

Parametric critical path analysis for event networks with
minimal and maximal timelags
Citation for published version (APA):
van Pinxten, J. H. H., Geilen, M., Hendriks, M., & Basten, T. (2018). Parametric critical path analysis for event
networks with minimal and maximal timelags. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11), 2697-2708. Article 8412574. Advance online publication.
https://doi.org/10.1109/TCAD.2018.2857360

Document license:
Unspecified

DOI:
10.1109/TCAD.2018.2857360

Document status and date:
Published: 01/11/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/TCAD.2018.2857360
https://doi.org/10.1109/TCAD.2018.2857360
https://research.tue.nl/en/publications/7cdd38e9-19d7-45ef-81f5-570d6526d52d

1

Parametric Critical Path Analysis for Event
Networks with Minimal and Maximal Time Lags

Joost van Pinxten∗, Marc Geilen∗, Martijn Hendriks‡, Twan Basten∗‡
∗Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
‡Embedded Systems Innovation, Netherlands Organisation for Applied Scientific Research, Eindhoven, The

Netherlands

Abstract—High-end manufacturing systems are cyber-physical
systems where productivity depends on the close cooperation of
mechanical (physical) and scheduling (cyber) aspects. Mechanical
and control constraints impose minimal and maximal time dif-
ferences between events in the product flow. Sequence-dependent
constraints are used by a scheduler to optimize system produc-
tivity while satisfying operational requirements. The numerous
constraints in a schedule are typically related to a relatively small
set of parameters, such as speeds, lengths, or settling times. We
contribute a parametric critical path algorithm that identifies
bottlenecks in terms of the feasible parameter combinations. This
algorithm allows analysis of schedules to identify bottlenecks in
terms of the underlying cause of constraints. We also contribute
a way to find Pareto-optimal cost-performance trade-offs and
their associated parameter combinations. These results are used
to quantify the impact of relaxing constraints that hinder system
productivity.

I. INTRODUCTION

High-end manufacturing systems are cyber-physical systems
(CPSs) composed of several cooperating machines, which
have strict timing requirements between their operations.
These requirements can be modelled as minimal and maximal
timing constraints between events. Such constraints often
occur due to some physical or computational process, and
influence the productivity of the system. Groups of constraints
typically share an underlying cause, such as a motor that
actuates multiple components simultaneously. The interrela-
tionship of the parameters influencing the constraints are
explored during the design phase and one or several trade-
offs are selected. It is of interest to quantify the relationship
of (component) parameters to the system performance.

Scheduling activities according to a set of constraints is
common in engineering [1], research and design [2] projects,
and project management [3]. Identifying and alleviating per-
formance bottlenecks is a core activity for improving the
performance of schedules. The identified bottlenecks, which
are critical paths in the event network, are important hints
for reducing the earliest completion time of the schedules.
We show that such bottleneck analysis techniques can also be
extended to manufacturing CPSs.

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2018 and appears as part of
the ESWEEK-TCAD special issue. This is the Author-version of the accepted
paper. DOI: 10.1109/TCAD.2018.2857360

c©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

In this paper, we show that it is possible and useful to
extend the critical path analysis [3] technique with parametric
analysis, so that the interdependence between parameters is
taken into account. In parametric analysis, the problem is
to find solutions, e.g. critical paths, for all possible values
of the parameters. Our approach first finds constraints that
characterize all feasible combinations of parameters and then,
for all feasible combinations of parameters, a symbolic critical
path in the form of an expression in terms of the parameters of
the event network. We show the effectiveness of our approach
and observe that the scalability is primarily determined by
the time to find the extremes of a polyhedron. Our method
provides system designers with a quantitative approach to
evaluate interaction between design parameters. We also show
a method to efficiently determine the parameter combinations
that yield Pareto-optimal performance-cost trade-offs. System
designers can then take informed decisions selecting trade-offs
between parameters.

Section II positions our work in the body of existing
work. Section III introduces terminology and notation of event
networks. Section IV first shows how to find critical paths
and extends the terminology with parameters that can describe
physical relations; it then shows how to find expressions for
critical paths in parametrized event networks. In Section V
we show the applicability of the method on two different
manufacturing systems: the Twilight system [4], and a Large
Scale Printer [5], [6]. These two examples show that we can
quantitatively relate relaxation of parameters to productivity
gains of the machine. Section VI concludes the paper.

II. RELATED WORK

Event and activity networks have been used in project
modelling and other kinds of scheduling problems to model
minimal and maximal time lags between events or activities.
We use the project modelling approach started by Roy [7],
and Kerbosch and Schell [8], and further developed by El-
maghraby [9]. The time lags make it possible to describe
constraints on the feasible time ranges between events in a
CPS. In this paper, we use minimal and maximal time lags to
express constraints between events in terms of parameters.

The Critical Path Method (CPM) [3] and generalized
precedence relations (GPRs) [9] are used to model event
networks, and also to find critical paths in such networks.
The CPM and GPRs use the difference between the occur-
rence of an event in an as-soon-as-possible (ASAP) and as-
late-as-possible (ALAP) schedule to determine the slack of

2

events/activities. Those with zero slack are critical, and any
delay in any of these critical events leads to an according delay
in the completion of the network. It does not, however, give
the designer any insight into how much system productivity
is gained when critical constraints are relaxed.

Some critical path methods assume stochastic time lags and
are applied to observations of systems, such as the shifting
bottleneck detection [10]. In this method, the machines that are
most often active are regarded as the bottleneck. This method
gives an indication of the bottlenecks over time. However,
this approach does not show the impact of deadlines, as
imposed by maximal time lags, and can therefore hide the
true interaction of different machines, especially when deep
pipelining behaviour occurs. Stochastic time lags have also
led to investigations of the stochastic criticality index, such
as shown in [11]. In this paper, we assume that time lags are
deterministic, and focus on the interaction between parameters.

As described in [12], when cost slopes are known for
shortening activities (also known as crashing), CPM can be
used with Linear Programming to give the efficient trade-offs
between project duration and project (direct) cost. There are
several methods available that can be applied to networks that
do not have maximal time lags (Fondahl’s method, Siemens
method) [12]. The work of [9] generalizes these crashing
methods such that maximal time lags can be taken into
account. These works, however, do not take into account that
the underlying cause for each constraint can be shared. That
is, each constraint is independently relaxed, and it is assumed
that other relationships remain the same. Ignoring interde-
pendencies between parameters in CPSs leads to incorrect
conclusions from a system perspective.

Approaches using parametric analysis for single or multiple
parameters have been developed for many kinds of problems.
The modified Bellman-Ford-Moore (BFM) algorithm of [13]
efficiently finds all critical paths for the feasible values of a
single parameter when edge weights are integer. Our approach
allows an arbitrary number of parameters, with rational num-
bers as values and weights. Graphs with rational values can be
used in the approach of [13] after multiplying all expressions
with an integer factor such that all rational numbers become
integer values.

Most methods for multiple parameters are based on the
observation that parameter combinations occur in convex
regions [14], [15], [16]. Parametric analysis of synchronous
data-flow graphs has been used to determine, for example, the
parameter combinations for which the same maximum cycle
mean expression holds [16], [17]. The divide-and-conquer
approach from [16] shows that performance expressions can be
found even when the parameters do not necessarily take integer
values. In this paper we prove that this parametric analysis can
be applied to event networks with maximal time lags.

Some work has been carried out to identify for which
parameter combinations parametrized models have feasible
solutions. The work of Elmaghraby [9] introduces flexibility
of an activity/constraint in an activity network as the amount
of time it can be increased/decreased such that all constraints
can still be met in a schedule; i.e. it indicates when networks
become infeasible. The convexity of parameter regions has

also been used by [18] to determine for which parameter
combinations a periodic fixed priority system is schedulable.
The interaction between tasks and their relation to system
utilization are modelled with fixed priority scheduling rules,
and precedence relations between tasks are explicitly not
allowed in their work.

Several parametric methods have also been developed for
timed automata [15], [19]. In [15] a subclass of parametric
timed automata has been identified for which it can decide on
the emptiness problem when automaton variables are upper
and lower bounded by parameters. A parameter may either
occur in some lower bounds, or in some upper bounds, but
never in both. The approach of [15] can detect parameter
combinations for which the system does not have conflicting
requirements, i.e., is feasible. Our extension of the parametric
method allows parameters both in lower and upper bounds
(minimum and maximum time lags). In [19], the feasibility of
activating a set of real time tasks is checked through parametric
timed automata. Similar to the work of [18] the approach
does not allow precedence constraints, as it models interaction
between tasks through periodic activation patterns.

We extend this existing body of work by finding all feasi-
ble parameter combinations and their associated performance
characterization through parametric temporal analysis of event
networks with minimal and maximal time lags. The quantita-
tive analysis allows finding the Pareto-optimal performance-
cost trade-offs.

III. EVENT NETWORKS

We adopt the following notation from the work of El-
maghraby and Kamburowski [9]: an event is identified by
k ∈ E = {0, . . . , N + 1} ⊂ N, and is represented by a node
in a network graph. The source node 0 represents the start
event and the sink node N + 1 represents the finish event. An
example network is shown in Fig. 1. The realization time of
event k is denoted tk. The realization time of the source is
fixed to 0.

A minimal time lag relation from event i to event j is
captured in the standard form: tj ≥ ti + D(i, j). Such a
relation is represented by an edge (i, j) ∈ E2 from event i
to event j with weight D(i, j) ∈ R. The interpretation of
the minimal time lag D(i, j) depends on its sign. I.e., we
allow maximal time lags L(i, j) from event i to event j, by
transforming them into standard form [8]:

tj ≤ ti + L(i, j) ⇐⇒ ti ≥ tj − L(i, j)

⇐⇒ ti ≥ tj +D(j, i)

That is, a positive maximal time lag L(i, j) from i to j is
equal to a negative minimal time lag D(j, i) = −L(i, j) from
j to i. Task graphs with minimal and maximal time lags may
introduce cyclic time constraints. To ensure that all events are
related to the source, we assume that the source has minimal
time relations with zero lag to all other events. Each event,
analogously, must be related to the sink, and has a minimal
time relation with zero lag to the sink node.

A network graph is equivalent to a system of inequalities.
A graph is feasible if and only if there exists a solution

3

src

A B C D

sink

1

8

1

7

3

-13

-6

Fig. 1: Example event graph with given time lags between
events. Positive minimal time lags are shown with black edges.
Negative minimal time lags are shown in dashed red edges
and represent maximal time lags or, in other words, relative
deadlines. The gray edges have zero time lag. The only critical
path src-ACD-sink is shown with thick edges.

to its corresponding system of inequalities. Equivalently, a
network is infeasible if and only if it has a cycle with positive
cumulative weight. The earliest feasible realization time

¯
tk of

an event k is the smallest number for which the system of
inequalities is feasible.

¯
tk is equal to the weight of the longest

path from the source node to node k in network G:

¯
tk = max

a∈paths(0→k)

∑
(i,j)∈a

D(i, j)

Definition 1 (makespan). The makespan M of a graph is the
earliest possible realization time of the sink node, M =

¯
tN+1.

t̄k is the latest possible realization time of node k. The latest
possible realization t̄k of event k is found by subtracting the
longest path from k to the sink from the makespan:

t̄k = M − max
a∈paths(k→N+1)

∑
(i,j)∈a

D(i, j)

For any graph, the latest possible realization time of the
sink node is equal to the makespan: t̄N+1 = M . The possible
realization intervals [

¯
ti, t̄i] of the example in Fig. 1 are shown

in Fig. 2. Notably, the realization of event B can start at earliest
2 time units after A, even though the relation AB allows B to
start one time unit after A. Path AB has length 1, while path
ACB has length 8 − 6 = 2, i.e. the earliest realization of B
is bounded by the maximal time difference between B and C.
The makespan of the graph in Fig. 1 is 11, corresponding to
the longest path src-ACD-sink. The latest realization of B is
4; the longest path from B to the sink is 7, and it can therefore
occur in the range [2, 4] without affecting the makespan.

A relation from i to j has slack S(i, j) = t̄j−(
¯
ti+D(i, j)):

the difference between the latest realization of the target
event j and the earliest realization of the originating event
i, taking into account the minimal time between i and j. The
relation slack determines how much a relation can be increased
without affecting the realization time of the sink node. In the
example network, AB has a slack of 3. The relation D(A,B)
is allowed to increase by 3 time units before it starts affecting
the makespan of the network. AC has slack 0, and it cannot

TABLE I: Path lengths of the example network in Fig. 3.

Path length critical if and only if

ABCD 2q + p p ≥ q + 5 ∧ 2q ≥ p+ 5
ABD 3q + 5 p ≤ q + 5 ∧ p+ q ≥ 5 ∧ 3q ≥ 2p
ACD 2p+ 5 2q ≤ p+ 5 ∧ 3q ≤ 2p ∧ 3p ≥ 2q + 5
ACBD −p+ 2q + 10 p+ q ≤ 5 ∧ 3p ≤ 2q + 5

be increased by any amount without affecting the realization
time of the sink node.

Definition 2 (critical relation). A relation between i and j is
critical if and only if there is no relation slack: S(i, j) = 0,
or equivalently:

¯
ti +D(i, j) = t̄j .

Definition 3 (critical path). A critical path is a simple se-
quence of connected critical relations (i.e. no event is traversed
more than once), originating from the source and leading to
the sink of the network.

A longest path in a network defines the makespan of the
network, and as such is equal to a critical path in the network.
At least one critical path exists in the network as the latest
allowed realization of the sink node is equal to its earliest
possible realization. The makespan of the example network is
11 time units, and the critical path in the example network
is src-ACD-sink. In this example, this is the only path which
originates in the source, ends in the sink, and has zero slack
for each edge in the path.

IV. PARAMETRIC CRITICAL PATH ANALYSIS

In this section, we generalize the event model such that
the time lags can be linear functions of parameters, and then
show how to perform critical path analysis on such models.
Parameters can correspond to the speed of operations, recon-
figuration times, transport times, etc. An example parametrized
event network is shown in Fig. 3, where relations between
events are denoted as functions of parameters p and q, such
as D(A,C) = 2p + 5. The example in Fig. 1 is an instance
of Fig. 3 with (p, q) = (3, 1). There are four simple paths in
Fig. 3 from the source to the sink for non-negative values of
p and q. The path lengths are listed in Table I, where the last
column indicates for which part of the parameter space the
path length is maximal. The expression in the last column is
constructed as follows. Let P = {e1, e2, e3, e4} be the path
expressions. Then ei ∈ P is critical at point p = (p, q) if and
only if ei(p) = maxe∈P(e(p)).

A. Overview of the approach

Our approach finds the critical paths for all feasible pa-
rameter combinations after it finds which combinations of
parameter values have feasible results. The results of our
approach for the example event network are illustrated in
Fig. 4. Fig. 4 shows four regions in the 2-d parameter space.
In one region (blue), the network is infeasible. In each of
the three other regions, different paths in the event network
are critical. Each path, and hence each region, is associated
with its own critical path expression. The makespan of the
example in Fig. 1 is 11 time units, which corresponds to the

4

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11

Time

AB BC

AC CD

BD

CB

DA

A B C D

Fig. 2: Possible realization intervals for event graph shown in Fig. 1, shown in the top lane. The constraints are shown in the
bottom five lanes as arrows, originating from the earliest realization time of its source event having length D(i, j). Critical
and non-critical constraints are represented with solid and dashed lines respectively.

A B C D
q

5 + p

q

5+2q

p

-13

-2p

Fig. 3: Example parametrized event network with minimal and
maximal time lags. Fig. 1 is an instance of this parametrized
network with (p, q) = (3, 1). The source, sink, and their
relations have been omitted.

expression 2p+5 at (p, q) = (3, 1), which is part of the yellow
region in the figure. Parameters often relate to costs, e.g., faster
transport is more expensive. Thus the identified regions enable
trading off cost and performance. We provide further insight
into cost/performance trade-offs in Section IV-F. The rest of
this section shows how such expressions can automatically be
found for all parameter combinations in a specified range.

We start from an existing algorithm that can be applied
to non-parametrized event networks with maximal time lags
(Section IV-B). As a first contribution, we use a symbolic
version of this method to find a critical path expression for
one combination of the parameters (Section IV-C). We prove
that such critical path expressions, as well as the conditions
for which the network is feasible, are convex. Our second
contribution is explained in detail in Section IV-D, where we
introduce an algorithm that removes all infeasible parameter
combinations from a parameter space for a given event net-
work. This algorithm provides the conditions under which fea-
sible solutions exist. Our third contribution is that we introduce
parametric analysis for event networks to find critical path
expressions for each of the feasible parameter combinations
(Section IV-E). We show that the divide-and-conquer method
of [16] can be extended to find all such expressions relatively
efficiently. Finally, as a fourth contribution, we show that we
can find the Pareto-optimal trade-offs for linear cost functions,
and provide some interpretation of the expressions found as a
basis for optimization in Section IV-F.

Infeasible 2 p+5 3 q+5 -p+2 q+10

Z

Y

X

W

V

U

T

0 1 2 3 4 5

0

1

2

3

p

q

Fig. 4: Critical path expressions and infeasible parameter
combinations for the example in Fig. 3. The gray contour lines
inside a polyhedron are iso-makespan lines. The extremes of
the polyhedra are labelled with a letter.

B. Critical Path Analysis for event networks with minimal and
maximal time lags

We first show how to calculate earliest and latest realizations
for networks with fixed minimal and maximal time lags
for a particular parameter point. Event realization times are
calculated efficiently using a longest-path algorithm such as
the Bellman-Ford-Moore (BFM) algorithm [20], [21]. BFM
has been used in the (E)MPM algorithm [7], [8], as well as
activity networks with GPRs [9]. These algorithms also detect
infeasibility in event networks.

The BFM algorithm can provide both critical paths and
infeasible cycles. A network is infeasible when a cycle with
positive weight exists in the network. Kerbosch and Schell [8]
and Sedgewick and Wayne [22] showed that it is possible to
find an arbitrary critical path by doing an ASAP analysis
and keeping track of the relaxations per node. In case the
network is feasible, the BFM algorithm keeps track of a parent

5

tree [22] that defines which of the incoming nodes was last
used to relax a node. This data structure can be efficiently
updated while finding the ASAP times of the events in the
network. A critical path can be found by following the parent
relationships from the sink node up the parent tree until the
source node has been reached. Or, in case the network is
infeasible, a positive cycle is found by tracking back the parent
graph from the sink node until a node is encountered that has
been visited already.

C. Parametrized event networks

In networks resulting from CPSs, the relations between
events are typically derived from physical or control con-
straints that the CPS needs to adhere to [4], [5], [23]. It is
often possible to parametrize the relations in the event network
such that they are linear combinations of some (physical)
parameters. The travelling time t of a product at a velocity
v, for example, can be modelled as the linear combination of
the required displacement x and displacement rate δx = 1

v ,
resulting in the linear relation t = x

v = x · δx. In the
example parametrized network (Fig. 3) p and q are two such
displacement rates, for example of two robotic arms moving
at different speeds.

We first show how to assess the feasibility and the makespan
of an event network for a particular parameter through the
critical path analysis detailed in Section IV-C1. We then
prove that such critical path and infeasibility expressions
relate to geometrical half-spaces and form convex polyhedra
in Section IV-C2. We use the half-space representation in
a feasibility detection algorithm (Section IV-D), after which
we apply a divide-and-conquer to find all expressions in the
feasible space (Section IV-E).

1) Relating critical paths and positive cycles to parameters:
The parametric weight D(i, j)(p) of a relation r = (i, j) is a
parametric affine expression e(p) = br · p+ cr, where p is a
vector of parameters, br is a vector of weights, cr is a constant
and · denotes a vector inner product. For d parameters, the
affine function e can be represented by a vector consisting of
coefficients br and the constant cr in the Rd+1 space, and
the function evaluation at a parameter point p ∈ Rd of e
becomes e(p) = [br cr] · [p 1]. Consequently, the makespan
for a parameter point p becomes:

M(p) = max
a∈paths(0→N+1)

 ∑
(i,j)∈a

D(i, j)(p)


A path in the parameter space is critical if the path has

the maximal weight of all paths for some combination of
parameters. The makespan M can be expressed as a linear
combination b · p + c of the occurrences of parameters in
some critical path P for all p for which the expression of P
is critical:

M(p) =
∑

(i,j)∈P

D(i, j)(p) =
∑

r=(i,j)∈P

br · p+ cr = b ·p+ c,

where b =
∑

r∈P br and c =
∑

r∈P cr.
A critical path expression can only be found in case the

network has feasible solutions. Otherwise, instead of a critical

path expression, we extract a positive cycle C causing infea-
sibility at a parameter point p by retrieving the expression V
of that cycle C:

V (p) =
∑
r∈C

br · p+ cr = b · p+ c > 0,

where b =
∑

r∈C br and c =
∑

r∈C cr.
Any point p for which a positive cycle exists (i.e. V (p) > 0)

is infeasible. This inequality therefore defines a half-space for
which no feasible solutions exist for the network. When the
cycle BCB in Fig. 3 of length q− 2p is greater than zero, the
network is infeasible; we therefore recognize that all points
(p, q) from the parameter space for which q − 2p > 0 are
infeasible.

2) Convex polyhedra of critical path expressions: We adapt
Proposition 5 from [16] to show that the critical path expres-
sions form convex polyhedra in the parameter space. The proof
of that proposition also applies to Proposition 1.

Proposition 1.
{
p ∈ Rd |M(p) = e(p)

}
is a convex polyhe-

dron for any critical path expression e.

Any half-space s can be described by an affine expression e
such that s(e) = {p ∈ Rd | e(p) ≥ 0}. A convex polyhedron
can be represented as the intersection of a finite set of half-
spaces, each of which is represented by an expression or
vector, i.e. a polygon can be represented by a subset h ⊂ Rd+1.
We lift the function s to sets of half-spaces: s(h) =

⋂
e∈h s(e).

A convex polyhedron can therefore be described by a set of
expressions that correspond to half-spaces. Proposition 2 helps
to determine the feasible parameter combinations.

Proposition 2. If all corners of a convex polyhedron with half-
space representation h are feasible, then all points in s(h) are
feasible.

Proof. If there would be a parameter point p in the polyhedron
(with half-space representation h) that is infeasible, then at
that point a positive cycle with cumulative weight V (x) =
b ·x+c must exist such that V (p) > 0. The inequality b ·x+c
corresponds to a half-space that contains p. The half-space
containing p includes at least one corner point of h. Therefore,
that corner point must be infeasible too. This is a contradiction
and therefore proves the proposition.

D. Determining feasible parameter combinations

Consider a situation where a convex polyhedron (possibly
the entire parameter space) is explored for infeasible points,
with the goal to prune these points. Algorithm 1 removes
infeasible half-spaces using the information in a positive cycle
found in the graph. If BFM (in EVALUATE) finds an infeasible
corner point of the polyhedron, it removes the half-space
described by the positive cycle expression V (p) > 0, as
defined in Section IV-C1. It does so by adding the restriction
−V (p) ≥ 0 to the polyhedron. The algorithm continues in a
recursive fashion with the remaining space until all corner
points are feasible. This process is illustrated in Fig. 5a-
5d. The result is returned through the recursive calls. From
Proposition 2 it follows that all parameter combinations in
that (possibly empty) polyhedron are feasible.

6

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p-8 ≤ 0

(a) Alg. 1: remove infeasible re-
gion (ACDA) 2p− 8 > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

q-2 p ≤ 0

(b) Alg. 1: remove infeasible re-
gion (BCB) q − 2p > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

3 q-8 ≤ 0

(c) Alg. 1: remove infeasible re-
gion (ABDA) 3q − 8 > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

-p+ 2 q- 3 ≤ 0

(d) Alg. 1: remove infeasible re-
gion (ACBDA) 2q − p− 3 > 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p+5

-p+ 2 q+ 10

3 p-2 q- 5  0

(e) Alg. 2: expression −p+ 2q + 10 6=
2p+5 at (3, 3/5), split by 3p−2q−5 =
0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

-p+ 2 q+ 10

3 q+5

2 p-3 q  0

(f) Alg. 2: expression −p+ 2q + 10 6=
3q+5 at (16/11, 24/25), split by −p−
q + 5 = 0

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

2 p+5

3 q+5

2 p-3 q  0

(g) Alg. 2: expression 2p+ 5 6= 3q + 5
at (36/10, 2), split by 2p− 3q = 0

Fig. 5: Illustration of our method for the example in Figure 3. p and q both range from 0 to 5.

Algorithm 1 Determine feasible parameter combinations

1: function DETERMINEFEASIBLEPOINTS(event network
G, convex polyhedron CP)

2: for each corner ci of s(CP) do
3: feasible, cycle expression = EVALUATE(G, ci)
4: if ¬ feasible then
5: CP ′ = CP ∪ {−cycle expression}
6: return DETERMINEFEASIBLEPOINTS(G, CP ′)
7: return CP // All points in CP are feasible

E. Divide-and-conquer

The polyhedron obtained from Algorithm 1 contains only
feasible points, and allows the use of the divide-and-conquer
approach presented in [16] (Algorithm 2). That approach finds
all critical path expressions for all parameter combinations
by partitioning the parameter space into smaller and smaller
pieces until an expression is found that holds for all corner
points of the polyhedron. When an expression ei found in the
interior of a polyhedron does not hold for one of its corner
points c with expression ec, the polyhedron is split across
the hyperplane ei = ec; i.e., to one polyhedron the equation
ei − ec ≥ 0 is added and to the other ei − ec ≤ 0. For
the example in Fig. 3, the algorithm starts from the feasible
parameter combinations found in Fig. 5d. It finds expression
M(p, q) = 2p + 5 for the point (p, q) = (3, 3/5), which
does not hold at corner (0, 0) as M(0, 0) = 10 (Fig. 5e).

The expression M(p, q) = −p + 2q + 10 is found at (0, 0),
and we therefore split the polyhedron into two pieces, by the
equation −p+ 2q+ 10 = 2p+ 5. This process is repeated two
more times as illustrated in Fig. 5f and 5g.

Once an expression is found that holds for all corner points
of a polyhedron, the algorithm stops exploring that part of
the parameter space and continues with another polyhedron.
For the two polyhedra found in Fig. 5f the algorithm finds
two expressions that hold in these polyhedra respectively. It
continues with a polyhedron for which no expression has been
found yet in 5g. The results of Algorithm 1 and 2 are combined
in Fig. 4.

The divide-and-conquer approach of [16] is reproduced in
Algorithm 2. This algorithm requires a feasible solution to be
found for an arbitrary point inside the polyhedron, along with
an expression that holds for that point.

Unfortunately, no efficient algorithm is possible for gener-
ating the extreme points (i.e. the corners) of a convex poly-
hedron [24]. When all parameter combinations are feasible,
Algorithm 2 initially needs to transform a non-degenerate set
of half-spaces in d dimensions into 2d corner points. Enumer-
ating an exponential number of corner points is expensive,
but it turns out to be feasible for a moderate number of
parameters (e.g. ¡ 15). Furthermore, the number of calls to
DIVIDECONQUER is at least the number of expressions to
be identified, and possibly more. The polyhedron for 3q + 5
for the example of Fig. 3 is found by combining the results
of two different sub-problems (Fig. 5f, 5g). Each call to

7

Algorithm 2 Divide-and-conquer

1: function DIVIDECONQUER(event network G, convex
polyhedron CP)

2: p = random point in s(CP)
3: ec =FIND EXPRESSION(G, p)
4: for each corner ci of s(CP) do
5: ei = FIND EXPRESSION(G, ci)
6: if ec(ci) 6= ei(ci) then
7: // Divide CP into two disjoint polyhedra
8: CP1 = CP ∪ {ei − ec}
9: CP2 = CP ∪ {ec − ei}

10: S1 = DIVIDECONQUER(G,CP1)
11: S2 = DIVIDECONQUER(G,CP2)
12: // Return all expressions found in polyhedra
13: return S1 ∪ S2

14: return {ec} // Expression holds for each corner

FIND EXPRESSION costs at most O(|E||R|) where |E| is the
number of events (nodes), and |R| the number of relations
(edges).

In comparison with the modified BFM algorithm of Levner
et al. [13], we see that their approach is more efficient for
a single parameter, but it cannot take into account multiple
parameters simultaneously. Their modified algorithm finds
the critical paths in O(|R|2 · |E|) time when the parameter
coefficient on the relations is chosen from {−1, 0, 1}. For
arbitrary integer values, the approach takes O((b · |R|)2 · |E|),
where b is the largest parameter coefficient occurring on
any edge. Our method solves a generalized version of the
problem of [13], where parameters can be rational numbers,
and multiple parameters are taken into account. For a given
number of parameters, the running time of our approach
depends on the number of regions to be found, the time to
evaluate a particular parameter point, and the time to convert
the half-space representation into corner points. The number
of regions that will be found depends on the parameter range,
which is selected by the designer.

F. Assessing the parameter regions

The results of our approach can be used to determine
the quantitative impact of decreasing/increasing parameters.
The rate of change per unit of reduction is found in the
gradient ∇ of the expression in the region around the current
set-point or working point. The gradient component for a
single parameter i at a point with expression e is equal to
the aggregate contribution bi of parameter i to the critical
path, i.e., ∇ie = bi. In Fig. 4, ∇M(3, 1) = (2, 0) and
∇M(1, 1) = (−1, 2). Changing the parameter by ∆i will
impact the makespan by bi · ∆i, as long as the critical path
expression still holds for the new parameter point, i.e., it lies
in the same region.

We assume that the makespan and a cost function, say
C(p, q) = p − 2q in the example of Fig 4, are both to
be minimized. Typically, the optimal cost is found at a
different parameter combination than the optimal makespan,
and therefore trade-offs exist between makespan and cost. For

2 p + 5

3 q + 5

Z

Y,X

W

V

U

T

8 9 10 11 12 13
Makespan

-2

2

4

cost

Fig. 6: Cost-makespan trade-off space for c(p, q) = p−2q for
Fig. 3. The labelled extremes correspond to those in Fig. 4.

example, starting from point X = (7/3, 8/3), any point on
the line segment XW in Fig. 4 closer to W has shorter
makespan M = −p+2q+10 and higher cost C = p−2q. On
the other hand, the cost-makespan trade-off at X is preferred
over any of the cost-makespan points found on the line XU .
The parameter selection can be improved by following the
gradient such that the cost decreases or stays the same, and the
makespan decreases, or vice versa. A parameter combination
is called dominated iff it is worse in at least one of the two
aspects and not better in the other than some other parameter
combination.

In general, we want to find all Pareto-optimal cost-
performance trade-offs in the parameter space. The Pareto-
optimal parameter combinations are those for which no other
parameter combinations exist that dominate it. For an arbitrary
linear cost function C(x) = α · x, the cost and makespan
can be computed for each point in the space. All Pareto-
optimal parameter combinations can be found by projecting
the parameter-space to the cost-performance trade-off space,
finding the trade-offs in that space and translating them back
to the parameter combinations. Transforming a polyhedron
from the parameter space to the cost-makespan space, where
M(x) = b · x+ c is the associated expression, is defined by:

T (x) =

[
M(x)
C(x)

]
=

[
b c
α 0

] [
x
1

]
=

[
b
α

]
x+

[
c
0

]
= P1x+p2

Applying the affine transformation T to all points of a
convex polyhedron in the parameter space yields a new convex
polyhedron in the cost-makespan space. It is sufficient to
transform the extreme points of the polyhedron to obtain the
polyhedron in the cost-makespan space. An example of such
a projection is shown in Figure 6. The Pareto-optimal corner
points are efficiently identified in the cost-makespan space by
applying algorithms such as Simple Cull [25] to the finite set
of corner points. Each point in a convex polyhedron that lies
on a line between two adjacent Pareto-optimal corner points,
is Pareto-optimal as well.

Transformation T is not necessarily bijective, i.e., multiple
parameter combinations x may map to the same makespan-
cost trade-off (M,C). Each Pareto-optimal point (M,C) in
a convex region in the trade-off space can be translated back

8

to the parameter space through the (pseudo-)inverse of the
transformation associated with that convex region:

x = T †(M,C) = P1
†
([
M
C

]
− p2

)
Each Pareto-optimal point (M,C) on the Pareto-optimal line
segments maps to the space (T †(M,C)⊕K(P1))∩E where
E is the polyhedron corresponding to the transformation T ,
and K(P1) is the kernel of P1. For two subspaces A and B,
⊕ is their extension: A⊕B = {a+ b | a ∈ A, b ∈ B}. Each
extension of a kernel and a point in the parameter space is a
subspace of the parameter space.

In the example of Fig. 6, the line segment XW of region
3q + 5 has a transformation T with full rank P1, and each
point on the line segment therefore corresponds uniquely to
a point on the line segment XW in the parameter space of
Fig. 4. Similarly, the line segment VW for region 2p + 5
maps uniquely to the line segment VW in the parameter space.
However, all points of the 2-D polyhedron for the expression
−p+2q+10 in Fig. 4 have been mapped to points on the line
V X in the trade-off space. Its corresponding P1 has less than
full rank. The kernel of transformation P1 is the same for all
of the Pareto-optimal line-segments, and these line segments
map to the intersection of two half-spaces. Each point in the
region −p + 2q + 10 is therefore a Pareto-optimal parameter
combination: for example, the point Y in the cost-makespan
space maps to a line 2p+ q+ d = 0 such that the line passes
through Z = T †(13,−3) = (8/5, 4/5) in the parameter space,
i.e. d = −4. On this line, the combinations of p and q are such
that the makespan remains the same, i.e. they coincide with an
iso-makespan line, and also such that the cost does not change.
As one point on the line has been shown to be Pareto-optimal,
each point in the region that falls onto that line is also Pareto-
optimal. The resulting Pareto-optimal parameter combinations
are thus the polyhedron for −p+ 2q + 10.

V. CASE STUDIES

We describe two case studies and perform parametric
temporal critical path analysis on them. We investigate the
relative speeds of two robot arms for the Twilight system [4],
and a specific reconfiguration aspect of the print head of a
large-scale printer (LSP) [6]. Algorithms 1 and 2 have been
implemented in C++ and run on a 64-bit Ubuntu machine. We
have used the C-library of the Double Description method [24]
in combination with the GMP library [26].

A. Twilight System

The Twilight System [4] (see Fig. 7) is an example created
for the study of controller synthesis and performance analysis
of manufacturing systems. The manufacturing system pro-
cesses balls that need to be drilled. Before drilling is allowed,
the ball needs to be conditioned to the right temperature. First,
a ball is picked up at the input buffer by the load robot (LR).
Once it is brought to the conditioner (COND) it is processed
immediately. Once the conditioning of the ball has finished,
it immediately needs to be transported by either one of the
robots to the drill (DRILL), where it is drilled before the

LR

IN OUTCOND DRILL

UR

Fig. 7: Twilight manufacturing system, from [4].

conditioning of the ball expires. Finally, the drilled ball is
transported to the output by the unload robot (UR). Figure 8
depicts a simple schedule where the unload robot moves the
product from COND to DRILL. Consider that the time it takes
for these robots to travel one unit of distance at movement
speeds vLR and vUR is LR = 1/vLR and UR = 1/vUR

respectively. Increasing LR and UR corresponds to reducing
the movement speeds.

The robots can travel either horizontally or vertically, but
not diagonally, and always need to move to the highest
vertical position before moving horizontally. The horizontal
distance between input and conditioning is 10 units, from
conditioning to drilling and drilling to output is 5 distance
units each. The vertical distance to the input box is 3 units,
to the conditioning and drilling platforms 1 unit, and the
ball is allowed to be released at any height above the output
buffer. Handing over a ball is synchronized and immediate.
Conditioning takes exactly 9 time units and expires 8 time
units after conditioning has finished. Drilling takes exactly 3
time units. The processing rate of the conditioning, C, and the
drilling D are fixed to 1. UR and LR range between 0 and
1.5. Even though they are fixed, C and D are still annotated
as parameters in the model to distinguish their contribution to
the critical paths.

Figure 9 shows the critical path expressions as function of
UR, LR, C, and D. For the given ranges, two positive cycles
are detected (blue region). UR and LR become too large
to meet the required maximum time between conditioning
and finishing the drilling, leading to a positive cycle. In
the other cycle, the time it takes for one robot to move
away and the other to pick the ball from the conditioner is
too large, and the conditioning deadline is violated. Three
critical path regions denote the behaviour of the schedule
for particular combinations of the robot travelling rates. As
LR and UR tend towards zero, the movement speed of the
robots becomes infinitely fast, and the makespan becomes
M(0, 0) = 90C+3D+26LR+70UR = 90C+3D. This is a
lower bound on the performance imposed by the time needed
for the drilling and conditioning process.

In the green region, changes in UR have the highest impact
on performance. The unload robot performs some movements
in parallel with the drilling process. Before the unload robot
becomes too slow to pick up the ball immediately after drilling
ends, there is another cycle that becomes positive. When the
unload robot is faster than drilling, the drilling time is always

9

Load new product

Move above COND

Move away from COND

reset

wait CONDITION

reset

handover

wait

Move to COND

Move to DRILL

Move above DRILL

release collision area

Move to DRILL

reset

release collision area

handover

wait

DRILL

reset

handover

handover
MAX COND TIME

Fig. 8: Example life-cycles and scheduling dependencies for the Twilight System (Figure 7); the Load Robot (orange) loads a
product and delivers it to the conditioning stage (purple). The Unload Robot (green) picks it up and needs to deliver it to the
Drill (cyan) before the conditioning expires. Dotted edges are dependencies from the current product to the next product. The
two positive cycles are shown with green and blue highlighted edges.

Infeasible

9C+3D+314 LR+7UR

9C+30D+17 LR+169UR

90C+3D+26 LR+70UR

O

N
M

L K

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

LR

U
R

Fig. 9: Expressions for the Twilight system.

in the critical path, as shown by component 30D. In the yellow
region, the load robot is most often in the critical path. Even
though the unload robot performs most actions, our result
shows that improving the load robot’s speed will give the
highest gain. The load robot’s speed is in the critical path more
often due to the scheduled dependencies. In the red region, the
conditioning process becomes the most important bottleneck,
especially when LR and UR tend towards zero; the smallest
possible makespan for 10 products is M(0, 0) = 93 time units.
This is significantly less than the largest discovered makespan
M(1.5, 0) = 483 time units.

These results show that optimization efforts can be based
on the relative and absolute travelling rates of the system.
This makes it possible to investigate the interaction of system
parameters and performance. Discussing such relations can
be valuable when deciding with different stake-holders about
the performance of the systems components, such as the

Fig. 10: LSP schematic overview, from [6].

robot travelling speeds, conditioning times and interdepen-
dencies. Also cost-performance trade-offs are possible. Fig. 9
shows the Pareto-optimal combinations for a cost function
C(LR,UR) = −LR− 3UR with a thick black line.

B. Large-Scale Printer

The paper path of a LSP [6] is defined as a path that
sheets follow in the printer. The paper path consists of several
motors, switches, and functions that perform actions on the
sheets. The sheets are guided on a metal track and their speed
and acceleration are controlled by pinches. Figure 10 shows
the topology of a paper path. The sheets need to move twice
through the image transfer station (ITS) before going to the
output. Duplex sheets enter the duplex loop (DL), and a turn
track (TT) reverses the sheet’s direction, for printing on the
opposite side. The sheets return from the duplex loop to the
merge point (MP) within a pre-defined interval from their first
print. The sheets are not allowed to overlap or collide with the
sheets coming from the paper input module (PIM). When the
sheet has been processed fully, it leaves the printer through
the finisher (FIN).

The acceleration profiles of sheets are determined almost
completely beforehand; a pre-determined buffer region used

10

TABLE II: Sheet specifications.

(a) Sheet details

L H

A: A4 210 0.25
B: A3 420 0.1
C: A3+ 483 0.3

(b) ITS reconfiguration times

Current
A4 A3 A3+

A4 0.26 4.51 2.01
A3 4.78 0.53 6.03

Pr
ev

.

A3+ 2.35 6.10 0.60

to somewhat slow down the sheets. The range of this buffer is
encoded as a minimum and maximum travelling time by the
vertical edges in the example event network (Fig. 11). Even
though the relation between acceleration profiles and minimum
and maximum loop times is non-linear, separating these two
variables still allows them to be modelled as linear constraints.
The horizontal and diagonal edges in the example encode the
non-overlapping constraints.

The sheets can have highly varying specifications, and the
modules therefore may need to reconfigure themselves to
another operating point to achieve the required quality. One
such reconfiguration occurs at the ITS; the print head may need
to be raised or lowered between sheets to achieve the proper
print gap distance for image quality. The print head height H ,
for example, can be modelled as a linear movement, which
can be started after the previous sheet has been fully printed
(i.e. has left the ITS). The ITS is ready for the next sheet when
it has moved for its full length L, and the print head moved
and has stabilized:

tITS,cur = tITS,prev + ∆t

= tITS,prev +
Lprev

vITS
+
|Hprev −Hcur|

vvert
+ γ

= tITS,prev + αLprev + β|Hprev −Hcur|+ γ (1)

As the speeds vITS and vvert are constant, we can use
parameters α = 1/vITS , β = 1/vvert. The equation then
becomes a linear expression, as Hprev, Hcur, Lprev are all
sheet-dependent and assumed constant. The constraint simpli-
fies to the following expression when no head movement is
needed tITS,cur = tITS,prev+αLprev . Decreasing the value of
α means increasing the speed at the ITS. Decreasing β means
increasing the speed of the vertical movement. Decreasing γ
means that oscillations dissipate faster, perhaps due to higher
damping in the system.

A repeated pattern of duplex sheets is fed into the printer,
i.e. (ABC)60. The symbols A, B, C refer to one of the types
of sheets denoted in Table IIa and move at the ITS at vITS =
800mm/s. The nominal speed of the head movement is 0.04
units per second.

Let’s assume that the ITS is the bottleneck; the PIM and
FIN are always ready to provide/receive a sheet. In the event
network for the schedule for this print job (Fig. 11), each sheet
returns to the merge point in the interval tr ∈ (10, 15) from
the first time at the merge point. The sequence of first prints
and second prints that the scheduler has chosen leads to a
requirement on the reconfiguration times between passes in
the sequence (diagonal edges).

J1O, 1

J1O, 2

J1O, 3

J1O, 4

J2O, 1

J2O, 2

J2O, 3

J2O, 4

J3O, 1

J3O, 2

J3O, 3

J3O, 4

J4O, 1

J4O, 2

J4O, 3

J4O, 4

J5O, 1

J5O, 2

J5O, 3

J5O, 4

J6O, 1

J6O, 2

J6O, 3

J6O, 4

J7O, 1

J7O, 2

J7O, 3

J7O, 4

J8O, 1

J8O, 2

J8O, 3

J8O, 4

J9O, 1

J9O, 2

J9O, 3

J9O, 4

J10O, 1

J10O, 2

J10O, 3

J10O, 4

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

149999

387000

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

13701975

2227579

10210379

2227579

387000

645718

314106

149999 13701975

2227579

10210379

2227579

387000

645718

314106

2227579 13701975

2227579

10210379

2227579

387000

645718

314106

2227579 13701975

2227579

10210379

2227579

387000

645718

2227579 13701975

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

645718

15638119

10210379

Fig. 11: Example event network and critical path for a LSP
flow-shop instance with 10 products. Each column describes a
product travelling through the flow-shop, and each row shows
the operations on each product. The second and third operation
(rows) are mapped onto the same machine. Sequencing edges
(diagonal) ensure that at most one product occupies the
machine at any time.

Infeasible

0.01134α+90. β+6. γ+26. lmin

0.013566α+185. β+13. γ+25. lmin

0.014049α+180. β+12. γ+25. lmin

0.014238α+26. lmin

0.020244α+350. β+34. γ+22. lmin

0.02247α+402. β+41. γ+21. lmin

0.022953α+400. β+40. γ+21. lmin

0.064764α+1276. β+174. γ+2. lmin

0.067473α+1320. β+180. γ+ lmin

0.069216α+1372. β+185. γ

0.089103α+1120. β+112. γ+3. lmin

0.092295α+1162. β+117. γ+2. lmin

0.092715α+1160. β+116. γ+2. lmin

0.095004α+1206. β+123. γ+ lmin

0.00 0.05 0.10 0.15 0.20
0.40

0.42

0.44

0.46

0.48

0.50

β

γ

Fig. 12: Example critical path expressions for an LSP.

The critical path expressions associated with different com-
binations of β and γ are shown in Fig. 12. Depending on β
and γ, the majority of the time in the critical path is spent
on either: (α) moving the sheet under the ITS, (β) head
movements, (γ) oscillations, (lmin) travelling through the loop.
As β and γ decrease, they also occur less often in the critical
path. The performance of the system is lower bounded by the
loop time lmin, which occurs 26 times in the region with the
lowest makespan. The bottleneck changes from the loop time
to the head movement parameters as β and γ increase. The
expressions show that α becomes relevant for performance,
even though only β and γ are varied in the experiment.

11

Eventually, β and γ become so large that lmax is violated.
For β ≥ 0.9, the iso-makespan lines are much closer

together, showing that from this point onward, the influence
of β and γ are much higher. In these parameter ranges, the
makespan is more sensitive to the head movement rate β than
to the settling time γ, as can be seen from the contribution
of these components in the critical path expressions. One can
conclude from this analysis that it is more meaningful to spend
development effort on increasing the head movement speed,
rather than reducing the settling time.

C. Evaluation

We have evaluated the DETERMINEFEASIBLEPOINTS and
DIVIDECONQUER algorithms on several event networks using
different parameter ranges. The examples that have been
presented so far are summarized in Table III. The illustrated
examples have been extended by including more parameters.
All experiments are run on an Intel Core i7 950 at 3GHz.

The Packing instances are variations on the Twilight ex-
ample which only contain minimal time lags. Each product
is modelled with 30 events, and dynamic relations exist
between events of subsequent products. The time constraints of
the relations have been determined stochastically by drawing
from several PERT distributions, and are associated with
their respective machines, UR or LR. The resulting network
is a rather large directed acyclic network without negative
constraints, and as such the topological sorting as used in
CPM [3] has been used in our experiment, instead of the
slower, but more generic BFM.

We observe that the number of critical paths found in
the packing cases grows with O(|E|) when only the UR is
parametrized, and with O(|E|2) when both the LR and UR
are parametrized. We conjecture that the number of critical
paths grows in general with O(|E|d) where d is the number
of parameters.

Due to the growing number of critical paths and corner
points of regions for problems with multiple parameters, both
the number of splits and the number of evaluations go up. The
time taken for each evaluated point remains roughly the same
for each network instance, and does not depend on the number
of parameters.

VI. CONCLUSIONS

We have shown that it is possible and useful to identify
quantitative relationships between system parameters and sys-
tem performance when the timing constraints in schedules are
annotated in linear combinations of design parameters. If
the parameters have non-linear relationships, the non-linear
model can be split into several models, for which linearised
expressions hold around a working point.

We prove that parametric analysis can be applied to the
classical Critical Path Method such that regions of critical
path expressions and infeasibility expressions are found. These
regions and expressions are used to quantify the impact of a
parameter change, such as a settling time or a robot travelling
rate, on the makespan of the generated schedules. The results

of our approach give insight into the interrelationships between
design parameters.

We use a divide-and-conquer approach to find the critical
path expressions in the parameter space. This paper shows
for two manufacturing CPSs how to interpret such relations
by combining this information with the original parametrized
graph. We also show that Pareto-optimal parameter combina-
tions can be found by transforming the found polyhedra to
the cost-makespan space, finding the Pareto-optimal points in
that space, and translating the results back to the parameter
space. These results can form a sound basis for discussing the
trade-offs between cost and performance.

ACKNOWLEDGEMENTS

This work is part of the research programme Robust CPS
with project number 12693 which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO). We
thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] K. Neumann and C. Schwindt, “Activity-on-node networks with minimal
and maximal time lags and their application to make-to-order produc-
tion,” Operations-Research-Spektrum, vol. 19, no. 3, pp. 205–217, Sep
1997.

[2] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, “Application
of a technique for research and development program evaluation,”
Operations research, vol. 7, no. 5, pp. 646–669, 1959.

[3] J. E. Kelley, Jr and M. R. Walker, “Critical-path planning and schedul-
ing,” in Eastern Joint IRE-AIEE-ACM ’59. New York, NY, USA: ACM,
1959, pp. 160–173.

[4] B. van der Sanden, J. a. Bastos, J. Voeten, M. Geilen, M. Reniers,
T. Basten, J. Jacobs, and R. Schiffelers, “Compositional specification
of functionality and timing of manufacturing systems,” in 2016 Forum
on Specification and Design Languages, Bremen, Germany, Sep. 2016.

[5] U. Waqas, M. Geilen, J. Kandelaars, L. Somers, T. Basten, S. Stuijk,
P. Vestjens, and H. Corporaal, “A re-entrant flowshop heuristic for
online scheduling of the paper path in a large scale printer,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015,
2015, pp. 573–578.

[6] L. Swartjes, L. Etman, J. van de Mortel-Fronczak, J. Rooda, and
L. Somers, “Simultaneous analysis and design based optimization for
paper path and timing design of a high-volume printer,” Mechatronics,
vol. 41, pp. 82 – 89, 2017.

[7] B. Roy, “Graphes et ordonnancement,” Revue Française de Recherche
Opérationnelle, pp. 323–333, 1962.

[8] J. A. Kerbosch and H. J. Schell, “Network planning by the extended
metra potential method (EMPM),” 1975.

[9] S. E. Elmaghraby and J. Kamburowski, “The analysis of activity
networks under generalized precedence relations (GPRs),” Management
science, vol. 38, no. 9, pp. 1245–1263, 1992.

[10] C. Roser, M. Nakano, and M. Tanaka, “Shifting bottleneck detection,”
in Proceedings of the Winter Simulation Conference, vol. 2, Dec 2002,
pp. 1079–1086 vol.2.

[11] J. Bastos, B. van der Sanden, O. Donkx, J. Voeten, S. Stuijk, R. Schiffel-
ers, and H. Corporaal, “Identifying bottlenecks in manufacturing systems
using stochastic criticality analysis,” in 2017 Forum on Specification and
Design Languages, Sept 2017, pp. 1–8.

[12] M. Hajdu, Network scheduling techniques for construction project
management. Springer Science & Business Media, 2013, vol. 16.

[13] E. Levner and V. Kats, “A parametric critical path problem and an ap-
plication for cyclic scheduling,” Discrete Applied Mathematics, vol. 87,
no. 1, pp. 149 – 158, 1998.

[14] K. R. Heloue, S. Onaissi, and F. N. Najm, “Efficient block-based
parameterized timing analysis covering all potentially critical paths,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 4, pp. 472–484, April 2012.

[15] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager, “Linear parametric
model checking of timed automata,” in Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg: Springer,
2001, pp. 189–203.

12

TABLE III: Experimental results of parametric critical path analysis

Event network Parametric Critical Path Analysis

Instance |E| |R| Parameter ranges t (s) crit. paths eval. splits

Example (Fig. 3) 6 15 p ∈ (0, 1), q ∈ (0, 1) 0.03 3 19 3
Twilight (Fig. 9) 162 605 UR ∈ (0, 100), LR ∈ (0, 100) 0.355 3 32 7

UR ∈ (0, 100), LR ∈ (0, 100), C ∈ (0, 1) 0.631 3 61 12
UR ∈ (0, 100), LR ∈ (0, 100), C ∈ (0, 1), D ∈ (0, 1) 1.502 3 167 27

LSP 180 sheets 362 1785 β ∈ (0, 0.4), γ ∈ (0, 1) 9.315 17 210 60
α ∈ (0, 1.25), β ∈ (0, 0.4), γ ∈ (0, 1) 26.7 23 574 152
α ∈ (0, 1.25), β ∈ (0, 0.4), γ ∈ (0, 1), lmin ∈ (0, 10) 71.9 40 1709 430

Packing 200 products 6614 21265 UR ∈ (0, 1) 59 55 279 92
UR ∈ (0.9, 1), LR ∈ (0.9, 1) 231 99 1078 99

Packing 500 products 16514 53114 UR ∈ (0, 1) 373 136 714 237
UR ∈ (0.9, 1), LR ∈ (0.9, 1) 5484 665 9387 2988

Packing 1000 products 33014 106243 UR ∈ (0, 1) 1492 262 1404 467
UR ∈ (0.9, 1), LR ∈ (0.9, 1) 49236 2639 39378 12634

Packing 2000 products 66014 212430 UR ∈ (0, 1) 6484 551 2976 991
Packing 3000 products 99014 318561 UR ∈ (0, 1) 14995 852 4569 1522

[16] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuijk, “Parametric
throughput analysis of synchronous data flow graphs,” in DATE 2008,
March 2008, pp. 116–121.

[17] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, and H. Corporaal,
“Parametric throughput analysis of scenario-aware dataflow graphs,” in
2012 IEEE ICCD, Sept 2012, pp. 219–226.

[18] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462–1473, Nov 2004.

[19] A. Cimatti, L. Palopoli, and Y. Ramadian, “Symbolic computation of
schedulability regions using parametric timed automata,” in 2008 Real-
Time Systems Symposium, Nov 2008, pp. 80–89.

[20] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[21] L. R. Ford Jr, Network Flow Theory. Rand Corp, 1956.
[22] R. Sedgewick and K. Wayne, Algorithms, 4th Edition. Addison-Wesley,

2011.
[23] G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader, “Production

scheduling by reachability analysis: a case study,” in Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE In-
ternational. Los Alamitos, CA, USA: IEEE, 2005, pp. 140–142.

[24] K. Fukuda and A. Prodon, “Double description method revisited,”
Combinatorics and Computer Science, pp. 91–111, 1996.

[25] M. A. Yukish, “Algorithms to identify pareto points in multi-dimensional
data sets,” Ph.D. dissertation, The Pennsylvania State University, 2004.

[26] T. Granlund and the GMP development team, GNU MP: The
GNU Multiple Precision Arithmetic Library, 6th ed., 2016. [Online].
Available: http://gmplib.org/

Joost van Pinxten (S’16) holds a B.Sc. and M.Sc.
in Electrical Engineering from Eindhoven University
of Technology. He is currently a Ph.D. candidate
at Eindhoven University of Technology in the Ro-
bust Cyber-Physical Systems project. His research
interests include multi-objective combinatorial opti-
mization and scheduling, inter-disciplinary design of
cyber-physical manufacturing systems, and model-
driven design tools.

Marc Geilen is an assistant professor in the De-
partment of Electrical Engineering at Eindhoven
University of Technology. He holds an M.Sc. and
a Ph.D. from Eindhoven University of Technology.
In 2010, he was a McKay Visiting Professor at
the University of California, Berkeley. His research
interests include modeling, simulation and program-
ming of multimedia systems, formal models-of-
computation, model-based design processes, mul-
tiprocessor systems-on-chip, networked embedded
systems and cyber-physical systems, and multi-

objective optimization and trade-off analysis. He is a member of IEEE. He
has been involved with several national and international research projects
and programs on the above topics with strong industrial connections. He has
served on various TPCs and on organizing committees for several conferences
including DATE as a topic chair and member of the executive committee.

Martijn Hendriks photograph and biography not available at time of
publication

Twan Basten (M’98-SM’06) received the M.Sc. and
Ph.D. degrees in computing science from Eindhoven
University of Technology (TU/e), Eindhoven, the
Netherlands. He is currently a Professor with the
Department of Electrical Engineering, TU/e, where
he chairs the Electronic Systems group. He is also a
Senior Research Fellow with ESI, TNO, Eindhoven.
His current research interests include the design of
embedded and cyber-physical systems, dependable
computing, and computational models.

