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Abstract—The conventional approach of moving stored data
to the CPU for computation has become a major performance
bottleneck for emerging scale-out data-intensive applications due
to their limited data reuse. At the same time, the advancement
in integration technologies have made the decade-old concept
of coupling compute units close to the memory (called Near-
Memory Computing) more viable. Processing right at the home
of data can completely diminish the data movement problem of
data-intensive applications.

This paper focuses on analyzing and organizing the extensive
body of literature on near-memory computing across various
dimensions: starting from the memory level where this paradigm
is applied, to the granularity of the application that could be
executed on the near-memory units. We highlight the challenges
as well as the critical need of evaluation methodologies that can
be employed in designing these special architectures. Using a
case study, we present our methodology and also identify topics
for future research to unlock the full potential of near-memory
computing.

Index Terms—near-memory computing, data centric comput-
ing, modeling of computer architecture, application characteri-
zation, survey

I. INTRODUCTION

Over the years memory technology has not been able
to keep up with advancements in processor technology in
terms of latency and energy consumption which is infamously
termed as the memory wall [1]. Earlier, system architects tried
to bridge this gap by introducing memory hierarchies which
mitigated some of the disadvantages of off-chip DRAMs. But
the limited number of pins on the memory package is not able
to meet today’s bandwidth demands of multicore processors.
Furthermore, with the demise of Dennard scaling [2], slowing
of Moore’s law, and dark silicon computer performance has
reached a plateau [3].

At the same time, we are witnessing an enormous amount
of data being generated across multiple areas like radio as-
tronomy, material science, chemistry, health sciences etc [4].
In radio astronomy for example, the first phase of the Square
Kilometre Array (SKA) aims at processing over 100 terabytes
of raw data samples per second, yielding of the order of
300 petabytes of SKA data products annually [5]. The SKA

currently is in the design phase with anticipated construction
in South Africa and Australia in the first half of the coming
decade. These radio-astronomy applications usually exhibit
massive data parallelism and low operational intensity with
limited locality. On traditional systems, these applications
cause frequent data movement between the memory subsystem
and the processor which has a severe impact on performance
and energy efficiency. Therefore, a lot of current research is
being focused on coming up with innovative manufacturing
technologies and architectures to overcome these problems.

Today’s memory hierarchy usually consists of multiple
levels of cache, a main memory, and a storage. The traditional
approach is of moving data all the way up to caches from
the storage and then processing it. In contrast, near-memory
computing (NMC) aims at processing close to where the
data resides. This data-centric approach couples compute units
close to the data and seeks to minimize the expensive data
movements. Conceptually, this principle can be applied to
any level of memory subsystem and with several technology
options, including processing on buffer-on-board (BoB), edge-
bonding small processor dies on DRAM chips etc [6]. Notably,
three-dimensional stacking is touted as the true enabler of
processing close to the memory. It allows the stacking of
logic die and memory together by means of through-silicon
via’s (TSVs) which helps in reducing memory access latency,
power consumption, and provides much higher bandwidth [7].
Micron’s Hybrid Memory Cube (HMC) [8], High bandwidth
Memory (HBM) [9] from AMD and Hynix, and Samsung’s
Wide I/O [10] are the memory industries competing 3D
memory products.

Figure 1 depicts the system evolution based on the infor-
mation referenced by a program during execution which is
referred to as a working set [11]. Prior systems were based
on a CPU-centric approach where data is moved to the core
for processing (Fig.1 (a)-(c)), whereas now with near-memory
processing (Fig.1 (d)) the processing cores are brought to the
place where data resides. Computation in-memory (Fig.1 (e))
is an extreme step of completely reducing data movement by
using novel devices (eg. memristors, phase change memory
(PCM)) as these memories have inherent compute capability
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Fig. 1: Classification of computing systems based on
working set location

as well. The aim of this paper is to analyze and organize
the extensive body of literature related to the novel area of
near-memory computing. Figure 2 shows a high level view of
our classification which is based on the level in the memory
hierarchy and further split into the type of compute implemen-
tation (Programmable, Fixed-Function, or Reconfigurable). In
our taxonomy we don’t include disk-based systems as they can
no longer offer timely response due to the high access latency
and high failure rate of disks [12]. Nevertheless, there have
been research efforts towards providing processing capabilities
in the disk. However, it was not adopted widely by the
industry due to of the marginal performance improvement that
could not justify the associated cost [13], [14]. Instead, we
include emerging non-volatile memories termed as storage-
class memories (SCMs) [15] which are trying to fill the
latency gap between DRAMs and disks. Building up on similar
efforts [16], [17], we make the following contributions:

1) We analyze and organize the literature related to the
landscape of near-memory computing under various
dimensions;

2) We provide guidelines for design space exploration
focusing on near-memory systems;

3) We present a case study to illustrate the potential of near-
memory computing for memory intensive application
with a comparison to the current CPU-centric approach;

4) We outline the direction for future research and high-
light current challenges in the domain of near-memory
computing.

The remainder of this article is structured as follows. Section
II outlines the evaluation and classification scheme for NMC at
main memory (Section III) and storage class memory (Section
IV). Section V highlights the challenges with cache coherence,
virtual memory, the lack of programming models and data
mapping schemes for NMC. In Section VI we look into the
tools and techniques used while performing the design space
exploration for these systems. This section also illustrates the
importance of application characterization for these systems.
Section VII presents a high level analytic approach to model
NMC systems with a comparison to a traditional CPU-centric
approach. Section VIII highlights the lessons learned and
future research directions.

Property Abbrev Description

Memory

Hierarchy
MM Main Memory
SCM Storage Class Memory
HM Heterogeneous Memory

Type

C3D Commercial 3D memory
DIMM Dual in-line memory module
PCM Phase Change Memory
DRAM Dynamic Random-Access Memory
SSD Flash SSD Memory
LRDIMM Load-Reduce DIMM

Integration US Conventional Unstacked
S Stacked using 2.5D or 3D

Processing

NMC/Host Unit

CPU Central Processing Unit
GPU Graphics Processing Unit
FPGA Field Programmable Gate Array
CGRA Coarse-Grained Reconfigurable Architecture
ACC Application Specific Accelerator

Implementation
P Programmable Unit
F Fixed function Unit
R Reconfigurable Unit

Granularity
I Instruction
K Kernel
A Application

Host Unit Type of Host Unit

Tool Evaluation technique
A Analytic
S Simulation
P Prototype/Hardware

Interoperability

Programming Interface Y/N Programming Interface support
Cache Coherence Y/N Mechanism for Cache coherence
Virtual Memory Y/N Virtual Memory Support

App. Domain Workload Target Application domain for the architecture

Table 1: Classification table, and legend for table 2

II. CLASSIFICATION AND EVALUATION

This section introduces the classification and evaluation that
is used in Section III and IV and is summarized in table 1 and
table 2. For each architecture five main categories are evaluated
and classified:

• Memory - The decision of using what kind of memory
is one of the most fundamental questions on which the
near-memory architecture depends.

• Processing - Type of processing unit implemented and
the granularity of processing it performs plays a critical
role during the design space exploration.

• Tool - Any architecture’s success depends heavily on the
available tool support. As NMC is a fledgling field, there
is lack of generic design methodologies.

• Interoperability - One of the main challenges faced by
NMC architectures is its inadequacy at providing sup-
port for a programming model, cache coherence, virtual
memory, and efficient data mapping.

• Application - Usually these architectures focus on big
data applications/algorithms and this massive amount of
data is produced across all the markets. Therefore, in our
table we include the domain of the application.

III. PROCESSING NEAR MAIN MEMORY

Processing near main memory has been the most researched
interpretation. It can be coupled with different processing units
ranging from programmable units to fixed-functional units.

A. Programmable Unit
NDC (2014) Pugsley et al. [20] proposed a near-memory

computing (NDC) architecture for MapReduce workloads, in
which a central host processor with many energy efficient
cores is connected to many daisy-chained 3D-stacked memory
devices with simple cores in their logic layer; these cores
perform Map operations. Reduce operations, however, are
executed on the central host processor because it requires
random access to data.

TOP-PIM (2014) Zhang et al. [21] proposed GPU-
accelerated architecture. It consists of a main APU (GPU
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SmartSSD [18] 2013 SCM SSD US CPU P A CPU P Y Y N Database
WILLOW [19] 2014 SCM SSD US CPU P K CPU P Y Y - Generic
NDC [20] 2014 MM C3D S CPU P K CPU S N R N MapReduce
TOP-PIM [21] 2014 MM C3D S GPU P K CPU S N Y - Graph and HPC
AMC [4] 2015 MM C3D S CPU P K CPU S Y Y Y HPC
JAFAR [22] 2015 MM DIMM US ACC F K CPU S Y - Y Database
TESSERACT [23] 2015 MM C3D S CPU F A CPU S Y Y N Graph Processing
Gokhale [24] 2015 MM C3D S ACC F K CPU S Y Y Y Generic
HRL [25] 2015 MM C3D S CGRA+FPGA R A CPU S N Y N MapReduce
ProPRAM [26] 2015 SCM PCM US CPU P I - S Y - - Data Analytics
BlueDBM [27] 2015 SCM SSD US FPGA R K - P Y - - Data Analytics
NDA [28] 2015 MM LRDIMM S CGRA R K CPU S Y Y Y MapReduce
PIM-enabled [29] 2015 MM C3D S ACC F I CPU S Y Y Y Generic
IMPICA [30] 2016 MM C3D S ACC F K CPU S Y Y Y Pointer chasing
TOM [31] 2016 MM C3D S GPU P K GPU S N Y Y Generic
BISCUIT [32] 2016 SCM SSD US ACC F K CPU P Y - - Database
CARIBOU [33] 2017 SCM DRAM US FPGA R K CPU P - - - Database
Vermij [34] 2017 MM C3D S ACC F A CPU S Y Y Y Sorting
SUMMARIZER [35] 2017 SCM SSD US CPU P K CPU P Y - - Database
MONDRIAN [36] 2017 MM C3D S CPU P K CPU A+S Y - Y Data Analytics

Table 2: Architectures classification and evaluation, refer to table 1 for a legend

+ CPU) interconnected with high-speed serial links with
multiple 3D-memory modules. APU allows code portability
and easier programmability. The kernels analyzed span across
a huge domain from graph processing to fluid and structural
dynamics.

AMC (2015) Nair et al. [4] developed active memory
cube (AMC). AMC is built upon the HMC adding several
processing elements referred as lanes in the logic layer. The
host processor and each AMC are interconnected over a
bidirectional link following a daisy-chain topology. For each
AMC there are 32 4-slices lanes. Each lane has is own register
file, a load/store unit performing read and write operations to
the memory contained in the same AMC, and a computational
unit.The communications between AMCs should be coordi-
nated by the host processor.

PIM-enabled (2015) Ahn et al. [29] created NMC archi-
tectures with the same ISA as the host. They tried to leverage
the existing programming model so that the conventional
architectures can exploit the PIM concept without changing
their programming interface. They implemented it by adding
a computation unit composed of computation logic and an
SRAM operand buffer, both on host side and in the logic layer
of the Hybrid Memory Cube (HMC).

TOM (2016) Hsieh et al. [31] proposed an NMC ar-
chitecture consisting of main GPU interconnected via high-
speed serial links with multiple 3D-stacked memories. Each
memory device hosts multiple streaming multiprocessor (SMs)
in the logic layer. In line with the philosophy of near-memory
computing, blocks of code are offloaded to the SMs in order
to reduce off-chip traffic and reduce power consumption due
to data movement.

Fig. 2: Processing options in the memory hierarchy

MONDRIAN (2017) Drumond et al. [36] analyzed data
analytics oeprators which are not a fit for NMC. They made
a case for optimizing traditional algorithms for NMC system
for sequential memory access rather than cache locality.

JAFAR (2015) Xi et al. [22] proposed JAFAR, an NMC
accelerator that allows to process filtering operations near the
main memory. Thus only relevant data will be pushed up in
caches, causing a significant reduction in data movement.

TESSERACT (2015) Ahn et al. [23] focus on graph
processing applications. Their architecture consists of one host
processor with his own memory and a HMC, with an out-of-
order processor mapped to each vault. These cores can see
only their own local data partition, but they can communicate
to each other using a message passing method. The host
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processor as well has access to the entire address space of
the HMC. To exploit the high available memory bandwidth in
the systems, they developed prefetching mechanisms.

IMPICA (2016) Hsieh et al. [30] accelerated the pointer
chasing operations which are ubiquitous in data structures.
They proposed adding specialized units that decouple address
generation from memory access in the logic layer of 3D
stacked memory. These units traverse through the linked data
structure in memory and return only the final node found to
the CPU. They also proposed completely decoupling the page
table of IMPICA from that of CPU to avoid virtual memory
related issues.

B. Fixed-Function Unit

Vermij1(2017) Vermij et al. [34] evaluated the performance
of sorting algorithms in big data workloads running on a
2-socket IBM POWER8 machine. They proposed a hetero-
geneous system where algorithm phases with high temporal
locality are executed on the CPU, while algorithm phases with
poor temporal locality are executed on the NMC devices. The
architecture proposed consists of a central host processor that
relies on two-level memory controllers. A memory-technology
agnostic controller located at the CPU side and a memory-
specific controller tightly coupled with the memory. The NMC
accelerators are placed in the memory-specific controllers
and are assisted with an NMC manager. The NMC manager
interfaces with the accelerator and the rest of the system
and provides support for cache coherency, virtual memory
management and communications with the host processor.

C. Re-configurable Unit

Gokhale1 (2015) Gokhale et al. [24] proposed to place a
data rearrangement engine (DRE) in the logic layer of the
HMC to accelerate data accesses while still performing the
computation on the main CPU. The authors targeted cache
unfriendly applications with high memory latency due to
irregular access patterns, e.g., sparse matrix multiplication.
Each of the DRE engine consists of a scratchpad, a simple
controller processor, and a data mover (aka DMA engine). In
order to make use of the engines the authors developed an
application program interface (API) with different operations.
Each operation is issued by the main application running on
the central host and served by a control program loaded by
the OS on each DRE engine.

HRL (2015) Gao et al. [25] proposed a re-configurable
logic architecture called Heterogeneous Re-configurable Logic
(HRL) that consists of three main blocks: fine-grained config-
urable logic blocks (CLBs) for control unit, coarse-grained
functional units (FUs) for basic arithmetic and logic oper-
ations, and output multiplexer blocks (OMBs) for branch
support. Each memory module follows HMC like technology
and houses multiple HRL devices in the logic layer. The cen-
tral host is responsible for data partition and synchronization
between NMC units.

NDA (2015) Farmahini et al. [28] proposed three different
NMC architectures using coarse-grained reconfigurable arrays

1Architecture has no name, first author’s name is shown.

on commodity DRAM modules. This proposal requires mini-
mal change to the DRAM architecture. However, programmer
should identify which code will run close to memory. This
leads to increased programmer effort for executing compute
intensive code on the 3D stack logic layer. Also, it doesn’t
support direct communication between NMC stacks.

IV. PROCESSING NEAR STORAGE CLASS MEMORY

Flashes and other emerging nonvolatile memories such as
phase-change memory (PCM) [37], spin-transfer torque RAM
(STT-RAM) [38], memristors [39], etc., are termed as storage-
class memories (SCMs) [15]. These memories are trying
to fill the latency gap between DRAMs and disks. SCMs
like NVRAM are even touted as a future replacement for
DRAM [40]. Moving computation in SCM has some of the
similar benefits to DRAM in terms of saving in bandwidth,
power, latency, and energy but also because of the higher
density it allows to work on much larger data-sets as compared
to DRAM [41].

A. Programmable Unit

Smart SSD (2013) Kang et al. [18] proposed a model to
harness the processing power of the SSD using an object-
based communication protocol. They implemented the Smart
SSD features in the firmware of a Samsung SSD and modified
the Hadoop core and MapReduce framework to use tasklets
as a map or a reduce function. To evaluate the prototype, they
used a micro-benchmark and log analysis application on both
a device and a host. They found that under the current SSD
architecture, excessive memory accesses will make the task
execution slower than in the host due to the high memory
latency and low processing power.

WILLOW (2014) Seshadri et al. [19] proposed a prototype
system called Willow, which has processing units called stor-
age processor units (SPU). Each SPU runs a small operating
system that manages and enforces security. On the host-side,
the Willow driver creates and manages a set of objects that
allow the OS and applications to communicate with SPUs. The
programmable functionality is provided in the form of SSD
Apps. Willow allows programmers to augment and extend the
semantics of an SSD with application-specific features with-
out compromising file system protection. The programming
model for SSD Apps provides great flexibility, supports the
concurrent execution of multiple SSD Apps in Willow, and
supports the execution of trusted code in Willow.

ProPRAM (2015) Wang et al. [26] observed that NVM is
often naturally incorporated with basic logic like data compar-
ison write or flip-n-write module, and exploited the existing
resources inside memory chips to accelerate the key non-
compute intensive functions of emerging big data applications.

SUMMARIZER (2017) Koo et al. [35] designed APIs
that can be used by the host application to offload a data-
intensive task to the inherent ARM based cores inside a SSD
processor. Using a fully functional SSD evaluation platform
they performed design space exploration of the proposed
approach. They evaluate static and dynamic approaches for
dividing the work between the host and SSD processor.
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B. Fixed-Function Unit
BISCUIT (2016) Gu et al. [32] presented Biscuit, a near-

memory computing framework which allows programmers to
write a data-intensive application to run on the host system and
the storage system in a distributed manner. The SSD hardware
incorporates a pattern matcher IP designed for NMC. When
this hardware IP is applied, modified MySQL significantly
improves TPC-H performance.

C. Re-configurable Unit
BlueDBM (2015) Jun et al. [27] presented a flash-based

platform, called BlueDBM, built of flash storage devices
augmented with an application specific FPGA based in-storage
processor. The data-sets are stored in the flash array and are
read by the FPGA accelerators. Each accelerator implements
an array of application-specific distance comparators, used in
the high-dimensional nearest-neighbour search algorithms.

CARIBOU (2017) Zsolt et al. [33] explored offloading
part of the computation in database engines directly to the
storage and deploying FPGAs. They implemented a cuckoo
hash table with a slab-based memory allocator to improve the
handling of collisions and various values sizes in hardware-
based key-value stores. Lookups and scans are performed on
the same data to minimize data transferred over the network.
They implemented a runtime parametrizable selection operator
both for structured and unstructured data in an effort to reduce
data movement further.

V. CHALLENGES OF NEAR-MEMORY COMPUTING

One of the biggest challenges in near-memory computing
is the lack of interoperability with caches and virtual memory
of the host processor due to unconventional programming
models. In this section we will explain the current issues with
programming model, data mapping, virtual memory support
and cache coherency in the context of NMC. Note there are
many more design challenges, like design space exploration,
reliable simulators which can deal with heterogeneous envi-
ronments, etc. They are detailed in section VI.

Virtual Memory support
Support for virtual memory is achieved using: paging or di-

rect segment. In the former approach most NMC systems adopt
a software-managed translation lookaside buffer (TLB) to
provide a mapping between virtual and physical addresses [6],
[42], [31], [43]. Azarkhish et al. in [44] observed that an OS
managed TLB may not be the optimal solution and proposed
an hardware implementation where a simple controller is
responsible for fetching the rule in the page table. In [30]
Hsieh et al. notice that for pointer-chasing applications, the
accelerator works only on specific data structures that can be
mapped onto a contiguous region of the virtual address space.
As a consequence, the virtual-to-physical translation for the
accelerator is limited to a smaller region. Other works such
as [45], [46] decided for a simplified approach where part of
the linear virtual address is mapped to physical memory using
a direct segment rather than a page. This mechanism allows
to remove TLB misses overhead and greatly simplifies the
hardware [47].

Cache Coherence
Although in some works the cache coherence has not

been treated [46], [48], we classify the approaches proposed
in literature as restricted memory region and non-restricted
region.

1) Restricted Memory Regions
Farahani et al. [28] divided the memory in two regions:

one for the host processor and one for CGRAs, which is
uncacheable. A similar approach has been used by Ahn et
al. [23] for graph processing algorithms. Another strategy,
proposed by Ahn et al. [29], provides a simple hardware-based
solution in which the PIM operations are restricted to only one
last level cache block, due to which they can monitor the cache
block and request for invalidation or write-back if required.

2) Non-Restricted Memory Regions
Non-restricted memory regions can often lead to a signifi-

cant amount of coherence traffic. Pattnaik et al. [49] proposed
to maintain coherence between the main/host GPU and near-
memory ones, flushing the L2 cache in the main GPU after
kernel execution. With this approach, applications with highly
irregular memory accesses lead to significant amount of over-
head. Another way is to implement a look-up based approach
as in the case of Hsieh et al. [31]. The NMC units record
the cache line address that has been updated by the offloaded
block and once when the offloaded block is processed they
send this address back to the host system. Subsequently, the
host system gets the latest data from memory by invalidating
the reported cache lines.

Programming Model
A critical challenge in adoption of NMC is to support a

heterogeneous processing environment of a host system and
near-memory processing unit. It is not trivial to determine how
and who identifies which part of an application should run in
the near-memory processing units. Currently, this is left onto
the programmer or the compiler [31] to mark sections of the
code that must be processed near-memory compute units [17].
In another approach, Ahn et al. [29] use some special set of
NMC instructions which invoke NMC logic units. However,
this approach calls for sophisticated mechanism (e.g., taking
care of the data locality) on the host side to avoid unnecessary
exchange of information. Hence, there is still a lot of research
required in coming up with an efficient approach to ease the
programming burden.

Data mapping
The absence of effective data mapping mechanisms can

severely hamper the benefits of processing close to memory.
The data should be mapped in such a way that data that will be
used by the near-memory processing units should be available
in the vicinity. Hence, it is crucial to look into effective data
mapping schemes (static and dynamic)

In TOM [31], they proposed a software/hardware coop-
erative method to predict which pages of the memory will
be used by the offloaded code, and they tried to minimize
the bandwidth consumption by placing those pages in the
memory stack closest to the offloaded code. Yitbarek et al. [46]
proposed a data-mapping scheme which they integrated in a
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Metrics Description
Reuse distance (temporal locality) The number of distinct memory accesses since the last access to a given memory address
Data Stream Stride (spatial locality) The difference in memory addresses between two consecutive memory accesses
Application bandwidth The amount of I/O bandwidth utilized by a particular application
Instruction mix Provides a general overview of the application
Parallelism Inherent application parallelism such as instruction level parallelism, thread level parallelism, data level parallelism
Branch Entropy Measures the randomness of branch behavior which is essential to provide speculation support

Table 3: Several metrics for micro-architecture independent analysis of workloads

Application source code

Reuse Distance
Instruction Mix

…..

Application 
Characterization 

Analytical Model/
Simulation

#cores
cache size

….

Performance estimation

Application
Characteristics Architecture

parameters

Fig. 3: Design space exploration for system evaluation

platform that used some accelerators near 3D-stacked memory.
Near-memory workloads often access data from contiguous
addresses for this reason they re-mapped data at page granular-
ity in order to have contiguous addresses in the same memory
vaults.

VI. DESIGN SPACE EXPLORATION FOR NMC

As will be clear from the previous classification section,
the design space of NMC is huge. In order to understand and
evaluate this space, design space exploration (DSE) for NMC
system is required, as shown in figure 3.

A. Application Characterization

More than ever, application characterization has taken a cru-
cial role in systems design due to the increasing number of new
data-intensive applications. It is used to extract information by
using specific metrics, in order to decide which architecture
could have the best performance and energy efficiency. In
table 3, we have highlighted some of the useful metrics for
near-memory architectures. Application characterization can
be done in one of the following ways:

Microarchitecture-Dependent Workload Characterization

Traditionally workload characterization is done using hard-
ware performance counters present on our current micropro-
cessors. Awan et al. [50] use hardware performance counters
to characterize the scale-out big data processing workloads
into CPU-bound, memory-bound, and I/O-bound applications
and propose programmable logic near DRAM and NVRAM.
However, the use of hardware performance counters is limited
by the impact of micro-architecture features like cache size,

issue width etc [51]. To overcome this problem, recently there
has been a strong push towards following a ISA independent
characterization approach.

Microarchitecture-Independent Workload Characterization
Hoste et al. [52] proposed a Microarchitecture-Independent

Workload Characterization (MICA) in which they used
Pin [53] as basis. Also, they proposed new methodologies
to analyze these characteristics, based on principal compo-
nents analysis (PCA), which gives a reduction to data set’s
dimensionality and removes correlation from the data set,
and also a genetic algorithm (GA), which reduces the data
set’s dimensionality, but with a retained dimension easily to
understand.

Anghel et al. [54] presented a Platform-Independent Soft-
ware Analysis (PISA) tool, based on the LLVM compiler.
It takes a source code as input and generates a LLVM-IR
bitstream which is instrumented with some function calls
to a tool library that implements different workload analy-
sis. Characteristics which PISA can extract are: Instruction
Mix, Instruction-Level-Parallelism, Memory Access Patterns,
Branch Entropy, Communication Patterns. Unlike other tools,
PISA is also capable of analyzing multi-threaded programs.

In the same way Caparrós et al. [55] used the LLVM
framework for their tool. It’s only for sequential code, but there
are interesting metrics that are extracted such as: Data-Level-
Parallelism (DLP), Thread-Level-Parallelism (TLP) and Task-
Level Parallelism. This analysis is made through a Direct-
Acyclic-Graph (DAG) that searches for the real data dependen-
cies and at various granularity levels, e.g. instructions, basic
blocks, functions.

Using the Intermediate Representation (IR) from the Just-
In-Time (JIT) compiler Shao et al. [51] extracted number of
opcodes, the value of branch entropy, the value of memory
entropy, the unique number of static instructions, and the
unique number of data addresses for sequential benchmarks.

B. Performance Evaluation Techniques
Architects often make use of various evaluation techniques

to navigate the design-space, avoiding the cost of chip fabri-
cation. Based on the level of detail required, architects make
use of analytic models, or more detailed functional or cycle
accurate simulators, and even design prototypes. As the field
of NMC does not have very mature tools and techniques,
researchers often spend a lot of time building the appropriate
evaluation environment. [56]

Analytic Modeling
Analytic models abstracts low level system details and

provide quick performance estimates at the cost of accuracy. In
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Simulator Year Category NMC capabilities
Sinuca [60] 2015 Cycle-Accurate Yes
HMC-SIM [61] 2016 Cycle-Accurate Limited
CasHMC [62] 2016 Cycle-Accurate No
SMC [44] 2016 Cycle-Accurate Yes
CLAPPS [56] 2017 Cycle-Accurate Yes

Table 4: Open source simulators

the early design stage, system architects are faced with large
design choices which range from semiconductor physics, to
circuit level, micro-architectural properties (eg., issue width,
branch prediction), cooling concerns, and other system design
constrains [57]. During the first stage of design-space ex-
ploration analytic models can provide quick estimate number.
Mirzadeh et al. [58] studied a join workload, on multiple HMC
like 3D-stacked DRAM devices connected together via SerDes
links using a first-order analytic model. Zhang et al [59]
designed an analytic model using machine learning techniques
to estimate the final device performance.

Simulation Based Modeling
To achieve more accurate performance numbers, architects

often resort to modeling the entire micro-architecture precisely.
However, this approach can be quite slow compared to analytic
techniques. Hyeokjun et al. [63] evaluated the potential of
NMC for machine learning (ML) using a full-fledged simulator
of multi-channel SSD that can execute various ML algorithms
on data stored on the SSD. Similarly, Jo et al. [64] developed
the iSSD simulator based on the gem5 simulator [65].

Ranganathan et al. [66], [40] for their nano-stores archi-
tecture used a hybrid methodology which is a bottom-up
approach in which they built a high level model which breaks
down applications into various phases, based on compute,
network, and I/O sub system activities. This takes input from
the low level performance and power models regarding the
performance of each phase. They used COTSon [67] for
detailed micro-architectural simulation.

Fig. 4: Our 3D stacked near-memory system connected to
a host system

VII. CASE STUDY

We built a high level analytic model which incorporates
evaluation methodology as described in figure 3. To see the
potential of computing close to the memory and when it is
useful to follow a data-centric approach we make a comparison
of a CPU-centric approach consisting of a multi-core system
which has DDR3 as a main memory, and compared it to
a data-centric approach which has HMC like 3D stacked
memory instead of DDR3 and is connected to a host system.
In the multi-core system each core has its private L1 cache

Description Symbol ARM
Cores ncores 4
Core clock frequency fcore 3 GHz
L1 size sl1 32 KB
L2 size sl2 256 KB
DRAM size sDRAM 4 GB
L1 cache bandwidth bwl1 137 GB/s
L2 cache bandwidth bwl2 137 GB/s
DRAM bandwidth bwDRAM 17 GB/s
L1 cache hit latency ll1 1 cycles
L2 cache hit latency ll2 2 cycles
DRAM hit latency lDRAM 165 cycles
NVM hit latency lext 800 cycles

Table 5: System parameters and example set representing
ARM Cortex-A9 (ARM) processor

and a shared L2 cache. Figure 4 shows our 3D stacked
near-memory system connected with a host system through
a serializer/deserializer (SerDes) I/O link. We embed near-
memory compute units in the logic layer of 3D stack memory.
The near-memory compute units are modeled as ARM Cortex-
A9 units (table 5), which are placed in the logic layer of 3D
stacked DRAM.

We consider a 4-GB HMC like design, with 8 DRAM
layers. Each DRAM layer is split into 16 dual banked par-
titions with 4 vertical partitions forming a vault. Each vault
has its own vault controller in the logic layer which is able to
access the DRAM layers at a 10 GB/s bandwidth [4]. In the
near-memory system we assume certain parts of computation,
which are memory intensive, to be offloaded to the near-
memory compute units and the other parts will be executed in
the host system. The number of vaults inside the HMC and
external SerDes links are kept as varying parameters which
have an impact on internal and the external bandwidth of the
3D memory respectively.

Performance calculation: The model estimates the execu-
tion time as the ratio between the number of memory access
required in order to move the block of data to and from the
I/O system and the available I/O bandwidth of each memory
subsystem. The execution time takes into account the time
to process the instructions and latency due to memory access
at different memory levels. The latency of different memory
types have been mentioned in table 5.

Energy calculation: A power model for both CPU-centric
and near-memory system were built which take into account
dynamic as well as static energy. Dynamic energy is the
product of the energy per memory access and number of
memory accesses at each level of the memory hierarchy. It
is assumed to scale linearly with utilization. Static energy is
estimated as the product of time and static power for each
component. It is scaled based on the number of cores and the
cache size.

For modeling the HMC we referred to [7] and [20]. We
consider energy per bit of 3.7 pJ/b for accessing the DRAM
layers and 1.5 pJ/b for the operations and data movements in
the HMC logic layer. Also a static power of 0.96 W [20] was
considered to model the additional components in the logic
layer.

Design Space Exploration: We vary the cache miss rate,
which encapsulates application characteristics, both at L1 and
L2 level to see the impact it has on performance of the entire
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(a) Normalized Delay (b) Normalized Energy

Fig. 5: Performance and energy comparison between multi-core and NMC with a host system using high-level analytic
model

system. In case of a near-memory system, we considered the
scenario when all access are done to the different vaults inside
the HMC memory which can exploit the inherent parallelism
offered by the 3D memory. In figure 5, the x and y axis
represent the miss rate at L1 and L2 respectively. Results in
figure 5 are normalized to NMC+host system. In both the
figures we can see a similar trend if the miss rate (L1 and
L2) increases the multi core system performance degrades
compared to the NMC systems this because of increase in
data movement. The data has to be fetched from the off-chip
DRAM. If the data brought into the caches is not reused by
the CPU, the use of caching becomes inefficient. Therefore,
the application (or function) with low locality should take
advantage of the near-memory approach whereas the other
application (or function) with high locality will benefit more
from the traditional approach.

VIII. GUIDELINES FOR FUTURE DIRECTION

Based on analysis of many existing NMC systems we
identify the following key topics for future research, which we
regard as essential to unlock the full potential of processing
close to memory:

• Currently, it is unclear which emerging memory technol-
ogy best supports near-memory architectures.

• The field requires a generic set of tools and techniques for
these novel systems, as often researchers have to spend
a significant amount of time and effort in building the
required simulation environment.

• Although many architectures feature some sort of tool-
flow, very few are open source. Often, the tool-flow is
very architecture specific, thereby limiting reproducabil-
ity.

• Most of the evaluated architectures focus on the com-
pute aspect. Few architectures focus on providing cache
coherency and virtual memory support.

• More exploration is required for interconnect network be-
tween the near-memory compute units and also between
the host and near-memory compute system.

• At application level, algorithms need to be adapted ac-
cording to the location of the data for energy efficient
processing.

• DRAM and NVM have different memory attributes. A
hybrid design can revolutionize our current systems. Pro-
cessing near heterogeneous memories is a new research
topic and in future, we expect a lot of interest in this
direction.

• 3D stacking also needs novel power and thermal solutions
as traditional heat sink technology will not suffice if we
want to add more computation close to the memory.

• Static and dynamic decision support for offloading pro-
cessing and data to near-memory systems.

• Appropriate data (re-)mappings are required for the near-
memory architectures.

IX. CONCLUSION

The improvements in performance and energy have stimu-
lated a great amount of research in processing close to the
memory. It can be the right approach for certain big data
applications. However, to embrace this paradigm we need to
provide a complete ecosystem from hardware to software. In
this paper, we analyzed and organized the extensive literature
of placing compute units close to the memory using different
synonyms (eg. Processing-in memory, Near-data Processing)
under the umbrella of Near-Memory Computing. This is done
to distinguish it from the in-situ Computation-in Memory
(CIM) by means of novel non-volatile memories like mem-
ristors. It provides systematization for positioning of new
proposals within the existing body of work. We stressed on
the demand of mature tools and techniques and outlined a
methodology for the design space exploration for these novel
architectures. Furthermore, based on our analysis of existing
NMC systems we identified key topics for future research,
which we regard as essential to unlock the full potential of
processing close to memory.
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