rank-1 inhomogeneous random graphs. Thus, CMn(d) with
regularly-varying tails falls onto the domain of attraction of the new univer-
sality class studied in [33]. This is again confirming the predictions made by
statistical physicists that the nature of the phase transition does not depend
on the precise details of the model. Our scaling limit fits into the general
class of limits predicted in [11]. In the notation of [11, (6)], the scaling limits
CMn(d), under Assumption 3.1, give rise to the case κ = 0. To understand
this, let us discuss some existing works. In [8, 15, 32, 121], and Chapter 2
the limiting component sizes are described by the excursions of a Brownian
motion with a parabolic drift. All these models had a common property: if
the component sizes in the barely subcritical regime are viewed as masses
then (i) these masses merge as approximate multiplicative coalescents in the
critical window, and (ii) each individual mass is negligible/“dust” compared
to the sum of squares of the masses in the barely subcritical regime. Indeed,
(ii) is observed in [8, (10)], [15, (4)]. In the case of [33] and this chapter, the
barely-subcritical component sizes do not become negligible due to the ex-
istence of the high-degree vertices (see [33, Theorem 1.3]). As discussed in
[11, Section 1.4], these large barely-subcritical clusters can be thought of as
nuclei, not interacting with each other and “sweeping up the smaller clusters
in such a way that the relative masses converge”. It will be fascinating to find
a class of random graphs, used to model real-life networks, that has both the
nuclei and a good amount of dust in the barely-subcritical regime, so that the
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3.4 Discussion

scaling limits predicted by [11] can be observed in complete generality.

Component sizes and the width of the critical window. We have already
discussed how the width of the scaling window and the order of the maximal
degrees should lead the asymptotic size of the components to be of the order
bn. For the finite third-moment case, the size of the largest component is of
the order n2/3 � bn. We do not have a very intuitive explanation for the
reduced sizes of the components except for the fact that a similar property is
true for the survival probability of a slightly supercritical branching process.
The width of the critical window decreases by a factor of L(n)−2 as compared
to [33] if the size of the high-degree vertices increases by a factor of L(n) (see
(3.4)). Indeed, an increase in the degrees of the high-degree vertices is ex-
pected to start the merging of the barely-subcritical nuclei earlier, resulting
in an increase in the width of the critical window. The fact that the width
decreases by a factor of L(n)−2 comes out of our calculations.

Overview of the proofs. The proofs of Theorems 3.2.1 and 3.2.2 consist of
two important steps. First, we define an exploration algorithm on the graph
that explores one edge of the graph at each step. The algorithm produces
a walk, termed exploration process, that encodes the information about the
number of edges in the explored components in terms of the hitting times
to its past minima. In Section 3.5, the exploration process, suitably rescaled,
is shown to converge. The surplus edges in the components are asymptot-
ically negligible compared to the component sizes; these two facts together
give us the finite-dimensional scaling limit of the re-scaled component sizes.
The proof of Theorem 3.2.1 follows from the asymptotics of the susceptibility
function in Section 3.5.1. The joint convergence of the component sizes and
surplus edges is proved by verifying a uniform tightness condition on the
surplus edges in Section 3.6. Then, in Section 3.7, we exploit the idea that the
large components are explored before any self-loops or multiple edges are
created and conclude the proof of Theorem 3.2.3. The proof of Theorem 3.2.4
is completed by showing that the percolated degree sequence is again a con-
figuration model satisfying Assumption 3.1. Section 3.10 is devoted to the
proof of Theorem 3.2.5 which exploits different properties of the augmented
multiplicative coalescent process.
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Chapter 3 Critical window: Infinite third moment

3.5 Convergence of the exploration process

We start by describing how the connected components in the graph can be
explored while generating the random graph simultaneously:

Algorithm 3.1 (Exploring the graph). The algorithm carries along vertices
that can be alive, active, exploring and killed and half-edges that can be
alive, active or killed. We sequentially explore the graph as follows:

(S0) At stage i = 0, all the vertices and the half-edges are alive but none of
them are active. Also, there are no exploring vertices.

(S1) At each stage i, if there is no active half-edge at stage i, choose a vertex
v proportional to its degree among the alive (not yet killed) vertices
and declare all its half-edges to be active and declare v to be exploring.
If there is an active vertex but no exploring vertex, then declare the
smallest vertex to be exploring.

(S2) At each stage i, take an active half-edge e of an exploring vertex v and
pair it uniformly to another alive half-edge f. Kill e, f. If f is incident
to a vertex v ′ that has not been discovered before, then declare all the
half-edges incident to v ′ active, except f (if any). If degree(v ′) = 1 (i.e.
the only half-edge incident to v ′ is f) then kill v ′. Otherwise, declare v ′

to be active and larger than all other vertices that are alive. After killing
e, if v does not have another active half-edge, then kill v also.

(S3) Repeat from (S1) at stage i+ 1 if not all half-edges are already killed.

Algorithm 3.1 gives a breadth-first exploration of the connected compo-
nents of CMn(d). Define the exploration process by

Sn(0) = 0, Sn(l) = Sn(l− 1) + d(l)Jl − 2, (3.21)

where Jl is the indicator that a new vertex is discovered at time l and d(l) is
the degree of the new vertex chosen at time l when Jl = 1. Suppose Ck is
the kth connected component explored by the above exploration process and
define τk = inf

{
i : Sn(i) = −2k

}
. Then Ck is discovered between the times

τk−1 + 1 and τk, and τk − τk−1 − 1 gives the total number of edges in Ck.
Call a vertex discovered if it is either active or killed. Let Vl denote the set of
vertices discovered up to time l and Ini (l) := 1{i ∈ Vl}. Note that

Sn(l) =
∑
i∈[n]

diI
n
i (l) − 2l =

∑
i∈[n]

di

(
Ini (l) −

di
`n
l

)
+ (νn(λ) − 1) l.
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3.5 Convergence of the exploration process

Recall the notation in (3.4). Define the re-scaled version S̄n of Sn by S̄n(t) =
a−1
n Sn(bbntc). Then, by Assumption 3.1 (iii),

S̄n(t) = a
−1
n

∑
i∈[n]

di

(
Ini (tbn) −

di
`n
tbn

)
+ λt+ o(1). (3.22)

Note the similarity between the expressions in (3.1) and (3.22). We will prove
the following:

Theorem 3.5.1. Consider the process S̄n := (S̄n(t))t>0 defined in (3.22) and recall
the definition of S̄∞ := (S̄∞(t))t>0 from (3.1). Then,

S̄n
d−→ S̄∞

with respect to the Skorohod J1 topology.

The proof of Theorem 3.5.1 is completed by showing that the summation
term in (3.22) is predominantly carried by the first few terms and the limit
of the first few terms gives rise to the limiting process given in (3.1). Fix
K > 1 to be large. Denote by Fl the sigma-field containing the information
generated up to time l by Algorithm 3.1. Also, let Υl denote the set of time
points up to time l when a component was discovered and υl = |Υl|. Note
that we have lost 2(l− υl) half-edges by time l. Thus, on the set {Ini (l) = 0},

P
(
Ini (l+ 1) = 1

∣∣Fl) =


di
`n−2(l−υl)−1 if l /∈ Υl,

di
`n−2(l−υl)

otherwise
(3.23)

and, uniformly over l 6 Tbn,

P
(
Ini (l+ 1) = 1

∣∣Fl) > di
`n

on the set {Ini (l) = 0}. (3.24)

Denote MKn(l) = a−1
n

∑
i>K di

(
Ini (l) −

di
`n
l
)
. Then,

E
[
MKn(l+ 1) −MKn(l)

∣∣Fl] = E

[ n∑
i=K+1

a−1
n di

(
Ini (l+ 1) − Ini (l) −

di
`n

) ∣∣∣Fl]

=

n∑
i=K+1

a−1
n di

(
E
[
Ini (l+ 1)

∣∣Fl]1{Ini (l) = 0}−
di
`n

)
> 0.

Thus (MKn(l))
Tbn
l=1 is a sub-martingale. Further, (3.23) implies that, uniformly

for all l 6 Tbn,

P (Ini (l) = 0) >
(

1 −
di
` ′n

)l
, (3.25)
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where ` ′n = `n − 2Tbn − 1. Thus, Assumption 3.1 (ii) gives

∣∣E[MKn(l)]
∣∣ = a−1

n

n∑
i=K+1

di

(
P (Ini (l) = 1) −

di
`n
l

)

6 a−1
n

n∑
i=K+1

di

(
1 −

(
1 −

di
` ′n

)l
−
di
` ′n
l

)
+ a−1

n l
∑
i∈[n]

d2
i

(
1
` ′n

−
1
`n

)

6
l2

2` ′2nan

n∑
i=K+1

d3
i + o(1)

6
T2n2ρn3αL(n)3

2` ′2nL(n)2nαL(n)

(
a−3
n

n∑
i=K+1

d3
i

)
+ o(1)

= C

(
a−3
n

n∑
i=K+1

d3
i

)
+ o(1),

for some constant C > 0, where we have used the fact that

a−1
n l
∑
i∈[n]

d2
i

( 1
` ′n

−
1
`n

)
= O(n2ρ+1−α−2/L(n)3)

= O(n(τ−4)/(τ−1)/L(n)3) = o(1),

uniformly for l 6 Tbn. Therefore, uniformly over l 6 Tbn,

lim
K→∞ lim sup

n→∞
∣∣E[MKn(l)]

∣∣ = 0. (3.26)

Now, note that for any (x1, x2, . . . ), 0 6 a + b 6 xi and a,b > 0 one has∏R
i=1(1 − a/xi)(1 − b/xi) >

∏R
i=1(1 − (a + b)/xi). Thus, by (3.23), for all

l > 1 and i 6= j,

P
(
Ini (l) = 0, Inj (l) = 0

)
6 P (Ini (l) = 0)P

(
Inj (l) = 0

)
(3.27)

and therefore Ini (l) and Inj (l) are negatively correlated. Observe also that,
uniformly over l 6 Tbn,

Var (Ini (l)) 6 P (Ini (l) = 1)

6
l∑

l1=1

P (vertex i is first discovered at stage l1) 6
ldi
` ′n

.
(3.28)

Therefore, using the negative correlation in (3.27), uniformly over l 6 Tbn,

Var
(
MKn(l)

)
6 a−2

n

n∑
i=K+1

d2
iVar (Ini (l)) 6

l

` ′na2
n

n∑
i=K+1

d3
i 6 Ca

−3
n

n∑
i=K+1

d3
i,

(3.29)

126



3.5 Convergence of the exploration process

for some constant C > 0 and by using Assumption 3.1 (ii) again,

lim
K→∞ lim sup

n→∞ Var
(
MKn(l)

)
= 0,

uniformly for l 6 Tbn. Now we can use the super-martingale inequality [147,
Lemma 2.54.5] stating that for any super-martingale (M(t))t>0, satisfying
M(0) = 0,

εP

(
sup
s6t

|M(s)| > 3ε

)
6 3E [|M(t)|] 6 3

(
|E [M(t)] |+

√
Var (M(t))

)
. (3.30)

Using (3.26), (3.29), and (3.30), together with the fact that (−MKn(l))
Tbn
l=1 is a

super-martingale, we get, for any ε > 0,

lim
K→∞ lim sup

n→∞ P

(
sup
l6Tbn

|MKn(l)| > ε

)
= 0. (3.31)

Define the truncated exploration process

S̄Kn(t) = a
−1
n

K∑
i=1

di

(
Ini (tbn) −

di
`n
tbn

)
+ λt.

Define Ini (tbn) = Ini (btbnc) and recall that Ii(s) := 1{ξi 6 s} where ξi ∼

Exp(θi/µ).

Lemma 3.5.2. Fix any K > 1. As n→∞,

(Ini (tbn))i∈[K],t>0
d−→ (Ii(t))i∈[K],t>0 .

Proof. By noting that (Ini (tbn))t>0 are indicator processes, it is enough to
show that

P (Ini (tibn) = 0, ∀i ∈ [K])→ P (Ii(ti) = 0, ∀i ∈ [K]) = exp
(
− µ−1

K∑
i=1

θiti

)
.

for any t1, . . . , tK ∈ R. Now,

P (Ini (mi) = 0, ∀i ∈ [K]) =

∞∏
l=1

(
1 −

∑
i6K:l6mi

di
`n −Θ(l)

)
, (3.32)

where the Θ(l) term arises from the expression in (3.23) and noting that
υl 6 l. Taking logarithms on both sides of (3.32) and using the fact that
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l 6 maxmi = Θ(bn) we get

P (Ini (mi) = 0∀i ∈ [K]) = exp
(
−

∞∑
l=1

∑
i6K:l6mi

di
`n

+ o(1)
)

= exp
(
−
∑
i∈[K]

dimi
`n

+ o(1)
)

.
(3.33)

Putting mi = tibn, Assumption 3.1 (i), (ii) gives

midi
`n

=
θiti
µ

(1 + o(1)). (3.34)

Hence (3.33) and (3.34) complete the proof of Lemma 3.5.2.

Proof of Theorem 3.5.1. The proof of Theorem 3.5.1 now follows from (3.22),
(3.31) and Lemma 3.5.2 by first taking the limit as n → ∞ and then taking
the limit as K→∞.

Theorem 3.5.3. Recall the definition of refl(S̄∞) from (3.2). As n→∞,

refl(S̄n)
d−→ refl(S̄∞).

Proof. This follows from Theorem 3.5.1 and the fact that the reflection is Lips-
chitz continuous with respect to the Skorohod J1 topology (see [150, Theorem
13.5.1]).

This also implies that Algorithm 3.1 explores the large components be-
fore time Tbn for large T . Next, we show that the function mapping an
element of D[0,∞) to its largest excursions, is continuous on a special subset
A of D[0,∞) and the process refl(S̄∞) has sample paths in A almost surely.
Therefore, Theorem 3.5.1 gives the scaling limit of the number of edges in the
components ordered as a non-increasing sequence. Finally, we show that the
number of surplus edges discovered up to time Tbn are negligible and thus
the convergence of the component sizes in Theorem 3.2.1 follows.

3.5.1 Tightness of the component sizes

The following proposition establishes a uniform tail summability condition
that is required for the tightness of the (scaled) ordered vector of component
sizes with respect to the `2↓ topology:

Proposition 3.5.4. For any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>K

|C(i)|
2 > εb2

n

)
= 0.
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3.5 Convergence of the exploration process

Roughly speaking, the proof is based on the fact that the graph, ob-
tained by removing a large number of high-degree vertices, yields a graph
that approaches subcriticality. More precisely, we prove Lemma 3.5.5 be-
low to complete the proof of Proposition 3.5.4. This fact is not true for the
finite third-moment setting [70]. However, since the large-degree vertices
guide the scaling behavior in the infinite third-moment case, the observation
in Lemma 3.5.5 saves some computational complexity, and gives a different
proof of the `2↓ tightness than the arguments with size-biased point processes
originally described in [8].

Lemma 3.5.5. Consider CMn(d) satisfying Assumption 3.1. Let G[K] be the ran-
dom graph obtained by removing all edges attached to vertices 1, . . . ,K and let d ′

be the obtained degree sequence. Suppose Vn is a random vertex of G[K] chosen in-
dependently of the graph and let C [K](Vn) be the corresponding component. Let
{C [K]

(i) : i > 1} be the components of G[K], ordered according to their sizes. Then,

lim
K→∞ lim sup

n→∞ c−1
n E

[
|C [K](Vn)|

]
= 0. (3.35)

Consequently, for any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>1

∣∣C [K]

(i)

∣∣2 > εb2
n

)
= 0. (3.36)

Proof. We make use of a result due to Janson [111] regarding bounds on the
susceptibility functions for the configuration model. In fact, [111, Lemma 5.2]
shows that, for any configuration model CMn(d) with νn < 1,

E [|C (Vn)|] 6 1 +
E [Dn]

1 − νn
. (3.37)

Now, conditional on the set of removed half-edges, G[K] is still a configuration
model with some degree sequence d ′ with d ′i 6 di for all i ∈ [n] \ [K] and
d ′i = 0 for i ∈ [K]. Further, the criticality parameter of G[K] satisfies

ν[K]
n =

∑
i∈[n] d

′
i(d
′
i − 1)∑

i∈[n] d
′
i

6

∑
i∈[n] di(di − 1) −

∑K
i=1 di(di − 1)

`n − 2
∑K
i=1 di

= νn −C1n
2α−1L(n)2

∑
i6K

θ2
i = νn −C1c

−1
n

∑
i6K

θ2
i

for some constant C1 > 0. Since θ /∈ `2↓ , K can be chosen large enough such
that ν[K]

n < 1 uniformly for all n. Also
∑
i∈[n] d

′
i = `n + o(n) for each fixed
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K. Let EK[·] denote the conditional expectation, conditioned on the set of
removed half-edges. Using (3.37) on G[K], we get

EK
[
|C [K](Vn)|

]
6

C2

1 − ν[K]
n

6
C2

1 − νn +C1c
−1
n

∑
i6K θ

2
i

6
C2cn

−λ+C1
∑
i6K θ

2
i

,

for some constant C2 > 0. Using the fact that θ /∈ `2↓ , this concludes the
proof of (3.35). The proof of (3.36) follows from (3.35) by using the Markov
inequality and the observation that

E

[∑
i>1

|C [K]

(i) |
2
]
= nE

[
|C [K](Vn)|

]
. (3.38)

Proof of Proposition 3.5.4. Denote the sum of squares of the component sizes
excluding the components containing vertices 1, 2, . . . ,K by SK. Note that∑

i>K

|C(i)|
2 6 SK 6

∑
i>1

|C [K]

(i) |
2.

Thus, Proposition 3.5.4 follows from Lemma 3.5.5.

3.5.2 Large components are explored early

An important consequence of Proposition 3.5.4 is that after time Θ(bn), Algo-
rithm 3.1 does not explore large components. The precise statement needed
to complete our proof is given below. This is an essential ingredient to con-
clude the convergence of the component sizes from the convergence of the
exploration process since Theorem 3.5.1 only gives information about the
components explored on the time scale of the order bn.

Lemma 3.5.6. Let C >T
max be the largest among those components which are started

exploring after time Tbn by Algorithm 3.1. Then, for any ε > 0,

lim
T→∞ lim sup

n→∞ P
(
|C >T

max| > εbn
)
= 0.

Proof. Define the event

A n
K,T := {all the vertices of [K] are explored before time Tbn}.

Recall the definition of C [K]

(i) from Lemma 3.5.5. Firstly, note that

P
(
|C >T

max| > εbn, A n
K,T

)
6 P

(∑
i>1

∣∣C [K]

(i)

∣∣2 > ε2b2
n

)
. (3.39)
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Moreover, using (3.23) and the fact that djbn = Θ(n), we get

P
(
(A n

K,T )
c
)
= P (∃j ∈ [K] : j is not explored before Tbn)

6
K∑
j=1

P (j is not explored before Tbn)

6
K∑
j=1

(
1 −

dj

`n −Θ(Tbn)

)Tbn
6

K∑
j=1

e−CT ,

(3.40)

where C > 0 is a constant that may depend on K. Now, by (3.39),

P
(
|C >T

max| > εbn
)
6 P

(∑
i>1

∣∣C [K]

(i)

∣∣2 > ε2b2
n

)
+ P

(
(A n

K,T )
c
)

.

The proof follows by taking lim supn→∞, limT→∞, limK→∞ respectively and
using (3.36), (3.40).

Define the set of excursions of a function f by

E := {(l, r) : (l, r) is an excursion of f}.

We also denote the set of excursion end-points by Y, i.e.,

Y := {r > 0 : (l, r) ∈ E}.

Definition 1. A function f ∈ D+[0, T ] is said to be good if the following holds:

(a) Y does not have an isolated point and the complement of ∪(l,r)∈E(l, r)
has Lebesgue measure zero;

(b) f does not attain a local minimum at any point of Y.

Remark 25. We claim that if a function f ∈ D+[0, T ] is good, then f is con-
tinuous on Y. To see this, fix any δ > 0 and denote the set of excursions
of length at least δ by Eδ. Let r be the excursion endpoint of an excursion
in Eδ and suppose that f(r) > f(r−). Thus, there is no excursion endpoint
in (r− δ, r). Moreover, since f is right-continuous, there exists δ ′ > 0 such
that f(x) > f(r−) + ε for all x ∈ (r, r+ δ ′), where ε = (f(r) − f(r−))/2 > 0.
Thus there is no excursion endpoint on (r− δ, r+ δ ′) and thus r is an isolated
point contradicting Definition 1. We conclude that f is continuous at excur-
sion endpoints of the excursions in Eδ, and since δ > 0 is arbitrary the claim
is established.
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Let Li(f) be the length of the ith largest excursion of f and define Φm :

D+[0, T ]→ Rm by

Φm(f) = (L1(f),L2(f), . . . ,Lm(f)).

Note thatΦm(·) is well-defined for any good function defined in Definition 2.

Lemma 3.5.7. Suppose that f ∈ D+[0, T ] is good. Then, Φm is continuous at
f with respect to the subspace topology on D+[0, T ] induced by the Skorohod J1
topology.

Proof. We extend the arguments of [135, Proposition 22]. The proof here
is for m = 1 and similar arguments hold for m > 1. Let L denote the
set of continuous functions Λ : R+ → R+ that are strictly increasing and
Λ(0) = 0,Λ(T) = T . Suppose E1 = (l, r) is the longest excursion of f on [0, T ],
thus Φ1(f) = r− l. For any ε > 0 (small), choose δ > 0 such that

f(x) > min{f(r−), f(r)}+ δ ∀x ∈ (l+ ε, r− ε). (3.41)

Let || · || denote the sup-norm on [0, T ]. Take any sequence of functions fn ∈
D+[0, T ] such that fn → f, i.e., there exists {Λn}n>1 ⊂ L such that for all
large enough n,

||fn ◦Λn − f|| <
δ

6
and ||Λn − I|| < ε, (3.42)

where I is the identity function. Now, by Remark 25, f is continuous at r. This
implies that f(r−) = f(r), and using (3.41) and (3.42), for all large enough n,

fn(y) > fn ◦Λn(r) +
2δ
3
∀y ∈ (l+ 2ε, r− 2ε). (3.43)

Further, using the continuity of f at r, fn(r) → f(r) and thus, for all suffi-
ciently large n,

|fn ◦Λn(r) − fn(r)| 6 |fn ◦Λn(r) − f(r)|+ |fn(r) − f(r)| <
δ

3
.

Hence, (3.43) implies that, for all sufficiently large n,

fn(y) > fn(r) +
δ

3
∀y ∈ (l+ 2ε, r− 2ε).

Thus, for any ε > 0, we have

lim inf
n→∞ Φ1(fn) > r− l− 4ε = Φ1(f) − 4ε. (3.44)
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3.5 Convergence of the exploration process

Now we turn to a suitable upper bound on lim supn→∞Φ1(fn). First, we
claim that one can find r1, . . . , rk ∈ Y such that r1 6 Φ1(f) + ε, T − rk <

Φ1(f) + ε, and ri− ri−1 6 Φ1(f) + ε,∀i = 2, . . . ,k. The claim is a consequence
of Definition 1 (a). Now, Definition 1 (b) implies that for any small ε > 0,
there exists δ > 0 and xi ∈ (ri, ri + ε) such that f(ri) − f(xi) > δ ∀i. Again,
since ri is a continuity point of f, fn(ri) → f(ri). Thus, using (3.42), for all
large enough n,

fn(ri) − fn(Λn(xi)) >
δ

2
.

Now, Λn(xi) ∈ (ri, ri + ε) for all sufficiently large n, since xi ∈ (ri, ri + ε).
Thus, for all large enough n, there exists a point zni ∈ (ri, ri + ε) such that

fn(ri) − fn(z
n
i ) >

δ

2
.

Also the function fn only has positive jumps and
¯
fn(ri) → ¯

f(ri), as
¯
fn is

continuous, where we recall that
¯
f(x) = infy6x f(y). Therefore, fn must have

an excursion end point on (ri, ri + ε) for all large enough n. Also, using the
fact that the complement of ∪(l,r)∈E(l, r) has Lebesgue measure zero, f has
an excursion endpoint r0

i ∈ (li − ε, li). The previous argument shows that fn
has to have an excursion endpoint in (r0

i, r
0
i + ε) and thus in (li − ε, li + ε),

for all large n. Therefore, for any ε > 0,

lim sup
n→∞ Φ1(fn) 6 Φ1(f) + 3ε. (3.45)

Hence the proof follows from (3.44) and (3.45).

Remark 26. For f ∈ D+[0, T ], let Ai(f) denote the area under the excursion
Li(f). Let (fn)n>1 be a sequence of functions on f ∈ D+[0,∞) such that
fn → f, with respect to the Skorohod J1 topology, where f is good. Then,
(3.42), (3.44) and (3.45) also implies that (A1(fn), . . . ,Am(fn)) converges to
(A1(f), . . . ,Am(f)), for any m > 1.

Definition 2. A stochastic process X ∈ D+[0,∞) is said to be good if

(a) The sample paths are good almost surely when restricted to [0, T ], for
every fixed T > 0;

(b) X does not have an infinite excursion almost surely;

(c) For any ε > 0, X has only finitely many excursions of length more than ε
almost surely.
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Chapter 3 Critical window: Infinite third moment

Lemma 3.5.8. The thinned Lévy process Sλ∞ defined in (3.1) is good.

Proof. Let us make use of the properties of the process Sλ∞ that were estab-
lished in [11]. Sλ∞ satisfies Definition 2 (b),(c) by [11, (8)]. The fact that the
excursion endpoints of Sλ∞ do not have any isolated points almost surely fol-
lows directly from [11, Proposition 14 (d)]. Further, [11, Proposition 14 (b)]
implies that, for any u > 0, P

(
Sλ∞(u) = infu ′6u Sλ∞(u ′)) = 0. Taking the

integral with respect to the Lebesgue measure and interchanging the limit by
using Fubini’s theorem, we conclude that almost surely∫T

0
1
{
Sλ∞(u) = inf

u ′6u
Sλ∞(u ′)

}
du = 0,

which verifies Definition 1 (a). Now, let L be the Lévy process defined as

L(t) =

∞∑
i=1

θi (Ni(t) − (θi/µ)t) + λt,

where (Ni(t))t>0 is a Poisson process with rate θi which are independent for
different i. Via the natural coupling that states Ii(t) 6 Ni(t), we can assume
that Sλ∞(t) 6 L(t) for all t > 0. Using [28, Theorem VII.1],

inf{t > 0 : L(t) < 0} = 0, almost surely. (3.46)

Moreover, for any stopping time T > 0, (Sλ∞(T + t) − Sλ∞(T))t>0, conditioned
on the sigma-field σ(Sλ∞(s) : s 6 T), is distributed as a process defined in (3.1)
for some random θ and Λ. Now we can take T to be an excursion endpoint
and an application of (3.46) verifies Definition 1 (b).

As described in Section 3.5, the excursion lengths of the exploration pro-
cess S̄n gives the total number of edges in the explored components.
Lemma 3.5.9 below estimates the number of surplus edges in the compo-
nents explored upto time Θ(bn). This enables us to compute the scaling
limits for the component sizes using the results from the previous section
and complete the proof of Theorem 3.2.1.

Lemma 3.5.9. Let Nλn(k) be the number of surplus edges discovered up to time k
and N̄λn(u) = Nλn(bubnc). Then, as n→∞,

(S̄n, N̄λn)
d−→ (Sλ∞, Nλ),

where Nλ is defined in (3.3).
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3.5 Convergence of the exploration process

Proof. We write Nλn(l) =
∑l
i=2 ξi, where ξi = 1{Vi = Vi−1}. Let Ai de-

note the number of active half-edges after stage i while implementing Algo-
rithm 3.1. Note that

P (ξi = 1|Fi−1) =
Ai−1 − 1
`n − 2i− 1

=
Ai−1

`n
(1 +O(i/n)) +O(n−1),

uniformly for i 6 Tbn for any T > 0. Therefore, the instantaneous rate of
change of the re-scaled process N̄λ at time t, conditional on the past, is

bn
Abtbnc
nµ

(1 + o(1)) + o(1) =
1
µ

refl(S̄n(t)) (1 + o(1)) + o(1).

Recall from Theorem 3.5.3 that refl(S̄n)
d−→ refl(S̄∞). Then, by the Skoro-

hod representation theorem, we can assume that refl(S̄n)→ refl(S̄∞) almost
surely on some probability space. Observe that (

∫t
0 refl(S̄∞(u))du)t>0 has

continuous sample paths. Therefore, the conditions of [128, Corollary 1, Page
388] are satisfied and the proof is complete.

Theorem 3.5.10. For any m > 1, as n→∞
b−1
n

(
|C(1)|, |C(2)|, . . . , |C(m)|

) d−→ (γ1(λ),γ2(λ), . . . ,γm(λ))

with respect to the product topology, where γi(λ) is the ith largest excursion of S̄∞
defined in (3.1).

Proof. Fix any m > 1. Let C T
(i) be the ith largest component explored by

Algorithm 3.1 up to time Tbn. Denote by Dord,T
(i) the ith largest value of

(
∑
k∈C T

(i)
dk)i>1. Let g : Rm 7→ R be a bounded continuous function. By

Lemma 3.5.8 the sample paths of S̄∞ are almost surely good. Thus, using
Theorem 3.5.1, Lemma 3.5.7 gives

lim
n→∞E

[
g
(
(2bn)−1(Dord,T

(1) , Dord,T
(2) , . . . , Dord,T

(m)

))]
= E

[
g
(
γT1(λ),γ

T
2(λ), . . . ,γTm(λ)

)]
,

where γTi (λ) is the ith largest excursion of S̄∞ restricted to [0, T ]. Now the
support of the joint distribution of (γTi (λ))i>1 is concentrated on{(x1, x2, . . . ) :
x1 > x2 > . . . }. Thus, using Lemma 3.5.9, it follows that

lim
n→∞E

[
g
(
b−1
n

(
|C T

(1)|, |C
T
(2)|, . . . , |C T

(m)|
))]

= E
[
g
(
γT1(λ),γ

T
2(λ), . . . ,γTm(λ)

)]
.

(3.47)
Since Sλ∞ satisfies Definition 2 (b), (c), it follows that

lim
T→∞E

[
g
(
γT1(λ),γ

T
2(λ), . . . ,γTm(λ)

)]
= E

[
g
(
γ1(λ),γ2(λ), . . . ,γm(λ)

)]
(3.48)
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Finally, using Lemma 3.5.6, the proof of Theorem 3.5.10 is completed by (3.47)
and (3.48).

Proof of Theorem 3.2.1. The proof of Theorem 3.2.1 now follows directly from
Theorem 3.5.10 and Proposition 3.5.4.

3.6 Proof of Theorem 3.2.2

The goal of this section is to prove the joint convergence of the component
sizes and the surplus edges as described in Theorem 3.2.2. We start with a
preparatory lemma:

Lemma 3.6.1. The convergence in (3.5) holds with respect to the `2↓ ×N∞ topology.

Proof. Note that Lemma 3.5.6 already states that we do not see large compo-
nents being explored after the time Tbn for large T > 0. Thus the proof is a
consequence of Lemmas 3.5.7, 3.5.9, Remark 26 and Theorem 3.2.1.

Recall the definition of the metric dU from Chapter 2.1. Using Lemma 3.6.1,
it now remains to obtain a uniform summability condition on the tail of the
sum of products of the scaled component sizes and surplus edges. This is
formally stated in Proposition 3.6.2 below. The proof is completed in the
similar spirit as the finite third-moment case [70].

Proposition 3.6.2. For any ε > 0,

lim
δ→0

lim sup
n→∞ P

( ∑
i:|C(i)|6δbn

|C(i)|× SP(C(i)) > εbn

)
= 0.

The following estimate will be the crucial ingredient to complete the proof
of Proposition 3.6.2. The proof of Lemma 3.6.3 is postponed to Appendix 3.B
since this uses similar ideas as [70].

Lemma 3.6.3. Assume that lim supn→∞ cn(νn − 1) < 0. Let Vn denote a vertex
chosen uniformly at random, independently of the graph CMn(d) and let C (Vn)

denote the component containing Vn. Let δk = δk−0.12. Then, for δ > 0 sufficiently
small,

P (SP(C (Vn)) > K, |C (Vn)| ∈ (δKbn, 2δKbn)) 6
C
√
δ

anK1.1

where C is a fixed constant independent of n, δ,K.
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Proof of Proposition 3.6.2 using Lemma 3.6.3. First consider the case λ < 0. Fix
any ε,η > 0. Note that

P

( ∑
|C(i)|6εbn

|C(i)|SP(C(i)) > ηbn

)
6

1
ηbn

E

[ ∞∑
i=1

|C(i)|SP(C(i))1{|C(i)|6εbn}

]

=
an

η
E
[
SP(C (Vn))1{|C (Vn)|6εbn}

]
=
an

η

∞∑
k=1

∑
i>log2(1/(k0.12ε))

P

(
SP(C (Vn)) > k, |C (Vn)| ∈

( bn

2i+1k0.12 ,
bn

2ik0.12

])

6
C

η

∞∑
k=1

1
k1.1

∑
i>log2(1/(k0.12ε))

2−i/2 6
C

η

∞∑
k=1

√
ε

k1.04 = O(
√
ε),

where the last-but-two step follows from Lemma 3.6.3. The proof of Propo-
sition 3.6.2 now follows for λ < 0.

Now consider the case λ > 0. Fix a large integer R > 1 such that λ −∑R
i=1 θ

2
i < 0. This can be done because θ /∈ `2↓ . Using (3.39), for any η > 0, it

is possible to choose T > 0 such that for all sufficiently large n,

P (all the vertices 1, . . . ,R are explored within time Tbn) > 1 − η. (3.49)

Let Te denote the first time after Tbn when we finish exploring a component.
By Theorem 3.5.1, (b−1

n Te)n>1 is a tight sequence. Let G∗T denote the graph
obtained by removing the components explored up to time Te. Then, G∗T is
again a configuration model conditioned on its degrees. Let ν∗n denote the
value of the criticality parameter for G∗. Note that∑

i/∈VTe

di > `n − 2Tbn =⇒
∑
i/∈VTe

di = `n + oP(n),

and thus conditionally on FTe and the fact that (1, . . . ,R) are explored within
time Tbn,

ν∗n 6

∑
i∈[n] d

2
i −
∑R
i=1 d

2
i∑

i/∈VTe
di

− 1 = 1 + c−1
n

(
λ−

R∑
i=1

θ2
i

)
+ o(c−1

n ). (3.50)

Therefore, combining (3.49), (3.50), we can use Lemma 3.6.3 on G∗T since
cn(ν

∗
n − 1) < 0. Thus, if C ∗(i) denotes the ith largest component of G∗T , then

lim
T→∞ lim

δ→0
lim sup
n→∞ P

( ∑
i:|C ∗

(i)
|6δbn

|C ∗(i)|× SP(C ∗(i)) > εbn

)
= 0. (3.51)
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To conclude the proof for the whole graph CMn(d) (with λ > 0), let

KTn := {i : |C(i)| 6 δbn, |C(i)| is explored before the time Te}.

Note that∑
i∈KTn

|C(i)| · SP(C(i)) 6
( ∑
i∈Kn

|C(i)|
2
)1/2

×
( ∑
i∈Kn

SP(C(i))
2
)1/2

6

( ∑
|C(i)|6δbn

|C(i)|
2
)1/2

× SP(Te),

where SP(t) is the number of surplus edges explored up to time tbn and
we have used the fact that

∑
i∈Kn SP(C(i))

2 6 (
∑
i∈Kn SP(C(i)))

2 6 SP(Te)2.
From Lemma 3.5.9 and Proposition 3.5.4 we can conclude that for any T > 0,

lim
δ→0

lim sup
n→∞ P

( ∑
i∈KTn

|C(i)| · SP(C(i)) > εbn

)
= 0. (3.52)

The proof is now complete for the case λ > 0 by combining (3.51) and (3.52).

3.7 Proof for simple graphs

In this section, we give a proof of Theorem 3.2.3. Let Ps(·) (respectively Es[·])
denote the probability measure (respectively the expectation) conditionally
on the graph CMn(d) being simple. For any process X on D([0,∞), R),
we define XT := (X(t))t6T . Thus the truncated process XT is D([0, T ], R)-
valued. Now, by [110, Theorem 1.1], lim infn→∞P(CMn(d) is simple) > 0.
This fact ensures that, under the conditional measure Ps, (b−1

n |C(i)|)i>1 is
tight with respect to the `2↓ topology. Therefore, to conclude Theorem 3.2.3,
it suffices to show that the exploration process S̄n, defined in (3.22), has
the same limit (in distribution) under Ps as obtained in Theorem 3.5.1 so
that the finite-dimensional limit of (b−1

n |C(i)|)i>1 remains unchanged under
Ps. Thus, it is enough to show that for any bounded continuous function
f : D([0, T ], R) 7→ R, ∣∣E[f(S̄Tn)] − Es[f(S̄Tn)]

∣∣→ 0. (3.53)

Let ` ′n := `n − 2Tbn. We first estimate the number of multiple edges or self-
loops discovered in the graph up to time Tbn. Let vl denote the exploring
vertex in the breadth-first exploration given by Algorithm 3.1, dvl the degree
of vl and (e1, . . . , er) the ordered set of active half-edges of vl when vl is
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declared to be exploring. Note that, for l 6 Tbn, ei creates a self-loop with
probability at most (dvl − i)/`

′
n and creates a multiple edge with probability

at most (i− 1)/` ′n. Therefore,

E [#{self-loops/multiple edges discovered while exploringvl}|Fl−1] 6
2d2
vl

` ′n
.

Thus, for any T > 0,

E [#{self-loops or multiple edges discovered up to time Tbn]

6
2
` ′n

E

[ ∑
i∈[n]

d2
iI
n
i (Tbn)

]

=
2
` ′n

E

[ K∑
i=1

d2
iI
n
i (Tbn)

]
+

2
` ′n

E

[ n∑
i=K+1

d2
iI
n
i (Tbn)

]
,

where Ini (l) = 1{i ∈ Vl}. Now, using Assumption 3.1 (i), for every fixed K > 1,

2
` ′n

E

[ K∑
i=1

d2
iI
n
i (Tbn)

]
6

2
` ′n

K∑
i=1

d2
i → 0,

since 2α−1 < 0. Moreover, recall from (3.24) that P
(
Ini (Tbn) = 1

)
6 Tbndi/` ′n.

Therefore, for some constant C > 0,

2
` ′n

E

[ n∑
i=K+1

d2
iI
n
i (Tbn)

]
6
Tbn

` ′2n

n∑
i=K+1

d3
i 6 C

(
a−3
n

n∑
i=K+1

d3
i

)
,

which, by Assumption 3.1 (ii), tends to zero if we first take lim supn→∞ and
then take limK→∞. Consequently, for any fixed T > 0, as n→∞,

P (at least one self-loop or multiple edge is discovered before time Tbn)→ 0.

Now,

E
[
f(S̄Tn)1{CMn(d) is simple}

]
= E

[
f(S̄Tn)1{no self-loops or multiple edges found after Tbn}

]
+ o(1)

= E
[
f(S̄Tn)P (no self-loops or multiple edges found after Tbn|FTbn)

]
+ o(1).

(3.54)

Define, Te = inf{l > Tbn : a component is finished exploring at time l}. Us-
ing the fact that (b−1

n Te)n>1 is a tight sequence, the limit of the expected
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number of loops or multiple edges discovered between time Tbn and Te is
again zero. As in the proof of Proposition 3.6.2, consider the graph G∗, ob-
tained by removing the components obtained up to time Te. Thus, G∗ is
a configuration model, conditioned on its degree sequence. Let ν∗n be the
criticality parameter. Then, we claim that ν∗n

P−→ 1. To see this note that∑
i/∈VTe

di = `n + oP(n). Further, note that by Assumption 3.1 (ii) (3.23), for
any t > 0,

lim sup
n→∞ E

[
a−2
n

∑
i∈[n]

d2
iIi(tbn)

]
6 lim sup

n→∞ a−2
n tbn

∑
i∈[n] d

3
i

`n − 2tbn
<∞,

which implies that
∑
i/∈VTe

d2
i =

∑
i∈[n] d

2
i + oP(n) and thus the claim is

proved. Since the degree distribution has finite second moment, using [98,
Theorem 7.11] we get

P
(
G∗ is simple

∣∣∣FTe

)
P−→ e−3/4. (3.55)

Now using (3.54), (3.55) and the dominated convergence theorem, we con-
clude that

E
[
f(S̄Tn)1{CMn(d) is simple}

]
= E

[
f(S̄Tn)

]
P (CMn(d) is simple) + o(1).

Therefore, (3.53) follows and the proof of Theorem 3.2.3 is complete.

3.8 Scaling limits for component functionals

Suppose that vertex i has an associated weight wi. The total weight of the
component C(i) is denoted by Wi =

∑
k∈C(i)

wk. The goal of this section is to
derive the scaling limits for (Wi)i>1 when the weight sequence satisfies some
regularity conditions given below:

Assumption 3.3. The weight sequences w = (wi)i∈[n] satisfies

(i)
∑
i∈[n]wi = O(n), and limn→∞ 1

`n

∑
i∈[n] diwi = µw.

(ii) max{
∑
i∈[n] diw

2
i,
∑
i∈[n] d

2
iwi} = O(a

3
n).

Theorem 3.8.1. Consider CMn(d) satisfying Assumption 3.1 and a weight se-
quence w satisfying Assumption 3.3. Denote Zwn = ord(b−1

n Wi, SP(C(i)))i>1 and
Zw := ord(µwγi(λ),N(γi))i>1, where γi(λ), and N(γi) are defined in Theo-
rem 3.2.2. As n→∞,

Zwn
d−→ Zw, (3.56)

with respect to the U0
↓ topology.
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The proof of Theorem 3.8.1 can be decomposed in two main steps: the first
one is to obtain the finite-dimensional limits of Zwn and then prove the U0

↓

convergence. The finite-dimensional limit is a consequence of the fact that
the total weight of the clusters is approximately equal to the cluster sizes.
The argument for the tightness with respect to the U0

↓ topology is similar
to Propositions 3.5.4 and 3.6.2 and therefore we only provide a sketch with
pointers to all the necessary ingredients. Recall that Ini (l) = 1{i ∈ Vl}, where
Vl is the set of discovered vertices upto time l by Algorithm 3.1.

Lemma 3.8.2. Under Assumptions 3.1, 3.3, for any T > 0,

sup
u6T

∣∣∣∣ ∑
i∈[n]

wiI
n
i (ubn) −

∑
i∈[n] diwi
`n

ubn

∣∣∣∣ = OP(an). (3.57)

Consequently, for each fixed i > 1,

Wi = µw
∣∣C(i)

∣∣+ oP(bn). (3.58)

Proof. Fix any T > 0. Define ,

Wn(l) =
∑
i∈[n]

wiI
n
i (l) −

∑
i∈[n] diwi
`n

l.

The goal is to use the supermartingale inequality (3.30) in the same spirit as
in the proof of (3.31). Firstly, observe from (3.24) that

E[Wn(l+ 1) −Wn(l)|Fl]

= E

[ ∑
i∈[n]

wi (I
n
i (l+ 1) − Ini (l))

∣∣∣Fl]−∑i∈[n] diwi
`n

=
∑
i∈[n]

wiE
[
Ini (l+ 1)

∣∣Fl]1{Ini (l) = 0}−

∑
i∈[n] diwi
`n

> 0,

uniformly over l 6 Tbn and therefore, (Wn(l))Tbnl=1 is a sub-martingale. Let
` ′n = `n − 2Tbn − 1. Using (3.25), we compute∣∣E[Wn(l)]

∣∣ = ∑
i∈[n]

wi

(
P (Ini (l) = 1) −

di
`n

)

6
∑
i∈[n]

wi

(
1 −

(
1 −

di
` ′n

)l
−
di
` ′n
l

)
+ l
∑
i∈[n]

wi

(
di
` ′n

−
di
`n

)

6 2(2Tbn)2

∑
i∈[n] d

2
iwi

` ′2n
= O(b2

na
3
n/n

2) = O(an),

(3.59)
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Chapter 3 Critical window: Infinite third moment

uniformly over l 6 Tbn. Also, using (3.27), (3.28), and Assumption 3.3 (ii),

Var(Wn(l)) 6
∑
i∈[n]

w2
ivar(Ini (l)) 6 Tbn

∑
i∈[n] diw

2
i

` ′n
= O(a2

n), (3.60)

uniformly over l 6 Tbn. Using (3.30), (3.59) and (3.60), we conclude the
proof of (3.57). The proof of (3.58) follows using Lemma 3.5.6 and simply
observing that an = o(bn).

Proof of Theorem 3.8.1. Lemma 3.8.2 ensures the finite-dimensional convergence
in (3.56). Thus, the proof is complete if we can show that, for any ε > 0

lim
K→∞ lim sup

n→∞ P

(∑
i>K

W 2
i > εb

2
n

)
= 0, (3.61a)

and

lim
δ→0

lim sup
n→∞ P

( ∑
|C(i)|6δbn

Wi × SP(C(i)) > εbn

)
= 0. (3.61b)

The arguments for proving (3.61a), and (3.61b) are similar to those for ropo-
sitions 3.5.4, and 3.6.2 and thus we only sketch a brief outline. Denote
`wn =

∑
i∈[n]wi. The main ingredient to the proof of Proposition 3.5.4 is

Lemma 3.5.5, and the proof of Lemma 3.5.5 uses the fact that the expected
sum of squares of the cluster sizes can be written in terms of susceptibility
functions in (3.38) and then we made use of the estimate for the susceptibility
function in (3.37). Let V ′n denote a vertex chosen according to the distribution
(wi/`

w
n )i∈[n], independently of the graph. Notice that for any CMn(d),

E

[∑
i>1

W 2
i

]
= `wnE

[
W (V ′n)

]
. (3.62)

Now, [111, Lemma 5.2] can be extended using an identical argument to com-
pute the weight-based susceptibility function in the right hand side of (3.62).
See Lemma 3.A.1 given in Appendix 3.A. The proof of (3.61b) can also be
completed using an identical argument as Proposition 3.6.2 by observing that

P

( ∑
|C(i)|6δbn

Wi × SP(C(i)) > εbn

)
6
`wn
εbn

E
[
SP(C (V ′n))1{|C (V ′n)|6δbn}

]
.

Moreover, an analogue of Lemma 3.6.3 also holds for V ′n (see Appendix 3.B),
and the proof of (3.61b) can now be completed in an identical manner as the
proof of Proposition 3.6.2.

142



3.9 Percolation

While studying percolation in the next section, we will need an estimate
for the proportion of degree-one vertices in the large components. In fact,
an application of Theorem 3.8.1, yields the following result about the degree
composition of the largest clusters:

Corollary 3.8.3. Consider CMn(d) satisfying Assumption 3.1. Let vk(G) denote
the number of vertices of degree k in the graph G. Then, for any fixed i > 1,

vk
(
C(i)

)
=
krk
µ

∣∣C(i)

∣∣+ oP(bn), (3.63)

where rk = P(D = k). Denote Zkn = ord(b−1
n vk(C(i)), SP(C(i)))i>1, Zk :=

ord(krkµ γi(λ),N(γi))i>1, where γi(λ), and N(γi) are defined in Theorem 3.2.2.
As n→∞,

Zkn
d−→ Zk,

with respect to the U0
↓ topology.

Proof. The proof follows directly from Theorem 3.8.1 by puttingwi = 1{di = k}.
The fact that this weight sequence satisfies Assumption 3.3 is a consequence
of Assumption 3.1.

3.9 Percolation

In this section, we study critical percolation on the configuration model for
fixed λ ∈ R and complete the proof of Theorem 3.2.4. As discussed ear-
lier, CMn(d,p) is obtained by first constructing CMn(d) and then delet-
ing each edge with probability 1 − p, independently of each other, and the
graph CMn(d). An interesting property of the configuration model is that
CMn(d,p) is also distributed as a configuration model conditional on the
degrees [85]. The rough idea here is to show that the degree distribution of
CMn(d,pn(λ)) satisfies Assumption 3.1, where pn(λ) is given by Assump-
tion 3.2. This allows us to invoke Theorem 3.2.2 and complete the proof of
Theorem 3.2.4. Recall from Assumption 3.2 that ν = limn→∞ νn > 1, and
pn = pn(λ) = ν−1

n (1 + λc−1
n ). We start by describing an algorithm due to

Janson [109] that is easier to work with.

Algorithm 3.2 (Construction of CMn(d,pn)). Initially, vertex i has di half-
edges incident to it. For each half-edge e, let ve be the vertex to which e is
incident.
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Chapter 3 Critical window: Infinite third moment

(S1) With probability 1 −
√
pn, one detaches e from ve and associates e to a

new vertex v ′ of degree-one. Color the new vertex red. This is done in-
dependently for every existing half-edge and we call this whole process
explosion. Let n+ be the number of red vertices created by explosion
and ñ = n+n+. Denote the degree sequence obtained from the above
procedure by d̃ = (d̃i)i∈[ñ], i.e., d̃i ∼ Bin(di,

√
pn) for i ∈ [n] and

d̃i = 1 for i ∈ [ñ] \ [n];

(S2) Construct CMñ(d̃) independently of (S1);

(S3) Delete all the red vertices and the edges attached to them.

It was also shown in [109] that the obtained multigraph has the same
distribution as CMn(d,p) if we replace (S3) by

(S3 ′) Instead of deleting red vertices, choose n+ degree-one vertices uni-
formly at random without replacement, independently of (S1), and (S2)
and delete them.

Remark 27. Notice that Algorithm 3.2 (S1) induces a probability measure
Pnp on N∞. Denote their product measure by Pp. In words, for different n,
(S1) is carried out independently. All the almost sure statements about the
degrees in this section will be with respect to the probability measure Pp.

Let us first show that d̃ also satisfies Assumption 3.1 (ii). Note that
the total number of half-edges remains unchanged during the explosion in
Algorithm 3.2 (S1) and therefore,

∑
i∈[ñ] d̃i =

∑
i∈[n] di and by Assump-

tion 3.2 (i),
1
n

∑
i∈[ñ]

d̃i → µ Pp a.s. (3.64)

This verifies the first moment condition in Assumption 3.1 (ii) for the per-
colated degree sequence Pp a.s. Let Iij:= the indicator of the jth half-edge
corresponding to vertex i being kept after the explosion. Then Iij ∼ Ber(

√
pn)

independently for i ∈ [n], j ∈ [di]. Let

I := (Iij)j∈[di],i∈[n] and f1(I) :=
∑
i∈[n]

d̃i(d̃i − 1).

Note that f1(I) =
∑
i∈[ñ] d̃i(d̃i − 1) since the degree-one vertices do not con-

tribute to the sum. One can check that by changing the status of one half-edge
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3.9 Percolation

corresponding to vertex k we can change f1 by at most 2(dk + 1). Therefore
an application of [115, Corollary 2.27] yields

Pp

(∣∣∣ ∑
i∈[n]

d̃i(d̃i − 1) − pn
∑
i∈[n]

di(di − 1)
∣∣∣ > t)

6 2 exp
(
−

t2

2
∑
i∈[n] di(di + 1)2

)
.

(3.65)

Now by Assumption 3.2 (i),
∑
i∈[n] d

3
i = O(a

3
n). If we set t = n1−εc−1

n , then
t2/(
∑
i∈[n] d

3
i) is of the order nα−2ε/L(n). Thus, choosing ε < α/2, using

(3.65) and the Borel-Cantelli lemma we conclude that∑
i∈[n]

d̃i(d̃i − 1) = pn
∑
i∈[n]

di(di − 1) + o(nc−1
n ) Pp a.s. (3.66)

Thus, using Assumption 3.2, the second moment condition in Assumption 3.1
(ii) is verified for the percolated degree sequence Pp a.s. Let d̃(i) denote
the ith largest value of (d̃i)i∈[ñ]. The third-moment condition in Assump-
tion 3.1 (ii) is obtained by noting that d̃i 6 di for all i ∈ [n] and

lim
K→∞ lim sup

n→∞ a−3
n

ñ∑
i=K+1

d̃3
(i) 6 lim

K→∞ lim sup
n→∞ a−3

n

ñ∑
i=K+1

d̃3
i

6 lim
K→∞ lim sup

n→∞ a−3
n

( n∑
i=K+1

d̃3
i +n+

)
6 lim
K→∞ lim sup

n→∞ a−3
n

( n∑
i=K+1

d3
i +n+

)
,

(3.67)

which tends to zero Pp a.s., where we have used Assumption 3.2 (i) and
the fact that a−3

n n+ → 0, Pp a.s., which follows by observing that n+ ∼

Bin(`n, 1 −
√
pn). To see that d̃ satisfies Assumption 3.1 (iii) note that by

(3.66),∑
i∈[ñ] d̃i(d̃i − 1)∑

i∈[ñ] d̃i
= pn

∑
i∈[n] di(di − 1)∑

i∈[n] di
+ o(c−1

n ) = 1 + λc−1
n + o(c−1

n )

Pp a.s., where the last step follows from Assumption 3.2 (ii). Assump-
tion 3.1 (iv) is trivially satisfied by d̃. Finally, in order to verify Assump-
tion 3.1 (i), it suffices to show that

d̃(i)

an
→ θi

√
p, Pp a.s., (3.68)

where p = 1/ν. Recall that d̃i ∼ Bin(di,
√
pn). A standard concentration

inequality for the binomial distribution [115, (2.9)] yields that, for any 0 <
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Chapter 3 Critical window: Infinite third moment

ε 6 3/2,
P(|d̃i − di

√
pn| > εdi

√
pn) 6 2exp(−ε2di

√
pn/3),

and using the Borel-Cantelli lemma it follows that Pp almost surely, d̃i =

di
√
pn(1 + o(1)) for all fixed i. Moreover, an application of (3.67) yields that

lim
K→∞ lim sup

n→∞ a−3
n max
i>K

d̃3
i = 0.

Now, since θ is an ordered vector, the proof of (3.68) follows.
To summarize, the above discussion in (3.64), (3.66), (3.67), and (3.68)

yields that the degree sequence d̃ satisfies all the conditions in Assump-
tion 3.1. Therefore, Theorem 3.2.2 can be applied to CMñ(d̃). Denote by C̃(i)

the ith largest component of CMñ(d̃). Let Z̃n = ord(b−1
n |C̃(i)|, SP(C̃(i))i>1

and Z̃ := ord(γ̃i(λ),N(γ̃i))i>1, where γi(λ), and N(γi) are defined in Theo-
rem 3.2.4. Now, Theorem 3.2.2 implies

Z̃n
d−→ Z̃,

with respect to the U0
↓ topology.

Since the percolated degree sequence satisfies Assumption 3.1 Pp a.s.,
(3.63) holds for C̃(i) also. Let vd1 (C̃(i)) be the number of degree-one vertices of
C̃(i) which are deleted while creating the graph CMn(d,pn) from CMñ(d̃).
Since the vertices are to be chosen uniformly from all degree-one vertices as
described in (S3 ′),

vd1 (C̃(i)) =
n+

ñ1
v1(C̃(i)) + oP(bn) =

n+

ñ1

ñ1

`n

∣∣C̃(i)

∣∣+ oP(bn) =
n+

`n

∣∣C̃(i)

∣∣+ oP(bn)

=
µ
(
1 −
√
pn
)
+ o(1)

µ+ o(1)

∣∣C̃(i)

∣∣+ oP(bn) =
(
1 −
√
pn
)∣∣C̃(i)

∣∣+ oP(bn),

where the last-but-one equality follows by observing that n+ ∼ Bin(`n, 1 −
√
pn). Now, notice that by removing degree-one vertices, the components

are not broken up, so the vector of component sizes for percolation can be
obtained by just subtracting the number of red vertices from the component
sizes of CMñ(d̃). Moreover, the removal of degree-one vertices does not
effect the count of surplus edges. Therefore, the proof of Theorem 3.2.4 is
complete by using Corollary 3.8.3.

3.10 Convergence to augmented multiplicative coalescent

Let us give an overview of the organization of this section: In Section 3.10.1,
we discuss an alternative dynamic construction that approximates the per-
colated graph process, coupled in a natural way. This construction enables
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3.10 Convergence to augmented multiplicative coalescent

us to compare the coupled percolated graphs with a dynamic construction.
Then, we describe a modified system that evolves as an exact augmented
multiplicative coalescent and the rest of the section is devoted to comparing
the exact augmented multiplicative coalescent and the corresponding quan-
tities for the graphs generated by the dynamic construction. The ideas are
similar to [70, Section 8], and we only give the overall idea and the necessary
details specific to this chapter.

3.10.1 The dynamic construction and the coupling

Let us consider graphs generated dynamically as follows:

Algorithm 3.3. Let s1(t) be the total number of unpaired or open half-edges
at time t, and Ξn be an inhomogeneous Poisson process with rate s1(t) at
time t.

(S0) Initially, s1(0) = `n, and Gn(0) is the empty graph on vertex set [n].

(S1) At each event time of Ξn, choose two open half-edges uniformly at
random and pair them. The graph Gn(t) is obtained by adding this
edge to Gn(t−). Decrease s1(t) by two. Continue until s1(t) becomes
zero.

Notice that Gn(∞) is distributed as CMn(d) since an open half-edge is
paired with another uniformly chosen open half-edge. The next proposition
ensures that the graph process generated by Algorithm 3.3 sandwiches the
graph process (CMn(d,pn(λ)))λ∈R. This result was proved in [70, Proposi-
tion 28]. The proof is identical under Assumption 3.2 and therefore is omitted
here. Define,

tn(λ) =
1
2

log
(

νn

νn − 1

)
+

1
2(νn − 1)

λ

cn
.

Proposition 3.10.1. Fix −∞ < λ? < λ
? < ∞. There exists a coupling such that

with high probability

Gn(tn(λ) − εn) ⊂ CMn(d,pn(λ)) ⊂ Gn(tn(λ) + εn), ∀λ ∈ [λ?, λ?]

and

CMn(d,pn(λ) − εn) ⊂ Gn(tn(λ)) ⊂ CMn(d,pn(λ) + εn), ∀λ ∈ [λ?, λ?]
(3.69a)

where εn = cn−γ0 , for some η < γ0 < 1/2 and the constant c does not depend on
λ.
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Chapter 3 Critical window: Infinite third moment

From here onward, we augment λ to a predefined notation to emphasize
the dependence on λ. We write C(i)(λ) for the ith largest component of
Gn(tn(λ)) and define

Oi(λ) = # open half-edges in C(i)(λ).

Think of Oi(λ) as the mass of the component C(i)(λ). Let Zon(λ) denote
the vector of the number of open half-edges (re-scaled by bn) and surplus
edges of Gn(tn(λ)), ordered as an element of U0

↓ . For a process X, we will
write X[λ?, λ?] to denote the restricted process (X(λ))λ∈[λ?,λ?]. Let `on(λ) =∑
i>1 Oi(λ). Note that

`on(λ) =
nµ(ν− 1)

ν
(1 + oP(1)). (3.70)

(3.70) is a consequence of [29, Lemma 8.2] since the proof only uses the facts
that |`n/n − µ| = o(n−γ) for all γ < 1/2, and

∑
i∈[n] di(di − 1)/`n → ν.

Now, observe that, during the evolution of the graph process generated by
Algorithm 3.3, during the time interval [tn(λ), tn(λ+ dλ)], the ith and jth

(i > j) largest components, merge at rate

2Oi(λ)Oj(λ)×
1

`on(λ) − 1
× 1

2(νn − 1)cn
≈ ν

µ(ν− 1)2

(
b−1
n Oi(λ)

)(
b−1
n Oj(λ)

)
,

(3.71)
and create a component with Oi(λ) + Oj(λ) − 2 open half-edges and
SP(C(i)(λ)) + SP(C(j)(λ)) surplus edges. Also, a surplus edge is created in
C(i)(λ) at rate

Oi(λ)(Oi(λ) − 1)× 1
`on(λ) − 1

× 1
2(νn − 1)cn

≈ ν

2µ(ν− 1)2

(
b−1
n Oi(λ)

)2,

(3.72)
and C(i)(λ) becomes a component with surplus edges SP(C(i)(λ)) + 1 and
open half-edges Oi(λ) − 2. Thus Zon[λ?, λ?] does not evolve as an AMC pro-
cess but it is close. The fact that two half-edges are killed after pairing, makes
the masses (the number of open half-edges) of the components deplete. If
there were no such depletion of mass, then the vector of open half-edges,
along with the surplus edges, would in fact merge as an augmented multi-
plicative coalescent. Let us define the modified process [70, Algorithm 7] that
in fact evolves as augmented multiplicative coalescent:

Algorithm 3.4. Initialize Ḡn(tn(λ?)) = Gn(tn(λ?)). Let O denote the set of
open half-edges in the graph Gn(tn(λ?)), s̄1 = |O | and Ξ̄n denote a Poisson
process with rate s̄1. At each event time of the Poisson process Ξ̄n, select two
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3.10 Convergence to augmented multiplicative coalescent

half-edges from O and create an edge between the corresponding vertices.
However, the selected half-edges are kept alive, so that they can be selected
again.

Remark 28. The only difference between Algorithms 3.3 and 3.4, is that the
paired half-edges are not discarded and thus more edges are created by Algo-
rithm 3.4. Thus, there is a natural coupling between the graphs generated by
Algorithms 3.3 and 3.4 such that Gn(tn(λ)) ⊂ Ḡn(tn(λ)) for all λ ∈ [λ?, λ?],
with probability one. In the subsequent part of this section, we will always
work under this coupling. The extra edges that are created by Algorithm 3.4
will be called bad edges.

In the subsequent part of this chapter, we will augment a predefined no-
tation with a bar to denote the corresponding quantity for Ḡn(tn(λ)). Denote
βn = (s̄1(νn − 1)cn)1/2 and Z̄o,scl

n (λ) denote the vector
ord(β−1

n Ōi(λ), SP(C̄(i)(λ)))i>1. Using an argument identical to (3.71), and (3.72),
it follows that Z̄o,scl

n [λ?, λ?] evolves as a standard augmented multiplicative
coalescent. Note that there exists a constant c > 0 such that βn = cbn(1 +

oP(1)), and therefore the scaling limit of any finite-dimensional distributions
of Z̄on[λ?, λ?] can be obtained from Z̄o,scl

n [λ?, λ?].

Augmented multiplicative coalescent with mass and weight

The near Feller property of the augmented multiplicative coalescent [30, The-
orem 3.1] ensures the joint convergence of the number of open half-edges in
each component together with the surplus edges of Ḡn(tn(λ)). To deduce
the scaling limits involving the components sizes let us consider a dynamic
process that is further augmented by weight. Initially, the system consists of
particles (possibly infinitely many) where particle i has mass xi, weight zi
and an attribute yi. Let (Xi(t),Zi(t), Yi(t))i>1 denote masses, weights, and
attribute values at time t. The dynamics of the system is described as follows:
At time t,

B particles i and j coalesce at rate Xi(t)Xj(t) and create a particle with
mass Xi(t) +Xj(t), weight Zi(t) +Zj(t) and attribute Yi(t) + Yj(t).

B for each i, attribute Yi(t) increases by 1 at rate Y2
i (t)/2.

For (x,y), (z,y) ∈ U0
↓ , we write (x, z,y) for ((x,y), (z,y)) ∈ (U0

↓)
2. Denote

by MC2(x, z, t) and AMC2(x, z,y, t) respectively the vector (Xi(t),Zi(t))i>1

and (Xi(t),Zi(t), Yi(t))i>1 with initial mass x, weight z and attribute value
y. We will need the following theorem:
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Chapter 3 Critical window: Infinite third moment

Theorem 3.10.2. Suppose that (xn, zn,yn)→ (x, x,y) in (U0
↓)

2 and
∑
i xi =∞.

Then, for any t > 0

AMC2(xn, zn,yn)
d−→ AMC2(x, x,y).

Proof. By [70, Theorem 29],

MC2(xn, zn, t) d−→MC2(x, x, t). (3.73)

For xn = (xni )i>1, and zn = (zni )i>1 letw+
n = sort(xni ∨ zni ),w

−
n = sort(xni ∧

zni ), where sort denotes the decreasing ordering of the elements. Notice
that w+

n → x, and w−
n → x in `2↓ . Let us denote by AMC1(x,y, t) the

usual augmented multiplicative coalescent process at time t with starting
state (x,y). Now, since

∑
i xi = ∞, we can use the near Feller property

[30, Theorem 3.1] to conclude that AMC1(xn,yn, t) d−→ AMC1(x,y, t). More-
over, AMC2(w

+
n ,w+

n ,yn, t) and AMC2(w
−
n ,w−

n ,yn, t) converges to the same
limit. For (x, z,y) ∈ (U0

↓)
2, if Spr(x, z,y) =

∑
i ziyi, then under the subgraph

coupling

Spr(AMC2(w
+
n ,w+

n ,yn, t)) − Spr(AMC2(w
−
n ,w−

n ,yn, t)) P−→ 0,

which implies that

(AMC1(xn,yn, t),Spr(AMC2(xn, zn,yn, t)))
d−→ (AMC1(x,y, t),Spr(AMC2(x, x,y, t))).

(3.74)

Now, using (3.73), (3.74), an application of [30, Lemma 4.11] concludes the
proof.

3.10.2 Asymptotics for the open half-edges

The following lemma shows that the number of open half-edges in Gn(tn(λ))

is approximately proportional to the component sizes. This will enable us to
apply Theorem 3.10.2 for deducing the scaling limits of the required quanti-
ties for the graph Ḡn(tn(λ)).

Lemma 3.10.3. There exists a constant κ > 0 such that, for any i > 1,

Oi(λ) = κ|C(i)(λ)|+ oP(bn). (3.75)

Further, (Zon(λ))n>1 is tight in U0
↓ .
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3.10 Convergence to augmented multiplicative coalescent

Proof. Let (dλk)k∈[n] denote the degree sequence of CMn(d,pn(λ)) and de-
fine

O
p
i (λ) =

∑
k∈C p

(i)
(λ)

(dk − d
λ
k) =

∑
k∈C p

(i)
(λ)

dk − 2(|C p(i)(λ)|− 1 + SP(C p(i)(λ))).

Using (3.69a) and the fact that the number of surplus edges in the large com-
ponents are tight, it is enough to prove the lemma by replacing Oi(λ) by
O
p
i (λ) and C ′(i)(λ) by C p(i)(λ). For a component C̃ of CMñ(d̃), the correspond-

ing component in the percolated graph is obtained by cleaning up R(C̃ ) red
degree-one vertices. Thus, the degree deficiency of that percolated cluster is
given by ∑

k∈C̃∩[n]
dk −

∑
k∈C̃∩[n]

d̃k + 2R(C̃ ). (3.76)

Now, all the three terms appearing in the right hand side of (3.76) can be es-
timated using Theorem 3.8.1, where we recall from Section 3.9 that d̃ satisfies
Assumption 3.1. The proof is now complete.

For an element z = (xi,yi)i>1 ∈ U0
↓ and a constant c > 0, denote cz =

(cxi,yi)i>1. Thus, Lemma 3.10.3 states that, for each fixed λ, Zon(λ) is close
to κZn(λ). The following lemma states that formally:

Corollary 3.10.4. For each fixed λ, as n→∞, dU(Zon(λ), κZn(λ))
P−→ 0.

Proof. Let πk, Tk : U0
↓ 7→ U0

↓ be the functions such that for z = ((xi,yi))i>1,
πk(z) consists of only (xi,yi) for i 6 k and zeroes in other coordinates, and
Tk(z) consists only of (xi,yi) for i > k. Thus,

dU (Zon(λ), κZn(λ)) 6 dU (πK(Zon(λ)),πK(κZn(λ)))

+‖TK(Zon(λ))‖U + ‖TK(κZn(λ))‖U.
(3.77)

Now, for each fixed K > 1 the first term in the right hand side of (3.77)
converges in probability to zero, by (3.75). Also, using the tightness of both
(Zn(λ))n>1 and (Zon(λ))n>1 with respect to the U0

↓ topology, it follows that
for any ε > 0,

lim
K→∞ lim

n→∞P (‖TK(Zn(λ))‖U > ε) = lim
K→∞ lim

n→∞P (‖TK(Zon(λ))‖U > ε) = 0,

and the proof is now complete.

151



Chapter 3 Critical window: Infinite third moment

3.10.3 Comparison between the dynamic construction and the
modified process

Suppose that, at time λ?, we have colored the components (C(i)(λ?))i∈[M]

blue, say, and then let Algorithms 3.3 and 3.4 evolve. Additionally, we color
all the components blue that get connected to one of the blue components
during the evolution. Let CM(λ), C̄M(λ) denote the union of all such blue
components in Gn(tn(λ)) and Ḡn(tn(λ)). In this section, we show that (i)
no bad edges are created that are surplus edge of some component, (ii)
|C̄M(λ)| − |CM(λ)| is asymptotically negligible, (iii) no bad edge is created
between the large components, and (iv) with sufficiently large probability,
the largest components of Ḡn(tn(λ)) are contained within C̄M(λ), where M
is large. These facts together ensure that the scaling limit for the largest
connected components and surplus edges of Gn(tn(λ)) and Ḡn(tn(λ)) are
identical. Consider the coupled evolution of Algorithms 3.3 and 3.4. Thus,
in the modified set-up, more components get merged due to the creation of
bad-edges. Denote BM(λ) = |C̄M(λ)| − |CM(λ)| and BSP(λ) the number of
bad-edges that are created as surplus edge of some component.

Lemma 3.10.5. For any λ > λ?, BSP(λ)
P−→ 0 and for all M > 1, b−1

n BM(λ)
P−→ 0.

Proof. Before going into the proof, recall Algorithm 3.4, and all the defini-
tions. A bad edge is created if, during some event time of Ξ̄n, a half-edge
from O is selected that was already selected before. Now, for some given pair
(e0, f0), e0 6= f0, the number of ways in which one can choose a pair (e, f),
e 6= f such that e = e0, or f = f0, is given by 2s̄1 − 3. Thus, the bad edges are
created between times [tn(λ), tn(λ+ dλ)] at rate (2(νn − 1)s̄1cn)

2/(2s̄1 − 3).
Denote IM = IM(λ) = {i : C̄(i)(λ) ⊂ C̄M(λ)}. The created bad edge adds
an additional mass of |C̄(i)(λ)| to C̄M(λ) if one end is from C̄M(λ) (for which
there are

∑
i∈IM Oi(λ) possibilities) and the other half-edge is in C̄(i)(λ). The

created bad edge is a surplus edge if both of its endpoints come from the
same component. For any semi-martingale (Yt)t>0, we write D(Y)(t) and
QV(Y)(t), respectively to denote the compensator and the quadratic varia-
tion, i.e.,

Yt − D(Y)(t), and (Yt − D(Y)(t))2 − QV(Y)(t)

are both martingales. Now, D(BSP(λ)) > 0, D(b−1
n B1(λ)) > 0, and for some
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3.10 Convergence to augmented multiplicative coalescent

constants C1,C2 > 0

D(BSP)(λ) =

∫λ
λ?

2s̄1 − 3
4(νn − 1)2s̄2

1c
2
n

∑
i>1

(
Ōi(λ

′)
2

)
dλ ′

6
C1n

b2
n

∫λ
λ?

‖Ōn(λ ′)‖2
2 dλ ′ + oP(1)

6
C1n

b2
n

(λ? − λ?)‖Ōn(λ?)‖2
2 + oP(1),

D(b−1
n B1)(λ) 6 b

−1
n

∫λ
λ?

2s̄1 − 3
4(νn − 1)2s̄2

1c
2
n

∑
i∈IM(λ)

Ōi(λ
′)
∑
i>1

Ōi(λ
′)|C̄(i)(λ

′)|dλ ′

6
C2n

b2
n

∫λ
λ?

(
b−1
n

M∑
i=1

Ō(i)(λ
′)
)
‖Ōn(λ ′)‖2‖C̄n(λ ′)‖2dλ ′ + oP(1)

6
C2n

b2
n

(λ? − λ?)

(
b−1
n

M∑
i=1

Ō(i)(λ
?)

)
‖Ōn(λ?)‖2‖C̄n(λ?)‖2 + oP(1),

where Ō(i) denotes the ith largest value of (Ōi)i>1. Further,

QV(BSP)(λ) 6
C1n

b2
n

(λ? − λ?)‖Ōn(λ?)‖2
2 + oP(1),

and

QV(b−1
n B1)(λ) 6 b

−2
n

∫λ
λ?

2s̄1 − 3
4(νn − 1)2s̄2

1c
2
n

∑
i∈IM(λ)

Ōi(λ
′)
∑
i>1

Ōi(λ
′)|C̄(i)(λ

′)|2dλ ′

6
C2n

b2
n

∫λ
λ?

(
b−1
n

M∑
i=1

Ō(i)(λ
′)
)(
b−1
n |C̄(1)(λ

′)|
)
‖Ōn(λ ′)‖2‖C̄n(λ ′)‖2dλ ′ + oP(1)

6
C2n

b2
n

(λ? − λ?)

(
b−1
n

M∑
i=1

Ō(i)(λ
?)

)(
b−1
n |C̄(1)(λ

?)|
)
‖Ōn(λ?)‖2‖C̄n(λ?)‖2 + oP(1).

Recall that using Lemma 3.10.3, an application of Theorem 3.10.2 yields
(Z̄n(λ))n>1 is tight in U0

↓ . The proof now follows using the fact that n/b2
n →

0.

Suppose that a bad edge is being created at time λ ′. Now, this bad edge
may be created by choosing the open half-edges from C(i)(λ

′) and C(j)(λ
′) for

1 6 i, j 6 M. For fixed M, let FM(λ) denote the number of such bad-edges
created upto time λ. Using an argument identical to Lemma 3.10.5 one can
show the following:
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Chapter 3 Critical window: Infinite third moment

Lemma 3.10.6. For any λ > λ? and M > 1, FM(λ)
P−→ 0.

The following is the last ingredient that will be needed in the proof:

Lemma 3.10.7. Fix any λ ∈ [λ?, λ?]. For any ε > 0, and K > 1, there exists
M =M(ε,K) such that

lim sup
n→∞ P

(
C̄(1)(λ), . . . , C̄(K)(λ) are not contained in C̄M(λ)

)
6 ε.

Proof. Let IM := {i : C̄(i)(λ) ⊂ C̄M(λ)}. It is enough to show that, for any
ε > 0, there exists M such that

lim sup
n→∞ P

( ∑
i/∈IM

|C̄(i)(λ)|
2 > εb2

n

)
6 ε.

For any M > 1, consider the merging dynamics of Algorithm 3.4, where at
time λ?, all the components (C̄(i)(λ?))i∈[M] are removed. We refer to the
above evolution as M-truncated system. We augment a previously defined
notation with a superscript > M to denote the corresponding quantity for
the M-truncated system. We assume that the M-truncated system and the
modified system are coupled in a natural way that at each event time of the
modified truncated system, an edge is created in the M-truncated system if
both the half-edges are selected from the outside of ∪Mi=1C̄(i)(λ?). Under this
coupling, ∑

i/∈IM
|C̄(i)(λ)|

2 6
∑
i>1

|C̄ >M
(i) (λ)|2.

Now, using Lemma 3.10.3, an application of Theorem 3.10.2 yields that
(Z̄n(λ))n>1 is tight in U0

↓ . Thus the proof now follows.

3.10.4 Proof of Theorem 3.2.5

We now have all the ingredients to complete the proof of Theorem 3.2.5. For
simplicity in writing, we only give a proof for the case k = 2 since the proof
for general k is identical. Take λ? = λ1. Using Lemma 3.10.3, Theorem 3.10.2
implies

(Z̄n(λ1), Z̄n(λ2))
d−→ (Z̄(λ1), Z̄(λ1, λ2)), (3.80)

for some random elements Z(λ1), Z(λ1, λ2) of U0
↓ . Now, Z̄n(λ1) = Zn(λ1).

Moreover, using Lemmas 3.10.5, 3.10.6, and 3.10.7 and the facts that both
(Z̄n(λ2))n>1 and (Zn(λ2))n>1 converge, it follows that (see the argument in
Corollary 3.10.4)

dU(Z̄n(λ2), Zn(λ2))
P−→ 0.
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3.11 Conclusion

Thus, (Zn(λ1), Zn(λ2)) converge jointly. Moreover, the limiting object Z(λ1, λ2)

appearing in (3.80) does not depend on λ1 by Theorem 3.2.2. Now, using in-
duction, there exists a version of the augmented multiplicative coalescent
AMC = (AMC(λ))λ∈R such that for any k > 1

(Zn(λ1), . . . , Zn(λk))
d−→ (AMC(λ1), . . . , AMC(λk)).

Finally, the proof of Theorem 3.2.2 is completed by using Proposition 3.10.1.

3.11 Conclusion

In this chapter, we have shown that, when the third moment of the empirical
degree distribution tends to infinity, the critical window for the configura-
tion model is primarily dictated by the vertices of highest degree or hubs.
In fact, the asymptotics of hubs completely specify the scaling limits for the
component sizes and the surplus edges. The proof techniques in this case
is completely different than in Chapter 2. Since the increment distribution
of the exploration process has infinite third moment, the analysis does not
fall under the framework of invariance principles such as Martingale FCLT.
Moreover, since the limiting process does not have independent increments,
general methods for stochastic process convergence are not applicable. The
core of the analysis rests on the fact that the hubs cause jumps in the ex-
ploration process, and the contribution due to the low-degree vertices turns
out to be asymptotically negligible. The proof for `2↓ convergence is also
more direct in this case, as compared to the size-biased point processes in
Chapter 2.4.6. The fact that the graph becomes more subcritical only after
the removal of the hubs plays a crucial role in the analysis. As in Chap-
ter 2, we use Janson’s construction to study critical percolation. Further, the
evolution over the critical window is studied for both the component sizes
and the surplus edges. In fact, the scaling limit in Theorem 3.2.5 establishes
that there exists a version of augmented multiplicative coalescent with finite-
dimensional distributions being described by excursions of a thinned Lévy
process.

3.A Appendix: Path counting

In this section, we derive a generalization of [111, Lemma 5.1] by extending
their argument. Let V ′n denote the vertex chosen according to the distribution
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Chapter 3 Critical window: Infinite third moment

Fn on [n], independently of the graph. Also, let D ′n denote the degree of V ′n,
Dn denote the degree of a uniformly chosen vertex (independently of the
graph) and C (v) denote the connected component containing v.

Lemma 3.A.1. Let w = (wi)i∈[n] be a weight sequence and consider CMn(d)

such that νn < 1. Then,

E

[ ∑
i∈C (V ′n)

wi

]
6 E

[
wV ′n

]
+

E [D ′n]E
[
DnwVn

]
E [Dn] (1 − νn)

.

Proof. Consider all possible paths of length l starting from V ′n and the w-
value at the end of those paths. If we sum over all such paths together with
a sum over all possible l, then we obtain an upper bound on

∑
i∈C (V ′n)wi.

Write Ev[·] for the expectation conditional on V ′n = v. Thus,

Ev

[ ∑
i∈C (V ′n)

wi

]
6 wv + dv

∑
l>1

∑
x1,...,xl

xi 6=xj,∀i 6=j

∏l−1
i=1 dxi(dxi − 1)dxlwxl

(`n − 1) . . . (`n − 2l+ 1)
.

Now, using the exactly same arguments as [111, Lemma 5.1], it follows that

E

[ ∑
i∈C (V ′n)

wi

]
6 E

[
wV ′n

]
+

E [D ′n]E [DnwVn ]

E [Dn]

∑
l>1

νl−1
n ,

and this completes the proof.

3.B Appendix: Proof of Lemma 3.6.3

The proof is an adaptation of the proof of [70, Lemma 20]. Let V ′n de-
note the vertex chosen according to the distribution Fn on [n], indepen-
dently of the graph and let D ′n denote the degree of V ′n. Suppose that
lim supn→∞E[D ′n] < ∞. We use a generic constant C to denote a positive
constant independent of n, δ,K. Consider the graph exploration described
in Algorithm 3.1, but now we start by choosing vertex V ′n at Stage 0 and
declaring all its half-edges active. The exploration process is still given by
(3.21) with Sn(0) = D ′n. Note that C (V ′n) is explored when Sn hits zero. For
H > 0, let

γ := inf{l > 1 : Sn(l) > H or Sn(l) = 0} ∧ 2δKbn.
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Note that

E

[
Sn(l+ 1) − Sn(l)| (Ini (l))

n
i=1

]
=
∑
i∈[n]

diP
(
i /∈ Vl, i ∈ Vl+1| (I

n
i (l))

n
i=1
)
− 2

=

∑
i/∈Vl

d2
i

`n − 2l− 1
− 2 6

∑
i∈[n] d

2
i

`n − 2l− 1
− 2

: = λc−1
n + o(c−1

n ) +
2l+ 1

`n − 2l− 1
×
∑
i∈[n] d

2
i

`n
6 0

uniformly over l 6 2δKbn for all small δ > 0 and large n, where the last
step follows from the fact that λ < 0. Therefore, {Sn(l)}

2δKbn
l=1 is a super-

martingale. The optional stopping theorem now implies

E
[
D ′n
]
> E [Sn(γ)] > HP (Sn(γ) > H) .

Thus,

P (Sn(γ) > H) 6
E [D ′n]
H

.

Put H = anK
1.1/
√
δ. To simplify the writing, we write Sn[0, t] ∈ A to denote

that Sn(l) ∈ A, for all l ∈ [0, t]. Notice that

P
(
SP(C (V ′n)) > K, |C (V ′n)| ∈ (δKbn, 2δKbn)

)
6 P (Sn(γ) > H) + P

(
SP(C (V ′n)) > K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)
.

(3.81)

Define A(l1, . . . , lK) to be the event that {surpluses occur at times l1, . . . , lK,
and Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0}. Now,

P
(
SP(C (V ′n)) > K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)
6

∑
16l1<···<lK62δKbn

P (A(l1, . . . , lK))

=
∑

16l1<···<lK62δKbn

E [1{0 < Sn[0, lK − 1] < H, SP(lK − 1) = K− 1}Y] ,

where

Y = P
(
Kth surplus occurs at time lK,Sn[lK, 2δKbn] < H,Sn[lK,γ] > 0 | FlK−1

)
6
CK1.1an

`n
√
δ
6
CK1.1

bn
√
δ

.
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Therefore, using induction, (3.81) yields

P
(
SP(C (V ′n)) > K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)
6 C

(
K1.1
√
δbn

)K (2δbn)K−1

K0.12(K−1)(K− 1)!

2δKbn∑
l1=1

P
(
|C (V ′n)| > l1

)
6 C

δK/2

K1.1bn
E
[
|C (V ′n)|

]
,

where we have used the fact that #{1 6 l2, . . . , lK 6 2δbn} = (2δbn)K−1/(K−

1)! and Stirling’s approximation for (K− 1)! in the last step. Since λ < 0, we
can use Lemma 3.A.1 to conclude that for all sufficiently large n

E [|C (Vn)|] 6 Ccn,

for some constant C > 0 and we get the desired bound for (3.81). The proof
of Lemma 3.6.3 is now complete.
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Chapter 4

Metric space limit for critical
components in the infinite
third-moment regime

Abstract. This chapter establishes general universality principles for random net-

work models whose component sizes in the critical regime lie in the multiplicative

coalescent universality class with heavy-tailed degrees resulting in hubs. For graphs

whose components evolve exactly as a multiplicative coalescent in this regime, scaling

limits for the metric structure of maximal components were derived in [36]. In this

chapter, we derive sufficient uniform asymptotic negligibility conditions for general

network models to satisfy in the barely subcritical regime such that, if the evolution of

the components can be approximated by a multiplicative coalescent as one transitions

from the barely subcritical regime through the critical regime, then the maximal com-

ponents belong to the same universality class as in [36]. As a canonical example, we

study critical percolation on configuration models with heavy-tailed degrees. Of in-

dependent interest, we derive refined asymptotics for various susceptibility functions

and the maximal diameter in the barely subcritical regime. These estimates, coupled

with the universality result, allow us to derive the asymptotic metric structure of the

large components through the critical scaling window for percolation.

Based on the manuscript: Shankar Bhamidi, Souvik Dhara, Remco van der Hofstad, Sanchayan

Sen; Universality for critical heavy-tailed network models: Metric structure of maximal components

(2017), arXiv:1703.07145
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Chapter 4 Metric space limit

The aim of this chapter is to understand universality principles for the
metric structure of the critical components when the degree distribution sat-
isfies an infinite third-moment condition. To describe our results, we start
with an analogy. In classical limit theorems for sums of independent random
variables, there are two major steps: (1) Identifying possible limit laws (e.g.
normal distribution, stable laws, etc.), and (2) understanding uniform asymp-
totic negligibility conditions under which sums of random variables (appro-
priately re-scaled) converge to the appropriate limit. In the context of critical
random graphs with degree-exponent τ ∈ (3, 4), candidate limit law of max-
imal components with each edge rescaled to have length n−(τ−3)/(τ−1) was
established in [36]. In this chapter we establish sufficient uniform asymptotic
negligibility (UAN) conditions for a random graph model in the barely sub-
critical regime which, coupled with appropriate merging dynamics of com-
ponents as one increases edge density through the critical regime, implies
convergence to limits established in [36]. This is described in Theorem 4.4.2.
As a canonical example, we analyze the critical regime for percolation on
the uniform random graph model and the configuration model with a pre-
scribed heavy-tailed degree distribution (see Theorems 4.1.1 and 4.1.2). Of
independent interest, we obtain refined estimates for various susceptibility
functionals and bounds on the diameter of largest connected components in
the barely-subcritical regime for the configuration model; these are described
in Theorems 4.1.3 and 4.1.4.

Organization of the chapter. Section 4.1 describes the canonical random
graph model motivating this work and describes associated results. A full
description of the limit objects and notions of convergence of metric space
valued random variables are deferred to Section 4.3. Section 4.2 has a detailed
discussion of related work and relevance of this work. Section 4.4 describes
and proves the general universality result. Sections 4.4.1 and 4.5 prove results
about the configuration model.

4.1 Main results

Owing to technical overhead, the statement of our main universality result
is deferred to Section 4.4. In this section, we present the results about the
largest connected components obtained via percolation on the uniform ran-
dom graph model and the configuration model. We defer definitions of the
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4.1 Main results

limiting objects as well as notions of convergence of measured metric spaces
to Section 4.3.

4.1.1 Critical percolation on the configuration model: the metric
structure

For p > 0, define metric space `p↓ = {(xi)i>1 : xi > xi+1,
∑
i x
p
i <∞}, with the

metric d(x,y) = (
∑
i |xi − yi|

p)1/p. Fix τ ∈ (3, 4). Throughout this chapter
we set:

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (τ− 3)/(τ− 1).

Assumption 4.1 (Degree sequence). For each n > 1, let d = dn = (di)i∈[n]
be a degree sequence. We assume the following about (dn)n>1 as n→∞:

(i) (High degree vertices) For i > 1, n−αdi → θi, where θ = (θi)i>1 ∈ `3↓ \ `2↓ .

(ii) (Moment assumptions) Let Dn denote the degree of a vertex chosen uni-
formly at random, independently of CMn(d). Then, Dn converges in
distribution to some discrete random variable D, and

1
n

∑
i∈[n]

di →µ := E[D],
1
n

∑
i∈[n]

d2
i → µ2 := E[D2],

lim
K→∞ lim sup

n→∞ n−3α
n∑

i=K+1

d3
i = 0.

As discussed in Chapter 1, the component sizes of CMn(d) undergo a
phase transition [114, 133] depending on the parameter

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
→ ν =

E [D(D− 1)]
E [D]

.

Precisely, when ν > 1, CMn(d) is super-critical in the sense that there exists
a unique giant component whp, and when ν < 1, all the components have
size oP(n). In this chapter, we will always assume that

ν > 1, i.e. CMn(d) is supercritical. (4.1)

The focus of this chapter is to study critical percolation on CMn(d). Percola-
tion refers to deleting each edge of a graph independently with probability
1 − p. Let CMn(d,pn), and UMn(d,pn) denote the graphs obtained from
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Chapter 4 Metric space limit

percolation with probability pn on graphs CMn(d) and UMn(d), respec-
tively. For pn → p, it was shown in [109] that the critical point for the phase
transition of the component sizes is p = 1/ν. The critical window for percola-
tion was studied in Chapters 2 and 3 to obtain the asymptotics of the largest
component sizes and corresponding surplus edges. In this chapter, we will
assume that CMn(d,pc(λ))2 is in the critical window, i.e.,

pn = pn(λ) =
1
νn

+
λ

nη
+ o(n−η). (4.2)

Let C p(i)(λ) denote the i-th largest component of CM(d,pn(λ)). Each compo-
nent C can be viewed as a measured metric space with (i) the metric being
the graph distance where each edge has length one, (ii) the measure be-
ing proportional to the counting measure, i.e., for any A ⊂ C , the measure
of A is given by µct,i(A) = |A|/|C |. For a generic measured metric space
M = (M, d,µ) and a > 0, write aM to denote the measured metric space
(M,ad,µ). Write S∗ for the space of all measured metric spaces equipped
with the Gromov weak topology (see Section 4.3.1) and let S N

∗ denote the
corresponding product space with the accompanying product topology. For
each n > 1, view

(
n−ηC p(i)(λ)

)
i>1 as an object in S N

∗ by appending an infi-
nite sequence of empty metric spaces after enumerating the components in
CMn(d,pn(λ)). The main results for the configuration model are as follows:

Theorem 4.1.1. Consider CMn(d,pn(λ)) satisfying Assumption 4.1, (4.1) and
(4.2) for some λ ∈ R. There exists a sequence of random measured metric spaces
(Mi(λ))i>1 such that on S N

∗ as n→∞(
n−ηC p(i)(λ)

)
i>1

d−→
(
Mi(λ)

)
i>1. (4.3)

Theorem 4.1.2. Under Assumption 4.1, (4.1) and (4.2) for some λ ∈ R, the conver-
gence in (4.3) also holds for the components of UMn(d,pn(λ)), with the identical
limiting object.

Remark 29. The limiting objects are precisely described in Section 4.3.5. The
conclusion of Theorem 4.1.1 holds if the measure µct,i on C p(i) is replaced by
more general measures, see Remark 37.

4.1.2 Mesoscopic properties of the critical clusters: barely
subcritical regime

One of the main ingredients in the proof of Theorem 4.1.1 is a refined analy-
sis of various susceptibility functions in the barely subcritical regime which are
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of independent interest. In this context we prove general statements about
the susceptibility functions applicable not just to percolation on the super-
critical configuration model, rather to any barely subcritical configuration
model. Since percolation on a configuration model yields a configuration
model [85, 109], the above yields susceptibility functions for percolation on a
configuration model as a special case.

Assumption 4.2 (Barely subcritical degree sequence). Let d ′ = (d ′1, . . . ,d ′n)
be a degree sequence and let w(·) : [n] 7→ R+ be such that

(i) Assumption 4.1 holds for d ′ with some c ∈ `3↓ \ `2↓ , and

lim
n→∞ 1

n

∑
i∈[n]

d ′i = µd, lim
n→∞ 1

n

∑
i∈[n]

wi = µw,

lim
n→∞ 1

n

∑
i∈[n]

d ′iwi = µd,w.

(ii) max{
∑
i∈[n]w

3
i,
∑
i∈[n] d

′2
i wi,

∑
i∈[n] d

′
iw

2
i} = O(n

3α).

(iii) (Barely subcritical regime:) There exists 0 < δ < η and λ0 > 0 such that

ν ′n =

∑
i∈[n] d

′
i(d
′
i − 1)∑

i∈[n] d
′
i

= 1 − λ0n
−δ + o(n−δ). (4.4)

We will consider a configuration model, where vertex i has degree d ′i and
weight wi. Let C ′(i) denote the i-th largest component of CMn(d

′), W(i) =∑
k∈C ′

(i)
wk and define the weight-based susceptibility functions as

s?r =
1
n

∑
i>1

W r
(i) ; r > 1, s?pr =

1
n

∑
i>1

W(i)|C
′
(i)|. (4.5)

Also, define the weighted distance-based susceptibility as

D?
n =

1
n

∑
i,j∈[n]

wiwjd(i, j)1{i, j are in the same connected component},

(4.6)
where d denotes the graph distance in the component C ′(k) for which i, j ∈
C ′(k). The goal is to show that the quantities defined in (4.5) and (4.6) satisfy
asymptotic regularity conditions. These are summarized in the following
theorem:
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Theorem 4.1.3 (Susceptibility functions). Under Assumption 4.2, as n→∞,

n−δs?2
P−→
µ2
d,w

µdλ0
, n−δs?pr

P−→
µd,w

λ0
, n−(α+δ)W(j)

P−→
µd,w

µdλ0
cj,

n−3α−3δ+1s?3
P−→
(
µd,w

µdλ0

)3 ∞∑
i=1

c3
i, n−2δD?

n
P−→
µ2
d,w

µdλ
2
0

.

For a connected graph G, ∆(G) denotes the diameter of the graph, and
for any arbitrary graph G, ∆max(G) := max∆(C ), where the maximum is
taken over all connected components C ⊂ G. We simply write ∆max for
∆max(CMn(d

′)).

Theorem 4.1.4 (Maximum diameter). Under Assumption 4.2, as n→∞,

P(∆max > 6nδ log(n))→ 0.

Remark 30. Note that wi = 1 for all i ∈ [n] implies that W(i) = |C(i)|, and thus
Theorem 4.1.3 holds for the usual susceptibility functions defined in terms of
the component sizes (cf. [111]). In the proof of Theorem 4.1.1, we will require
a more general weight function.

4.2 Discussion

In this section, we describe related work and discuss the relevance of the
results in this chapter.

Related work. A wide array of universality conjectures have been postu-
lated about functionals of network models. Of particular relevance here is
[51, 52], where via simulations the so-called strong disorder regime (which
in the extremal case is the minimal spanning tree where edges have i.i.d. pos-
itive random edge weights) was studied. From the probabilisitic combina-
torics community both for the universality principle and the results for the
configuration model, a major role is played by the multiplicative coalescent.
The process was rigorously constructed in [8] whilst a complete description
of the entrance boundary of this Markov process was laid out in [11]. In the
context of the critical regime for random graphs especially with heavy tails,
component sizes for the closely related rank-one random graph model were
derived in [33, 97]. These were then extended to the configuration model in
[121] culminating in a complete description of component sizes and surplus
edges in [69]. Rigorous results for the metric-space structure of components
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in the heavy-tailed regime was first derived in [36]; the limiting objects are
described in Section 4.3.5. In this chapter, we develop general conditions
under which the metric structure of the critical components are identical to
those for critical rank-one inhomogeneous random graphs as derived in [36],
and hence derive Theorem 4.1.1. Similar universality principles for τ > 4
were derived in [29].

Proof techniques in the barely subcritical regime. A key part of the con-
tributions of this chapter is a refined analysis of the barely subcritical regime
for CMn(d) in the heavy-tailed regime; for related results see e.g. [108, 111,
113, 116] and the references therein. The bounds in this chapter, in particular
the extension to the barely subcritical regime are new. The proof techniques
are also novel, and involve a combination of generalizing path-counting tech-
niques [111], formalizing branching process heuristics, as well as leveraging
the differential equation method [152] to analyze various susceptibility func-
tions in the barely subcritical regime.

Remark 31. In an ongoing work, [65] derives the scaling limit of the maximal
components at criticality for CMn(d) when the degrees are i.i.d samples from
a power-law distribution with τ ∈ (3, 4), and [90] investigates the properties
of these limiting objects, obtained via appropriate tilts of Levy trees [76].
Interestingly, the description of the limiting objects in the i.i.d setting turns
out to be quite different than Theorem 4.1.1. It will be interesting to explore
the connections between the results in the above papers and the current work.

4.3 Convergence of metric spaces, discrete structures and
limit objects

The aim of this section is to define the proper notion of convergence rel-
evant to this chapter (Section 4.3.1), set-up discrete structures required in
the statement and proof of the universality result in Theorem 4.4.2 (Sec-
tions 4.3.2, 4.3.3, 4.3.4), and describe limit objects that arise in Theorem 4.1.1
(Sections 4.3.4 and 4.3.5).

4.3.1 Gromov-weak topology

A complete separable measured metric space (denoted by (X, d,µ)) is a com-
plete, separable metric space (X, d) with an associated probability measure
µ on the Borel sigma algebra B(X). The Gromov-weak topology is defined
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on S0, the space of all complete and separable measured metric spaces (see
[36, Section 2.1.2], [91, 93]). The notion is formulated based on the phi-
losophy of finite-dimensional convergence. Two measured metric spaces
(X1, d1,µ1), (X2, d2,µ2) are considered to be equivalent if there exists an isom-
etry ψ : support(µ1) 7→ support(µ2) such that µ2 = µ1 ◦ψ−1. Let S∗ be the
space of all equivalence classes of S0. We abuse the notation by not distin-
guishing between a metric space and its corresponding equivalence class. Fix
l > 2, (X, d,µ) ∈ S∗. Given any collection of points x = (x1, . . . , xl) ∈ Xl,
define D(x) := (d(xi, xj))i,j∈[l] to be the matrix of pairwise distances of the
points in x. A function Φ : S∗ 7→ R is called a polynomial if there exists a
bounded continuous function φ : Rl

2 7→ R such that

Φ((X, d,µ)) =
∫
φ(D(x))dµ⊗l,

where µ⊗l denotes the l-fold product measure. A sequence {(Xn, dn,µn)}n>1

⊂ S∗ is said to converge to (X, d,µ) ∈ S∗ if and only if Φ((Xn, dn,µn)) →
Φ((X, d,µ)) for all polynomials Φ on S∗. By [91, Theorem 1], S∗ is a Polish
space under the Gromov-weak topology.

4.3.2 Super graphs

Our super graphs consist of three main ingredients: 1) a collection of metric
spaces called blobs, 2) a graphical super-structure determining the connec-
tions between the blobs, 3) connection points or junction points at each blob.
In more detail, super graphs contain the following structures:

(a) Blobs: A collection {(Mi, di,µi)}i∈[m] of connected, compact measured
metric spaces.

(b) Superstructure: A (random) graph G with vertex set [m]. The graph has
a weight sequence p = (pi)i∈[m] associated to the vertex set [m]. We
regard Mi as the i-th vertex of G.

(c) Junction points: An independent collection of random points X := (Xi,j :

i, j ∈ [m]) such that Xi,j ∼ µi for all i, j. Further, X is independent of G.

Using these three ingredients, define a metric space (M̄, d̄, µ̄) = Γ(G, p, M, X),
with M̄ = ti∈[m]Mi, by putting an edge of length one between the pair of
points {(Xi,j,Xj,i) : (i, j) is an edge of G}. The distance metric d̄ is the natural
metric obtained from the graph distance and the inter-blob distance on a
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path. More precisely, for any x,y ∈ M̄ with x ∈Mj1 and y ∈Mj2 ,

d̄(x,y) = inf
{
k+ dj1(x,Xj1,i1) +

k−1∑
l=1

dil(Xil,il−1 ,Xil+1,il) + dj2(Xj2,ik−1 ,y)
}

,

(4.7)
where the infimum is taken over all paths (i1, . . . , ik−1) in G and all k > 1
and we interpret i0 and ik as j1 and j2 respectively. The measure µ̄ is given
by µ̄(A) :=

∑
i∈[m] piµi(A ∩Mi), for any measurable subset A of M̄. Note

that there is a one-to-one correspondence between the components of G and
Γ(G, p, M, X) as the blobs are connected.

4.3.3 Space of trees with edge lengths, leaf weights, root-to-leaf
measures, and blobs

In the proof of the main results we need the following spaces built on top
of the space of discrete trees. The first space TIJ was formulated in [13, 14]
where it was used to study trees spanning a finite number of random points
sampled from an inhomogeneous continuum random tree (as described in
the next section).

The space TIJ.

Fix I > 0 and J > 1. Let TIJ be the space of trees with each element t ∈ TIJ
having the following properties:

1. There are exactly J leaves labeled 1+, . . . , J+, and the tree is rooted at
the labeled vertex 0+.

2. There may be extra labeled vertices (called hubs) with labels in {1, . . . , I}.
(It is possible that only some, and not all, labels in {1, . . . , I} are used.)

3. Every edge e has a strictly positive edge length le.

A tree t ∈ TIJ can be viewed as being composed of two parts: (1) shape(t)
describing the shape of the tree (including the labels of leaves and hubs) but
ignoring edge lengths. The set of all possible shapes Tshape

IJ is obviously finite
for fixed I, J. (2) The edge lengths l(t) := (le : e ∈ t). We will consider the
product topology on TIJ consisting of the discrete topology on Tshape

IJ and the
product topology on RE, where E is the number of edges of t.
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The space T∗IJ.

Along with the three attributes above in TIJ, the trees in this space have
the following two additional properties. Let L(t) := {1+, . . . , J+} denote the
collection of leaves in t. Then every leaf v ∈ L(t) has the following attributes:

(d) Leaf weights: A strictly positive number A(v).

(e) Root-to-leaf measures: A probability measure νt,v on the path [0+, v]
connecting the root and the leaf v.

The path [0+, v] for each v ∈ L(t), can be viewed as a compact measured met-
ric space with the measure being νt,v. Let X denote the space of compact mea-
sured metric spaces endowed with the Gromov-Hausdorff-Prokhorov topol-
ogy (see [36, Section 2.1.1]). In addition to the topology on TIJ, the space T∗IJ
with the additional two attributes inherits the product topology on RJ due
to leaf weights and XJ due to the paths [0+, v] endowed with νt,v for each
v ∈ L(t). For consistency, we add a conventional state ∂ to the spaces TIJ and
T∗IJ. Its use will be made clear in Section 4.4.

For all instances in this chapter, the shape of a tree shape(t) will be viewed
as a subgraph of a graph with m vertices. In that case, the tree will be
assumed to inherit the vertex labels from the original graph. We will often
write t ∈ T∗mIJ to emphasize the fact that the vertices of t are labeled from a
subset of [m].

The space T∗mIJ .

We enrich the space T∗mIJ with some additional elements to accommodate the
blobs. Consider t ∈ T∗mIJ and construct t̄ as follows: Let (Mi, di,µi)i∈[m] be
a collection of blobs and X = (Xij : i, j ∈ [m]) be the collection of junction
points as defined in Section 4.3.2. Construct the metric space t̄ with elements
in M̄(t) = ti∈tMi, by putting an edge of ‘length’ one between the pair of ver-
tices {(Xi,j,Xj,i) : (i, j) is an edge of t}. The distance metric is given by (4.7).
The path from the leaf v to the root 0+ now contain blobs. Replace the root-to-
leaf measure by ν̄t,v(A) :=

∑
i∈[0+,v] νt,v(i)µ(Mi ∩A) for A ⊂ ti∈[0+,v]Mi,

where νt,v is the root-to-leaf measure on [0+, v] for t. Notice that T∗mIJ can
be viewed as a subset of T∗mIJ . In the proof of the universality theorem in
Section 4.4, the blobs will be a fixed collection and, therefore, any t ∈ T∗mIJ
corresponds to a unique t̄ ∈ T∗mIJ .
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4.3.4 p-trees

For fixed m > 1, write Tm and Tord
m for the collection of all rooted trees with

vertex set [m] and rooted ordered trees with vertex set [m] respectively. An
ordered rooted tree is a rooted tree where children of each individual are
assigned an order. We define a random tree model called p-trees [59, 142],
and their corresponding limits, the so-called inhomogeneous continuum ran-
dom trees, which play a key role in describing the limiting metric spaces. Fix
m > 1, and a probability mass function p = (pi)i∈[m] with pi > 0 for all
i ∈ [m]. A p-tree is a random tree in Tm, with law as follows: For any fixed
t ∈ Tm and v ∈ t, write dv(t) for the number of children of v in the tree t.
Then the law of the p-tree, denoted by Ptree, is defined as

Ptree(t) = Ptree(t; p) =
∏
v∈[m]

p
dv(t)
v , t ∈ Tm. (4.8)

Generating a random p-tree T ∼ Ptree and then assigning a uniform random
order on the children of every vertex v ∈ T gives a random element with
law Pord(·; p) given by

Pord(t) = Pord(t; p) =
∏
v∈[m]

p
dv(t)
v

(dv(t))!
, t ∈ Tord

m . (4.9)

The birthday construction of p-trees.

We now describe a construction of p-trees, formulated in [59], that is relevant
to this work. Let Y := (Y0, Y1, . . .) be a sequence of i.i.d. random variables with
distribution p. Let R0 = 0 and for l > 1, let Rl denote the l-th repeat time,
i.e., Rl = min

{
k > Rl−1 : Yk ∈ {Y0, . . . ,Yk−1}

}
. Now consider the directed

graph formed via the edges T(Y) :=
{
(Yj−1, Yj) : Yj /∈

{
Y0, . . . ,Yj−1

}
, j > 1

}
.

This gives a tree which we view as rooted at Y0. The following striking result
was shown in [59]:

Theorem 4.3.1 ([59, Lemma 1 and Theorem 2]). The random tree T(Y), viewed
as an object in Tm, is distributed as a p-tree with distribution (4.8) independently
of YR1−1, YR2−1, . . . which are i.i.d with distribution p.

Remark 32. The independence between the sequence YR1−1, YR2−1, . . . and
the constructed p-tree T(Y) is truly remarkable. In particular, let Tr ⊂ T(Y)
denote the subtree with vertex set

{
Y0, Y1, . . . ,YRr−1

}
, namely the tree con-

structed in the first Rr steps. Further take Ỹ = (Ỹ1, . . . Ỹr) an i.i.d. sample
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from p and then construct the subtree Sr spanned by Ỹ. Then the above
result (formalized as [59, Corollary 3]) implies that

(Ỹ1, Ỹ2, . . . , Ỹr; Sr)
d
= (YR1−1, YR2−1, . . . YRr−1;Tr).

We will use this fact in Section 4.4 to complete the proof of the universality
theorem.

Tilted p-trees and connected components of NRn(x, t).

Consider the vertex set [n] and assign weight xi to vertex i. Now, connect
each pair of vertices i, j (i 6= j) independently with probability qij := 1 −

exp(−txixj). The resulting random graph, denoted by NRn(x, t), is known
as the Norros-Reittu model or the Poisson graph process [98]. For a con-
nected component C ⊆ NRn(x, t), let mass(C) :=

∑
i∈C xi and, for any t > 0,

(Ci(t))i>1 denotes the components in decreasing order of their mass sizes.
In this section, we describe results from [35] that gave a method of construct-
ing connected components of NRn(x, t), conditionally on the vertices of the
components. This construction involves tilted versions of p-trees introduced
in Section 4.3.4. Since these trees are parametrized via a driving probability
mass function (pmf) p, it will be easy to parametrize various random graph
constructions in terms of pmfs as opposed to vertex weights x. Proposi-
tion 4.3.2 will relate vertex weights to pmfs.

Fix n > 1 and V ⊂ [n], and write Gcon
V for the space of all simple connected

graphs with vertex set V. For fixed a > 0, and probability mass function p =

(pv)v∈V, define probability distributions Pcon(·; p,a,V) on Gcon
V as follows:

For i, j ∈ V, denote

qij := 1 − exp(−apipj). (4.10)

Then, for G ∈ Gcon
V ,

Pcon(G; p,a,V) :=
1

Z(p,a)

∏
(i,j)∈E(G)

qij
∏

(i,j)/∈E(G)

(1 − qij), (4.11)

where Z(p,a) is the normalizing constant. Now let V(i) be the vertex set of
Ci(t) for i > 1, and note that (V(i))i>1 denotes a random finite partition of
the vertex set [n]. The next proposition yields a construction of the random
(connected) graphs (Ci(t))i>1:
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Proposition 4.3.2 ([35, Proposition 6.1]). Given the partition (V(i))i>1, define,
for i > 1,

p(i)
n :=

(
xv∑

v∈V(i) xv
: v ∈ V(i)

)
, a(i)

n := t

( ∑
v∈V(i)

xv

)2
. (4.12)

For each fixed i > 1, let Gi ∈ Gcon
V(i) be a connected simple graph with vertex set

V(i). Then

P
(
Ci(t) = Gi, ∀i > 1

∣∣ (V(i))i>1
)
=
∏
i>1

Pcon(Gi; p(i)
n ,a(i)

n ,V(i)).

Algorithm 4.1. The random graph NRn(x, t) can be generated in two stages:

(S0) Generate the random partition (V(i))i>1 of the vertices into different
components.

(S1) Conditional on the partition, generate the internal structure of each
component following the law of Pcon(·; p(i),a(i),V(i)), independently
across different components.

Let us now describe an algorithm to generate such connected components
using the distribution in (4.11). To ease notation, let V = [m] for some m > 1
and fix a probability mass function p on [m] and a constant a > 0 and write
Pcon(·) := Pcon(·; p,a, [m]) on Gcon

m := Gcon
[m]. As a matter of convention, we

view ordered rooted trees via their planar embedding using the associated
ordering to determine the relative locations of siblings of an individual. We
think of the left-most sibling as the “oldest”. Further, in a depth-first explo-
ration, we explore the tree from left to right. Now given a planar rooted tree
t ∈ Tm, let ρ denote the root and for every vertex v ∈ [m], let [ρ, v] denote the
path connecting ρ to v in the tree. Given this path and a vertex i ∈ [ρ, v], write
RC(i, [ρ, v]) for the set of all children of i that fall to the right of [ρ, v]. Define
P(v, t) := ∪i∈[m]RC(i, [ρ, v]). In the terminology of [3, 36], P(v, t) denotes the
set of endpoints of all permitted edges emanating from v. The surplus edges of
the graph G, sampled from Pcon(·), are formed only between v and P(v, t),
as v varies. Define

G(m)(v) :=
∑
i∈[ρ,v]

∑
j∈[m]

pj1{j ∈ RC(i, [ρ, v])}. (4.13)

Let (v(1), v(2), . . . , v(m)) denote the order of the vertices in the depth-first
exploration of the tree t. Let y∗(0) = 0 and y∗(i) = y∗(i − 1) + pv(i) and
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define

A(m)(u) = G(m)(u), for u ∈ (y∗(i− 1),y∗(i)], and Ā(m)(·) := aA(m)(·),
(4.14)

where a is defined in (4.10). Define the function

Λ(m)(t) := a
∑
v∈[m]

pvG(m)(v). (4.15)

Finally, let E(t) denote the set of edges of t, T
p
m the p-tree defined in (4.9),

P(t) = ∪v∈[m]P(v, t), and define the tilt function L : Tord
m → R+ by

L(t) = L(m)(t) :=
∏

(k,`)∈E(t)

[
exp(apkp`) − 1

apkp`

]
exp

( ∑
(k,`)∈P(t)

apkp`

)
, (4.16)

for t ∈ Tord
m . Recall the (ordered) p-tree distribution from (4.9). Using L(·) to

tilt this distribution results in the distribution

P?
ord(t) := Pord(t) ·

L(t)
Eord[L(T

p
m)]

, t ∈ Tord
m . (4.17)

While all of these objects depend on the tree t, we suppress this dependence
to ease notation.

Algorithm 4.2. Let G̃m(p,a) denote a random graph sampled from Pcon(·).
This algorithm gives a construction of G̃m(p,a), proved in [36].

(S1) Tilted p-tree: Generate a tilted ordered p-tree T
p,?
m with distribution

(4.17). Now consider the (random) objects P(v, T p,?
m ) for v ∈ [m] and

the corresponding (random) functions G(m)(·) on [m] and A(m)(·) on
[0, 1].

(S2) Poisson number of possible surplus edges: Let P denote a rate-one
Poisson process on R2

+ that is independent of all other randomness
and define

Ā(m) ∩P :=
{
(s, t) ∈ P : s ∈ [0, 1], t 6 Ā(m)(s)

}
.

Write Ā(m) ∩ P := {(sj, tj) : 1 6 j 6 N?
(m)} where N?

(m) = |Ā(m) ∩ P|.
We next use the set {(sj, tj) : 1 6 j 6 N?

(m)} to generate pairs of points{
(Lj,Rj) : 1 6 j 6 N?

(m)

}
in the tree that will be joined to form the sur-

plus edges.
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(S3) “First” endpoints: Fix j and suppose sj ∈ (y∗(i − 1),y∗(i)] for some
i > 1, where y∗(i) is as given right above (4.14). Then the first endpoint
of the surplus edge corresponding to (sj, tj) is Lj := v(i), where v(i) is
defined right below (4.13).

(S4) “Second” endpoints: Note that in the interval (y∗(i − 1),y∗(i)], the
function Ā(m) is of constant height aG(m)(v(i)). We will view this
height as being partitioned into sub-intervals of length apu for each
element u ∈ P(v(i), T p,?

m ), the collection of endpoints of permitted
edges emanating from Lk. (Assume that this partitioning is done ac-
cording to some preassigned rule, e.g., using the order of the vertices
in P(v(i), T p,?

m ).) Suppose tj belongs to the interval corresponding
to u. Then the second endpoint is Rj = u. Form an edge between
(Lj,Rj) = (v(i),u).

(S5) In this construction, it is possible that one creates more than one surplus
edge between two vertices. Remove any multiple surplus edges. This
has vanishing probability in our applications.

Definition 3. Consider the connected random graph G̃m(p,a), given by Algo-
rithm 4.2, viewed as a measured metric space via the graph distance and each vertex
v is assigned measure pv.

The following lemma describes the law of G̃m(p,a):

Lemma 4.3.3 ([36, Lemma 4.10]). The random graph G̃m(p,a) generated by Al-
gorithm 4.2 has the same law as Pcon(·). Further, conditionally on T

p,?
m ,

1. N?
(m) has Poisson distribution with mean Λ(m)(T

p,?
m ) where Λ(m) is as in

(4.15);

2. conditionally further on N?
(m) = k, the first endpoints (Lj)j∈[k] can be gen-

erated in an i.i.d fashion by sampling from the vertex set [m] with probability
distribution J(m)(v) ∝ pvG(m)(v), v ∈ [m].;

3. conditionally further on N?
(m) = k and the first endpoints (Lj)j∈[k], generate

the second endpoints in an i.i.d. fashion where conditionally on Lj = v, the
probability distribution of Rj is given by

Q(m)
v (y) :=


∑
u pu1{u ∈ RC(y, [ρ, v])}/G(m)(v) if y ∈ [ρ, v],

0 otherwise ,

and create an edge between Lj and Rj for 1 6 j 6 k.
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Chapter 4 Metric space limit

In a series of papers [12–14] it was shown that p-trees, under various
assumptions, converge to inhomogeneous continuum random trees that we
now describe. Recall from [81, 127] that a real tree is a metric space (T ,d)
that satisfies the following for every pair a,b ∈ T :

1. There is a unique isometric map fa,b : [0,d(a,b)]→ T such that fa,b(0)
= a, fa,b(d(a,b)) = b.

2. For any continuous one-to-one map g : [0, 1] → T with g(0) = a and
g(1) = b, we have g([0, 1]) = fa,b([0,d(a,b)]).

Construction of the ICRT: Given β ∈ `2↓ \ `1↓ with
∑
i β

2
i = 1, we will now

define the inhomogeneous continuum random tree T β. We mainly follow
the notation in [14]. Assume that we are working on a probability space
(Ω,F, Pβ) rich enough to support the following:

1. For each i > 1, let Pi := (ξi,1, ξi,2, . . .) be rate βi Poisson processes that
are independent for different i. The first point of each process ξi,1 is
special and is called a joinpoint, while the remaining points ξi,j with
j > 2 will be called i-cutpoints [14].

2. Independently of the above, letU = (U(i)

j )i,j>1 be a collection of i.i.d. uni-
form (0, 1) random variables. These are not required to construct the
tree but will be used to define a certain function on the tree.

The random real tree (with marked vertices) T β
(∞) is then constructed as fol-

lows:

1. Arrange the cutpoints
{
ξi,j : i > 1, j > 2

}
in increasing order as 0 <

η1 < η2 < · · · . The assumption that
∑
i β

2
i <∞ implies that this is pos-

sible. For every cutpoint ηk = ξi,j, let η∗k := ξi,1 be the corresponding
joinpoint.

2. Next, build the tree inductively. Start with the branch [0,η1]. In-
ductively assuming that we have completed step k, attach the branch
(ηk,ηk+1] to the joinpoint η∗k corresponding to ηk.

Write T β
0 for the corresponding tree after one has used up all the branches

[0,η1], {(ηk,ηk+1] : k > 1}. Note that for every i > 1, the joinpoint ξi,1 corre-
sponds to a vertex with infinite degree. Label this vertex i. The ICRT T β

(∞) is
the completion of the marked metric tree T β

0 . As argued in [14, Section 2],
this is a real-tree as defined above which can be viewed as rooted at the ver-
tex corresponding to zero. We call the vertex corresponding to joinpoint ξi,1
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4.3 Convergence of metric spaces, discrete structures and limit objects

hub i. Since
∑
i βi = ∞, one can check that hubs are almost everywhere

dense on T β
(∞).

The uniform random variables (U(i)

j )i,j>1 give rise to a natural ordering

on T β
(∞) (or a planar embedding of T β

(∞)) as follows: For i > 1, let (T (i)

j )j>1

be the collection of subtrees hanging off the i-th hub. Associate U(i)

j with the
subtree T (i)

j , and think of T (i)

j1
appearing “to the right of” T (i)

j2
if U(i)

j1
< U

(i)

j2
.

This is the natural ordering on T β
(∞) when it is being viewed as a limit of

ordered p-trees. We can think of the pair (T β
(∞),U) as the ordered ICRT.

4.3.5 Continuum limits of components

The aim of this section is to give an explicit description of the limiting (ran-
dom) metric spaces in Theorem 4.1.1. We start by constructing a specific
metric space using the tilted version of the ICRT in Section 4.3.5. Then we
describe the limits of maximal components in Section 4.3.5.

Tilted ICRTs and vertex identification

Let (Ω,F, Pβ) and T β
(∞) be as in Section 4.3.4. In [14], it was shown that one

can associate a natural probability measure µ, called the mass measure, to
T β

(∞), satisfying µ(L(T β
(∞))) = 1. Here we recall that L(·) denotes the set of

leaves. Before moving to the desired construction of the random metric space,
we will need to define some more quantities that describes the asymptotic
analogues of the quantities appearing in Algorithm 4.2. Similarly to (4.13),
define

G(∞)(y) =
∑
i>1

βi

(∑
j>1

U
(i)

j × 1{y ∈ T (i)

j }

)
.

It was shown in [36] that G(∞)(y) is finite for almost every realization of T β
(∞)

and for µ-almost every y ∈ T β
(∞). For y ∈ T β

(∞), let [ρ,y] denote the path from
the root ρ to y. For every y, define a probability measure on [ρ,y] as

Q(∞)
y (v) :=

βiU
(i)

j

G(∞)(y)
, if v is the i-th hub and y ∈ T (i)

j for some j. (4.18)

Thus, this probability measure is concentrated on the hubs on the path from
y to the root. Let γ > 0 be a constant. The choice of the function γ is indicated
in Assumption 4.3. Informally, the construction goes as follows: We will first
tilt the distribution of the original ICRT T β

(∞) using the exponential functional

L(∞)(T
β
(∞),U) := exp

(
γ

∫
y∈T β

(∞)

G(∞)(y)µ(dy)

)
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Chapter 4 Metric space limit

to get a tilted tree T β,?
(∞) . We then generate a random but finite number N?

(∞)

of pairs of points {(xk,yk) : 1 6 k 6 N?
(∞)} that will provide the surplus edges.

The final metric space is obtained by creating “shortcuts” by identifying the
points xk and yk. Formally the construction proceeds in four steps:

1. Tilted ICRT: Define P?
β on Ω by

dP?
β

dPβ
=

exp
(
γ
∫
y∈T β

(∞)

G(∞)(y)µ(dy)
)

E
[

exp
(
γ
∫
x∈T β

(∞)

G(∞)(x)µ(dx)
)] .

The expectation in the denominator is with respect to the original mea-
sure Pβ. Write (T β,?

(∞) ,µ?) and U? = (U
(i),?
j )i,j>1 for the tree and the

mass measure on it, and the associated random variables under this
change of measure.

2. Poisson number of identification points: Conditionally on the ob-
ject ((T β,?

(∞) ,µ?),U?), generateN?
(∞) having a Poisson(Λ?

(∞)) distribution,
where

Λ?
(∞) := γ

∫
y∈T β,?

(∞)

G(∞)(y)µ
?(dy) = γ

∑
i>1

βi

[∑
j>1

U
(i),?
j µ?(T (i),?

j )

]
.

Here, (T (i),?
j )j>1 denotes the collection of subtrees of hub i in T β,?

(∞) .

3. “First” endpoints (of shortcuts): Conditionally on (a) and (b), sample
xk from T β,?

(∞) with density proportional to G(∞)(x)µ
?(dx) for 1 6 k 6

N?
(∞).

4. “Second” endpoints (of shortcuts) and identification: Having chosen
xk, choose yk from the path [ρ, xk] joining the root ρ and xk according
to the probability measure Q(∞)

xk as in (4.18) but with U(i),?
j replacing

U
(i)

j . (Note that yk is always a hub on [ρ, xk].) Identify xk and yk, i.e.,
form the quotient space by introducing the equivalence relation xk ∼ yk

for 1 6 k 6 N?
(∞).

Definition 4. Fix γ > 0 and β ∈ `2↓ \ `1↓ with
∑
i β

2
i = 1. Let G(∞)(β,γ) be the

metric measure space constructed via the four steps above equipped with the measure
inherited from the mass measure on T β,?

(∞) .

Scaling limit for the component sizes and surplus edges

Let us describe the scaling limit results for the component sizes and the sur-
plus edges (#edges−#vertces+1) for the largest components of CMn(d,pn(λ))

176



4.3 Convergence of metric spaces, discrete structures and limit objects

from Chapter 3. Although we need to define the limiting object only for de-
scribing the limiting metric space, the convergence result will turn out to
be crucial in Section 4.5 in the proof of Theorem 4.1.1, and therefore we
state it here as well. Consider a decreasing sequence θ ∈ `3↓ \ `2↓ . Denote by
Ii(s) := 1{ζi 6 s} where ζi ∼ Exp(θi) independently, and Exp(r) denotes the
exponential distribution with rate r. Consider the process

S̄λ∞(t) =
∞∑
i=1

θi (Ii(t) − θit) + λt, (4.19)

for some λ ∈ R. Define the reflected version of S̄λ∞(t) by refl
(
S̄λ∞(t)) =

S̄λ∞(t)− inf06u6t S̄
λ∞(u). The processes of the form (4.19) were termed thinned

Lévy processes in [33] since the summands are thinned versions of Poisson
processes. Let (Ξi(θ, λ))i>1, (ξi(θ, λ))i>1, respectively, denote the vector of
excursions and excursion-lengths, ordered according to the excursion lengths
in a decreasing manner. Denote the vector (ξi(θ, λ))i>1 by ξ(θ, λ). The fact
that ξ(θ, λ) is always well defined follows from [11, Lemma 1]. Also, define
the counting process of marks N to be a Poisson process that has intensity
refl(S̄λ∞(t)) at time t conditional on (refl(S̄λ∞(u)))u6t. We use the notation
Ni(θ, λ) to denote the number of marks within the i-th largest excursion
Ξi(θ, λ).

For a connected graph G, let SP(G) = #edges − #vertices + 1 denote its
surplus edges. In the context of this chapter, we simply write ξi, ξ and Ni
respectively for ξi(θ/(µν), λ/µ), ξ(θ/(µν), λ/µ) and Ni(θ/(µν), λ/µ).

Proposition 4.3.4. Under Assumption 4.1, as n→∞,

(
n−ρ|C p(i)(λ)|, SP(C p(i)(λ))

)
i>1

d−→
( 1
ν
ξi, Ni

)
i>1

, (4.20)

with respect to the topology on the product space `2↓ ×NN.

Proposition 4.3.4 was proved in Chapter 3. The limiting object in Theo-
rem 3.2.1 is stated in a slightly different form compared to the right-hand
side of (4.20). However, the limiting objects are identical in distribution with
suitable rescaling of time and space, and by observing that rExp(r) d

= Exp(1),
where Exp(r) denotes an exponential random variable with rate r (See Ap-
pendix 4.A). In fact, the arguments in Appendix 4.A establish the following
lemma that will be used extensively in Section 4.5.

Lemma 4.3.5. For η1,η2 > 0, θ ∈ `3↓ \ `2↓ and λ ∈ R, ξ(η1θ,η2λ)
d
= 1
η1
ξ
(
θ, η2
η2

1
λ
)
.
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Chapter 4 Metric space limit

Limiting component structures

We are now all set to describe the metric space Mi appearing in Theo-
rem 4.1.1. Recall the graph G∞(β,γ) from Definition 4. Using the notation
of Section 4.3.5, write ξ∗i for ξi((µ(ν− 1))−1θ, (µ(ν− 1)2)−1ν2λ) and Ξ∗i for
the excursion corresponding to ξ∗i . Note that ξ∗i has the same distribution as
(ν− 1)ξi/ν, where ξi is as in Proposition 4.3.4. Then the limiting space Mi
is distributed as

Mi
d
=

ν

ν− 1
ξ∗i(∑

v∈Ξ∗i θ
2
v

)1/2G∞(θ(i),γ(i)),

where θ(i) =
( θj∑

v∈Ξ∗
i
θ2
v
: j ∈ Ξ∗i

)
and γ(i) =

ξ∗i
µ(ν−1)

(∑
v∈Ξ∗i θ

2
v

)1/2.

4.4 Universality theorem

In this section, we develop universality principles that enable us to derive
the scaling limits of the components for graphs that can be compared with
the critical rank-one inhomogeneous random graph in a suitable sense. Our
universality theorem closely resembles that in [29, Theorem 6.4] which was
developed in a different context to derive the scaling limits of the components
for general inhomogeneous random graphs with a finite number of types
and the configuration model with an exponential moment condition on the
degrees. We first state the relevant result from [36] that was used in the
context of rank-one inhomogeneous random graphs and then state our main
result below. The convergence of metric spaces is with respect to the Gromov-
weak topology, unless stated otherwise. Recall the measured metric spaces
G̃m(p,a) and G∞(β,γ) defined in Definitions 3 and 4.

Assumption 4.3. (i) Let σ(p) :=
(∑

i p
2
i

)1/2. Asm→∞, σ(p)→ 0, and for
each fixed i > 1, pi/σ(p)→ βi, where β = (βi)i>1 ∈ `2↓ \ `1↓ ,

∑
i β

2
i = 1.

(ii) Recall a from (4.10). There exists a constant γ > 0 such that aσ(p)→ γ.

Assumption 4.3 (i) is a sufficient condition for the convergence of p-trees
[59] when the edges are assigned edge-length σ(p). Assumption 4.3 (ii) is
required for the tilting function L(·) to converge. This suggests that the tilted
p-tree in Algorithm 4.2 (S1) converges to tilted ICRT. In [36], the above fact
was proved, and it was further shown that the scaling limit holds after the
shortcuts are created during Algorithm 4.2 (S2) onwards.
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4.4 Universality theorem

Theorem 4.4.1 ([36, Theorem 4.5]). Under Assumption 4.3, σ(p)G̃m(p,a) d−→
G(∞)(β,γ), as m→∞.

For each m > 1, fix a collection of blobs Mm := {(Mi, di,µi) : i ∈ [m]}.
Recall the definition of super graphs from Section 4.3.2 and denote

G̃bl
m(p,a) = Γ(G̃m(p,a), p, Mm, X),

where X = (Xij)i,j∈[m], Xij ∼ µi independently for each i. Moreover, X is
independent of the graph G̃m(p,a). Let ui := E[di(Xi,X ′i)] where Xi,X ′i ∼

µi independently and Bm :=
∑
i∈[m] piui. Let ∆i := diam(Mi), ∆max :=

maxi∈[m] ∆i.

Assumption 4.4 (Maximum inter-blob-distance). limm→∞ σ(p)∆max
Bm+1 = 0.

Assumption 4.4 basically says that the blobs have negligible diameter
compared to the average distances in the metric space. The next theorem
is the universality theorem, which basically says that the introduction of the
blobs does not change the scaling limits in [36, Theorem 4.5] if the distances
are normalized accordingly.

Theorem 4.4.2 (Universality theorem). Under Assumptions 4.3, 4.4, asm→∞,

σ(p)
Bm + 1

G̃bl
m(p,a) d−→ G(∞)(β,γ).

4.4.1 Completing the proof of Theorem 4.4.2

This section is devoted to the proof of Theorem 4.4.2. To simplify notation,
we write G̃m, G̃bl

m respectively instead of G̃m(p,a) and G̃bl
m(p,a).

Lemma 4.4.3 ([36, Lemma 4.11]). Recall the definition ofN?
(m) from Algorithm 4.2.

The sequence of random variables (N?
(m))m>1 is tight.

Recall the definition of Gromov-weak topology from Section 4.3.1. Fix
some l > 1 and take any bounded continuous function φ : Rl2 7→ R. We
simply write Φ(X) for Φ((X, d,µ)).

Key step 1. Let us write the scaled metric spaces as G̃s
m = σ(p)G̃m and

G̃bl,s
m =

σ(p)
Bm+1 G̃

bl
m. Using Theorem 4.4.1 it is enough to show that

lim
m→∞

∣∣E[Φ(G̃bl,s
m

)]
− E

[
Φ(G̃s

m)
]∣∣ = 0. (4.21)

The above is the main step in the proof of Theorem 4.4.2. By (4.21), we need
only to compare the structure of G̃bl

m to that of G̃m.
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Chapter 4 Metric space limit

Key step 2. For any K > 1,

∣∣∣∣E[Φ(G̃s
m)
]
−

K∑
k=0

E
[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣∣ 6 ‖φ‖∞P
(
N?

(m) > K+ 1
)

,

and the same inequality also holds for G̃bl,s
m . Thus, using Lemma 4.4.3, the

proof of (4.21) reduces to showing that, for each fixed k > 1,

lim
m→∞

∣∣∣E[Φ(G̃bl,s
m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣ = 0. (4.22)

Main aim of this section. Below, we define a function gkφ(·) on the space
T
∗
IJ which captures the behavior of pairwise distances after creating k sur-

plus edges. Under Assumption 4.4, we show that the introduction of blobs
changes the distances within the tilted p-trees and the gkφ values negligibly.
This completes the proof of (4.22).

For any fixed k > 0, consider t ∈ T∗I,(k+l) with root 0+, leaves i = (1+, . . . ,
(k+ l)+) and root-to-leaf measures νt,i on the path [0+, i+] for all 1 6 i 6
k+ l. We create a graph G(t) by sampling, for each 1 6 i 6 k, points i(s)
on [0+, i+] according νt,i and connecting i+ with i(s). Let dG(t) denote the
distance on G(t) given by the sum of edge lengths in the shortest path. Then,
the function gkφ : T∗IJ 7→ R is defined as

gkφ(t) = E
[
φ
(
dG(t)(i+, j+) : k+ 1 6 i, j 6 k+ l

)]
1{t 6= ∂}, (4.23a)

where ∂ is a forbidden state defined as follows: Given any t ∈ T∗IJ, and a set
of vertices v = (v1, . . . , vr), we denote the subtree of t spanned by v with t(v).
We declare t(v) = ∂ if either two vertices in v are the same or one of them is
an ancestor of another vertex in v. Thus, if t(v) 6= ∂, the tree t(v) necessarily
has r leaves. Notice that the expectation in (4.23a) is over the choices of
i(s)-values only. In our context, t is always considered as a subgraph of the
graph on vertex set [m] and thus we assume that t has inherited the labels
from the corresponding graph. Thus t ∈ T∗mI,(k+l). There is a natural way to
extend gkφ(·) to T∗mIJ as follows: Consider t̄ ∈ T∗mIJ and the corresponding
t ∈ T∗mIJ (see Section 4.3.3). Let 0+, i, (νt,i)i∈[k+l] and (i(s))i∈[k+l] be as
defined above. Let Ḡ(t̄) denote the metric space by introducing an edge of
length one between Xi+i(s) and Xi(s)i+, where Xij has distribution µi for all
j > 1, independently of each other and other shortcuts. For k+ 1 6 i 6 k+ l,
Xi ∈ Mxi have distribution µxi independently for all i > 1. Let d̄Ḡ(t̄) denote
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4.4 Universality theorem

the distance on Ḡ(t̄). Then, let

gkφ(t̄) = E
[
φ
(
d̄Ḡ(t̄)(Xi,Xj) : k+ 1 6 i, j 6 k+ l

)]
1{t 6= ∂}, (4.23b)

where the expectation is taken over the collection of random variables Xi+i(s)
and Xi(s)i+. At this moment, we urge the reader to recall the construction
in Algorithm 4.2, Lemma 4.3.3 and all the associated notations. Now, condi-
tional on T

p,?
m , we can construct the tree T

p,?
m (Ṽk,k+l

m ) where

(a) Ṽk,k+l
m = (Ṽm1 , . . . , Ṽmk ,Vmk+1, . . . ,Vmk+l) is an independent collection of

vertices;

(b) Ṽmi is distributed as J(m)(·), for 1 6 i 6 k and Vmi is distributed as p, for
k+ 1 6 i 6 k+ l.

Note that, by [36, (4.30)], limm→∞P(T
p,?
m (Ṽk,k+l

m ) = ∂) = 0. Now, when-
ever T

p,?
m (Ṽk,k+l

m ) 6= ∂, T
p,?
m (Ṽk,k+l

m ) can be considered as an element of
T∗mI,k+l using the leaf-weights (G(m)(Ṽi))

k
i=1, (G(m)(Vi))

k+l
i=k+1 and root-to-leaf

measures given by (Qm
Ṽi
(·))ki=1, (QmVi(·))

k+l
i=k+1. Let T̄

p,?
m (Ṽk,k+l

m ) denote the

element corresponding to T
p,?
m (Ṽk,k+l

m ) with blobs. Thus, T̄
p,?
m (Ṽk,k+l

m ) is
viewed as an element of T∗mIJ . Let Vm = (V1, . . . ,Vk+l) be an i.i.d. collec-
tion of random variables with distribution p. Let Ep,? denote the expecation
conditionally on T

p,?
m and N?

(m). The proof of (4.22) now reduces to∣∣∣E[Φ(G̃bl,s
m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣
=

∣∣∣∣E[Ep,?

[
gkφ

( σ(p)
Bm + 1

T̄
p,?
m (Ṽk,k+l

m )
)]

1
{
N?

(m) = k
}]

− E
[
Ep,?

[
gkφ
(
σ(p)T p,?

m (Ṽk,k+l
m )

)]
1
{
N?

(m) = k
}]∣∣∣∣+ o(1).

(4.24)

Notice that the tilting does not affect the blobs themselves but only the su-
perstructure. Recall also the definition of the tilting function L(·) from (4.16).
Using the fact that J(m)(v) ∝ pvG(m)(v),

Ep,?
[
gkφ
(
σ(p)T p,?

m (Ṽk,k+l
m )

)]
=

Ep,?
[∏k

i=1 G(m)(Vi)g
k
φ

(
σ(p)T p,?

m (Vm)
)](

Ep,?[G(m)(V1)]
)k ,

and an identical expression holds by replacing σ(p)T p,?
m by σ(p)

Bm+1 T̄
p
m. De-

note the expectation conditionally on T
p
m and N(m) by Ep and simply write
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T̄
p,s
m , T

p,s
m for σ(p)

Bm+1 T̄
p
m(Vm), σ(p)T p

m(Vm) respectively. Now, (4.24) simpli-
fies to∣∣∣E[Φ(G̃bl,s

m

)
1{N?

(m) = k}
]
− E

[
Φ(G̃s

m)1{N?
(m) = k}

]∣∣∣
6

1
E
[
L(T

p
m)
] ∣∣∣∣E[Ep

[∏k
i=1 G(m)(Vi)g

k
φ

(
T̄

p,s
m

)](
Ep[G(m)(V1)]

)k L(T
p
m)1
{
N(m) = k

}]

− E

[
Ep
[∏k

i=1 G(m)(Vi)g
k
φ

(
T

p,s
m

)](
Ep[G(m)(V1)]

)k L(T
p
m)1
{
N(m) = k

}]∣∣∣∣. (4.25)

Proposition 4.4.4. As m→∞,
∣∣gkφ(T̄ p,s

m

)
− gkφ

(
T

p,s
m

)∣∣ P−→ 0.

We first show that it is enough to prove Proposition 4.4.4 to complete the
proof of (4.25), but before that we first need to state some results. The proof
of Proposition 4.4.4 is deferred till the end of this section.

Lemma 4.4.5 ([36, Proposition 4.8, Theorem 4.15]). (L(T
p
m))m>1 is uniformly

integrable. Also, for each k > 0, the quantity(
Ep

[
G(m)(V

(m)

1 )

σ(p)

]
, Ep

[( k∏
i=1

G(m)(V
(m)

i )

σ(p)

)
gkφ
(
T

p,s
m

)])
converges in distribution to some random variable.

Fact 1. Consider three sequences of random variables (Xm)m>1, (Ym)m>1 and
(Y ′m)m>1 with (i) (Xm)m>1 is uniformly integrable, (ii) (Ym)m>1 and (Y ′m)m>1

are almost surely bounded and (iii) Ym − Y ′m
P−→ 0. Then, as m→∞,

E
[
|XmYm −XmY

′
m|
]
→ 0.

Fact 2. Suppose that (Xm)m>1 is a sequence of random variables such that for every
m > 1, there exists a further sequence (Xm,r)r>1 satisfying (i) for each fixedm > 1,
Xm,r

P−→ 0 as r→∞, and (ii) limr→∞ lim supm→∞P(|Xm −Xm,r| > ε) = 0 for
any ε > 0. Then Xm

P−→ 0 as m→∞.

Proof of (4.25) from Proposition 4.4.4. By Lemma 4.4.5 and Fact 1, the proof of
(4.25) reduces to showing

Ep

[( k∏
i=1

G(m)(V
(m)

i )

σ(p)

)(
gkφ
(
T̄

p,s
m

)
− gkφ

(
T

p,s
m

))] P−→ 0. (4.26)

Let Xm denote the term inside the expectation in (4.26). Further, sample the
set of leaves Vm independently r times on the same tree T

p
m and let Xim
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4.4 Universality theorem

denote the observed value of Xm in the i-th sample. Further, let Xm,r =

r−1∑r
i=1 X

i
m. Obviously, condition (i) in Fact 2 is satisfied due to Proposi-

tion 4.4.4. To verify condition (ii), note that Ep(Xm,r) = Xm and therefore
Chebyshev’s inequality yields

P (|Xm −Xm,r| > ε) 6
E[X2

m]

ε2r
6

4‖φ‖2∞
ε2r

E
[
G(m)(V

m
1 )2k]

σ(p)2k .

The final term is uniformly bounded over m > 1 and vanishes as r→∞. For
an interested reader, using the notation of [36], the above is a consequence of
the fact that ‖G(m)‖∞ 6 ‖Fexc,p‖∞ and [36, Lemma 4.9].

In this section, we will use the notion of Gromov-Hausdorff-Prokhorov
topology on the collection of (X, d,µ), where (X, d) is a compact metric space
and µ is a probability measure on the corresponding Borel sigma algebra.
Without re-defining all the required notions, we refer the reader to [36, Sec-
tion 2.1.1]. We further recall the notation dis for distortion and D(µ;µ1,µ2)

for discrepancy of measures as defined in [36, Section 2.1.1]. Denote the
root of T

p
m(Vm) by 0+ and the jth leaf by j+. Let Mm

j := {[0+, j+], d,νj}
be the random measured metric space with the corresponding root-to-leaf
measure νj. Let M̄m

j := {M̄j, d̄, ν̄j} be the measured metric space with M̄j :=
ti∈[0+,j+]Mi and the induced root-to-leaf measure
ν̄j(A) =

∑
i∈[0+,j+] νj({i})µi(A∩Mi). For convenience, we have suppressed

the dependence on T
p
m(Vm) in the notation. Mm

j is coupled to M̄m
j in the

obvious way that the superstructure of M̄m
j is given by Mm

j . We need the
following lemma to prove Proposition 4.4.4:

Lemma 4.4.6. For j > 1, as m→∞, dGHP

(
σ(p)Mm

j , σ(p)
Bm+1M̄m

j

) P−→ 0.

Proof. We prove this for j = 1 only. The proof for j > 2 is identical. For
x ∈ M̄1, we denote its corresponding vertex label by i(x), i.e., i(x) = k iff
x ∈Mk. Consider the correspondence Cm and the measure m on the product
space [0+, 1+]× M̄1 defined as

Cm := {(i, x) : i ∈ [0+, 1+], x ∈Mi}, m({i}×A) = ν1({i})ν̄1(A∩Mi). (4.27)

Note that the discrepancy of m satisfiesD(m;ν1, ν̄1) = 0. Further, m(Ccm) = 0.
Therefore, Lemma 4.4.6 follows if we can prove that

dis(Cm) := sup
x,y∈M̄1

{
σ(p)d(i(x), i(y)) −

σ(p)
Bm + 1

d̄(x,y)
}

P−→ 0. (4.28)
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To simplify the expression for dis(Cm), suppose that i(x) is an ancestor of
i(y) on the path from 0+ to 1+. Then,

d(i(x), i(y)) = d(0+, i(y)) − d(0+, i(x)),

d̄(x0,y) − d̄(x0, x) 6 d̄(x,y) 6 d̄(x0,y) − d̄(x0, x) + 2∆max,

for any x0 ∈M0+. This implies that

sup
x,y∈M̄1

{
σ(p)d(i(x), i(y)) −

σ(p)
Bm + 1

d̄(x,y)
}

6 2 sup
y∈M̄1

{
σ(p)d(0+, i(y)) −

σ(p)
Bm + 1

d̄(x0,y)
}
+

2σ(p)∆max

Bm + 1
.

(4.29)

Further, replacing y by any other point y ′ in the right hand side in (4.29)
incurs an error of at most ∆max. Now, write the path [0+, 1+] as 0+ = i0 →
i1 → · · · → iR∗−2 → iR∗−1 = 1 + . Then

dis(Cm) 6 2 sup
k6R∗−1

∣∣∣σ(p)d(i0, ik) −
σ(p)
Bm + 1

d̄(Xi0,i1 ,Xik ,ik+1)
∣∣∣+ 6σ(p)∆max

Bm + 1
,

(4.30)
where (Xi,j)i,j∈[m] are the junction-points. Using Assumption 4.4 and (4.30),
it is now enough to show that for any ε > 0,

lim
m→∞P

(
sup

k6R∗−1

∣∣∣σ(p)d(i0, ik) −
σ(p)
Bm + 1

d(Xi0,i1 ,Xik ,ik+1)
∣∣∣ > ε) = 0.

Denote the term inside the above supremum by Qk. Then,

Qk :=

[
σ(p)d(i0, ik) −

σ(p)
Bm + 1

d̄
(
Xi0,i1 ,Xik ,ik+1

)]
=

[
σ(p)k−

σ(p)
Bm + 1

(
k+

k∑
j=1

dij
(
Xij ,ij−1 ,Xij ,ij+1

))]

=
σ(p)
Bm + 1

[ k∑
j=1

(
Bm − dij

(
Xij ,ij−1 ,Xij ,ij+1

))]
.

(4.31)

Recall the construction of the path [0+, 1+] via the birthday problem from
Section 4.3.4. Take J := (Ji)i>1 such that Ji are i.i.d. samples from p. Further
let ξ := (ξi)i∈[m] be an independent sequence such that ξi is the distance
between two points, chosen randomly from Mi according to µi. Further, let
J and ξ be independent. Then R∗ can be thought of as the first repeat time of
the sequence J. Thus, Qk in (4.31) has the same distribution as

Q̂k :=
σ(p)
Bm + 1

k∑
i=1

(
Bm − ξJi

)
.
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From the birthday construction E
[
ξJi
]
=
∑
i∈[m] piui = Bm and (ξJi)i>1 is

an independent sequence. Therefore, (Q̂k)k>0 is a martingale. Further,

Var(Q̂k) 6
(
σ(p)
Bm + 1

)2
k∆max

∑
i∈[m]

piui =
σ(p)2k∆maxBm

(Bm + 1)2 .

Thus, by Doob’s martingale inequality [147, Lemma 2.54.5], it follows that,
for any ε > 0 and T > 0,

P

(
sup
k6T

|Q̂k| > ε

)
6
Tσ(p)2∆maxBm

(Bm + 1)2ε2 .

Recall from [59, Theorem 4] that (σ(p)R∗)m>1 is a tight sequence of random
variables. The proof now follows using Assumption 4.4.

Proof of Proposition 4.4.4 using Lemma 4.4.6. We use objects defined in (4.27),
(4.28) in the proof of Lemma 4.4.6 for all the path metric spaces with j 6 k.
We assume that we are working on a probability space such that the conver-
gence (4.28) holds almost surely for all j 6 k. To summarize, for fixed ε > 0
and for each j 6 k, we can choose the correspondence Cjm and a measure
mj of [0+, j+] × M̄j satisfying (i) (i,Xik) ∈ Cjm, for all i,k ∈ [0+, j+], (ii)
dis(Cjm) < ε/2k almost surely, and (iii) D(mj;νj, ν̄j) = 0 and mj((C

j
m)c) = 0.

Recall the definitions of the function gkφ from (4.23a), (4.23b) and the associ-
ated graphs G(·), Ḡ(·). We simply write G and Ḡ for G(σ(p)T p

m(Vm)) and
Ḡ(

σ(p)
Bm+1 T̄

p
m(Vm)), respectively. Let m⊗k denote the k-fold product measure

of mj for j 6 k. We denote the graph distance on a graph H by dH. Note that∣∣∣gkφ(σ(p)T p
m(Vm)

)
− gkφ

( σ(p)
Bm + 1

T̄
p
m(Vm)

)∣∣∣
6 E

[∣∣φ((dG(i+, j+))k+li,j=k+1
)
−φ

(
(dḠ(Xi,Xj))k+li,j=k+1

)∣∣], (4.32)

where Xi ∼ µi independently for i ∈ [m], and the above expectation is
with respect to the measure m⊗k. Recall the notation while defining gkφ(·)
in (4.23a), (4.23b). Notice that for any point k ∈ [0+, i+] and xk ∈ Mk and
xi(s) ∈Mi(s),

|dt(k, i(s)) − dt̄(xk, xi(s))| 6
ε

2k
. (4.33)

Now, for any path i+ to j+ in G, we can essentially take the same path from
Xi to Xj in Ḡ and take the corresponding inter-blob paths on the way. The dis-
tance traversed in Ḡ in this way gives an upper bound on dḠ(Xi,Xj). Notice
that, by (4.33), taking a shortcut contributes at most ε/2k to the difference of
the distance traveled in G and Ḡ. Also, traversing a shortcut edge contributes
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Chapter 4 Metric space limit

σ(p)Bm/(Bm+1) and there are at most k shortcuts on the path. Furthermore,
it may be required to reach the relevant junction points from Xi and Xj and
that contributes at most 2σ(p)∆max/(Bm + 1). Thus, for k+ 1 6 i, j 6 k+ l,
and sufficiently large m,

dḠ(Xi,Xj) 6 dG(i+, j+)+
ε

2
+
kσ(p)Bm
Bm + 1

+
2σ(p)∆max

Bm + 1
6 dG(i+, j+)+ ε.

By symmetry we can conclude the lower bound also and the continuity of
φ(·) (see [36, Theorem 4.18]) along with (4.32) completes the proof of Propo-
sition 4.4.4.

At this moment, we urge the reader to recall the definitions from (4.4),
(4.5) and (4.6). The configuration model graphs considered in this section
will be assumed to have degree sequence d ′ and the vertices have an associ-
ated weight sequence w such that Assumption 4.2 is satisfied. We treat the
different terms arising in Theorem 4.1.3 in different subsections.

4.4.2 Analysis of s?2

The asymptotics of s?2 is a consequence of the Chebyshev inequality. In the
following lemma, we compute its mean and variance. Consider the size-
biased distribution on the vertex set [n] with sizes (wi)i∈[n]. Let Vn and
V∗n, respectively, denote a vertex chosen uniformly at random and accord-
ing to the size-biased distribution, independently of the underlying graph
CMn(d

′). Let D ′n, Wn (respectively D∗n, W∗n) denote the degree and weight
of Vn (respectively V∗n). For a vertex v ∈ [n], let W (v) :=

∑
k∈C ′(v)wk, where

C ′(v) denotes the component of CMn(d
′) containing v.

Lemma 4.4.7. Under Assumption 4.2, (i) E [W (V∗n)] =
E[D∗n]E[D ′nWn]

E[D ′n](1−ν ′n)
(1+o(1)),

(ii) E
[(

W (V∗n)
)2]

= O
(
n3α−1

(1−ν ′n)3

)
, and E

[(
W (V∗n)

)3]
= o(n1+2δ).

Asymptotics of s?2 . Denote `wn =
∑
i∈[n]wi. Firstly, if Ed ′ denotes the condi-

tional expectation given CMn(d
′), then for any r > 1,

Ed ′
[(

W (V∗n)
)r−1]

=
∑
i>1

∑
k∈C ′

(i)

wk
`wn

( ∑
k∈C ′

(i)

wk

)r−1
=

1
`wn

∑
i>1

(
W(i)

)r. (4.34)

Therefore, using Lemma 4.4.7 and (4.4), it follows from Assumption 4.2 that

n−δE [s?2 ] =
`wn
n
n−δE [W (V∗n)]→

µ2
d,w

µdλ0
, (4.35)
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where we have used the fact that E [D∗n]→ µd,w/µw. It remains to compute
the variance. Let U∗n denote another vertex chosen in a size-biased way with
the sizes being (wi)i∈[n], independently of the graph CMn(d

′) and V∗n. Then
(4.34) yields

E
[
(s?2)

2
]
=

1
n2 E

[∑
i,j>1

W 2
(i)W

2
(j)

]
=

1
n2 E

[∑
i>1

W 4
(i)

]
+

1
n2 E

[∑
i 6=j

W 2
(i)W

2
(j)

]

=
`wn
n

1
n

E
[(

W (V∗n)
)3
]
+

(
`wn
n

)2
E
[
W (U∗n)W (V∗n)1

{
U∗n /∈ C ′(V∗n)

}]
,

(4.36)

where the second term in the third equality follows using similar arguments
as in (4.34). Denote the last two terms of (4.36) by (I) and (II) respectively.
To estimate (II), observe that, conditionally on the graph C ′(V∗n), the graph
obtained by removing C ′(V∗n) from CMn(d

′) is again a configuration model
with the induced degree sequence d̃ and number of vertices ñ. Let ν̃n denote
the corresponding criticality parameter. In the proof of Lemma 4.4.7 (i), we
will see that the upper bound holds whenever ν̃n < 1 (see Remark 33). Thus,
let us first show that

for all sufficiently large n, P
(
ν̃n < 1 | C ′(V∗n)

)
= 1, almost surely. (4.37)

Denote ` ′n =
∑
i∈[n] d

′
i. To see (4.37), first notice that

ν̃n − 1 = ν ′n − 1 −

∑
j∈C ′(V∗n) d

′
j(d
′
j − 2)∑

j∈[n] d
′
j

+ (ν̃n − 1)

∑
j∈C ′(V∗n) d

′
j

` ′n
.

Moreover, for any connected graph G,
∑
i∈G d

′
i(d
′
i − 2) > −2 (this can be

proved by induction) so that (ν̃n − 1)
(
1 −
∑
j∈C ′(V∗n) d

′
j/`
′
n

)
6 ν ′n − 1 + 2

` ′n
.

The proof of (4.37) now follows. As mentioned above, now we can apply the
upper bound from Lemma 4.4.7. Therefore,

E
[
W (U∗n)1

{
U∗n /∈ C ′(V∗n)

}∣∣C ′(V∗n)]
=

∑
i/∈C ′(V∗n)wi

`wn
E
[
W (U∗n)

∣∣C ′(V∗n),U∗n /∈ C ′(V∗n)
]

6

(∑
i∈[n] d

′
iwi

)2

`wn `
′
n(1 − ν ′n − 2/` ′n)

= E [W (V∗n)]
(
1 +O(1/n)

)
.

(4.38)

Thus,

E
[
W (U∗n)W (V∗n)1

{
U∗n /∈ C ′(V∗n)

}]
6
(
E [W (V∗n)]

)2(1 +O(1/n)
)
. (4.39)

187



Chapter 4 Metric space limit

We conclude that (4.36), (4.39) together with Lemma 4.4.7 implies that Var
(
s?2
)
=

o(n2δ). Thus, we can use the Chebyshev inequality and (4.35) to conclude
that

n−δs?2
P−→ µ2

d,w/(µdλ0).

Proof of Lemma 4.4.7 (i). We use path-counting techniques for configuration
models from [111, Lemma 5.1]. Let A(k, l) denote the event that there exists
a path of length l from V∗n to k and A ′(k, l) the event that there exist two
different paths, one of length l and another one of length at most l, from V∗n
to k. Notice that

E [W (V∗n)] 6 E

[ ∑
k∈[n]

wk1{V∗n  k}

]
= E [W∗n] +

∑
l>1

∑
k∈[n]

wkP (A(k, l)) ,

(4.40a)

E [W (V∗n)] >
∑
l>1

∑
k∈[n]

wkP (A(k, l)) −
∑
l>1

∑
k∈[n]

wkP
(
A ′(k, l)

)
. (4.40b)

Now, by Assumption 4.2, (4.40a) yields

E [W (V∗n)] 6 E [W∗n] + E [D∗n]
∞∑
l=1

∑
k∈[n]

wk
∑

xi 6=xj,∀i 6=j

∏l−1
i=1 d

′
xi
(d ′xi − 1)d ′k

(` ′n − 1) · · · (` ′n − 2l+ 1)

6 E [W∗n] +
E [D∗n]E [D ′nWn]

E [D ′n] − 1/n

∞∑
l=1

ν ′l−1
n =

E [D∗n]E [D ′nWn]
E [D ′n] (1 − ν ′n)

(1 + o(1)),

(4.41)

where in the third step, we have used the fact that

∑
xi 6=xj,∀i 6=j

∏l−1
i=1 d

′
xi
(d ′xi − 1)

(` ′n − 1) · · · (` ′n − 2l+ 1)
6 ν ′l−1

n
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V ∗
n

k

Type I

V ∗
n

k

Type II

V ∗
n

k

Type III

V ∗
n

k

Type IV

Figure 4.1: Possible paths corresponding to A ′(k, l).

from [109, Lemma 5.1]. For the computation of the lower bound, observe that

nη/ log(n)∑
l=1

∑
k∈[n]

wkP (A(k, l))

> E[D∗n]
nη/ log(n)∑
l=1

∑
k∈[n]

wk
∑

xi 6=xj,∀i 6=j

1
` ′l−1
n

l−1∏
i=1

d ′xi(d
′
xi

− 1)d ′k

>
E[D∗n]E [D ′nWn]

E [D ′n]

nη/ log(n)∑
l=1

(
ν ′l−1
n −

d ′1n
η
(∑

i∈[n] d
′
i(d
′
i − 1)

)l−2

log(n)` ′l−1
n

)
=

E [D∗n]E [D ′nWn] (1 − (ν ′n)
nη/ log(n))

E [D ′n] (1 − ν ′n)
(1 + o(1))

=
E [D∗n]E [D ′nWn]
E [D ′n] (1 − ν ′n)

(1 + o(1)),

(4.42)

where we have used the fact that d ′1l 6 d
′
1n
η/ log(n) and inclusion-exclusion

to obtain the third step, and (4.4), d ′1n
η/` ′n = c1/µd(1 + o(1)) and the fact

that δ < η in the one-but-last step. To complete the proof of Lemma 4.4.7,
we need to have an upper bound on the last term of (4.40b). Observe that if
A ′(k, l) happens, then one of the structures in Figure 4.1 occurs.

Denote by A ′(k, l, i) the event that the structure of type i (i=I, II, III, IV) in
Figure 4.1 appears. We use the notation C to denote a generic constant. Using
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V ∗
n

k1 k2

Type I

V ∗
n

k1 k2

Type II

Figure 4.2: Possible paths when V∗n  k1, and V∗n  k2.

an argument identical to (4.41), and applying Assumption 4.2, it follows that∑
l>1

∑
k∈[n]

wkP
(
A ′(k, l, I)

)
6 CE [D∗n]E

[
D ′nWn

]∑
l>1

∑
r>1

σ3(n)
2

` ′n
(l− 1)(l− 2)ν ′l+r−4

n

6 C
n6α−3

1 − ν ′n

∑
l>3

(l− 1)(l− 2)ν ′l−3
n 6 C

n6α−3

(1 − ν ′n)4 = o(nδ),

where we have used the fact δ < η in the last step. Identical arguments
can be carried out to conclude that

∑
l>1
∑
k∈[n]wkP (A ′(k, l, i)) = o(nδ),

i = II, III, IV. Combining this with (4.42) and applying them to (4.40b), it
follows that

E [W (V∗n)] >
E [D∗n]E [D ′nWn]
E [D ′n] (1 − ν ′n)

(1 + o(1)), (4.43)

and the proof of Lemma 4.4.7 is now complete using (4.41).

Proof of Lemma 4.4.7 (ii). Notice that(
W (V∗n)

)r
=

∑
k1,...,kr∈[n]

wk1 · · ·wkr1{V
∗
n  k1, . . . ,V∗n  kr}.

We can again count the contribution due to the different types of paths in
Figure 4.2 by using similar argument as in (4.40a) to compute the second
moment. Ignoring the re-computation, it follows that

E
[(

W (V∗n)
)2
]
6 E

[
(W∗n)

2
]
+

E [D∗n] (E [D ′nWn])
2σ3(n)

(E [D ′n])3(1 − ν ′n)3

+
E [D∗n(D

∗
n − 1)] (E [D ′nWn])

2

(E [D ′n])2(1 − ν ′n)2 ,
(4.44)

which gives rise to the desired O(·) term. For the third moment, the leading
contributions arise from the structures given in Figure 4.3. See Appendix 4.B
for a detailed computation.
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V ∗
n

k1 k2 k3

V ∗
n

k1 k2 k3

V ∗
n

k1 k2 k3

V ∗
n

k1 k2 k3

Figure 4.3: Possible paths when V∗n  k1, V∗n  k2, and V∗n  k3.

Remark 33. The upper bounds of E[(W (V∗n))
r] in (4.41) and (4.44) hold for

any configuration model for which the value of the criticality parameter is
less than one. The precise assumptions were needed to estimate the orders
of these terms.

Remark 34. The method used to obtain the asymptotics of s?2 can be followed
verbatim to obtain the asymptotics of s?pr. Indeed, notice that

E
[
s?pr
]
=

1
n

E

[∑
i>1

W(i)|C
′
(i)|

]
= E [W (Vn)] .

A similar identity for the second moment of s?pr also holds.

The main aim of this section is to prove the following proposition which
will be required to obtain the asymptotics of s?3 , as well as W(i):

Proposition 4.4.8. Suppose that Assumption 4.2 holds. For any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>K

(
W(i)

)3
> εn3(α+δ)

)
= 0.

Proof. Let GK denote the graph obtained by deleting all the edges incident
to vertices {1, . . . ,K}. In this proof, a superscript K to any previously defined
object will correspond to the object in GK. Note that GK is again distributed as
a configuration model conditioned on the new degree sequence dK. Firstly,
for each fixed K, there exists a constant C1 > 0 such that

νKn =

∑
i∈[n] d

K
i (d

K
i − 1)∑

i∈[n] d
K
i

6

∑
i∈[n] d

′
i(d
′
i − 1) −

∑K
i=1 d

′
i(d
′
i − 1)

` ′n − 2
∑K
i=1 d

′
i

= ν ′n −C1n
2α−1

∑
i6K

c2
i 6 ν

′
n −C1n

−δ
∑
i6K

c2
i,

where we have used the fact that δ < η in the last step. Since νKn < 1, we can
apply the upper bound in (4.44) (see Remark 33) and it follows that

1
n

E

[∑
i>1

(
W K

(i)

)3
]
=
`wn
n

E
[(

W K(V∗n)
)2
]
6 C

n3(α+δ)−1

1 +C1
∑K
i=1 c

2
i

, (4.45)
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for some constant C > 0, and therefore, using the Markov inequality and the
fact that c ∈ `3↓ \ `2↓ , it follows that, for any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>1

(
W K

(i)

)3
> εn3(α+δ)

)
= 0. (4.46)

Now, the proof is complete by observing that
∑
i>K(W(i))

3 6
∑
i>1(W

K
(i))

3.

Remark 35. Notice that the proof of Proposition 4.4.8 can be modified to
conclude the similar results for

∑
i>K

(
W(i)

)2
|C ′(i)| and

∑
i>K

(
W(i)

)2
|C ′(i)|. In-

deed, (4.45) can be replaced by observing that the following identities hold:

E[
∑
i>1

(W K
(i))

2|C ′K(i) |] = nE[W K(Vn)], E[
∑
i>1

W K
(i)(|C

′K
(i) |)

2] = `wnE[|C ′K(V∗n)|
2].

4.4.3 Barely sub-critical masses

We only prove the asymptotics of W(i) in Theorem 4.1.3. Then the asymptotics
of s?3 follow by a direct application of Proposition 4.4.8. The idea is to obtain
the asymptotics for W (j) for each fixed j. We will see that Proposition 4.4.8
implies that W(j) = W (j) with high probability. Consider the breadth-first
exploration of the graph starting from vertex j as follows:

Algorithm 4.3. The algorithm carries along three disjoint sets of half-edges:
active, neutral, dead.

(S0) At stage i = 0, the half-edges incident to j are active and all the other
half-edges are neutral. Order the initially active half-edges arbitrarily.

(S1) At each stage, take the largest half-edge e and pair it with another half-
edge f, chosen uniformly at random from the set of half-edges that are
either active or neutral. If f is neutral, then the vertex v to which f

is incident, is not discovered yet. Declare the half-edges incident to v
to be active and larger than all other active vertices (choose any order
between the half-edges of v). Declare e, f to be dead.

(S2) Repeat from (S1) until the set of active half-edges is empty.

Define the process Sjn by Sjn(l) = S
j
n(l − 1) + d ′(l)Jl − 2, and S

j
n(0) = d ′j,

where Jl is the indicator that a new vertex is discovered at time l and d ′(l) is
the degree of the discovered vertex, if any. Let L := inf{l > 1 : Sjn(l) = 0}. By
convention, we assume that Sjn(l) = 0 for l > L. Let Vl denote the vertex set
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4.4 Universality theorem

discovered upto time l excluding j and Ini (l) := 1{i ∈ Vl}. Define Inj (l) ≡ 0.
Also, let Fl denote the sigma-field containing all the information upto time
l in Algorithm 4.3. Note that

Sjn(l) = d
′
j +
∑
i∈[n]

d ′iI
n
i (l) − 2l = d ′j +

∑
i∈[n]

d ′i

(
Ini (l) −

d ′i
` ′n
l

)
+
(
ν ′n − 1

)
l.

Consider the re-scaled process S̄jn defined as S̄jn(t) = n−αS
j
n(
⌊
tnα+δ

⌋
).

Then, using Assumption 4.2,

S̄jn(t) = cj +n
−α
∑
i∈[n]

d ′i

(
Ini (tn

α+δ) −
d ′i
` ′n
tnα+δ

)
− λ0t+ o(1). (4.47)

The following three lemmas determine the asymptotics of W(j) and s?3 :

Lemma 4.4.9. Let Lj be the function with Lj(t) = cj − λ0t for t ∈ [0, cjλ−1
0 ] and

Lj(t) = 0 for t > cjλ−1
0 . Then, under Assumption 4.2, as n → ∞, S̄jn

P−→ Lj with
respect to the Skorohod J1 topology.

Lemma 4.4.10. For any T > 0, supl6Tnα+δ
∣∣∣∑i∈[n]wiIni (l) − ∑

i∈[n] d
′
iwi∑

i∈[n] d
′
i
l
∣∣∣ =

oP(n
α+δ).

Lemma 4.4.11. Fix any j > 1. Then with high probability W (j) = W(j).

Asymptotics of W(j). Note that, since the exploration process explores one edge
at each time, Lemma 4.4.9 implies that (see e.g. [150, Theorem 13.6.4])

1
2nα+δ

∑
k∈C ′(j)

d ′k
P−→
cj

λ0
. (4.48)

Moreover, Lemma 4.4.10 yields that

1
nα+δ

W (j) =
1

nα+δ

∑
k∈C ′(j)

wk

=

∑
i∈[n] d

′
iwi

` ′nnα+δ
1
2

∑
k∈C ′(j)

d ′k + oP(1)
P−→
µd,w

µdλ0
cj.

(4.49)

Now the asymptotics of W(j) in Theorem 4.1.3 follows by an application of
Lemma 4.4.11 under Assumption 4.2.

Next we provide a proof for Lemma 4.4.11 subject to Lemmas 4.4.9, 4.4.10.
The proofs of Lemmas 4.4.9 and 4.4.10 are similar to [69, Section 4] and are
provided in Appendix 4.C.
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Proof of Lemma 4.4.11. To simplify the writing, we only give a proof for j = 1,
the general case follows similarly. Define the event Ai := {W (i) > W (1), i /∈
∪k6i−1C

′(k)} and let A>K = ∪i>KAi. Fix r such that c2 < rλ0µd/µd,w < c1

and define the event B = {W (1) > rnα+δ}. Then, for any K > 2,

P
(
W (1) 6= W(1)

)
6

K∑
i=2

P (Ai ∩ B) + P (A>K ∩ B) + P (Bc) . (4.50)

Firstly, notice that due to the choice of r, (4.48) and (4.49) implies that P(Bc)→
0. Moreover, for each fixed i > 2, P (Ai ∩ B) 6 P(W (i) > rnα+δ) → 0. Fur-
ther, recall (4.46) and the relevant notation. Note that

P (A>K ∩ B) 6 P

(∑
i>1

(
W K

(i)

)3
> r3n3(α+δ)

)
.

Thus, the proof follows from (4.50) by taking first the limit as n → ∞, and
then as K→∞ and using (4.46).

4.4.4 Mesoscopic typical distances

Recall the definition of D?
n from (4.6). In this section, we obtain the asym-

totics of D?
n in Theorem 4.1.3 using a similar analysis as in Section 4.4.2.

Again the proof involves the Chebyshev inequality where the moments are
estimated using path counting. We sketch the computation of E[D?

n]. Recall
the notations U∗n, V∗n, A(k, l) and A ′(k, l) from Section 4.4.2. Note that

E [D?
n] =

1
n

E

[ ∑
i,k∈[n]

wiwkd(i,k)1
{
k ∈ C ′(i)

}]

6
`wn
n

∑
k∈[n]

wk
∑
l>1

lP (A(k, l)) =
`wn
n

∑
l>1

l
∑
k∈[n]

wkP (A(k, l)) ,

and

E [D?
n] >

`wn
n

∑
l>1

l

( ∑
k∈[n]

wk
(
P (A(k, l)) − P

(
A ′(k, l)

) ))
.

Now compare the terms above to (4.40a), (4.40b). The only difference is that
there is an extra multiplicative l here which amounts to differentiating with
respect to ν ′n in the obtained bounds. Thus, we can repeat an argument
identical to (4.41), (4.43) to obtain that

E [D?
n] =

E [Wn]E [D∗n]E [D ′nWn]
E [D ′n] (1 − ν ′n)2 (1+ o(1)) =

(E [D ′nWn])
2

E [D ′n] (1 − ν ′n)2 (1+ o(1)).
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4.5 Metric space limit for percolation clusters

The variance terms can also be computed similarly. Due to the presence of
a factor l2 in the second moment, we have to differentiate the upper-bounds
twice with respect to ν ′n. Again, the identical arguments as (4.38) can be
applied to show that Var (D?

n) = o(n4δ). This completes the proof of the
asymptotics of D?

n.

4.4.5 Maximum diameter: Proof of Theorem 4.1.4

Firstly, let us investigate the diameter of C ′(i). Notice that, if ∆(C ′(i)) >
6nδ log(n), then there exists at least one path of length at least 3nδ log(n)
starting from i. Now, the expected number of such paths is at most∑n
l=3nδ log(n) E [Pl], where Pl denotes the number of paths of length l, start-

ing from vertex i and we have used the fact that a vertex disjoint path can be
of size at most n. Again, the path-counting technique yields E [Pl] 6 d ′iν

′l−1
n .

Thus, for some constant C > 0,

P
(
∆(C ′(i)) > 6nδ log(n)

)
6

n∑
l=3nδ log(n)

E [Pl]

6 Cd ′in(ν
′
n)

3nδ log(n) 6 C
d ′i
n2 ,

where in the last step we have used (4.4). Thus, the proof of Theorem 4.1.4
follows using the union bound.

4.5 Metric space limit for percolation clusters

Finally, the aim of this section is to complete the proof of Theorem 4.1.1. We
start by defining the multiplicative coalescent process [8, 11] that will play a
pivotal role in this section:

Definition 5 (Multiplicative coalescent). Consider a (possibly infinite) collec-
tion of particles and let X(s) = (Xi(s))i>1 denote the collection of masses
of those particles at time s. Thus the i-th particle has mass Xi(s) at time s.
The evolution of the system takes place according to the following rule at
time s: At rate Xi(s)Xj(s), particles i and j merge into a new particle of mass
Xi(s) +Xj(s).

Before going into the details, let us describe the general idea and the or-
ganization of this section. Extending the approach of [29], we consider a
dynamically growing process of graphs that approximates the percolation
clusters in the critical window (see Chapter 2). Now, the graphs generated
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Chapter 4 Metric space limit

by this dynamic evolution satisfy: (i) In the critical window, the compo-
nents merge approximately as the multiplicative coalescent where the mass of
each component is approximately proportional to the component size; (ii) the
masses of the barely sub-critical clusters satisfy nice properties due to The-
orem 4.1.3. In Section 4.5.1, we derive the required properties in the barely
subcritical regime for the dynamically growing graph process using Theo-
rems 4.1.3 and 4.1.4. In Section 4.5.2, we modify the dynamic process such
that the components merge exactly as multiplicative coalescent. Since the
exact multiplicative coalescent corresponds to the rank-one inhomogeneous
case, thinking of these barely subcritical clusters as blobs, we use the univer-
sality theorem (Theorem 4.4.2) in Section 4.5.3 to determine the metric space
limits of the largest components of the modified graph (Theorem 4.5.8). Sec-
tion 4.5.4 is devoted to the structural comparison of the modified graph and
the original graph, and we finally complete the proof of Theorems 4.1.1. in
Section 4.5.5. The proof of Theorem 4.1.2 is given in Section 4.5.6.

Algorithm 4.4 (The dynamic construction). Let Gn(t) be the graph obtained
up to time t by the following dynamic construction:

(S0) A half-edge can either be alive or dead. Initially, all the half-edges
are alive. All the half-edges have an independent unit rate exponential
clock attached to them.

(S1) Whenever a clock rings, we take the corresponding half-edge, kill it
and pair it with a half-edge chosen uniformly at random among the
alive half-edges. The paired half-edge is also killed and the exponential
clocks associated with killed half-edges are discarded.

Since a half-edge is paired with another unpaired half-edge, chosen uni-
formly at random from the set of all unpaired half-edges, the final graph
Gn(∞) is distributed as CMn(d). Define

tc(λ) =
1
2

log
(

νn

νn − 1

)
+

νn

2(νn − 1)
λ

nη
. (4.51)

We denote the i-th largest component of Gn(t) by C(i)(t). In the subsequent
part of this chapter, we will derive the metric space limit of (C(i)(tc(λ)))i>1.
The following lemma (see Proposition 3.10.1) enables us to switch to the
conclusions for the largest clusters of CMn(d,pn(λ)):
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4.5 Metric space limit for percolation clusters

Lemma 4.5.1 ([69, Proposition 24]). There exists εn = o(n−η) and a coupling
such that, with high probability,

Gn(tc(λ) − εn) ⊂ CMn(d,pn(λ)) ⊂ Gn(tc(λ) + εn),

CMn(d,pn(λ) − εn) ⊂ Gn(tc(λ) ⊂ CMn(d,pn(λ) + εn).

Let ωi(t) denote the number of unpaired/open half-edges incident to
vertex i at time t in Algorithm 4.4. We end this section by understanding the
evolution of some functionals of the degrees and the open half-edges in the
graph Gn(t). Let s1(t) denote the total number of unpaired half-edges at time
t. Denote also s2(t) =

∑
i∈[n]ωi(t)

2, sd,ω(t) =
∑
i∈[n] diωi(t). Further, we

write µn = `n/n.

Lemma 4.5.2. Under Assumption 4.1, the quantities supt6T |
1
ns1(t) − µne−2t|,

supt6T |
1
ns2(t) −µne−4t(νn + e2t)|, supt6T |

1
nsd,ω(t) −µn(1+ νn)e−2t|} are

OP(n
−1/2), for any T > 0.

Proof. The proof uses the differential equation method [152]. Notice that,
after each exponential clock rings in Algorithm 4.4, s1(t) decreases by two.
Let Y denote a unit rate Poisson process. Using the random time change
representation [80],

s1(t) = `n − 2Y
( ∫t

0
s1(u)du

)
= `n +Mn(t) − 2

∫t
0
s1(u)du,

where Mn is a martingale. Now, the quadratic variation of Mn satisfies
〈Mn〉(t) 6 4t`n = O(n), which implies that supt6T |Mn(t)| = OP(

√
n).

Moreover, notice that the function f(t) = µne−2t satisfies
f(t) = µn − 2

∫t
0 f(u)du. Therefore,

sup
t6T

∣∣∣∣ 1
n
s1(t) − µne−2t

∣∣∣∣ 6 sup
t6T

|Mn(t)|

n
+ 2
∫T

0
sup
t6u

∣∣∣∣ 1
n
s1(t) − µne−2t

∣∣∣∣du.

Using Grőnwall’s inequality [131, Proposition 1.4], it follows that

sup
t6T

∣∣∣∣ 1
n
s1(t) − µne−2t

∣∣∣∣ 6 e2T sup
t6T

|Mn(t)|

n
= OP(n

−1/2), (4.52)

as required. For s2(t), note that if half-edges corresponding to vertices i
and j are paired, then s2 changes by −2ωi − 2ωj + 2 and if two half-edges

197



Chapter 4 Metric space limit

corresponding to i are paired, s2 then changes by −4ωi + 4. Thus,∑
i∈[n]

ωi(t)
2

=
∑
i∈[n]

d2
i +M

′
n(t) +

∫t
0

∑
i 6=j

ωi(u)ωj(u)(−2ωi(u) − 2ωj(u) + 2)
s1(u) − 1

+

∫t
0

∑
i∈[n]

ωi(u)(ωi(u) − 1)(−4ωi(u) + 4)
s1(u) − 1

= nµn(1 + νn) +M
′
n(t) +

∫t
0
(−4s2(u) + 2s1(u))du+OP(1),

whereM ′n is a martingale with quadratic variation given by 〈M ′n〉(t) = O(n).
Again, an estimate equivalent to (4.52) follows using Grőnwall’s inequality.
Notice also that when a clock corresponding to vertex i rings and it is paired
to vertex j, then sd,ω decreases by di + dj. Thus,

sd,ω(t) =
∑
i∈[n]

d2
i +M

′′
n(t) −

∫t
0

∑
i 6=j

ωi(u)ωj(u)(di + dj)

s1(u) − 1
du

−

∫t
0

∑
i∈[n]

ωi(u)(ωi(u) − 1)2di
s1(u) − 1

du

= nµn(1 + νn) +M
′′
n(t) − 2

∫t
0
sd,ω(u)du,

where M ′′n is a martingale with quadratic variation given by 〈M ′′n〉(t) 6
2t
∑
i∈[n] d

2
i = O(n). The proof of Lemma 4.5.2 is now complete.

4.5.1 Entrance boundary for open half-edges

Define

tn =
1
2

log
(

νn

νn − 1

)
−

νn

2(νn − 1)
1
nδ

, 0 < δ < η. (4.53)

The goal is to show that the open half-edges satisfy the entrance boundary
conditions. Let d(t) = (di(t))i∈[n] denote the degree sequence of Gn(t)

constructed by Algorithm 4.4. Recall that Gn(t) is a configuration model
conditionally on d(t). Let us first derive the asymptotics of νn(tn). Recall
that ωi(t) denotes the number of open half-edges adjacent to vertex i in
Gn(t). Notice that

νn(tn) =

∑
i∈[n](di −ωi(tn))

2

`n − s1(tn)
−1 =

∑
i∈[n] d

2
i − 2sd,ω(tn) + s2(tn)

`n − s1(tn)
−1.

198
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Using Lemma 4.5.2 and Assumption 4.1,

1
n
(`n − s1(tn)) = µn(1 − e−2tn) + oP(n

−δ) =
µn

νn

(
1 −

νn

nδ

)
+ oP(n

−δ),

(4.54)

1
n

( ∑
i∈[n]

d2
i − 2sd,ω(tn) + s2(tn)

)
=
µn

νn

(
2 −

3νn
nδ

)
+ oP(n

−δ). (4.55)

Thus, (4.54) and (4.55) yield that νn(tn) = 1 − νnn
−δ + oP(n

−δ). We aim
to apply the results for the barely sub-critical regime in Theorem 4.1.3 to
the number of open half-edges ω(tn) = (ωi(tn))i∈[n]. Notice that, by
Lemma 4.5.2 and Assumption 4.1, ω(tn) and d(tn) satisfy Assumption 4.2
with

µω =
µ(ν− 1)

ν
, µd =

µ

ν
, µd,ω =

µ(ν− 1)
ν

, ci =
θi
ν

.

Consider the quantities s?2 , s?3 , D?
n with the weights being the number of

open half-edges and denote them by sω2 , sω3 , Dωn respectively. Denote fi(t) =∑
k∈C(i)(t)

ωk(t) and f(t) = (fi(t))i>1. The following theorem summarizes
the entrance boundary conditions for f(t):

Theorem 4.5.3. Under Assumption 4.1, as n→∞,

n−δsω2
P−→ µ(ν− 1)2

ν2 , n−δsωpr
P−→ µ(ν− 1)

ν2 , n−(α+δ)fi(tn)
P−→
(ν− 1
ν2

)
θi,

n−3α−3δ+1sω3
P−→
(ν− 1
ν2

)3
∞∑
i=1

θ3
i, n−2δDωn

P−→ µ(ν− 1)2

ν3 .

Remark 36. Setting wi = 1 for all i, we get the entrance boundary conditions
for the component sizes also. In this case µd = µd,w = µ/ν. Augmenting
a predefined notation with c in the superscript to denote the component
susceptibilities, it follows that

n−δsc2
P−→ µ

ν2 , n−(α+δ)|C(i)(tn)|
P−→ θi
ν2 , n−3α−3δ+1sc3

P−→ 1
ν6

∞∑
i=1

θ3
i.

4.5.2 Coupling with the multiplicative coalescent

Recall the definitions of tc(λ) and tn from (4.51) and (4.53). Now, let us
investigate the dynamics of f(t) starting from time tn. Notice that, in the
time interval [tn, tc(λ)], components with masses fi(t) and fj(t) merge at
rate

fi(t)
fj(t)

s1(t) − 1
+ fj(t)

fi(t)

s1(t) − 1
=

2fi(t)fj(t)
s1(t) − 1

≈
2νfi(t)fj(t)
µ(ν− 1)n

,
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and create a component with fi(t)+ fj(t)− 2 open half-edges. Thus f(t) does
not exactly evolve as a multiplicative coalescent, but it is close. Now, we define
an exact multiplicative coalescent that approximates the above process:

Algorithm 4.5 (Modified process). Conditionally on Gn(tn), associate a rate
2/(s1(tn) − 1) Poisson process P(e, f) to each of pair of unpaired-half-edges
(e, f). An edge (e, f) is created between the vertices incident to e and f at the
instance when P(e, f) rings. We denote the graph obtained at time t by Ḡn(t).

Proposition 4.5.4. There exists a coupling such that Gn(t) ⊂ Ḡn(t) for all t > tn
with probability one.

Proof. Recall the construction of Gn(t) from Algorithm 4.4. We modify (S1) as
follows: whenever two half-edges are paired, we do not kill the correspond-
ing half-edges and do not discard the associated exponential clocks. Instead
we reset the corresponding exponential clocks. The graphs generated by this
modification of Algorithm 4.4 has the same distribution as Ḡn(t), condition-
ally on Gn(tn). Moreover, the above also gives a natural coupling such that
Gn(t) ⊂ Ḡn(t), by viewing the event times of Algorithm 4.4 as a thinning of
the event times of the modified process.

Henceforth, we will always assume that we are working on a probability
space such that Proposition 4.5.4 holds. The connected components at time
tn, (C(i)(tn))i>1 are regarded as blobs. Thus, for t > tn, the graph Ḡn(t)

should be viewed as a super-graph with the superstructure being determined
by the edges appearing after time tn in Algorithm 4.5. Let us denote the
ordered connected components of Ḡn(t) by (C̄(i)(t))i>1. The components of
Ḡn(t) can be regarded as a union of the blobs. For a component C , we use
the notation B(C ) to denote the collection of indices corresponding to the
blobs within C given by {b : C(b)(tn) ⊂ C }. Denote

F̄i(t) =
∑

b∈B(C̄(i)(t))

fb(tn).

The F̄-value is regarded as the mass of component C̄(i)(t) at time t. Note that
for the modified process in Algorithm 4.5, conditionally on Gn(tn), at time
t ∈ [tn, tc(λ)], C̄(i)(t) and C̄(j)(t) merge at exact rate 2F̄i(t)F̄j(t)/(s1(tn) − 1)
and the new component has mass F̄i(t) + F̄j(t). Thus, the vector of masses
(F̄i(t))i>1 merge as an exact multiplicative coalescent.
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4.5.3 Properties of the modified process

Notice that, conditionally on Gn(tn), blobs bi and bj are connected in Ḡn(tc(λ))

with probability pij equal to

1 − exp
(
− fbi(tn)fbj(tn)

[ 1
n1+δ

ν2

µ(ν− 1)2 +
1

n1+η
ν2

µ(ν− 1)2 λ
]
(1 + oP(1))

)
,

(4.56)
where the oP(·) term appearing above is uniform in i, j. Thus, using Theo-
rem 4.5.3, (4.56) is of the form 1 − e−qx

n
i x
n
j (1+oP(1)) with

xni = n−ρfbi(tn), q =
1

σ2(xn)
+

ν2

µ(ν− 1)2 λ, (4.57)

where σr(xn) =
∑

(xni )
r. By Theorem 4.1.3, the sequence xn satisfies the

entrance boundary conditions of [11], i.e.,

σ3(x
n)

(σ2(xn))3
P−→ 1
µ3(ν− 1)3

∞∑
i=1

θ3
i,

xni
σ2(xn)

P−→ 1
µ(ν− 1)

θi, σ2(x
n)

P−→ 0.

To simplify the notation, we write F̄i(λ) for F̄i(tc(λ)) and C̄(i)(λ) for C̄(i)(tc(λ)).
The following result is a consequence of [11, Proposition 7] and Lemma 4.3.5:

Proposition 4.5.5. As n → ∞,
(
n−ρF̄i(λ)

)
i>1

d−→ ν−1
ν ξ with respect to the `2↓

topology, where ξ is defined in Proposition 4.3.4.

We next relate (F̄i(λ))i>1 to (C̄(i)(λ))i>1, for each fixed i:

Proposition 4.5.6. As n→∞, F̄i(λ) = (ν− 1)|C̄(i)(λ)|+ oP(n
ρ). Consequently,(

n−ρ|C̄(i)(λ)|
)
i>1

d−→ 1
νξ with respect to the product topology.

We will need the following lemma, the proof of which is same as [35, Lemma
8.2].

Lemma 4.5.7 ([35, Lemma 8.2]). Consider two ordered weight sequences x =

(xi)i∈[m] and y = (yi)i∈[m]. Consider the size-biased reordering (v(1), v(2), . . . )
of [m] with respect to the weights x and let V(i) := {v(1), . . . , v(i)}. Denote mrs =∑
i x
r
iy
s
i , define cn = m11/m10 and assume that cn > 0 for each n. Suppose that

the following conditions hold:

lm21

m10m11
→ 0,

m12m10

lm2
11
→ 0,

lm20

m2
10
→ 0, as n→∞. (4.58)

Then, as n→∞, supk6l
∣∣ 1
lcn

∑
i yi1{i ∈ V(k)}− k

l

∣∣ P−→ 0.
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Chapter 4 Metric space limit

Proof of Proposition 4.5.6. We only prove the asymptotic relation of F̄1(λ) and
|C(1)(λ)|. Consider the breadth-first exploration of the supestructure of graph
Ḡn(tc(λ)) (which is also a rank-one inhomogeneous random graph) using
the Aldous-Limic construction from [11, Section 2.3]. Notice that the vertices
are explored in a size-biased manner with the sizes being x = (xi)i>1, where
xi = n−ρfi(tn). Let v(i) be the i-th vertex explored. Further, let C̄ st

(i)(λ)

denote the component C̄(i)(λ), where the blobs have been shrunk to single
vertices. Then, from [11], one has the following:

(i) there exists random variables mL,mR such that C̄ st
(i)(λ) is explored be-

tween mL + 1 and mR;

(ii)
∑
i6mR

xv(i) is tight;

(iii)
∑mR
i=mL+1 xv(i)

d−→ γ, where γ is some non-degenerate, positive random
variable.

Let yi = n−ρ|C(i)(tn)|. Using Theorem 4.5.3, Remark 35 and Remark 36, it
follows that

∑
i x
r
iy
s
i = OP(n

3δ−3η); for r+ s = 3,
∑
i xi = OP(n

1−ρ), and∑
i x
r
iy
s
i = OP(n

−2ρ+1+δ); for r+ s = 2. Below, we show that∑mR
i=mL+1 yv(i)∑mR
i=mL+1 xv(i)

×
∑
i x

2
i∑

i xiyi

P−→ 1. (4.59)

The proof of Proposition 4.5.6 follows from (4.59) by observing that
∑
i x

2
i∑

i xiyi
=

sω2 (tn)

sωpr(tn)
P−→ ν− 1, and using Theorem 4.5.3. To prove (4.59), we will now apply

Lemma 4.5.7. Denote m0 =
∑
i xi/

∑
i x

2
i and consider l = 2Tm0 for some

fixed T > 0. Using Theorem 4.5.3, an application of Lemma 4.5.7 yields

sup
k62Tm0

∣∣∣∣ k∑
i=1

xv(i) −
k

m0

∣∣∣∣ P−→ 0.

Now, for any ε > 0, T > 0 can be chosen large enough such that
∑mR
i=1 xv(i) >

T has probability at most ε and on the event
{

supk62Tm0

∣∣∑k
i=1 xv(i)−

k
m0

∣∣ 6
ε
}
∩
{∑mR

i=1 xv(i) 6 T
}

, one has mL < mR < 2Tm0. Thus, it follows that∣∣∣∣ mR∑
i=mL+1

xv(i) −
mR −mL
m0

∣∣∣∣ P−→ 0. (4.60)

An identical argument as above shows that∣∣∣∣ mR∑
i=mL+1

yv(i) −
mR −mL
m ′0

∣∣∣∣ P−→ 0, (4.61)
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4.5 Metric space limit for percolation clusters

where m ′0 =
∑
i xi/

∑
i xiyi. The proof of (4.59) now follows from (4.60)

and (4.61). The asymptotic distribution for (n−ρ|C̄(i)|) can be obtained using
Proposition 4.5.5 and Lemma 4.3.5.

Recall that ωi(tn) denotes the number of open-half edges attached to
vertex i in the graph Gn(tn). We now equip C̄(i)(λ) with the probability
measure µifr given by µifr(A) =

∑
k∈Aωk(tn)/Fi(λ) for A ⊂ C̄(i)(λ), and

denote the corresponding measured metric space by C̄ fr
(i)(λ).

Theorem 4.5.8. Under Assumption 4.1, as n→∞,(
n−ηC̄ fr

(i)(λ)
)
i>1

d−→ (Mi)i>1, (4.62)

with respect to the S N
∗ topology, where Mi is defined in Section 4.3.5.

Proof. We just consider the metric space limit of C̄ fr
(i)(λ) for each fixed i > 1

and the joint convergence in (4.62) follows using the joint convergence of
different functionals used throughout the proof. Recall the notation B(C ) :=

{b : C(b)(tn) ⊂ C } for a component C . Now, C̄ fr
(i)(λ) can be seen as a super-

graph as defined in Section 4.3.2 with

1. the collection of blobs {C(b)(tn) : b ∈ B(C̄(i)(λ))} and within-blob mea-
sure µb given by µb(A) =

∑
k∈Aωk(tn)/fb(tn), A ⊂ C(b)(tn), b ∈

B(C̄(i)(λ));

2. the superstructure consisting of the edges appearing during [tn, tc(λ)]
in Algorithm 4.5 and weight sequence (fb(tn)/F̄i(λ) : b ∈ B(C̄(i)(λ))).

Let d(·, ·) denote the graph distance on C̄(i)(λ) and define

ub =
∑

i,j∈C(b)(tn)

ωiωj

f2b(tn)
d(i, j), B(i)

n =

∑
b∈B(C̄(i)(λ))

xbub∑
b∈B(C̄(i)(λ))

xb
.

Here ub gives the average distance within blob C(b)(tn). Using Lemma 4.5.7,
we will show

B(i)
n ×

∑
i x

2
i∑

i x
2
iui

P−→ 1. (4.63)

The argument is the same as the proof of (4.59). We only have to ensure that
(4.58) holds with yi = xiui. Thus, we need to show that

nρ−δ
∑
i x

3
iui∑

i xi
∑
i x

2
iui

P−→ 0, and
∑
i x

3
iu

2
i

∑
i xi

nρ−δ
(∑

i x
2
iui
)2

P−→ 0. (4.64)
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First of all, notice that, by Lemma 4.5.2 and Theorem 4.5.3,

cn =

∑
i x

2
iui∑
i xi

= (1 + oP(1))
νn−1+ρ

µ(ν− 1)
n−2ρ

∑
b

f2b(tn)
∑
i,j∈b

ωiωj

f2b(tn)
d(i, j)

=
νn−1+ρ

µ(ν− 1)
n1−2ρDωn = n2δ−ρν− 1

ν2 (1 + oP(1)).

(4.65)

Also, recall from Theorem 4.1.4 that umax = maxb ub = OP(n
δ log(n)). Now,

nρ−δ
∑
i x

3
iui∑

i xi
∑
i x

2
iui
6
nρ−δumax

∑
i x

3
i∑

i xi
∑
i x

2
iui

= OP

(
nρ−δnδ log(n)n−3ρn3α+3δ

n1−ρn2δ−ρn1−ρ

)
= OP(n

δ−η log(n)) = oP(1),∑
i x

3
iu

2
i

∑
i xi

nρ−δ
(∑

i x
2
iui
)2 6

xmaxumax
∑
i xi

nρ−δ
∑
i x

2
iui

= OP

(
n−ρnα+δnδ log(n)

nρ−δn2δ−ρ

)
= OP(n

δ−η log(n)) = oP(1),

and (4.64) follows, and hence the proof of (4.63) also follows. Recall that the
superstructure of Ḡn(tc(λ)) has the same distribution as a NRn(x,q) random
graph with the parameters given by (4.57). Thus, using Proposition 4.3.2, we
now aim to use Theorem 4.4.2 on C fr

(i)(λ) with the blobs being (C(i)(tn))i>1,
and p(i)

n , a(i)
n given by (4.12). Define Υ(i)

n =
(
pb/σ(p

(i)
n ) : b ∈ B(C̄(i)(λ))

)
. Let

N(R+) denote the space of all counting measures equipped with the vague
topology and denote the product space S = R3

+ ×N(R+). Define

Pn =
(
a(i)
n σ(p

(i)
n ),

∑
b∈B(C̄(i)(λ))

xb,
1

σ2
2(x
n)

∑
b∈B(C̄(i)(λ))

x2
b,Υ(i)

n

)
i>1

,

viewed as an element of SN. Recall the definition of ξ∗i and Ξ∗i from Sec-
tion 4.3.5. Define

P∞ =

(
ξ∗i

µ(ν− 1)

( ∑
v∈Ξ∗

i

θ2
v

)1/2
, ξ∗i ,

1
µ2(ν− 1)2

∑
v∈Ξ∗

i

θ2
v,
(

θj∑
v∈Ξ∗

i
θ2
v

: j ∈ Ξ∗i
))

i>1

The following is a consequence of [36, Proposition 5.1, Lemma 5.4]:

σ(p(i)
n )

P−→ 0, and Pn
d−→P∞ on SN. (4.66)

Without loss of generality, we assume that the convergence in (4.66) holds
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4.5 Metric space limit for percolation clusters

almost surely. Now, using (4.63), it follows that

σ(p(i)
n )

1 +B(i)
n

=
σ2(x

n)
(∑

v∈Ξ∗i θ
2
v

)1/2

µ(ν− 1)ξ∗i
×
∑
i x

2
i∑

i x
2
iui

(1 + o(1))

=
σ2

2(x
n)
(∑

v∈Ξ∗i θ
2
v

)1/2

µ(ν− 1)ξ∗i
∑
i x

2
iui

(1 + o(1)) = n−ην− 1
ν

1
ξ∗i

( ∑
v∈Ξ∗i

θ2
v

)1/2
(1 + o(1)),

where the last step follows from Theorem 4.5.3, (4.65) and (4.66). The proof
of Theorem 4.5.8 is now complete using Theorem 4.4.2.

4.5.4 Properties of the original process

Let us denote the ordered components of Gn(tc(λ)) simply by (C(i)(λ))i>1.
To prove Theorem 4.1.1, we need to compare functionals of C(i)(λ) and C̄(i)(λ)

that describe the structures of these graphs. Firstly, the following is a direct
consequence of Lemma 4.5.1 and Proposition 4.3.4:

Proposition 4.5.9. Let (C(i)(λ))i>1 denote the ordered vector of components sizes
of the graph Gn(tc(λ)). Then,

(
n−ρ|C(i)(λ)|, SP(C(i)(λ))

)
i>1

d−→ ( 1
νξi, Ni)i>1 as

n → ∞, with respect to the topology on `2↓ ×NN, where the limiting objects are
defined in Proposition 4.3.4.

Now, conditionally on Gn(tn), C(i)(λ) can also be viewed as consisting of
blobs (C(i)(tn))i>1 and a superstructure connecting the blobs. Denote

Fi(λ) =
∑

b∈B(C(i)(λ))

fb(tn).

The components consist of surplus edges within the blobs and the surplus
edges in the superstructure. Let SP ′(C(i)(λ)) denote the number of surplus
edges in the superstructure of C(i)(λ). The following proposition relates the
superstructure and components:

Proposition 4.5.10. Assume that η/2 < δ < η. Then, for each 1 6 i 6 K, the
following hold:

(a) With high probability, SP ′(C(i)(λ)) = SP(C(i)(λ)). Consequently, there are no
surplus edges within blobs in C(i)(λ) with high probability;

(b) Fi(λ)/|C(i)(λ)|
P−→ ν− 1. Consequently, (n−ρFi(λ))i>1 and (n−ρF̄i(λ))i>1

have the same distributional limit as Proposition 4.5.5.
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Chapter 4 Metric space limit

We start by explaining the idea of the proof. Since SP ′(C(i)(λ)) 6 SP(C(i)(λ))

almost surely, for Part (a) it suffices to show that

SP ′(C(i)(λ)) and SP(C(i)(λ)) have the same distributional limit. (4.67)

Let G ′n denote the graph obtained from Gn(tc(λ)) by shrinking each blob
to a single node. Then, SP ′(·) can be viewed as the surplus edges in the
components of G ′n. The graph G ′n can also be viewed to be constructed dy-
namically as in Algorithm 4.4 with the degree sequence being (fi(tn))i>1. In
the following, we investigate the relations between Gn(tn) and G ′n carefully.
Lemma 4.5.2 implies that the number of unpaired half-edges in Gn(tn) that
are paired in Gn(tc(λ)) is given by

s1(tn)− s1(tc(λ)) = nµn(n
−δ+λn−η)+oP(n

1−γ), for some η < γ. (4.68)

Algorithm 4.6. Define πn = νn
νn−1 (n

−δ + λn−η) and associate fi(tn) half-
edges to the vertex i of G ′n. Construct the graph G ′n(πn) as follows:

(S1) Retain each half-edge independently with probability πn.

(S2) Create a uniform perfect matching between the retained half-edges
and obtain G ′n(πn) by creating edges corresponding to any two pair
of matched half-edges.

In (S1), if the total number of retained half-edges is odd, then add an
extra half-edge to vertex 1. However, this will be ignored in the computa-
tions since it does not make any difference in the asymptotic computations.
Notice that ai, the number of half-edges attached to i that are retained by
Algorithm 4.6 (S1), is distributed as Bin(fi(tn),πn), independently for each
i. Thus the number of half-edges in the graph G ′n(πn) is distributed as a
Bin(s1(tn),πn) random variable. We claim that there exists εn = o(n−η) and
a coupling such that, with high probability

G ′n(πn − εn) ⊂ G ′n ⊂ G ′n(πn + εn). (4.69)

The proof follows from an identical argument as Lemma 4.5.1 using the es-
timate (4.68) and standard concentration inequalities for binomial random
variables. We skip the proof here and refer the reader to Chapter 2.7. We
now continue to analyze G ′n(πn), keeping in mind that the relation (4.69) al-
lows us make conclusions for G ′n. To analyze the component sizes and the
surplus edges of the components of G ′(πn) we first need some regularity con-
ditions on a, the degree sequence of G ′n(πn), as summarized in the following
lemma:
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4.5 Metric space limit for percolation clusters

Lemma 4.5.11. For some η/2 < δ < η, as n→∞,

n−αai
P−→ θi
ν

,
ai∑
i ai

nρ−δ
P−→ θi
µν

,

νn(a) =

∑
i ai(ai − 1)∑

i ai
= 1 + λn−η+δ + oP(n

−η+δ),

and for any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>K

a3
i > εn

3α
)

= 0. (4.70)

Proof. Using Theorem 4.5.3 and the fact that ai ∼ Bin(fi(tn),πn), one gets
n−αai = (1+oP(1))θi/ν. Moreover,

∑
i ai ∼ Bin(

∑
i fi(tn),πn) and

∑
i ai =

(1 + oP(1))πn
∑
i fi(tn) yield the required asymptotics for ai/

∑
j aj. Let Iij

be the indicator of the j-th half-edge corresponding to vertex i is kept in Al-
gorithm 4.6 (S1). Then Iij ∼ Ber(πn) independently for j ∈ [fi(tn)], i > 1.
Note that, by changing the status of one half-edge corresponding to vertex
k, we can change

∑
i ai(ai − 1) by at most 2(fk(tn) + 1). Therefore we can

apply [115, Corollary 2.27] to conclude that

P

(∣∣∣∑
i

ai(ai − 1) − π2
n

∑
i

fi(tn)(fi(tn) − 1)
∣∣∣ > t∣∣∣(fi(tn))i>1

)

6 2 exp
(

−t2

2
∑
i fi(tn)(fi(tn) + 1)2

)
.

Observe that π2
n

∑
i fi(tn)(fi(tn)−1) = ΘP(n

1−δ). Take t = εn1−δ and recall
that

∑
i f

3
i(tn) = ΘP(n

3α+3δ). It is easy to check that (2 − 3α)/5 > η/2, and
therefore one can choose η/2 < δ < η such that t2/

∑
i f

3
i(tn)→∞. Thus,∑

i

ai(ai − 1) = (1 + oP(1))π2
n

∑
i

fi(tn)(fi(tn) − 1).

Therefore, Theorem 4.5.3 yields the required asymptotics for νn(a). To see
(4.70), note that E

[∑
i>K ai(ai−1)(ai−2) | (fi(tn))i>1

]
= π3

n

∑
i>K fi(tn)

3,
and the proof follows again by using the condition on sω3 in Theorem 4.5.3.

From here onward, we assume that δ > 0 is such that Lemma 4.5.11 holds.
Consider the exploration of the graph G ′n(πn) via Algorithm 4.3, but now
the first vertex is chosen proportional to its degree. Define the exploration
process by Sn similarly as the process Sjn(l) in Section 4.4.3. Call a vertex
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Chapter 4 Metric space limit

discovered if it is either active or killed. Let Vl denote the set of vertices
discovered up to time l and Ini (l) := 1{i ∈ Vl}. Note that

Sn(l) =
∑
i

aiI
n
i (l) − 2l =

∑
i

ai

(
Ini (l) −

ai
`an
l

)
+ (νn(a) − 1) l, (4.71)

where `an =
∑
i ai. Consider the re-scaled version S̄n of Sn defined as

S̄n(t) = n
−αSn(btnρ−δc). Define the limiting process

S(t) =

∞∑
i=1

θi
ν

(
1{Ei 6 t}−

θi
µν
t

)
+ λt, (4.72)

where Ei ∼ Exp(θi/(µν)) independently for i > 1. The following proposition
describes the scaling limit of S̄n:

Proposition 4.5.12. As n→∞, S̄n
d−→ S with respect to the Skorohod J1 topology.

The proof of Proposition 4.5.12 can be carried out using similar ideas as
Chapter 3 Theorem 3.5.1. A sketch of the proof is given in Appendix 4.D.
The excursion lengths of the exploration process give the number of edges in
the explored components. Now, at each step l, the probability of discovering
a surplus edge, conditioned on the past, is approximately the proportion of
half-edges that are active. Note that the number of active half-edges is the
reflected version of Sn given by refl(Sn(t)) = Sn(t) − infu6t Sn(u). Thus,
conditionally on (Sn(l))l6tnρ−δ , the rate at which a surplus edge appears at

time tnρ−δ is approximately nρ−δ refl(Sn(tnρ−δ))∑
i ai

= 1
µ refl(S̄n(t))(1 + oP(1)).

Therefore, Proposition 4.5.12 implies that for each K > 1, there exists compo-
nents C1, . . . ,CK ⊂ G ′n(πn) such that(

n−ρ+δ|Ci|, SP(Ci)
)
i∈[K]

d−→
(
ξi, Ni

)
i∈[K], (4.73)

where ξi and Ni are defined in Proposition 4.3.4. Here we have also used
the fact that the ordered excursion lengths of the process (S(t))t>0, de-
fined in (4.72), are identically distributed as the ordered excursion lengths
of (S(t)/µ)t>0. Note that Ci in (4.73) may not be the i-th largest compo-
nent of G ′n(πn) as we have not established that the i-th largest component
is explored by time Θ(nρ−δ). However, that is not required for our pur-
poses. We can now combine (4.69) and (4.73) to obtain the asymptotics for
the number of blobs in the largest connected components and SP ′(·). Denote
B(C ) = |B(C )| for a component C ⊂ Gn(tc(λ)). The following is a direct
consequence of (4.69) and (4.73):
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4.5 Metric space limit for percolation clusters

Lemma 4.5.13. For K > 1, there exist components C1, . . . , CK ⊂ Gn(tc(λ)) such
that the following convergence holds:

(n−ρ+δB(Ci), SP ′(Ci))i∈[K]
d−→ (ξi, Ni)i∈[K].

Next we show that the components Ci in Lemma 4.5.13 indeed correspond
to the i-th largest component of Gn(tc(λ)):

Lemma 4.5.14. For any K > 1, Ci = C(i)(λ), ∀i ∈ [K] with high probability.

Proof. Notice that
∑
j6i |Cj| 6

∑
j6i |C(j)(λ)| for all i ∈ [K], almost surely.

Thus, it is enough to prove that |Ci| and |C(i)(λ)| involve the same re-scaling
factor and have the same scaling limit. We again make use of the inclusions in
graphs in (4.69). Algorithm 4.3 explores the components of G ′n(πn) in a size-
biased manner with the sizes being (ai)i>1. An application of Lemma 4.5.7
with yi = C(i)(tn) yields that, for any t > 0, uniformly for l 6 tnρ−δ,∑

i

|C(i)(tn)|I
n
i (l) =

∑
i

|C(i)(tn)|
ai∑
i ai

l+ oP(n
ρ). (4.74)

Since ai ∼ Bin(fi(tn),πn), we can apply concentration inequalities like [115,
Corollary 2.27] and use the asymptotics from Theorem 4.5.3 to conclude that

n−δ

∑
i ai|C(i)(tn)|∑

i ai
=

µ(ν−1)
ν2

µ(ν−1)
ν

(1 + oP(1)) =
1
ν
(1 + oP(1)). (4.75)

Thus, (4.74) and (4.75), together with (4.69), imply that ν|Ci|
nδB(Ci)

P−→ 1, and it

follows from Lemma 4.5.13 and Lemma 4.3.5 that (n−ρ|Ci|)i∈[K]
d−→ ( 1

νξi)i∈[K].

Proof of Proposition 4.5.10. We are now finally in the position to prove Propo-
sition 4.5.10. Using Lemmas 4.5.13, 4.5.14, and Proposition 4.5.9 together with
(4.69), we directly conclude Part (a) from (4.67). For Part (b), we can follow
the same arguments as (4.74) to conclude that, uniformly for l 6 tnρ−δ,∑

i

fi(tn)I
n
i (l) =

∑
i

fi(tn)
ai∑
i ai

l+ oP(n
ρ), (4.76)

where n−δ
∑
i aifi(tn)∑

i ai
= ν−1

ν (1+ oP(1)). Now, (4.74) and (4.76) together with
(4.69) prove Part (b).

In the final part of the proof, we will also need an estimate of the sur-
plus edges in the components C̄(i)(λ), that can be obtained by following the
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exact same argument as the proof outline of Lemma 4.5.13. Recall that the
superstructure on the graph Ḡn(tc(λ)) is a rank-one inhomogeneous random
graph NRn(x,q). The connection probabilities given by (4.56) can be written
as 1 − exp(−zi(λ)zj(λ)/

∑
k zk(λ)), where

zi(λ) =
fi(tn)

∑
j fj(tn)∑

j f
2
j(tn)

(
1 + λn−η+δ + oP(n

−η+δ)
)
.

Moreover, using Theorem 4.5.3, it follows that

n−αzi(λ)
P−→ θi
ν

,
zi(λ)∑
j zj(λ)

P−→ θi
µν

,

νn(z) =

∑
i z

2
i(λ)∑

i zi(λ)
= 1 + λn−η+δ + oP(n

−η+δ).

Now, we may consider the breadth-first exploration of the above graph and
define the exploration process SNR

n (l) =
∑
i zi(λ)I

n
i (l) − l, as in (4.71). The

only thing to note here is that the component sizes are not necessarily en-
coded by the excursion lengths above the past minima of SNR

n . However, if
S̃NR
n (l) =

∑
i I
n
i (l) − l, then it can be shown that (see [33, Lemma 3.1]) S̃NR

n

and SNR
n have the same distributional limit. Thus, a conclusion identical to

Proposition 4.5.12 follows for Ḡn(tc(λ)). Due to the size-biased exploration
of the components one can also obtain analogues of Lemmas 4.5.13 and 4.5.14
for Ḡn(tc(λ)). This explains the following proposition:

Proposition 4.5.15. For fixed K > 1, (n−ρ+δB(C̄(i)(λ)), SP ′(C̄(i)(λ)))i∈[K]
d−→

(ξi, Ni)i∈[K], as n→∞.

4.5.5 Completing the proof of Theorem 4.1.1

In this section, we finally conclude the proof of Theorem 4.1.1. Recall Theo-
rem 4.5.8 and the terminologies therein. Let n−ηC fr

(i)(λ) denote the measured
metric space with measure µifr and the distances multiplied by n−η. At this
moment, let us recall the relevant properties C(i)(λ) and C̄(i)(λ):

(A) By Proposition 4.5.4, ∪j6iC(j)(λ) ⊂ ∪j6iC̄(j)(λ) almost surely for any
i > 1. Therefore, applying Propositions 4.5.6 and 4.5.9, it follows that
with high probability C(i)(λ) ⊂ C̄(i)(λ) for any fixed i > 1.

(B) By Proposition 4.5.10 (b), F̄i(λ)−Fi(λ)
P−→ 0 and consequently µifr(C̄(i)(λ)\

C(i)(λ))
P−→ 0.
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4.5 Metric space limit for percolation clusters

(C) By Propositions 4.5.10 (a) and 4.5.15, the number of surplus edges with
one endpoint in C̄(i)(λ) \ C(i)(λ) converges in probability to zero. More-
over, with high probability there is no surplus edge within the blobs.
This implies that, for any pair of vertices u, v ∈ C(i)(λ), with high proba-
bility, the shortest path between them is exactly the same in C(i)(λ) and
in C̄(i)(λ).

Thus, from the definition of Gromov-weak convergence in Section 4.3.1, an
application of Theorem 4.5.8 yields that

(
n−ηC fr

(i)

)
i>1

d−→ (Mi)i>1, The only
thing remaining to show is that we can replace the measure µifr by µct,i. Now,
using Propositions 4.5.9 and 4.5.10 (b), it is enough to show that

∑
b∈B(C(i)(λ))

∣∣fb(tn) − (ν− 1)|C(b)(tn)|
∣∣ = oP(n

ρ). (4.77)

Indeed, during the breadth-first exploration of the superstructure of Gn(tc(λ)),
the blobs are explored in a size-biased manner with the sizes being (fi(tn))i>1.
Therefore, one can again use Lemma 4.5.7. Recall that, by Lemma 4.5.14, for
any ε > 0, one can choose T > 0 so large that the probability of exploring
C(i)(λ) within time Tnρ−δ is at least 1 − ε. Thus, if V bl denotes the set of
blobs explored before time l, then, for any T > 0,

∑
b∈V b

Tnρ−δ

∣∣fb(tn) − (ν− 1)|C(b)(tn)|
∣∣

= (1 + oP(1))Tnρ−δ
∑
i

fi(tn)∑
i fi(tn)

∣∣fi(tn) − (ν− 1)|C(i)(tn)|
∣∣.

Using the Cauchy-Schwarz inequality and Theorem 4.5.3 it now follows that
the above term is o(nρ). Therefore (4.77) follows. Finally the proof of Theo-
rem 4.1.1 is complete using Lemma 4.5.1.

Remark 37. The fact that the measure can be changed from µifr to µct,i in
n−ηC fr

(i) follows only from (4.77), which again follows from the entrance
boundary conditions. However, the entrance boundary conditions in The-
orem 4.1.3 hold for weight sequences w = (wi)i∈[n] under general assump-
tions (see Assumption 4.2). Therefore, one could also replace the measure
µct,i by µw,i, where µw,i =

∑
i∈Awi/

∑
k∈C(i)(λ)

wi andw satisfies Assump-
tion 4.2.
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Chapter 4 Metric space limit

4.5.6 Proof of Theorem 4.1.2

The argument is related to Chapter 3.7. Using [85, Lemma 3.2], the random
graph CMn(d,pn(λ)), conditionally on its degree sequence dp, is distributed
as CMn(d

p). To complete the proof of Theorem 4.1.2, consider the explo-
ration algorithm given by Algorithm 4.3, now on the graph CMn(d,pn(λ)),
conditionally on the degree sequence dp. The starting vertex is chosen in
a size biased manner with sizes proportional to the degrees dp. For con-
venience, we denote X = (C p(i)(λ))i6K in this section. Consider a bounded
continuous function f : (S∗)K 7→ R, where we recall S∗ from Section 4.3.1.
Recall from [110, Theorem 1.1] that

lim inf
n→∞ P (CMn(d) is simple) > 0.

Thus, it is enough to show that

E [f(X)1{CMn(d) is simple}] − E [f(X)]P (CMn(d) is simple)→ 0. (4.78)

Now, for any T > 0, let An,T denote the event that X is explored before time
Tnρ by the exploration algorithm. Using [69, Lemma 13], it follows that

lim
T→∞ lim sup

n→∞ P
(
Acn,T

)
= 0.

Let XT denote the random vector consisting of K largest ones among the
components explored before time Tnρ. Thus,

lim
T→∞ lim sup

n→∞ E
[
f(X)1{CMn(d) is simple}1Acn,T

]
6 ‖f‖∞ lim

T→∞ lim sup
n→∞ P

(
Acn,T

)
= 0,

which implies that

lim
T→∞ lim sup

n→∞
∣∣E [(f(X) − f(XT ))1{CMn(d) is simple}

] ∣∣ = 0. (4.79)

Further, let Bn,T denote the event that a vertex v is explored before time Tnρ

such that v is involved in a self-loop or a multiple edge in CMn(d). For any
fixed vertex v, the i-th half edge creates a self-loop in CMn(d) with probabil-
ity at most (dv − i)/(`n − 1) and creates a multiple edge with probability at
most (i− 1)/(`n− 1) so that the probability of v creating a self-loop or a mul-
tiple edge is at most d2

v/(`n − 1). Let Ini (l) denote the indicator that vertex i
is discovered upto time l and note that Algorithm 4.3 will explore the vertices
in a size-biased manner with sizes being dp. Let Pp (respectively Ep) denote
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4.5 Metric space limit for percolation clusters

the conditional probability (respectively expectation), conditionally on dp.
Thus,

Pp(Bn,T ) 6
1

`n − 1
Ep

[ ∑
i∈[n]

d2
iI
n
i (Tn

ρ)

]

=
1

`n − 1

(
Ep

[ K∑
i=1

d2
iI
n
i (Tn

ρ)

]
+ Ep

[ n∑
i=K+1

d2
iI
n
i (Tn

ρ)

])
.

Now, using Assumption 4.1, for every fixed K > 1,

1
`n − 1

Ep

[ K∑
i=1

d2
iI
n
i (Tn

ρ)

]
6

2
`n

K∑
i=1

d2
i

P−→ 0.

Further, Pp(I
n
i (Tn

ρ) = 1) 6 Tnρdpi /(
∑
i∈[n] d

p
i − 2Tnρ). Therefore,

2
`n

Ep

[ n∑
i=K+1

d2
iI
n
i (Tn

ρ)

]
6

2Tnρ

`n
∑
i∈[n] d

p
i

n∑
i=K+1

d2
id
p
i

6 OP(1)
(
n−3α

n∑
i=K+1

d3
i

)
,

(4.80)

where the last step follows using
∑
i∈[n] d

p
i ∼ 2 × Bin(`n/2,pn(λ)), stan-

dard concentration inequalities for the binomial distribution, and the fact
that dpi 6 di for all i ∈ [n]. Now, by Assumption 4.1, the final term in
(4.80) tends to zero in probability if we first take lim supn→∞ and then take
limK→∞. Consequently, for any fixed T > 0,

lim
n→∞P (Bn,T ) = 0. (4.81)

Let En,T denote the event that no self-loops or multiple edges are attached to
the vertices in CMn(d) that are discovered after time Tnρ. Then (4.79) and
(4.81) implies that

lim
n→∞E [f(X)1{CMn(d) is simple}] = lim

T→∞ lim
n→∞E

[
f(XT )1En,T

]
= lim
T→∞ lim

n→∞E [f(XT )P (En,T |FTnρ)]

= lim
T→∞ lim

n→∞E [f(XT )P (En,T |FTnρ ,Bn,T )] .

(4.82)

Let G∗Tnρ denote the graph obtained from CMn(d) after removing the vertices
discovered upto time Tnρ. Then G∗Tnρ is distributed as a configuration model
conditional on its degree sequence. Thus conditional on FTnρ ∩Bn,T , En,T
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Chapter 4 Metric space limit

happens if and only if G∗Tnρ is simple. Now, an argument similar to (3.55) in
Chapter 3 can be applied to conclude that

P (G∗Tnρ is simple|Ftnρ) − P (CMn(d) is simple) P−→ 0,

and using (4.82), (4.78) follows, and the proof of Theorem 4.1.2 is now com-
plete.

4.6 Conclusion

We have obtained the scaling limit for the metric structure of the ordered
component sizes of the critical percolation clusters for CMn(d) when the
empirical degree distribution has diverging third moment. The key ingre-
dient of the proof is a universality principle in Theorem 4.4.2, which ba-
sically says that after replacing each nodes by metric spaces having small
diameter, the scaling limit for the rank-one inhomogeneous random graphs
does not change even if typical distances change. This work provides a gen-
eral framework to establish the scaling limit for networks which are in the
same universality class as identified in [36]. The overall idea for percola-
tion on CMn(d) is not very specific to the underlying model, and could be
applicable to other types of inhomogeneous random graphs. An analogous
framework for the Erdős-Rényi universality class was established in [29]. The
underlying topology for the convergence of metric spaces in [29] was taken
to be Gromov-Hausdorff-Prokhorov topology, which turns out to be strictly
stronger than the Gromov-weak topology considered here. In the next chap-
ter, we strengthen Theorem 4.1.1 to Gromov-Hausdorff-Prokhorov topology
under some additional mild assumptions on the degree sequence.

4.A Proof of Proposition 4.3.4

Note that due to the difference in the choice of pn(λ) in Chapter 3 Assump-
tion 3.1 and this chapter, λ must be replaced by λν. Let E(·) denote the
operator that maps a process to its ordered vector of excursion lengths, and
A(·) maps a process to the vector of areas under those excursions. Let us use
Exp(b) as a generic notation to write an exponential random variable with
rate b. All the different exponential random variables will be assumed to
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4.B Computation for E[W (V∗n)
3]

independent. Now,

1√
ν
E

(∑
i>1

θi√
ν

(
1
{

Exp(θi/(µ
√
ν)) 6 t

}
− (θi/(µ

√
ν))t

)
+ λνt

)
d
=

1
ν
E

(∑
i>1

θi√
ν

(
1{Exp(θi/(µν)) 6 u}− (θi/(µν))u

)
+ λu

√
ν

)
d
=

1
ν
E

(∑
i>1

θi
µν

(
1{Exp(θi/(µν)) 6 u}− (θi/(µν))u

)
+
λ

µ
u

)
,

where the last step follows by rescaling the space by µ
√
ν and noting that the

rescaling of space does not affect excursion lengths. Again,

A

(∑
i>1

θi
µ
√
ν

(
1
{

Exp(θi/(µ
√
ν)) 6 t

}
− (θi/(µ

√
ν))t

)
+
λν

µ
t

)
d
= A

(∑
i>1

θi
µν

(
1{Exp(θi/(µν)) 6 u}− (θi/(µν))t

)
+
λ

µ
u

)
,

which is obtained by rescaling both the space and time by
√
ν. Thus, the

proof follows.

4.B Computation for E[W (V∗n)
3]

Recall that(
W (V∗n)

)r
=

∑
k1,··· ,kr∈[n]

wk1 . . .wkr1{V
∗
n  k1, . . . ,V∗n  kr}.

For the third moment, the leading contributions arise from the structures
given in Figure 3. Thus,

E
[(

W (V∗n)
)3
]

6 E
[
(W∗n)

3
]
+

E [D∗n] (E [D ′nWn])
3σ3(n)

2

(E [D ′n])5(1 − ν ′n)5

+
E [D∗n(D

∗
n − 1)(D∗n − 2)] (E [D ′nWn])

3

(E [D ′n])3(1 − ν ′n)3

+
E [D∗n] (E [D ′nWn])

3σ4(n)

(E [D ′n])4(1 − ν ′n)4 +
E [D∗n(D

∗
n − 1)] (E [D ′nWn])

3σ3(n)

(E [D ′n])4(1 − ν ′n)4

= O(n4α−1 +n6α−2+3δ +n4α−1+3δ +n4α−1+4δ +n6α−2+4δ) = o(n2δ+1),

and the proof follows.
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Chapter 4 Metric space limit

4.C Proofs of Lemmas 4.4.9 and 4.4.10

Proof of Lemma 6.3. Recall the representation of S̄jn(t) from (4.47). It is enough
to show that

sup
t∈[0,T ]

n−α

∣∣∣∣ ∑
i∈[n]

d ′i

(
Ini (tn

α+δ) −
d ′i
` ′n
tnα+δ

)∣∣∣∣
= sup
t∈[0,T ]

n−α|Mn(tn
α+δ)|

P−→ 0.

Fix any T > 0 and define ` ′n(T) = ` ′n − 2Tnα+δ − 1, and M ′n(l) =∑
i∈[n] d

′
i(I
n
i (l) − (di/`

′
n(T))l). Note that

sup
t∈[0,T ]

n−α|Mn(tn
α+δ) −M ′n(tn

α+δ)|

6 Tnδ
(2Tnα+δ − 1)

∑
i∈[n] d

′2
i

` ′n(T)2 = oP(1),

and thus the proof reduces to showing that

sup
t∈[0,T ]

n−α|M ′n(tn
α+δ)|

P−→ 0. (4.83)

Note that, uniformly over l 6 Tnα+δ,

P (Ini (l+ 1) = 1 | Fl) 6
d ′i
` ′n(T)

on the set {Ini (l) = 0}.

Therefore,

E
[
M ′n(l+ 1) −M ′n(l) | Fl

]
= E

[ ∑
i∈[n]

n−αd ′i

(
Ini (l+ 1) − Ini (l) −

d ′i
` ′n(T)

) ∣∣∣Fl]

=
∑
i∈[n]

n−αd ′i

(
E
[
Ini (l+ 1)

∣∣Fl]1{Ini (l) = 0}−
d ′i
` ′n(T)

)
6 0.

Thus (M ′n(l))
Tnα+δ

l=1 is a super-martingale. Further, uniformly for all l 6
Tnα+δ,

P (Ini (l) = 0) 6
(

1 −
d ′i
` ′n

)l
. (4.84)
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Thus, Assumption 2 gives

n−α
∣∣E[M ′n(l)]

∣∣
6 n−α

∑
i∈[n]

d ′i

(
1 −

(
1 −

d ′i
` ′n

)l
−
d ′i
` ′n
l

)
+n−αl

∑
i∈[n]

d ′2i

(
1

` ′n(T)
−

1
` ′n

)

6
l2

2` ′2nnα
∑
i∈[n]

d ′3i + o(1) = o(1),

where we have used the fact that

n−αl
∑
i∈[n]

d ′2i (1/`
′
n(T) − 1/` ′n) = O(n

2ρ+1−α−2) = O(n(τ−4)/(τ−1)),

uniformly for l 6 Tnα+δ and, in the last step, that fact that δ < η. Therefore,
uniformly over l 6 Tnα+δ,

lim
n→∞

∣∣E[M ′n(l)]
∣∣ = 0. (4.85)

Now, note that for any (x1, x2, . . . ), 0 6 a + b 6 xi and a,b > 0 one has∏R
i=1(1 − a/xi)(1 − b/xi) >

∏R
i=1(1 − (a+ b)/xi). Thus, for all l > 1 and

i 6= j,
P
(
Ini (l) = 0, Inj (l) = 0

)
6 P (Ini (l) = 0)P

(
Inj (l) = 0

)
(4.86)

and therefore Ini (l) and Inj (l) are negatively correlated. Observe also that,
uniformly over l 6 Tbn,

Var (Ini (l)) 6 P (Ini (l) = 1)

6
l∑

l1=1

P (vertex i is first discovered at stage l1) 6
ld ′i
` ′n(T)

.
(4.87)

Therefore, using the negative correlation in (4.86), uniformly over l 6 Tnα+δ,

n−2αVar
(
M ′n(l)

)
6

l

` ′n(T)n2α

∑
i∈[n]

d ′3i = o(1). (4.88)

Now we can use the super-martingale inequality [147, Lemma 2.54.5] stating
that for any super-martingale (M(t))t>0, with M(0) = 0,

εP

(
sup
s6t

|M(s)| > 3ε

)
6 3E [|M(t)|] 6 3

(
|E [M(t)] |+

√
Var (M(t))

)
. (4.89)

Thus (4.83) follows using (4.85), (4.88), and (4.89).
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Proof of Lemma 6.4. Fix any T > 0 and recall that `n(T) = ` ′n − 2Tnα+δ − 1.
Denote W(l) =

∑
i∈[n]wiI

n
i (l). Firstly, observe that

E[W(l+ 1) −W(l) | Fl]

=
∑
i∈[n]

wiE
[
Ini (l+ 1) | Fl

]
1{Ini (l) = 0} 6

∑
i∈[n] d

′
iwi

` ′n(T)
,

uniformly over l 6 Tnα+δ. Therefore, (W̃(l))Tn
α+δ

l=1 is a super-martingale,
where W̃(l) = W(l) − (

∑
i∈[n] d

′
iwi/`

′
n)l. Again, the goal is to use (4.89).

Using (4.84), we can show that
∣∣E[W̃(l)]

∣∣ = o(nα+δ), uniformly over l 6
Tnα+δ. Also, using (4.86) and (4.87) and Assumption 4.2, Var(W̃(l)) 6∑
i∈[n]w

2
ivar(Ini (l)) = o(n

2(α+δ)), uniformly over l 6 Tnα+δ. Finally, using
(4.89), we conclude the proof.

4.D Proof sketch for Proposition 4.5.12

The proof of Proposition 4.5.12 can be carried out using similar ideas as
Chapter 3 Theorem 3.5.1. The key idea to prove Proposition 4.5.12 is that
the scaling limit is governed by the vertices having large degrees only. More
precisely, for any ε > 0 and T > 0,

lim
K→∞ lim sup

n→∞ P

(
sup
t6T

n−α

∣∣∣∣∑
i>K

ai

(
Ini (tn

ρ−δ) −
ai
`an
tnρ−δ

)∣∣∣∣ > ε) = 0.

This can be proved using martingale estimates. Thus, if one considers the
truncated sum ∑

i6K

ai

(
Ini (l) −

ai
`an
l

)
+ (νn(a) − 1) l,

with the first K (fixed) terms it is enough to show that the iterated limit
of the truncated process (first taking limn→∞ and then limK→∞) converges
to S with respect to the Skorohod J1 topology. Now, using the fact that
ai/
∑
i ai

P−→ θi/(µν), and the fact that the vertices are explored in a size-
biased manner with sizes being (ai)i>1, it follows that (see Chapter 3
Lemma 3.5.2), for each fixed K > 1,(

Ini (tn
ρ−δ)

)
i∈[K],t>0

d−→
(
1{Exp(θi/(µν)) 6 t}

)
i∈[K],t>0.

This concludes the proof of Proposition 4.5.12.
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Chapter 5

Global lower mass-bound for
critical configuration models in the
heavy-tailed regime

Abstract. We establish the global lower mass-bound property for largest connected

components in the critical window of phase transition for configuration model when

the degree distribution has an infinite third moment. The scaling limit of the critical

percolation clusters, viewed as measured metric spaces, was established in [31] with

respect to the Gromov-weak topology. Our result extends those scaling limit results to

hold under the stronger Gromov-Hausdorff-Prokhorov topology. This implies conver-

gence of global functionals such as the diameters of the critical components. Further,

our result establishes compactness of the random metric spaces, which arise as scaling

limits of critical clusters in the heavy-tailed regime.

Based on the preprint: Shankar Bhamidi, Souvik Dhara, Remco van der Hofstad, Sanchayan

Sen; Global lower mass-bound for critical configuration models in the heavy-tailed regime (2018)
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Chapter 5 Global lower mass-bound for critical components

Any connected graph C can be viewed as a metric space with the distance
between points given by ad(·, ·) for some constant a > 0, where d(·, ·) is used
as a generic notation to denote the graph-distance (i.e., number of edges in
the shortest path). Suppose that each vertex i is assigned a mass wi so that
there is a natural probability measure associated to the Borel sigma-algebra
on (C ,ad) with the measure given by µ(A) =

∑
v∈Awv/

∑
v∈C wv for any

A ⊂ C . We denote the above metric space with a measure by (C ,a,w). Fix
any δ > 0 and define the δ-lower mass of (C ,a,w) by

m(δ) :=
infv∈C

∑
u:ad(v,u)6δwu∑
u∈C wu

. (5.1)

For a sequence (Cn,an,wn)n>1 of graphs viewed as metric spaces endowed
with a measure, the global lower mass-bound property is defined as follows:

Definition 6 (Global lower mass-bound property [20]). For δ > 0, let mn(δ)
denote the δ-lower mass of (Cn,an,wn). Then (Cn,an,wn)n>1 is said to
satisfy the global lower mass-bound property if and only if supn>1 mn(δ)

−1 <∞ for any δ > 0. When the sequence (Cn)n>1 is a collection of random
graphs, (Cn,an,wn)n>1 is said to satisfy the global lower mass-bound prop-
erty if and only if (mn(δ)−1)n>1 is a tight sequence of random variables for
any δ > 0.

The aim of this chapter is to prove the global lower mass-bound property
for connected components of a configuration model at criticality, when the
third moment of the empirical degree distribution tends to infinity. Infor-
mally speaking, the global lower mass-bound property ensures that all the
small neighborhoods have mass bounded away from zero, so that the graph
does not have any light spots and the total mass is well-distributed over the
whole graph. This has several interesting consequences in the theory of crit-
ical random graphs, which we discuss in detail below after the formal state-
ment of the result. We start by defining the configuration model and state
the precise assumptions, followed by a formal statement of the main result.
Subsequently, we discuss some implications of this result in the context of
recent scaling limit results for critical percolation on a configuration model.

5.1 Main results

Fix τ ∈ (3, 4). Throughout this chapter we will use the shorthand notation

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (τ− 3)/(τ− 1).
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5.1 Main results

Further, we assume the following conditions on the degree sequences of
CMn(d):

Assumption 5.1 (Degree sequence). For each n > 1, let d = dn = (d1, . . . ,dn)
be a degree sequence satisfying d1 > d2 > . . . > dn. We assume the following
about (dn)n>1 as n→∞:

(i) (High-degree vertices) For each fixed i > 1,

n−αdi → θi,

where θ = (θ1, θ2, . . . ) ∈ `3↓ \ `2↓ .

(ii) (Moment assumptions) Let Dn denote the degree of a typical vertex, i.e.
a vertex chosen uniformly at random, independently of CMn(d). Then,
Dn converges in distribution to some discrete random variable D and

1
n

∑
i∈[n]

di → µ := E[D],
1
n

∑
i∈[n]

d2
i → µ2 := E[D2],

lim
K→∞ lim sup

n→∞ n−3α
n∑

i=K+1

d3
i = 0.

(iii) For all sufficiently large n, the following holds uniformly over i ∈ [n]

and x > 0:

n−α
∑

j:dj>xnα

dj > x
−b,

( di
nα

)b−1
n−2α

∑
j6i

d2
j > C (5.2)

for some b ∈ (1, 2). Further, lim supn→∞∑i>1 e−n
−2α∑i

j=1 d
2
j <∞.

(iv) Let n1 be the number of degree-one vertices. Then n1 = Θ(n), which is
equivalent to assuming that P (D = 1) > 0.

(v) The weight sequence w = (wi)i∈[n] satisfies

lim
n→∞ 1

`n

∑
i∈[n]

diwi = µw, max
{ ∑
i∈[n]

diw
2
i,
∑
i∈[n]

d2
iwi

}
= O(n3α).

Assumption 5.1 (i)–(iii) are the general set of assumptions on the degree
distribution under which the scaling limit for the component sizes, surplus
edges and the metric structure of critical configuration model was proved in
[31, 69]. These assumptions are applicable for a configuration model with
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Chapter 5 Global lower mass-bound for critical components

power-law degree distribution with exponent τ ∈ (3, 4). More precisely, if
F is a distribution function on non-negative integers satisfying (1 − F)(x) =

Cxτ−1, then Assumptions 5.1 (i)–(iv) is satisfied when (a) di = (1−F)−1(i/n),
(b) di’s are i.i.d. samples from F [69, Section 2]. Thus, above assumptions
are applicable for configuration model with power-law degree distribution
with exponent τ ∈ (3, 4). We note that Assumption 5.1 (iv) is required for
technical purposes, which was not required in [31, 69]. Assumptions 5.1 (v)
for the weight sequence is satisfied for wi = 1 or wi = di for all i ∈ [n].
wi = 1 is equivalent to the normalized counting measure on C . Moreover,
we assume that the configuration model lies within the critical window of
the phase transition, i.e., for some λ ∈ R,

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λn−η + o(n−η). (5.3)

We denote the i-th largest connected component of CMn(d) by C(i). For each
v ∈ [n] and δ > 0, let Nv(δ) denote the δnη neighborhood of v in CMn(d).
For each i > 1, define

mni (δ) = inf
v∈C(i)

n−ρ
∑

k∈Nv(δ)
wk. (5.4)

For CMn(d) satisfying Assumption 5.1 and (5.3), the total mass of compo-
nents n−ρ

∑
v∈C(i)

wv is known to converge to some non-degenerate random
variable with support (0,∞) [69, Theorem 21]. Therefore, it is enough to
rescale by nρ in (5.4) instead of the total weight of the components as given
in (5.1). The following theorem is the main result of this chapter:

Theorem 5.1.1 (Global lower mass-bound). Suppose that Assumption 5.1 and
(5.3) holds. Then, for each fixed i > 1, (C(i),n−η,w)n>1 satisfies global lower
mass-bound, i.e., for any δ > 0, the sequence (mni (δ)

−1)n>1 is tight.

By the results of [110], under Assumption 5.1, Therefore,

lim inf
n→∞ P(CMn(d) is simple) > 0.

This immediately implies the following corollary:

Corollary 5.1.2. Under Assumption 5.1 and (5.3), the largest components of
UMn(d) also satisfies the global lower mass-bound property.

Next we state another important corollary, which says that the global
lower mass-bound property is also satisfied by critical percolation clusters of
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CMn(d) and UMn(d). To this end, let us assume that

lim
n→∞

∑
i∈[n] di(di − 1)∑

i∈[n] di
= ν > 1.

CMn(d) is super-critical in the sense that there exists a unique giant compo-
nent whp for ν > 1,, and when ν < 1, all the components have size oP(n)

[114, 133]. Percolation refers to deleting each edge of a graph independently
with probability 1 − p. The critical window for percolation was studied in
[31, 69], and is defined by the values of p given by

pc(λ) =
1
νn

+
λ

nη
+ o(n−η). (5.5)

Let C(i)(pc(λ)) denote the i-th largest component of the graph obtained by
percolation with probability pc(λ) on the graph CMn(d). Then the following
result holds:

Corollary 5.1.3. Under Assumption 5.1 and (5.5), (C(i)(pc(λ)),n−η,w) satisfies
the global lower mass-bound property, for each fixed i > 1.

5.1.1 Discussion

Gap between Gromov-weak and GHP convergence. For formal definitions
of the Gromov-weak topology, and Gromov-Hausdorff-Prokhorov (GHP)
topology on the space of compact measured metric spcaes, we refer the
reader to [20, 36, 91]. The Gromov-weak topology is an analogue of finite-
dimensional convergence, since it takes into account distances between a fi-
nite number of sampled points from the underlying metric space. Thus,
global functionals such as the diameter is not continuous with respect to this
topology. Further, under the Gromov-weak convergence, the limit of com-
pact measured metric spaces may not be compact. On the other hand, GHP
convergence imposes a stronger topology which takes care of both the above
points. The global lower mass (GLM) bound property acts as a bridge be-
tween these two notions of convergence. In fact, Gromov-weak convergence
and GLM-bound together imply GHP-convergence when the support of the
limiting measure is the entire limiting space [20, Theorem 6.1], in which case
the limiting metric space is always compact. Thus, given Gromov-weak con-
vergence, in order to derive convergence of global functionals like diameter,
it is desirable to establish the GLM-bound.
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Chapter 5 Global lower mass-bound for critical components

Scaling limit of critical percolation clusters. The scaling limit for largest
critical percolation clusters C(i)(pc(λ)), viewed as a measured metric space,
was derived in Chapter 4 with respect to the Gromov-weak topology. Fol-
lowing the above discussion, Corollary 5.1.3 establishes that the convergence
in Chapter 4 holds with respect to the GHP topology. This in particular es-
tablishes that the limiting metric spaces in [31, 36] are compact almost surely.
Due to Assumption 5.1 (iv), some additional conditions are imposed on θ.
For example, the assumption is satisfied for θi ∈ [L1(i)i

−a1 ,L2(i)i
−a2 ], where

a1,a2 ∈ (1/3, 1/2), and L1,L2 are slowly varying functions. This is much less
restrictive than assuming θi = i−α as in [36]. The compactness of the lim-
iting metric spaces in [31, 36] was also established under some regularity
conditions in a very recent preprint [56] using independent methods as in
this chapter. In addition to the compactness of the limiting metric space, we
also have the convergence of the diameters, i.e.,(

n−ηdiam(C(i)(pc(λ)))
)
i>1

d−→ (Xi)i>1

with respect to the product topology, where (Xi)i>1 is a non-degenerate ran-
dom vector. In fact Xi corresponds to the diameter of the limiting object of
C(i)(pc(λ)) from [31].

Proof ideas and technical motivation for this work. The key idea of the
proof of Theorem 5.1.1 consists of two main steps. The first step is to show
that the neighborhoods of the high-degree vertices, called hubs, have mass
Θ(nρ). Secondly, the probability of any small εnη neighborhood not con-
taining hubs is arbitrarily small. These two facts, summarized in Proposi-
tions 5.2.1 and 5.2.2 below, together ensure that the total mass of any neigh-
borhood of C(i) of radius εnη is bounded away from zero. These two facts
were proved in [36] in the context of inhomogeneous random graphs. How-
ever, the proof techniques are completely different here. The main advantage
in [36] was that the breadth-first exploration of components could be dom-
inated by a branching process with mixed Poisson progeny distribution that
is independent of n. The above facts allow one to use existing literature and
estimate the probabilities that a long path exists in the branching process
in [36]. However, such a technique is specific to rank-one inhomogeneous
random graphs and does not work in the cases where the above stochas-
tic domination is not possible. This was partly a motivating reason for this
work. Moreover, the final section contains many results about exponential
bounds for the number of edges in the large components (Proposition 5.4.1),
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5.2 Proof of Theorem 5.1.1

a coupling of the neighborhood exploration with a branching process with
stochastically larger progeny distribution (Section 5.4.2), which is interesting
in its own right.

Organization of this chapter. The rest of this chapter is organized as fol-
lows: In Section 5.2, we state two key propositions, one involving the total
mass of small neighborhoods, and the second one involving a bound on the
diameter. The proof of Theorem 5.1.1 is completed in Section 5.2. In Sec-
tion 5.3 we derive the required bounds on the total mass of small neighbor-
hoods. In Section 5.4 we obtain the required bounds on the diameter.

5.2 Proof of Theorem 5.1.1

In this section, we first state the two key propositions in Propositions 5.2.1,
and 5.2.2, and then complete the proof of Theorem 5.1.1. The following shows
that hub i has sufficient mass close to it with high probability:

Proposition 5.2.1. For each fixed i > 1 and ε2 > 0, there exists δi,ε2 > 0 and
ni,ε2 > 1 such that, for any δ ∈ (0, δi,ε2 ] and n > ni,ε2 ,

P

( ∑
k∈Ni(δ)

wk 6 θiδn
ρ

)
6

ε2

2i+1 . (5.6)

Denote by G>Kn the graph obtained by removing the vertices 1, . . . ,K hav-
ing the largest degrees and the associated edges from CMn(d). Note that
G>Kn is a configuration model conditional on its degree sequence. Let ∆>K

denote the maximum of the diameters of the connected components of G>Kn .
For a component C ⊂ CMn(d), we write ∆(C ) to denote its diameter. The
following proposition shows that the diameter of all components of G>Kn is
small with high probability:

Proposition 5.2.2. Assume that Assumption 5.1 holds. Then, for any ε1, ε2 > 0,
there exists K = K(ε1, ε2) and n0 = n0(ε1, ε2) such that for all n > n0,

P
(
∆>K > ε1n

η
)
6
ε2

4
. (5.7)

Proof of Theorem 5.1.1. Fix any i > 1 and ε1, ε2 > 0. Let us choose K and n0

satisfying (5.7). In view of Proposition 5.2.1, let δ0 = min{ε1, δ1,ε2 , . . . , δK,ε2 }/2,
and n ′0 = max{n0,n1,ε2 , . . . ,nK,ε2 }. Thus, for all n > n ′0, (5.6) is satisfied for
all i ∈ [K]. Define

F1 := {∆>K < ε1n
η/2}, F2 := {∆(C(i)) > ε1n

η/2}.
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Chapter 5 Global lower mass-bound for critical components

Notice that, on the event F1 ∩ F2, it must be that one of the vertices 1, 2, . . . ,K
belongs to C(i), and the union of the neighborhoods of [K] of radius dε1n

η/2e+
1 ≈ ε1n

η/2 covers C(i). Therefore, given any vertex v ∈ C(i), Nv(ε1) contains
at least one of the neighborhoods (Nj(ε1/2))j∈[K]. This observation yields
that

inf
v∈C(i)

n−ρ
∑

k∈Nv(ε1)

wk > min
j∈[K]

n−ρ
∑

k∈Nj(ε1/2)

wk > min
j∈[K]

n−ρ
∑

k∈Nj(δ0)

wk.

Thus, for all n > n ′0

P

(
F1 ∩ F2 ∩

{
inf
v∈C(i)

n−ρ
∑

k∈Nv(ε1)

wk 6 θKδ0

})

6
∑
j∈[K]

P

( ∑
k∈Nj(δ)

wk 6 θjδ0n
ρ

)
6
ε2

2
.

(5.8)

Further, on the event Fc2 ,
∑
k∈Nv(ε1)

wk =
∑
k∈C(i)

wk for all v ∈ C(i). More-
over, using [69, Theorem 21], it follows that n−ρ

∑
k∈C(i)

wk converges in
distribution to a random variable with strictly positive support. Using the
Portmanteau theorem, the above implies that for any δ ′0 > 0, there exists
ñ0 = ñ0(ε2, δ ′0) such that, for all n > ñ0,

P

(
n−ρ

∑
k∈C(i)

wk 6 δ
′
0

)
6
ε2

4
.

Therefore,

P

(
Fc2 ∩

{
inf
v∈C(i)

n−ρ
∑

k∈Nv(ε1)

wk 6 δ
′
0

})
6
ε2

4
. (5.9)

Now, using (5.8), (5.9) together with Proposition 5.2.2, it follows that, for any
n > max{n ′0, ñ0},

P

(
inf
v∈C(i)

n−ρ
∑

k∈Nv(ε1)

wk 6 min{δ ′0, θKδ0}

)
6 ε2.

This completes the proof of Theorem 5.1.1.

5.3 Lower bound on the total mass of neighborhoods of
hubs

In this section, we prove Proposition 5.2.1.
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5.3 Lower bound on the total mass of neighborhoods of hubs

Proof of Proposition 5.2.1. Let us denote the component of CMn(d) containing
vertex i by \(i). Consider the breadth-first exploration of \(i) starting from
vertex i, given by the following algorithm:

Algorithm 5.1 (Exploring the graph). The algorithm carries along vertices
that can be alive, active, exploring and killed and half-edges that can be
alive, active or killed. We sequentially explore the graph as follows:

(S0) At stage l = 0, all the vertices and the half-edges are alive, and only the
half-edges associated to vertex i are active. Also, there are no exploring
vertices except i.

(S1) At each stage l, if there is no active half-edge, choose a vertex v propor-
tional to its degree among the alive (not yet killed) vertices and declare
all its half-edges to be active and declare v to be exploring. If there is an
active vertex but no exploring vertex, then declare the smallest vertex to
be exploring.

(S2) At each stage l, take an active half-edge e of an exploring vertex v and
pair it uniformly to another alive half-edge f. Kill e, f. If f is incident
to a vertex v ′ that has not been discovered before, then declare all the
half-edges incident to v ′ active, except f (if any). If degree(v ′) = 1 (i.e.
the only half-edge incident to v ′ is f) then kill v ′. Otherwise, declare v ′

to be active and larger than all other vertices that are alive. After killing
e, if v does not have another active half-edge, then kill v also.

(S3) Repeat from (S1) at stage l+ 1 if not all half-edges are already killed.

Call a vertex discovered if it is either active or killed. Let Vl denote the set of
vertices discovered up to time l and Ini (l) := 1{i ∈ Vl}. Define the exploration
process by

Sn(l) = di+
∑
j6=i

djI
n
j (l)− 2l = di+

∑
j6=i

dj

(
Inj (l) −

dj

`n
l

)
+

(
1
`n

∑
j6=i

d2
j − 2

)
l.

(5.10)
Note that the exploration process keeps track of the number of active half-
edges. Thus, \(i) is explored when Sn hits zero. Moreover, since one edge is
explored at each step, the hitting time to zero is the total number of edges in
\(i). Define the re-scaled version S̄n of Sn by S̄n(t) = n−αSn(btnρc). Then,
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by Assumption 5.1 and (5.3),

S̄n(t) = θi −
θ2
it

µ
+n−α

∑
j6=i

dj

(
Inj (tn

ρ) −
dj

`n
tnρ

)
+ λt+ o(1).

Using arguments similar to [69, Theorem 8], it can be shown that

S̄n
d−→ S∞, (5.11)

with respect to the Skorohod J1 topology, where

S∞(t) = θi − θ2
it

µ
+
∑
j 6=i

θj

(
Ij(t) −

θjt

µ

)
+ λt,

with Ij(s) := 1
{
ξj 6 s

}
and ξj ∼ Exponential(θj/µ) independently.

Let hn(u) (respectively h∞(u)) denote the first hitting time of S̄n (respec-
tively S∞) to u. More precisely,

hn(u) := inf{t : S̄n(t) 6 u or S̄n(t−) 6 u},

and define h∞(u) similarly by replacing S̄n(t) by S̄∞(t) above. Note that
for any u > 0, h∞(u) < h∞(u−) implies that S̄∞(t) has a jump at u, which
is a zero probability event. Thus, [107, Chapter VI.2, Proposition 2.11] is
applicable and together with the convergence in (5.11), this yields

n−ρhn(u)
d−→ h∞(u)

for any u > 0. Further, the distribution of h∞(u) do not contain any atoms.
This follows using [33, Lemma 3.5]. Now an application of Portmanteau
theorem yields that there exist βε2,i > 0 and ni,ε2 > 1 such that, for all
n > ni,ε2 ,

P(hn(θi/2) 6 nρβε2,i) 6
ε2

2i+1 .

Firstly the goal is to show that there exists a δi,ε such that for any δ ∈ (0, δi,ε2 ],∑
k∈Ni(δ)

dk 6 θiδn
ρ =⇒ hn(θi/2) 6 nρβε2,i.

Recall that Nv(δ) denotes the δnη neighborhood of v in CMn(d). To this
end, let ∂(j) denote the set of vertices at distance j from i. Let Ej1 denote
the total number of edges between vertices in ∂(j) and ∂(j− 1), and let Ej2
denote the number of edges within ∂(j− 1). Define Ej = Ej1 + Ej2. Fix any
δ < 2βε,i/θi. Note that if

∑
k∈Ni(δ) dk 6 θiδn

ρ, then the total number
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5.4 Diameter after removing hubs

of edges in Ni(δ) is at most θiδnρ/2. Thus there exists j 6 δnη such that
Ej 6 θiδn

ρ/2δnη = θin
α/2. This implies that Sn must go below θin

α/2
before exploring all the vertices in Ni(δ). This is because we are exploring
the components in a breadth-first manner and S̄n keeps track of the number
of active half-edges which are the potential connections to vertices at the next
level. Since one edge is explored in each time step, and we rescale time by
nρ, this implies that

hn(θi/2) 6
1
2
n−ρ

∑
k∈Ni(δ)

dk 6 δθi/2 6 βε,i.

Therefore, for all n > ni,ε,

P

( ∑
k∈Ni(δ)

dk 6 θiδn
ρ

)
6 P(hn(θi/2) 6 βε,i) 6

ε

2i+1 . (5.12)

Finally, to conclude Proposition 5.2.1 from (5.12), we use the following result
from [69, Lemma 22]: For any T > 0,

sup
u6T

∣∣∣∣ ∑
i∈[n]

wiI
n
i (un

ρ) −

∑
i∈[n] diwi
`n

unρ
∣∣∣∣ = oP(n

ρ).

Note that [69, Lemma 22] does not use
∑
i∈[n]wi = O(`n) from [69, As-

sumption 3], and thus it is omitted in Assumption 5.1. The proof of Proposi-
tion 5.2.1 now follows.

5.4 Diameter after removing hubs

Recall the definition of the graph G>Kn from Proposition 5.2.2. If we keep on
exploring G>Kn in a breadth-first manner using Algorithm 5.1 and ignore the
cycles created, we get a random tree. The idea is to couple neighborhoods of
i in G>Kn with a suitable branching process such that the progeny distribution
of the branching process dominates the number of children of each vertices
in the breadth-first tree. Therefore, if there is a long path in G>Kn which makes
the diameter large, that long path must be present in the branching process as
well under the above coupling. In this way, the question about the diameter
of G>Kn reduces to the question about the height of a branching process. To
estimate the height suitably, we use a beautiful recent technique by Addario-
Berry from [1] which allows one to relate the height of a branching process
to the sum of inverses of the associated breadth-first random walk.
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In Section 5.4.1, we establish large deviation bounds for the number of
edges within components. This allows us to come up with the desired cou-
pling in Section 5.4.2. In Section 5.4.3, we analyze the breadth-first random
walk to show that the height of the branching process being larger than εnη

has small probability. These bounds are different from those derived in [1]
since the branching process depends on n and there is a joint scaling involved
between the distances and the mean of the branching process.

5.4.1 Asymptotics for the number of edges

For a graph G, let E(G) denote the number of edges in G.

Proposition 5.4.1. There exists ε0 > 0 such that the following holds: For all ε ∈
(0, ε0), there exists δ > 0 such that for all sufficiently large n

P(E(C (i)) > nρ+ε) 6 Ce−Cn
δ
,

for some absolute constant C > 0 and for all i ∈ [n].

Consider exploring CMn(d) with Algorithm 5.1, and the associated ex-
ploration process defined in (5.10). Let us denote by d(l) the degree of the
vertex found at step l. If no new vertex is found at step l, then d(l) = 0. Also,
let Fl denote the sigma algebra containing all the information revealed by
the exploration process upto time l. Thus,

Sn(0) = di, and Sn(l) = Sn(l− 1) + (d(l) − 2).

Using the Doob-Meyer decomposition, one can write

Sn(l) =Mn(l) +An(l),

where Mn is a martingale with respect to (Fl)l>1. The drift An and the
quadratic variation 〈Mn〉 of Mn are given by

An(l) =

l∑
j=1

E
[
d(j) − 2|Fj−1

]
, 〈Mn〉(l) =

l∑
j=1

Var
(
d(j)|Fj−1

)
.

Fix ε0 = (4 − τ)/(τ − 1). We use C as a generic notation for an absolute
constant whose value can be different in different places. We will show that
for any ε ∈ (0, ε0), there exists δ such that the following two lemmas hold
with tn := nρ+ε:

Lemma 5.4.2. For all sufficiently large n, P(n−(α+ε)Mn(tn) > 1) 6 Ce−Cn
δ
.
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Lemma 5.4.3. For all K > 1 the following bound holds sufficiently large n:

P

(
n−(α+ε)An(tn) > −C

K∑
i=1

θ2
i

)
6 Ce−Cn

δ
.

Proof of Proposition 5.4.1 subject to Lemmas 5.4.2, 5.4.3. Note that, we can choose
K > 1 such that

∑K
i=1 θ

2
i is arbitrarily large as θ /∈ `2↓ . Thus, if n−(α+ε)Mn(tn)

6 1 and n−(α+ε)An(tn) 6 −
∑K
i=1 θ

2
i, then n−(α+ε)Sn(tn) < 0, and there-

fore C (i) must be explored before time tn. Thus, Lemmas 5.4.2 and 5.4.3
together complete the proof of Proposition 5.4.1.

Proof of Lemma 5.4.2. Firstly note that ε0 < α and therefore tn = o(n). Thus,
uniformly over j 6 tn,

Var
(
d(j)|Fj−1

)
6 E[d2

(j)|Fj−1] =

∑
j/∈Vj−1

d3
j

`n − 2j+ 2
6

∑
j∈[n] d

3
j

`n − 2tn + 2
6 Cn3α−1,

so that almost surely,

〈Mn〉(tn) 6 tnCn3α−1 = Cn2α+ε.

Also, d(j) 6 Cnα almost surely. We can now use Freedman’s inequality [87,
Proposition 2.1] to conclude that

P(Mn(tn) > n
α+ε) 6 exp

(
−

n2α+2ε

2(nαnα+ε +Cn2α+ε)

)
6 Ce−Cn

ε
,

and the proof follows.

Proof of Lemma 5.4.3. Note that

E
[
d(i) − 2|Fi−1

]
=

∑
j/∈Vi−1

d2
j

`n − 2i+ 1
− 2

=
1
`n

∑
j∈[n]

dj(dj − 2) −
1
`n

∑
j∈Vi−1

d2
j +

(2i− 1)
∑
j/∈Vi−1

d2
j

`n(`n − 2i+ 1)

6 λn−η −
1
`n

∑
j∈Vi−1

d2
j +

(2i− 1)
(`n − 2i+ 1)2

∑
j∈[n]

d2
j + o(n

−η)

uniformly over i 6 tn. Therefore, for all sufficiently large n,

An(tn) 6 λn
α+ε −

1
`n

tn∑
i=1

∑
j∈Vi−1

d2
j +

Ct2n
`n

+ o(nα+ε)

= λnα+ε −
1
`n

tn∑
i=1

∑
j∈Vi−1

d2
j + o(n

α+ε),

(5.13)
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where in the last step we have used the fact that ε < (4 − τ)/(τ− 1). Let us
denote the second term above by (A). To analyze (A), define the event

An :=
{
∃j : dj > nα−ε/2, j /∈ Vtn/2

}
.

Thus, for all sufficiently large n,

P(An) 6
∑

j:dj>n
α−ε/2

(
1 −

di
`n − 2tn

)tn
6 ne−n

ε/2
. (5.14)

On the event Acn,

(A) =
1
`n

tn∑
i=1

∑
j∈[n]

d2
j1{j ∈ Vi−1}

>
1
`n

tn∑
i= tn

2 +1

K∑
j=1

d2
j1{j ∈ Vi−1} > Cn

α+ε
K∑
j=1

θ2
j .

(5.15)

Combining (5.13), (5.14) and (5.15) now completes the proof.

5.4.2 Coupling with Branching processes

Define the event Kn := {E(C(i)) > nρ+ε}. On the event Kcn, we can couple
the breath-first exploration starting from vertex i with a suitable branching
process. Consider the branching process Xn(i) starting with di individuals,
and the progeny distribution ξ̄n given by

P
(
ξ̄n = k

)
= p̄k =


(k+1)nk+1

¯
`n

for k > 1,
n1−2nρ+ε

¯
`n

for k = 0,
(5.16)

where
¯
`n = `n − 2nρ+ε. Note that, at each step of the exploration, we have

at most (k+ 1)nk+1 half-edges that are incident to vertices having k further
unpaired half-edges. Further, on the event Kcn, we have at least

¯
`n choices for

pairing. Therefore, the number of active half-edges discovered at each step
in the breadth-first exploration of the neighborhoods of i is stochastically
dominated by ξ̄n. This proves the next proposition, which we state after
setting up some notation. Recall that G>i−1

n denotes the graph obtained by
deleting vaertices [i− 1] and the associated edges from CMn(d). Let ∂i(r)
denote the number of vertices at distance r from i in the graph G>i−1

n . Let
ξ̄n(i) denote the random variable with the distribution in (5.16) truncated in
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5.4 Diameter after removing hubs

such a way that {d1, . . . ,di−1} are excluded from the support. More precisely,

P(ξ̄n(i) = k) =


(k+1)nk+1

L for 1 6 k 6 di,
n1−2nρ+ε

L for k = 0,

where L is the normalizing constant. Let Xn,res(i) denote the branching pro-
cess starting with di individuals and progeny distribution ξ̄n(i) and let ∂̄i(r)
denotes the number of individuals at generation r of Xn(i). Then the above
stochastic domination argument immediately yields the next proposition:

Proposition 5.4.4. For all r > 1 and i ∈ [n] and n > 1:

P(∂i(r) 6= ∅) 6 P(∂̄i(r) 6= ∅) + P(E(C (i)) > nρ+ε).

Before going into the next section, we note that, by Assumption 5.1,

ν̄n(i) = E
[
ξ̄n(i)

]
=

1
¯̀
n

∑
j>i

dj(dj − 1) =
1
`n

∑
j>i

dj(dj − 1) +O(n−α+ε)

6 1 −

(
Cn−2α

∑
j6i

d2
j

)
n−η + o(n−η).

Thus for i large and n > n0,

E
[
ξ̄n(i)

]
6 1 −βin

−η, where βi = C
∑
j6i

θ2
j . (5.17)

This fact will be crucially used in the next section.

5.4.3 Estimating heights of trees via random walks

Consider a branching process Xn,res(i) starting with di individuals, and
progeny distribution ξ̄n(i) given by (5.16). Thus the progeny distribution
satisfies

E[ξ̄n(i)] 6 1 −βin
−η, Var

(
ξ̄n(i)

)
6 Cn3α−1, (5.18)

where the choices of βi’s are given by (5.17). We will prove the following
theorem in this section:

Theorem 5.4.5. Fix any ε > 0 and let r0 = εnη/2. Then for all i ∈ [n]

P(∂̄i(r0) 6= ∅) 6 C2−βi/C,

for some large constant C > 0.
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Chapter 5 Global lower mass-bound for critical components

The estimate in Theorem 5.4.5 is interesting in its own right and do not
follow from previous asymptotic results in [1, 126]. This is due to the depen-
dence of the branching process and the height on n. In the proof of Theo-
rem 5.4.5, we leverage the high-level ideas from [1]. Define the breadth-first
random walk by

sn(u) = sn(u− 1) + ζu − 1, sn(0) = di, (5.19)

where (ζu)u>0 are i.i.d. observations from the distribution of ξ̄n(i). Define
the function

Hn(t) =
∑
u∈[0,t)

1
sn(u)

,

and σ = inf{u : sn(u) = 0}. It was shown in [1, Proposition 1.7] that the
height of a branching process is at most 3Hn(σ). Thus Theorem 5.4.5 can be
concluded from the following estimate:

Proposition 5.4.6. For any ε > 0 and i ∈ [n],

P(Hn(σ) > εn
η) 6 C2−εβi/C,

for some large constant C > 0.

Denote Il := [2l−1di, 2l+2di) for l > 0, and Il := [di2l−2,di2l+1) for l < 0.
Note that Il’s are not disjoint intervals. We decompose the possible values
of the random walk (5.19) into different scales. At each time t, the scale of
sn(t), denoted by scl(sn(t)), is an integer. Suppose that scl(sn(u)) = l for
some u > 0. A change of scale occurs when sn leaves Il. That is, at time
T := inf{t > u : sn(t) /∈ Il}, a change of scale occurs, and the new scale is
given by scl(sn(T)) = l ′, where l ′ ∈ Z is such that sn(T) ∈ (2l

′−1di, 2l
′
di].

Now, the next change of scale occurs at time T ′ := inf{t > T : sn(t) /∈ Il ′ },
and the scale remains the same until T ′, i.e., scl(sn(t)) = l ′ for all T 6 t < T ′.
Define

Hnl(t) :=
∑

u∈[0,t), scl(sn(u))=l

1
sn(u)

, so that Hn(t) =
∑
l∈Z

Hnl(t).

Denote Tnl(t) := #{u ∈ [0, t) : scl(sn(u)) = l}, and note that for l > 0

2l−1diHnl(t) 6 Tnl(t) 6 2l+2diHnl(t),

and a similar inequality holds for l < 0. Therefore, for any x > 0 and l > 0,

P
(
Hnl(σ) >

x

2l−1di

)
6 P(Tnl(σ) > x), (5.20)
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and a similar inequality holds for l < 0. Thus the proof of Proposition 5.4.6
follows from a careful estimate of the final term in (5.20), which is given
by the next lemma. Let s ′n be a random walk given by the same recursion
relation as (5.19), except only that s ′n(0) ∈ Il. Let σnl := min{t > 1 : s ′n(t) /∈
Il} and rnl := min{t > 1 : supx∈Il Px(σnl > t) 6 1/2}.

Lemma 5.4.7. For all n > 1, and l ∈ Z:

P(Tnl(σ) > arnl) 6 Cmin{1, 2−l}2−a/C,

for some large constant C > 0.

Proof. Firstly, note that Tnl(σ) 6= 0 if and only if scl(sn(u)) = l for some
u < σ. The number of upcrossings of an interval [a,b] by sn is defined to
be the supremum of the integers k such that there exists times (uj, tj)kj=1
satisfying u1 < t1 < u2 < · · · < tk, and sn(uj) < a < b < sn(tj) for all
j ∈ [k]. Now, for any l > 2, if scl(sn(u)) = l occurs, then sn must have made
an upcrossing of the intervals ((2j−1di, 2jdi])16j6l. Using [1, Lemma 3.1], it
follows that there exists a constant C > 0 such that for any l > 2,

P(Tnl(σ) 6= 0) 6 C2−l.

Moreover, we bound P(Tnl(σ) 6= 0) by 1 for l 6 1. Next define visit(l, t)
to be the number of visits to scale l, i.e., this is the supremum over k ∈ N

such that one can find (uj, tj)kj=1 with u1 < t1 < · · · < uk < tk satisfying
scl(sn(uj)) 6= l but scl(sn(tj)) = l. Set visit(1, 0) = 1 and visit(l, t) = 0 if
scl(sn(t)) 6= l. Further, define Mnl = visit(l,σ) (total number of visits to
scale l) and tjl = #{t < σ : scl(sn(t)) = l, visit(l, t) = j} (the time spent at
scale l during the j-th visit). Thus Tnl(σ) =

∑Mnl
j=1 tjl, and for m > 2,

P

(Mnl∑
j=1

tjl > arnl

)
6 P(Mnl > m) + P

( m∑
j=1

tjl > arnl

)
.

Now sn can enter scale l from below, which yields an upcrossing of the
interval [2l−1di, 2ldi). Otherwise, sn can enter scale l from above, whence
it must be the case that while leaving the scale l during the previous visit,
the walk went from scale l to l+ 1. The latter case yields an upcrossing of
[2ldi, 2l+1di). Therefore, if Un(t, [a,b)) denotes the number of upcrossings
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of [a,b) by sn before time t, then

P(Mnl > m)

6 P
(
Un(σ, [2l−1di, 2ldi)) > (m+ 1)/2

)
+ P

(
Un(σ, [2ldi, 2l+1di) > (m+ 1)/2

)
6

1
2(m−1)/2 .

On the other hand, after each time rnl, the probability of exiting from scale l
is at most 1/2, by definition. Now, P(tjl > krnl) 6 2−k, which implies that
btjl/rnlc can be stochastically dominated by Geometric(1/2) random vari-
able. Thus, if (gi)i>1 denotes an i.i.d. collection of Geometric(1/2) random
variables,

P

( m∑
j=1

tjl > (k+m)rnl

)
6 P

( m∑
j=1

⌊ tjl
rnl

⌋
> k

)
6 P

( m∑
i=1

gi > k

)
= P(Bin(k, 1/2) < m) 6 e−(k−2m)2/2k,

where the last step follows using standard concentration inequalities such as
[115, Theorem 2.1]. Therefore, the proof follows by taking k = m = a/2.

For a sequence a = (al)l∈Z, define Vn(a) = d−1
i

∑
l∈Z alrnl/2l and

δ(a) = C
∑
l∈Z min{1, 2−l}2−Cal . Using Lemma 5.4.7 and (5.20), we can now

conclude that

P(Hn(σ) > Vn(a)) 6 δ(a). (5.21)

To apply the above bound, we need a good estimate on rnl. To apply the
above bound, we need a good estimate on rnl. Let Px denote the law of the
random walk s ′n, with s ′n(0) = x, but satisfying identical recurrence recur-
rence relation as (5.19). Suppose that σnl := min{t > 1 : sn(t) /∈ Il, sn(0) ∈
Il}, and rnl := min{t > 1 : supx∈Il Px(σnl > t) 6 1/2}. The next two lemmas
allow us to deduce such a result for l > 0 and l < 0 respectively:

Lemma 5.4.8. Fix any l > 0 and let σnl := inf{t : sn(t) /∈ Il}. Then, for all
i ∈ [n],

lim sup
n→∞ sup

x∈Il
Px

(
σnl > Cn

η di2l/2

β
1/(b−1)
i

)
6

1
2

.
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Proof. Fix any x ∈ Il. Note that for any t > 0,

Px(σnl > tn
ρ)

6 Px(Sn(tn
ρ) ∈ Il) 6 Px(Sn(tn

ρ) > 2l−1di)

= Px
(
Sn(tn

ρ) + tnρn−ηβi > 2l−1di + tn
αβi

)
6

tnρc0n
3α−1

(2ldi + tnαβi)2 6
c0tn

2α

22ld2
i

,

(5.22)

where the last step follows from Chebyshev’s inequality and the estimates

in (5.18). For l > 0, by setting t = di2l/2

nα(βi)
1/(b−1) where b is given by (5.2),

(5.22) reduces to

P(σnl > tn
ρ) 6

C

2l(di/nα)β
1/(b−1)
i

6
C

2l
, (5.23)

where we have used Assumption 5.1 in the last step. This completes the
proof of Lemma 5.4.8 using (5.23).

Lemma 5.4.9. For l > 0, and i ∈ [n],

lim sup
n→∞ sup

x∈(di/2l+2,di/2l−1)

Px

(
σnl > Cn

η di
βi2bl

)
6

1
2

.

Proof. Recall from the definition of ξn(i) from (5.18), and let (ξnj)j>1 be an
iid collection with the same distribution as ξn(i). Note that, for x ∈ Il,

Px(σnl > tn
ρ) 6 Px(Sn(tn

ρ) ∈ Il) 6 P
(
ξnj 6

di
2l−1 ∀j 6 tn

ρ
)

6

(
1 −

∑
j:dj>di/2l−1 dj

`n(1 + o(1))

)tnρ
6 exp

(
− tn−α

∑
j:dj>di/2l−1

dj

)
.

Putting t = di
nαβi2bl

and using Assumption 5.1, it follows that the right-hand
side above is at most

exp
(
−

C

(di/nα)b−1n−2α
∑
j6i d

2
j

)
,

and the proof follows.

Proof of Proposition 5.4.6. We will use the estimates of the terms appearing in
(5.21). Firstly, note from Lemmas 5.4.8, 5.4.9 that, for all sufficiently large n,

rnl 6


di2l/2

β
1/(b−1)
i

for l > 0,

di
2blβi

for l < 0.
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Chapter 5 Global lower mass-bound for critical components

Moreover, take bl = ε2l/4, for all l > 0 and bl = ε2−(b−1)l/2 for l < 0. In the
above case, there exists an absolute constant C > 0 such that

Vn(b) 6
Cεnη

βi
,

where the constant only depends on the parameter τ. Moreover, δ(b) 6
C2−ε. Therefore, (5.21) yields that

P

(
Hn >

Cεnη

βi

)
6 C2−ε.

Taking ε ′ = Cε/βi, the proof of Proposition 5.4.6 follows.

5.4.4 Proof of Proposition 5.2.2

Let us now complete the proof of Proposition 5.2.2 using Propositions 5.4.4,
and Theorem 5.4.5. Define Cres(i) to be the connected component containing
vertex i in the graph G>i−1

n = CMn(d) \ [i− 1]. Note that if ∆>K > ε1n
η, then

there exists a path in CMn(d) avoiding all the vertices in [K]. Suppose that
the minimum index among vertices on that path is i0. Then ∆(Cres(i0)) >

εnη. Therefore, ∆>K > ε1n
η implies that there exists an i > K satisfying

∆(Cres(i)) > εnη. Let ∂i(r) denotes the number of vertices at distance r
starting from vertex i in the graph G>i−1

n . Recall the definition of ∂̄ in Propo-
sition 5.4.4. Thus,

P
(
∆>K > ε1n

η
)
6
∑
i>K

P(∂i(ε1n
η/2) 6= ∅) 6 Cδ

∑
i>K

e−βi

which tends to zero if we first take n → ∞ and then take K → ∞ using
Assumption 5.1. Thus the proof follows.

5.5 Conclusion

We prove a global lower mass-bound property for the largest components of
the critical configuration model when the third moment of the degree dis-
tribution diverges to infinity. Together with the results in Chapter 4, this
proves that the scaling limits in Chapter 4 hold with respect to the Gromov-
Hausdorff-Prokhorov topology, and the limiting metric space in Chapter 4 is
almost surely compact under some regularity conditions. Also, this implies
that the diameter of these components converge to some non-degenerate ran-
dom variable after rescaling by n(τ−3)/(τ−1). The main proof technique in-
volves an exponential bound on the probability that the height of a sequence
of branching processes is large, which may be of independent interest.
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Chapter 6

Critical percolation on scale-free
random graphs: Effect of the
single-edge constraint

Abstract. In this chapter, we study the percolation critical behavior for random

graphs with degree distributions having a power-law with exponent τ ∈ (2, 3). In

this regime, the critical behavior is observed when the percolation probability tends

to zero with the network size. We identify the critical window for the configuration

model, the erased configuration model and the generalized random graph. The crit-

ical window turns out to be different for the multigraph version of the configuration

model, a feature that is not observed for τ > 3. We provide exact asymptotics of the

rescaled component sizes, and describe many structural properties of these critical

components. We also analyze the so-called barely sub/supercritical regimes, which

establishes the relevance of the critical window identified in this chapter.

Based on the preprint: Souvik Dhara, Remco van der Hofstad, Johan S.H. van Leeuwaarden;

Critical percolation on scale-free random graphs: Effect of the single-edge constraint (2018)
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Chapter 6 Critical window: Infinite second moment

All the results and the relevant literature discussed in the previous chap-
ters assume a finite second-moment condition on the degree distribution,
and thus do not include the τ ∈ (2, 3) case, where the asymptotic degree
distribution has infinite second moment but finite first moment. These net-
works are popularly known as scale-free networks [21] in the literature. One
of the well-known features of scale-free networks is that these networks
are robust under random edge-deletion, i.e., for any sequence (pn)n>1 with
lim infn→∞ pn > 0, the graph obtained by applying percolation with proba-
bility pn is always supercritical. This feature has been studied experimentally
in [7], using heuristic arguments in [58, 63, 64, 74] (see also [51, 52, 95] in the
context of optimal paths in the strong disorder regime), and mathematically
in [45]. Thus, in order to observe the percolation critical behavior, one needs
to take pc → 0 with the network size, even if the average degree of the net-
work is finite. However, obtaining the right scaling exponents for the critical
behavior was an open question in the mathematical literature.

In this chapter, we discuss the first mathematically rigorous results in
the τ ∈ (2, 3) regime for the critical behavior of component sizes and their
complexity. As canonical random graph models on which percolation acts,
we take the multigraph generated by the configuration model, and the closely
associated erased configuration model, obtained by deleting self-loops and
multiple-edges in the configuration model. The latter model is often referred
to in the literature as the configuration model with single-edge constraint.
The most striking observation of this chapter is that the critical value changes
depending on the single-edge constraint, a feature that has never surfaced in
the finite second-moment setting. For the configuration model multigraph,
the critical value turns out to be pc ∼ n−(3−τ)/(τ−1), whereas under the
single-edge constraint pc ∼ n−(3−τ)/2, which is much larger n−(3−τ)/(τ−1).
The largest component sizes in both the regimes are of the order nαpc, and
the scaling limits are in a completely different universality class than the
τ ∈ (3, 4) and τ > 4 case. We also study percolation on the generalized
random graph, which gives uniformly chosen graph conditional on degrees.
The contributions of this chapter can be summarized as follows:

1. For the configuration model multigraph, we obtain scaling limits for the
largest component sizes and surplus edges under a strong topology.
Further, the diameter of the largest components is shown to be tight
random variables. To establish that the scaling limits correspond to
the critical behavior, we further look at the near-critical behavior and
derive the asymptotics for the component sizes in the so-called barely
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sub/supercritical regimes.

2. Under the single-edge constraint, we identify the scaling limit of the
largest component sizes in the part of the critical window, where the
criticality parameter is sufficiently small.

3. This is the first work on critical percolation on random graphs in the
τ ∈ (2, 3) setting, thus the techniques are novel. The primary diffi-
culty in this setting is that the exploration process approach does not
work. For the configuration model, this difficulty is circumvented by
sandwiching the percolated graphs by two configuration models, which
yield the same scaling limits for the component sizes. The main novelty
in the proof of the configuration model is the analysis of the limiting
exploration process.

4. On the other hand, in the single-edge constraint scenario, the proofs
require a more detailed understanding of the structure of the critical
components. It turns out that the hubs (vertices of high-degree) do
not connect to each other directly, but there are some special vertices
that interconnect hubs. This interconnected structure forms the core
of the critical components, and the 1-neighborhood of the core spans
the critical components. We primarily use path counting techniques
here since the exploration process approach does not work anymore.
For path counting, we compare the connection probabilities between
the hubs with the connection probabilities in a preferential attachment
model, which is interesting in its own right.

6.1 Main results

6.1.1 The configuration model

Notions of convergence and the limiting objects

Recall the notations from Chapter 1.2.1. Consider a decreasing sequence
θ = (θ1, θ2, . . . ) ∈ `2↓ \ `1↓ . Denote by Ii(s) := 1{ξi 6 s} where ξi ∼ Exp(θi/µ)
independently, and Exp(r) denotes the exponential distribution with rate r.
Consider the process

Sλ∞(t) = λ
∞∑
i=1

θiIi(t) − 2t, (6.1)
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for some λ ∈ R,µ > 0 and define the reflected version of Sλ∞(t) by

refl(Sλ∞(t)) = Sλ∞(t) − min
06u6t

Sλ∞(u).
For any function f ∈ D[0,∞), define

¯
f(x) = infy6x f(y). D+[0,∞) is the

subset of D[0,∞) consisting of functions with positive jumps only. Note that

¯
f is continuous when f ∈ D+[0,∞). An excursion of a function f ∈ D+[0, T ]
is an interval (l, r) such that

min{f(l−), f(l)} =
¯
f(l) =

¯
f(r) = min{f(r−), f(r)}

and f(x) >
¯
f(r), ∀x ∈ (l, r) ⊂ [0, T ].

Excursions of a function f ∈ D+[0,∞) are defined similarly. We will show
that, for any λ > 0, the excursions of the process Sλ∞ can be ordered almost
surely as an element of `2↓ . We denote this ordered vector by (γi(λ))i>1.

Also, define the counting process Nλ to be the Poisson process that has
intensity refl(Sλ∞(t)) at time t conditional on (Sλ∞(u))u6t. Formally, Nλ is
characterized as the counting process for which

N(t) −

∑∞
i=1 θ

2
i

µ2

t∫
0

refl(Sλ∞(u))du (6.2)

is a martingale. We use the notation N(γ) to denote the number of marks in
the interval γ. Let Z(λ) denote the vector ((γi(λ),N(γi(λ))))i>1, ordered as
an element of U0

↓ .

Results for the critical window

Fix any τ ∈ (2, 3). Throughout this chapter, we denote

α = 1/(τ− 1), ρ = (τ− 2)/(τ− 1), η = (3 − τ)/(τ− 1),

and assume the following about the degree sequences (dn)n>1:

Assumption 6.1. (i) (High-degree vertices) For any i > 1, n−αdi → θi,
where the vector θ := (θ1, θ2, . . . ) ∈ `2↓ \ `1↓ .

(ii) (Moment assumptions) limn→∞ 1
n

∑
i∈[n] di = µ, and

lim
K→∞ lim sup

n→∞ n−2α
n∑

i=K+1

d2
i = 0.
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In Section 6.1.3, we discuss that Assumption 6.1 is satisfied for power-law
degrees with exponent τ ∈ (2, 3). For CMn(d), the criticality parameter νn is
defined as

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
.

Molloy and Reed [133], and Janson and Luczak [114] showed that, under
some regularity conditions, CMn(d) has a unique giant component (a com-
ponent of size Θ(n)) with high probability precisely when νn → ν > 1.
Under Assumption 6.1, νn → ∞, as n → ∞ and CMn(d) always contains a
giant component.

Let CMn(d,p) denote the graph obtained from percolation with probabil-
ity p on the graphs CMn(d). Now, under Assumption 6.1 for any p ∈ (0, 1],
CMn(d,p) retains a giant component with high probability, i.e. CMn(d,p) is
always supercritical; see the remark below [99, Theorem 4.5]. Thus, in order
to observe the critical behavior, one must take p→ 0, as n→∞. However, it
is is not clear here how to define the critical window of phase-transition. One
way to do it is to say that inside the critical window, the order of the sizes of
largest connected components are same, and the rescaled vector of ordered
component sizes converge to some non-degenerate random vector. This prop-
erty has been observed universally for the critical window of phase transition;
see [69, 70] and the references therein. In this chapter, we define the critical
window to be those values of p for which the re-scaled vector of component
sizes converge to some non-degenerate random vector. It is worthwhile men-
tioning that there is a substantial literature on how to define the critical value,
and the phase transition. See [48, 96, 99, 118, 134] for different definitions of
critical probability and related discussions.

We will show that the critical window for percolation on CMn(d) is given
by

pc = pc(λ) :=
λ

νn
(1 + o(1)), λ ∈ (0,∞). (6.3)

Notice that, under Assumption 6.1, the parameter νn is of the order n2α−1 =

nη, where η = (3 − τ)/(τ− 1) > 0.
To avoid complicated notation, we will always write C(i)(p) to denote the

i-th largest component in the percolated graph. The random graph on which
percolation acts will always be clear from the context. A vertex is called
isolated if it has degree zero in the graph CMn(d,pc(λ)). We define the com-
ponent size corresponding to an isolated vertex to be zero (see Remark 38
below). For any component C ⊂ CMn(d,pc(λ)), let SP(C ) denote the num-
ber of surplus edges given by the number of edges in C − |C |+ 1. Finally, let
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Zn(λ) denote the vector (n−ρ|C(i)(pc(λ))|, SP(C(i)(pc(λ))))i>1, ordered as an
element of U0

↓ . The following theorem gives the asymptotics for the critical
component sizes and the surplus edges of CMn(d,pc(λ)):

Theorem 6.1.1 (Component sizes and surplus edges). Under Assumption 6.1,
as n→∞,

Zn(λ)
d−→ Z(λ)

with respect to the U0
↓ topology, where Z(λ) is defined in Section 6.1.1.

Remark 38. Note that if τ ∈ (2, 3), then 2ρ < 1. When percolation is per-
formed with probability pc, there are of the order n isolated vertices and
thus n−2ρ times the number of isolated vertices tends to infinity. This is the
reason why we must ignore the contributions due to isolated vertices, when
considering the convergence of the component sizes in the `2↓ topology. Note
that an isolated vertex with self-loops does not create an isolated component.

For a connected graph G, let diam(G) denote its diameter. Our next result
shows that the diameter of the largest connected components is of constant
order.

Theorem 6.1.2 (Diameter of largest clusters). Under Assumption 6.1, for any
i > 1, (diam(C(i)(pc(λ))))n>1 is a tight sequence of random variables, .

Behavior in the near-critical regimes

We now present asymptotic results for the component sizes in the so-called
barely subcritical (pn � pc(λ)) and barely supercritical regimes (pn �
pc(λ)). The following two theorems summarize the near-critical behavior:

Theorem 6.1.3 (Barely subcritical regime). For CMn(d,pn), let us assume that
log(n)
`n

� pn � pc(λ) and that Assumption 6.1 holds. Then, for each fixed i > 1,
as n→∞,

|C(i)(pn)|

nαpn

P−→ θi.

For the result about the barely supercritical regime, we need one further
mild technical assumption, which is as follows: Let D∗n denote the degree
of a vertex chosen in a size-biased manner with the sizes being (di/`n)i∈[n].
Then, there exists a constant κ > 0 such that

1 − E[e−tp
1/(3−τ)
n D∗n ] = κp

(τ−2)/(3−τ)
n (tτ−2 + o(1)). (6.4)
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6.1 Main results

Theorem 6.1.4 (Barely supercritical regime). For CMn(d,pn), suppose that
pn � pc(λ) and Assumption 6.1, (6.4) holds. Then, as n→∞,

|C(1)(pn)|

np
1/(3−τ)
n

P−→ µκ1/(3−τ)

2(τ−2)/(3−τ) ,
E(C(1)(pn))

np
1/(3−τ)
n

P−→ µκ1/(3−τ)

2(4−τ)/(3−τ) ,

and for all i > 2, |C(i)(pn)| = oP(np
1/(3−τ)
n ), E(C(i)(pn)) = oP(np

1/(3−τ)
n ),

where E(G) denotes the number of edges in the graph G.

Remark 39. The identity (6.4) is basically a version of the celebrated Abel-
Tauberian theorem [84, Chapter XIII.5] (see also [38, Chapter 1.7]). However,
since both D∗n and pn depend on n, the joint asymptotics needs to be stated
as an assumption. In Section 6.1.3, we discuss how this assumption is satis-
fied for power-law degree distributions with τ ∈ (2, 3).

6.1.2 Effect of the single-edge constraint

In this section, we will consider two random graph models that do not allow
for self-loops or multiple edges in the graph, namely the generalized random
graph and the erased configuration model. We will see that for random
graphs that generate simple graphs, the critical window for percolation is
given by

pc = pc(λ) := λn
− 3−τ

2 (1 + o(1)), λ ∈ (0,∞). (6.5)

We state the results about two different random graph models in two differ-
ent subsections below, starting with the generalized random graph:

Generalized random graphs

Given a set of weights (wi)i∈[n] on the vertex set [n], the generalized random
graph model [54], denoted by GRGn(w) is generated by creating an edge
between vertex i and j independently with probability

pij =
wiwj

`n +wiwj
, (6.6)

where `n =
∑
i∈[n]wi. This model has the property that, conditionally on

the degree sequence d, the law of the obtained random graph is the same as
a uniformly chosen graphs from the space of all simple graphs with degree
distribution d. The graph GRGn(w,p) is obtained by keeping each edge of
the graph independently with probability p. The later deletion process is also
independent of the randomization of the graph.
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Chapter 6 Critical window: Infinite second moment

Assumption 6.2. For some τ ∈ (2, 3), consider the distribution function sat-
isfying (1 − F)(x) = Cx−(τ−1) and let wi = (1 − F)−1(i/n).

In the above case, if Wn denotes the weight of a typical vertex, then

E[Wn] =
1
n

∑
i∈[n]

wi → µ = E[W].

Moreover,
n−αwi = cFi

−α,

for some constant cF > 0. Throughout cF will denote the special constant
appearing above. Assumption 6.2 is strictly stronger than Assumption 6.1 in
the sense that Assumption 6.2 specifies not only the high-degree vertices but
all the wi’s. This is required in the proofs as one needs precise estimates of
quantities like E[Wn1{Wn > Kn}]. However, Assumption 6.2 also yields that
the weight sequence satisfies a power law with exponent τ ∈ (2, 3).

Let C(i)(p) denote the i-th largest component of GRGn(w,p), and define
W(i)(p) :=

∑
k∈C(i)(p)

wk. We will consider the scaling limits of (W(i)(pc))i>1

and (C(i)(pc))i>1. To describe the limiting object, consider the graph G∞(λ)
on the vertex set Z+, where the vertices i and j are joined independently by
Poisson(λij) many edges with λij given by

λij := λ
2
∫∞

0
θi(x)θj(x)dx, θi(x) :=

c2
Fi

−αx−α

µ+ c2
Fi

−αx−α
. (6.7)

Let W∞(i)(λ) denote the i-th largest element of the set{∑
i∈C

θi : C is a connected component of G∞(λ)
}

.

The following is the main result:

Theorem 6.1.5 (Critical regime for GRGn(w)). There exists an absolute con-
stant λ0 such that for any λ ∈ (0, λ0), under Assumption 6.2, as n→∞,

n−α(W(i)(pc(λ)))i>1
d−→ (W∞(i)(λ))i>1,

and
(nαpc)

−1(|C(i)(pc(λ))|)i>1
d−→ (W∞(i)(λ))i>1,

with respect to the `2↓ topology.

In the proofs we will also need to show that W∞(i)(λ) < ∞ almost surely
for all i > 1. In fact we will prove the following about the limiting object:
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6.1 Main results

Proposition 6.1.6. There exists an absolute constant λ0 such that for any λ ∈
(0, λ0), W∞(λ) := (W∞(i)(λ))i>1 is in `2↓ almost surely.

Remark 40. In the proofs under the single-edge constraint, coming up with
an analyzable exploration process for the clusters seems challenging. The
only tool we have is an estimate of the connection probabilities of hubs via
an intermediate vertex, which allows us to estimate expectations of several
moments of component sizes and total weights of those component. These
are often referred to as susceptibility functions. The susceptibility functions
allow us to ignore negligible contributions on the total weights of cluster us-
ing the first-moment method. Unfortunately, the first-moment method does
not work for high values of λ. Also, we do not know how to show the finite-
ness of the limiting object in Proposition 6.1.6 for large λ. This is the reason
for assuming λ ∈ (0, λ0) in Theorem 6.1.5. The proof for general λ is an open
question.

Remark 41. Theorem 6.1.5 also holds under different choices of pij’s than
given by (6.6). For example, for the Chung-Lu Model (pij := min{wiwj/`n, 1})
and the Norros-Reittu model (with pij := 1 − e−wiwj/`n ), the statement of
Theorem 6.1.5 holds, with the scaling limit obtained in an identical man-
ner with θi(x) is (6.7) replaced respectively by min{c2

Fi
−αx−α/µ, 1}, and 1 −

e−c
2
Fi

−αx−α/µ.

Erased configuration model

The erased configuration model is obtained by erasing self-loops and multi-
ple edges of CMn(d). We denote this random graph by ECMn(d), and we
denote the graph obtained after bond percolation on ECMn(d) by ECMn(d,p).
We will assume that d satisfies Assumption 6.2, where F is a distribution
function supported on the non-negative integers. Thus, we take di = (1 −

F)−1(i/n), and we add an extra half-edge to vertex 1 if
∑
i∈[n] di is odd. The

limiting object for ECMn(d) is identical to GRGn(w) after replacing θi(x) in
(6.7) by

θi(x) := 1 − e−c
2
Fi

−αx−α/µ. (6.8)

Theorem 6.1.7 (Critical regime for ECMn(d)). There exists an absolute constant
λ0 such that for any λ ∈ (0, λ0), under Assumption 6.2, the scaling limit results in
Theorem 6.1.5 hold for ECMn(d,pc(λ)) with limit objects described by (6.8) above.

Notice that first performing percolation and then erasing self-loops and
multiple-edges gives a different random graph than first erasing the self-
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Chapter 6 Critical window: Infinite second moment

Figure 6.1: Visualization of the connectivity between the hubs (vertices of
degree Θ(nα)). The intermediate vertices have degree Θ(nρ).

loops and multiple-edges and then performing percolation. For the τ > 3
case however, the order of these operations does not matter and leads to the
same scaling limits as [69, 70]. However, the operations of deletion of self-
loops and multiple-edges and performing percolation are not interchange-
able in the τ ∈ (2, 3) regime, as evidenced by Theorems 6.1.1 and 6.1.7. This
can be understood intuitively. In CMn(d), vertices i and j share didj/(`n− 1)
edges in expectation. Thus for hubs with di = O(nα) and dj = O(nα), in
expectation O(1) many edges survive after percolation in the critical window
(6.3). On the other hand, whenever p→ 0, hubs are never connected directly
under the single-edge constraint. We will see in the proofs that the value
pc in (6.5) is such that the hubs are connected to each other via intermedi-
ate vertices of degree Θ(nρ) (see Figure 6.1). This forms a core of the largest
connected components, and the 1-neighborhood of this core spans the largest
connected component asymptotically.

Behavior in the near-critical regimes

In this section, we state the results about the barely subcritical regime under
the single-edge constraint. The result below holds for both percolation on
GRGn(w) and ECMn(d):

Theorem 6.1.8. Suppose that Assumption 6.2 holds and pn � pc(λ). Then, for
any fixed i > 1, as n→∞,

|C(i)(pn)|

nαpn

P−→ cFi
−α, and

W(i)(pn)

nα
P−→ cFi

−α.

Under the single-edge constraint, the exact asymptotics in the barely super-
critical case is left to future work. In the proofs under the single-edge con-
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straint, coming up with an analyzable exploration process for the clusters
seems challenging. The only tool we have is an estimate of the connection
probabilities of hubs via an intermediate vertex, which allows us to esti-
mate expectations of several moments of component sizes and total weights
of those component. These are often referred to as susceptibility functions.
The susceptibility functions allow us to ignore negligible contributions on the
total weights of cluster using first-moment method. Unfortunately, the first-
moment method does not work in the barely-supercritical regime, or even
high values of λ in Theorems 6.1.5, 6.1.7. This is the reason for assuming
λ ∈ (0, λ0) in those theorems.

6.1.3 Discussion

Assumption on the degrees. Note that Assumption 6.1 is weaker than As-
sumption 6.2. Indeed, suppose that di = (1−F)−1(i/n), for some distribution
function F supported on non-negative integers, and (1 − F)(x) = Ck−(τ−1),
for k 6 x < k+ 1. We ignore the effect due to adding a dummy half-edge to
vertex 1 if necessary to make

∑
i∈[n] di even, since this does not change

any asymptotics. Now, Assumption 6.1 (i) is satisfied with θi = Ci−α.
One can also verify Assumption 6.1 (ii) using identical arguments as [69,
Lemma 6]. For this specific choice of di, (6.4) holds as well. To see this, write
tn = tp

1/(3−τ)
n , and note that

1 − E[e−tnD
∗
n ] =

1
`n

∑
k∈[n]

dk
(
1 − e−tndk

)
.

Let us split the last sum in two parts on the set {k : dk < 1/(2tn)} and its
complement, and denote them by (I) and (II) respectively. We write an ∼ bn

to denote that limn→∞ an/bn = 1. Using the fact that x−x2/2 6 1−e−x 6 x,
it follows that for some constants c1, c2 > 0,

(I)

tτ−2
n

∼ t3−τn

∫1/(2tn)

0

dx
xτ−2 ∼ c0, and

(II)

tτ−2
n

∼ t
−(τ−2)
n

∫∞
1/(2tn)

dx
xτ−1 ∼ c1,

which yields (6.4).

Critical windows: emergence of hub connectivity. The critical window
changes due to the single-edge constraint, as noted in (6.3) and (6.5). How-
ever, there are some common features. Firstly, the component sizes are of
the order nαpc in both the regimes. This is due to the fact that the main
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Chapter 6 Critical window: Infinite second moment

contribution to the component sizes comes from hubs and their finite neigh-
borhood. Secondly, in both cases, the critical window is the regime in which
hubs start getting connected. More precisely, if critical window is given by
those values of π such that for any fixed i, j > 1

lim inf
n→∞ P(i, j are in the same component in the π-percolated graph) ∈ (0, 1).

For the configuration model, hubs are connected directly with strictly posi-
tive probability, while under the single-edge constraint, hubs are connected
via intermediate vertices of degree Θ(nρ). Intuitively, in the barely subcrit-
ical regime, all the hubs are in different components. Hubs start forming
the critical components as the p varies over the critical window since most
paths between hubs are of length 2 and go via intermediate vertices of de-
gree Θ(nρ). Finally in the barely super-critical regime the giant component
is formed which contains all the hubs. This feature is also observed in the
τ ∈ (3, 4) case [33]. However, the distinction between τ ∈ (3, 4) and τ ∈ (2, 3)
is that for τ ∈ (3, 4) the paths between the hubs have a length that grows as
n(τ−3)/(τ−1).

6.2 Configuration model: Proofs

In this section, we prove our results related to critical percolation on CMn(d).
We start by proving some properties of the process (6.1) in Section 6.2.1. In
Section 6.2.2, we describe a way to approximate percolation on a configu-
ration model by a suitable configuration model. In Section 6.2.3, we an-
alyze the latter graph by setting up an exploration process and obtaining
its scaling limit. Hence the proof of Theorem 6.1.1 is completed. In Sec-
tion 6.2.4, we consider the near critical behavior and provide proofs of Theo-
rems 6.1.3 and 6.1.4.

6.2.1 Properties of the excursions of the limiting process

In the following proposition, we summarize the properties of the limiting
process Sλ∞ that are required in our analysis.

Proposition 6.2.1. (P1) As t → ∞, Sλ∞(t) a.s.−→ −∞. Thus, Sλ∞ does not have an
excursion of infinite length almost surely.

(P2) For any δ > 0, Sλ∞ has only finitely many excursions of length at least δ
almost surely.
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6.2 Configuration model: Proofs

(P3) Let R denote the set of excursion end-points of Sλ∞. Then R does not have an
isolated point.

(P4) For any t > 0, P(Sλ∞(t) = infu6t Sλ∞(u)) = 0.

The conditions in Proposition 6.2.1 form the bedrock of using [69, Lemma
14], which will be crucial in the next section. An inquisitive reader might
note that the conditions are related to [11, Proposition 14]. The proof of
Proposition 6.2.1 requires the analysis of the martingale decomposition for
the process Sλ∞. Consider the sigma-field Ft = σ({ξi 6 s} : s 6 t, i > 1),
where for a collection of sets A, σ(A) denotes the minimum sigma algebra
containing all the sets in A. Then (Ft)t>0 is a filtration. All the martin-
gales in this section will be with respect to (Ft)t>0, unless stated otherwise.
Without loss of generality we assume that µ = 1 in this section to simplify
notation. Below we summarize the martingale decomposition for Sλ∞:

Lemma 6.2.2. The process Sλ∞ admits the Doob-Meyer decomposition Sλ∞(t) =

M(t)+A(t) with the drift term A(t), and the quadratic variation for the martingale
term 〈M〉(t) given by

A(t) = λ

∞∑
i=1

θ2
i min{ξi, t}− 2t, 〈M〉(t) = λ2

∞∑
i=1

θ3
i min{ξi, t}.

Proof. Define Mi(t) = 1{ξi 6 t}− θimin{ξi, t}. The proof follows if we show
that (Mi(t))t>0 is a martingale with quadratic variation term given by

〈Mi〉(t) = θimin{ξi, t}.

Denote Ii(t) = 1{ξi 6 t}. Let (N(t))t>0 denote a unit jump Poisson process.
Then Ii(t) can be written in terms of the random time change of (N(t))t>0

[80, 139] as follows

Ii(t) = N

(
θi

∫t
0
(1 − Ii(s))ds

)
.

Further,
∫t

0(1 − Ii(s))ds = min{ξi, t} which completes the proof.

The rest of the section is devoted to proving the properties of Sλ∞ stated
in Proposition 6.2.1. We give the proofs of different conditions separately
below:

Proof of Proposition 6.2.1 (P1). We use the martingale decomposition of Sλ∞
from Lemma 6.2.2. Fix K > 1 such that λ

∑
i>K θ

2
i < 1. Such a choice of K is
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Chapter 6 Critical window: Infinite second moment

always possible as θ ∈ `2↓ . Further define the stopping time T := inf{t : ξi 6
t, ∀i ∈ [K]}, and observe that T < ∞ almost surely. Note that min{ξi, t} 6 t
and thus,

1
t
λ
∑
i>K

θ2
i min{ξi, t} 6 1, almost surely.

Therefore, for any t > T ,

A(t) = λ
∑
i∈[K]

θ2
iξi + λ

∑
i>K

θ2
i min{ξi, t}− 2t 6 λ

∑
i∈[K]

θ2
iξi − t, almost surely.

We conclude that, for any r ∈ (0, 1), t−rA(t) a.s.−→ −∞. For the martingale part
we will use the exponential concentration inequality [149, Inequality 1, Page
899], which is stated below:

Lemma 6.2.3. If M is any continuous time local martingale such that M(0) = 0,
and supt∈[0,∞) |M(t) −M(t−)| 6 c, almost surely, then for any t > 0, a > 0 and
b > 0,

P
(

sup
s∈[0,t]

M(s) > a, and 〈M〉(t) 6 b
)
6 exp

(
−
a2

2b
ψ
(ac
b

))
,

where ψ(x) = ((1 + x) log(1 + x) − x)/x2.

In particular, ψ(x) > 1/(2(1 + x/3)) (see [115, Page 27]). Note that 〈M〉(t) 6
λ2t
∑∞
i=1 θ

3
i. We apply Lemma 6.2.3 with a = εtr, b = λ2t

∑∞
i=1 θ

3
i, and

c = θ1. Now, ψ(ac/b) > C/(1+ tr−1), and thus for any ε > 0, and r ∈ (1/2, 1)

P
(

sup
s∈[0,t]

|M(s)| > εtr
)
6 2 exp(−Ct2r−1),

for some constant C > 0, where the bound on the absolute value of M fol-
lows from the fact that −M is also a martingale, so Lemma 6.2.3 applies to
−M as well. Now an application of the Borel-Cantelli lemma proves that
t−r|M(t)|

a.s.−→ 0, for any r ∈ (1/2, 1). This fact, together with the asymptotics
of the drift term, completes the proof.

Proof of Proposition 6.2.1 (P2). Let tk = (k− 1)δ/2 and define the event

Cδk :=

{
sup

t∈(tk−1,tk]
Sλ∞(tk+1) − S

λ∞(t) > 0
}

.
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Suppose that there is an excursion (l, r) with r − l > δ and l ∈ (tk−1, tk]
for some k. Since r > tk+1, Sλ∞(tk+1) > Sλ∞(l) > inft∈(tk−1,tk] S

λ∞(t), and
therefore Cδk must occur. Therefore, if Sλ∞ has infinitely many excursions of
length at least δ, then Cδk must occur infinitely often. Using the Borel-Cantelli
lemma, the proof follows if we can show that

∞∑
k=1

P(Cδk) <∞.

As before, fix K > 1 such that λ
∑
i>K θ

2
i < 1, and let T := inf{t : ξi 6 t, ∀i ∈

[K]}. Notice that for each K > 1,

∞∑
k=1

P (T > tk−1) =

∞∑
k=1

P (∃i ∈ [K] : ξi > tk−1) 6
∞∑
k=1

Ke−θK(k−1)δ/2 <∞,

and therefore it is enough to show that

∞∑
k=1

P(Cδk ∩ {T 6 tk−1}) <∞.

Now,

sup
t∈[tk−1,tk]

Sλ∞(tk+1) − S
λ∞(t)

6M(tk+1) + sup
t∈[tk−1,tk]

−M(t) + sup
t∈[tk−1,tk]

A(tk+1) −A(t)

6M(tk+1) −M(tk−1) + sup
t∈[tk−1,tk]

M(tk−1) −M(t)

+ sup
t∈[tk−1,tk]

[
λ

∞∑
i=1

θ2
i(min{ξi, tk+1}− min{ξi, t}) − (tk+1 − t)

]
−
δ

2

6 2 sup
t∈[tk−1,tk+1]

|M(t) −M(tk−1)|−
δ

2

+ sup
t∈[tk−1,tk]

[
λ

∞∑
i=1

θ2
i(min{ξi, tk+1}− min{ξi, t}) − (tk+1 − t)

]
.

The third term is negative on the event {τ 6 tk−1}. Thus we only need to
estimate the probability

P

(
sup

t∈[tk−1,tk+1]

|M(t) −M(tk−1)| >
δ

4

)
.
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Note thatM(t)−M(tk−1) is a martingale with respect to the filtration (Ft)t>tk−1

with quadratic variation given by

λ2
∞∑
i=1

θ3
i

(
min{ξi, t}− min{ξi, tk−1}

)
.

Further, E[min{ξi, t}] = θ−1
i (1 − e−θit). Therefore, Doob’s martingale in-

equality [128, Theorem 1.9.1.3] implies

∞∑
k=1

P

(
sup

t∈[tk−1,tk+1]

|M(t) −M(tk−1)| >
δ

4

)

6
∞∑
k=1

16
δ2

∞∑
i=1

θ2
i(e

−θitk−1 − e−θitk+1).

By interchanging the sums, the last term is finite and the proof now follows.

Proof of Proposition 6.2.1 (P3). Define the process

L(t) = λ

∞∑
i=1

θiNi(t) − 2t,

where (Ni(t))t>0 is a rate θi Poisson process, independently over i. We
assume that Sλ∞ and L are coupled by taking Ii(s) = 1{Ni(s) > 1}, so that
Sλ∞(t) 6 L(t). Using [28, Chapter VII.1, Theorem 1] and the fact that

∑
i θi =∞,

inf{t > 0 : L(t) < 0} = 0, almost surely. (6.9)

Moreover, for any stopping time T > 0, (Sλ∞(T + t) − Sλ∞(T))t>0, conditioned
on the sigma-field σ(Sλ∞(s) : s 6 T), is distributed as a process defined in
(6.1) for some random θ. Now we can take T to be an excursion endpoint
and the proof follows.

Proof of Proposition 6.2.1 (P4). We leverage the proof techniques in [11, Propo-
sition 14 (b)]. Define the process

Qm(t) = λ

∞∑
i=m+1

θi1AiMi(t) − 2t,

where (Ai)i>1 is a sequence of independent events with P(Ai) = (1−2θit0)+,
and (Mi)i>1 are independent Poisson processes with rates θie−θit0 . Now,
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Qm is a Lévy process, and thus we can apply (6.9) together with [28, Chap-
ter VI.1, Proposition 3] (see also the remark below the statement of the cited
proposition) to conclude that, for any t0 > 0 and m > 1,

P
(
Qm(t0) = inf

t∈[0,t0]
Qm(t)

)
= 0. (6.10)

Now, if one can couple (Q2m(t))t∈[0,t0] and (S∞(t))t∈[0,t0] in such a way that

lim
m→∞P (Q2m(t0) −Q2m(t) 6 S∞(t0) − S∞(t), ∀t ∈ [0, t0]) = 0, (6.11)

then (6.10) and (6.11) together complete the proof. To see (6.11), write (ξi,j, j ∈
Ji) for the set of points of Mi in [0, t0] if Ai occurs, but to be the empty set
if Ai does not occur. Call a coupling successful if (ξi,j : i > 2m, j ∈ Ji) and
(ξi)i>1 are coupled in such a way that ξi,j = ξh(i,j) for some random variable
h(i, j) 6 i, and the values (h(i, j) : i > 2m, j ∈ Ji) are distinct. Aldous and
Limic [11] showed the existence of a coupling such that the probability of the
coupling is successful tends to 0 as m → ∞. Although their proof is under
a different setting with θ ∈ `3↓ \ `2↓ , the proof of the coupling holds under
the assumption that θ ∈ `2↓ \ `1↓ . Moreover, (6.11) holds under a successful
coupling and thus the proof is complete.

6.2.2 Sandwiching the percolated configuration model

A key step in all our proofs is to approximate CMn(d,pn) by a configuration
model, which is given in Proposition 6.2.4 below. This idea has also appeared
in the context of the finite third moment [70] and the infinite third moment
case [69]. We emphasize that Proposition 6.2.4 holds for percolation on the
configuration model without any specific assumption on the degree distribu-
tion, as long as `npn � log(n). We start by describing the approximating
configuration model below:

Algorithm 6.1. (S0) Keep each half-edge with probability pn. If the total
number of retained half-edges is odd, attach a dummy half-edge to ver-
tex 1.

(S1) Perform a uniform perfect matching among the retained half-edges, i.e.,
within the retained half-edges, pair unpaired half-edges sequentially
with a uniformly chosen unpaired half-edge until all half-edges are
paired. The paired half-edges create edges in the graph, and we call
the resulting graph Gn(pn).

255



Chapter 6 Critical window: Infinite second moment

The following proposition formally states that Gn(pn) approximates the per-
colated graph CMn(d,pn):

Proposition 6.2.4. Let pn be such that `npn � log(n). Then there exists a
sequence (εn)n>1 with εn → 0, and a coupling such that, with high probability,

Gn(pn(1 − εn)) ⊂ CMn(d,pn) ⊂ Gn(pn(1 + εn)).

Proof. The proof relies on an exact construction of CMn(d,pn) by Foun-
toulakis [85] which goes as follows:

Algorithm 6.2. (S0) Perform a binomial trial X ∼ Bin(`n/2,pn) and choose
2X half-edges uniformly at random from the set of all half-edges.

(S1) Perform a perfect matching of these 2X chosen half-edges. The resulting
graph is distributed as CMn(d,pn).

Notice the similarity between Algorithm 6.1 (S1) and Algorithm 6.2 (S1).
In Algorithm 6.1 (S0), given the number of retained half-edges, the choice of
the half-edges can be performed sequentially uniformly at random without
replacement. Thus, given the number of half-edges in the two algorithms,
we can couple the choice of the half-edges, and their pairing (the restriction
of a uniform matching to a subset remains). Let H1, H−

2 and H+
2 respec-

tively denote the number of half-edges in CMn(d,pn), Gn(pn(1 − εn)) and
Gn(pn(1 + εn)). From the above discussion, the proof is complete if we can
show that as n→∞,

P
(
H−

2 6 H1 6 H+
2
)
→ 1.

Notice that H1 = 2X, where X ∼ Bin(`n/2,pn), and H+
2 ∼ Bin(`n,pn(1+ εn)).

Using standard concentration inequalities [115, Corollary 2.3], it follows that

H1 = `npn + oP(
√
`npn log(n)),

and
H+

2 = `npn + `npnεn + oP(
√
`npn log(n)).

Now, if we choose εn such that εn � (log(n)/(`npn))1/2 and εn → 0, then,
with high probability, H1 6 H+

2 . Similarly we can conclude that H−
2 6 H1

with high probability. The proof is now complete.

We conclude this subsection by stating some properties of the degree se-
quence of the graph Gn(pn) that will be crucial in the analysis below. Let
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6.2 Configuration model: Proofs

d̃ = (d̃1, . . . , d̃n) be the degree sequence induced by Algorithm 6.1 (S1). Then
the following result holds for d̃:

Lemma 6.2.5. For each fixed i > 1, d̃i = dipn(1 + oP(1)) and ˜̀
n = `npn(1 +

oP(1)). Moreover, for pn � pc,
∑
i∈[n] d̃

2
i = ˜̀

n(1 + oP(1)), whereas for pn =

pc(λ) the following holds: For any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>K

d̃2
i > ε

˜̀
n

)
= 0. (6.13)

Proof. Note that d̃i ∼ Bin(di,pn), independently for i ∈ [n]. For each fixed
i > 1, dipn = Θ(nρ), which tends to infinity. Thus the first fact follows using
[115, Theorem 2.1]. Since, ˜̀

n ∼ Bin(`n,pn), the second fact also follows using
the same bound. To prove (6.13), we first assume that pn = pc(λ) given by
(6.3). Then, for any ε > 0, the probability in (6.13) is at most

P

(∑
i>K

d̃2
i > ε

˜̀
n,
`npn

2
6 ˜̀

n 6 2`npn

)
+ o(1)

6 P

(∑
i>K

d̃2
i >

ε`npn

2

)
6

4pn
∑
i>K d

2
i

`n
,

where the last step follows from Markov’s inequality. The proof now follows
using Assumption 6.1 and pn = O(n2α−1). The case for pn � pc follows
similarly.

6.2.3 Analysis in the critical window

Convergence of the exploration process

Let d̃ = (d̃1, . . . , d̃n) be the degree sequence induced by Algorithm 6.1 (S1)
with pn = pc(λ), and consider Gn(pc(λ)). Note that Gn(pc(λ)) has the same
distribution as CMn(d̃). We start by describing how the connected com-
ponents in the graph can be explored while generating the random graph
simultaneously:

Algorithm 6.3 (Exploring the graph). The algorithm carries along vertices
that can be alive, active, exploring and killed and half-edges that can be
alive, active or killed. We sequentially explore the graph as follows:

(S0) At stage i = 0, all the vertices and the half-edges are alive but none of
them are active. Also, there are no exploring vertices.
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Chapter 6 Critical window: Infinite second moment

(S1) At each stage i, if there is no active half-edge at stage i, choose a vertex
v proportional to its degree among the alive (not yet killed) vertices
and declare all its half-edges to be active and declare v to be exploring.
If there is an active vertex but no exploring vertex, then declare the
smallest vertex to be exploring.

(S2) At each stage i, take an active half-edge e of an exploring vertex v and
pair it uniformly to another alive half-edge f. Kill e, f. If f is incident
to a vertex v ′ that has not been discovered before, then declare all the
half-edges incident to v ′ active, except f (if any). If degree(v ′) = 1 (i.e.
the only half-edge incident to v ′ is f) then kill v ′. Otherwise, declare v ′

to be active and larger than all other vertices that are alive. After killing
e, if v does not have another active half-edge, then kill v also.

(S3) Repeat from (S1) at stage i+ 1 if not all half-edges are already killed.

Algorithm 6.3 gives a breadth-first exploration of the connected compo-
nents of CMn(d̃). Define the exploration process by

Sn(0) = 0, Sn(l) = Sn(l− 1) + d̃(l)Jl − 2,

where Jl is the indicator that a new vertex is discovered at time l and d̃(l) is
the degree of the new vertex chosen at time l when Jl = 1. Suppose Ck is
the kth connected component explored by the above exploration process and
define τk = inf

{
i : Sn(i) = −2k

}
. Then Ck is discovered between the times

τk−1 + 1 and τk, and τk − τk−1 − 1 gives the total number of edges in Ck.
Call a vertex discovered if it is either active or killed. Let Vl denote the set of
vertices discovered up to time l and Ini (l) := 1{i ∈ Vl}. Note that

Sn(l) =
∑
i∈[n]

d̃iI
n
i (l) − 2l. (6.14)

Define the re-scaled version S̄n of Sn by S̄n(t) = n−ρSn(btnρc). Then,

S̄n(t) = n
−ρ
∑
i∈[n]

d̃iI
n
i (tn

ρ) − 2t+ o(1). (6.15)

Note the similarity between the expressions in (6.1) and (6.15). We will prove
the following:

Theorem 6.2.6. Consider the process S̄n := (S̄n(t))t>0 defined in (6.15) and recall
the definition of S̄∞ from (6.1). Then, under Assumption 6.1, as n→∞,

S̄n
d−→ S̄∞
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6.2 Configuration model: Proofs

with respect to the Skorohod J1 topology.

Proof. We denote ˜̀
n(u) =

∑
i∈[n] d̃i − 2unρ. Since ˜̀

n = ΘP(n
2ρ), ˜̀

n(u) =
˜̀
n(1 + oP(1)) uniformly over u 6 t. Let P̃(·) (respectively Ẽ[·]) denote the

conditional probability (respectively expectation) conditional on (d̃i)i∈[n].
Note that, for any t > 0, uniformly over l 6 tnρ

P̃ (Ini (l) = 0) >
(

1 −
d̃i

˜̀
n(t)

)l
, and Ẽ [Ini (l)] 6

ld̃i
˜̀
n(t)

.

Now, note that

n−ρẼ

[∑
i>K

d̃iI
n
i (tn

ρ)

]
6 t

∑
i>K d̃

2
i

˜̀
n(t)

.

Using (6.13), it is now enough to deduce the scaling limit for

S̄Kn(t) = n
−ρ

K∑
i=1

d̃iI
n
i (tn

ρ) − 2t

and then taking K → ∞. The next lemma gives the scaling limit for S̄Kn and
completes the proof of Theorem 6.2.6.

Lemma 6.2.7. Fix any K > 1, and Ii(s) := 1{ξi 6 s} where ξi ∼ Exp(θi/µ)
independently for i ∈ [K]. Under Assumption 6.1, as n→∞,

(Ini (tn
ρ))i∈[K],t>0

d−→ (Ii(t))i∈[K],t>0 .

Proof. By noting that (Ini (tn
ρ))t>0 are indicator processes, it is enough to

show that

P̃ (Ini (tin
ρ) = 0, ∀i ∈ [K])→ P̃ (Ii(ti) = 0, ∀i ∈ [K]) = exp

(
− µ−1

K∑
i=1

θiti

)
.

for any t1, . . . , tK ∈ R. Now,

P̃ (Ini (mi) = 0, ∀i ∈ [K]) =

∞∏
l=1

(
1 −

∑
i6K:l6mi

d̃i
˜̀
n −Θ(l)

)
. (6.16)

Taking logarithms on both sides of (6.16) and using the fact that l 6 maxmi =
Θ(nρ) we get

P̃ (Ini (mi) = 0∀i ∈ [K]) = exp
(
−

∞∑
l=1

∑
i6K:l6mi

d̃i
˜̀
n
+ o(1)

)
= exp

(
−
∑
i∈[K]

d̃imi
˜̀
n

+ o(1)
)

.
(6.17)
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Chapter 6 Critical window: Infinite second moment

Putting mi = tinρ, Assumption 6.1 (i), (ii) gives

mid̃i
˜̀
n

=
θiti
µ

(1 + oP(1)). (6.18)

Hence (6.18), and (6.17) complete the proof of Lemma 6.2.7.

Large components are explored early

Now, we prove two key results that allow us to deduce the convergence of
the component sizes. Firstly, we show that the rescaled vector of component
sizes is tight in `2↓ (see Proposition 6.2.8). This result is then used to show that
the largest components of Gn(pc(λ)) are explored before time Θ(nρ). Let C(i)

denote the i-th largest component for Gn(pc(λ)).

Proposition 6.2.8. Under Assumption 6.1, for any ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
i>K

|C(i)|
2 > εn2ρ

)
= 0.

Denote Di =
∑
k∈C(i)

d̃k. It is enough to show that

lim
K→∞ lim sup

n→∞ P

(∑
i>K

D2
i > εn

2ρ
)

= 0. (6.19)

In the above, we have used our convention that the component size of an
isolated vertex is zero. For a vertex v, let C (v) denote the component con-
taining vertex v in Gn(pn) and D(v) =

∑
k∈C (v) d̃k. Let GK be the random

graph obtained by removing all edges attached to vertices 1, . . . ,K and let d ′

be the obtained degree sequence. Further, let C K(v) and C K
(i) denote the con-

nected component containing v and the i-th largest component respectively,
and DK(v) =

∑
k∈CK(v) d̃k, DKi =

∑
k∈CK

(i)
d̃k. Suppose V∗n is a vertex of GK

chosen according to the size-biased distribution with sizes being (d̃k/˜̀
n)k>1,

independently of the graph. Denote the criticality parameter of GK by νKn.

Lemma 6.2.9. Suppose that Assumption 6.1 holds. Then, for fixed K > 1 (suffi-
ciently large), with high probability

Ẽ
[
DK(V∗n)

]
6

∑
i>K d̃

2
i

˜̀
n − 2

∑K
i=1 d̃i

× 1
1 − νKn

. (6.20)

Proof. We make use of path counting techniques [31, 111]. Note that the criti-
cality parameter of the graph Gn(pc(λ)) is ν̃n = λ(1+oP(1)), by Lemma 6.2.5.
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6.2 Configuration model: Proofs

Now, conditional on the set of removed half-edges and d̃, GK is still a config-
uration model with some degree sequence d ′ with d ′i 6 d̃i for all i ∈ [n] \ [K]

and d ′i = 0 for i ∈ [K]. Further, the criticality parameter of GK satisfies

νKn =

∑
i∈[n] d

′
i(d
′
i − 1)∑

i∈[n] d
′
i

6

∑
i>K d̃i(d̃i − 1)

˜̀
n − 2

∑K
i=1 d̃i

= ν̃n

∑
i>K d̃i(d̃i − 1)∑
i∈[n] d̃i(d̃i − 1)

(1 + oP(1)) = λ
∑
i>K d̃i(d̃i − 1)∑
i∈[n] d̃i(d̃i − 1)

(1 + oP(1))

= λ

∑
i>K di(di − 1)∑
i∈[n] di(di − 1)

(1 + oP(1)).

Now, by Assumption 6.1 and Lemma 6.2.5, it is possible to choose K0 large
such that,

for all K > K0, with high probability νKn < 1, (6.21)

and then we can apply similar arguments as in [31, Section 7] for calculating
weight-based susceptibility functions with weights being the degrees. The
term

∑
i>K d̃

2
i/
∑
i>K d̃i arises in (6.20) due to the fact that

Ẽ[degree of V∗n] =

∑
i∈[n] d

′2
i∑

i∈[n] d
′
i

6

∑
i>K d̃

2
i

˜̀
n − 2

∑K
i=1 d̃i

.

Thus the proof of Lemma 6.2.9 follows.

Proof of Proposition 6.2.8. Denote the sum of squares of the D-values exclud-
ing the components containing vertices 1, 2, . . . ,K by SK. Note that∑

i>K

D2
i 6 SK 6

∑
i>1

(DKi )
2.

Now, using Lemma 6.2.9 and (6.21), it follows that

P̃

(∑
i>1

(DKi )
2 > εn2ρ

)
6

1
εn2ρ Ẽ

[∑
i>1

(DKi )
2
]

=
1

εn2ρ Ẽ
[
DK(V∗n)

]
6 OP(1)n−2ρ

∑
i>K

d̃2
i.

Thus, (6.19) follows from Lemma 6.2.5.

The next proposition shows that the large components are explored before
time Θ(nρ) by Algorithm 6.3. The proof follows using similar arguments as
[69, Lemma 13] and we skip it here. Let C >T

max denote the size of the largest
component that is started exploring by Algorithm 6.3 after time Tnρ.

261



Chapter 6 Critical window: Infinite second moment

Proposition 6.2.10. Under Assumption 6.1, for any ε > 0,

lim
T→∞ lim sup

n→∞ P
(
|C >T

max| > εn
ρ
)
= 0.

Convergence of the component sizes and the surplus edges

We start by first showing the asymptotics of the component sizes:

Lemma 6.2.11. Under Assumption 6.1, as n→∞,

(n−ρ|C(i)|)i>1
d−→ (γi(λ))i>1, (6.22)

with respect to the `2↓ topology.

Proof. Recall [69, Lemma 14] and notice that the process Sλ∞ satisfies all the
nice properties stated therein by Proposition 6.2.1 (see [69, Lemma 15] for a
similar application in a different context). This observation, together with
Proposition 6.2.10 yields the finite-dimensional convergence in (6.22). Finally
the proof is completed using Proposition 6.2.8.

Lemma 6.2.12. Let Nλn(k) be the number of surplus edges discovered up to time k
and N̄λn(u) = Nλn(bunρc). Then, as n→∞,

(S̄n, N̄λn)
d−→ (Sλ∞, Nλ),

where Nλ is defined in (6.2).

Proof. We write Nλn(l) =
∑l
i=2 ξi, where ξi = 1{Vi = Vi−1}. Let Ai de-

note the number of active half-edges after stage i while implementing Algo-
rithm 6.3. Note that

P (ξi = 1|Fi−1) =
Ai−1 − 1

˜̀
n − 2i− 1

=
Ai−1

˜̀
n

(1 +O(i/n)) +O(n−1),

uniformly for i 6 Tnρ for any T > 0. Therefore, the instantaneous rate of
change of the re-scaled process N̄λ at time t, conditional on the past, is

nρ
Abtnρc

n2ρ µ2∑
i>1 θ

2
i

(1 + o(1)) + o(1) =

∑
i>1 θ

2
i

µ2 refl(S̄n(t)) (1 + o(1)) + o(1).

Theorem 6.2.6 yields that refl(S̄n)
d−→ refl(Sλ∞). Then, by the Skorohod repre-

sentation theorem, we can assume that refl(S̄n)→ refl(Sλ∞) almost surely on
some probability space. Observe that (

∫t
0 refl(Sλ∞(u))du)t>0 has continuous

sample paths. Therefore, the conditions of [128, Corollary 1, Page 388] are
satisfied and the proof is complete.
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Lemma 6.2.13. For any ε > 0,

lim
δ→0

lim sup
n→∞ P

( ∑
i:|C(i)|6δnρ

|C(i)|× SP(C(i)) > εbn

)
= 0.

Again, the proof of Lemma 6.2.13 can be carried out in an identical man-
ner as [69, Proposition 19] and therefore is skipped here. The only crucial
thing to observe here is that Vn has to be replaced by V∗n for an analogue of
[69, Lemma 20] and one has to consider the cases λ < 1, and λ > 1 separately
instead of λ < 0 and λ > 0 in [69].

Proof of Theorem 6.1.1. Let Z ′n(λ) denote the vector (n−ρ|C(i)|, SP(C(i)))i>1, or-
dered as an element in U0

↓ . Then, Lemmas 6.2.11, 6.2.12, and 6.2.13 together
imply that

Z ′n(λ)
d−→ Z(λ).

Finally the proof is complete using Proposition 6.2.4.

Analysis of the diameter

In this section, we deduce the asymptotics of the diameter of the components
of Gn(pc(λ)), and hence complete the proof of Theorem 6.1.2.

Proof of Theorem 6.1.2. Firstly, we can leverage Janson’s path counting tech-
nique again (see [111, Lemma 5.1]) to show that, given a vertex v ∈ [n], the
expected number of paths of length l from v (conditional on d̃) is at most
ν̃ln. Recall the notations D(v) =

∑
k∈C (v) d̃k, D(i) =

∑
k∈C(i)

d̃k, and V∗n =

a vertex chosen according to the size-biased distribution (d̃i/˜̀
n)i>1. For any

fixed δ > 0, define

Xn(K) =
∑
v∈[n]

1{D(v) > δnρ, |C (v)| > δnρ, diam(C (v)) > K}.
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Observe that, for λ < 1,

P̃
(
∃i > 1 : D(i) > δn

ρ, |C(i)| > δn
ρ, diam(C(i)) > K

)
6
∑
i>1

P̃
(
D(i) > δn

ρ, |C(i)| > δn
ρ, diam(C(i)) > K

)
= ˜̀

n

∑
v∈[n]

d̃v
˜̀
n

Ẽ

[
1

D(v)
1{D(v) > δnρ, |C (v)| > δnρ, diam(C (v)) > K}

]

6
˜̀
n

δnρ
P̃ (D(V∗n) > δn

ρ, |C (V∗n)| > δn
ρ, diam(C (V∗n)) > K)

=
˜̀
n

δnρ
P̃ (Xn(K) > δn

ρ) 6
˜̀
n

δ2n2ρ

∑
l>K

ν̃ln =
C˜̀
n

δ2n2ρ
λK

1 − λ

P−→ 0,

if we first take limn→∞ and then limK→∞. The proof can be generalized
naturally to the case λ > 1. In that case, we delete R high-degree vertices
to obtain a new graph G>R, for which the above result holds (see the proof
of Lemma 6.2.9). However, after putting back the R deleted vertices, the
diameter of G>R can change by a factor of at most R. This implies the tightness
of the diameter for the largest connected components of Gn(pc(λ)) for λ >
1. Finally the proof of Theorem 6.1.2 follows by invoking Proposition 6.2.4
again.

6.2.4 Near-critical behavior

Finally we consider the near-critical behavior for CMn(d,p) in this section.
The analysis for the barely subcritical and supercritical regimes are given
separately below.

Barely-subcritical regime

In this section, we analyze the barely-subcritical regime (pn � pc) for per-
colation and complete the proof of Theorem 6.1.3. Recall the exploration
process from Algorithm 6.3 on the graph Gn(pn), starting with vertex j. Let
C (j,pn) denote the connected component in Gn(pn) containing vertex j. We
will use the same notation for the quantities defined in Section 6.2.3, but the
reader should keep in mind that we now deal with different pn values. We
avoid augmenting pn in the notation for the sake of simplicity. Let N1 de-
note the 1-neighborhood of j in Gn(pn) and define D(j) to be the number of
half-edges at vertices incident to N1 which are not paired with j. Define the
exploration process Sjn similar to (6.14) but starting with D(j) half-edges as
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given below:

Sjn(0) = D(j), Sjn(l) = D(j) +
∑
i/∈N1

d̃iI
n
i (l) − 2l.

Thus the exploration process starts from d̃j now. Consider the re-scaled pro-
cess S̄jn defined as S̄jn(t) = (nαpn)

−1S
j
n(btnαpnc). Then,

S̄jn(t) = (nαpn)
−1D(j) + (nαpn)

−1
∑
i/∈N1

d̃iI
n
i (tn

αpn) − 2t+ oP(1).

Recall that Ẽ is the conditional expectation conditionally on (d̃i)i∈[n]. Now,
since the vertices are explored in a size-biased manner with the sizes being
(d̃i/˜̀

n)i∈[n], for any t > 0,

Ẽ

[
1

nαpn

∑
i/∈N1

d̃iI
n
i

(
btnαpnc

)]
6
tnαpn

nαpn ˜̀
n

∑
i∈[n]

d̃2
i = oP(1),

where the last step follows from Lemma 6.2.5. Moreover, N1 = d̃j − 2Lj,
where Lj denotes the number of self-loops associated to vertex j in Gn(pn).
Since Ẽ[Lj] 6 d̃2

j/
˜̀
n = oP(1), it follows that Ẽ[N1] = d̃j(1 + oP(1)). Further,

Ẽ[D(j)] 6 ν̃nẼ[|N1|] = oP(n
αpn). Consequently, S̄jn

P−→ 0, and therefore, the
number of edges in C (j,pn) \ N1 = oP(1). Since the number of vertices in
C (j,pn) \ N1 is at most the number of edges +1, this yields that |C (j,pn) \
N1| = oP(n

αpn). Also, one can use Lemma 6.2.5 to show that Var(N1 | d̃) =

oP(n
2αp2

n), which yields N1 = d̃j(1 + oP(1)). Thus,

(nαpn)
−1|C (j,pn)|

P−→ θj.

To conclude Theorem 6.1.3, it remains to prove that for each fixed j > 1,

|C (j,pn)| = |C(j)(pn)|, with high probability. (6.23)

For that, we show that the rescaled vector of ordered component sizes con-
verges in `2↓ . It is enough to show that for any ε > 0

lim
K→∞ lim sup

n→∞ P

(∑
i>K

|C(i)(pn)|
2 > εn2αp2

n

)
= 0.

This can be concluded using identical arguments as Proposition 6.2.8 above.
Now, (6.23) follows using [31, Lemma 7.6]. The proof of Theorem 6.1.3 is
now complete.
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Barely-supercritical regime

In this section, we provide the proof of Theorem 6.1.4 by leveraging tech-
niques from [101, 114]. Using Proposition 6.2.4, it is enough to prove Theo-
rem 6.1.4 for the graph Gn(pn) generated by Algorithm 6.1. Let d̃ denote the
degree sequence obtained after performing Algorithm 6.1 (S1). Thus, Gn(pn)
is distributed as CMn(d̃). We will verify Assumptions (B1)–(B8) from [101]
on the graph Gn(pn), which allows us to conclude Theorem 6.1.4 from [101,
Theorem 5.3]. Consider the following exploration process on Gn(pn) from
[101, Section 5.1]:

Algorithm 6.4. (S0) Associate an independent Exponential(1) clock ξe to
each half-edge e. Any half-edge can be in one of the states among sleep-
ing, active, and dead. Initially at time 0, all the half-edges are sleeping.
Whenever the set of active half-edges is empty, select a sleeping half-
edge e uniformly at random among all sleeping half-edges and declare
it to be active. If e is incident to v, declare all the other half-edges of v
to be active as well. The process stops when there is no sleeping half-
edge left; the remaining sleeping vertices are all isolated and we have
explored all other components.

(S1) Pick an active half-edge (which one does not matter) and kill it, i.e.,
change its status to dead.

(S2) Wait until the next half-edge dies (spontaneously). This half-edge is
paired to the one killed in the previous step (S1) to form an edge of the
graph. If the vertex it belongs to is sleeping, then we declare this vertex
awake and all of its other half-edges active. Repeat from (S1) if there is
any active half-edge; otherwise from (S0).

Denote the number of living half-edges upto time t by Ln(t). Let Vn,k

and Ṽn,k(t) respectively denote the number of sleeping vertices of degree k
such that all the k associated exponential clocks ring after time t. Define

Ṽn(t) =

∞∑
k=0

Ṽn,k(t), S̃n(t) =

∞∑
k=0

kṼn,k(t), Ãn(t) = Ln(t) − S̃n(t).

We show that Assumptions (B1)–(B8) from [101] holds with

ζ = (κ/2)
1

3−τ , γn = αn = p
τ−2
3−τ
n , ψ(t) = 2t− κtτ−2,

ĝ(t) = µκtτ−2, ĥ(t) = µt.
(6.24)
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The ζ in our notation corresponds to τ in [101, Theorem 5.3], but we have
avoided that since τ denotes the power-law exponent in our case.

Remark 42. Notice that the rate at which an edge is created in the system is
`npn, instead of rate n, as in the setting of [101]. Thus, in time αn, the total
number of explored half-edges in `npnαn which is of the order np1/(3−τ)

n .
For this reason, the largest component size is of the order np1/(3−τ)

n in The-
orem 6.1.4.

Conditions (B1)–(B4) and (B8) in [101] are straightforward, and are left to
the reader. To verify Conditions (B5)–(B7), we first obtain below the asymp-
totics of the mean-curve and then show that the processes S̃n, Ṽn, Ãn re-
main uniformly close to their expected curves. These are summarized in the
following two propositions:

Proposition 6.2.14. For any fixed t > 0, as n→∞,

sup
u6t

∣∣∣∣ 1
nαnpn

(
E[S̃n(0) − E[S̃n(αnt)]

)
− ĝ(t)

∣∣∣∣→ 0, (6.25)

sup
u6t

∣∣∣∣ 1
nαnpn

(
E[Ṽn(0)] − E[Ṽn(αnt)]

)
− ĥ(t)

∣∣∣∣→ 0, (6.26)

sup
u6t

∣∣∣∣ 1
nαnpn

E[Ãn(αnt)] −ψ(t)

∣∣∣∣→ 0.

Proposition 6.2.15. For any fixed t > 0, as n → ∞, all the terms
supu6t |S̃n(αnt) − E[S̃n(αnt)]|, supu6t |Ṽn(αnt) − E[Ṽn(αnt)]|, and
supu6t |Ãn(αnt) − E[Ãn(αnt)]| are o(nαnpn).

To prove Propositions 6.2.14 and 6.2.15, we make crucial use of the fol-
lowing lemma:

Lemma 6.2.16. For any t > 0, as n→∞,

E

[ ∑
i∈[n]

d̃ie−tαnd̃i
]
= (1 + o(1))pn

∑
i∈[n]

die−tαnpndi ,

E

[ ∑
i∈[n]

e−tαnd̃i
]
= (1 + o(1))

∑
i∈[n]

e−tαnpndi .

Proof. Note that if X ∼ Bin(m,p), then

E
[
Xe−sX

]
= mpe−s(1 − p+ pe−s)m−1.
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Putting m = di, p = pn, and s = tαn, it follows that

E
[
d̃ie−tαnd̃i

]
= dipne−tαn

(
1 − pn

(
1 − e−tαn

))di−1

= (1 + o(1))dipn(1 − pntαn)
di

= (1 + o(1))dipne−tαnpndi .

Thus the proof follows.

Proof of Proposition 6.2.14. Note that by Lemma 6.2.16

E
[
S̃n(t)

]
= E

[ ∑
i∈[n]

d̃ie−tαnd̃i
]
= (1 + o(1))`npnE

[
e−tαnpnD

∗
n
]
,

E
[
Ṽn(t)

]
= E

[ ∑
i∈[n]

e−tαnd̃i
]
= (1 + o(1))`nE

[
e−tαnpnDn

]
,

where D∗n has a size-biased distribution with the sizes being (di/`n)i∈[n],
and Dn is the degree of a vertex chosen uniformly at random from [n]. By
the convergence of E[Dn] in Assumption 6.1,

E
[
1 − e−tαnpnDn

]
= (1 + o(1))tαnpnE[Dn],

by noting that 1 − e−x = x(1 + o(1)) as x→ 0. Further, by using (6.4),

E
[
1 − e−tαnpnD

∗
n
]
= καn(t

τ−2 + o(1)). (6.27)

Thus, (6.25) and (6.26) follow. Moreover, Ln(t) is a pure death process, where
L(0) =

∑
i∈[n] d̃i, and the jumps occur at rate Ln(t), and at each jump Ln(t)

decreases by 2. Therefore, E[Ln(t)] = E[L(0)]e−2t and consequently,

E[Ã(αnt)] = `npn
(
e−2αnt − E

[
e−tpnαnD

∗
n
])

+ o(`nαnpn)

= `npnαn(2t− κtτ−2) ++o(`nαnpn).

Thus the proof follows.

Proof of Proposition 6.2.15. Let us consider S̃n only and the other inequalities
follow using identical arguments. We will use precise bounds in [101, Lemma
5.13]. In fact, using the fact that 1 − e−x > (1 ∧ x)/3, it follows that

E
[

sup
u6tαn

|S̃n(u) − E[S̃n(u)]|
]
6 CE

[ ∑
i∈[n]

d̃2
i

(
1 − e−tαnd̃i

)]
. (6.28)
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6.3 Generalized random graphs: Proofs

Now, using standard concentration inequalities for tails of binomial distribu-
tions [115, Theorem 2.1], for any i ∈ [n],

P(d̃i > 2d1pn) 6 Ce−Cd1pn = Ce−Cn
ρλn ,

and therefore maxi∈[n] d̃i 6 2d1pn, a.s. Pp. Now, using (6.24), the bounds(6.27)
and (6.28) yield

1
(`npnαn)2 E

[
sup
u6tαn

|S̃n(u) − E[S̃n(u)]|
]

6
C2d1pn`npnαn

(`npnαn)2 =
C

λ
(τ−2)/(3−τ)
n

→ 0,

since λn → 0, as n→∞. Thus the proof follows.

Proof of Theorem 6.1.4. The proof follows by applying [101, Theorem 5.3]. Propo-
sition 6.2.14 verifies conditions (B5)–(B7) in [101], and the rest of the condi-
tions are straightforward to verify.

6.3 Generalized random graphs: Proofs

In this section, we prove our results related to critical percolation on GRGn(w).
In Section 6.3.1, we set up the fundamental technical ingredients required for
the proof. In Section 6.3.2, we use the first-moment method to identify the
primary contributions on the total weight of the components. The connectiv-
ity structure between the hubs is described in detail in Section 6.3.3, which
allows us to deduce the component sizes of components containing hubs in
Section 6.3.4. Finally, Theorem 6.1.5 is proved in Section 6.3.5.

6.3.1 Key Ingredients

In this section, we provide the two key ingredients that will play a pivotal role
in the proof of Theorem 6.1.5. The first one, stated in Lemma 6.3.1, provides
the estimates for different moments of the w. Next, in Lemma 6.3.2, we esti-
mate the probability of two vertices being connected via another vertex. The
later result forms the conceptual bedrock of our analysis (see Section 6.3.3).
For example, one can set up path-counting techniques in Corollary 6.3.3 us-
ing Lemma 6.3.2. We use a generic notation C to denote a positive constant.
Also we write an ∼ bn to mean that an/bn → 1, as n→∞.
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Chapter 6 Critical window: Infinite second moment

Lemma 6.3.1 (Moment estimates). Under Assumption 6.2, there exists a constant
CF > 0 (depending only on F) such that, for all i ∈ [n],

wi =

(
cFn

i

)α
. (6.29)

For any a > 0,b 6 α,

#{r : wr > a`n/wj} ∼ a−(τ−1)n

(
wj

`n

)τ−1
,

∑
k:wk6a`n/wj

w2
k ∼ Ca3−τn

(
`n

wj

)3−τ
,

∑
wk>a`n/wj

wk ∼ Ca−(τ−2)n3−τwτ−2
j ,

∑
k:wk6anb

wτ−2
k ∼ Cnρ(anb)α,

(6.30)

where C > 0 is considered as a generic notation for a constant.

Proof. (6.29) follows directly from Assumption 6.2. Next, note that(
n

r

)α
6 a

`n

wj
⇐⇒ r > a−(τ−1)n

(
wj

`n

)τ−1
.

Thus, (6.30) follows by noting that

∑
r:wr6a`n/wj

w2
r = n

2α
∑

r>a−(τ−1)n(wj/`n)τ−1

r−2α ∼ Ca3−τn

(
`n

wj

)3−τ
,

and ∑
wk>a`n/wj

wk ∼ Cnα
∑

k6Ca−(τ−1)(wj/`n)τ−1

k−α

∼ Cnα
(
a−(τ−1)n

(wj
`n

)τ−1
)ρ

∼ Ca−(τ−2)n3−τwτ−2
j .

The last expression is also similar.

Lemma 6.3.2 (Two-hop connection probabilities). There exists an absolute con-
stant C > 0 such that for all n > 1,

pij(2) := p2
c

∑
v∈[n]

wiw
2
vwj

(`n +wiwv)(`n +wjwv)
6

Cλ2

(i∧ j)1−α(i∨ j)α
, ∀ i, j ∈ [n].
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6.3 Generalized random graphs: Proofs

Proof. Without loss of generality, we assume that wi > wj, i.e., i 6 j. Let us
split the sum in three parts with {v : wiwv 6 `n}, {v : wjwv 6 `n < wiwv},
and {v : wjwv > `n}, and denote them by (I), (II) and (III) respectively. Note
that using Lemma 6.3.1,

(I) 6
p2
cwiwj

`n

∑
v:wv6`n/wi

w2
v = Cλ2n−(3−τ)wiwj

`2n
n
`3−τn

w3−τ
i

6 Cλ2w
τ−2
i wj

`n
6

Cλ2

i1−αjα
,

(II) 6
p2
cwj

`n

∑
v: `nwi

<wv6
`n
wj

wv 6 Cλ
2n−(3−τ)wj

`n
`3−τn wτ−2

i

6 Cλ2w
τ−2
i wj

`n
6

Cλ2

i1−αjα
,

(III) 6 p2
c#{wv > `n/wj} = p2

cn
wτ−1
j

`τ−1
n

6 Cλ2w
τ−2
i wj

`n
6

Cλ2

i1−αjα
.

Thus the proof follows.

Corollary 6.3.3 (Path counting estimate). Let fk(i, j) denote the probability that
there exists a path of length k in GRGn(w) from i to j. For all 1 − α < b < α,
there exists a constant c0 > 0 such that for all n > 1,

f2k(i, j) 6
(c0λ

2)k

(i∧ j)b(i∨ j)1−b . (6.31)

Proof. Note that

f2k(i, j) 6
∑

(vr)
2k
r=0:v

′
rs distinct

v0=i,v2k=j

p2k
c

2k∏
r=0

wvrwvr+1

`n +wvrwvr+1

,

and the proof follows directly from [73, Lemma 2.4] using Lemma 6.3.2.

6.3.2 Negligible contributions on the total weight

Suppose that C (i) denotes the component in GRGn(w,pc(λ)) containing ver-
tex i and Wk(i) =

∑
v∈C (i),d(v,i)=kwv, where d(·, ·) is used as a notation for

graph distance (the number of edges on the shortest path) throughout. In this
section, we identify the terms that have negligible contributions to W(i). The
next proposition states that the total contribution on the total weight coming
from vertices in the odd neighborhood is small. Moreover, the total weight
outside a large but finite neighborhood of i is also negligible.
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Chapter 6 Critical window: Infinite second moment

Proposition 6.3.4. Suppose that λ < c−1/2
0 , where c0 is defined in Corollary 6.3.3.

For any fixed i > 1 and ε > 0,

lim
K→∞ lim sup

n→∞ P

(∑
k>K

W2k(i) > εn
α

)
= 0,

lim
n→∞P

( ∞∑
k=0

W2k+1(i) > εn
α

)
= 0.

(6.32)

Proof. Recall the definition of fk(i, j) from Corollary 6.3.3 and note that c0λ
2 <

1. Therefore, using Corollary 6.3.3,

E[W2k(i)] 6
∑
j∈[n]

wjf2k(i, j)

6 nα(c0λ
2)k
[∑
j<i

1
jα

1
jbi1−b

+
∑
j>i

1
jα

1
ibj1−b

]

6 Cnα(c0λ
2)k
[ 1
i1−b

+
1
iα

]
6 C(c0λ

2)k
nα

i1−b

6 C(c0λ
2)kwii

b−(1−α).

(6.33)

Now, an application of Markov’s inequality proves the first part of (6.32). We
stress that (6.33) holds uniformly over i ∈ [n], which we will use in the next
part of the proof.

The proof of the second part in (6.32) is complete if we can show that, for
any i ∈ [n],

n−αE

[ ∞∑
k=0

W2k+1(i)

]
6
Cn−ε

iρ
, (6.34)

for absolute constants C > 0, ε > 0. Firstly, note that for any vertex i ∈ [n],

pc
∑
v∈[n]

wiw
2
v

`n +wiwv
6 Cλwτ−2

i n3−τ. (6.35)

To see this, let us split the above sum in two parts with {v : wv 6 `n/wi}

and {v : wv > `n/wi}, and denote them by (I) and (II) respectively. Then, by
Lemma 6.3.1,

(I) 6
pc

`n
win

`3−τn

w3−τ
i

6 Cλwτ−2
i n(3−τ)/2,

(II) 6 pc
∑

v:wv>`n/wi

wv 6 Cλw
τ−2
i n(3−τ)/2,
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6.3 Generalized random graphs: Proofs

and (6.35) follows. Now, we will use the precise bound in (6.33). Choose
ε = 1

2 (
3−τ
τ−1 − 3−τ

2 ) and b such that b− (1 −α) = ε. Thus,

n−αE[W2k+1(i)] 6 n
−α
∑
v∈[n]

P(i and v create an edge)E[W2k(v)]

6 n−αnε
∑
v∈[n]

pc
wiwv

`n +wiwv
C(c0λ

2)kwv

=
C(c0λ

2)knε

nα

(
pc
∑
v∈[n]

wiw
2
v

`n +wiwv

)

6
C(c0λ

2)k

iρ
nεn

3−τ
2 − 3−τ

τ−1 =
C(c0λ

2)kn−ε

iρ
,

where the last-but-one step follows from (6.35), and in the final step we have
used the choice of ε > 0. The proof of (6.34) now follows using the fact that
c0λ

2 < 1, which also concludes the proof of Proposition 6.3.4.

We will be interested in obtaining the limit of
∑∞
k=1W2k(i). Using Propo-

sition 6.3.4, it is enough to find the limit, as n→∞, of the quantity
∑K
k=1W2k(i)

for each fixed K > 1. The next proposition states that for each fixed k > 1,
the primary contribution to W2k(i) arises only due to the hubs. For δ > 0,
define VL(δ) := {v : wv > δn

α}, and Wk(i, δ) :=
∑
v/∈VL(δ),d(v,i)=kwv.

Proposition 6.3.5. For any fixed i > 1, K > 1, and ε > 0,

lim
δ→0

lim sup
n→∞ P

( K∑
k=1

W2k(i, δ) > εnα
)

= 0.

Proof. Suppose that we choose δ > 0 to be so small that i ∈ VL(δ). Therefore,
v /∈ VL implies that v > i. Using Corollary 6.3.3, it follows that

E[W2k(i, δ)] 6
∑

v/∈VL(δ)

nα

vα
(c0λ

2)k

ibv1−b

6
Cnα

ib

∑
v>δ−(τ−1)

1
v1+α−b 6

Cnαδ(τ−1)(α−b)

ib
.

Therefore,

n−αE

[ K∑
k=1

W2k(i, δ)
]
6 CKi−bδ(τ−1)(α−b). (6.36)

Now, an application of Markov’s inequality completes the proof.
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6.3.3 Total weight of components containing hubs

To simplify writing we will always assume that cF = 1 without loss of gener-
ality. Recall the definition of the graph G∞(λ) from Section 6.1.2. In the rest
of this section, we write θi = i−α. Consider the following objects defined
on the graph G∞: W∞k (i) =

∑
j∈C(i), d(i,j)=k θj, where C(i) is defined as the

component in G∞(λ) containing vertex i, and W∞6K(i) =
∑K
k=1W

∞
k (i), and

W∞(i) =∑∞k=1W
∞
k (i). The main result of this subsection is the following:

Theorem 6.3.6. Suppose that λ < c
−1/2
0 , where c0 is defined in Corollary 6.3.3.

For each fixed i > 1, as n→∞, n−αW(i)
d−→W∞(i).

The key ingredient in the proof is the proposition below. We immediately
give the proof of Theorem 6.3.6 after stating the proposition, and devote the
rest of this section to the proof of Proposition 6.3.7:

Proposition 6.3.7. For each fixed i > 1 and K > 1, as n→∞,

n−α
K∑
k=1

W2k(i)
d−→W∞6K(i).

Proof of Theorem 6.3.6. Propositions 6.3.4, 6.3.5, and 6.3.7 together directly con-
cludes the proof.

Throughout this subsection, we will use the notation VL := {i : wi > δn
α},

VSS = {i : wi < δnρ}, VSI = {i : δnρ 6 wi 6 δ−1nρ} and VSL = {i : wi >

δ−1nρ}. We have tacitly avoided augmenting δ > 0 in the notation to simplify
notation. Note that for v ∈ VSI and i ∈ VL, wiwv = Θ(`n). Consider the
following multigraph Gn,δ on the vertex set VL, where the number of edges
Xij between i and j is number of distinct v ∈ [n] such that both (i, v) and
(v, j) are edges of GRGn(w,pc). Note that, for any i 6= j,

Xij =
∑
v 6=i,j

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
, (6.37)

with the different Bernoulli random variables in the sum (6.37) being inde-
pendent. We can split the above sum in three parts with v ∈ VSS, v ∈ VSI,
and v ∈ VSL and denote them by (I), (II), and (III) respectively. Now, using
Lemma 6.3.1,

E[(I)] 6
wiwjp

2
c

`2n

∑
v:wv<δnρ

w2
v

6 C0θ
2
1δ

3−τn2α−2+1+(3−τ)ρp2
c 6 C1δ

3−τ,

(6.38)
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E[(III)] 6 p2
c × #{v : wv > δ−1nρ} = Cδτ−1. (6.39)

Using the above and Markov’s inequality, it follows that

Xij =
∑

v:wv∈[δnρ,δ−1nρ]

Ber
(

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

)
+ E(δ,n)

= Xij(δ) + E(δ,n),

where for any ε > 0

lim
δ→0

lim sup
n→∞ P(E(δ,n) > ε) = 0. (6.40)

Define

λij(δ) =
∑

v:wv∈[δnρ,δ−1nρ]

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)
.

The proof of Proposition 6.3.7 is decomposed into three key lemmas below.
After stating these lemmas, we first prove Proposition 6.3.7, and subsequently
prove the lemmas.

Lemma 6.3.8. For any δ ∈ (0, 1), and i, j > 1

lim
n→∞dTV

(
Xij(δ), Poi(λij(δ))

)
= 0.

Lemma 6.3.9. For any fixed i, j > 1

lim
δ→0

lim
n→∞ λij(δ) = λ2

∫∞
0

θiθjx
−2α

(µ+ θix−α)(µ+ θjx−α)
dx.

Lemma 6.3.10. For any δ ∈ (0, 1), the collection of random variables (Xij(δ))i,j∈VL
is asymptotically independent.

Proof of Proposition 6.3.7. The proof follows directly from Lemmas 6.3.8, 6.3.9,
and 6.3.10.

Proof of Lemma 6.3.8. Using standard inequalities from Stein’s method [98,
Theorem 2.10], it follows that, as n→∞,

dTV

(
Xij(δ), Poi(λij(δ))

)
6

∑
v:wv∈[δnρ,δ−1nρ]

(
wiwjw

2
vp

2
c

(`n +wiwv)(`n +wjwv)

)2

6 Cn4α−4p4
c

∑
v:wv∈[δnρ,δ−1nρ]

w4
v 6

C

δ2n
2α−2p4

c

∑
v:wv∈[δnρ,δ−1nρ]

w2
v

=
C

δ2n
2α−2n−2(3−τ)n1+(3−τ)ρ =

Cn−(3−τ)

δ2 → 0,

and the proof follows.
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Proof of Lemma 6.3.9. Observe that

λij(δ) =
∑

v:wv∈[δnρ,δ−1nρ]

wiwjw
2
vp

2
c

(`n +wiwv)(`n +wjwv)

= p2
cn

4α−2
δ−(τ−1)n3−τ∑
k=δτ−1n3−τ

θiθjk
−2α

(µ+ θin
− 3−τ
τ−1 k−α)(µ+ θjn

− 3−τ
τ−1 k−α)

= p2
cn

4α−2
∫δ−(τ−1)n3−τ

δτ−1n3−τ

θiθjk
−2α

(µ+ θin
− 3−τ
τ−1 k−α)(µ+ θjn

− 3−τ
τ−1 k−α)

dk

= (1 + o(1))λ2
∫δ−(τ−1)

δτ−1

θiθjx
−2α

(µ+ θix−α)(µ+ θjx−α)
dx,

and the proof follows.

Proof of Lemma 6.3.10. Note that for pairs (i, j), and (k, l) with {i, j}∩ {k, l} = ∅,
Xij and Xkl are independent due to the independence of the occupancy of
edges in GRGn(w,pc). The only dependence between Xij and Xik arises
due to connections (i, v), (v, j) and (v,k). Thus, the lemma is proved if we
can show that the above does not arise with high probability. Note that

P(i, j,k ∈ VL : ∃v ∈ [n] such that (i, v), (v, j), (v,k) are edges in GRGn(w,pc))

6
∑

i,j,k∈VL

∑
v∈[n]

p3
c

wiwv

`n +wiwv

wjwv

`n +wjwv

wkwv

`n +wkwv
.

Again, let us split the above sum in two pars with {v : wv 6 nρ} and {v : wv >

nρ}, and denote them by (I) and (II) respectively. Thus, using Lemma 6.3.1,

(I) 6
p3
cw

3
1|VL|

3

`3n

∑
v:wv6nρ

w3
v 6

p3
cw

3
1|VL|

3nρ

`3n

∑
v:wv6nρ

w2
v

6 Cp3
cn

3α−3+ρ+1+(3−τ)ρ = O(pc),

(II) 6 |VL|
3p3
c#{v : wv > nρ} = O(pc).

This completes the proof of Lemma 6.3.10.

6.3.4 Sizes of components containing hubs

In this section, we consider the asymptotic size of C (i), the component con-
taining vertex i. We will prove the following theorem:
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6.3 Generalized random graphs: Proofs

Theorem 6.3.11. For each fixed i > 1, as n→∞, (nαpc)−1|C (i)|
d−→W∞(i).

Lemmas 6.3.12, and 6.3.13 identify the primary contribution to the com-
ponent sizes. Since the proof of the lemmas are short, they are given immedi-
ately. We conclude the section with the proof of Theorem 6.3.11 using these
two lemmas. Define Ck(i) := {v ∈ C (i) : d(v, i) = k}. Thus Ck(i) denotes the
set of vertices at exactly distance k from vertex i.

Lemma 6.3.12. Suppose that λ < c
−1/2
0 , where c0 is defined in Corollary 6.3.3.

For any fixed i > 1, and ε > 0,

lim
n→∞P(

∞∑
k=0

|C2k(i)| > εn
αpc) = 0,

lim
K→∞ lim sup

n→∞ P

(∑
k>K

|C2k+1(i)| > εn
αpc

)
= 0.

Proof. Note that

E
[
|Ck+1(i)|

∣∣∣ k⋃
r=1

Cr(i)
]
6 pc

∑
v1∈Ck(i)

∑
v2∈[n]

wv1wv2

`n +wv1wv2

6 pcWk(i),

(6.41)

and therefore E[|Ck+1(i)|] 6 pcE[Wk(i)]. Now the estimates (6.33), (6.34)
conclude the proof.

Let C ′k(i) ⊂ Ck(i) denote the vertices of Ck(i) that are neighbors of some
vertex in Ck−1(i)∩ VL, where VL := {v : wv > δn

α} for some δ > 0. Then the
following lemma estimates the contribution to the component size due to the
non-hubs at distance 2k+ 1:

Lemma 6.3.13. For each fixed i > 1, k > 1, and ε > 0,

lim
δ→0

lim sup
n→∞ P(|C2k+1(i) \C ′2k+1(i)| > εn

αpc) = 0. (6.42)

Proof. Using an identical argument as (6.41) yields E[|C2k+1(i) \C ′2k+1(i)|] 6

pcE[W2k(i, δ)], where Wk(i, δ) :=
∑
v∈Ck(i)∩VcL wv. Now, (6.42) follows from

(6.36).

Fact 3. Given a matrix (pij)i∈[m],j∈[n], let Iij ∼ Ber(pij), independently. For all
i ∈ [m], construct the random set Vi := {j : Iij = 1}, and let V = ∪i∈[m]Vi. Then
Var (|V |) 6

∑
i∈[m] Var (|Vi|).
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Proof. Note that P(vj ∈ V) = 1−
∏
i∈[m](1−pij), and the events {u ∈ V} and

{w ∈ V} are independent for all u 6= w. Further, Var (|Vi|) =
∑
j∈[n] pij(1 −

pij). Therefore,

Var (|V |) =
∑
j∈[n]

(
1 −

∏
i∈[m]

(1 − pij)

) ∏
i∈[m]

(1 − pij)

6
∑
j∈[n]

∑
i∈[m]

pij
∏
i∈[m]

(1 − pij)

6
∑
j∈[n]

∑
i∈[m]

pij(1 − pij) =
∑
i∈[m]

Var (|Vi|) ,

where the third step follows using the fact the 1 −
∏

(1 − xr) 6
∑
xr, when-

ever 0 6 xr 6 1 for every r > 1.

Proof of Theorem 6.3.11. Let Fk denote the minimal sigma-algebra with re-
spect to which ∪kr=1Cr(i) is measurable. Define W ′k(i) :=

∑
v∈Ck(i)∩VL wv.

Using Lemmas 6.3.12, 6.3.13, it is now enough to show that |C ′2k+1(i)| =

pcW
′
2k(i)(1+E(δ,n)), where the random variable E(δ,n) satisfies (6.40). This

follows from Chebyshev’s inequality if we can show that

E[|C ′2k+1(i)||F2k] = pcW
′
2k(i)(1 + o(1)), and Var

(
|C ′2k+1(i)||F2k

)
6 En,

(6.43)
where E[En] = o(n

2αp2
c). For v ∈ [n] \C2k(i), let Iv denote the indicator that

there exists u ∈ C2k(i) ∩ VL such that (v,u) creates an edge. Thus, for any
v ∈ [n] \C2k(i)

P(Iv = 1|F2k) = 1 −
∏

u∈C2k(i)∩VL

(
1 −

pcwuwv

`n +wuwv

)
.

Using inclusion-exclusion with respect to the union of u ∈ C2k(i) ∩ VL, it
now follows that

E[|C ′2k+1(i)||F2k]

>
∑

v/∈C2k(i)

∑
u∈C2k(i)∩VL

pcwuwv

`n +wuwv

−
∑

v/∈C2k(i)

∑
u1,u2∈C2k(i)∩VL,

u1<u2

p2
cwu1w

2
vwu2

(`n +wu1wv)(`n +wu2wv)
.

Let us denote the first and second terms above by (I) and (II) respectively.
Note that

(II) 6
∑

u1,u2∈VL

∑
v∈[n]

p2
cwu1w

2
vwu2

(`n +wu1wv)(`n +wu2wv)
= O(1) = o(nαpc),

278



6.3 Generalized random graphs: Proofs

almost surely, where the third equality above follows using (6.38), (6.39) and
Lemma 6.3.9. Further, by observing

1
nαpc

∑
u∈C2k(i)∩VL

∑
v∈C2k(i)

pcwuwv

`n +wuwv

6
1

nα`n
(W2k(i))

2 = OP(n
α−1) = oP(1),

it follows that

E[|C2k+1(i)||F2k] =
∑

u∈C2k(i)∩VL

∑
v∈[n]

pcwuwv

`n +wuwv
+ oP(n

αpc).

Now for ε > 0 (sufficiently small), let us split the above term in two parts
with {v : wv 6 nρ−ε}, {v : wv > nρ−ε}, and call them (I) and (II) respectively.
Now, using Lemma 6.3.1,

(II)

nαpc
6 C|VL|

2n
1−(τ−1)ρ+ε(τ−1)

nα
6 C|VL|

2nρ−ρ(τ−1)+ε(τ−1) = o(1),

almost surely, and

(I) = pc
∑

u∈C2k(i)∩VL

∑
v:wv6nρ−ε

wuwv

`n(1 + o(1))
= pcW

′
2k(i)(1 + o(1)).

The estimate for the expectation term in (6.43) now follows. For u ∈ C2k(i),
let Nu denote the number of neighbors of u in C2k+1(i). For the variance
term, Fact 3 implies that

Var
(
|C ′2k+1(i)||F2k

)
6

∑
u∈C2k(i)∩VL

Var (Nu)

6
∑

u∈C2k(i)∩VL

∑
v∈[n]

pcwuwv

`n +wuwv
6 pcW

′
2k(i),

and the required estimate in (6.43) follows using Theorem 6.3.6.

6.3.5 Proof of Theorem 6.1.5

To conclude Theorem 6.1.5 using Theorems 6.3.6, 6.3.11, it is enough to show
that (n−α(W(i))i>1)n>1 and ((nαpc)

−1(|C(i)(pc)|)i>1)n>1 are tight in `2↓ , and
the limiting object in Theorem 6.1.5 is finite almost surely. We state the tight-
ness below and defer the finiteness of the limiting object to Proposition 6.3.15
in the next section.
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Proposition 6.3.14. Suppose that λ < c−1/2
0 , where c0 is defined in Corollary 6.3.3.

Then, (n−α(W(i))i>1)n>1 and ((nαpc)
−1(|C(i)(pc)|)i>1)n>1 are tight in `2↓ .

Proof. To show the `2↓-tightness of (n−α(W(i))i>1)n>1, it is enough to show
that for any ε > 0

lim
K→∞ lim sup

n→∞ P

(∑
i>K

W2
(i) > εn

2α
)

= 0.

Consider the graph GRGn(w,pc) \ [K], and define W(i)K, W(v;K) on this
graph analogously as W(i) and W(v). It is enough to show that

lim
K→∞ lim sup

n→∞ P

(∑
i>1

W2
(i),K > εn

2α
)

= 0. (6.44)

Let V∗n(K) denote a vertex chosen in a size-biased manner from [n] \ [K]

with the sizes being proportional to (wi)i>K, chosen independently from
GRGn(w,pc). Let `n(K) :=

∑
i>Kwi. Then, `n(K) = `n(1 + o(1)) for each

fixed K > 1. Note that

E

[∑
i>1

W2
(i),K

]
= `n(K)E[W(V∗n(K);K)]

6 `n(K)

[∑
k>0

∑
v∈[n]

wvf2k(V
∗
n(K), v) +

∑
k>0

∑
v∈[n]

wvf2k+1(V
∗
n(K), v)

]
.
(6.45)

Let us denote the two sums above by (I) and (II) respectively. We can now
use the estimates from (6.33) and (6.34). Note that (6.33) implies that, for
λ < c

−1/2
0 ,

n−2α(I) 6 Cn−2α`n(K)E[wV∗n(K)] = C
∑
i>K

i−2α,

which tends to zero as K→∞. Moreover, (6.34) implies that for λ < c−1/2
0 ,

n−2α(II) 6 Cn−ε
∑
i>K

1
i
=
C log(n)
nε

,

which goes to zero as n → ∞. Thus, (6.45) follows, and (6.44) follows from
Markov’s inequality.

For the `2↓-tightness of ((nαpc)
−1(|C(i)(pc)|)i>1)n>1, note that, for any

vertex i ∈ [n], E[|Ck+1(i)|] 6 pcE[Wk(i)] for all k > 1, and therefore E[|C (i)|] 6
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6.3 Generalized random graphs: Proofs

pcE[W(i)]. Thus, if V∗n a vertex chosen in a size-biased manner with the sizes
being (wi/`n)i∈[n], chosen independently of GRGn(w,pc),

E

[∑
i>1

|C(i)|
2
]
= E

[ ∑
i∈[n]

|C (i)|

]
6 pcE

[ ∑
i∈[n]

W(i)

]
= pcE

[∑
i>1

|C(i)|W(i)

]

= `npcE[|C (V∗n)|] 6 `np
2
cE[W(V∗n)] = p

2
cE

[∑
i>1

W2
(i)

]
.

We can apply this quantity to GRGn(w,pc) \ [K] as above and the proof of
Proposition 6.3.14 is now complete.

6.3.6 Finiteness of the limiting object

We write θi = i−α. Recall that the graph G∞(λ) with vertex set Z+ is created
by creating Poisson(λij) many edges vertices i and j, where

λij = λ
2
∫∞

0

θiθjx
−2α

(µ+ θix−α)(µ+ θjx−α)
dx. (6.46)

Let C(i) denote the connected component containing vertex i and define
W∞(i) =∑j∈C(i) θj. We will show the following and the fact that (W∞(i))i>1 ∈
`2↓ then follows from Proposition 6.3.14 using Fatou’s lemma.

Proposition 6.3.15. Consider θi = i−α. There exists and absolute constant λ0

such that the following holds for any λ ∈ (0, λ0): For each i ∈ Z+, W∞(i) < ∞
almost surely.

Lemma 6.3.16. λij 6 Cλ2

(i∧j)1−α(i∨j)α
for some absolute constant C > 0.

Proof. Without loss of generality, let us assume that θi > θj (i.e., i < j), and
µ = 1. Let us split the integral (6.46) in three parts with {x : θix

−α < 1},
{x : 0 < θjx−α < 1 < θix−α} and {x : θjx

−α > 1} and denote them by (I), (II)
and (III) respectively. Then,

(I) 6 λ2θiθj

∫∞
θ

1/α
i

x−2αdx 6 Cλ2θiθj(θ
1/α
i )1−2α =

Cλ2

i1−αjα
,

(II) 6 λ2θj

∫θ1/α
i

θ
1/α
j

x−αdx =
Cλ2

jα

[
1

i1−α
−

1
j1−α

]
6

Cλ2

i1−αjα
,

(III) 6 λ2
∫θ1/α
j

0
dx 6

Cλ2

j
6

Cλ2

i1−αjα
.

Thus the proof follows.
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Proof of Proposition 6.3.15. We will use the path counting estimates from [73].
We estimate the probability that there exists a non self-intersecting path of
length k from i to j in G∞. Using Lemma 6.3.16, note that

P(j ∈ C(i), d(i, j) = k)

6 (c2λ
2)k

∑
(vr)

k
r=0:vr’s distinct
v0=i,vk=j

k−1∏
r=0

1
(vr ∧ vr+1)1−α(vr ∨ vr+1)α

.

Using [73, Lemma 2.4], for any b < α,

P(j ∈ C(i), d(i, j) = k) 6
(c3λ

2)k

ibj1−b
,

for some absolute constant c3 > 0. Thus, for λ < 1/
√
c3,

E[W∞(i)] 6 C∑
j>1

j−α
(c3λ

2)k

ibj1−b
6
C

ib
<∞,

which implies W∞(i) <∞ almost surely.

6.3.7 Near-critical behavior

Proof of Theorem 6.1.8. The proof can be completed by modifying the argu-
ments in Section 6.3. In fact, if pn = λnn

−(3−τ)/2, for some λn → 0, then
Lemma 6.3.2 holds with λ, replaced by λn. One can use identical arguments
as Proposition 6.3.4 to show that W(i) = wi(1 + oP(1)). Finally, one can use
identical arguments as Proposition 6.3.14 to deduce the `2↓ tightness of the
vector of component sizes and weights. Thus, the proof of Theorem 6.1.8
follows.

6.4 Erased configuration model: Proofs

In this section, we provide the necessary adaptations required to the argu-
ments in Section 6.3 to complete the proof of Theorem 6.1.7. Let eij denote
the number of edges between vertices i and j in CMn(d). Note that an edge
{i, j} appears in ECMn(d) if and only if eij > 1. We start by describing two el-
ementary properties of the occurrence of edges in Lemmas 6.4.1, 6.4.2, which
will be the key to the required adaptations:

Lemma 6.4.1. For all distinct i, v, j, P(eiv > 1, evj > 1) 6 P(eiv > 1)P(evj > 1)
.
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6.4 Erased configuration model: Proofs

Proof. For any m1 > 1,

P(eiv = m1) =

(
di
m1

)(
dv
m1

)
m1!

(`n − 1) . . . (`n − 2m1 + 1)
. (6.47)

Further, fix an m2 > 1. Now conditionally on the first m1 edge, the probabil-
ity of {evj = m2} is also given by (6.47), with dv changed to dv −m2 and the
product in the denominator being (`n − 2m1 − 1) · · · (`n − 2(m1 +m2) + 1).
Therefore, for any m1,m2 > 1,

P(eiv = m1, evj = m2) =

(
di
m1

)(
dv
m1

)
m1!

(
dv−m1
m2

)(
dj
m2

)
m2!

(`n − 1) · · · (`n − 2(m1 +m2) + 1)
.

Moreover, for any a > 0, x/y 6 (x+ a)/(y+ a), iff x 6 y, which yields that
(dv −m1 − k)/(`n − 2m1 − k− 1) 6 (dv − k)/(`n − k− 1). Therefore,

P(eiv = m1, evj = m2)

P(eiv = m1)P(evj = m2)
=

(
dv−m1
m2

)(
dv
m2

) m∏
i=1

`n − 2m1 + 1 − 2i
`n − 2i+ 1

6 1.

The proof of Lemma 6.4.1 thus follows.

Lemma 6.4.2. For any i 6= j, P(eij > 1) 6 min{ didj`n−1 , 1}.

Proof. Obviously, P(eij > 1) 6 1, and by Markov’s inequality,

P(eij > 1) 6 E[eij] =
didj

`n − 1
,

and the proof follows.

Define pij(2) to be the probability that there exists some intermediate
vertex v such that {i, v} and {v, j} form edges in ECMn(d,pc). We have seen
that the bound in Lemma 6.3.2 forms the bedrock for all the error estimates
for GRGn(w,pc(λ)), while using the first moment method. The next lemma
provides an analogue of Lemma 6.3.2 for ECMn(d,pc(λ)):

Lemma 6.4.3. pij(2) 6 Cλ2

(i∧j)1−α(i∨j)α
, ∀i, j ∈ [n] for some constant C > 0.

Proof. Without loss of generality, we assume that di > dj, i.e., i < j. Note
that

pij(2) 6 p2
c

∑
v∈[n]

P(eiv > 1, eiv > 1) 6 p2
c

∑
v∈[n]

P(eiv > 1)P(eiv > 1),

where we have used Lemma 6.4.1. Let us split the sum in three parts with
{v : didv 6 `n}, {v : djdv 6 `n < didv}, and {v : djdv > `n}, and bound
P(eiv>1)P(evj > 1) from above by 4did2

vdj/`
2
n, 2dvdj/`n and 1 respectively

on those sets. The rest of the argument is identical to Lemma 6.3.2.
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For the proof of the results for ECMn(d,pc(λ)), we replace thewi’s by the
di’s in all the notations in Section 6.3. The inequality in Lemma 6.4.3 again es-
tablishes that the two-hop connection probabilities are upper-bounded by the
connection probabilities of the preferential attachment model. Thus, we can
use Lemma 6.4.3 together with Lemma 6.4.1 to get an identical estimate as
(6.31), and therefore Proposition 6.3.4 holds. Let us now identify the connec-
tivity structure between the hubs to establish an analog of Proposition 6.3.7.

We use the notation VL := {i : di > δnα}, VSS = {i : di < δnρ}, VSI =

{i : δnρ 6 di 6 δ−1nρ} and VSL = {i : di > δ
−1nρ}. Consider the following

multigraph Gn,δ on the vertex set VL, where the number of edges Xij be-
tween i and j is number of distinct v ∈ [n] such that both (i, v) and (v, j) are
edges of ECMn(d,pc). Note that, for any i 6= j,

Xij =
∑
v 6=i,j

Ber
(
p2
cP(eiv > 1, evj > 1)

)
.

We can split the above sum in three parts with v ∈ VSS, v ∈ VSI, and v ∈ VSL
and denote them by (I), (II), and (III) respectively. Now, using Lemma 6.3.1
and Lemma 6.4.1,

E[(I)] 6
didjp

2
c

`2n

∑
v:dv<δnρ

d2
v 6 C0θ

2
1δ

3−τn2α−2+1+(3−τ)ρp2
c 6 C1δ

3−τ,

(III) 6 p2
c × #{v : dv > δ−1nρ} = δτ−1.

Using the above calculation of (I) and (III) and Markov’s inequality, it fol-
lows that

Xij =
∑

v:dv∈[δnρ,δ−1nρ]

Ber
(
p2
cP(eiv > 1, evj > 1)

)
+ ErrP(δ,n)

= Xij(δ) + ErrP(δ,n).

(6.48)

Define the quantity

λij(δ) = p
2
c

∑
v:dv∈[δnρ,δ−1nρ]

(
1 − e−

didv
`n

)(
1 − e−

didv
`n

)
. (6.49)

Lemma 6.4.4. For any δ ∈ (0, 1), and i, j > 1

lim
n→∞dTV

(
Xij(δ), Poi(λij(δ))

)
= 0.
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Proof. Let us first estimate the probabilities of the Bernoulli random variables
in (6.48). Firstly, note that using [105, (36)], for any v 6= i∣∣∣P(eiv = 0) − e−

didv
`n

∣∣∣ 6 did
2
v

(`n − d1)2 ,∣∣∣P(eiv = 0, evj = 0) − e−
(di+dj)dv

`n

∣∣∣ 6 (di + dj)d
2
v

(`n − d1)2 .
(6.50)

The second inequality also follows from [105, (36)], because if we merge two
vertices i and j into one single vertex, then P(eiv = 0, evj = 0) becomes the
probability that the merged vertex does not have an edge with v, and one can
use the first bound to deduce the second. Now, using Lemma 6.3.1,

di
(`n − d1)2

∑
v6δ−1nρ

d2
v 6 Cn

−ρ(τ−2) → 0,

and therefore one can conclude that

E1 := p2
c

∑
v:dv∈[δnρ,δ−1nρ]

∣∣∣P(eiv > 1, evj > 1) −
(

1 − e−
didv
`n

)(
1 − e−

didv
`n

)∣∣∣
which goes to zero as n → ∞. We will now use Stein’s method for con-
vergence for sums of negatively correlated Bernoulli random variables [115,
Theorem 6.24], which states that for Ii ∼ Bernoulli(pi) with cov(Ii, Ij) < 0,
for all i 6= j, then

dTV

(∑
i

Ii, Poi
(∑
i

pi

))
6 max

i
pi.

Note that 1
{
eiv > 1, evj > 1

}
and 1

{
eiv ′ > 1, ev ′j > 1

}
are negatively cor-

related for v 6= v ′ which can be established using similar arguments as
Lemma 6.4.1. Therefore

dTV

(
Xij(δ), Poi(λij(δ))

)
6 p2

cE1 + p
2
c max
v:wv∈[δnρ,δ−1nρ]

(
1 − e−

didv
`n

)(
1 − e−

didv
`n

)
= O(p2

c),

and the proof follows.

Lemma 6.4.5. For any fixed i, j > 1

lim
δ→0

lim
n→∞ λij(δ) = λ2

∫∞
0

(
1 − e−

θix
−α

µ

)(
1 − e−

θjx
−α

µ

)
dx

Proof. Using (6.49), the proof is identical to Lemma 6.3.9.
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For the asymptotic independence of the two-hop connections between the
hubs, we need an estimate of the joint connection probabilities between dis-
tinct vertices in the configuration model, as given in the following lemma:

Lemma 6.4.6. Consider four distinct vertices i, u, k and v such that du,dv ∈
[anρ,bnρ] and di,dj ∈ [anα,bnα], for some a,b > 0. Then, as n→∞,∣∣∣P(eiu = 0, ekv = 0) − e−

didu
`n e−

dkdv
`n

∣∣∣ = O(did2
u + dkd

2
v

(`n − 2d1)2

)
.

Proof. We first sequentially pair the half-edges of u, and then in the next step
pair the half-edges of v. Let An denote the event that after the first stage of
pairing u does not create more than nε edges with k or v, where 0 < ε < ρ.
Firstly, note that P(Acn) is exponentially small in n. Indeed, using (6.47), the
probability that u and k share at least nε edges is at most∑

m>nε

(
dkdu

`n − 2d1

)m1 1
m1!

6 Ce−Cn
ε
,

where we have used the fact that dkdu = O(`n), and the last bound follows
from the tail probabilities of a Poisson distribution. A similar bound holds
for the connections between u and v as well, and therefore,

P(Acn) 6 Ce−cn
ε
. (6.51)

Now, using (6.50) and (6.51)

P(An ∩ {eiu = 0}) = e−
didu
`n +O

(
did

2
u

(`n − 2d1)2

)
,

and considering the second step of pairing of the remaining half-edges of v

P(ekv = 0|An ∩ {eiu = 0}) = e−
dkdv
`n +O

(
dkd

2
v

(`n − 2d1)2

)
.

Thus the proof follows.

Lemma 6.4.7. For any δ ∈ (0, 1), the collection of random variables (Xij(δ))i,j∈VL
is asymptotically independent.

Proof. Consider vertices i, j,k, l from VL. Let Eiuj denote the event that {eiu >
1, euj > 1}. Suppose that we can show as n→∞
E := p2

c

∑
i,j,k.l∈VL

∑
du,dv∈[δnρ,δ−1nρ]

∣∣∣P(Eiuj ∩ Ekvl) − P(Eiuj)P(Ekvl)
∣∣∣ = o(1).

(6.52)
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Then, with high probability, we can couple all the Bernoulli random variable
in (Xij(δ))i,j∈VL with an independent collection of Bernoulli random vari-
ables, and then the proof will be complete. Suppose that i, j,k, l are distinct.
To estimate P(Eiuj ∩ Ekvl), we use Lemma 6.4.6. Indeed, if we merge ver-
tices i with j and k with l, and denote them by v1 and v2 respectively, then
the required probability is the same as the probability that (v1,u) and (v2, v)
share an edge. Therefore, Lemma 6.4.6 implies that E defined by (6.52) is of
the order

p2
c

∑
u,v: du,dv∈[δnρ,δ−1nρ]

(di + dj)d
2
u + (dk + dl)d

2
v

(`n − 2d1)2

6 p2
c

Cnα

`2n
n1−(τ−1)ρn1+ρ(3−τ) = Cn−ρ(τ−2) → 0.

Since VL is a finite collection, this proves (6.52) on the partial sum with
i, j,k, l being distinct. The case where i = k can be dealt with similarly
using (6.50), and we do not repeat the argument again. This completes the
proof of Lemma 6.4.7.

6.5 Conclusion

In this chapter, we have provided to the best of our knowledge the first math-
ematically rigorous analysis for the critical window for random graphs that
satisfy a power law distribution with exponent τ ∈ (2, 3). The main surprise
is that the critical window changes depending on whether the network is
constrained to have single-edges between the vertices. We identify the criti-
cal window and the scaling limits for the component sizes within the critical
window. The main technical obstacle under the single-edge constraint is that
the exploration process approach does not work and we had to resort to path
counting techniques to identify the primary contributions on the component
sizes. For this reason, the proof does not work for sufficiently large λ values,
which we leave as an open question.
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In the final chapter of this thesis, we discuss several related research ques-
tions, which are open to the best of our knowledge.

7.1 Component sizes and complexity.

7.1.1 Finite and infinite third moment cases

Tail bound on the component sizes. While the scaling limit results yield
an exact asymptotic distribution of the largest component sizes, these results
do not give any explicit probability bounds for large, but finite n. It is often
interesting to obtain explicit bounds for the probabilities of the events involv-
ing “tails” such as the largest component is quite large ({|C(1)(pc(λ))| > An

ρ}

for large A > 0), or it is quite small ({|C(1)(pc(λ))| 6 δnρ} for small δ > 0),
where ρ is the scaling exponent for the component sizes. For critical Erdős-
Rényi random graphs with p = 1/n(1 + λn−1/3), Nachmias and Peres [136]
showed that

P(|C(1)(pc(λ))| > An
2/3) 6

c1

A
e−c2A

3
, (7.1)

P(|C(1)(pc(λ))| 6 δn
2/3) 6 c3δ

3/5, (7.2)

for any A > A0, δ ∈ (0, δ0), and n > n0, where c1, c2, c3,A0, δ0 > 0 and n0 > 1
can be calculated explicitly. See also [143] and [148, Corollary 19]. In the
context of quantum random graphs [66], the bound in (7.1) was proven to be
A−3/2, with the exponential term missing, while the bound for (7.2) involves
δ3/5. Even for Erdős-Rényi random graphs, whether the bounds in (7.1) and
(7.2) are optimal is not known to the best of our knowledge. Using results
from [143] (see also [102, (1.2)]), [8, Corollary 2] and Portmanteau theorem,
we can obtain a lower bound on the probability (7.1) of c1A

−3/2e−c2A
3
, which

differs from (7.1) in the polynomial term.
There are several challenges in order to derive such estimates for random

graphs with general moment assumptions on the degrees such as Chapter 2.
Specifically, the techniques involving Chernoff bound in [136, Section 4] does
not work for general degree distributions. Bounds like (7.1) and (7.2) in
the τ ∈ (3, 4) case has never been studied. The properties of the scaling
limit was studied in [5, 102] for τ ∈ (3, 4). Using the results from [102,
Theorem 1.6], Theorem 3.2.2 and Portmanteau theorem, the probability in
(7.1) is bounded from below by c1A

−(τ−1)/2e−c2A
τ−1

. But an upper-bound
with the same exponential term could also possibly be proved leading to the
following conjecture:
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7.1 Component sizes and complexity.

Conjecture 7.1. Under Assumption 3.1, there exists A0 > 0, n0 > 1 and constant
c1, c2 such that for all A > A0 and n > n0

P(|C(1)(pc(λ))| > Abn) 6
c1

p(A)
e−c2A

τ−1
,

for some polynomial p.

We do not have a good guess about the bound of the form (7.2) for τ ∈
(3, 4). It is further interesting to learn about these tail probabilities when
A = An →∞ or δ = δn → 0. For An � n1/12, suitable bounds were derived
for Erdős-Rényi random graphs in [146, Proposition 3.1]. In Chapter 5, we
consider the An → ∞ case (see Theorem 5.4.1), but we did not focus on
obtaining the optimal bound, which is an interesting question.

Comparison to Joseph’s scaling limit. As observed in Section 3.3.2, As-
sumption 3.1 is satisfied almost surely when the degrees are an iid sample
from a power-law distribution with exponent τ ∈ (3, 4). Thus, conditionally
on the observed degree sequence, the exploration process converges to the
process

S∞,1(t) :=

∞∑
i=1

CF

Γαi

(
1{
Xi6

sµΓα
i

CF

} − CF

µΓαi

∫Γi
Γi−1

u−2αdu
)

, (7.3)

where (Xj)j>1 and Γi =
∑
j6i Ej where (Ej)j>1 is an independent collec-

tions of i.i.d unit rate exponential random variables; see Theorem 3.5.1. On
the other hand, the iid degree setting has been studied in [65, 121], where
the scaling limit of the exploration process turns out to be different. More
precisely, the scaling limit is given by

S∞,2(t) = Y(t) +A(t), (7.4)

where

A(t) = −
CFΓ(4 − τ)

(τ− 3)(τ− 2)µτ−2 t
τ−2,

and Y(t) is the unique process with independent increments such that for
every t > 0 and u ∈ R,

E[exp(iuY(t))] = exp
( ∫t

0
ds
∫∞

0
dx(eiux − 1 − iux)

CF

µxτ−1 e−xs/µ
)

.

Since the second process is the limit of the same exploration process aver-
aged out over the degrees, this indirectly implies that the law of S∞,2 is the
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same as the law of S∞,1, averaged out over the Γ -values (although we use
a different exploration process from [121], the fact that the component sizes
are huge compared to the number of cycles in a component, one can prove
Theorem 3.5.1 for the exploration process in [121] also). This is remarkable
given the vastly different descriptions of the scaling limits (7.3) and (7.4).
For example, the martingale part of (7.3) does not have independent incre-
ments due to thinning of the Poisson processes. However, after averaging out
over Γ -values, the dependence goes away. It may be worthwhile investigating
whether there is a direct approach to show that S∞,1, after averaged out over
the Γ -values, yields the same law as S∞,2.

Joint convergence over the critical window. While studying the joint con-
vergence over the critical window in Theorems 2.2.4 and 3.2.5, we considered
finite dimensional convergence. It will be interesting to show that the process
(Zn(λ))λ∈R converges in D(R, U0

↓), where we recall that Zn(λ) is the vector
of rescaled component sizes and the surplus edges and D(R, U0

↓) denotes
the set of càdlàg functions equipped with the Skorohod J1-topology. The
proof will follow if one can verify a suitable tightness criterion D(R, U0

↓)-
valued stochastic processes, but we were unable to find a suitable tightness
criterion.

Dynamically evolving critical random graphs. In [146], Roberts and Şengül
considered a dynamically evolving version of critical Erdős-Rényi random
graphs. The dynamic graph process (Gt)t>0 starts with G0 which is dis-
tributed as ERRGn(1/n), and each pair {u, v} is equipped with an indepen-
dent rate-one Poisson process Nuv. At each event time of Nuv, an edge
is resampled according to an independent Bernoulli(1/n) random variables.
Then, for each fixed t > 0, Gt is distributed as ERRGn(1/n). Let C(1)(t)

denote the largest component of Gt. It was shown in [146] that Mn :=

supt∈[0,1] |C(1)(t)| 6 βn2/3(log(n))1/3 with high probability for β < 2/32/3.
There are several further interesting questions that arise for this dynamic
graph process.

1. Does Mn/n2/3(log(n))1/3 converge in probability to some β0 > 0?

2. What is the behavior of In := inft∈[0,1] |C(1)(t)|?

3. What happens in the heavy-tailed universality class of the multiplica-
tive coalescent regime? How does the exponent of log(n) change de-
pending on the power-law exponent τ of the degree distribution.
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7.1 Component sizes and complexity.

Questions 1 and 2 are discussed in [146]. While β0 was conjectured to be
2/31/3, not much was known for question 2. For question 3, the tail asymp-
totics in (7.1) is intimately related to the asymptotics ofMn, as noted in [146].
For each t ∈ [0, 1], C(1)(t) satisfies (7.1), and therefore a simple union bound
yields an upperbound of Mn = O(n2/3(log(n))1/3) with high probability
(proving the lower bound is considerably difficult which was accomplished
in [146]). Following the prediction of tail bounds in Conjecture 7.1, this leads
us to the the conjecture below:

Conjecture 7.2. Under Assumption 3.1, Mn = ΘP(n
ρ(log(n))1/(τ−1)).

Simulation guarantee for sample paths. The scaling limits for the compo-
nent sizes are described by largest excursions of certain stochastic processes
with negative drift. It is difficult to generate a sample from this distribution
due to the lack of availability of the precise distribution function. It will be
interesting in the stochastic simulation literature to develop techniques for
generating a sample from this distribution, and obtain exact error bounds if
the simulation method is approximate. For the heavy-tailed scaling limits,
simulating sample paths of the thinned Lévy process is not standard. A nat-
ural strategy could be to truncate the sum in (3.1) upto first K terms for a
large K. However, there is a more accurate approach using the techniques
in [19]. Here, one can approximate the small jumps by a Brownian motion
using the following theorem: Recall that Ii(t) = 1{ξi 6 t}, ξi ∼ Exp(θi) (let
µ = 1) and define

EK(t) =

∞∑
i=K+1

θi(Ii(t) − θit), σ2
K =

∞∑
i=K+1

θ3
i.

Theorem 7.1.1 ([67]). Suppose that maxi>K θi∑∞
i=K+1 θ

3
i

→ 0. Then, as K→∞,

(σ−1
K EK(t))t>0

d−→W,

where W is a standard Brownian motion.

See Appendix 7.A for a proof. Note that if we take θi = CFi
−α for some

α ∈ (1/3, 1/2), we have
∑∞
i=K+1 θ

3
i = Θ(K

1−3α). Therefore,

maxi>K θi∑∞
i=K+1 θ

3
i

= Θ(K−α−1+3α) = Θ(K2α−1)→ 0.

Thus, the assumption of Theorem 7.1.1 is satisfied. However, we did not
pursue the question of simulation guarantees further.
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Independent proof for the scaling limit of diameter. In Chapter 5, we have
seen that the largest components converge as measured metric spaces un-
der the Gromov-Hausdorff-Prokhorov topology yields the convergence of
the diameters of these components. This is yields that diam(C(1)(pc(λ)))

converges in distribution to some random variable. The above approach
of proving the convergence of diameters is indirect and considerably diffi-
cult. Till date there is no direct approach available to show the convergence
of diam(C(1)(pc(λ))) even for the Erdős-Rényi random graphs. Only some
bounds were derived in [134] establishing the tightness of diam(C(1)(pc(λ)))

and (diam(C(1)(pc(λ))))
−1. A direct proof is expected to yield a simpler ex-

pression for the diameter of the limiting metric spaces in [3, 36], and it is
expected to require novel techniques as well.

Critical behavior on random geometric graphs. A random geometric graph
is obtained by throwing n points uniformly at random in the d-dimensional
box [0, 1]d, and creating an edge between two points if their euclidean dis-
tance is at most λn−d. Random geometric graphs are known to exhibit phase
transition as λ increases [141]. The phase transition has also been studied
for random geometric graphs on hyperbolic spaces [39]. However, analyz-
ing the critical behavior on random geometric graphs is an open question.
The inherent structure of these graphs are fundamentally different than the
random graph models that do not depend on an underlying geometry. For
example, the probability that a random vertex is involved in a clique of size
k is bounded away from zero for each fixed k > 1, showing that random geo-
metric graphs cannot be approximated by a branching process locally. Thus,
the critical components are not expected to have O(1) many surplus edges
anymore. Technically, it is challenging to deal with the exploration process
since the drift and the quadratic variation terms depend on the area covered
by the spheres centered at the active vertices, which is difficult to track.

Concentration of total size and total number of large components. Let Ξn
denote the point process {n−ρ|C(i)(pc(λ))|}i>1, and let Ξ be the point process
{|γi|}i>1, where |γi| denotes the scaling limit of |C(i)(pc(λ))| in Theorems 2.2.1,
or 3.2.1. Fix ε > 0. Then the convergence of the exploration processes imply
that as n→∞

Zn,ε :=

∫∞
ε
x Ξn(dx)

d−→ Zε :=

∫∞
ε
x Ξ(dx)

Wn,ε := Ξn([ε,∞))
d−→Wε := Ξ([ε,∞));
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7.2 Infinite second moment case

see [117, Proposition 1.4]. As ε → 0, Zε gives the total mass of the largest
components, and Wε gives the number of largest components. Thus it is
desirable to understand the asymptotics of Zε and Wε as ε → 0. Note that
Z0 =∞ and W0 =∞, and thus by monotone convergence theorem, Zε

P−→∞
and Wε

P−→ ∞, as ε → 0. For the Erdős-Rényi universality class, Janson and
Spencer [117] showed that as ε→ 0

ε1/2Zε
P−→
√

2
π

and ε3/2Wε
P−→
√

2
9π

. (7.5)

Thus, even if both Zε and Wε are non-degenerate random variables, these
concentrate as ε → 0. The asymptotic normality is still an open question.
Also, it will be interesting to derive the asymptotics (7.5) for the general
description of the multiplicative coalescent given in [11].

7.2 Infinite second moment case

In this section, we state the open problems related to the critical behavior in
the infinite third moment case.

Barely super-critical regime and the large λ case. While the critical behav-
ior was studied in detail for the configuration model in Chapter 6, the lack of
an exploration process approach under the single-edge constraint limited our
analysis to the barely subcritical regime and small values of λ (i.e., λ ∈ (0, λ0)

for some constant λ0 which is independent of the model) within the critical
window. In a future work, we wish to address the λ > λ0 and the barely
supercritical case. This will complete the analysis for the critical behavior of
the component sizes within under the single-edge constraint.

Novel evolution dynamics in the τ ∈ (2, 3) case. In Chapters 2 and 3, we
have seen that the evolution of the component sizes over the critical window
is always guided by the multiplicative coalescent process, but apparently one
would get a completely different coalescent process in the infinite second
moment case, especially under the single-edge constraint. In this case, com-
ponents merge when the hubs get connected via some intermediate vertex.
Now the evolution of the total weights of is not Markovian. One has to keep
track of all the hubs within components (which gives rise to an infinite di-
mensional vector) rather than some statistic of the components (like the total
mass) to describe the process. This gives rise to novel evolution dynamics in
the context of critical random graphs.
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Bounds on the diameter in the infinite second moment case. Although
the diameter of critical components is O(1) for CMn(d), we did not derive
such a result under the single-edge constraint. In fact it is possible that the
diameters in the latter case is diverging to infinity. We do not have a concrete
intuition for this problem so far and it requires further investigation.

Uniformly chosen graphs with given degrees. It will be interesting to
study the critical behavior in the infinite second moment case for uniformly
chosen graphs with given degrees (denoted by UMn(d)). We expect the same
scaling critical exponents as under the single edge-constraint, and the scaling
limit is expected to be the same as critical percolation on generalized random
graphs. The reason behind this is as follows: Suppose that D := (Di)i∈[n]
denotes the degree sequence of GRGn(w). Conditionally on D = d, the dis-
tribution of GRGn(w) is same as that of UMn(d). Now the “core” of the
components consists of vertices with weight Θ(nρ) and Θ(nα). Call these
special vertices. One can probably use concentration arguments to show that
Di ≈ di for all special vertices. Now if one can show that perturbing the
degrees of the special vertices does not change the connection probabilities
in UMn(d) significantly, then it will be possible to show that, conditionally
on D = d, the core for the connected components of GRGn(w) is the same
graph as the core of the connected components of UMn(d). However, for-
malizing this is not straightforward.

7.3 Global structure.

Joint convergence of metric spaces in l4 topology. Let M denote the space
of measured compact metric spaces endowed with the Gromov-Hausdorff-
Prokhorov (GHP) topology. In Chapters 4 and 5, we have considered the
product topology on the MN for the joint convergence of the components. A
stronger result was shown for Erdős-Rényi random graphs in [3] under the
metric defined below. Define the metric dl4 on MN by

dl4(X,Y) =
(∑
i>1

(
dGHP(Xi, Yi)

)4
)1/4

,

where dGHP denotes the GHP distance. It is desirable to extend the results
in Chapters 4 and 5 under this stronger topology which requires suitable
bounds on the diameter of small components.
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Evolution as metric space-valued stochastic process. The augmented mul-
tiplicative coalescent process only tracks the evolution of the component sizes
and the surplus edges as λ increases over the critical window. The metric
structures of the largest connected components also evolve as λ increases. It
will be interesting to describe the evolution of the infinite dimensional mea-
sured metric spaces.

7.4 More challenges.

Critical behavior for general graphs. Studying the critical behavior for
more general sequence of graphs is an open direction. Of course the phrase
“general graphs” is too vague, and one must impose regularity conditions to
see the critical behavior and scaling limits. For example, one may consider
percolation on sequences of dense graphs (with Θ(n2) many edges) that con-
verge in the so-called cut metric [49, 50] and impose some restrictions on the
limiting graphon. The critical value for the phase transition was identified
in [43] under mild conditions, while the critical behavior is a completely open
question.

The minimum spanning tree problem. The study of critical percolation
has experienced a renewed interest after a recent seminal work by Addario-
Berry et al. [4]. They studied the limit as a metric space of the minimum
spanning tree (MST) on a complete graph with iid edge weights under the
GHP-topology. Exploiting the relation between Kruskal’s algorithm for gen-
erating MST, they showed that the MST can be approximated by C(1)(pc(λ))

after removing the cycles in a specified manner. Using the results about the
limit of C(1)(pc(λ)) from [3], they could describe the metric structure of the
MST on complete graph. The results in [36] and in Chapter 4 forms a basis of
studying MST in the heavy-tailed regime where the scaling limit is expected
to be different than MST on complete graph. However, the study of minimal
spanning trees is an open question, even for the simple models like random
regular graphs.

7.A Proof of Theorem 7.1.1

Note that (EK(t))t>0 is a super-martingale with the Doob-Meyer decomposi-
tion ([11, Section 2.1])

EK(t) =MK(t) +AK(t),
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where AK(t) = −
∑∞
i=K+1 θ

2
i(t− ξi)

+ and the quadratic variation of MK is
given by

〈MK〉(t) =
∞∑

i=K+1

θ3
i min{t, ξi}.

For any fixed T > 0, we show that σ−1
K supt6T |AK(t)|

P−→ 0 and use the
martingale functional central limit theorem [151, Theorem 2.1] to conclude
the theorem. To see the first part, note that

E
[
(T − ξi)

+
]
6 TP (ξi 6 T) = T(1 − e−θiT ) 6 θiT2.

Noting that AK(·) is negative and monotonically decreasing we have, for any
ε > 0,

P

(
sup
t6T

|AK(t)| > εσK

)
= P (|AK(T)| > εσK) 6

1
εσK

E [−AK(T)]

6
T2σ2

K

εσK
=
T2σK
ε
→ 0.

Let J(MK, T) denote the value of the maximum jump of MK before time T .
Now to show that the martingale parts converge to a Brownian motion, it is
enough to show that, as K→∞,

(1) σ−2
K 〈MK〉(t)

P−→ t, for each fixed t > 0,

(2) σ−1
K E [|J(MK, T)|]→ 0.

Let us first verify (2). Note that J(MK, T) = θ2
i if ξi 6 T and ξj > T for all

K < j < i (since θi’s are non-increasing). Therefore,

σ−1
K E [|J(MK, T)|] 6 σ−1

K

∞∑
i=K+1

θ2
iP (ξi 6 T) 6 TσK → 0.

To see (1) we will use Chebyshev’s inequality. Note that

E [min{t, ξi}] =
∫t

0
θixe−θixdx+ tP (ξi > t) =

1 − e−θit

θi
.

Using the fact that x− x2/2 6 1 − e−x 6 x, we compute

t−
t2

2

∑∞
i=K+1 θ

4
i∑∞

i=K+1 θ
3
i

6 σ−2
K E [〈MK〉(t)] = σ−2

K

∞∑
i=K+1

θ2
i(1 − e−θit) 6 t,
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and therefore,∣∣∣σ−2
K E [〈MK〉(t)] − t

∣∣∣ 6 t2
2

∑∞
i=K+1 θ

4
i∑∞

i=K+1 θ
3
i

6
t2

2
max
i>K

θi → 0.

Moreover, since Var (min{t, ξi}) 6 Ct2θ−2
i for some uniform constant C > 0,

Var
(
σ−2
K 〈MK〉(t)

)
= σ−4

K

∞∑
i=K+1

θ6
iVar (min{t, ξi}) 6 Ct2

maxi>K θi∑∞
i=K+1 θ

3
i

→ 0,

where the last part follows by our assumption. Thus, (1) follows and the
proof is complete.
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spatial branching processes, volume 281. Société mathématique de France.
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Summary

Random graphs have played an instrumental role in modelling real-world
networks arising from the internet topology, social networks, or even protein-
interaction networks within cells. Percolation, on the other hand, has been
the fundamental model for understanding robustness and spread of epi-
demics on these networks. From a mathematical perspective, percolation
is the simplest model that exhibits phase transition, and fascinating features
are observed around the critical point. In this thesis, we prove limit theorems
about structural properties of the connected components obtained from per-
colation on random graphs at criticality. The results are obtained for random
graphs with general degree sequence, and we identify different universality
classes for the critical behavior based on moment assumptions on the degree
distribution.

In Chapter 1, we start with an introduction to this attractive branch of
probability which has spurred interest among mathematicians for several
decades, with many of the interesting questions being still open. We briefly
review the history of the percolation phase transition on finite graphs, and
describe the emerging literature for the critical behavior. Subsequently, we
describe our results from a high-level, and discuss the general proof ideas.
Three types of fundamentally different critical behaviors are observed de-
pending on whether degree distribution satisfies (a) a finite third moment
condition, (b) an infinite third moment condition, (c) and an infinite second
moment condition. In all these regimes, we ask questions about the compo-
nent sizes and structures of the critical components. The goal of this chapter
is to convey the main challenges in the upcoming chapters for each of the
above regimes without going into the technical framework.

In Chapter 2, we state and prove results about the component sizes and
surplus edges when the degree distribution satisfies a finite third moment
condition. The evolution of component sizes and surplus edges over the crit-
ical window is also shown to converge to the augmented multiplicative coa-
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lescent. The results show that only a finite third moment condition ensures
that the critical behavior lies in the same universality class as classical homo-
geneous random graph models like Erdős-Rényi random graph or random
regular graph.

In Chapter 3, we investigate the infinite third moment case. In this setting,
the critical behavior for component sizes and surplus edges turns out to be
in a completely different universality class. The key difference lies in the fact
that the asymptotics of high degree vertices play a pivotal role in describing
the scaling limits. For example, if the highest degree vertex is deleted, the
scaling limit changes in this regime which is in sharp contrast to the finite
third moment case. The results in Chapters 2 and 3 observe both the possible
scaling limits for multiplicative coalescent processes that was predicted by
Aldous and Limic.

In Chapter 4, we describe the global structure of components in the infi-
nite third moment case. More precisely, one can view any connected graph
as a metric space equipped with a measure, where the elements of the metric
space given by the vertices, the metric given by the graph distance, and the
measure proportional to the counting measure. With all the above ingredi-
ents, the critical components can be viewed as a random element from the
space of all complete metric spaces equipped with a measure. In this chapter
we show that after rescaling the distances suitably, the largest critical compo-
nents converge with respect to Gromov-weak topology. These results yield
joint convergence of several functionals related to distances within these con-
nected components.

In Chapter 5, we establish the global lower mass bound property. This
property ensures that the convergence results in Chapter 4 could be strength-
ened to hold under the Gromov-Hausdorff-Prokhorov topology. The primary
outcome of the later stronger form of convergence is that it yields conver-
gence of global distance related functionals like the diameter.

In Chapter 6, we investigate the case where the degree distribution has
infinite second moment. Even defining the critical window for percolation
is challenging in this case and all the questions related to the critical be-
havior in this regime were completely open question till date. We initiate
this study by identifying critical values and scaling limits of the component
sizes. The striking observation that we make in this regime is that the critical
exponents and the scaling limits depend crucially on the so-called single-
edge constraint, i.e., the critical behavior for the configuration model and the
erased configuration model are fundamentally different. We also establish
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the uniqueness of the critical exponents by analyzing the barely sub/super-
critical regimes.

In the final Chapter, we conclude with many open problems and future
directions.

The results in this thesis are strongest in terms of the topology of con-
vergence and the results are proved under minimal assumptions. The re-
sults are expected to have potential impact on understanding spread of epi-
demics, minimum spanning trees on random networks with arbitrary degree
sequence. The proof ideas are also robust and we hope that many of the core
ideas would work for more many other random graph models.
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