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In a pair of linked articles (called Papers I and II, respectively), we apply the concept of

Lagrangian Coherent Structures borrowed from the study of Dynamical Systems to chaotic

magnetic field configurations in order to separate regions where field lines have different kinds of

behavior. In the present article, Paper II, by means of a numerical procedure, we investigate the

Lagrangian Coherent Structures in the case of a two-dimensional magnetic configuration with two

island chains that are generated by magnetic reconnection and evolve nonlinearly in time. The

comparison with previous results, obtained by assuming a fixed magnetic field configuration,

allows us to explore the dependence of transport barriers on the particle velocity. Published by AIP
Publishing. https://doi.org/10.1063/1.5020164

I. INTRODUCTION

In recent years, the concept of Lagrangian Coherent

Structures (LCS) has been introduced by G. Haller in the

context of transport processes in complex fluid flows, see

Ref. 1. In an accompanying paper, here referred to as Paper

I, Ref. 2, it was shown that such a concept can be usefully

applied to the study of particle transport in a magnetized

plasma when a chaotic magnetic field develops and the field

line dynamics can be taken as a proxy for the particle

dynamics. The rationale for such an assumption, which

neglects, e.g., the effects of the electric and magnetic particle

drifts, is to provide a simple, even if not exact, tool that

depends on as few parameters as are meaningful, and that

can be used in a general setting for the easy detection of the

barriers to enhanced particle transport, as is the case consid-

ered here, by the growth of multiple island chains due to the

onset of magnetic reconnection. In particular, in Paper I, it

was recalled how to relate a magnetic field configuration, at

a fixed physical time, to a Hamiltonian system where the

role of “time” (Hamiltonian time) is taken by an appropri-

ately chosen coordinate along the magnetic field lines. In the

same article, after a brief summary of the so-called “lobe-

dynamics” and of the related transport in a nonautonomous

one-degree of freedom Hamiltonian system, the definition

and the properties of the Lagrangian Coherent Structures

(LCS) were recalled. In the case of a (Hamiltonian) time

periodic configuration, i.e., of a configuration that is geo-

metrically periodic in the direction of the magnetic field as

is the case, e.g., of a toroidal configuration, the connection

with the widely used Poincar�e map approach was men-

tioned. Finally, in Paper I, the magnetic configuration that

is used in the numerical simulations reported in the present

paper was introduced and a simple generalization to the

case where the LCS are defined so as to include the evolu-

tion of the magnetic configuration in time was discussed.

The chosen magnetic configuration is based on the investi-

gation presented in Refs. 3–5 of the nonlinear evolution of

two chains of magnetic islands produced by magnetic

reconnection.

In the present paper, the concepts introduced in Paper I

are implemented numerically using a MATLAB tool devel-

oped by K. Onu, F. Huhn and G. Haller, see Ref. 6. First, the

LCS are obtained by considering a snapshot at a fixed physi-

cal time of the evolving magnetic configuration by explicitly

exploiting its periodicity in the “Hamiltonian” time [see Eq.

(20) of Paper I]. Then, the same numerical procedure is used

to include the evolution of the magnetic configuration in

physical time. This allows us to explore the dependence of

transport barriers on particle velocity.

This paper is organized as follows. In Sec. II, after

recalling the main features of the magnetic configuration of

interest, we introduce the adopted numerical computation

scheme and briefly describe the precautions that have been

used in its implementation. In Sec. III, we take the flux

function in the magnetic Hamiltonian at a fixed physical

time: we choose t¼ 415, i.e., before the onset of fully

developed chaos. The corresponding LCS are then obtained

numerically and compared to the structures in the Poincar�e
map. In Sec. IV, we consider the case of a magnetic field

that evolves in physical time, i.e., the case where a charged

particle moving in the plasma sees a time varying magnetic

field during its motion and apply the simplified model

described in Sec. VI B of Paper I. In this case, the corre-

sponding dynamical system turns out not to be periodic in

time and then we do not find it convenient to refer to the

technique of the Poincar�e map. The LCS are then obtained

numerically for different particle streaming velocities along

field lines with the aim of finding how do the LCS change

with physical time, how they differ from those found at the

fixed physical time, and, in addition, whether and how par-

ticle with different velocities can cross LCS calculated for
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different particle velocities. Finally, the conclusions are

presented.

II. SIMULATION SETTINGS AND NUMERICAL
PROCEDURE

A. Magnetic configuration

As anticipated in Sec. VI of Paper I, in the present arti-

cle, we study the LCS in a magnetic configuration of the

form

Beq ¼ B0ez þrwðx; y; z; tÞ � ez; (1)

where wðx; y; z; tÞ is the full magnetic flux function that includes

the equilibrium and the time evolving perturbations. Periodicity

is assumed in all three directions and the configuration is

restricted to the domain ½�Lx; Lx� � ½�Ly; Ly� � ½�Lz; Lz� with

Lx ¼ p; Ly ¼ 2p; Lz ¼ 16p.

We recall that the expression of wðx; y; z; tÞ that we use

has been obtained by means of a numerical simulation in Ref. 3

(see also Refs. 4 and 5) by imposing a “double helicity” pertur-

bation ŵ1ðx; tÞ cos ðk1yyþ k1zzÞ þ ŵ2ðx; tÞ cos ðk2yyþ k2zzÞ,
with kiy ¼ mip=Ly and kiz ¼ nip=Lz, where m1 ¼ m2 ¼ 1 and

n1 ¼ 1; n2 ¼ 0, at equilibrium of the form weqðxÞ / cos ðxÞ.
The eigenfunctions of the initial perturbations ŵ1ðx; 0Þ and

ŵ2ðx; 0Þ are localized functions on the resonant surfaces and

the initial amplitude of ŵ1 was chosen to be of the order of

10–4 and ten times bigger than that of ŵ2 . The resonant surfaces

x ¼ xi are defined by the condition Beq � k1;2 ¼ 0 and, disre-

garding the mirror-doubling of the configuration caused by the

assumed periodicity along x, are located at x1 ¼ 0 and

x2¼ 0.71, respectively.

The field line equations are given by

dx

dz
¼ � @w

@y
;

dy

dz
¼ @w
@x

: (2)

Perturbations with different “helicities” are required in

order to make the Hamiltonian system described in Sec. II of

Paper I non-integrable, i.e., to generate a chaotic magnetic

configuration. In the following analysis, we will focus on the

magnetic configuration at two different normalized (with

respect to the Alfv�en time) physical times, i.e., t¼ 415 and

t¼ 425, in which chaos, initially developed only on a local

scale (at t¼ 415), starts to spread on a global scale (at

t¼ 425).

In order to minimize the computational effort, we sim-

plify the Hamiltonian by imposing a threshold condition on

the amplitude of the components of the Fourier expansion of

wðx; y; z; tÞ along x, y and z. The validity of this approxima-

tion has been verified and successfully tested in Ref. 4. The

physical time evolution of wðx; y; z; tÞ between t¼ 415 and

t¼ 425 was found in Ref. 3 to be super-exponential and is

modeled here by interpolating the coefficients of its Fourier

expansion according to a quadratic exponential time law of

the form

exp ðcky;kz
ðt� t1Þ2Þ for t > t1 ¼ 415; (3)

where, on the basis of the numerical data, the coefficients

cky;kz
are considered independent of the x-coordinate, and

hence dependent only on the mode numbers ky and kz.

B. LCS computation scheme

In order to find the hyperbolic Lagrangian Coherent

Structures, we use a MATLAB tool developed by Onu,

Huhn, Huhn, and Haller, see Ref. 6. This tool detects the

LCS on the basis of their characterization as the most repel-

ling or attractive material lines advected within the fluid and

relies on the definitions that we listed in Secs. V and V A of

Paper I.

The key steps of the adopted procedure can be summa-

rized by the following operations:

1. Defining a velocity field.

2. Computing the eigenvalues and eigenvectors of the

Cauchy-Green strain tensor.

3. Filtering the data locating the most important LCS to

characterize the system dynamics. Details of this filtering

procedure will be given below.

The procedure starts with the integration of the

Hamilton equations, Eq. (2), for the magnetic field lines.

This enables us to calculate the flow map /z
z0
ðx0; y0Þ [defined

in Eq. (4) of Paper I] with z substituted for t and then to com-

pute the Cauchy-Green strain tensor field, its eigenvalues

and eigenvectors and the related Finite Time Lyapunov

Exponent (FTLE) field, see Eq. (16) of Paper I, that gives the

rate of separation in a finite time interval of nearby trajecto-

ries. The repelling LCS are then found following the condi-

tions given in Sec. V A of Paper I. In particular, in lieu of

Eq. (14), but following Ref. 6, we identify the strongest

repelling curves as those passing through a local maximum

of the FTLE field. The advantage of such a prescription is

twofold: on the one hand, it significantly reduces the com-

puting time and on the other hand it allows us to avoid the

ambiguities related to the implementation of condition (14)

of Paper I, that is nmax � $2kmax � nmax < 0, on a discrete rel-

atively sparse grid. Therefore, since we need a point from

which to start the numerical integration of LCS, we take the

largest local maxima of the FTLE field as starting points. In

principle, we should solve for the curve defined by the condi-

tion e0 ¼ nmin [Eq. (12) of Paper I], where we recall that e0

is the tangent vector to the material line and nmin the eigen-

vector of the Cauchy-Green strain tensor (corresponding to

the smaller eigenvalue) starting from each local maximum.

However, in chaotic systems, the FTLE field exhibits a huge

number of local maxima and, in addition, the numerical eval-

uation of the matrix r/z
z0
ðx0; y0Þ produces a very discontinu-

ous FTLE field. By integrating the above condition for each

local maximum, we would find so many structures that they

would confuse the physical information which we wish to

extract. For these reasons, it is necessary to define a criterion

to adopt in order to filter out the maxima that we consider

not to be physically significant. It is assumed that the larger

the area around a local maximum, the more significant the

maximum will be. This criterion corresponds to take only

those points that are absolute maxima of the FTLE field
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within a predefined area. Therefore, we seek maxima of the

FTLE field and then, if the distance between two maxima is

smaller than the predefined maximization distance, we disre-

gard the maximum with the lower value of the FTLE field.

In other words, the number of LCS that we find depends on

the value that we choose for the maximization distance in

the code.

In order to clarify this criterion, let us suppose that two

large maxima of the FTLE field are very close to each other,

i.e., that their distance is smaller than the chosen maximiza-

tion distance. In this case, only the largest maximum is used

as a starting integration point. In general, this does not lead

to a loss of physical information since if two maxima are

strong and are very close to each other usually the LCS goes

through both and thus the distinction between them is no lon-

ger necessary. However, it is also possible that two close

maxima may give rise to different LCS: in this situation, we

miss one LCS because we keep only one maximum. In the

following, we will illustrate with a specific case how the

maximization distance can affect the resulting LCS and the

physical information that we can obtain on the system. In

our simulations, we performed a series of tests to tune the

value of the maximization distance in order to find the opti-

mal value that allows us to characterize the behavior of the

system avoiding to have to deal with too many structures.

We used a resolution of 600 points in the x-direction and the

number of points in the y-direction is set so as to have the

same spatial resolution, i.e., Dx¼Dy. Another critical

parameter is the interval z – z0, where z0 is the initial

Hamiltonian time, chosen in the computation of the Cauchy-

Green tensor. In fact, if this interval is too small, we risk

selecting structures that last for a too short z-interval: for

example, we could also find LCS in a non-chaotic region,

since two KAM tori with different velocities could be seen

as divergent trajectories if the evolution time of the system is

too small. On the other hand, if the integration interval is too

long, the computational time grows and it may become very

difficult to follow the eigenvectors of the Cauchy Green ten-

sor. Moreover, as this interval increases, LCS tend to con-

verge to the corresponding invariant manifolds which, as

stated in Paper I, are characterized by a very convoluted

structure. By carefully choosing this parameter, we are able

to find structures with relatively simpler patterns which

describe the coherent behavior of the system on a shorter

interval. Additionally, if the z interval is too long, the LCS

technique itself could be wrong because the LCS are com-

puted using linear techniques [see Eq. (5) of Paper I]. In

order to avoid the problems related to a possible bad choice

of the z interval, the Cauchy-Green tensor has been com-

puted by taking, in the periodic case, the numerical value of

r/z
z0
ðx0; y0Þ every 8Lz ¼ 4 � 32p. This means that the FTLE

field is calculated after every 4 z-loops and that we can take,

among the points that are maxima of the FTLE field at the

end of the z-interval, those points that have after each 4 z-

loops a value of the FTLE larger than the FTLE mean value

(computed with the values taken at the grid points). Since, in

our simulation, the interval z – z0 is 16 loops, this corre-

sponds to three checks. With this check, we ensure that we

take as a starting point a point that repels particles at each

time instant. In other words, we want to take a point that has

a good repulsion property during the 16 loops of the simula-

tion interval, although this does not necessarily imply that

the repulsion properties can be extended to longer integration

intervals.

Finally, special attention has been paid to the problem

of noise arising from the use of a finite grid. This problem is

enhanced in a chaotic system and is mitigated here, as men-

tioned before, by avoiding spurious maxima present only at

the end of the z – zo interval and by filtering the LCS by

means of the criterion described above.

III. THE z-PERIODIC CASE

In this section, we show the simulation results that we

have obtained considering the Hamiltonian for the magnetic

field line trajectories at a fixed physical time. We choose

t¼ 415, i.e., before the onset of fully developed chaos.

A. Poincar�e map

As stated above, once the physical time has been fixed,

we can exploit the periodicity of the system along the z-

direction and apply the Poincar�e map technique by plotting

the magnetic line intersection points in the x–y plane after

each periodicity interval in z starting from a given initial

value of z that defines the section chosen. This kind of plot is

very useful since it provides information on the topological

aspect of the magnetic field configuration, identifying the

regions where the trajectories are regular and those where

they are chaotic. Although the Poincar�e map is fundamental

to study a time periodic dynamical system, the LCS tech-

nique makes it possible to further partition the regions char-

acterized by a chaotic behavior into sub-regions where

trajectories have a qualitatively different behavior on the

time intervals which characterize the LCS. Here, we focus

on the section z¼ 0 and restrict the integration domain in the

x-direction to the region in-between the two initial resonant

surfaces where chaos develops first i.e., to 0< x< 0.8 and

–2p< y< 2p. The corresponding plot for z¼ 0 is shown in

Fig. 1. We note that a chaotic region exists between the two

island chains that correspond to the initially imposed pertur-

bations. However, regular regions survive in the chaotic sea:

in particular, in Fig. 1, the regular region having y-

periodicity m¼ 3 splits the domain into two sub-domains.

B. Lagrangian coherent structures

To find the LCS, it is first necessary to compute the field

of the finite time Lyapunov exponents (see Secs. V and V B

of Paper I) and then proceed with the trajectory integration

starting from the points with the largest eigenvalue kmax. The

FTLE field is shown in Fig. 2. In the following, we restrict

our search to repelling LCS, since we can exploit the space-

time reflection symmetry y! �y; z! �z introduced in

Sec. VI A of Paper I in order to find the attractive LCS which

are thus obtained by mirror reflection of the repelling ones

with respect to the y¼ 0 axis.

In Fig. 3, the LCS that we have identified with the

numerical procedure described in Sec. II B are overplotted
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on the Poincar�e map. The repelling (attractive) structures are

drawn in red (blue). We recall that in the small amplitude

linear phase, the two perturbations with different helicities

evolve independently from each other and each of them

induces a magnetic island chain around its resonant surface.

If the Hamiltonian does not depend on z, these islands are

delimited by the separatrices that are formed through the

smooth connection of stable and unstable manifolds and that

act as barriers. Here, the smooth connection between stable

and unstable manifolds is broken since the magnetic configu-

ration does not correspond to an autonomous dynamical sys-

tem. The footprint of the breaking can be recognized in Fig.

3 close to the regular regions corresponding to the initial per-

turbations in the lobe-like shape that the LCS exhibit when

approaching the edge of the domain. Since LCS mark the

most repelling (attractive) material lines, they tend to follow

the stable (unstable) manifolds that in non-autonomous cases

continue to intersect the unstable (stable) manifolds. In Fig.

3, we mark with green arrows the most visible intersections

that give rise to the lobes. In principle, the intersection

should continue to generate a complex tangle, but our

numerical integration cannot follow the manifold oscillations

indefinitely.

In order to test the robustness of these LCS as barriers,

we performed a series of trajectory integrations of magnetic

field lines considering an initial set of 20 initial conditions at

a given position and letting these trajectories evolve for

80Lz. All the initial conditions (i.c.) are localized into a

radius of 0.003. Then, we plot their position in the x–y phase

space at every crossing of the z¼ 0 section on which we

have calculated the LCS. Figures 4–6 confirm that the LCS

that we have found act as strong barriers, since there is no

flux through them on the considered time-span unless we

consider regions with lobes and tangles. The location of the

initial conditions is marked by an arrow in the figures. In the

left panel of Fig. 4, by taking the initial conditions very close

to the KAM surfaces that are still present in the chaotic sea

that forms between the two main magnetic islands, we see

how the LCS confine the evolution of these trajectories. On

the contrary, in the right panel of Fig. 4, we set the initial

conditions very close to the repelling LCS. In that region,

lobes and tangles are expected, although they are not visible

due to the small resolution: with the adopted resolution, we

are able to follow the manifolds of the main islands, corre-

sponding to the m¼ 1 mode, but we cannot follow the mani-

folds of the smaller islands. In this region, according to the

lobe dynamics briefly recalled in Sec. III of Paper I, particles

can cross the barriers. In the remaining Figs. 5 and 6, the

role of different LCS is again tested using the same

technique.

Examining the plots of the LCS shown in the figures, we

note that the repelling LCS, red lines in Fig. 3 (and similarly

the attractive LCS, blue lines) appear not to be periodic in

the y direction. Actually, this is a numerical effect related

partly to the size of the integration grid and partly to the set-

ting of the maximization distance described in Sec. II B. In

fact, on decreasing the maximization distance used when

selecting the FTLE maxima, additional LCS arise among

which are those that match, at the edges of the y domain, the

structures shown in the plots.

IV. THE z-NON PERIODIC CASE

In this section, we consider the case of a magnetic field

that evolves in physical time. This implies that a charged

FIG. 1. Poincar�e map at z¼ 0 of the magnetic configuration taken at t¼ 415.

The map has been obtained evolving 150 initial conditions for 100Lz. The

initial conditions are uniformly distributed in the x-direction in the interval

[0, 0.8] and have y¼ – 2p. The white regions correspond to trajectories (i.e.,

to magnetic field lines) on regular surfaces in the extended x, y, z phase

space. The larger ones at the edge of the domain are the magnetic islands

corresponding to the initial perturbations, while the regular region, that is

for y¼ –2p located approximately between x¼ 0.35 and x¼ 0.4 corresponds

to a chain having m¼ 3 and splits the chaotic region into two sub-domains.

FIG. 2. FTLE field for the Hamiltonian at t¼ 415, on the plane z¼ 0. 500

points in x, and 7850 in y have been used so as to have the same resolution

in both directions. The darker shading corresponds to larger values of the

eigenvalue kmax of the Cauchy-Green tensor.

FIG. 3. Most important LCS overplotted on the Poincar�e map at z¼ 0 and

t¼ 415. The repelling (attractive) structures are drawn in red (blue). The

green arrows indicate where the lobes and the tangle form.
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particle moving in the plasma sees a time varying magnetic

field during its motion. The main questions that we intend to

address are: how do the LCS change with physical time, how

different are the new LCS from those found at the fixed

physical time, and finally if and how particles can cross LCS

constructed for particles with a different velocity.

We examined a time interval extending over 10 normal-

ized units from t1¼ 415 to t2¼ 425. Chaos has developed

during this time interval as shown by the Poincar�e map in

Fig. 7 for t¼ 425 i.e., at the end of the interval.

We adopt the simplified model, where particles move

with a constant velocity V along the z-direction only,

FIG. 4. LCS obtained using the Hamiltonian at t¼ 415. The left panel shows that the initial conditions taken in the regular region, bounded by hyperbolic

LCS, remain confined inside this region. In the right panel, the initial conditions are very close to a repelling LCS and, therefore, some particles escape accord-

ing to the lobe dynamics. The location of the initial conditions is marked by an arrow.

FIG. 5. LCS obtained for the Hamiltonian at t¼ 415. Both figures show how the drawn LCS act as barriers. Note that the trajectories belong to two different

regions: in order to make the visualization easier in the right frame, we have deleted the LCS that confine the set of initial conditions to the left frame. The

location of the initial conditions is marked by an arrow.

FIG. 6. LCS obtained using the Hamiltonian at t¼ 415. Both figures show how the drawn LCS act as barriers. Note that the figure in the right frame has been

obtained by reducing the value of the maximization distance with respect to that in the left frame. A new LCS arises and it splits the chaotic domain in the left

frame into two sub-domains. Both domains are chaotic, but they cannot communicate. This underlines the fact that if we take a smaller value of the maximiza-

tion distance, we can find additional transport barriers. The location of the initial conditions is marked by an arrow.
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described in Sec. VI B of Paper I. Then, the new

Hamiltonian is given by the modified flux function

wVðx; y; zÞ � wðx; y; z; t ¼ ðz� zoÞ=VÞ: (4)

See Eq. (20) of Paper I, where the physical time depen-

dence is chosen according to Eq. (3) and the dependence of

wV on the z variable combines the spatial and time depen-

dence of the magnetic configuration, as seen by a particle

streaming with velocity V along a field line. We use this

Hamiltonian to calculate LCS for different values of velocity

V. Note that although simulations with different values of V
have been performed, unless specified, the LCS shown in the

figures are those for particles with velocity V¼ 1000. With

this value, the particles perform 10 z-loops in one time inter-

val. This is a compromise between having a magnetic field

that does not evolve too fast during the motion of particles

and being able to show the dependence of the LCS on the

velocity V and investigate whether or not the LCS computed

for a given velocity V act as a barrier also for particles with

different velocities. In the following, we will focus on par-

ticles with a positive velocity. We stress that in this model,

the z periodic case corresponds to the assumption that the

particles move with infinite speed, and thus experience a

fixed magnetic configuration.

First, we note that if we keep the number of z-loops

fixed the LCS that are found with increasing velocity turn

out to be similar to those found in the periodic case, as

expected when the particles’ travelling time is much shorter

than the time over which the magnetic field changes.

Thus, in order to show in a more evident way the LCS

in a time evolving magnetic configuration as seen by a parti-

cle with velocity V, we integrate the Hamilton equations (2)

with the flux function wV in Eq. (4) over fixed time intervals

i.e., in terms of the variable t instead of z using the relation-

ship introduced below, that is t ¼ ðz� z0ÞÞ=V. The change

of variable from z to t and the definition of the time intervals

need to be performed differently when computing repelling

and when computing attractive LCS.

A. Repelling LCS

For the calculation of repelling LCS, we relate t to z in

the Hamilton equations such that t� t0 ¼ ðz� zoÞ=V.

First, we show how LCS evolve in time i.e., we calcu-

late LCS at time t ¼ �t0 and position z0, then, we “follow” the

structures computing them at time �t1 and position z1, at time

�t2 and position z2, and so on. To do this, we set V¼1000 and

choose the initial particle position, i.e., z0¼ 0, for all par-

ticles. Due to the long computational time and the fact that

the adopted method uses linear techniques, we choose to

evaluate the LCS integrating the initial conditions for a max-

imum of 20 z-loops. For a velocity V¼ 1000, 20 z-loops cor-

respond approximately to Dt¼2. In order to investigate how

the time-dependent magnetic field can affect the evolution of

the LCS, we evaluate the structures at different times �tn,

starting from �t0 ¼ 415, since the time-independent analysis

has been carried out at t1¼ 415. We divide the interval ½�t0 ¼
415;�t0 þ Dt ¼ 417� into sub-intervals of duration dt¼ 0.1.

We update the Hamiltonian according to Eq. (4), where,

however, we express z in terms of t (instead of t in terms of

z) as discussed before in Sec. IV A, and then integrating after

each dt for the time interval Dt¼2 we obtain a set of LCS at

times �tn ¼ 415; 415:1; 415:2 up to 417. This allows us to

determine how the LCS computed at �t0 ¼ 415 evolve in

time. For the sake of clearness, since the integration duration

interval is fixed to Dt¼2, in the figure captions, only the

time at which the LCS structure is calculated will be indi-

cated and not the starting and final integration time used to

obtain them.

Using these LCS data, we show how particles initially

separated by a repelling LCS evolve in such a way that they

remain apart and do not cross the LCS itself as they evolve

in time.

Particles with different velocities have different trajecto-

ries, and therefore different LCS. We investigate the depen-

dence of these structures with respect to V. As can be seen

from the simulation results, LCS act locally, i.e., an expo-

nential departure from a repelling LCS is not observed.

Initial conditions feel the “repulsion” of a repelling LCS

only when they are very close to it. Due to this local influ-

ence, two sets of i.c. divided by a repelling LCS evolve ini-

tially in such a way so as to maximize the distance from the

repelling LCS, e.g., see Fig. 10. After this first stage, they

have different evolution.

B. Attractive LCS

For the attractive LCS, we relate t to z in the Hamilton

equations such that t� tend ¼ ðz� zendÞ=V. As explained in

Paper I, we compute the attractive LCS as repelling LCS of

the backward time dynamics. We show how attractive struc-

tures affect particle dynamics and how essential they are in

order to understand the transport features of the system.

Looking only at the repelling LCS, we can only have a par-

tial understanding of the dynamics, e.g., we are able to say

that two sets of i.c. divided from a repelling structure evolve

in order to stay apart, but if we also want to know how “fast”

are the mixing phenomena for those i.c., we need to calculate

the attracting LCS. Following these considerations, we think

that attractive LCS give a more intuitive description of the

dynamics. In particular, they offer an understanding about

how a big set of i.c. evolves. We remember that when we

evolve the system from tend ¼ 417 to tend � Dt ¼ 415 to

compute the attracting LCS, the structures are those corre-

sponding to tend¼ 417 and they describe the behavior of

FIG. 7. Poincar�e map at z¼ 0 and t¼ 425.
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particles at time t¼ 415. Also, for attractive LCS, to simplify

the notation, in the figure captions, we will not indicate the

initial and final integration times. Finally, we remark that

attractive LCS also act as transport barriers. In the

Numerical results section, we exploit this fact to show that

particles with velocity V1 can cross barriers obtained consid-

ering a different velocity V2.

C. Numerical results

In Fig. 8, two sets, each with 75 initial conditions,

(marked green and black) are located on the two sides of a

repelling LCS. The i.c. in each set are inside a circle with the

radius equal to 0.003. In Figs. 9–11, the evolution of these

two sets is shown. During the first part of the evolution, Fig.

9, the particles move away from the nearby repelling LCS

positioning themselves in such a way so as to maximize their

stretching in the perpendicular direction with respect to the

LCS. In this phase, the two sets of i.c. behave similarly. In

the left panel of Fig. 10, it appears clearly that after only

Dt¼ 0.5, the two sets of conditions have evolved obeying

two different kinds of dynamics. Few time intervals are suffi-

cient to recognize the chaotic dynamics of the black initial

conditions: their distribution becomes more stretched and

convoluted than that of the green conditions since they are

influenced by the presence of a nearby attractive structure.

This tendency is more and more evident with increasing

time, as shown in Figs. 10 and 11.

These results make the role of repelling and attractive

LCS evident when describing the evolution of the system. In

particular, the presence of a nearby attractive LCS seems to

give rise to faster mixing phenomena. In Figs. 12 and 13, we

show how particles feel the presence of attractive LCS. Both

figures show how particles with V¼ 1000 behave in accor-

dance with the LCS. This is due to the fact that the LCS have

also been constructed for particles having V¼ 1000. The dif-

ference between the two figures is due to the spatial distribu-

tion of the i.c.

FIG. 8. Location at t¼ 415 of the initial conditions that will be followed in

the next figures. They are located on the two sides of a repelling LCS (red),

in a circle of radius equal to 0.003 at (0.53, 0) (black) and at (0.55, 0)

(green). The difference with respect to Fig. 3 is due to the fact that, in this

section, the time dependence of the magnetic field is taken into account, and

thus particles, during their motion, do not see a time-frozen field (like in the

time independent case) but an evolving magnetic field.

FIG. 9. Evolution of the initial conditions of Fig. 8 at t¼ 415.1 (left panel) and t¼ 415.2 (right panel) overplotted on the corresponding repelling LCS (red).

FIG. 10. Evolution of the initial conditions of Fig. 8 at t¼ 415.5 (left panel) and t¼ 416 (right panel) overplotted on the corresponding repelling LCS (red). In

the left panel, the attracting LCS (blue curves) are also plotted in order to show that the particles arrange themselves along these curves.
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In Fig. 13, although the i.c. are very localized, due to the

presence of LCS, they stretch in order to arrange themselves

along the nearest attractive LCS and each color set remains

well separated from the other ones because they are initially

divided by repelling and attracting LCS (see the right panel

of Fig. 13).

On the contrary, in Fig. 12, we use spatially spread ini-

tial conditions covering the region x¼ [0.5, 0.6], y¼ [0, –2].

There are 500 i.c. for each color: black particles in the region

defined by x¼ [0.5, 0.55] and y¼ [0, –1]; red particles in the

region defined by x¼ [0.5, 0.55] and y¼ [–1, –2]; green par-

ticles in the region defined by x¼ [0.55, 0.6] and y¼ [0, –1];

and brown particles in the region defined by x¼ [0.55, 0.6]

and y¼ [–1, –2]. The left panel shows the positions of the

particles, starting at time t¼ 416 and at time t¼ 418. The

blue lines are the attractive LCS computed starting from

t¼ 418 to t¼ 416. The right panel shows the positions of

particles, starting at time t¼ 418 and at time t¼ 419. The

blue lines are the attractive LCS computed starting from

t¼ 419 to t¼ 418. The interesting behavior is that although

FIG. 11. Evolution of the initial conditions of Fig. 8 at t¼ 416.5 (left panel) and t¼ 417 (right panel) overplotted on the corresponding LCS. In the right panel,

the attracting LCS (blue curves) are also plotted in order to show that the particles arrange themselves along these curves.

FIG. 12. Evolution of particles overplotted on the corresponding attractive LCS. For both figures, there are 500 i.c. for each color spread in the interval defined

by x¼ [0.5, 0.55], y¼ [0, –1] for the black particles, x¼ [0.5, 0.55], y¼ [–1, –2] for the red ones, x¼ [0.55, 0.6], y¼ [0, –1] for the green ones and x¼ [0.55,

0.6], y¼ [–1, –2] for the brown ones. Particles in left panel start at time t¼ 416 and the figure shows their position at t¼ 418. Particles in the right panel start at

t¼ 418 and in the plot their position at t¼ 419 is shown.

FIG. 13. In this and the following figure, the comparison between different velocities is shown. Here is the evolution of particles with V¼ 1000. In the left

frame, the initial conditions at time t¼ 415 are shown. Each color corresponds to 300 i.c.: the green ones are located at x¼ [0.398, 0.401], y¼ [4.97, 5.02], the

red ones are located at x¼ [0.418, 0.421], y¼ [–0.02, 0.02], the black ones are located at x¼ [0.507, 0.511], y¼ [–0.023, 0.023] and the magenta ones are

located at x¼ [0.404, 0.408], y¼ [–3.71, –3.68]. On the right panel, their evolution at time t¼ 417 is overplotted on the corresponding attractive LCS.
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the i.c. cover a wide region, they evolve in such a way so as

to position themselves according to the attractive LCS. This

is the reason why often LCS are referred to as the “skeleton”

of the dynamics. This behavior is even more evident in the

right panel of Fig. 12, where we present the results obtained

for a shorter integration time interval (Dt¼ 1). In general,

better results are obtained if shorter time intervals are used

and this could be due to two reasons: the first one is linked to

the fact that we use a linear approximation in deriving the

Cauchy-Green tensor and the second one is a consequence of

the fact that when the time interval increases, the structures

become much more convoluted so that, in order to evaluate

them in a suitable way, it is necessary to have a higher spa-

tial resolution.

Finally, we compare the LCS calculated for particles

with V¼ 1000 with the dynamics of particles with different

velocities. Taking the same initial conditions depicted in Fig.

13, but this time with V¼ 200, we find, as shown in Fig. 14,

that they behave differently with respect to the LCS calcu-

lated for V¼ 1000. In the left panel of Fig. 14, we show the

initial position of the particles and the repelling LCS com-

puted integrating for Dt¼ 10 assuming V¼ 200 and, in the

right panel, the new position of particles after Dt¼ 10 with

the attractive LCS computed with V¼ 1000 (to show how

particles with V¼ 200 can cross barriers obtained with

velocity V¼ 1000) and Dt¼ 2. The choice Dt¼ 10 has been

made in order to have the same number of z-loops (about 10)

of the case V¼ 1000 shown in Fig. 13 and compare the

results. While in Fig. 13, the particles arrange themselves

along the attractive LCS; in Fig. 14, on the contrary, such a

relation between the attractive LCS (computed for particles

with V¼ 1000) and the position of the particles (having

V¼ 200) is not present. In particular, although the particle

positions appear qualitatively similar to those in Fig. 13,

black particles with V¼ 200 are shifted with respect to black

particles having V¼ 1000. This is due to the fact that the

magnetic field configuration at time t¼ 425 (see the Poincarè

plot in Fig. 7) has the m¼ 2 island chain shifted to the right

with respect to its position at t¼ 415 (see the Poincarè plot

in Fig. 1): at time t¼ 425, the m¼ 2 island has the O-point at

y¼ 0 and x¼ 0.485, instead at t¼ 415, the corresponding O-

point is at y¼ 0 and x¼ 0.46. The same explanation also

holds for some red particles that seem to be able to cross

through a region that at time t¼ 415 is regular. Moreover,

we can also see that red particles with V¼ 200 behave “more

chaotically” than red particles in Fig. 13. This is probably

due to the fact that, as can be seen in the left panel of

Fig. 14, red i.c. are divided by two repelling LCS (red

curves). Finally, the magenta particles also find themselves

in a different region with respect to the case V¼ 1000

(although their behavior in the two cases is quite similar).

As a general remark on the results shown in this section,

we comment that the presence of several LCS makes it diffi-

cult to identify the ones that can be expected to be most rele-

vant to the description of the particle transport. This

complexity of the LCS structure is intrinsically related to the

non-dissipative reconnection process that induces increas-

ingly small spatial scales as it evolves in time.

V. CONCLUSIONS

Lagrangian Coherent Structures have been shown to

provide a very convenient tool to identify in a compact and

easily visualizable way the main features of the dynamics of

the physical system under consideration. Clearly, with large

computers and long integration times, one can recover all the

needed information just following the individual particle tra-

jectories of a large number of initial conditions. However,

LCS do not simply provide the salient features that can be

extracted from such large scale integrations but provide a

framework and a language to be used in characterizing the

evolution of such features in time.

In this and in the accompanying paper (Paper I), we

have applied the LCS tool to study the dynamics of charged

particles in a magnetized plasma in the presence of a time

evolving reconnection instability. The LCS method is gener-

ally applicable without approximations by referring to the

full particle dynamics in 3D coordinate space and by

employing e.g., the exact particle Hamiltonian in time vary-

ing electromagnetic fields. Here, however, we have made

use of two important simplifications with the aim of illustrat-

ing the method rather than of obtaining exact results to be

applied to a specific fusion experiment configuration. In the

first model we have used the magnetic field lines in a slab

configuration at a given physical instant of time as a proxy

for the particle trajectories. In the second model, we have

FIG. 14. Left panel: initial position at time t¼ 415 of particles and repelling LCS computed for particles with V¼ 200 with the integration path Dz¼ 19.9 z-

loops (corresponding to Dt¼ 10). The location of initial conditions is the same as Fig. 13. Right panel: new position of particles having V¼ 200 at time t¼ 425

with overplotted on the attracting LCS computed with V¼ 1000 and the same integration path Dz¼ 19.9 z-loops, which corresponds to Dt¼ 2 and t¼ 417.
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introduced an elementary procedure in order to account in an

approximate way of the fact that the magnetic configuration

evolves in time during the particle motion. In both cases, we

have been confronted with a 2D phase space, much simpler

than the full 6D phase space that would be required when

solving the full particle dynamics, or the 4-dimensional

phase space that is used in a time dependent guiding-center

orbit description as in Ref. 7. Clearly, this major simplifica-

tion has been made possible by the fact that in the adopted

configuration, a strong and almost uniform magnetic field is

present that, in a toroidal laboratory configuration, would

correspond to the toroidal field. The first model has allowed

us to relate the structures that govern the global dynamics of

the particles to the evolution of the magnetic islands due to

the development of magnetic reconnection. The second

model has allowed us to show, even if in a rather schematic

way, that these structures depend on the particle velocity

(i.e., indirectly on the particle energy). We conclude by

reiterating that the methods developed in these two papers

can be extended to more refined dynamical descriptions,

such as, e.g., a description based on the particle gyrokinetic

approximation.
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