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Abstract—Traditionally science is done using the reductionism
paradigm. Artificial intelligence does not make an exception
and it follows the same strategy. At the same time, network
science tries to study complex systems as a whole. This synopsis
presents my PhD thesis which takes an alternative approach
to the reductionism strategy, with the aim to advance both
fields, advocating that major breakthroughs can be made when
these two are combined. The thesis illustrates this bidirectional
relation by: (1) proposing a new method which uses artificial
intelligence to improve network science algorithms (i.e. a new
centrality metric which computes fully decentralized the nodes
and links importance, on the polylogarithmic scale with respect
to the number of nodes in the network); and (2) proposing two
methods which take inspiration from network science to improve
artificial intelligence algorithms (e.g. quadratic acceleration in
terms of memory requirements and computational speed of
artificial neural network fully connected layers during both,
training and inference).

Index Terms—network science, complex networks, artificial
intelligence, machine learning, artificial neural networks, deep
learning, evolutionary algorithms, communication networks

I. INTRODUCTION

Most of the science done throughout the human evolution
uses the traditional reductionism paradigm, which attempts
to explain the behavior of any type of system by zooming
in on its constituent elements [1] and by summing their
behavior. Consequently, nowadays we have an abundance of
specializations and specialized people but few scientist study
complex systems, which are in fact all around us. In my work,
I do not claim reductionism to be wrong. On the contrary, it
has been the basis of scientific advances throughout centuries
of methodic investigation. Yet, my ambition is to understand
the hidden properties that underlie complexity.

The limitations of reductionism were hinted millenniums
ago by the ancient Greeks, Aristotle wrote in Metaphysics
that “The whole is more than the sum of its parts”. At a
first thought, the whole should be the sum of its parts. Still,
some times we do not know all the parts and, in many
cases, it may even be difficult to identify all those parts,
let alone their mutual interdependencies. For instance, think

*The PhD thesis can be found at:
https://pure.tue.nl/ws/portalfiles/portal/69949254
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Fig. 1. Illustration of the reductionism and complex systems paradigms. It
may be observed that while in the reductionism paradigm the main idea is
to zoom in onto the various components of a system, the main emphasis in
the complex systems paradigm is on unveiling connections among the various
components and grasping the overall system behavior.

about the gravitational waves. Gravity was first postulated by
Isaac Newton in the 17th century. Yet, the gravitational waves
could have not considered in his theory, since that would
have assumed that physical interactions propagate at infinite
speed. Still, it was not until more than two centuries later,
that Albert Einstein has intuited and predicted the existence
of gravitational waves [2]; and it took about another century
of great technological advancements before the existence of
gravitational waves was proven [3].

To overcome the limitations of reductionism, the ‘complex
systems’ paradigm aims to study the systems and their mutual
interactions as a whole, which requires a multidisciplinary
research, as depicted in Figure 1. This approach was first
pioneered by the Santa Fe institute [4].

A complete theory of complexity is very hard to devise,
but Network Science (NS) offers many of the required math-
ematical tools (e.g. complex networks) necessary to over-
pass reductionism [5]. Complex networks are graphs with
non-trivial topological features, which are typical in many
real world systems from a variety of research fields (e.g.
neuroscience, astrophysics, biology, epidemiology, social and
communication networks) [6].

At the same time, while the NS community has been trying
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to use Artificial Intelligence (AI) techniques to solve various
NS open questions, such as in [7], the AI community has
largely ignored the latest findings in network science. We
argue that AI tends to follow the principles of reductionism
and that new breakthroughs will need to go beyond it. In
this thesis, following our initial thoughts from [8], we ex-
plore the potential arising from combining NS with AI, with
emphasis on artificial neural networks [9] and evolutionary
computation [10]. We set out with two long term research
goals: (1) to better understand the fundamental principles
behind the world near us, which may be modeled in amazing
structures of networks of networks at micro and macro-scale,
from the vigintillions of interacting atoms in the observable
universe to the billions of persons in a social network; and
(2) to advance the artificial intelligence field. We believe that
these will ultimately help improving the general well-being
of the human society, which is increasingly dependent upon
intelligent software in complex systems of systems.

The remainder of this paper is organized as follows. Sec-
tion II presents background knowledge. Section III briefly
introduces some of our novel network science and artificial
intelligence approaches to solve real-world problems with
a focus on communication networks. Section IV discusses
some common issues in state-of-the-art networks algorithms,
and details the research questions addressed in my disserta-
tion [11]. Section V presents an outline of the main dissertation
contributions (i.e. the core research chapters) and provides
a guideline to the reader. Finally, Section VI concludes this
synopsis and presents further research directions.

II. BACKGROUND

Network science is the academic field which studies com-
plex networks [6], [12]. Any real-world network formalized
from a graph theoretical perspective is a complex network.
For example, such networks can be found in many domains
from technical to social ones, such as telecommunication
networks [13], [14], transportation networks [15], biology [16],
[17] (e.g. biological neural networks, protein interactions),
neuroscience [18]–[20], astrophysics [21], artificial intelli-
gence [22] (e.g. artificial neural networks), semantic networks,
social networks [23], [24], to mention but a few. In the study
of complex networks, network science uses knowledge from
many academic fields, such as mathematics (e.g. graph theory),
physics (e.g. statistical mechanics), statistics (e.g. inferential
modeling), computer science (e.g. data visualization, data
mining), sociology (e.g. social structure) and so on.

Artificial intelligence is a subfield of computer science,
which uses the concept of software intelligent agents to
incorporate intelligence into machines [25]. The main research
directions addressed by artificial intelligence are, mainly,
knowledge representation, perception, learning, reasoning, and
planning. These are, in fact, inspired to corresponding human
cognitive functions. In this thesis, we address in more details,
two subfields of artificial intelligence, namely machine learn-
ing and evolutionary computations.

III. REAL-WORLD CHALLENGES AND OUR SOLUTIONS

In this section, we consider practical, real-world problems,
which pose hard scientific challenges, explaining how we have
addressed them - either through novel solutions or through
novel application of existing methods. We briefly discuss
communication networks problems and our solutions, while
for our proposed solutions in other domains we refer the reader
to the corresponding articles, i.e. ABAC policy mining from
logs in computer security [26], what and how to transfer [27],
[28] in transfer learning, human activity recognition [29] and
3D trajectories estimation [30] in computer vision, real-time
energy disaggregation in buildings [31] and on-line building
energy optimization [32] in smart grids [33], [34].

A. Wireless sensor networks

With the emergence of sensors with wireless capability,
most of current sensor networks consist of a collection of
wirelessly interconnected units, each of them with embedded
sensing, computing and communication capabilities [35]. Such
sensor networks are referred to as Wireless Sensor Networks
(WSNs) [36]. Due to their versatility, WSNs have been em-
ployed in a wide range of sensing and control applications,
such as smart traffic control, environmental monitoring, secu-
rity surveillance, and health-care [37]. As a consequence of
cost, energy and spectrum constraints [38] sensors are prone
to failure (hardware and transmission), as well as to data
corruption. A typical approach to tackle these issues is through
smart autonomic methods [39]–[42].

1) Redundancy reduction in WSN: The dense, unpre-
dictable deployment of sensors leads to substantial data and
networks [43]. In these situations, identifying the redundant
sources and connections can save considerable resources (en-
ergy, communication spectrum, data processing and storage).
In turn, this can extend the network life-time and scale [44],
[45]. Redundancy reduction requires that the network stays
fully connected to let the flow of information pass between
any communication points.

In the scope of these arguments, in [46], we take advantage
of the latest theoretical advances in complex networks, intro-
ducing a method that simplifies network topology based on
centralized centrality metrics computations [6]. The method
detects the redundant network elements to allow switching
them off safely, without loss in connectivity. The experi-
ments performed on a wide variety of network topologies
with different sizes (e.g. number of nodes and links), using
different centralized centrality metrics, validate our approach
and recommend it as a solution for the automatic control
of WSNs topologies during the exploitation phase of such
networks to optimize, for instance, their life time.

2) Predictive power control in WSN: Besides that, prompt
actions are necessary to achieve dependable communications
and meet quality of service requirements in WSNs. To this end,
the reactive algorithms used in the literature and standards,
both centralized and distributed ones, are too slow and prone
to cascading failures, instability and sub-optimality. In [47]
we explore the predictive power of machine learning to better



exploit the local information available in the WSN nodes
and make sense of global trends. We aimed at predicting the
configuration values that lead to network stability. We adopted
Q-learning, a reinforcement learning algorithm, to train WSNs
to proactively start adapting in face of changing network
conditions, acting on the available transmission power levels.
The results demonstrate that smart nodes lead to better network
performance with the aid of simple reinforcement learning.

B. Quality of experience

Quality of Experience (QoE) [48] aims at assessing the
quality perceived by a user, while experiencing a service (e.g.
video streaming services, web browsing, phone or video calls,
server based enterprise software at the work environment and
so on). Even though QoE is human centric, in general, due
to the exponential increase of services, it is not practical to
employ humans to assess the services quality. Thus, objective
computational methods capable to assess the quality of those
services such as humans do are needed [39].

1) Objective image quality assessment: Objectively mea-
suring the quality degradation of images yielded by various
impairments of the communication networks during a service
is a difficult task, as there is often no original images to
be used for direct comparisons. To address this problem,
in [49] we proposed a novel reduced-reference QoE method,
dubbed Restricted Boltzmann Machine Similarity Measure
(RBMSim), that measures the quality degradation of 2D
images, without requiring the original images for comparisons.
Moreover, in [50] we take this work further, proposing a
new reduced-reference QoE method to measure the quality
degradation of 3D images using factored third order restricted
Boltzmann machines [51], dubbed Q3D-RBM. What is inter-
esting is that both, RBMSim and Q3D-RBM, perform just
unsupervised learning taking advantage of RBM performance
as density estimator. So, they do not need the ground truth,
this being an important advantage for quality of experience
methods. The experiments performed on benchmark datasets
demonstrate that both methods achieve a similar performance
to full reference objective metrics when benchmarked with
subjective studies.

2) Objective video quality assessment: For obvious rea-
sons, video quality assessment, is more difficult and more
important than image quality assessment [52], [53]. In [54]–
[58] we take further our work on images, proposing new
no-reference and reduced-reference QoE methods to assess
the quality degradation suffered by videos during streaming
services. We use various models of artificial neural networks,
from restricted Boltzmann machines to deep neural networks,
using both unsupervised and supervised learning. The results
show that, in general, the artificial neural networks used
achieve very good performance, comparable with state-of-the-
art objective full-reference metrics for video quality assess-
ment, while not requiring the original videos for comparisons.

3) Objective quality of experience in enterprise and work-
ing environments: While most of the QoE studies aim at
understanding the QoE impact of waiting times in controlled

laboratories or in the user’s domestic environment, the enter-
prise and working environments have been largely ignored.
This happens due to the IT environment, which is highly
complex and hard to analyze, and incurs high costs. In [59],
by using a non-intrusive application monitoring of response
times and subjective user ratings on the perceived application,
we employ deep neural networks and other machine learning
models to estimate the users QoE. The results show that we
can successfully build machine learning models to estimate the
QoE of specific users, but do not allow us to derive a generic
model for all users.

IV. RESEARCH QUESTIONS AND OBJECTIVE

Following the study of a range of real-world problems, as
outlined in Section III, we realized the enormous potential
of both network science and machine learning. In all cases,
scalability was the key limiting factors. With the aim of in-
creasing the scalability bounds of various networks algorithms,
we extrapolate a number of fundamental challenges, presented
below as the theoretical research questions of my doctoral
thesis [11]:

1) How to reduce the computational complexity when as-
sessing the importance of all the elements of a complex
network, i.e. nodes and links?

2) How to reduce the excessive memory requirements in
artificial neural networks when they perform on-line
learning?

3) How to reduce the computational complexity when
training and exploiting artificial neural networks?

In the thesis, while trying to answer to these three research
questions, we follow one single common objective:

• Any new method, which is to fulfill one of the three
research questions above, will have to be comparably as
accurate as its state-of-the-art counterparts.

V. THESIS MAIN CONTRIBUTIONS AND OUTLINE

Overall, we have discovered that the key to addressing the
three research questions stated above lies in methods that
combine artificial intelligence with network science methods,
rather than employing them independently [8]. We elaborate
on this claim through a selection of contributions included in
Chapters 2, 3, 4, and 5 of the thesis [11], as summarized next.

A. Polylogarithmic centrality computations in complex net-
works - Chapter 2 [13], [60].

To compute the centrality of all elements (i.e. nodes and
links) in a complex network is a difficult problem due to:
(1) the difficulty of unveiling the hidden relations between
all networks elements; (2) the computational time of state-of-
the-art methods, which many times are not practical in real-
world networks that are in excess of billions of nodes. Herein,
we introduce a new class of fully decentralized stochastic
methods, inspired by swarm intelligence and human behavior,
to compute the centralities of all nodes and links simultane-
ously in a complex network. The basic idea is fairly simple.
An homogeneous artificial system is overlaid over a complex



network, which is a heterogeneous system (its topology gives
its level of heterogeneity). After this, a gaming process starts,
whereby the entities of the artificial system start interacting
with the complex network. Over time, the artificial system
evolves in such a way that will reveal the complex network
features, specifically the nodes and links centrality. A proof
of concept implementation of this algorithm can be found
here1. The parallel time complexity of this approach is on
the polylogarithmic scale with respect to the number of nodes
in the network, while its accuracy is similar, and many times
even better, than state-of-the-art centrality metrics. To give an
impression on the magnitude of the computational problem at
hand, if we were to consider one trillion Internet of Things
devices (each one running the proposed protocol, over an
unloaded network), and a transmission rate of 1 message
per millisecond, then the centrality of all network elements
(devices and the relations between them) would be computed
in less than 22 seconds. As a comparison, by using other state-
of-the-art centrality metrics for the same problem, one would
need (perhaps) months to compute the results.

B. Generative Replay: towards memory-free online learning
with ANNs - Chapter 3 [61].

Online learning with artificial neural networks is in many
cases difficult due to the need of storing and relearning
large amount of previous experiences. This limitation can
be partially surpassed using a mechanism conceived in the
early 1990s, named experience replay. Traditionally, experi-
ence replay can be applied in all types of ANN models to
all machine learning paradigms (i.e. unsupervised, supervised,
and reinforcement learning). Recently, it has contributed to im-
proving the performance of deep reinforcement learning. Yet,
its application to many practical settings is still limited by the
excessive memory requirements, necessary to explicitly store
previous observations. From a biological sense of memory,
the human brain does not store all observations explicitly, but
instead it dynamically generates approximate reconstructions
of those experiences for recall. Inspired by this biological fact,
to remedy the experience replay downside, we propose a novel
approach dubbed generative replay. Generative replay uses
the generative capabilities of restricted Boltzmann machines
to generate approximations of past experiences, instead of
recording them, as experience replay does. Thus, the RBM
can be trained online, and does not require the system to store
any of the observed data points. Furthermore, generative replay
is a generic concept which may be used in combination with
other types of generative artificial neural network models to
serve dynamic approximations of past experiences to any ANN
model that performs on-line learning.

C. Quadratic parameter reduction in artificial neural net-
works - Chapters 4 and 5 [22], [62]

Almost all of the artificial neural networks used nowadays
contain fully connected layers, which have a quadratic number

1https://github.com/dcmocanu/centrality-metrics-complex-networks

of connections with respect to the number of neurons. This
type of fully connected layers contain the most of the neural
network connections. Because the weight corresponding to
each connection has to be carefully optimized during the
learning process, this leads to increased computational re-
quirements, proportionally to the number of connections that
need to be optimized. Inspired by the fact that biological
neural networks are sparse, and even more, they usually have
small-world and scale-free topologies, in these two chapters
we show that a striking amount of the connections from the
fully connected layers of artificial neural networks is actually
redundant. Furthermore, we demonstrate that we can safely
decrease the number of connections from a quadratic relation
to a linear relation, with respect to the number of neurons, at
no decrease in accuracy (many times, even with an increase
in accuracy). It is worth highlighting that the connections
reduction is done in the design phase of the neural network,
i.e. before training. In Chapter 4 [22], we use a fixed scale-
free connectivity pattern. Furthermore, in Chapter 5 [62], we
take this idea further and, starting with a random sparse
connectivity pattern and adding an evolutionary process during
the training phase of the ANN model, we are capable to reach
even better performance. Our results show that it is possible to
replace the fully connected layers in artificial neural networks
with quadratically faster counterparts in both phases, training
and exploitation. This type of sparse evolutionary ANN layers
has low computational and memory requirements and may
lead to the possibility of building ANN models in excess
of billions of neurons. In the scope of these arguments, the
proof of concept implementation2 of this algorithm can build
sparse ANN models with up to 1 million neurons on a standard
laptop, this being way over current ANN possibilities.

To clarify, the above discussed theoretical advancements
would have not been possible without having a complex sys-
tems approach, e.g. studying artificial intelligence and network
science together and not separately as it is usually done using
the reductionism paradigm. This paper is just a short overview
of my thesis, while for the interested reader, an outlook of it
is depicted in Figure 2.

VI. CONCLUSIONS AND FURTHER WORK

To conclude, this thesis [11] addresses a range of topics
around the common theme of network efficiency. We explore
the fascinating opportunities that arise when AI is employed to
master network complexity, and vice versa. The applicability
of such fundamental concepts is vast, with the possibility
to make impact on virtually any domain whereby problems
can be modeled as networks. We have explored examples in
communication networks [59], wireless sensor networks [13],
[38], [46], [47], smart grids [31], [32], computer vision [29],
[30], [63], computer security [26], transfer learning [27], [28],
and multimedia quality of experience [49], [50], [54]–[58],
[64], [65].

2https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-
networks
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There is also enormous potential in employing scalable
artificial neural networks onto other problems that cannot yet
be tackled due to the scalability boundaries of current methods,
e.g. understanding of the brain, understanding of very high
dimensional data, online learning in low-resources devices, etc.

Looking at the synergy between network science, artificial
intelligence, and biological neural networks, we have been able
to push the scalability bounds of various networks algorithms
much beyond their state-of-the-art. Our combined approach to
complexity and AI goes beyond the current methods, which
tend to focus on either of the two, independently.

This research may be expanded in many directions. Let
us group them into the two main categories of ’applied
research’ and ’fundamental research’. The applied research
direction is straightforward and assumes applying the novel
algorithms proposed in Section V to real-world challenges, as
we described in Section III. The fundamental research direc-
tion could be furthered by continuing to explore the synergy
between network science, artificial intelligence, and biological
principles of nature. An interesting possibility would be to try
to combine traditional AI techniques (i.e. knowledge represen-
tation, logic reasoning) with deep learning. This represents an
important problem and an active research area, as highlighted
by a recent paper [66]. One possibility to tackle it would be
to follow our incipient approach, as proposed in [26], using
restricted Boltzmann machines as density estimators for the
inductive logic rules.

Another possibility, would be to study two of the most
important challenges in artificial neural networks. The first
one relates to the high number of examples that ANNs need
to rely upon for learning. The second one is the slow learning
curve of gradient based optimization methods. These do not
follow the strategy of human learning, which have a much
higher generalization power and can learn new concepts using
just few labeled examples or even purely unsupervised [67].
Furthermore, the learning curve in humans is sigmodal, which
is not the case of gradient based learning. Intuitively, one
would hypothesize that if we could more accurately follow
the laws of nature we would make new breakthroughs in
machine learning, particularly in generalization capability,

evolutionary and continuously learning. That would require
achieving further insights into the dynamics of biological
neural networks, looking from a network science perspective.
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