
 

Continuous similarity measures for curves and surfaces

Citation for published version (APA):
Ophelders, T. A. E. (2018). Continuous similarity measures for curves and surfaces. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 29/08/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/5474308e-c5bb-43b8-9472-4d5200001295


Continuous Similarity Measures
for Curves and Surfaces

Tim Anton Elisa Ophelders





Continuous Similarity Measures
for Curves and Surfaces

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen

op woensdag 29 augustus 2018 om 16:00 uur

door

Tim Anton Elisa Ophelders

geboren te Geleen



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. M.G.J. van den Brand

promotor: prof.dr. B. Speckmann

copromotor: dr. K.A. Buchin

leden: prof.dr. G. Vegter (Rijksuniversiteit Groningen)
prof.dr. J. Erickson (University of Illinois at Urbana-Champaign)
dr. S.Y. Oudot (École Polytechnique)
prof.dr. L.M.J. Florack
prof.dr. M.T. de Berg

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.



v

The work in this thesis is supported by the Netherlands’ Organization for Scientific
Research (NWO) under project no. 639.023.208.

The work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

Cover design: Tim Ophelders

Printing: Ipskamp Printing

ISBN: 978-90-386-4546-9

© 2018 by Tim Anton Elisa Ophelders. All rights are reserved. Reproduction in
whole or in part is prohibited without the written consent of the copyright owner.

A catalogue record is available from the
Eindhoven University of Technology Library





Contents

1 Introduction 1
1.1 On Measuring Similarity · · · · · · · · · · · · · · · · · · · · · 3
1.2 Contributions · · · · · · · · · · · · · · · · · · · · · · · · · · · 5

1.2.1 Part I—Fréchet Distance · · · · · · · · · · · · · · · · · 5
1.2.2 Part II—Homotopy Height · · · · · · · · · · · · · · · · 6

I Fréchet Distance

2 The Fréchet Distance between Real-Valued Surfaces 11
2.1 Preliminaries · · · · · · · · · · · · · · · · · · · · · · · · · · · 12
2.2 Contour tree distance · · · · · · · · · · · · · · · · · · · · · · · 13

2.2.1 Free space diagrams · · · · · · · · · · · · · · · · · · · 16
2.2.2 Contour tree distance in NP · · · · · · · · · · · · · · · 17
2.2.3 NP-hardness · · · · · · · · · · · · · · · · · · · · · · · 19

2.3 Surfaces · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
2.3.1 Euler diagrams · · · · · · · · · · · · · · · · · · · · · · 21
2.3.2 Euler diagrams from matchings · · · · · · · · · · · · · 22
2.3.3 Matchings from Euler diagrams · · · · · · · · · · · · · 23
2.3.4 NP-hardness · · · · · · · · · · · · · · · · · · · · · · · 26

2.4 An unrepresentable matching · · · · · · · · · · · · · · · · · · 27
2.5 Related measures · · · · · · · · · · · · · · · · · · · · · · · · · 27
2.6 Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29

3 Horizontal Fréchet Isotopies and Monotonicity 31
3.1 Preliminaries · · · · · · · · · · · · · · · · · · · · · · · · · · · 33
3.2 Disproving a conjecture · · · · · · · · · · · · · · · · · · · · · 34
3.3 Simple curves · · · · · · · · · · · · · · · · · · · · · · · · · · · 36
3.4 Isotopies between monotone curves · · · · · · · · · · · · · · · 38
3.5 Isotopies to monotone curves · · · · · · · · · · · · · · · · · · 38

3.5.1 Non-monotone isotopies · · · · · · · · · · · · · · · · · 39
3.5.2 Horizontal length · · · · · · · · · · · · · · · · · · · · · 40
3.5.3 Monotonizing isotopies · · · · · · · · · · · · · · · · · · 40
3.5.4 Monotonicity and relation to persistence · · · · · · · · 42

3.6 Monotone homotopies · · · · · · · · · · · · · · · · · · · · · · 44
3.7 Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 50



viii CONTENTS

II Homotopy Height

4 Computational Complexity of Optimal Homotopies 55
4.1 Preliminaries · · · · · · · · · · · · · · · · · · · · · · · · · · · 58
4.2 Isotopies and monotonicity of optimal homotopies · · · · · · · 60
4.3 Retractions and pausing at short cycles · · · · · · · · · · · · · 62
4.4 Computing homotopy height in NP · · · · · · · · · · · · · · · 64
4.5 Variants and approximation algorithms · · · · · · · · · · · · · 71

4.5.1 Homotopic Fréchet distance · · · · · · · · · · · · · · · 71
4.5.2 Minimum height linear layouts · · · · · · · · · · · · · 73

4.6 Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74

5 Optimal Homotopies over a Spiked Polygonal Plane 77
5.1 Variable-cost spikes · · · · · · · · · · · · · · · · · · · · · · · · 80
5.2 Unit-cost spikes · · · · · · · · · · · · · · · · · · · · · · · · · · 82

5.2.1 Regular homotopies · · · · · · · · · · · · · · · · · · · 85
5.2.2 Computation · · · · · · · · · · · · · · · · · · · · · · · 87

5.3 Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 90

6 Concluding Remarks 93

References 97

Summary 105

Curriculum Vitæ 107







1
Introduction

Shapes are all around us. Some can be recognized by their silhouette alone, while
others demand closer inspection. Shapes appear at all scales: in polymers, plants,
veins, organs, sculptures, mountains, coast lines, asteroids, and even galaxies. Not
all shapes are visible: consider for example the orbit of a planet, or the trajectory
of a moving person or particle. A collection of database entries can be thought of
as an even more abstract shape.

The ability to compare shapes is crucial to our understanding of the world.
For instance, when classifying organisms, one must decide whether two plants
are of the same species, or otherwise how and how much they differ. Many of the
aforementioned objects change their shape over time. Tracking such a change in
shape often aids in the prediction of disease outbreaks, floods, and other hazards.
For objects that change their shape over time, one can ask whether two pictures
are of the same object, perhaps at different points in time, or whether and why the
pictured objects are different.

To answer the question of why two objects differ, it is helpful to know which
parts of those objects correspond. In particular, if one can accurately assign to each
feature of one shape, a distinct corresponding feature on the other shape, then
one can easily pinpoint the differences between the objects by comparing those
corresponding features. We illustrate this in Figure 1.1, where the two objects
to be compared are sets of locations: one set is indicated by dots and the other
by crosses. Comparing these objects is significantly easier if the locations that
correspond are indicated.

Figure 1.1: Two collections of objects. Without the corresponding features indi-
cated (left), and with the corresponding features indicated (right).
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Generally, finding a suitable correspondence is the major difficulty in compar-
ing objects. Consider a second example: CT scans of human lungs. Two such
scans are depicted in the top row of Figure 1.2, where brightness corresponds to
density. In the figure, a person’s lungs are visibly more compressed when lying
on their back than when lying on their stomach. Since it is easy for humans to lo-
cate the lungs on both pictures, this comparison can readily be made. In contrast,
comparing the two pictures becomes considerably harder if one does not know
the context of what the pictures represent, or where the lungs are located. Since
the top left picture is of a human lying on their back, whereas the top right picture
is of a human lying on their stomach, it makes sense to rotate the second picture
by 180 degrees. The result of this rotation can be seen on the bottom left. This
rotation is helpful for comparing the two pictures, but still does not account for
misalignments due to breathing and gravity, as can be seen in the bottom right,
where the pictures are overlaid. To account for this, the image would need to be
deformed more, such that corresponding features overlap perfectly.

This thesis presents methods for finding suitable correspondences between
shapes in a variety of settings. In the absence of context, there tend to be so many
possible correspondences that it becomes unclear which one to use. Naturally, we
are looking for a correspondence that aligns features as well as possible. For this
reason, we usually aim to find a correspondence for which the difference between
corresponding features is as small as possible. However, without further restric-
tions, such a correspondence is often unrealistic, as two neighboring points on
one shape might correspond to two points on the other shape that are far apart.
If the context is already known partially, we can discard correspondences that
are not supported by that context. This usually reduces the number of correspon-
dences that need to be considered significantly. Sometimes, context can be given
in terms of what the compared objects represent, but sometimes the context is
more abstract. For example, in contrast to the locations of Figure 1.1, the pixels of
Figure 1.2 have an inherent adjacency structure, such that adjacent pixels of one

Figure 1.2: Computed tomography scans of lungs in supine (top left) and prone
(top right) positions. The prone picture rotated 180 degrees (bottom right) and
overlaid with the supine picture (bottom right). Original figure by L. Gattinoni
and A. Protti [62] and reused with permission.
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picture would naturally correspond to adjacent pixels of the other picture.
As they take into account the essential connectivity of the compared shapes,

adjacency restrictions play an important role in the comparison of shapes with
a structure of connectivity. Adjacency restrictions are taken into account for all
shapes compared in this thesis. Such adjacency restrictions lead to fewer candi-
date correspondences. However, perhaps counter-intuitively, this does generally
not simplify the task of finding the best correspondence, as techniques for finding
an unrestricted optimum may no longer apply. This is because a correspondence
that is optimal in the absence of context may not adhere to the restrictions imposed
by a given context.

1.1 On Measuring Similarity

Before describing the technical contributions in this thesis in detail, we first dis-
cuss what it means to compare two shapes, starting with the simple case of two
single points. For instance, an intuitive way to compare two points on a terrain is
to measure the distance between them. However, there are many different ways
in which the distance between two points can be defined. In fact, depending on
the application, different ways are more suitable than others. The simplest defini-
tion of the distance between two points would be the length of the line segment
connecting them. In the context of points on a terrain, this segment may hover
above, or even pass through the terrain. As such, when the application is to hike
from one side of a mountain to another, such a line segment might not be the
desired measure of distance.

A much more general approach is to define the distance in terms of an opti-
mal path between the two points. This path can be constrained to suit a specific
application. The length of a shortest such path is an obvious candidate for the
distance between the two points. There are various constraints one can impose on
a path. In the context of a terrain, one can for example require paths to lie exactly
on the terrain, or allow them to hover above the terrain, or even allow them to
pass through the terrain.

We wish to extend this notion of distance measured via paths to shapes more
complex than points. A next step in this direction is to move from comparing pairs
of points to comparing two sets of multiple points. Such a comparison is based on
a correspondence between the points of the two sets. Generally, a correspondence
matches each point in one set to one or more points of the other set and vice-versa.
Again, one can connect matched points with paths. We can then measure some
property of the resulting set of paths. Commonly used properties are the total
and the maximum length of those paths.

Depending on the application, it is not always clear which correspondence be-
tween two point sets should be used in the comparison. If there are no further
constraints on this correspondence, a common approach is to use a correspon-
dence that minimizes the measured property. An example is the Hausdorff dis-
tance, which minimizes the maximum length of a path between corresponding
points. Most distance measures however, impose additional constraints on the
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correspondence. For instance, if the two sets have an equal number of points, the
correspondence could require each point to be matched to exactly one point of
the other set. When minimizing the total length of paths, this is called a mini-
mum cost bipartite matching. When minimizing the maximum length, we speak
of a bottleneck matching.

This thesis consists of two parts, the measures studied in both parts are based
on bottleneck matchings. As with the Hausdorff distance, the distance measures
considered in Part I of this thesis are based on the concept of finding a matching
that minimizes the maximum distance between matched points.

In some applications, when considering multiple paths, it matters how these
paths interact. For instance, when the application is to visualize a correspondence,
paths may be required not to cross, allowing the correspondence to be seen at a
glance. See also Figure 1.3. When the application is to plan a walk for a group
of friends, paths may be required to follow similar routes. See also the Figure 1.3
(right), where three friends walk from the blue locations to the red locations along
similar paths.

Since the paths themselves give no information on where a person is located
at a given time, we cannot yet conclude that the friends will be walking close to-
gether. A more desirable way to model a walk for a group of friends is to equip
each path with a temporal parameter, tracking the location of a person over time.
We refer to a path equipped with such a temporal parameter as a trajectory. Any
given time corresponds to a single point on the path and as time progresses, that
point moves continuously from the matched point on one shape, along the path,
to the matched point on the other shape. If each pair of matched points has a
trajectory between them, we speak of a deformation. As such, a deformation
is an abstract way of moving points matched by a correspondence in a synchro-
nized manner. Such a deformation constitutes a way to interpolate between the
two compared shapes: at any given time, the deformation yields an intermediate
shape consisting of the points on each of the trajectories between matched points
at that given time. Indeed, constructing morphs between given shapes is a major
application of such deformations.

In addition to constraints on trajectories themselves, one can constrain the in-
teractions between trajectories. For instance, requiring that the points of no two
trajectories coincide at any given time. More generally, several aspects of a defor-
mation can be constrained or optimized in order to make the comparison between
the shapes more meaningful. An example of such a constraint is that all intermedi-
ate shapes are in some sense similar to the two compared shapes. In particular, for

Figure 1.3: Crossing (left), non-crossing (center), and similarly routed paths be-
tween corresponding locations (right).
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the distance measures considered in this thesis, the intermediate shapes preserve
the connectivity of the compared shapes throughout the deformation. A defor-
mation that preserves connectivity is called a homotopy. In Part II, we consider
curves as the compared shapes, and minimize the length of the longest interme-
diate curve in the homotopy.

1.2 Contributions

The results in this thesis concern the computation of similarity measures between
curves and surfaces. The similarity measures studied are all variations on the
Fréchet distance, which is well-studied in the fields of computational geometry
and topology. Abstractly, the Fréchet distance takes two shapes such as curves or
surfaces as input, and outputs how similar they are based on the cost of a cheapest
deformation from one input shape to the other.

One important difference between the original formulation of the Fréchet dis-
tance and the variants considered in this thesis is that the deformations studied
are required to be continuous (homotopies). We sometimes even require the in-
termediate shapes throughout the deformation to remain simple (isotopies). The
continuity requirement plays an important role if the shapes move through a non-
Euclidean space.

Throughout a deformation, points can be traced as they move from their posi-
tion on the first input shape to a position on the second input shape. Two options
are considered for the cost of a deformation, namely the width and the height. The
width of a deformation is the maximum total distance that a point moves through-
out the deformation. The height of a deformation is the maximum length (if the
input shapes are curves) attained by an intermediate curve of the deformation.

The following four combinations are covered in this thesis.

1. Minimum width homotopies between real-valued surfaces.
2. Minimum width isotopies between simple curves in the plane.
3. Minimum height homotopies between curves on surfaces.
4. Minimum height homotopies between curves in polygonal domains with

weighted point-obstacles.

In addition to the contributions contained in this thesis, the author obtained re-
sults related to the Fréchet distance, moving objects, and combinatorial optimiza-
tion [22, 70, 41, 68, 87, 42, 27, 43].

1.2.1 Part I—Fréchet Distance

Real-valued surfaces. In Chapter 2 we study the Fréchet distance between sur-
faces. Minimum width homotopies between surfaces have until recently hardly
been studied. It is a long-standing open problem whether the cost of such a ho-
motopy is even computable. We give an affirmative answer for the special case of
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real-valued surfaces of genus zero. In fact, in this special case, we show that the
problem is NP-complete, even to approximation within a factor two. Furthermore,
we give a lower bound for this measure in terms of a natural distance measure
between the contour trees of the respective surfaces. Although this measure is
intuitively easier to compute, we show that it is also NP-complete to approximate
within a factor two.

This chapter is based on joint work with Kevin Buchin and Bettina Speckmann.
This work appeared in the Proceedings of the 28th Symposium on Discrete Algo-
rithms [23].
Isotopies. In Chapter 3 we consider minimum width isotopies between simple
curves in the plane. In this setting, we disprove a conjecture about the width of
an isotopy between two particular curves by providing an isotopy of almost half
the conjectured width. Moreover, we show that if there is a direction in which the
input curves are monotone, then the width of an optimal isotopy is the same as
that of an optimal homotopy, which can be efficiently computed using known al-
gorithms. We also give first steps towards computing optimal isotopies for curves
that do not satisfy this monotonicity property. In particular, given an input curve
and a direction, we compute an isotopy of minimal movement in that direction, in
order to obtain a curve that is monotone in the same direction. Moreover, given
two curves and a parameterization for each of them, we present an algorithm that
decides whether there exists an isotopy that moves each point monotonely from
one parameterized curve to the other.

This chapter is based on joint work with Kevin Buchin, Erin Chambers, and
Bettina Speckmann. Part of this work appeared as an abstract in the 33rd Euro-
pean Workshop on Computational Geometry [21].

1.2.2 Part II—Homotopy Height

General computation. In Chapter 4 we study minimum height homotopies be-
tween curves on surfaces. We apply several recent results on the structure of opti-
mal homotopies to achieve polynomial bounds on the combinatorial complexity
of such a homotopy. This has as a consequence that this problem lies in the com-
plexity class NP. Moreover, we relate this problem to an equivalent simple graph
drawing problem.

This chapter is based on joint work with Erin Chambers and Arnaud de Mes-
may. This work appeared in the Proceedings of the 29th Symposium on Discrete
Algorithms [28].
Polygonal domains. In Chapter 5 we consider a more restricted setting of a polyg-
onal domain with weighted point-obstacles. We show that for some instances,
any optimal homotopy passes through a curve with a linear number of inflection
points, even when the polygonal domain is convex. In contrast, we show that
curves require at most one inflection point to sweep a convex polygonal domain
if the point-obstacles have unit weight. More generally, we give a polynomial
time algorithm to compute a minimum height homotopy in arbitrary polygonal
domains with unit weight point-obstacles.
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This chapter is based on joint work with Benjamin Burton, Erin Chambers,
Marc van Kreveld, Wouter Meulemans, and Bettina Speckmann. This work ap-
peared in the Proceedings of the 25th European Symposium on Algorithms [25].





Part I
Fréchet Distance





2
The Fréchet Distance between

Real-Valued Surfaces

In the first part of this thesis, we aim to find deformations that minimize the dis-
tance that points travel as they move from one shape to the other. In this chapter,
we consider the problem of comparing real-valued functions on surfaces, focus-
ing in particular on spheres and disks of constant boundary. That is, functions
f : M → R where f (x) = f (x′) for all x, x′ ∈ ∂M. The kind of similarity we in-
vestigate is that under continuous deformations of surfaces, such as in Figure 2.1.
Here shapes that can be deformed into each other have distance 0, and shapes
have some meaningful positive distance otherwise. There are two natural com-
putational problems that arise for each measure, namely deciding whether two
images have distance 0, and the more general problem of computing the distance
between two images.

A problem with similar use cases is elastic image matching, which is known to be
NP-complete [67]. In practice, this problem is currently approached using various
heuristics [84].

Figure 2.1: Two pictures that can continuously be deformed into each other.
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2.1 Preliminaries

Given two functions f and g : M → Rk with common parameter space M, their
Fréchet distance [59, 60] is defined as

dF( f , g) = inf
µ : M→M

sup
x : M

d( f (x), g ◦ µ(x)),

where µ : M → M ranges over all orientation preserving homeomorphisms and
d(·, ·) is the underlying norm of Rk. Essentially, the Fréchet distance captures
the similarity between two functions by realigning their parameter spaces to min-
imize the maximum difference in the function value of aligned points. It is often
assumed that f and g are piecewise-linear functions.

Efficient algorithms for computing dF( f , g) exist for Lp norms if f and g are
polylines [5], so if M = [0, 1] or M = S1 for closed polylines. The computational
complexity of this case is well understood with a significant amount of recent work
addressing the fine-grained complexity of this case and its variants [1, 14, 17, 19].
Considerable progress has also been made recently on the problem of approxi-
mating the Fréchet distance between polylines [15, 50]. With many efficient algo-
rithms at hand the Fréchet distance between polylines has found numerous appli-
cations, with recent work particularly focusing on geographic applications such
as map-matching tracking data [12] and moving objects analysis [16].

The computational complexity in the case that f and g : M → Rk are (triangu-
lated) surfaces is much less understood. The problem is known to be NP-hard [63]
also when k = 2 [18, 22]. But it is not known whether it is actually in NP, in
fact until recently it was only known to be upper semi-computable for surfaces
in Rk [4, 24]. Recently, major results towards computability [77, 78] for surfaces
of genus 0 were found, by introducing an exponential time approximation algo-
rithm.

We show that for k = 1, the problem is in NP1 if M is a topological sphere or
disk with constant boundary. Additionally, we show that already for k = 1 com-
puting the Fréchet distance is NP-hard. Even for this case, no efficient constant-
factor approximation algorithms have been found so far, and we show that com-
puting a factor 2 − ε approximation is NP-hard.

In previous work, a few variants on the comparison of surfaces under the
Fréchet distance have been investigated. For instance, there are efficient algo-
rithms for computing the Fréchet distance with certain constraints on the homeo-
morphisms µ [22] and for computing the weak Fréchet distance [4] between triangu-
lated surfaces homeomorphic to the disk. The Fréchet distance can be computed
in polynomial time for simple polygons (including interior) in the plane [20], even
if they have one [18] or more holes [76]. An efficient constant-factor approxima-
tion exists for so-called folded polygons, which need not lie in the plane [39].

In addition to our results on surfaces (Section 2.3), we define a suitable simi-
larity measure between contour trees, which we show to be NP-complete to com-
1Here we assume that we can compare numbers in the input (and sums and differences between pairs
of input numbers) in polynomial time.
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pute as well (Section 2.2). Recently, other measures [8, 9, 10, 48, 75] such as the
interleaving distance or functional distortion distance have been investigated for
contour trees. In particular, it is expected that the interleaving distance and the
functional distortion distance are equal, but so far it has been proven only that
they differ by at most a constant factor. For computing the interleaving distance,
no efficient exact algorithms are known. We also show a relation to the Gromov-
Hausdorff distance between trees, for which an NP-hardness proof was recently
found [2]. The same paper proposes polynomial-time approximation algorithms
with an approximation ratio of O(min(n,

√
rn)) (where r is the length ratio be-

tween the longest and shortest edge) for the Gromov-Hausdorff and interleaving
distances. We highlight how the Fréchet distance and weak Fréchet distance differ
from these measures in Section 2.5.
Outline. Our main result is the NP-completeness of the Fréchet distance between
R-valued surfaces. Because of its combinatorial complexity, we start by defining
a combinatorially simpler problem, the contour tree distance. The contour tree
distance is a similarity measure related to the Fréchet distance, that abstracts from
the geometric representation of the matching µ. As such, the contour tree distance
is a lower bound on the Fréchet distance.

We show that computing the contour tree distance is in NP using properties
of the free space diagram, which is a commonly used tool in algorithms for com-
puting the Fréchet distance between curves. Using extensions of the free space
diagram, valid matchings between contour trees can be analyzed easily. Nonethe-
less, it turns out that approximating the contour tree distance within a factor 2 is
NP-hard by a reduction from the NP-hard problem Exact Cover by 3-sets.

Using specific properties of the matchings used in this reduction, these match-
ings can be extended to matchings µ between surfaces. A reduction from the con-
tour tree distance to the Fréchet distance between R-valued surfaces then shows
that approximating the Fréchet distance within a factor 2 is also NP-hard. How-
ever, not all matchings between contour trees have an extension to a matching
between surfaces, as discussed in Section 2.4.

To show that computing the Fréchet distance is in NP, we make use of a polyno-
mial amount of information of a matching µ. This information is used to represent
a matching as an Euler diagram, for which the recognition problem is in NP.

2.2 Contour tree distance

The Reeb graph [80] of a function f : M → R is the quotient space M/∼ f where
a ∼ f b if and only if a and b are in the same connected component of the level
set f−1( f (a)). Denote by R f the corresponding quotient map. Because f asso-
ciates a single real number to each equivalence class of ∼ f , the resulting Reeb
graph has a natural R-valued function associated with it, namely the (unique)
function f ′ : M/∼ f → R satisfying f ′ ◦ R f = f . If M is the disk or the 2-sphere,
the Reeb graph forms a tree called a contour tree.

For the sake of representation, in this chapter we assume each surface to be
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triangulated, to form a simplicial 2-complex. Moreover, we assume without loss
of generality that function values along edges of Reeb graphs are interpolated lin-
early between the values of the vertices at their endpoints. In this representation,
the contour tree of a surface with n faces has complexity O(n) and can be com-
puted in O(n log n) time [88]. Intuitively, the contour tree has a vertex for each
minimum, maximum and saddle point, and edges between ‘adjacent’ vertices.

Based on the Fréchet distance between f and g, we derive a computationally
simpler measure that abstracts from the realizability of the matching µ between
spheres or disks. Throughout this chapter, we use the notation X = M/∼ f
and Y = M/∼g for the contour trees of f and g, respectively. We shall denote the
vertex set of X by V(X) and its edge set by E(X). With slight abuse of notation,
we reuse function names f and g for the natural R-valued functions associated
with the contour trees X and Y. Our distance measure dC compares the contour
trees X and Y of f and g. We define the contour tree distance dC as

dC( f : X → R, g : Y → R) = inf
τ∈M(X,Y)

sup
(x,y)∈τ

| f (x)− g(y)|,

where τ ⊆ X × Y is drawn from some class of matchings M(X, Y), defined be-
low. So τ defines a correspondence between contour trees, such that (x, y) ∈ τ if
some points on contours x and y were matched by a corresponding matching µ
on M. Denote τ(x) = {y | (x, y) ∈ τ} and τ−1(y) = {x | (x, y) ∈ τ}. The
class M(X, Y) captures the essential (but not all) properties of an orientation pre-
serving matching µ. We define M(X, Y) as the set of matchings τ for which

1. τ is a connected subset of X × Y; and
2. τ(x) is a nonempty subtree of Y for each x ∈ X; and
3. τ−1(y) is a nonempty subtree of X for each y ∈ Y.

Here, the term subtree is used to denote a connected subset of a tree, not necessarily
containing leaves or complete edges of that tree. By Conditions 2. and 3., each
connected set matches with a connected set, and Condition 1. ensures continuity.
Let x X x′ denote all (possibly backtracking) paths from x to x′ in the underlying
space X. The following properties can be derived immediately:

1. τ(X) = Y and τ−1(Y) = X;
2. for each p f : x X x′, some path p : (x, y) X×Y (x′, y′), whose projection

onto X equals p f , satisfies p ⊆ τ;

3. for each pg : y Y y′, some path p : (x, y) X×Y (x′, y′), whose projection
onto Y equals pg, satisfies p ⊆ τ;

4. if {(x, y), (x′, y)} ⊆ τ then p × {y} ⊆ τ for some p : x X x′;
5. if {(x, y), (x, y′)} ⊆ τ then {x} × p ⊆ τ for some p : y Y y′.

An example of a matching between two trees is shown in Figure 2.2. The two-
dimensional patch illustrates a many-to-many correspondence. For a matching
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Figure 2.2: Two trees (left) and a matching (right).

µ : M → M between surfaces f and g, define τµ to be the corresponding matching
between the Reeb graphs of f and g:

τµ = {(R f (x),Rg ◦ µ(x)) | x ∈ M}.

By Lemma 2.1 we have for each orientation preserving homeomorphism µ, that
the matching τµ ∈ M(X, Y), and hence that dC( f , g) ≤ dF( f , g). On the other
hand, a matching τ ∈ M(X, Y) does not need to correspond to an orientation
preserving homeomorphism on M. We give an example of such a matching in
Section 2.4.

Lemma 2.1. τµ ∈ M(X, Y) for any orientation preserving homeomorphism µ on M.

Proof. Consider such a matching µ : M → M. We prove all three conditions
of M(X, Y) for τµ. The set {(x, y) | µ(x) = y} is a connected subset of S2 × S2.
Hence its image under the quotient map (x, y) 7→ (R f (x),Rg(y)) is connected,
so Condition 1. holds. Because µ is a homeomorphism on a connected set, τµ(x)
is connected, and by surjectivity of τ−1

µ nonempty. So, τµ(x) ⊆ Y and symmetri-
cally τ−1

µ (y) ⊆ X is a nonempty subtree.

Corollary 2.1. dC( f , g) ≤ dF( f , g).

To test whether the contour tree distance between two trees is zero, one only needs
to test whether the trees are equal. We represent trees canonically by exhaustively
removing degree 2 vertices that lie on the line segment connecting the two ad-
jacent vertices, and replacing them by a single edge between those vertices. This
reduces the problem of testing a contour tree distance of zero to labeled unordered
unrooted tree isomorphism, which can be solved in linear time [3].

Note that the contour tree distance and Fréchet distance between trees are dif-
ferent problems. In fact, one major limitation of the Fréchet distance for trees is
that non-homeomorphic trees have infinite Fréchet distance. The Fréchet distance
between trees can be computed in O(n5/2) time [18], whereas we will see that com-
puting the contour tree distance is considerably harder.
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0
ε

X, f Y, gτ

Figure 2.3: Trees X and Y with an ε-matching τ.

0
ε

−ε
F↑

{

X × Y, f − g

Figure 2.4: Matching τ in the free space Fε.

2.2.1 Free space diagrams

We consider the decision problem that asks whether the contour tree distance
between two R-valued trees is at most ε. The free space diagram is a commonly
used data structure in algorithms for computing the Fréchet distance. We can
also formulate a free space in relation to the contour tree distance. Define the ε-free
space Fε of f and g to be the set of pairs in the product of the parameter spaces
whose respective images are at most ε apart:

Fε = {(x, y) ∈ X × Y | | f (x)− g(y)| ≤ ε}.

Define an ε-matching to be a matching τ ∈ M(X, Y) for which all (x, y) ∈ τ
satisfy | f (x) − g(y)| ≤ ε. Then an ε-matching τ ⊆ Fε exists if (and only if) the
answer to the decision problem is yes. The contour tree distance is the minimum
value of ε for which an ε-matching exists. In Figure 2.4, a product parameter space
containing the ε-matching of Figure 2.3 is drawn in green as a projection from four-
dimensional space.

Without loss of generality, assume function values along edges of X and Y to
be interpolated linearly. A commonly used property of the free space is that for
each edge ex ∈ E(X) and edge ey ∈ E(Y), the face ex × ey ∈ E(X) × E(Y) has
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a convex intersection with the free space Fε (see Lemma 2.2, originally proven
in [5]). An important consequence of this lemma which we will see in Section 2.2.2
is that given only information about the intersection of the ε-free space with the
four edges bounding such a face, sufficient information about the interior of the
face can be derived to decide whether an ε-matching exists.

Lemma 2.2. For edges ex ∈ E(X) and ey ∈ E(Y) on which the respective functions f
and g are linear, the face F = ex × ey has a convex intersection with Fε for any ε.

Proof. The map (x, y) 7→ f (x)− g(y) is affine when restricted to domain F. The
preimage of a convex set (the ε-ball) under an affine map is convex. Intersecting
this convex preimage with the convex set F yields again a convex set. Hence F∩Fε

is convex.

Let ε be the value of the contour tree distance, then ε is the minimum value for
which all constraints of M(X, Y) can be satisfied by some matching τ. Hence ε
is the minimum value for which either some vertex (x, y) ∈ V(X) × V(Y) lies
in Fε, or for two (possibly identical) edges e1 and e2 ∈ V(X)× E(Y) or e1 and e2 ∈
E(X)×V(Y) of X×Y, the sets e1 ∩Fε and e2 ∩Fε contain points with the same y-
or x-coordinates, respectively. If ε is such a minimum value, we call ε a critical value,
and there are O(n3) of them. For two functions f and g the O(n3) critical values
of ε can each be computed in constant time. However, as shown in Section 2.2.3,
determining which critical value corresponds to the contour tree distance is NP-
hard. First we show that computing the contour tree distance is in NP.

2.2.2 Contour tree distance in NP

Given only a polynomial amount of information about an ε-matching τ, we show
that it can be verified in polynomial time that an ε-matching τ′ ∈ M(X, Y) exists.
The information we use is for each vertex x of X the endpoints and vertices of the
corresponding subtree τ(x) of Y, and for every vertex y of Y the endpoints and
vertices of the corresponding subtree τ−1(y) of X. This set of points Pτ is defined
more formally in the equation below. To illustrate, if vertex x maps to the sub-
tree τ(x) of Y shown in Figure 2.5, then exactly the four points of Y highlighted
in green will appear paired with x in Pτ . For any matching τ ∈ M(X, Y), there
are only O(n2) points in the set Pτ . However, it should be noted that such points
give no information about the behavior of τ in the interior of faces of X × Y.

Pτ = {(x, y) | x ∈ V(X) ∧ y ∈ ∂(τ(x))} ∪
{(x, y) | y ∈ V(Y) ∧ x ∈ ∂(τ−1(y))} ∪
(τ ∩ (V(X)× V(Y))),
where ∂ is the boundary operator.

Let CH(P) be the convex hull (including its interior) of a point set P. For a given
set Pτ , derive τ′ using Equation 2.2.2; such that for each face F, τ′ consists of the
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x τ(x)

X Y

Figure 2.5: A subtree τ(x) of Y (green) matched with a vertex x of X.

convex hull of F ∩ Pτ . In Lemma 2.3, we show that τ′ is a valid ε-matching if Pτ is
derived from an ε-matching τ.

τ′ =
∪

F∈E(X)×E(Y)

CH(F ∩ Pτ).

Lemma 2.3. If τ ∈ M(X, Y) is an ε-matching, then τ′ derived from Pτ is an ε-matching
with τ′ ∈ M(X, Y).

Proof. If τ was an ε-matching, then by Lemma 2.2, τ′ is a subset of Fε. It remains
to verify the three conditions of M(X, Y) for τ′. Any face of X × Y will contain
at most one component of τ by convexity. We show that all nonempty faces are
connected, indeed the intersection of the boundary of a face with τ′ is the same
as that with τ. Hence τ′ cannot have more components than τ. Then because τ is
connected, τ′ must also be connected, satisfying Condition 1..

For each vertex x ∈ V(X), we know that τ′(x) is a nonempty tree. We show
that this holds even if x is internal to some edge ex ∈ E(X). Because τ′ is connected
and has nonempty trees at the endpoints of ex, the set τ′(x) cannot be empty. So
suppose for contradiction that τ′(x) has multiple components, then because the
interior of each face is convex, we must have y /∈ τ′(x) for some vertex y ∈ τ(x)
which is not possible. So Condition 2. and by a symmetric argument Condition 3.
holds.

Therefore, if ε is the contour tree distance, a set Pτ of polynomial size exists, whose
derived τ′ is an ε-matching. Given Pτ , it is easily tested whether for its derived τ′,
the properties required by M(X, Y) are satisfied. Moreover, as a consequence of
Lemma 2.2, it can be verified that τ′ is an ε-matching by checking that | f (x) −
g(y)| ≤ ε for all (x, y) ∈ Pτ . Hence, Theorem 2.1 follows.

Theorem 2.1. Deciding whether the contour tree distance between X and Y is at most ε
is in NP.

Remark. The proof that the contour tree distance is in NP extends to trees X

and Y in higher dimensions. Specifically, if f : X → Rk and g : Y → Rk, then
computing dC( f , g) = infτ∈M(X,Y) sup(x,y)∈τ ∥ f (x)− g(y)∥p is also in NP for Lp

norms ∥ · ∥p.
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2.2.3 NP-hardness

We show that approximating the contour tree distance between R-valued trees
within factor 2 is NP-hard by a reduction from the NP-hard problem Exact Cover
by 3-sets [61].

Definition 2.1. Exact Cover by 3-sets (X3C) Input: A set S of m subsets of {1, . . . , k},
each of size 3.
Output: Does a subset (consisting of k/3 triples) of S partition {1, . . . , k}?

We introduce the gadgets used in our reduction in Figure 2.6. For this, define
a zig-zag of radius r centered at position p along a segment [a, b] to be a path
visiting vertices at positions a, p + r, p − r and b, in that order. Gadget Y∗ is a long
segment from position 0 to position 6k+ 6. Gadget Yl (with l ∈ {1, . . . , k}) is a path
from position 1 to 6k + 6 with a zig-zag of radius 2 around position 6l. Similarly,
gadget Xi,j (i ∈ {1, . . . , m}, j ∈ {1, 2, 3}) has a zig-zag around position 6 · s(i, j),
but with radius 1. The function s aligns the center of the zig-zag of Xi,j with that
of Ys(i,j), such that gadget Xi,j has a contour tree distance of 1 to Y∗ and Ys(i,j), but
a contour tree distance of 2 to any gadget Yl with l ̸= s(i, j).
The function s can be configured such that each triple of gadgets (Xi,1, Xi,2, Xi,3)
corresponds to one of the m subsets of S . We connect the three elements of each
triple at a common vertex at position 1, and finally connect all triples at a common
vertex at position 2 (blue in Figure 2.7) to form tree f : X → R.

Similarly, each gadget Yl corresponds to an element of {1, . . . , k}, and all Yl are
connected to a common vertex at position 1. The idea is that to obtain a low con-
tour tree distance, k/3 triples of f must match the Yl gadgets exactly; then what
remains in f are m − k/3 triples that must be matched elsewhere. Each such un-
matched triple of f will then be forced to match with three copies of Y∗, connected
at a vertex at position 0 to form a so called Y∗-triple. We use m − k/3 such Y∗-
triples, each connected to the Yl gadgets at position 1 to form tree g : Y → R. In
Lemma 2.4, we use a solution to X3C to derive a matching using only many-to-one
correspondences between f and g, even though many-to-many correspondences
are permitted by M(X, Y).

}
2}1

0

6k + 6

6l − 2

1

6l

6l + 2

YlXi,j Y∗

Figure 2.6: Gadgets.
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Lemma 2.4. dC( f , g) ≤ 1 if S admits a solution to X3C, even if only many-to-one
correspondences are allowed.

Proof. Consider the correspondence (as given by a solution to X3C) between gad-
gets Xi,j of f and gadgets Yl of g, and let each Y∗-triple correspond to an unused
(Xi,1, Xi,2, Xi,3)-triple of f . Then each individual gadget has distance at most 1
to the corresponding gadget of the other tree. The connections between gadgets
(see Figure 2.7) also have a correspondence of distance at most 1 by matching con-
nections of f that are part of the solution with the vertex of g at position 1 and
matching remaining connections with connections to Y∗-triples.

Lemma 2.5. dC( f , g) ≥ 2 unless S admits a solution to X3C.

Proof. Assume instead that dF( f , g) < 2, then for some matching τ between f
and g, the distance between all matched points is less than 2.

The endpoint End(xi,j) at position 6k + 6 for each gadget Xi,j of f must be
matched to a connected component of the preimage of (6k + 4, 6k + 8) under g.
Since gadgets are connected only in the interval [0, 2] which is disjoint from (6k +
4, 6k + 8), each such component corresponds to a single gadget of g. Therefore
each Xi,j is matched with a single gadget of g. By a symmetric argument, the
endpoint of each gadget of g is matched with a single gadget of f . Hence, a one-
to-one correspondence between gadgets of f and g exists.

Now suppose two gadgets X = Xi,j and X′ = Xi′ ,j′ of different triples (that
is, i ̸= i′) correspond to two gadgets of the same Y∗-triple. Then each path con-
necting X and X′ contains a point at position 2 which must be matched with the
vertex at 0 that connects the two Y∗ gadgets, yielding a contradiction. Thus, each
triple (Xi,1, Xi,2, Xi,3) corresponds either to a single Y∗-triple, or three Yl gad-
gets. Suppose Xi,j corresponds to Yl with l ̸= s(i, j), then the zig-zag of Yl cor-
responds to a monotone path (without a zig-zag) of Xi,j. Let the vertices of Yl
at positions 6l + 2 and 6l − 2 be denoted v+ and v− respectively. By continuity
of τ, we have 6l < f (τ−1(v+)) ≤ f (τ−1(v−)) < 6l, which is impossible. Hence,
the contour tree distance between f and g is at least 2 if S admits no solution
to X3C.

0

1

︷ ︸︸ ︷

y1 . . . yk

︷ ︸︸ ︷
︸︷︷︸

︸︷︷︸
xi,2
xi,3

xi,1

y∗

y∗
y∗ 2︸ ︷︷ ︸

m − k
3

m

Figure 2.7: Gadgets are connected to form trees f (blue) and g (red).



Surfaces 21

Combining these lemmas with Theorem 2.1 we obtain Theorem 2.2.

Theorem 2.2. Computing a (2 − ε)-approximation of the contour tree distance is NP-
complete, even if only many-to-one correspondences are allowed.

2.3 Surfaces

We wish to use the fact that computing the contour tree distance is in NP to prove
that the Fréchet distance between R-valued surfaces is also in NP. We will con-
sider two surfaces: the disk [0, 1]2 and the sphere S2. It turns out that not all match-
ings between the contour trees X and Y can be realized as orientation preserving
homeomorphisms on the sphere. An example of such a matching is described in
Section 2.4. In the case of the disk, the boundaries must also be matched, which
imposes additional constraints on the matching of the interiors.

In Section 2.3, we show that given a polynomial amount of information about
an ε-matching τ between contour trees, we can verify in NP that an ε-matching µ
on the disk exists. We use this to prove that the Fréchet distance between R-valued
spheres or disks with constant boundary is in NP. For this we use properties of
Euler diagrams, which are described in Section 2.3.1. The relation between match-
ings and Euler diagrams is discussed in Section 2.3.2, and how Euler diagrams can
be used to derive matchings is discussed in Section 2.3.3.

2.3.1 Euler diagrams

An Euler diagram is a set of topological disks, drawn in the plane to capture re-
lations such as overlap or containment for pairs of disks. Eight such relations ex-
ist [54], namely Rel = {disjoint, equal, inside, contains, covered, cover, meet, overlap},
whose meanings are as follows.

disjoint(a, b) ≡ a ∩ b = ∅;
equal(a, b) ≡ a = b;
inside(a, b) ≡ a ⊆ b and ∂a ∩ ∂b = ∅;

contains(a, b) ≡ inside(b, a);
covered(a, b) ≡ a ⊆ b and ∂a ∩ ∂b ̸= ∅;

cover(a, b) ≡ covered(b, a);
meet(a, b) ≡ a ∩ b ⊆ ∂a ∩ ∂b ̸= ∅;

overlap(a, b) ≡ a ̸⊆ b and b ̸⊆ a.

For a set S of n elements, a topological expression [82, 89] on S is a function P :
S × S → Rel. We say a topological expression P on S is satisfiable if and only if
there is an Euler diagram of disks {D(i) | i ∈ S}, such that for any i, j ∈ S, the
relation between D(i) and D(j) is as given by P(i, j). It was shown by Schaefer,
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Sedgwick and Štefankovič [81] that deciding whether a topological expression P
on n elements is satisfiable (by an Euler diagram in the plane) is in NP.

2.3.2 Euler diagrams from matchings

We show that deciding whether the Fréchet distance between R-valued surfaces f
and g : M → R is at most ε is in NP if M is a sphere. First consider the case
where M = [0, 1]2 is a topological disk and that the boundary of f as well as g has
a constant function value, so f (p) = f (q) and g(p) = g(q) for all p, q ∈ ∂M.

Define a refinement of a contour tree X to be a tree homeomorphic to X, whose
edges are subdivided using extra vertices. Assume that X and Y both have a
vertex (or add it otherwise) for the contour containing the boundary, which we
treat as the root of the trees. We assume all edges are directed away from the root.

For a vertex v of X with d outgoing edges, R−1
X

(x) is a region homotopic to
a d-holed disk on M. We index the boundary components of such a vertex by v
and each of its outgoing edges, so that the set W(X) = V(X) ∪ E(X) of vertices
and edges indexes all boundary components {cw | w ∈ W(X)} of vertices of X.
For a matching µ : M → M, for w ∈ W(X) we are interested in the corresponding
subtrees ρ(w) = RY ◦ R−1

X
(cw) on Y, and for w ∈ W(Y) we are interested in the

subtrees ρ−1(w) = RX ◦ µ−1(cw) on X. We can derive ρ given µ : M → M, and
refine X into X′ by adding vertices along edges at

∪
y∈W(Y) ∂ρ−1(y) and refine Y

into Y′ by adding vertices at
∪

x∈W(X) ∂ρ(x). Since ∂ρ−1(y) and ∂ρ(x) have O(n)
points per y ∈ W(Y) or x ∈ W(X), trees X′ and Y′ have O(n2) vertices.

For a vertex x ∈ V(X′) of a rooted tree, let sub(x) ⊆ X be the subtree rooted
at x, and for an edge e = (x, x′) ∈ E(X) from x to x′, let sub(e) = (e ∪ sub(x′)) \
{x}. For each i ∈ W(X′), there is a disk Dµ(i) = R−1

f (sub(i)) ⊆ M, and for
each i ∈ W(Y′), there is a disk Dµ(i) = µ−1(R−1

g (sub(i))) ⊆ M. We can now
derive an Euler diagram from µ with O(n2) disks {Dµ(i) | i ∈ W(X′) ∪ W(Y′)}.
The corresponding topological expression, call it Pµ, consists of O(n4) relations
between these disks.

We capture the general structure of such expressions later, when we define
topological expressions respecting τµ. For that, we first capture the structure of
topological expressions for the disks of a single tree X′, by saying a topological
expression P on S ⊇ W(X′) respects X if

1. for all e = (i, j) ∈ E(X′), P(i, e) = contains and P(e, j) = contains;
2. for all e = (i, j) ∈ E(X′) and e′ = (i, j′) ∈ E(X′) with e ̸= e′, P(e, e′) =

disjoint.

For a satisfiable topological expression respecting X, the drawing of the disks
of W(X′) is the same (up to orientation preserving homeomorphism) for any
satisfying Euler diagram Φ. Let {D(i) | i ∈ S} be the disks of such an Eu-
ler diagram Φ. Then, for x ∈ V(X′), define ϕx as the closed region bounded
by ∂D(x) and

∪
e=(x,x′)∈E(X′) ∂D(e), which is a disk with a hole for each outgo-
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ing edge of x. For e = (x, x′) ∈ E(X′), define ϕe as the closed annulus bounded
by ∂D(e) and ∂D(x′). Denote ϕV(X′) =

∪
x∈V(X′) ϕx and ϕE(X′) =

∪
e∈E(X′) ϕe.

We say a topological expression P on W(X′)∪W(Y′) respects a matching τ ∈
M(X, Y) if the following conditions hold.

1. P respects both X and Y;
2. P(root(X′), root(Y′)) = equal;
3. for x ∈ V(X′) and y ∈ V(Y′), ϕx intersects ϕy only if y ∈ τ(x) (and x ∈

τ−1(y));
4. for each component of ∂ϕx with x ∈ V(X′), it intersects ϕy for some y ∈

V(Y′);
5. for each component of ∂ϕy with y ∈ V(Y′), it intersects ϕx for some x ∈

V(X′);

Any matching µ has an Euler diagram satisfying a topological expression respect-
ing τµ.

Because we use only a polynomial amount of information about τ, and inter-
section relations between ϕx and ϕy can be formulated as topological expressions,
it can be tested in NP that a topological expression respects τ, and by [81] that it
is satisfiable.

2.3.3 Matchings from Euler diagrams

Call a matching µ an ε-matching if | f (p)− g(µ(p))| ≤ ε for all p ∈ M. We show that
there is some ε-matching µ for any satisfiable topological expression respecting
some ε-matching τ. For this, let Φ be an Euler diagram satisfying a topological
expression respecting ε-matching τ.

Let M′ = D(root(X′)) = D(root(Y′)). For two functions f ′ and g′ : M′ → R,
let ∆(M′) = supp∈M′ | f ′(p)− g′(p)|. We construct f ′ and g′ with dF( f ′, f ) = 0,
dF(g′, g) = 0, and ∆(M′) ≤ ε

Start by assigning f ′(p) = f (x) for p ∈ ϕx for x ∈ V(X′). Also assign g′(p) =
g(y) for p ∈ ϕy for y ∈ V(Y′). Then ∆(ϕV(X′) ∩ ϕV(Y′)) ≤ ε because ϕx and ϕy
intersect only if f (x)− g(y) ≤ ε.

Next, we define g′ on ∂D(i) for each i ∈ W(X′). By construction, ∂D(i) inter-
sects ϕV(Y′) for any i ∈ W(X′), so g′ is already defined for some point on ∂D(i).
We can hence assign g′ to all points on ∂D(i) by linear (arc length parameterized)
interpolation between the points of ϕV(Y′) ∩ ∂D(i). Because f ′ is constant on ∂D(i),
we have by interpolation that ∆(∂D(i)) ≤ ∆(ϕV(Y′) ∩ ∂D(i)) ≤ ε. Assign f ′ anal-
ogously to ∂D(i) for each i ∈ W(Y′).

Let F be the faces of M′ \ ∪
i∈W(X′)∪W(Y′) ∂D(i). Now, f ′ remains to be as-

signed for faces F ∈ F with F ⊆ ϕe for e ∈ E(X′) (and g′ remains to be assigned
for faces with e ∈ E(Y′)). Consider such face F ⊆ ϕe = ϕ(x,x′), then f ′ is already
assigned on the boundary ∂F. If ∂D(j) ⊆ ϕe for j ∈ W(Y′), then by construc-
tion, ∂D(j) touches at least one component (∂D(e) or ∂D(x′)) of ∂ϕe. Therefore,
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(a) (b) (c) (d)
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∂D(e)
∂D(x′)

ϕe

Figure 2.8: Possibilities for face F ⊆ ϕe=(x,x′).

each component of ∂F touches at least one component of ∂ϕe. Moreover, because
both ∂D(e) and ∂D(x′) are connected, at most one component of ∂F touches ∂D(e),
and at most one component of ∂F touches ∂D(x′). Hence, ∂F has at most two com-
ponents.

Consider the arcs of ∂F \ ∂ϕe and observe that, because one can draw at most
one path between the boundaries of an annulus without disconnecting it, at most
two arcs connect ∂D(e) and ∂D(x′). Therefore, ∂F has either zero or two arcs on
which f ′ is not constant. Similarly, g′ is not constant for zero or two arcs of ∂F \
∂ϕE(Y′), and F ⊆ ϕE(Y′) if such arcs exist.

Based on this, we distinguish the following four cases, illustrated in Figure 2.8.

(a) ∂F touches at most one component of ∂ϕe (and hence ∂F has one compo-
nent);

(b) ∂F has one component and touches both components of ∂ϕe, and g is inter-
polated on both components of ∂ϕe;

(c) ∂F has one component and touches both components of ∂ϕe, and g is inter-
polated on ∂F on at most one component of ∂ϕe;

(d) ∂F has two components (each touching a distinct component of ∂ϕe).

In case (a), the value of f ′ is constant along ∂F, and we assign the same value
for f ′ in the interior of F. We will see that the values of g′ (which are assigned
symmetrically) in the interior of F are values that are also assigned to g′ on the
boundary of F, so we have ∆(F) ≤ ∆(∂F).

Consider the cases (b) and (c), where ∂F has two (interpolated) arcs, and call
them α0 and α1, both starting on ∂D(e) and ending on ∂D(x′). We find two simple
non-intersecting paths βx and βx′ in F, where βx connects the start points of α0
and α1, and βx′ connects the end points of α0 and α1. We assign f (x) to f ′ on βx,
and f (x′) to f ′ on βx′ . The paths βx and βx′ divide F into three components: a
component Cx with f ′(p) = f (x) for p ∈ ∂Cx, a component Cx′ with f ′(p) = f (x′)
for p ∈ ∂Cx′ , and finally a component Ce bounded by α0, α1, βx and βx′ .

We assign x for f ′ on the interior of Cx, x′ for f ′ on the interior of Cx′ , and inter-
polate Ce using the second argument of an arbitrary parameterization π : [0, 1]×
[0, 1] → Ce, with π(0, t) = α0(t), π(1, t) = α1(t), π(·, 0) = βx and π(·, 1) = βx′ .
See Figure 2.9.
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(a) (b) (c) (d)

Figure 2.9: Disks Ce (and Ce′ ) interpolating f ′ (and g′) in F for the four cases of
Figure 2.8.

If g′ has a constant value for F, then clearly ∆(F) ≤ ∆(∂F), so assume F ⊆
ϕe′ for e′ = (y, y′) ∈ E(Y′). In case (b), we have ∆(F) ≤ ∆(∂F) because each
of ( f (x), g(y)), ( f (x′), g(y)), ( f (x), g(y′)), and ( f (x′), g(y′)) appear as values for
( f ′(p), g′(p)) for points p on ∂F, so interpolation will not exceed the maximum
difference. To ensure ∆(F) ≤ ∆(∂F) in case (b), we must be careful in choosing Ce
which interpolates f ′ and at the same time Ce′ which interpolates g′ in F. Since in
case (b), interpolation of f ′ occurs on a single component of ∂ϕe′ , and interpolation
of g′ occurs on a single component of g′, we can choose β0 and β1 in such a way
that Ce does not intersect Ce′ , such that the interpolation of f ′ occurs in a region
where g′ is constant and vice-versa. Doing so, differences between f ′ and g′ never
exceed their difference at the boundary, so ∆(F) ≤ ∆(∂F).

Lastly consider case (d), where F is an annulus, and on each boundary compo-
nent, f ′ and g′ are constant. By interpolating f ′ and g′ between their value on each
boundary component using the second argument of a parameterization π : S1 ×
[0, 1] → F, we ensure ∆(F) ≤ ∆(∂F).

Theorems 2.3 and 2.4 follow.

Theorem 2.3. Deciding whether the Fréchet distance between two R-valued disks with
constant values at their boundaries is at most ε is in NP.

Proof. Observe that for x ∈ V(X′), ϕx has the constant value f (x) for f ′. More-
over, for each e = (x, x′) ∈ E(Y′), ϕe interpolates f ′ between f (x) and f (x′),
so dF( f , f ′) = 0. Similarly, dF(g′, g) = 0. Hence, if a topological expression
on W(X′)∪W(Y′) respecting ε-matching τ is satisfiable, then dF( f , g) ≤ ε. More-
over, because such a topological expression exists for any ε-matching µ, deciding
whether dF( f , g) < ε is in NP.

Theorem 2.4. Deciding whether the Fréchet distance between two R-valued spheres is
at most ε is in NP.

Proof. Consider an ε-matching between the two spheres, and puncture one sphere
at an arbitrary point, and puncture the other sphere at the matched point. The
resulting surfaces are disks with constant values at their boundaries, and by The-
orem 2.3 we can test in NP whether an ε-matching for the disks exists, in which
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case there is also an ε-matching between the spheres (because the boundaries of
the disks must be aligned).

2.3.4 NP-hardness

The contour tree distance is closely related to the Fréchet distance between sur-
faces because every R-valued tree is the contour tree of some R-valued surface.
To construct such a surface from a contour tree, replace each edge of the tree by a
cylinder and each degree d vertex by a sphere with d holes (one for each edge). The
resulting surface is a topological sphere, representable as a simplicial 2-complex
with linearly many triangles. Consider f and g : S2 → R to be R-valued spheres
with contour trees X and Y.

Lemma 2.6. Any many-to-one matching τ : X → Y between contour trees of R-valued
spheres f and g can be lifted into an orientation preserving matching µ : S2 → S2, satis-
fying Rg ◦ µ = τ ◦ R f .

Proof. Assume τ is a many-to-one matching and denote by C f (x) = R−1
f (x) the

contours in the preimage of x ∈ X under the quotient map R f of the contour
tree. For any degree d point y ∈ Y, consider its preimage X = τ−1(y). There are d
components in X \X. We define µ to match C f (T) and Cg(y) (both homeomorphic
to d-holed spheres) by matching the boundary components as given by τ, so the
interior of C f (T) is automatically matched to the interior of Cg(y). Because τ

is continuous, and τ−1(y) and τ−1(y′) have an empty intersection for distinct y
and y′ ∈ Y, this defines an orientation preserving homeomorphism µ between
surfaces f and g.

Corollary 2.2. If τ is a many-to-one ε-matching between the contour trees X and Y

of R-valued spheres, then dF( f , g) ≤ ε.

To prove NP-hardness for surfaces, we reuse the construction of the contour tree
distance. Take X and Y to be the trees with functions f and g as constructed in
Section 2.2.3, and construct R-valued spheres with these trees as contour tree. To
illustrate, f and g might be the contour trees of the surfaces depicted in Figure 2.10.

Theorem 2.5. Computing a factor (2 − ε)-approximation of the Fréchet distance be-
tween R-valued spheres is NP-hard.

Proof. By Lemma 2.5 and Corollary 2.1, dF( f , g) ≥ dC( f , g) ≥ 2 if S admits no
solution to X3C. By Lemma 2.4 and Corollary 2.2, dF( f , g) ≤ dC( f , g) ≤ 1 if S ad-
mits a solution to X3C. So approximating the dF( f , g) for R-valued spheres within
factor 2 is NP-hard.

Because the matching constructed in Lemma 2.4 always matched the two connec-
tion vertices, we can puncture the constructed surfaces at these vertices to obtain
Corollary 2.3.

Corollary 2.3. Computing a factor (2 − ε)-approximation of the Fréchet distance be-
tween R-valued disks is NP-hard.
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2.4 An unrepresentable matching

Consider the two rooted trees X and Y in Figure 2.11. The leaves of X are la-
beled xi,j (i ∈ {1, . . . , 6}, j ∈ {1, 2, 3}) and the leaves of Y are labeled yk,l (k ∈
{1, . . . , 9}, l ∈ {1, 2}). For both trees, leaves with the same i or k are grouped in
subtrees. Based on the complete bipartite graph K3,3 with vertices v1, . . . , v6 and
edges e1, . . . , e9, we construct a matching τ between those subtrees as follows. For
an edge ek = (vi, vi′) of K3,3, match the path from yk,1 to yk,2 with the path be-
tween unused vertices xi,j and xi′ ,j′ . Match the edge from the root to group i of X

with the edges of Y from the root to the three groups that match with xi,1, xi,2
and xi,3. Edges in the top layer of the tree are matched in a many-to-many fash-
ion, whereas edges of the bottom layer are matched using linear interpolation.
Then τ ∈ M(X, Y) does not match any path from yk,1 to yk,2 (of edge ek = (vi, vi′))
with any group of X not containing any xi,j or xi′ ,j′ . However, because K3,3 is not
a planar graph, this matching cannot be realized on the sphere, as illustrated in
Figure 2.11.
The Fréchet distance between R-valued spheres hence seems more discriminative
than the contour tree distance. But this example merely shows that we cannot lift
any ε-matching between contour trees to one between spheres; a different match-
ing on spheres (see Figure 2.11) can still be an ε-matching. We have not found any
instances (on spheres) for which the Fréchet distance is strictly greater than the
contour tree distance.

2.5 Related measures

While the Fréchet distance is applicable to a broad class of functions, the func-
tional distortion distance and interleaving distance specialize on Reeb graphs,
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Figure 2.10: For input S = {{2, 4, 6}, {3, 4, 5}, {1, 3, 4}, {2, 5, 6}, {1, 2, 3}, {1, 2, 5}},
the disks resulting from the reduction from X3C with color-coded function values.
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and can be used to compare R-valued functions. They are closely related to the
Gromov-Hausdorff distance. The functional distortion distance dD( f , g) between
Reeb graphs f : X → R and g : Y → R is defined as

dD( f , g) = inf
Φ,Ψ

max{D(Φ, Ψ), ∥ f − g ◦ Φ∥∞, ∥g − f ◦ Ψ∥∞},

D(Φ, Ψ) = sup
(x,y),(x′ ,y′)
∈C(Φ,Ψ)

1
2
|height f (x, x′)− heightg(y, y′)|,

C(Φ, Ψ) = {(x, y) ∈ X × Y | Φ(x) = y or x = Ψ(y)},

where Φ : X → Y and Ψ : Y → X are continuous maps;

height f (x, x′) = inf
π : x Xx′

max
x′′∈π

f (x′′)− min
x′′∈π

f (x′′)

is the length of the image (which is an interval) under f of the path in X from x
to x′ that minimizes this length. In the case of trees, this will be that of the unique
simple path connecting x and x′.

Another measure is the weak Fréchet distance dwF, which requires matchings
to be surjective but—in contrast to the Fréchet distance—does not require the
matching to be a homeomorphism. As such, it can compare trees that are not
homeomorphic.
We highlight how the functional distortion distance, the weak Fréchet distance
and the contour tree distance differ using small instances in Figure 2.12. Perhaps
surprising is that the functional distortion distance between X′ and Y′ is 1 in-
stead of 2. This is because the term D(Φ, Ψ) is only half the difference in height
between pairs of matched points, so by ensuring the difference in function value
of matched points is at most half the difference in height between any two points,
we achieve a distance of 1. It therefore seems that the contour tree distance is
more discriminative than the functional distortion distance, and both are much
more discriminative than the weak Fréchet distance.

x1,1 x6,3. . . y1,1 y9,2. . .

Figure 2.11: Trees X (left) and Y (right) with their corresponding surfaces. Center:
a matching in which a subtree of Y intersects an additional subtree of X (green).
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dC = 2 dwF = 0 dD = 1

X Y

Figure 2.12: The contour tree distance dC, weak Fréchet distance dwF and func-
tional distortion distance dD for small trees. Correspondences green, Φ orange, Ψ
purple.

2.6 Discussion

We have shown that computing the Fréchet distance between R-valued surfaces
is NP-complete if the surfaces are spheres or disks with constant boundary. The
question whether the Fréchet distance is in NP for higher genus surfaces remains
open. Using our techniques, the main bottleneck for this is that the string graph
recognition problem is only known to lie in NEXP on higher genus surfaces [81],
and it is therefore unknown whether Euler diagrams on arbitrary surfaces can be
recognized in NP. So extensions of the techniques used in this chapter might only
show that the Fréchet distance is in NEXP for R-valued surfaces of higher genus.
Finally, we are interested in an efficient constant-factor approximation algorithm
for the Fréchet distance or the contour tree distance, and we would like to know
whether these measures are equivalent on R-valued spheres.





3
Horizontal Fréchet Isotopies

and Monotonicity
In this chapter, we study the problem of comparing curves through deformations
in which the intermediate curves remain simple. As in the previous chapter, we
minimize the distance that a point travels as the deformation moves it between
the two input curves.

Specifically, we consider the isotopic Fréchet distance, a distance measure be-
tween two curves f and g that captures one intuitive notion of an optimal morph
between these two curves. The classic Fréchet distance between f and g, also
called the ‘dog leash distance’, measures the length of the shortest possible straight
leash needed to connect a man and a dog which are walking forward along f and
g. Any two feasible walks using such a shortest leash induce a Fréchet matching
between f and g. One can now imagine to build a morph between f and g by
sliding each point of f along the leash that connects it to its matched point on g.
Such an approach will work well in unrestricted Euclidean space, however, it is
not suitable for more general spaces that might contain obstacles. In the presence
of obstacles the leashes of the classic Fréchet distance can jump discontinuously
and hence the resulting morph would be discontinuous as well.

The homotopic Fréchet distance [29, 66] forces leashes to move in a continuous
way. More formally, for two curves f and g : [0, 1] → R2 in the plane, a homo-
topy h : [0, 1]2 → R2 is a continuous map between f and g. Such a homotopy
essentially morphs one curve into the other: each point of f traces a path h(p, ·)
to a point on g. The length of a homotopy is the length of the longest such path,
and a Fréchet homotopy is one that minimizes this length. The homotopic Fréchet
distance between f and g is then the length of a Fréchet homotopy between f and
g. The homotopic Fréchet distance and the classic Fréchet distance are equivalent
in R2. The morph that results from a Fréchet homotopy is continuous, but it may
change the structure of the input curves during the morph: intermediate curves
can self-intersect or collapse to a point, even if f and g are simple curves.

A homotopy is an isotopy if all its intermediate curves h(·, t) are simple. That is,
a morph based on an isotopy does not allow the morphing curves to pass through
themselves, a feature which is crucial for applications which involve curve-like
objects in the real world. The isotopic Fréchet distance measures the length of an
optimal isotopy between f and g; we call an optimal isotopy a Fréchet isotopy. The
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study of Fréchet isotopies was initiated in [32]. The authors gave some simple
observations and examples and showed that the isotopic Fréchet distance in the
plane can be arbitrarily larger than the homotopic Fréchet distance.

In this chapter we design the first algorithms to compute the isotopic Fréchet
distance in various monotone settings, an important first setting to consider where
structural observations and algorithms are nonetheless quite non-trivial.
Related work. Closely related are morphs based on geodesic width [53]: the inter-
mediate curves are not allowed to cross the input curves f and g, and they are
restricted to the area between the leashes connecting the endpoints of f and g.
This restriction naturally enforces intermediate curves without self-intersections
since ‘geodesic leashes’ do not cross each other. Morphs based on geodesic width
minimize the maximum leash length. However, they are restricted to input curves
that do not intersect each other; in contrast, Fréchet isotopies are also well-defined
for input curves that intersect each other.

A variety of morphs have been considered in the graph drawing and compu-
tational geometry literature. Here, the intermediate curves are homeomorphic
to the input and vary continuously. It is well known that any two drawings of
the same planar graph (with the same faces and outer face) can be morphed into
one another. More recent work has focused on bounding the number of steps in
the optimal morph between any two input graphs [6, 7]. However, in contrast to
Fréchet isotopies, the morphs do not minimize length.
Results. In this chapter, we present the first algorithmic results for the isotopic
Fréchet distance in any setting. Our main focus is on two simple input curves,
where one of the curves is monotone. Even in this restricted setting, it is unclear
how to compute such isotopies, since the best homotopy between simple mono-
tone curves is not always an isotopy.

We begin by refuting a conjecture by Chambers et al. [32] in the initial paper
introducing the isotopic Fréchet distance (Section 3.2). We present some basic
bounds on the lengths of isotopies in Section 3.3. In the same section we also show
that in the context of the computation of short isotopies, the standard notion of
a simple curve can be relaxed slightly (to allow the preimage of a point to be at
most an interval) without affecting the length of an optimal isotopy significantly.

We then discuss algorithms to compute optimal isotopies between pairs of
curves in monotone settings. First of all, in Section 3.4, we describe how to com-
pute optimal isotopies if there is a direction in which both input curves are mono-
tone. In this case, we show that the length of such an optimal isotopy is the same
as that of an optimal homotopy.

In Section 3.5, we construct an isotopy that morphs a given curve into an x-
monotone one using minimal horizontal movement. Surprisingly, this horizontal
movement does not exceed the horizontal movement required by an optimal ho-
motopy. We tie the cost of this isotopy to the notion of persistent homology, and
moreover relate the stages of horizontal movement of our isotopy to this notion.
For the related problem of the homotopic Fréchet distance, lower bounds based
on persistent homology were recently developed [83].

Finally, in Section 3.6, we consider a pair of curves f and g parameterized by
a variable p, and we capture the conditions under which an isotopy exists that
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(for all p) sends f (p) to g(p) along a curve that is monotone in either the positive
or negative x-direction. Surprisingly the conditions under which such an isotopy
exists are easy to test: since the source and destination of each point are known,
one can check in advance whether a point moves in the positive or negative x-
direction. From a global perspective, the isotopy we construct starts by moving
certain extrema. For each extremum of f , there is a direction in which it ‘shrinks’,
and if the points on this extremum move in that direction, we can shrink and
possibly remove the extremum. Applying this procedure exhaustively yields a
curve f ′. The procedure forms an isotopy from f to f ′ if an isotopy from f to g
exists. We apply a symmetric procedure to g to obtain a curve g′. Finally we show
that if an isotopy between f and g exists, then it is easy to find an isotopy from f ′

and g′ such that the result is an isotopy from f to f ′ to g′ to g.

3.1 Preliminaries

A curve in the plane is a continuous map f : [0, 1] → R2. We denote the x and y-
coordinates of f (p) by f (p).x and f (p).y, respectively. A continuous nondecreas-
ing surjection α : [0, 1] → [0, 1] is called a reparameterization of a curve. A ho-
motopy is a continuous map h : [0, 1] × [0, 1] → R2. We denote its level curves
by ht : p 7→ h(p, t), and say h goes from curve f to g if h0 = f and h1 = g. We
say a curve is simple if the preimage of each point in R2 is at most one interval.1 A
homotopy is an isotopy if every curve ht is simple.

A homotopy from f to g traces paths λh,p : t 7→ h(p, t) between the points f (p)
and g(p), and such a path is traditionally referred to as a leash. Let the length of
a homotopy h be the length length(h) = supp length(λh,p) of its longest leash. We
are interested in homotopies h minimizing this length and define the homotopic
Fréchet distance between f and g as

dhom( f , g) = inf
α,β,h

h0= f ◦α, h1=g◦β

length(h),

where h ranges over homotopies and α and β range over reparameterizations. The
isotopic Fréchet distance diso is defined similarly, except h ranges over isotopies.

A map m′ : X → R2 is an ε-perturbation of m : X → R2 if ∥m′(x)− m(x)∥ ≤ ε
for all x ∈ X. We call a curve f weakly simple if for all ε > 0, there exists an ε-
perturbation that is simple. Similarly, we call a homotopy h a weak isotopy if some
ε-perturbation is an isotopy.

The Fréchet distance dF( f , g) = infα,β supp ∥ f ◦ α(p) − g ◦ β(p)∥ is a related
measure that does not require leashes to trace out a homotopy, so each leash can
be assumed to be a shortest path. The pair (α, β) is called a matching. We define
the cost of a matching (α, β) between f and g as cost f ,g(α, β) = supp ∥ f ◦ α(p)−
1The usual definition requires simple curves to be injective. However, simple curves are closed under
reparameterizations by our definition, and we show that this distinction has little impact on our re-
sults. Intuitively, simple curves allow pausing at a point, but not returning to a previously visited
point.
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g ◦ β(p)∥. A Fréchet matching between curves f and g in the plane is a matching
with cost dF( f , g).

The map Aff f ,g(p, t) = (1 − t) · f (p) + t · g(p) using line segments (short-
est paths) as leashes is a homotopy since it is an affine interpolation between
continuous maps. We call Aff f ,g the affine homotopy from f to g, and its length
is length(Aff f ,g) = supp ∥ f (p) − g(p)∥. It follows that the homotopic Fréchet
distance and the Fréchet distance are equivalent in R2. On the other hand, the
isotopic Fréchet distance in the plane can be arbitrarily larger than the homotopic
Fréchet distance [32].

We call a homotopy h from f ◦ α to g ◦ β a Fréchet homotopy if length(h) =
dhom( f , g), and call h a Fréchet isotopy if h is an isotopy with length(h) = diso( f , g).
Since every isotopy is a homotopy, we have dhom( f , g) ≤ diso( f , g) and any isotopy
that is a Fréchet homotopy is also a Fréchet isotopy. However, Fréchet isotopies
do not need to be Fréchet homotopies since there might exist a homotopy shorter
than any isotopy.

In this chapter, we assume that all curves f and g are piecewise differentiable.
For a curve f and a unit vector (x, y) ∈ S1, we define the directional length of f
in the direction (x, y) to be the total length that f moves forward in the direction
of the vector, given by length(x,y)( f ) =

∫ 1
0 max(0, ⟨d f (p)

dp , (x, y)⟩)dp, where ⟨·, ·⟩ is
the inner product. We define the horizontal length of a curve as lengthhor( f ) =
length(−1,0)( f ) + length(1,0)( f ) and define the horizontal homotopic and isotopic
Fréchet distances using the horizontal length function. As usual, a horizontal
Fréchet homotopy (respectively isotopy) is one minimizing the horizontal homo-
topic (respectively isotopic) Fréchet distance.

3.2 Disproving a conjecture

In Figure 3.1 we show an example of two zig-zag curves, originally presented
in [32]. The Fréchet distance between these curves is at most ε, as the walks along
each curve can have the same x-coordinate, keeping the leash between them at
most that length. However, this Fréchet mapping yields a homotopy that col-
lapses the zig-zag to a flat line before re-expanding to the other zig-zag, which
does not result in an isotopy, as (for example) the two leftmost blue endpoints
would map to a common point in the middle of the isotopy and then break into
two red leftmost points again.
In [32] the authors conjectured that the isotopic Fréchet distance between the zig-
zags is

√
L2 + ε2. However, the isotopy depicted by the green leashes on the right

side of Figure 3.1 has length at most
√

L2 + ε2/2+ ε/2. Intermediately, the isotopy
flattens the zig-zag to the center of a line (shown in the middle in purple) during
the morph to the red zig-zag, but the parameterization is chosen in such a way
that points move at most a distance of ε/2 either before or after reaching this line
and at most

√
L2 + ε2/2 + ε/2 in total.

A lower bound. We will show that the isotopy of Figure 3.1 is arbitrarily close to



Disproving a conjecture 35

ε

L

Figure 3.1: An isotopy between two ‘opposite’ zig-zags of length roughly√
L2 + ε2/2 + ε/2. The fat arcs have horizontal length roughly L/2, whereas the

others have negligible horizontal length.

optimal. Consider a convex region D and an isotopy h between curves f and g in
the plane, where the endpoints of all intermediate curves lie in D; so Im(λh,0) ⊆ D
and Im(λh,1) ⊆ D. Fix some p ∈ (0, 1) and denote by polyt the polyline with
an edge from h(0, t) to h(p, t), and an edge from h(p, t) to h(1, t). Let θt be the
(counterclockwise) angle at ht(p) between the two edges of polyt (plus a multiple
of 360 degrees), such that θt varies continuously with t. We show in Lemma 3.1
that (in any isotopy from poly0 to poly1) the leash λh,p must intersect D if θ0 and θ1
differ by at least 180 degrees, see Figure 3.2.

Lemma 3.1. If f is isotopic to poly0 relative to its vertices2 and g is isotopic to poly1
relative to its vertices, and |θ1 − θ0| ≥ 180, then h(p, t) ∈ D for some t.

Proof. Because f and g are isotopic to poly0 and poly1 respectively (relative to
their vertices), we may assume without loss of generality that 0 ≤ θ0 < 360
and 0 ≤ θ1 < 360. Because θt varies continuously, we have by the intermedi-
ate value theorem that θt = 180 for some t ∈ [0, 1]. In that case, h(p, t) lies on the
line segment between h(0, t) ∈ D and h(1, t) ∈ D. By convexity, this line segment
lies completely in D, so h(p, t) ∈ D.

2That is, there exists an isotopy from f to poly0 that does not move f (0), f (p) or f (1).

f

D

g

θ0

θ1 g(p)f (p)

λh,0

λh,1

Figure 3.2: Curves f = h0, g = h1 and polylines poly0 and poly1 with endpoints in
convex region D.
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Figure 3.3: The vertices and region D used to obtain a lower bound for the curves
of Figure 3.1.

Using Lemma 3.1, we can show that our isotopy of length
√

L2 + ε2/2 + ε/2 for
the zig-zags of Figure 3.1 is optimal as ε approaches 0. For this, we show that any
Fréchet isotopy has length at least L/2. Assume that the zig-zags f and g are pa-
rameterized such that there is an isotopy h of length less than L/2 between them.
Let l be the vertical line in the middle between the vertices such that each vertex
has distance L/2 to l, and let D be the half-plane to the left of l, see Figure 3.3.
Let f (a), f (b) and f (c) be the first three vertices of f . Because h has length less
than L/2, the leashes λh,a and λh,c lie completely in D, and λh,b lies completely
outside D. Since a < b < c and g(b) /∈ D, we have that a and c lie in differ-
ent components of g−1(D). The isotopy h induces a restricted isotopy between
the subcurves of f and g from a to c, and these subcurves satisfy the conditions
required by Lemma 3.1, meaning that Im(λh,b) intersects D, contradicting that h
has length less than L/2.

3.3 Simple curves

In this section, we consider our notion of simple curves, and connect it to the
standard notion of simple. We prove that in the context of Fréchet isotopies, these
concepts are roughly equivalent. While a curve f is generally called simple if it is
an injective map, we will call such injective maps strictly simple instead. We call an
isotopy through strictly simple curves a strict isotopy. Recall that in our modified
definition of simple, a curve f is simple if the preimage of each point consists of
at most one interval. A curve f is constant at q ∈ R2 if f (p) = q for all p ∈ [0, 1].
Any constant curve is simple but not strictly simple. For a non-constant simple
curve f , let f̂ be the unique arc-length parameterized curve, and α̂ f be the unique
reparameterization, such that f = f̂ ◦ α̂ f . We prove Theorem 3.1 to justify our
alternative definition of simple, since strict isotopies are roughly equivalent to
isotopies in some sense.

Observation 3.1. If f is a strictly simple curve and g is the constant curve at q, then
Aff f ,g

t is strictly simple for t < 1. To see this, observe that the curve Aff f ,g
t is a copy of f

scaled down towards q by a scaling factor of (1 − t). So Aff f ,g
t is injective unless t = 1.

Observation 3.2. If f is simple and g is constant, then Aff f ,g
t is simple for all t.
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Lemma 3.2. diso( f , g) ≤ infq∈R2 supp ∥ f (p)− q∥+ supp ∥g(p)− q∥.

Proof. Let γ be the constant curve at q, and observe that diso( f , γ) ≤ supp ∥ f (p)−
q∥ by the isotopy Aff f ,γ; similarly, diso(γ, g) ≤ supp ∥g(p) − q∥. By the triangle
inequality, we have diso( f , g) ≤ supp ∥ f (p)− q∥+ supp ∥g(p)− q∥.

Lemma 3.3. If there is an isotopy of finite length between curves f and g, then there is also
one of length at most infq∈R2 supp ∥ f (p)− q∥+ supp ∥g(p)− q∥+ ε for any ε > 0.

Proof. Take an isotopy of finite length δ between f and g. We are done if ε ≤ δ, so
assume ε > δ and let γ be the constant curve at q. The idea is to shrink f and g to
a sufficiently small neighborhood of q and apply a scaled version of the isotopy of
length δ there. By Observation 3.1, Aff f ,γ

t and Aff g,γ
t are strictly simple for t < 1.

Consider the strictly simple curves f ′ = Aff f ,γ
t and g′ = Aff γ,g

t for t = 1 − ε/δ <
1. The scaled version s′ of s between f ′ and g′ has length ε, so the composition
of Aff f , f ′ , s′, and Aff g′ ,g is a strict isotopy of length at most infq∈R2 supp ∥ f (p)−
q∥+ supp ∥g(p)− q∥+ ε.

Theorem 3.1. For any isotopy h between strictly simple curves f and g, and ε > 0, there
is a strict isotopy s of length at most length(h) + ε from f to g.

Proof. If length(h) ≥ supp ∥ f (p) − q∥ + supp ∥g(p) − q∥ for some q ∈ R2, then
we are done by Lemma 3.3. So we may assume that ht is never a constant curve.
We show that we can continuously perturb all ht into strictly simple curves with-
out significantly lengthening the isotopy. For a curve f and a value φ ∈ [0, 1],
let f φ(p) = f̂ ((1 − φ)α̂(p) + φp). Then f φ is essentially an arc-length based in-
terpolation between f (for φ = 0) and f̂ (for φ = 1). Moreover, Im( f ) = Im( f φ),
and f φ is strictly simple whenever f is simple and φ > 0.

Let δ =
∫ 1

0 | dlength(ht)
dt |dt be the cumulative change in length of ht throughout

the homotopy. Define φt = ( 1
2 − |t − 1

2 |)
ε

2δ , such that φt = 0 if and only if t = 0
or t = 1, and

∫ 1
0 | dφt

dt |dt ≤ ε
2δ . The map s defined by st = hφt

t is a homotopy
because φt (and therefore hφt

t ) changes continuously. Moreover, s is a strict iso-
topy because hφt

t is strictly simple if φt > 0, which is the case for 0 < t < 1,
and the curves f = s0 and g = s1 are also strictly simple. It remains to show
that s has length at most length(h) + ε. For this, we compare the length of λh,t

with that of λs,t. By construction of φt, we have that
∫ 1

0 ∥s(p, t) − h(p, t)∥dt ≤
δ ε

2δ = ε
2 . Moreover, ∥s(p, t)− s(p, t′)∥ ≤ ∥h(p, t)− h(p, t′)∥+ ∥s(p, t)− h(p, t)∥+

∥s(p, t′)− h(p, t′)∥ by the triangle inequality. Thus, length(λs,p) ≤ length(λh,p) +

2
∫ 1

0 ∥s(p, t)− h(p, t)∥dt ≤ length(λh,p) + ε. Hence, length(s) ≤ length(h) + ε.
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3.4 Isotopies between monotone curves

A curve f is x-monotone if f (p).x ≤ f (p′).x and strictly x-monotone if f (p).x <
f (p′).x for all p < p′. We claim that for strictly x-monotone curves f and g, h =

Aff f ,g is an isotopy. For this, each intermediate curve ht must be simple. In
fact, we show in Lemma 3.4 that each ht is strictly x-monotone. Because any
strictly x-monotone curve is simple, Corollary 3.1 follows. Observe also that any x-
monotone curve f is weakly simple, since it can be ε-perturbed into a simple x-
monotone curve f ′(p) = ( f (p).x, f (p).y + pε), and we obtain Theorem 3.2.

Lemma 3.4. For strictly x-monotone curves f and g, each curve ht of h = Aff f ,g is
strictly x-monotone.
Proof. Recall that ht(p) = (1− t) · f (p)+ t · g(p). Consider the x-coordinates xt(p)
of ht(p) and xt(p′) of ht(p′) for p < p′. Let st = xt(p′)− xt(p). Because f and g
are strictly x-monotone, we have x0(p) < x0(p′) and x1(p) < x1(p′), so s0 > 0
and s1 > 0. Since s is affine, we have s(t) > 0 for t ∈ [0, 1], so xt(p) < xt(p′).
Hence, ht is strictly x-monotone.

Corollary 3.1. If f and g are strictly x-monotone curves, Aff f ,g is an isotopy from f to g.
Theorem 3.2. In the limit, the isotopic Fréchet distance between simple x-monotone
curves f and g in the plane is the same as their Fréchet distance.
Proof. Pick any ε > 0, and perturb f and g into strictly x-monotone curves f ′

and g′ with diso( f , f ′) ≤ ε and diso(g, g′) ≤ ε. We have diso( f , g) ≤ diso( f ′, g′) +
2ε by the triangle inequality. Consider a matching (α, β) between f ′ and g′ of
cost δ and perturb it to obtain a matching (α′, β′) with cost f ′ ,g′(α

′, β′) ≤ δ + ε

and the property that the curves f ′ ◦ α′ and g′ ◦ β′ are strictly x-monotone. By
Corollary 3.1, Aff f ′◦α′ ,g′◦β′ is an isotopy of length at most δ + ε, so diso( f ′, g′) ≤
δ + ε. Taking a Fréchet matching (α, β) between f ′ and g′, we get δ = dF( f ′, g′).
So diso( f , g) ≤ cost f ′ ,g′(α

′, β′) + 2ε ≤ dF( f ′, g′) + 3ε ≤ dF( f , g) + 5ε. Moreover,
dF( f , g) ≤ diso( f , g), so diso( f , g) converges to dF( f , g) as ε approaches 0.

The homotopy constructed in Theorem 3.2 may degrade into a weak isotopy if
we were to take ε = 0. By definition, the length of Fréchet isotopies converges to
that of their weak counterparts in the limit. Therefore, we choose in this chapter
to work with weak isotopies instead, as they are often more conveniently con-
structed.
Corollary 3.2. For any matching (α, β) between x-monotone curves f and g in the plane,
the homotopy Aff f ◦α,g◦β is a weak isotopy of length cost f ,g(α, β).

3.5 Isotopies to monotone curves

We say that f is η-narrow if it is contained in a rectangle of height η; so the inter-
val Im( f .y) has length at most η. In this section, we give an algorithm to compute
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an isotopy to an x-monotone curve, and we can show that the length of this iso-
topy is within η/2 + ε of an optimal isotopy (for any ε > 0). In Section 3.5.1 we
argue that this problem is interesting already even when η is negligibly small.

3.5.1 Non-monotone isotopies

Consider the curve f = h0 of Figure 3.4 with f (0) = p0 and f (1) = p5, morphing
into an x-monotone curve g = h1 as depicted. No matter how small we pick η > 0,
the depicted isotopy has length at most r + η if w < r. Conversely by Lemma 3.6,
there exists no homotopy to an x-monotone curve of length less than r, even if
we pick a different x-monotone curve g. In this context, the lemma states that
because f (p1).x ≥ f (p2).x + 2r and g(p1).x ≤ g(p2).x, one of the leashes λh,p1
or λh,p2 has length at least r in any homotopy h.

What makes this instance interesting is that any optimal isotopy moves some
points both forward (in the positive x-direction) and backward (in the negative
x-direction) for a considerable distance. Formally, for any isotopy h from f to g,
we have both length(1,0)(λh,p) ≥ w/2 − η and length(−1,0)(λh,p) ≥ w/2 − η for
some p. In particular, consider the two endpoints f (p0) and f (p5) in Figure 3.4.
Informally, these points must ‘untangle’ with respect to each other somewhere in
any isotopy h. For this, the x-coordinates of ht(p0) and ht(p5) must be equal for
some value of t, say for t = t∗. Because g is x-monotone, and an optimal isotopy
has length at most r+ η, we have g(p0).x ≤ g(p2).x ≤ f (p2).x+ r+ η = f (p0).x+
η and symmetrically f (p5).x − η = f (p3).x − r − η ≤ g(p3).x ≤ g(p5).x.

Let γ = ht∗ and x∗ = γ(p0).x = γ(p5).x. Since f (p5).x − f (p0).x = w, we
have x∗ − f (p0).x ≥ w/2 or f (p5).x − x∗ ≥ w/2. If x∗ − f (p0).x ≥ w/2, we also
have g(p0).x − x∗ ≥ w/2 − η, so p0 moves forward for a distance of at least w/2
and backwards for a distance of at least w/2− η. Otherwise, f (p5).x − x∗ ≥ w/2,
and p5 moves backwards for w/2 and forwards for w/2 − η. The total distance
such points move approaches diso( f , g) as η approaches 0.

r

r

r

r
w

ηh0

h1

h 1
2

p1p2 p3p4 p0
p5

Figure 3.4: A curve for which any Fréchet isotopy to an x-monotone curve requires
some point to move for a distance of at least w/2 − η in both the positive and the
negative x-direction.
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3.5.2 Horizontal length

Let f be an η-narrow curve. We are interested in how much an isotopy must move
a point back and forth in the x-direction to obtain an x-monotone curve. Using
Lemma 3.5, one can see that the isotopic Fréchet distance is at most η/2+ ε larger
than the horizontal isotopic Fréchet distance. So as η approaches 0, the horizontal
length approaches the isotopic Fréchet distance.

Lemma 3.5. If f is an η-narrow simple curve, and η > ε > 0, then there is an isotopy of
length (η − ε)/2 from f to an ε-narrow curve.

Proof. Suppose Im( fy) ⊆ [y − η/2, y + η/2], and let f ′(p) = ( f (p).x, y). In the
affine homotopy h = Aff f , f ′ , the curves ht are copies of f , scaled down vertically
towards the horizontal line R × {y} with scaling factor 1 − t. So for 0 ≤ t < 1,
curve ht is simple, and each ht is ((1 − t)η)-narrow. In particular, ht is ε-narrow
if t = 1 − ε

η < 1, so the subhomotopy h|[0,1− ε
η ]

is an isotopy to an ε-narrow curve,
and this isotopy has length at most (η − ε)/2 because each point of f moves mono-
tonically along a vertical line of length at most (η − ε)/2.

For the remainder of the section, we will only optimize the horizontal length of
isotopies. We morph an arbitrary simple curve f into an x-monotone one through
an isotopy of minimum horizontal length. A lower bound on the horizontal length
of such an isotopy is given in 3.6, and this lower bound not only holds for isotopies
but also for homotopies. It is therefore perhaps surprising that we can construct a
weak isotopy from any curve f to a monotone curve that has exactly this horizontal
length, so no isotopy of less horizontal length exists.

Lemma 3.6. If h is a homotopy from f to any x-monotone curve g, then lengthhor(h) ≥
1
2 supp≤p′ f (p).x − f (p′).x.

Proof. We have lengthhor(λh,p) ≥ | f (p).x − g(p).x| and because g is x-monotone,
we have g(p).x ≤ g(p′).x. As lengthhor(h) ≥ lengthhor(λh,p) ≥ f (p).x − g(p).x
and lengthhor(h) ≥ lengthhor(λh,p′) ≥ g(p′).x − f (p′).x, we have 2 · lengthhor(h) ≥
f (p).x − g(p).x + g(p′).x − f (p′).x ≥ f (p).x − f (p′).x.

We call a curve nice if it is simple and contains no vertical subpaths. The projec-
tion of a nice curve onto the horizontal axis has no saddle points, and alternates
between local minima and maxima using strictly increasing or decreasing paths.
Consider two curves to be equivalent if there is a (degenerate) isotopy of zero cost
between them. Then any simple curve has an equivalent nice curve, as such a
curve can be obtained using only vertical movement by collapsing the neighbor-
hood of vertical subpaths, such that each vertical subpath becomes a single point.

3.5.3 Monotonizing isotopies

For a simple curve f , we define a monotonizing isotopy Shr f that yields a monotone
curve using minimal horizontal movement. Our monotonizing isotopy will move



Isotopies to monotone curves 41

all local minima (respectively maxima) in the positive (respectively negative) x-
direction at a constant speed until two extrema cancel against each other, and
repeat the procedure on the resulting curve. Formally, we will recursively define
the monotonizing isotopy applied to a simple curve f . For this, call a maximal x-
monotone subpath of f a horizontal subpath, and label those paths f̄1, . . . , f̄n, in the
order they appear along f . Let Ii = [ℓi, ri] = {x | (x, y) ∈ Im( f̄i)} be the interval
of x-coordinates of points on f̄i. Let L be the length of the shortest such interval.
For t ≤ L/2, define It

i = [ℓi + t, ri − t] and the arc f̄ t
i of f̄i whose x-coordinates

lie in It
i . We define Shr f

t = f t as the curve that alternates between the horizontal
paths f̄ t

i and the vertical segments connecting the end of f̄ t
i to the start of f̄ t

i+1
(for 1 ≤ i < n).

Lemma 3.7. For t < L/2, the curve f t is simple.

Proof. Suppose not, and consider the minimum t for which two points of f t co-
incide. Then t > 0 since f 0 = f is simple. Because f is simple, and different
horizontal subpaths f̄ t

i and f̄ t
j of f t are disjoint subpaths of f , subpaths f̄ t

i and f̄ t
j

cannot intersect. So if f t is non-simple, then at least one vertical segment is in-
volved. Hence either (a) two vertical segments intersect, or (b) a vertical segment
and a horizontal subpath f̄ t

i intersect.
We first consider case (a). The vertical segments move continuously as t varies.

For 0 < t < L/2, the 2n end points of the horizontal subpaths are all distinct, and
at most one vertical segment starts or ends at each of them. Hence, if two vertical
segments overlap, they overlap in each others interior. If both vertical segments
move in the same direction, then their x-coordinates will be the same for any t, and
their first overlap will occur when end points of two vertical segments coincide,
which cannot happen for 0 < t < L/2. So the overlapping vertical segments must
move in opposite directions, and an end point of one lies in the interior of the
other vertical segment. Since t < L/2, there is a horizontal subpath connected to
this end point that would have intersected the other vertical segment for smaller t,
which is a contradiction.

For case (b), no vertical segment has an end point interior to a horizontal sub-
path f̄ t

i , as this would mean that f̄ t
i contains an end point of some f̄ t

j . So either a
vertical segment already intersected f̄ t

i for smaller t (a contradiction), or the verti-
cal segment intersects an end point of f̄ t

i . But since that end point of f̄ t
i moves in

the same direction (at the same speed) as the vertical segment that intersects it, it
must have already done so for t = 0, contradicting that f is simple.

As t approaches L/2, at least one horizontal subpath shrinks to length 0. So
if f L/2 would be a nice curve, we could recursively apply the same procedure
on f L/2 until no more horizontal subpaths exist and obtain a (degenerate) isotopy
that shrinks f to a point. Using the procedure of Section 3.5.2, one can indeed
replace each of the curves f t by a nice curve such that they form a degenerate
isotopy through nice curves.
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Lemma 3.8. The curve f L/2 is simple.
Proof. The proof of Lemma 3.7 requires that t < L/2 only to prevent that two
vertical segments share the same end point. At t = L/2, two vertical segments
share the same end point only if some f̄ t

i contracts to a single point at t = L/2,
which means that Ii has length L. Suppose for a contradiction that the interiors
of the vertical segments overlap. Then the vertical segments move in different
directions and are adjacent to the same horizontal subpath f̄ t

i . Since the vertical
segments have only one end point in common, an end point of one lies interior
to the other vertical segment. Because It

i−1 and It
i+1 are at least as long as It

i , we
have for slightly smaller t, that the horizontal subpath ( f̄ t

i−1 or f̄ t
i+1) attached to

the shorter vertical segment intersects the longer vertical segment, contradicting
Lemma 3.7.

An example. The major critical events are those where a minimum and maxi-
mum merge. As an example, consider a spiral as in Figure 3.5, which is similar
to an example from [32]. In this spiral, a critical event first happens when the in-
nermost maximum and minimum meet to form a new saddle. The final critical
event causes the two end points to collapse. Two (minor) critical events where end
points pass a saddle are not drawn.

0 1

Figure 3.5: The major critical events of our shrinking homotopy (rotated 90 de-
grees) on a spiral.

3.5.4 Monotonicity and relation to persistence

Recall that Lemma 3.6 gave us the following lower bound on lengthhor(h) for a
homotopy h turning f into an x-monotone curve.

lengthhor(h) ≥
1
2

sup
p≤p′

f (p).x − f (p′).x.

We prove Lemma 3.9 to show that the isotopy Shr f is optimal in the sense that it
yields an x-monotone curve using minimal horizontal movement. It follows from
Lemma 3.5 that the vertical movement required to achieve this is only η + ε if f
is η-narrow.
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Lemma 3.9. Shr f
L is x-monotone if L = 1

2 supp≤p′ f (p).x − f (p′).x.

Proof. Suppose f ′ = Shr f
L is not x-monotone, then there is some q < q′ for which

f ′(q′).x < f ′(q).x. Without loss of generality assume that q lies on a maximum
of f ′ and q′ lies on a minimum. Moreover, we may assume that f ′(q).x ≤ f (q).x −
L, because some point on that maximum has moved distance L in the negative
x-direction. Symmetrically, we may assume that f ′(q′).x ≥ f (q′).x + L. There-
fore, f (q′).x + L ≤ f ′(q′).x < f ′(q).x ≤ f (q).x − L. This means that f (q).x −
f (q′).x > 2L for some q < q′, contradicting that L = 1

2 supp≤p′ f (p).x − f (p′).x.

Theorem 3.3. Shr f
L yields an x-monotone curve at L = | Im( f .x)|−1 supp≤p′ f (p).x −

f (p′).x, and there is no homotopy that achieves this with less horizontal movement.

Persistence. The critical values of Shr f are closely related to the notion of persis-
tence, see [51] for an overview. In summary, we consider connected components
of the sublevelsets f .x−1(−∞, z] for some parameter z ∈ R.

The minimum of each component is called its representative (we break ties con-
sistently if there are multiple minima, so that we can speak of a minimum). When
increasing z from −∞ to ∞, new components are created in the sublevelset when-
ever z attains the x-coordinate of a minimum (which is the representative of that
component), and we say these components are born at time z. On the other hand,
when z attains the x-coordinate of a maximum, components may merge, causing
the representative of components with larger representatives to be overtaken by
smaller representatives. When such a representative is overtaken, we say the rep-
resentative dies. The persistence of a minimum is the time between the birth and
death of that component; that is, the length of the interval for which the minimum
is a representative. Note that one minimum has infinite persistence.

To relate this to the critical events of Shr f , we show that Shr f
L has a critical

event whenever 2L attains the value of the persistence of some minimum, see
Lemma 3.10. Symmetrically, we can apply persistence in terms of maxima, and
obtain critical event at Shr f

L whenever some maximum has persistence value 2L.

Lemma 3.10. If the persistence of a minimum is 2L, then a minimum and maximum
merge at Shr f

L.

Proof. Assume that minimum p has persistence value 2L. The connected com-
ponent of f .x−1(−∞, z] containing p merges with some other component at z =
f (p).x + 2L, say q is the representative of the merged component. Then f (q).x ≤
f (p).x. Let m be the maximum where the two components merge, so f (m).x =
f (p).x + 2L. Let f ′ be the subcurve of f between p and m (directed such that
f ′(0) = f (p) and f ′(1) = f (m)), then Im( f ′.x) ⊆ [ f (p).x, f (m).x]. Let Ai be the
minimum of A|( f ) containing p, and Aj be the maximum of A|( f ) containing m.
Let L′ be the minimum of the critical value where Ai merges with a maximum
and the critical value where Aj merges with a minimum.
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Assume that L′ > L. Then by Lemma 3.9, Shr f ′
L is x-monotone. Because

for L′′ < L′, the arc of Shr f
L′′ between p and m behaves the same as Shr f ′

L′′ , we
have that p and m are on consecutive extrema of Shr f ′

L′′ . But this means that Ai
and Aj merge at L′′ = L, which contradicts that L′ > L, so we have L′ ≤ L.

To show that L′ ≥ L, assume for a contradiction that L′ < L. Then Ai or Aj
becomes a saddle at L′. First consider the case where the minimum Ai (contain-
ing p) becomes a saddle at L′. Then it merges with a maximum m′ with f (m′).x <
f (m).x and there is a minimum p′ with f (p′).x < f (p).x, where m does not lie
between p and p′. But then p is not the representative of the connected component
of f .x−1(−∞, f (m′).x] containing p, contradicting that p stops being a representa-
tive at f (m).x > f (m′).x.

Now consider the case where the maximum Aj (containing m) becomes a sad-
dle at L′. Then it merges with a minimum p′ with f (p′).x > f (p).x and there is a
maximum m′ with f (m′).x > f (m).x, where p and q do not lie between m and m′.
But then, p and q lie in different components of the sublevelset at z = f (p).x + 2L
because m lies between p and q, contradicting that the components of p and q
merge at z = f (p).x + 2L. Hence L′ = L.

3.6 Monotone homotopies

We say a homotopy h is monotone if the leash h(p, ·) is a (forwards or backwards)
monotone curve for all p. In this section, we define tools in order to decide whether
a monotone isotopy between two curves f and g exists. We decide this by finding
a monotone homotopy from f to a curve f ′ that lies somewhere ‘between’ f and
g, and from a curve g′ to g, where g′ lies somewhere ‘between’ f ′ and g. We
will see that if a monotone isotopy exists, these two homotopies are isotopies, and
there is an obvious isotopy between f ′ and g′, and these isotopies compose into a
monotone isotopy from f to g.

We construct a monotone homotopy from a given curve f to some curve f ′

based on a continuous map τ (based on g) indicating the target x-coordinate τ(p)
for each point f (p). We will assume τ has finitely many local extrema. Our ho-
motopy h from f to f ′ will have the property that if f (p).x ≤ τ(p) and t ≤
t′, then f (p).x ≤ h(p, t).x ≤ h(p, t′).x ≤ τ(p). Symmetric properties apply
for f (p).x ≥ τ(p). However, points need not always reach the target x-coordinate;
that is, we will not necessarily have f ′(p).x = τ(p) for all p. Instead, f ′(p).x will
be the x-coordinate closest to τ(p), for which there is a point f (q) with the same
x-coordinate and τ(r) does not cross this x-coordinate for r between p and q, as il-
lustrated in Figure 3.6. Equation 3.1 defines this coordinate formally as E f .x,g.x(p),
and we prove in Lemma 3.13 that the homotopy we construct indeed reaches these
coordinates.

Eσ,τ(p) =
{

minq{ σ(q) | ∀p≤r≤q or q≤r≤p τ(r) ≤ σ(q) ≤ σ(r) } if τ(p) ≤ σ(p)
maxq{ σ(q) | ∀p≤r≤q or q≤r≤p τ(r) ≥ σ(q) ≥ σ(r) } if τ(p) ≥ σ(p)

(3.1)
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We then use the curve f ′ resulting from this homotopy to symmetrically construct
a homotopy from g to g′, using the x-coordinates of f ′ as target. Lemma 3.12 gives
a key property of Equation E , that tells us that if the projections of f and g onto
the x-axis overlap, then the x-coordinates of the constructed curves are aligned.
That is, f ′(p).x = g′(p).x for all p.

Lemma 3.11. Eσ,τ(p) ∈ [min{σ(p), τ(p)}, max{σ(p), τ(p)}].

Proof. Assume without loss of generality that τ(p) ≤ σ(p). Since the range r is
quantified over contains p, we have τ(p) ≤ Eσ,τ(p) ≤ σ(p).

Lemma 3.12. Let f ′.x = E f .x,g.x and g′.x = Eg.x, f ′ .x. If the images of f .x and g.x
overlap, then f ′.x(p) = g′.x(p).

Proof. Consider any p, and without loss of generality assume that f .x(p) ≤ g.x(p).
By the equation, we have g.x(r) ≥ f ′.x(p) ≥ f .x(r) for r between p and q, where
f .x(q) = f ′.x(p). For x > f ′.x(p), there either is no q with f .x(q) = x, or for all
such q there is some g.x(r) = x with r between p and q. In the former case, f .x(q)
is a global maximum of f (and also of f ′), and because f ′.x(p) ≤ g.x(p) and the
images of f .x and g.x overlap, there is some q′ with g.x(q′) = f ′.x(p). Using
this value of q′ as argument for the minimum in the definition of g′.x(p) yields
that g′.x(p) ≤ f ′.x(p), and hence g′.x(p) ≤ f ′.x(p). In the latter case where f .x(q)
is not a global maximum of f , such q′ also exists (otherwise f ′.x(p) would have
been larger), and the same argument shows that g′.x(p) ≤ f ′.x(p). As Lemma 3.11
implies that f ′.x(p) ≤ g′.x(p), we conclude that f ′.x(p) = g′.x(p).

Let P<
f ,τ = {p | f (p).x < τ(p)}, P=

f ,τ = {p | f (p).x = τ(p)}, and P>
f ,τ = {p |

f (p).x > τ(p)}. Let f<, f=, and f> be the respective restrictions of f to P<
f ,τ , P=

f ,τ ,
and P>

f ,τ . For a local minimum3 m of f<.x, let am be the arc of f< consisting of the
(one or two) horizontal subpaths of f<, one of whose end points is f<(m). Let at

m
be the subpath of am consisting of points am(p) with am(p).x ≤ f<(m).x + t. For a
3Because the domains of f< and f> generally are not closed sets, we allow m to be drawn from their
closures, so that f (m) might actually be an endpoint of an arc of f=.

τ(p)
f (p).x

f ′(p).x

p

f

f ′

x

y

x
(a) (b)

Figure 3.6: (a) The curve f , and the curve f ′ that results from the function τ shown
in (b).
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local maximum m of f>.x, define at
m symmetrically as the subpath of am consisting

of points am(p) with am(p).x ≥ f>(m).x − t.
Let M be the set of values m for which f .x(m), f=.x(m), or τ(m) is a local

minimum or maximum. Let X = f .x(M) ∪ τ(M) be the values of f and τ at
such m, and let L be the minimum positive difference between distinct values of X.

We define the curves f t of our homotopy recursively. Consider the set M′

of values of m for which f (m) is a local minimum of f<, or a local maximum
of f>. Let f 0 = f . For 0 < t ≤ L, we obtain f t from f by replacing each at

m for
each m ∈ M′, as follows.

(a) If f (m) is an end point of f (and hence of at
m), we replace the arc at

m by its
other end point.

(b) Otherwise, if at
m has only one horizontal path, then we may assume that

f (m).x = τ(m). In this case, we replace at
m by a path bt

m, with the same
image, but possibly a different parameterization. If m is a local minimum
of f<.x, parameterize bt

m such that bt
m(p).x = τ(p) if bt

m(p).x < f (m).x + t,
and bt

m(p).x ≤ τ(p) if bt
m(p).x = f (m).x + t. One can always find such

a parameterization because f (m).x = τ(m), at
m(p) ≤ τ(p), and as p goes

from m to the other end of at
m, the value of τ(p) varies continuously and, by

our choice of L, does not decrease. Symmetrically, if m is a local maximum
of f>.x, parameterize bt

m such that bt
m(p).x = τ(p) if bt

m(p).x > f (m).x − t,
and bt

m(p).x ≥ τ(p) if bt
m(p).x = f (m).x − t.

(c) Otherwise, at
m must consist of two horizontal paths connected at f (m), and

we replace at
m by a (suitably parameterized) vertical segment between the

two end points of at
m.

Note that f t varies continuously with t and that P<
f t ,τ , P=

f t ,τ , and P>
f t ,τ do not change

combinatorially for 0 ≤ t < L. An example of a combinatorial change is illustrated
in Figure 3.7. For t = L, the first combinatorial change may occur, so let f̂ = f L,
and recursively for t > L, define f t = f̂ t−L to be the curve obtained by applying

p

x

y

x
(a) (b)

t

t

Figure 3.7: (a) P=
f t ,τ indicated by crosses, P<

f t ,τ in blue, P>
f t ,τ in purple. The illus-

trated value of t corresponds to the smallest t for which P=
f t ,τ changes combinato-

rially: the leftmost cross is newly added to P=
f t ,τ . (b) Functions f .x, f ′.x and τ.
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the same procedure (with τ) to f̂ . Because τ has finitely many extrema, this pro-
cedure will eventually result in a curve f ′ for which the arcs of f t

< and f t
> all lie

on vertical segments.

Lemma 3.13. Let f ′ be the curve resulting from the above homotopy based on f and g,
then f ′.x = E f ,g.

Proof. Consider a value of p where g(p).x ≤ f (p).x; the other case is symmet-
ric. Then we have f ′(p) ≤ f (p). Let x = min{ f (q).x | ∀r∈[min(p,q),max(p,q)] g(r) ≤
f (q).x ≤ f (r).x } be the value that Equation 3.1 would assign to f ′(p).x. It suffices
to show that f ′(p).x = x. Let R ⊆ [0, 1] be the maximal interval for which {p ∈
R ∧ g(r) ≤ f ′(p).x ≤ f (r).x} and f (r) ̸= f ′(p).x except possibly if r is an end
point of R. Let q1 and q2 be the endpoints of R. For q1 we have f (q1).x = f ′(p).x,
or g(q1).x = f ′(p).x, or q1 = 0. Similarly, for q2 we have f (q2).x = f ′(p).x,
or g(q2).x = f ′(p).x, or q2 = 1. If neither f (q1).x = f ′(p).x nor f (q2).x = f ′(p).x,
then p must lie on a vertical segment because if it were on a reparameterized hor-
izontal subpath, we would have q1 = q2 = p. However, there cannot be a vertical
segment containing p, as f ′ consists of subpaths of f with vertical segments be-
tween them. Hence x ≤ f ′(p), and we have f (q1).x = f ′(p).x or f (q2).x = f ′(p).x.
If x < f ′(p), then since x < f ′(q1).x and x < f ′(q2).x, f ′(p)would have been repa-
rameterized or moved by a vertical segment. So f ′(p).x = x.

Isotopies. We give conditions for which the above homotopy is an isotopy. To pre-
vent vertical segments that are connected by a horizontal segment from creating
intersections, we collapse vertical segments that form saddle-points (of f t.x) to
points using only vertical movement. Lemma 3.14 captures when f t stops being
simple already in the non-recursive part of the homotopy.

Definition 3.1 (Pocketed point). We say p is a pocketed point between f .x and τ if
there exist u1 < u2 with p /∈ [u1, u2] and f (p).y strictly between f (u1).y and f (u2).y,
and for all u ∈ [u1, u2], we have either τ(p) ≤ f (p).x and f (u).x ≤ f (p).x ≤ τ(u),
or τ(p) ≥ f (p).x and f (u).x ≥ f (p).x ≥ τ(u).

Lemma 3.14. If f is weakly simple, but f t is not for t ≤ L, then t = L and there exists
a pocketed point between f .x and τ.

Proof. Let t be the minimal value for which f t is not weakly simple. Then there
exists a vertical segment on f t whose causes an intersection, since the remainder
of f t is only reparameterized with respect to f . The interior of the vertical segment
must touch an endpoint f t(p) of a horizontal subpath of f t. Such an intersection
can be created only when t ≥ L, so let t = L.

Assume that the vertical segment causing the intersection moves in the pos-
itive x-direction (the other case is symmetric). If p ∈ P<

f ,τ , there would either
have been an intersection for smaller t, or f t(p) has not moved because there is
a point p′ ∈ P=

f ,τ for which f t(p′) is an end point of a horizontal subpath, and
the vertical segment also intersects f t(p′). Thus, we may assume p ∈ P>

f ,τ ∪ P=
f ,τ ,

so τ(p) ≤ f (p).x. Moreover, we may assume that f (p).x = f t(p).x, because



48 Horizontal Fréchet Isotopies and Monotonicity

if f t(p) had moved, there would also be a point of p′ ∈ P>
f ,τ ∪ P=

f ,τ with f (p′) =

f t(p) on the same horizontal subpath. The vertical segment causing the intersec-
tion connects two points f (u1) and f (u2) on horizontal subpaths of f . Because the
vertical segment is moving in the positive x-direction, we have f (u).x ≤ f t(p).x =
f (p).x ≤ τ(u) for u ∈ [u1, u2].

Lemma 3.14 can be extended to Lemma 3.15, which shows that f t stops being
weakly simple in a (perhaps) recursive part of the homotopy only if there is a
pocketed point.

Lemma 3.15. If f is weakly simple, but f t is not, then there exists a pocketed point be-
tween f .x and τ.

Proof. Assume f t stops being weakly simple in the recursive step starting out from
curve f̂ . Then f̂ satisfies the properties of Lemma 3.14, say for values û1, û2, and p̂.
The points f̂ (û1) and f̂ (û2), and the point f̂ ( p̂) lie on horizontal subpaths of f̂ ,
and hence on f . We will find u1, u2 and p with f (u1) = f̂ (û1), f (u2) = f̂ (û2),
and f (p) = f̂ ( p̂) on f . Suppose that τ( p̂) ≤ f̂ ( p̂).x and f̂ (û).x ≤ f̂ ( p̂).x ≤ τ(û)
for û ∈ [û1, û2] (the other case is symmetric). Since each point moves monotonely
throughout the homotopy, u1 and u2 can be chosen such that f (u).x ≤ f̂ ( p̂).x ≤
τ(u) for u ∈ [u1, u2]. Moreover, p can be chosen such that τ(p) ≤ f (p).x, since
otherwise f̂ ( p̂) would not have reached the same coordinate as f (p).

Conversely, it follows from Lemma 3.1 that if there is a pocketed point between f .x
and g.x or between g.x and f .x, then no x-monotone isotopy from f to g exists. So
assume there are no such pocketed points, then there are also no pocketed points
between g and the curve f ′, where f ′ is the curve resulting from applying the
above homotopy to f with τ = g.x. Hence the above homotopy (applied to f .x
with τ = g.x) is an isotopy, and so is the homotopy applied to g.x with τ = f ′.x.

To construct an x-monotone isotopy from f to g, it remains to construct an
x-monotone isotopy between f ′ and g′. For this we consider two cases, namely
when the images of f .x and g.x are disjoint, in which case we can construct a
trivial isotopy, and the case where the images of f .x and g.x overlap, in which
case Lemma 3.12 tells us that f ′.x(p) = g′.x(p) for all p. In this case, there is an
isotopy if f ′ and g′ are vertically equivalent, and we show that if f ′ and g′ are not
vertically equivalent, there is no x-monotone isotopy between f and g.

Lemma 3.16. If for weakly simple curves f and g, the images of f .x and g.x are disjoint,
there is an x-monotone isotopy between f and g.

Proof. Assume that maxp f .x(p) < minp g.x(p) (the other case is symmetric). Pick
x between maxp f .x(p) and minp g.x(p). Let f ′ be a horizontal segment for which
maxp f .x(p) < f ′.x(p) < minp g.x(p). We will construct an x-monotone isotopy
from f to f ′. Such an isotopy can be obtained by translating the curves of the
monotonizing isotopy of Section 3.5.3 in such a way that all points move in the
positive x-direction. Symmetrically, construct an x-monotone isotopy from g to g′.
These isotopies compose to form an x-monotone isotopy from f to g.



Monotone homotopies 49

Lemma 3.17. If for weakly simple curves f and g, the images of f .x and g.x overlap, and
there is no pocketed point between f and g or vice-versa, and f ′ and g′ are not vertically
equivalent, then no x-monotone isotopy between f and g exists.

Proof. By Lemma 3.12, f ′.x(p) = g′.x(p) for all p. So if f ′ and g′ are not verti-
cally equivalent, then there exist p′ and q′ and x∗ such that f ′(p′).x = g′(p′).x =
f ′(q′).x = g′(q′).x = x∗, and f ′(p′).y > f ′(q′).y and g′(p′).y < g′(q′).y. We
may assume these four points all lie on horizontal subpaths (otherwise increase
the difference between p′ and q′ to move the points vertically until they are all
on horizontal subpaths). Since the points lie on horizontal subpaths, there ex-
ist p f , pg, q f , and qg such that f (p f ) = f ′(p′), g(pg) = g′(p′), f (q f ) = f ′(q′),
and g(qg) = g′(q′). Moreover, we may assume that p′ lies between p f and pg,
and q′ lies between q f and qg, and the interval between p f and pg is disjoint from
that between q f and qg.

We claim that the points on the arc of f between p f and pg can be assumed
to all move in the same x-direction. Assume that f (p′).x ≤ g(p′).x (a symmetric
argument applies if f (p′).x ≥ g(p′).x). Then because f (p′) reaches f ′(p′), we
may assume that f (p).x ≤ g(p).x for all p between p f and p′. Similarly, we may
assume that f (p).x ≤ g(p).x for all p between p′ and pg. By the same argument,
the points on the arc of f between q f and qg can be assumed to all move in the
same x-direction.

Suppose for a contradiction that there exists an x-monotone isotopy h from f
to g. Let Pt and Qt be the arcs of ht between p f and pg, and between q f and qg,
respectively. Let pt be the value closest to pg, for which the x-coordinate of h(pt, t)
is x∗. Assume that the points of Qt are moving in the positive x-direction (the
other case is symmetric). Then all points on Q0 have x-coordinate at most x∗, and
all points of Q1 have x-coordinate at least x∗.

Consider the subpaths of Qt whose x-coordinates are at most x∗. We call
such a subpath persistent if it contains a point whose target x-coordinate is at
most x∗. We say that such a subpath lies below pt if none of its points with x∗

as x-coordinate lie above h(pt, t). We claim that for any t, all persistent subpaths
of Qt lie below pt. Note that f (q f ) lies on such a persistent subpath of Q0 below p0.
We will derive a contradiction since g(qg) lies on a persistent subpath of Q1 that
does not lie below p1. It remains to show that all persistent subpaths of Qt lie
below pt. Initially all persistent subpaths of Q0 lie below p0, for the entirety of Q0
is a persistent subpath, meaning that there would be a pocketed point on P0 oth-
erwise. We show that this property is maintained throughout the isotopy. As t
increases, there are two cases where the isotopy might gain a persistent subpath
of Qt that does not lie below pt: either a persistent subpath of Qt gains a new point
with x∗ as x-coordinate above h(pt, t), or pt jumps discontinuously below a point
of a persistent subpath of Qt with x∗ as x-coordinate.

First consider the case where the points of Pt move in the negative x-direction.
Then all points on P0 have x-coordinate at least x∗, and all points of P1 have x-
coordinate at most x∗. If pt jumps below a point of a persistent subpath of Qt
with x∗ as x-coordinate, then that point of Qt is pocketed by the arc of Pt be-
tween pt and the location it jumped from, contradicting that an isotopy exists. If
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instead, a persistent path of Qt gains a new point with x∗ as x-coordinate above
h(pt, t), then pt is pocketed.

So consider the case where the points of Pt move in the positive x-direction.
Then all points on P0 have x-coordinate at most x∗, and all points of P1 have x-
coordinate at least x∗. If pt jumps below a point of a persistent subpath of Qt
with x∗ as x-coordinate, then that persistent subpath contains a point (that causes
it to be persistent) that is pocketed by the arc of Pt between pt and the location
it jumped from. If instead, a persistent path of Qt gains a new point with x∗ as
x-coordinate above h(pt, t), then pg is pocketed. Hence, there does not exist an
x-monotone isotopy.

Theorem 3.4. For weakly simple curves f and g, there is an x-monotone isotopy between
them if and only if the images of f .x and g.x are disjoint, or f ′ and g′ are vertically equiv-
alent and there is no pocketed point between f .x and f ′.x and there is no pocketed point
between g.x and f ′.x.

3.7 Discussion

In this chapter we have refuted a conjecture on the length of an optimal isotopy
between two particular input curves by providing an optimal isotopy. Moreover,
we have presented the first algorithms to compute the isotopic Fréchet distance
in various monotone settings. Specifically, when f and g are both x-monotone
curves in the plane we can compute optimal isotopies using traditional algorithms
for computing the Fréchet distance between curves. Furthermore, we can provide
a way to construct an isotopy of minimal horizontal movement from an arbitrary
curve to an x-monotone one, the constructed isotopy is closely related to the notion
of persistence.

Finally, given a correspondence between the points of f and g, we construct a
corresponding isotopy in which each point moves monotonely in only the positive,
or only the negative x-direction, or we conclude that no such isotopy exists. The
more general question of computing the length of an optimal isotopy for a given
correspondence between f and g remains open, even if only horizontal movement
is measured. Moreover, if the correspondence between the points of f and g is
not provided, we are interested in finding a correspondence between f and g that
minimizes the length of the shortest isotopy.







Part II
Homotopy Height





4
Computational Complexity of

Optimal Homotopies
In the second part of this thesis, we aim to find homotopies between curves on
surfaces, in such a way that the length of the longest intermediate curve in an
optimal homotopy is minimized.

Computational questions pertaining to homotopies can be formalized either
in a continuous setting, where homotopies constitute one of the fundamental con-
structs of algebraic topology, but also in a more discrete one, where the input
space is a simplicial, or more generally, a cellular description of a topological
space. This latter setting will be the focus of this chapter. While considerably
more restrictive than the more traditional (continuous) mathematical settings, this
setting is nonetheless of key importance in applications areas such as graphics or
medical imaging, where inputs are generally represented by triangular meshes
built upon scanned point sets from an underlying 3D object.

Investigating homotopies from a computational perspective is a well-studied
problem, dating back to the work of Dehn [44] on contractibility of curves, which
has strong ties to geometric group theory. Whereas deciding whether two curves
in a 2-dimensional complex are homotopic is well-known to be undecidable in
general (see for example Stillwell [85]), efficient, linear-time algorithms have been
designed to test homotopy [46, 73, 55] if the underlying space is a surface. In this
chapter, we add a quantitative twist to this problem. The height of a homotopy
is the length of the longest intermediate curve in the homotopy, as formalized in
Section 4.1. The Homotopy Height problem asks, given two homotopic curves on
a combinatorial surface, to find the height of a homotopy of minimal height. The
notion of homotopy height has obvious appeal from a practical perspective, as it
quantifies how long a curve has to be to overcome a hurdle. For example, decid-
ing whether a bracelet is long enough to slide off over a hand without breaking
is closely related to the question of homotopy height. Deformations of minimal
height minimize the necessary stretch and can in this way be used to quantify how
similar closed curves are.
Results. We begin by considering two curves that form the boundary of a dis-
crete annulus, and study the structure of minimum height homotopies between
these curves. This chapter builds on several recent results in Riemannian geome-
try [36, 37], stating that an optimal homotopy exists that is an isotopy, so that all
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the intermediate curves remain simple. Moreover, we build on our own recent
result [27] where we prove that in the Riemannian setting, such an optimal iso-
topy can be assumed to move in only one direction. That is, it never sweeps any
portion of the annulus twice. We refer to this property as monotonicity and will
define it more precisely in Section 4.2.

Once we translate those results from the Riemannian to the discretized set-
ting, these isotopy and monotonicity properties turn out to be a key ingredient
for computational purposes. In the discrete setting, we can easily modify an op-
timal monotone isotopy via operations that perform the same moves in a dif-
ferent order, and operations that avoid unnecessary moves. We call such op-
erations surgeries, and they allow us to prove that Homotopy Height is in NP
(Theorem 4.5). We note that our setting is very general, as it also implies NP-
membership for variants of Homotopy Height in more restricted settings that were
considered in earlier papers [31, 66], as well as for the Homotopic Fréchet dis-
tance, where this question was still open despite the recent articles investigating
this distance [29, 66]. Further surgery arguments allow us to provide an efficient
factor O(log n)-approximation algorithm for Homotopy Height (Corollary 4.7), by
relying on an earlier O(log n)-approximation algorithm of Har-Peled et al. [66] for
homotopy height in a more restricted setting. Finally, we show that monotonic-
ity directly implies an equivalence between the Homotopy Height problem and a
seemingly unrelated graph drawing problem which we call the Minimal Height
Linear Layout problem. Therefore, this problem is also in NP and we provide an
efficient factor O(log n)-approximation for it.
Related work. Optimal homotopies (for several notions of optimality) have been
studied extensively in the mathematical community. Broadly speaking, such ho-
motopies are considered in the field of quantitative homotopy theory, pioneered
by Gromov [64]. This field aims at introducing a quantitative lens in the study of
topological invariants on manifolds. The most extensively considered notion of
optimality is probably that of minimizing the area swept by a homotopy; several
variants of this problem are discussed in [72], and connections between minimum
area homotopies and homologies in higher dimensions are discussed in [90]. The
notion of controlling the width of a homotopy has also been studied [26, 69], see
also Figure 4.1. Recent work on minimum height homotopies in the Riemannian
setting [36, 37] laid the foundation for the results in this chapter.

The problem of comparing curves has heavily been motivated by the Fréchet
distance. Generalizing the Fréchet distance to surfaces has led to the homotopic
Fréchet distance, which is essentially the same as finding a minimum width homo-
topy given two input curves on a surface; algorithms can compute this quantity
in polynomial time in the case where the surface is the plane minus a set of ob-
stacles [29]. Moreover, in the discrete setting, approximation algorithms exist for
the case where the two input curves bound a disk [66].

More directly, minimum height homotopies have been studied from the com-
putational perspective in various discretized settings [31, 66], although this has
mainly led to discussions of the local structure of optimal homotopies, and upper
bounds on their height. Indeed, as it was not known if the optimal height homo-
topy was even monotone, the complexity of the problem was completely open.
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Figure 4.1: Left: the height of a homotopy between homotopic curves γ0 and γ1
measures the maximum amount an intermediate curve must stretch during the
homotopy. Homotopies minimizing this amount of stretch measure the homotopy
height. Right: the width of a homotopy measures the maximum length of a “slice”
of the homotopy connecting the two boundary curves. Homotopies minimizing
the length of this slice measure the homotopy width, also known as the homotopic
Fréchet distance.

A closely related problem also arises as a combinatorial question in lattice the-
ory as a b-northward migration [13], where the authors leave monotonicity of such
migrations as an open question. Our result [27] on the monotonicity of optimal
homotopies also holds in more geometric settings. One such geometric setting
concerns morphing across a polygonal domain in Euclidean space with weighted
point obstacles. This setting is examined in Chapter 5.

Relations to graph searching and width parameters. The current chapter also
connects to sweep and search parameters in graph theory; see for example [57]
for a survey of this topic. In each variant, the goal is to find or isolate a fugitive
using the minimum number of searchers. For example, in the node searching
variant, the fugitive hides on edges. Initially, all edges are a contaminated in the
sense that they are a candidate location for the fugitive, and the searchers clear
an edge if two are on its two neighboring vertices. In this variant, edges can be
recontaminated if they are connected to a contaminated edge by a path without
searchers. If moving the searchers allows all edges to be decontaminated, the
fugitive can be found and the number of searchers suffices.

One key issue in these graph searching problems is precisely that of monotonic-
ity, or of determining whether in an optimal strategy, edges get recontaminated.
In the node searching variant, monotonicity was established by Lapaugh [71], and
the argument was simplified by Bienstock and Seymour [11]. One important corol-
lary to monotonicity for these games is that it immediately shows the problem lies
in NP, since a strategy can be certified by the list of edges cleared.

Our homotopy problem is quite similar to these graph parameters; sweeping
a surface using a curve while keeping its length small is intuitively quite similar
to blocking in a fugitive. However, our problem does display minor technical dif-
ferences with the aforementioned variant – most notably, our setting is naturally
edge-weighted and the cost is measured on the edges and not the vertices – the
key difference is the one of connectedness, as node-searching games may allow for
disconnected strategies. An important variant of node searching, called connected
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node searching, requires additionally that the decontaminated space remains con-
nected, but makes no restriction on the contaminated space.

Connected variants of various graph parameters give rise to connected path-
width [45] and connected treewidth [58], but in contrast to our homotopies, these
parameters are only connected “on one side”, which makes them incomparable.
We believe that the “doubly-connected” aspect of homotopy height makes it a
worthwhile new graph parameter which could offer insights to other parameters
in this area.

For graph searching problems, the main argument to establish monotonicity
does not maintain connectivity [11], and it was proven that for connected node
searching, it may indeed be necessary to use a non-monotone strategy [91]. By
contrast, Theorem 4.4 establishes monotonicity of the optimal homotopy in our
setting, and the arguments differ radically from the ones of Lapaugh and Bien-
stock and Seymour. As such, we identify in this chapter a new variant of graph
searching which is in NP.

In this chapter, we introduce the Minimum Height Linear Layout problem
which asks to draw an embedded graph with the same embedding such that the
height of the drawing is minimized. This graph drawing problem is closely re-
lated to the minimum cut linear arrangement problem (also known as cut-width).
However, in contrast to the Minimum Height Linear Layout problem which we
show to be equivalent to Homotopy Height, the cut-width problem does not re-
quire any embedding to be preserved. While the cut-width problem is known to
be NP-hard [74], the known reductions rely on changing the embedding of the
input graph, and hence we have not found an immediate reduction to establish
whether Homotopy Height is NP-hard.
Outline of the chapter. After introducing the preliminaries in Section 4.1, we lay
the foundations of our results by explaining the structural theorems we rely on
in Section 4.2. In Section 4.3 we establish surgery lemmas based on the idea of
retractions. Then, in Section 4.4 we prove that Homotopy Height is in NP. In Sec-
tion 4.5 we draw connections with Homotopic Fréchet Distance, and we leverage
these connections to provide an O(log n)-approximation algorithm for Homotopy
Height.

4.1 Preliminaries

Homotopy and Isotopy. Let Σ be a surface, endowed with a cellularly embedded
graph G with n vertices such as in Figure 4.2, and let γ0 and γ1 be two simple
cycles on G bounding an annulus.

A discrete homotopy h between γ0 and γ1 is a sequence of cycles h(ti) with 0 =
t0 ≤ · · · ≤ ti ≤ · · · ≤ tm = 1, with h(t0) = γ0 and h(t1) = γ1 and any two
consecutive paths h(ti) and h(ti+1) are one move apart. The intermediate curves
h(t) are called level curves or intermediate curves. A move is either a face-flip, an
edge-spike or an edge-unspike (flip, spike or unspike, for short).
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Figure 4.2: Example
instance G, based on
an example in [13].

A face-flip for a face F replaces a single subpath p
of h(ti) ∩ ∂F with the path ∂F \ p in h(ti+1). An edge-
spike for an edge u → v replaces a single occurrence of
a vertex u ∈ h(ti) by the path u → v → u consisting of
two mirrored copies of that edge in h(ti+1). Symmetri-
cally, an edge-unspike replaces a path u → v → u of h(ti)
by the single vertex u in h(ti+1). The length ℓ(h(i)) of a
path h(i) is the sum of the weights of its edges (with mul-
tiplicity). The height of a homotopy h is the length of the
longest path h(ti). An optimal homotopy is one that mini-
mizes the height. The homotopy height between γ0 and γ1
is the height of an optimal homotopy between γ0 and γ1.
Figure 4.3 illustrates an optimal homotopy that uses only
face-flips for the instance of Figure 4.2.

3 35 24 24 5 12

h(t5) = γ1h(t0) = γ0 h(t1) h(t2) h(t3) h(t4)

Figure 4.3: An optimal homotopy h of height 35 for the instance of Figure 4.2.

γ0
γ1

Figure 4.4: Dual repre-
sentation of Figure 4.2.

Cross Metric Surfaces. For most purposes, it is more
convenient to think of this discrete model in a dual way,
relying on the cross-metric surfaces [38] which are becom-
ing increasingly used in the computational geometry
and topology literature. In this dual setting, a cross-
metric surface is a surface Σ endowed with a weighted
(dual) graph G∗.

Assuming the primal surface is connected, we obtain
this dual graph by gluing a disk to each boundary com-
ponent, taking the dual graph, and puncturing the ver-
tices corresponding to the added disks, without remov-
ing the adjacent edges. Such that these (dual) edges end
at the boundary of the cross-metric surface instead of at
a vertex, see Figure 4.4.

For a curve γ on Σ with a finite number of crossings with G∗, its length ℓ(γ)
is the weighted sum of the crossings γ ∩ G∗. Now, a homotopy between γ0 and
γ1 is a homotopy in the usual sense, that is, a continuous map h : S1 × [0, 1] → Σ
such that h(·, 0) = γ0 and h(·, 1) = γ1, except that we require that the values of
t for which h(·, t) is not in general position with G∗ are isolated, and each such
curve has at most one such degeneracy1 h(x, t) with G∗. As before, the height of
1Any homotopy can be made so by a small perturbation without increasing the height, so we always
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spike flip unspike

Figure 4.5: Three moves in the primal (left) and dual (right) representation.

a homotopy is defined as the maximal length of an intermediate non-degenerate
level curve h(t). A homotopy is an isotopy if all the intermediate curves are simple.
Given a homotopy h∗ in this setting, we obtain a discrete homotopy h on the pri-
mal graph G on Σ as follows. Pick a curve h∗(ti) in each maximal interval of
non-degenerate curves in h∗ (all curves in such interval have the same crossing
pattern with G∗, and therefore the same length). Let h(ti) be the curve on G
whose sequence of vertices and edges corresponds to the sequence of faces and
edges of G∗ visited by h∗(ti). This model is dual to the previous one, and Fig-
ure 4.5 illustrates how any move (flip, spike or unspike) connects two intermedi-
ate curves h(ti) and h(ti+1). We say a discrete homotopy is an isotopy if it can be
obtained from an isotopy in the dual setting.

4.2 Isotopies and monotonicity of optimal homotopies

We begin by restating and explaining the two structural results that we will rely on.
Introducing the relevant Riemannian background lies outside of the scope of this
chapter, so we will simply advise the uninitiated reader to picture a Riemannian
surface as a surface embedded into R3, where the metric on the surface is the
one induced by the usual Euclidean metric of R3. Thanks to the Nash-Kuiper
embedding theorem (see [65]), this naive idea loses no generality. We refer to
standard textbooks on the subject for more proper background on Riemannian
geometry, for example do Carmo [49].

The first theorem shows that up to an arbitrarily small additive factor, the ho-
motopy of minimal height between two simple closed curves can be assumed to
be an isotopy.

Theorem 4.1 ([36, Theorem 1.1]). Let Σ be two-dimensional Riemannian manifold with
or without boundary, and let γ0 and γ1 be two non-contractible simple closed curves which
are homotopic through curves bounded in length by L via a homotopy γ. Then for any
ε > 0, there is an isotopy γ̃ from γ0 to γ1 through curves of length at most L + ε.

Remark. The non-contractibility hypothesis is required because if M is not a
sphere, contractible cycles with opposite orientations are homotopic but not iso-

consider this hypothesis fulfilled in the remainder of the chapter.



Isotopies and monotonicity of optimal homotopies 61

topic. However, if we disregard the orientations, the result holds in full generality.

This theorem has the following discrete analogue:

Theorem 4.2. Let (Σ, G∗) be a cross-metric surface, and let γ0 and γ1 be two non-
contractible simple closed curves on (Σ, G∗) which are homotopic through curves bounded
in length by L via a homotopy γ.

Then there is an isotopy γ̃ from γ0 to γ1 through curves of length at most L.

The proof is exactly the same as the one of Theorem 4.1, except that it does not
need the ε-slack: this was required to slightly perturb the curves so that they are
simple but in the discrete setting it can be done with no overhead.

The second theorem shows that, when the starting and finishing curves of a ho-
motopy are the boundaries of the manifold, there exists an optimal homotopy that is
monotone, i.e., that never backtracks, once again up to an arbitrarily small additive
factor. Formally, if γ is an isotopy (which we can assume the optimal homotopy to
be, by Theorem 4.1) between γ0 and γ1, for 0 ≤ t ≤ 1, the curves γt and γ1 bound
an annulus At. Then the isotopy γ is monotone if for t < t′ < 1, γt′ is contained
in At.

Theorem 4.3 ([27, Theorem 1.2 and the following paragraph]). Let M be a Rieman-
nian annulus with boundaries γ0 and γ1 such that there exists a homotopy between γ0
and γ1 of height less than L. Then there exists a monotone homotopy between γ0 and γ1
of height less than L.

Note that the ε-slack of Theorem 4.1 is also present here but is hidden in the
open upper bound of L. In this theorem, as was observed by Chambers and Rot-
man [37], crediting Liokumovitch, the hypothesis that the manifold is entirely
comprised between both curves is necessary: see [37, Figure 5] for a counter-
example.

In the discrete setting, the corresponding result is the following, where the
definition of monotonicity is the same:

Theorem 4.4. Let (Σ, G∗) be a cross-metric annulus with boundaries γ0 and γ1 such
that there exists a homotopy between γ0 and γ1 of height L. Then there exists a monotone
isotopy between γ0 and γ1 of height L.

The proof is exactly identical to the one in the Riemannian setting and it yields a
slightly stronger result, since the cross-metric setting removes the need for pertur-
bations and thus the need of an ε-slack.
Remark. Observe that the discrete theorems are in some way more general than
the Riemannian ones: not only do they bypass the need for some ε-slack, but they
also directly imply their Riemannian converses by the following reduction. Start-
ing with a Riemannian surface, and a (non-monotone) isotopy between two dis-
joint curves, one can find a triangulation of the surface allowing, at an ε-cost, to
approximate the isotopy using only elementary moves. After making this isotopy
monotone in the discrete setting, it can be translated back into a monotone isotopy
in the Riemannian setting by interpolating between the face and edge moves.
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4.3 Retractions and pausing at short cycles

In this section, we establish several technical lemmas which are necessary for
our proofs in the next section. For simple closed curves β and γ that bound
an annulus, denote that annulus by A(β, γ). Let S(β, γ) be the set of closed
curves in A(β, γ) homotopic to boundaries β and γ, that do not intersect homo-
topic curves of shorter length. Then, for any point p ∈ α ∈ S(β, γ), α is a
shortest closed path through p in its homotopy class. Let G(β, γ) be the set of
minimum length simple closed curves homotopic to the boundaries of A(β, γ),
then G(β, γ) ⊆ S(β, γ).

We now introduce the concept of a retraction of a homotopy, which gives a way
to shortcut a homotopy at a given curve, provided it is a curve of S(β, γ). This
idea is implicit in Chambers and Rotman [37, Proof of Theorem 0.7], and we refer
to their article for more details. For a monotone isotopy h between boundaries
of an annulus A, and a homotopic annulus A′ ⊂ A, define the retraction h|A′

(t)
of h(t) to A′ as the same curve with each arc of h(t) \ A′ replaced by the shortest
homotopic path along the boundary of A′. Although paths along ∂A′ (dis)appear
discontinuously as t varies, h|A′ can be obtained in the form of a discrete homotopy
by (un)spiking these paths as they (dis)appear. The resulting homotopy h|A′ is a
monotone isotopy.

Lemma 4.1. If α ∈ S(α, γ) and A(α, γ) ⊆ A(β, γ), and h is a monotone isotopy from β

to γ of height L, then h|A(β,α) is a monotone isotopy from β to α with height at most L.

Proof. The retraction h′ = h|A(β,α) is a monotone isotopy from h′(0) = β to h′(1) =
α. Let t′ be the maximum t for which h(t) intersects A(β, α). For t ≥ t′, we
have h′(t) = α and therefore |h′(t)| = |α| ≤ |h(t′)| ≤ L. For t ≤ t′, each arc a
of h(t) \ A(β, α) is replaced in h′(t) by a homotopic path b along α with |b| ≤ |a|,
and thus |h′(t)| ≤ |h(t)| ≤ L. Hence height(h′) ≤ L.

Lemma 4.2. If α ∈ S(β, γ), and h is a monotone isotopy from β to γ of height L, then
there is a monotone isotopy from β to γ of height at most L having α as a level curve.

Proof. We have α ∈ S(α, β) and α ∈ S(α, γ). So by Lemma 4.1, the monotone
isotopies h|A(β,α) from β to α and h|A(α,γ) from α to γ have height at most L and
can be composed to obtain a monotone isotopy from β to γ of height at most L
with α as a level curve.

Lemma 4.3. Let Π = {π1, . . . , πm} be a set of paths from γ0 to γ1 without proper
pairwise intersections, where each πi is a shortest homotopic path in A(γ0, γ1) between
its endpoints. If h is a monotone isotopy from γ0 to γ1 of height L, then there exists a
monotone isotopy of height at most L whose level curves all cross each πi at most once
(after infinitesimal perturbations).

Proof. Denote by c(a, b) the number of proper intersections of curves a and b, and
by cΠ(a) = ∑π∈Π c(a, π) the total number of intersections of a with Π. Let Ch =
maxt cΠ(h(t)) be the maximum total number of intersections over all t, and let Ih
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be the set of maximal intervals (τ0, τ1) with cΠ(h(t)) = Ch if t ∈ (τ0, τ1) ∈ Ih.
If Ch = m, each level curve of h crosses each πi exactly once and we are done, thus
we assume in the following that cΠ(h(0)) = cΠ(h(1)) = m < Ch.

If Ch > m, we obtain a homotopy h′ from h with Ch′ < Ch by, for each in-
terval (τ0, τ1) ∈ Ih, replacing subhomotopy h|(τ0,τ1)

of h by some h∗ = h′|(τ0,τ1)
with Ch∗ < Ch.

Consider a single interval (τ0, τ1) ∈ Ih and let A = A(h(τ0), h(τ1)). Then Π ∩
A consists of Ch subarcs of Π, each connecting the two boundaries of A. For t ∈
(τ0, τ1), h(t) intersects each such arc exactly once, and each h(t) intersects these
arcs in the same order. Among the components of A \ Π, there is a disk D0
bounded by one arc of h(τ0) and two arcs of πi ∩ A, and a disk D1 bounded by
one arc of h(τ1) and one arc of πj, such that these disks contain no other arcs of Π.
We can find α ∈ G(h(τ0), h(τ1)) that intersects any arc of A ∩ Π at most once (in

π1

π2

π3

γ0

γ1

h(τ0)

h(τ1)

α

D0

D1

Figure 4.6: Choosing α such that Ch∗ < Ch.

the same order as h(t)), and does not intersect the interiors of D0 and D1 (because
the two arcs of Π on their boundary form a shortest path). Then cΠ(α) < Ch and
the retraction h0 = h|A(h(τ0),α) has Ch0 < Ch, since any arc h0(t) has fewer intersec-
tions than h(t) has with Π (in particular with the boundary of D1). Symmetrically,
for h1 = h|A(α,h(τ1)) we have Ch1 < Ch. Since the composition h∗ = h0h1 is a homo-
topy from h(τ0) to h(τ1) with Ch∗ < Ch and height at most L (by Lemma 4.2), we
can use this as a replacement for h|(τ0,τ1)

in h′. By induction, we obtain a homotopy
of height at most L whose level curves all cross each πi at most once.
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4.4 Computing homotopy height in NP

In this section, we show that in the discrete setting, there is an optimal homotopy
with a polynomial number of moves. First, we show that there is a homotopy that
flips each face exactly once.

Lemma 4.4. For an annulus (Σ, G) bounded by γ0 and γ1, there is a homotopy of mini-
mum height between γ0 and γ1 that flips each face of G exactly once.

Proof. By Theorem 4.4, some homotopy h of minimum height is a monotone iso-
topy. For two consecutive level curves h(t) and h(t′) in a monotone isotopy, the
move between h(t) and h(t′) flips face F if and only if F lies in A(h(t′), γ1) or
A(h(t), γ1) but not both. Because A(h(0), γ1) contains all faces, and A(h(1), γ1)
contains none, each face is flipped at least once. By monotonicity, we have for 0 ≤
t′ < t ≤ 1, that A(h(t′), γ1) ⊇ A(h(t), γ1). So, if face F does not lie in A(h(t), γ1),
it will not be flipped again in h|(t,1]. Hence each face is flipped exactly once.

It remains to show that each edge is involved in a polynomial number of spike and
unspike moves; note that this does not directly follow from monotonicity, since a
second spike of the same edge does not violate monotonicity (as can easily be seen
in the dual setting).
Postponing spikes. Before we bound the number of spike moves, we transform an
optimal monotone isotopy h into one where each spike move is delayed as much
as possible, and each unspike move happens as soon as possible. We explain this
transformation in the dual setting.

Suppose a spike move occurs for edge e between h(ti) and h(ti+1), then de-
note by s the (unique) arc of A(h(ti), h(ti+1)) ∩ G∗ both of whose endpoints lie
on h(ti+1). This arc is a subarc of the dual edge e∗. Consider the maximum j > i,
for which the component sj of e∗ ∩ A(γ0, h(tj)) containing s has both endpoints
on h(tj), and for all ti < t ≤ tj, curve h(t) has exactly two crossings with sj (so the
only action performed on arc sj was the spike between h(ti) and h(ti+1)). Then sj
and h(tj) enclose a disk Dj. If the interior of Dj contains no edges of G∗, we can de-
lay the spike of e at least until just before tj, as illustrated in Figure 4.7 (a), where Dj
is shaded.

Depending on what happens in the move between h(tj) and h(tj+1), we may
transform the isotopy further. This move is either (1) an unspike attached to sj,
or (2) a face-flip connected to one endpoint or (3) both endpoints2 of sj, or (4) a
face-flip or spike inside Dj+1. In cases (1) and (2), we cancel the spike against the
unspike or flip, as illustrated in Figure 4.7 (b) and (c). We do not postpone the
spike in cases (3) and (4). Symmetrically, unspike moves can be made to happen
earlier. Observe that these operations cannot increase the height of a homotopy
since each level curve in the resulting homotopy crosses a subset of the edges of
some curve in the original homotopy.

Call a homotopy reduced if it is the result of applying the above rules to h until
no spike can be canceled or postponed until after a flip or unspike, and no unspike
2This happens only if the primal edge is adjacent to only one face of G.
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Figure 4.7: Delaying spikes (a). Canceling spikes against unspikes (b) or faces (c).
Part of a reduced isotopy (d).

can be canceled or be made to happen before any prior flip or spike. Observe that
starting from an optimal monotone isotopy, the reduced isotopy is also an optimal
monotone isotopy. The structure of reduced homotopies is given in Lemma 4.5.

Lemma 4.5. Between any two consecutive face-flips in a reduced isotopy lies a single
(possibly empty) path of unspike moves followed by a (possibly empty) path of spiked moves.

Proof. In a reduced homotopy, no unspike follows a spike move, and any spikes
that remain “surround” the next face-flip (if any), see Figure 4.7 (d). Symmetri-
cally, all unspikes between two consecutive face-flips surround the previous face-
flip (if any). From the primal perspective, these unspike moves form a path from
the previously flipped face and spike moves form a path towards the next flipped
face.

Any reduced homotopy starts with zero or more unspikes from γ0, after which a
possibly empty path of spikes to the first face-flip occurs, then that face is flipped,
and a possibly empty path of unspikes enabled by this flip occurs. Subsequently,
a spiked path, face-flip, and unspiked path occur for the remaining faces. Finally,
a sequence of spikes towards γ1 may occur. We may assume that on γ0 and γ1,
any two consecutive edges are different, such that no immediate unspike moves
are possible from γ0, and no immediate spike moves are possible to γ1. Otherwise
we may by Lemma 4.1 perform those moves immediately without increasing the
homotopy height.
Bounding spike moves. We are now ready to bound the number of spike and
unspike moves in an optimal homotopy. Call a homotopy h good if it is a minimum-
height reduced monotone isotopy and it has a minimum number of moves. By
Theorems 4.2 and 4.4, the height of h is the homotopy height between γ0 and γ1.

Define an edge-spike of an edge e to be between existing copies of e, if the por-
tion of the dual edge e∗ crossed by the (dual) level curve, lies between two existing
crossings of the level curve with e∗, such as in Figure 4.8. We show that such spikes
never appear in h.
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u

v
e

Figure 4.8: Left: (top to bottom) development of a spike between existing copies
of e. Part of the graph in red (dual) and blue (primal) and the level curve in gray
dashed (dual) and black (primal, perturbed). Right: a local surgery that avoids
the spike between copies of e.
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Lemma 4.6. If homotopy h is good, there are no spikes between existing copies of any
edge e.

Proof. Suppose the move from h(ti) to h(ti+1) is the last move between existing
copies of the same edge, and assume this move is a spike of edge e = (u, v) from u
to v. In the dual setting, consider the component π of e∗ ∩ A(h(ti), γ1) that is
crossed by the spike move. This component is highlighted in Figure 4.8, which
illustrates how a developing spike (in the left column) is removed (in the right
column). Let c(t) be the number of crossings of h(t) with π, then for some τ0
between ti and ti+1, c(τ0) = 3, and for some unique τ1 > τ0, c(τ1) = 3 again, and
for τ0 < t < τ1, we have c(t) = 4 (because we assumed this was the last spike
between existing copies of any edge).

For τ0 < t < τ1, label the four crossings of h(t) with π by p1(t), p2(t), p3(t),
and p4(t), in order along e∗, so the spike move at τ0 creates p2 and p3. Consider the
three components C1(t), C2(t) and C3(t) of A(h(t), γ1) \π, such that C1 touches p1
and p2 from the dual face of u, and C2 touches p3 and p4 from the dual face of u,
and C3 touches e∗ in two segments from the dual face of v. Because C3 lies be-
tween C1 and C2, h will first contract either component C1 or C2, namely at h(τ1).
Assume without loss of generality that C2 contracts first.

We modify h|[τ0,τ1]
such that any level curve crosses π at most twice by recon-

necting the neighborhood of π, whose local structure evolves exactly as depicted
in the top row of Figure 4.9. We essentially remove crossings p2 and p3, and re-
connect ∂C1(t)∩ h(t) with ∂C2(t)∩ h(t) using a (zero-length) segment along π in
face u∗. On the other side, consider the arc of ∂C3(t)∩ h(t)∩ v∗ with p4(t) as end-
point. We cut this arc in two subarcs a and b, where a has p4(t) as endpoint, and
connect the other endpoint to the arc of ∂C3(t)∩ h(t) at the endpoint at p2(t) using
a segment along π in v∗. Similarly, we connect the endpoint of that at p3(t) to the
loose end of b. These reconnections are depicted in the bottom row of Figure 4.9.
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p4

p1

p4

p2 p3

p1

p4

p1

p2

p1

p4
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p1

p4

p2 p3
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p4

C1 C3

C2

e∗

Figure 4.9: Top: the neighborhood of e∗ throughout h. Bottom: the reconnected
homotopy, reducing crossings with e∗. From left to right: the homotopy just be-
fore τ0, just after τ0, between τ0 and τ1, just before τ1, and just after τ1.

Observe that the reconnected curves can be made to appear continuously in
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such a way that they form a monotone isotopy. Because level curves only changed
in the neighborhood of π, where they were shortened by avoiding the crossings
with π, we have an isotopy whose height is at most that of h, and in which at least
one spike is removed. So, because h was optimal, we have constructed an opti-
mal monotone isotopy with fewer moves. Therefore, the corresponding reduced
isotopy also has fewer moves, contradicting that h was good.

Our final step towards bounding the number of edge spikes is to derive a con-
tradiction if for some interval [τ0, τ1] without face-flips, an edge e is spiked (or
unspiked) 5 times in h|[τ0,τ1]

. The proof is similar to that of Lemma 4.6.

Lemma 4.7. For a good homotopy h, any subhomotopy h|[τ0,τ1]
contains either a face-flip,

or at most 4 spike (and at most 4 unspike) moves of the same edge.

Proof. Suppose h|[τ0,τ1]
contains no face-flip, then because h is reduced, the spike

moves in h|[τ0,τ1]
form a path σ of spike moves in G. Assume for a contradiction

that some edge e = (u, v) lies on σ at least 5 times. We say two spikes s1 and s2
are consecutive on e∗ if no spike occurs on the arc of e∗ between the first crossing
of s1 with e∗ and the first crossing of s2 with e∗.

Because by Lemma 4.6, h does not contain spikes between existing copies of
edges, we can find three spikes s1, s2 and s3 of e on σ where s1 and s2 as well as s2
and s3 are consecutive on e∗, and s1 happens before s2 and s2 happens before s3.
Let σ0, σ1, σ2 and σ3 be the subpaths of σ such that σ = σ0s1σ1s2σ2s3σ3, also labeled
in Figure 4.10.

To get rid of spike s2, we connect σ0s1σ1 to σ2s3σ3 in an alternative way. Fig-
ure 4.11 illustrates all possible ways s1, s2 and s3 (in the dotted area) can be con-
nected by σ, and how our method will reconnect σ without s2. Formally, to decide
where this reconnection takes place, we consider the components of A(h(τ1), γ1) \
π, where π is the arc of e∗ between its intersections with s1 and s3. There are three
components, component C1 touching π and σ1, component C2 touching π and σ2,
and component C3 touching σ entirely, and touching π in two arcs. The compo-
nent that h contracts first is either C1 or C2 (since C3 lies between the other two).

First consider the case where C1 is contracted first, then the path σ2s3σ3 starts
in the dual face of the endpoint of s2. Note that there is a (zero-length) path be-
tween the start or endpoint of s1 and the endpoint of s2 because s1 and s2 are
adjacent along e∗. Use this zero-length path to connect σ2s3σ3 to σ0s1σ1 at the start
or endpoint of s1 and call the resulting tree λ.

We claim we obtain an optimal monotone isotopy h′ from h by replacing the
spiked path σ by the spiked tree λ, and removing the unspike move of e∗ following
the contraction of C1. Up until the creation of λ, the move sequence is the same as
in h. Since λ contains a subset (all spikes except s2) of the spikes of σ, the spiked
tree can be created without surpassing the height of h. After the creation of σ in h
and λ in h′, locally, the level curves of h and h′ differ only in a small neighborhood
of π, so that all moves of h except those crossing π can still be performed in h′.
Because s2 is the only spike along e∗ that lies between s1 and s3, the next move
that crosses π is the unspike move, call it z, following the contraction of C1. The
level curve of h′ just before z is identical to the level curve of h just after z, so it is



Computing homotopy height in NP 69

s1

s2 s3

σ0

σ1

σ2

σ3

Figure 4.10: Left: A spiked path revisiting the same edge many times. Right: A
local surgery to avoid five spikes of the same edge on a single spiked path.
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Figure 4.11: Cases for shortcutting spiked paths visiting the same edge often. The
neighborhood of the repeated edge is dotted and the component contracted first
is shaded.
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safe to omit move z in h′. All subsequent level curves of h and h′ are identical, so
we conclude that h′ is an optimal monotone isotopy (with fewer moves). Therefore,
the reduced monotone isotopy of h′ has fewer moves, contradicting that h is good.

The proof for the case where C2 contracts first, is symmetrical, except that the
spiked tree λ is created differently. In this case, we define λ to be σ0s1σ1, whose
endpoint is connected to σ2s3σ3 at the start or endpoint of s3. When spiking this
tree, the direction of the spikes on σ2 (and sometimes σ3) is reversed, but this does
not affect the proof.

Thus, in a good homotopy, no spiked path spikes the same edge five times.

Theorem 4.5. For γ0 and γ1 bounding an annulus with n faces and m edges, there is a
homotopy of minimum height that has at most O(mn) moves. Therefore, deciding whether
their Homotopy Height is at most L is in NP.
Proof. Let n be the number of faces, and m the number of edges in G. As a direct
consequence of Lemmas 4.4 and 4.7, there is a good homotopy that spikes each
edge at most 4(n + 1) times and unspikes each edge at most 4(n + 1) times. So
there is a homotopy of minimum height that has at most 8m(n + 1) + n = O(mn)
moves. Testing whether this homotopy indeed has height at most L can be done by
computing the maximum length over its (polynomially many) level curves, each
containing a polynomial number of edges, and comparing this maximum with L.
Given a good homotopy, all of this can be done in polynomial time assuming ad-
dition and comparisons of numbers takes polynomial time.

We note that the Homotopy Height problem can also be defined in slightly differ-
ent settings, for example

• γ0 and γ1 are two paths with common endpoints s and t, such that γ0 ∪ γ1
is the boundary of a combinatorial disk. Then γ0 is homotopic to γ1 with
fixed endpoints, and we are interested in computing the optimal height
of this homotopy. This is the Homotopy Height problem considered by E.
Chambers and Letscher [31].

• There is a single curve γ forming the boundary of a combinatorial disk.
This curve is contractible, and we are interested in computing the optimal
height of such a contraction. This is one of the settings considered in [27].

In both these cases, the Theorems 4.2 and 4.4 have analogues establishing that
some optimal homotopy is an isotopy and is monotone. The rest of our proof
techniques then readily apply, and prove that the Homotopy Height problem in
these cases is also in NP. The next section investigates more distant variants.

4.5 Variants and approximation algorithms

4.5.1 Homotopic Fréchet distance

There is a strong connection between the problem of Homotopy Height and the
problem of Homotopic Fréchet distance, which we now recall. As in [66], our
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setting is the one of a disk D with four points p0, q0, q1 and p1 on the boundary,
connected by four disjoint boundary arcs γ0, γ1, P and Q, with γ0 from p0 to q0; γ1
from p1 to q1; P from p0 to p1; and Q from q0 to q1, see Figure 4.12, left. A homotopy
between γ0 and γ1 is a series of elementary moves connecting curves of D with
one endpoint on P and the other on Q, where the collection of curves starts at γ0
and ends at γ1. The Homotopic Fréchet distance between P and Q is the height
of a homotopy between γ0 and γ1 of minimal height. The common intuition for
this distance is that it is the minimal length of a leash needed for a man on P to
walk his dog along Q, where the leash may stretch but cannot be lifted out of the
underlying space.

We note that this is slightly different than the original setting for homotopic
Fréchet distance in the original work [29], where an exact algorithm is presented
for the plane minus a set of polygonal obstacles. In the original work, the start
and end leashes are not fixed, and in fact the bulk of the work is in determining
an optimal relative homotopy class in order to find the best homotopy.

Σγ0 γ1

P

Q

p0
p1

q1

q0

Σγ0 γ1

P

Q

p0
p1

q1

q0

K

v

K

Figure 4.12: The setting of homotopic Fréchet distance.

Proposition 4.6. The Homotopic Fréchet distance problem is in NP.

Proof. We reduce Homotopic Fréchet Distance to Homotopy Height using the fol-
lowing construction. We add a vertex v and edges of weight K between this vertex
and all the vertices of the paths P and Q, where K is a constant greater than the
sum of the weights of the edges of the disk, as well as all the intermediate triangles,
see Figure 4.12, right. This results in a pinched annulus A, with two boundaries
γ′

0 and γ′
1 obtained from the paths γ0 and γ1, both completed into closed curves

using the additional vertex v. We claim that an optimal homotopy between γ0 and
γ1 translates into an optimal homotopy in A between γ′

0 and γ′
1, and vice-versa.

Indeed, by Lemma 4.3, there exists an optimal homotopy in A such that any in-
termediate curve crosses the shortest path between γ′

0 and γ′
1 exactly once, and in

our case the shortest path is the zero length path starting and ending at the vertex
v. Furthermore, if the weight K is big enough, the level curves of an optimal ho-
motopy between γ′

0 and γ′
1 will always use exactly two of the edges of weight K,
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since two are needed but any more would be too expensive. Thus, an optimal ho-
motopy between γ′

0 and γ′
1 translates directly into an optimal homotopy between

γ0 and γ1 after cutting on v and removing the edges linked to v and vice-versa.
The homotopy height is increased by exactly 2K in this translation.

Har-Peled et al. [66] provide an algorithm to compute in O(n log n) time a ho-
motopy of height O(d log n), where d is a lower bound on the height of an opti-
mal homotopy, and n is the complexity of Σ. In particular, one can set d to be
the maximum of ∥γ0∥, ∥γ1∥, the diameter of Σ, and half of the total weight of
the boundary of any face. This yields an O(log n)-approximation for Homotopic
Fréchet distance3. We show here that their algorithm can be adapted to yield an
O(log n)-approximation for Homotopy Height.

Proposition 4.7. One can compute in O(n log n) time an O(log n)-approximation of
Homotopy Height.

Proof. Starting with an annulus and two boundary curves γ0 and γ1, we first com-
pute a shortest path P between the boundary curves γ0 and γ1 and cut along P
to obtain a disk D. This brings us to the setting of Homotopic Fréchet Distance,
and we can apply the aforementioned algorithm and obtain a homotopy h. In or-
der to recover a homotopy between γ0 and γ1, we glue back the disk along P into
an annulus, and the level curves of h are completed into closed curves by using
subpaths of P , this gives us a homotopy h′. It remains to show that this is an
O(log n)-approximation of the optimal homotopy. By Lemma 4.3, some optimal
homotopy between γ0 and γ1 has level curves cutting P exactly once. Thus, the
height L of an optimal homotopy in the disk D is a lower bound for the height of an
optimal homotopy in the annulus A. Furthermore, each level curve γt of h′ consist
of two subpaths, one being a level curve h(t) of h and the other being a subpath P ′

t
of P . Since P is a shortest path, P ′

t is also a shortest path between its endpoints,
so it is shorter than h(t) since they have the same endpoints. By construction, the
length of h(t) is O(L log n), and thus the length of γt is O(2L log n) = O(L log n).
This concludes the proof.

4.5.2 Minimum height linear layouts

We also show that a seemingly unrelated graph drawing problem is directly equiv-
alent to the Homotopy Height problem. A linear layout is an embedding of a planar
graph where the edges have isolated tangencies with the vertical line, and all the
vertices have distinct x coordinates. The Minimum Height Linear Layout prob-
lem is the following one: Given a planar embedding of an edge-weighted graph
G, find a homeomorphic linear layout of G in R2 such that the maximal weight
of the vertical lines is minimized. Here, the weight of a vertical line is the sum of
the weights of the edges that it crosses, and (similarly to the cross-metric setting),
vertical lines crossing tangent to the edges or crossing vertices are not counted.
3This algorithm assumes triangular faces, but using our definition of d, one can extend the algorithm
of [66] to also work with polygonal faces.



74 Computational Complexity of Optimal Homotopies

Theorem 4.8. The Minimum Height Linear Layout problem is equivalent to the Ho-
motopy Height problem.

3 35 24 24 5 1230

20 20

10

Figure 4.13: Dual representation of Figure 4.2 (left) and Figure 4.3 (right).

Proof. Indeed, a linear layout of a planar graph G naturally induces a discrete ho-
motopy sweeping its dual graph G∗. More formally, we drill a small hole around
the vertex dual to the outer face of G, and we view its complement as a disk D
which is a cross-metric surface for the graph G. Since the hole was drilled in the
middle of the face of G, its boundary has zero length. We pick two arbitrary ver-
tices s and t on it, which cuts the boundary into two paths L and R. Then we claim
that a minimum height linear layout of G is equivalent to a homotopy of minimum
height between L and R (where the endpoints are fixed)4. Indeed, whenever the
sweep of R2 induced by the vertical lines crosses an edge or passes a vertex, by
the dual interpretation of homotopies with cross-metric surfaces outlined in the
preliminaries, it amounts to doing a face or an edge move, and thus the whole
vertical sweep defines a homotopy between the two paths L and R. Furthermore,
this homotopy is an isotopy, since the vertical lines are simple, and a monotone
one since they only go in a single direction. Conversely, a discrete homotopy of
optimal height between L and R can be “straightened” into a linear layout: by The-
orem 4.4, one can assume such a homotopy h to be an isotopy and to be monotone,
and therefore the succession of dual moves of h with respect to G are homeomor-
phic to a sweep of G by vertical lines, as pictured in Figure 4.13. An optimal homo-
topy amounts, via this homeomorphism, to a minimum height linear layout.

In particular, the Minimum Height Linear Layout problem is in NP and admits an
O(log n)-approximation algorithm.

4.6 Discussion

Using the recent results on the monotonicity of optimal homotopies, we have
shown that computing Homotopy Height is in NP, which was an open problem
posed by Har-Peled et al. [66]. The equivalent problem of Minimum Height Linear
Layout and the related problem of Homotopic Fréchet distance are also in NP.
For the Homotopic Fréchet distance an efficient factor O(log n)-approximation
4The point of the somewhat artificial construction with L and R is to force the homotopy to go through
the outer face of G at all times.
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algorithm was known, and it turns out that this algorithm also provides a factor
O(log n)-approximation to the Homotopy Height and Minimum Height Linear
Layout problems.

An interesting open question is whether any of these problems admit poly-
nomial time constant-factor approximation algorithms. In fact, it remains open
whether these problems are hard to compute exactly, despite the fact that related
problems such as cut-width are known to be NP-hard.





5
Optimal Homotopies over a

Spiked Polygonal Plane
In this chapter we study a problem similar to that of Chapter 4. The problem stud-
ied in this chapter is simpler in the sense that the surface over which our curves
move is mostly flat. In particular, our surface no longer has a cellular represen-
tation, and consequently, the homotopies considered in this chapter require the
curves move continuously rather than in discrete steps.

Our input is a polygonal domain with point obstacles and two curves on the
boundary of the domain. Throughout the homotopy, the intermediate curves are
allowed to pass over the point obstacles, albeit for a fixed cost for each obstacle.
This is in contrast to [29], where the goal is to find a homotopy from one polyline
to another, such that the intermediate curves of the homotopy avoid the point ob-
stacles. In this chapter, we hence refer to the point obstacles as spikes to reinforce
the intuition that encountering them is costly, but that they do not form impass-
able barriers. Our goal is to minimize the cost of the most expensive intermediate
curve (also called a leash) in a homotopy between two polylines that are part of
the boundary of our polygon. The cost of a leash is defined as its length plus the
cost of the spikes it encounters. We consider both variable-cost spikes and unit-
cost spikes, and describe several structural results as well as algorithms. In the
following we first introduce some necessary definitions which allow us to state
our our results more precisely.

f

g

γ0

γ1

R

Figure 5.1: Polygonal domain
R bounded by polylines f ∪
g ∪ γ0 ∪ γ1. K in red squares.

Definitions and problem statement. Consider
four polylines f , g, γ0, γ1 : [0, 1] → R2 (possibly
of length 0) in the plane that are interior-disjoint,
with f (0) = γ0(0), f (1) = γ1(0), g(0) = γ0(1),
and g(1) = γ1(1), and whose union bounds a sim-
ple polygonal domain R of n vertices. Let K ⊂ R
be a finite set of k point-obstacles which we call
spikes (see Figure 5.1). The cost of a spike is given
by a function w : K → R≥0. We assume that spikes
lie in general position in the sense that no three
spikes lie on the same geodesic in R. Standard per-
turbation techniques (as also described below) can
lift this assumption.
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Let Γ be the family of simple curves in R from f to g; i.e. all curves γ : [0, 1] → R
with γ(0) ∈ Im( f ) and γ(1) ∈ Im(g). A homotopy on R from γ0 to γ1 is a contin-
uous map h : [0, 1] × [0, 1] → R with h(0, ·) = γ0, h(1, ·) = γ1. All homotopies
we consider have h(t, ·) ∈ Γ for all t ∈ [0, 1]. With slight abuse of terminology,
we refer to these simply as homotopies. We call a homotopy monotone if it is injec-
tive after infinitesimal perturbation. We refer to each curve γt : p 7→ h(t, p) as the
leash of h at time t, and define the cost of a leash as its length plus the total cost of
spikes in K (with multiplicity) it encounters. The cost of a homotopy is the cost of
its maximum-cost leash. We are interested in the minimum-cost homotopy on R
from γ0 to γ1 and refer to the cost of this homotopy as the homotopy height from γ0
to γ1 on (R, K, w).

f

g

γ0

γ1

D
γ

Figure 5.2: Disk D is convex
relative to R. γ is backwards-
but not forwards-convex.

For two curves γ and γ′ from a mono-
tone homotopy, denote the region between them
by R(γ, γ′); that is, R(γ, γ′) is the (possibly degen-
erate) topological disk bounded by γ, γ′, the arc
of f between γ(0) and γ′(0), and the arc of g be-
tween γ(1) and γ′(1). For a simple curve γ ∈ Γ,
define its swept region as R(γ0, γ) and symmetri-
cally define its unswept region as R(γ, γ1). We call
a region D ⊆ R convex relative to R if for any
two points in D, the shortest path in R connect-
ing those points also lies in D [86]; for this defini-
tion we do not not charge the additional cost of any
spikes. A curve γ ∈ Γ is forwards-convex if it lies on the boundary of a region D con-
vex relative to R, and D is contained in the swept region of γ. Symmetrically, γ
is backwards-convex if it lies on the boundary of a region D convex relative to R,
and D is contained in the unswept region of γ (see Figure 5.2). A curve may be
both forwards- and backwards-convex; a shortest path is always both.

f

g

γ0

γ1

γ

Figure 5.3: The convex hull
ghR(γ) of a curve γ ∈ Γ.

Region R is convex relative to itself, and the in-
tersection of any two convex sets relative to R is
also convex relative to R. For γ ∈ Γ define its con-
vex hull (also known as geodesic hull) ghR(γ) rela-
tive to R as the unique minimal region containing
γ which is convex relative to R (see Figure 5.3).

Consider a homotopy h that contains a leash
γt that crosses several spikes. Infinitesimal pertur-
bation of the leash at the spikes ensures that γt
no longer crosses a spike, but forces the leash into
some homotopy class. In particular, this has two
implications: (1) as the perturbation tends to zero,
this has no effect on the length of the leash and thus, strictly speaking, the op-
timal homotopy is an infimum rather than a minimum if the given leash is the
maximum-cost one in the optimal homotopy; (2) we can decompose a single leash
crossing a number of spikes into a homotopy crossing each spike separately, es-
sentially holding the leash fixed. Hence an optimal homotopy exists that crosses
spikes one by one.
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Results and organization. We consider various settings of a spiked plane with
polygonal boundary. In Section 5.1, we investigate the general setting where each
spike may have a different cost. First, we consider the number of inflection points
that the leash may need in an optimal homotopy and present a lower bound that
is linear in the number of spikes, even if R is convex and only f has positive length.
We then present a 2-approximation algorithm for the general case and an optimal
algorithm for computing the homotopy height for the case that f and g have length
0 (i.e., γ1 and γ2 together form the boundary of R).

In Section 5.2, we consider the setting where all spikes have the same unit
cost. Here we present our main result: an algorithm to compute the exact homo-
topy height in polynomial time. The algorithm combines structural properties of
homotopies arising from the geometry with methodology for computing Fréchet
distances. To the best of our knowledge, these are the first polynomial-time algo-
rithms to compute the exact homotopy height in any setting.
Related work. As also used extensively in Chapter 4, we make use of our re-
cent result [27] for the results of Section 5.2. The result—which readily transfers
to our setting—states that there exists a minimum-cost homotopy between the
boundaries of an annular surface that is an isotopy, and monotone: leashes of the
homotopy never move backwards.

Homotopy height was introduced independently in the computational geom-
etry community [31] and in the combinatorics community [13]. On triangulated
surfaces, the best known algorithm gives an O(log n)-approximation, where n is
the complexity of the surface [66]. More recently, it has also been studied in more
general settings, where instead of having point obstacles, obstacles are modeled
by assigning a non-Euclidean metric to R [35, 36, 37], see also Chapter 4.

The classic algorithm for computing the Fréchet distance runs in O(n2 log n)
time [5], and many variants and approximation algorithms have been studied
since. The geodesic and homotopic Fréchet distance are particularly related to
our setting. The former is a variant where the leashes must stay inside a polygo-
nal boundary and remain geodesic, but no obstacles are present inside the poly-
gon [40]. For the latter, point or polygonal obstacles are given which no leash may
cross: this case can be solved in polynomial time [29].

Optimal homotopies have also been studied in a variety of other settings. From
the topology end, minimum-area homotopies can be computed for planar or sur-
face embedded curves in polynomial time [34, 56, 79]. Minimum-area homolo-
gies are a closely related similarity measure on curves that can be computed very
quickly using linear algebra packages [33, 47], but the resulting deformations are
not as intuitive as homotopies.

In the computational geometry and graph drawing communities, much work
has been done on computing morphs between inputs. In such morphs, the ver-
tices of a graph tend to move while the edges remain straight. However, the
present literature on morphing rarely incorporates obstacles. It is well known
that any two drawings of the same planar graph can be morphed to each other.
Optimal morphs between such graphs are still being studied, including work that
bounds the complexity of the morph [6, 7]. However, none these morphs bound
the length of any of the leashes tracing the paths of vertices during the morph.
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Morphs based on geodesic width [53] force all intermediate curves to not cross
the input curves (which are part of the boundary polygon in our setting). Dy-
namic time warping and related concepts [52] also consider ways to match and
morph curves, but again do not naturally extend to more general settings.

5.1 Variable-cost spikes

In this section, we consider the setting where each spike may have a different cost.
As we prove, the variable costs have a profound effect on the leash complexity.
Nonetheless, we obtain a general approximation algorithm as well as an optimal
algorithm for a special case.
Leash complexity. We define the complexity of a leash as the number of inflection
points that are not caused by the boundary of R. In particular, the leash complex-
ity needed for an optimal homotopy is defined by the number of spikes that cause
an inflection point. Unfortunately, in the general case, the complexity may be lin-
ear, even when R is convex. Correspondingly, we do not have a polynomial-time
algorithm even when R is convex.

Lemma 5.1. In the worst case, the leash complexity for an optimal homotopy for (R, K, w)
is Ω(|K|), even if γ0, γ1 and g have length 0 and f is convex.

(a) (c)

f

g

k1

kn

fγ0 γ1

(b)

f

g

kn−2

kn

γ1 γ0 = γ1 = gγ0

Figure 5.4: (a) A leash may need linear complexity when considering variable-cost
spikes. (b) Part of the optimal homotopy, after crossing kn up to crossing kn−2. (c)
This even holds in the convex case, with one boundary path and the two initial
leashes having length 0. The closest point and corresponding distance circles are
indicated for each spike.
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Proof. For ease of exposition, we first argue the general case, using the construc-
tion illustrated in Figure 5.4(a). We have n spikes, K = k1, . . . , kn, lined up in
the middle, at vertical distance 1 from each other and f and g; k1 is the highest-
and kn the lowest-positioned spike. Moreover, the odd-numbered spikes have a
closest point on the first half of f and the even-numbered spikes have a closest
point on the second half of f ; these closest points are at distance 0.75. This im-
plies that the optimal leash crossing ki has cost n − i + 1.75 + w(ki). By setting
w(ki) = c + i, all these leashes have the same cost, for suitable constant c > 0,
depending on the longest leash necessary that does not cross a spike. Now, the
homotopy height of this instance is 1.75 + w(kn) = 1.75 + c + n. This requires
the leashes to cross the spikes in the order of their closest points along f , that is,
odd-numbered before even-numbered spikes (see Figure 5.4(b)). When crossing
spike k1, the leash has crossed all other odd-numbered spikes, but none of the
even-numbered spikes. Thus, the leash has a linear number of inflection points, if
we perturb all odd-numbered spikes slightly.

A similar construction can be made when we require that f is convex and γ0,
γ1 and g have length 0. This is illustrated in Figure 5.4(c). The same principle
applies: we position spikes such that their closest point is alternatingly on the left
half and right half of f . By setting the weights appropriately, we can again ensure
that the optimal homotopy must cross the spikes in some order along f and force
a linear number of inflection points.

Algorithms. If f and g collapse onto a point, we can compute the homotopy height
in polynomial time with a greedy algorithm. Interestingly, this contrasts the po-
tential complexity of the problem if γ0 and γ1 and even g collapse onto a point, as
suggested by the lower bound in Lemma 5.1.

γ0
γ1

γmid

Figure 5.5: When f and g
have length 0, a greedy strat-
egy can be applied to shrink
both γ0 and γ1 onto γmid.

Lemma 5.2. We can compute in polynomial time the
homotopy height of (R, K, w), if f and g have length 0.

Proof. Consider the geodesic leash γmid between
f (0) and g(0), ignoring any spikes; see Figure 5.5.
As described below, we greedily shrink γ0 until
we reach γmid. We first compute the geodesic
leash γt between f (0) and g(0) in the same ho-
motopy class as γ0. By definition, γt cannot be
longer than γ0. Then, we cross the minimal-cost
spike k ∈ K ∩ γt, resulting in a cost ∥γt∥ + w(k).
We repeat the process from γt, until we reach γmid.
Analogously, we shrink γ1 to γmid. The maximum
of ∥γ0∥, ∥γ1∥ and all intermediate ∥γt∥+w(k) is the homotopy height of (R, K, w).

As all intermediate leashes from γ0 to γmid are backwards-convex, they never
exceed the length of γ0. In particular, this implies that we cannot make a leash on
some spike k shorter, by first crossing other spikes that are not on the leash but in
the unswept area. In other words, we cannot improve the cost by crossing a spike
k on a geodesic by first crossing spikes that are not on the geodesic. Hence, the
greedy choice is optimal.
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The above proof readily implies that the longest leash in the optimal homotopy is
determined by the initial and final leash, and thus results in the following lemma.
Note that we are interested here only in the geometric length, excluding any spikes.
We capture this in a separate lemma as it supports the unit-cost case, detailed in
the next section.
Lemma 5.3. If l ∈ Γ is backwards-convex and r ∈ Γ is forwards-convex, with l(0) =
r(0), l(1) = r(1), such that l and r together bound a region D convex relative to R,
then there is a monotone homotopy from l to r consisting of only backwards- and forwards-
convex leashes, and whose longest leash has length max{∥l∥, ∥r∥}.

For the general case, there is also a simple 2-approximation achievable, by using
the algorithm for the geodesic Fréchet distance.

Lemma 5.4. We can compute in O(|R|2 log2 |R|) time a 2-approximation of the homo-
topy height of (R, K, w).

Proof. The algorithm computes the geodesic Fréchet distance [40] in R, that is,
ignoring the spikes. Consider the optimal geodesic Fréchet matching µ. We may
extend µ into a homotopy h by infinitesimal perturbation to cross only one spike
at once and by shortening γ0 and γ1 to the geodesics between f (0) and g(0) and
between f (1) and g(1) respectively. We prove that h is a 2-approximation of the
minimal-cost homotopy h∗ including the spikes.

Let c be the longest leash in h and let wmax be the maximal cost of a spike. The
cost of h is bounded by c + wmax. Either c is defined by γ0 or γ1 (which must
be in any homotopy) or c is defined by a leash in µ: in either case, c provides a
lower bound on the maximal leash length in h′. Moreover, h′ must also cross the
maximal-cost spike. Hence, the cost of h′ is at least max{c, wmax}. We now have
that c + wmax ≤ 2 · max{c, wmax}, thus h is a 2-approximation of h∗.

5.2 Unit-cost spikes

r

γ′

γ

l

Figure 5.6: Pockets of γ
with lids on r (shaded).

In this section, we give an algorithm to compute the ho-
motopy height in the case where all spikes have cost 1.
We start by proving properties on the homotopy classes
and lengths of curves in Γ. These properties allow us to
construct for any homotopy, a homotopy of similar cost
with a regular structure. Finally, we show how to de-
cide the existence of such a regular homotopy cheaper
than a given cost in polynomial time.
Shortcutting curves. Consider a curve γ ∈ Γ and
let D = gh(γ) be its convex hull. Let l and r re-
spectively be the backwards- and forwards-convex arcs
of ∂D between the endpoints of γ. Consider an arc φ
of γ \ l or γ \ r. Let φ̄ be the corresponding arc of l or r between the endpoints of φ.
Then we refer to the disk bounded by φ ∪ φ̄ as a pocket of γ, and refer to φ̄ as its lid,
see Figure 5.6. Each lid is a shortest path in R, and the pockets of γ partition D.
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γ
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r′i l′j

Figure 5.7: (a) The curves ri and lj on ∂Di and ∂Dj, respectively. (b) The curves r′i
and l′j obtained after replacing arcs with the geodesic between x and x′. (c) An
example curve γ′ in the homotopy class of r′i that is shorter than γ (dashed).

Lemma 5.5. Let γ and γ′ ∈ Γ be two non-crossing simple curves. Each arc ψ of γ′ ∩
gh(γ) has both endpoints on the same lid of the containing pocket of γ.

Proof. Since the endpoints of γ′ lie on the boundary of R, ψ must have both end-
points on the boundary of its pocket. Since ψ does not cross γ, and the pocket is
bounded by an arc of γ and a lid, the endpoints of ψ lie on the lid.

Consider a forwards- and a backwards-convex curve of Γ. If these curves intersect,
they intersect in at most two points or geodesics, and occur in the same order and
direction along the curves. As such, their first and last point of intersection are
naturally well defined.

Lemma 5.6. Let γi and γj ∈ Γ be two non-intersecting simple curves, and assume γi
lies in the swept region of γj. Let Di = gh(γi) and Dj = gh(γj) be their convex hulls.
Let ri ∈ Γ be the forwards-convex arc of ∂Di and let lj ∈ Γ be the backwards-convex arc
of ∂Dj. If ri and lj intersect, let x and x′ be the first and last points of intersection of ri
and lj. Let r′i and l′j be the curves obtained from ri and lj by replacing their arcs in Di ∩ Dj

by the geodesic between x and x′. If ri and lj do not intersect, let r′i = ri and l′j = lj.
Assume the region between γi and γj contains no spikes in its interior and consider a
third simple curve γ in this region. There is a curve γ′ with the same endpoints as γ
and ∥γ′∥ ≤ ∥γ∥, such that γ′ lies in the homotopy class of r′i and l′j.

Proof. The setup is illustrated in Figure 5.7. We consider three cases illustrated in
Figure 5.8, depending on the number of bends of ri and lj on ∂(Di ∩ Dj) that are
induced by γi and γj.

(a) In the first case, assume there are no such bends on ri or lj, then the interior
of Di ∩ Dj is empty. Since Di and Dj are disjoint, so are the pockets of γi
and γj. If we replace all arcs of γ that lie in pockets of γi or γj by the geodesic
between the endpoints on the corresponding lid, then we obtain a curve γ′

between r′i and l′j with ∥γ′∥ ≤ ∥γ∥. Since there are no spikes between r′i
and l′j, γ′ lies in the same homotopy class as r′i .
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(b) In the second case, assume either ri or lj has no such bend on ∂(Di ∩ Dj), but
the other has at least one bend. Without loss of generality, assume that ri has
at least one bend. If lj has one, a symmetric argument applies. We replace γ

by a curve that passes through both x and x′. If γ does not pass through x
already, then let φ̄ and ψ̄ be the lids of pockets of γi and γj, respectively,
that intersect in x. It is also possible that φ̄ is an edge of γi; the proof is
then similar. Denote by a the arc φ̄ \ Dj, by a′ the arc φ̄ ∩ Dj and by c the
arc ψ̄ \ Di. For the lids φ̄′ and ψ̄′ of ri and lj crossing in x′, denote by b the
arc φ̄′ \ Dj, by b′ the arc φ̄′ ∩ Dj and by d the arc ψ̄′ \ Di, see Figure 5.8 (b).

We claim that γ crosses either c, or both a and a′. If γ crosses c, we are
done, so assume it does not. As a ∪ c connects γi and γj, γ must cross a ∪ c
(and therefore a) an odd number of times to connect f and g. Lemma 5.5
implies that γ crosses a ∪ a′ an even number of times. Hence, a′ is crossed
an odd number of times. We can thus find an arc of γ with endpoints on a
and a′, and since this arc does not cross c, it lies in the pocket of φ̄. Replace
this arc by the arc of φ̄ between those endpoints, which is a shortest path
in R that passes through x. We now have a curve with the same endpoints
as γ that passes through c or x, and this curve is not longer than γ. We
allow the resulting curve to cross γi and γj along φ̄, however the resulting
curve contains a subcurve of γ that connects a, a′ or c to g. Analogously, we
can replace this subcurve by a curve that crosses either x′ or d. This yields
a curve from f to g that passes through c or x, and then through x′ or d.
Since lj has no bends, c and d lie on the same lid, which passes through x
and x′. Since this lid is a shortest path, we can replace the subpath between c
or x and x′ or d by a shortest path in R that passes through both x and x′.

The portions of the curve before x and after x′ can be shortcut using the
techniques of case (a) such that they lie between lj and ri and not in Di ∩ Dj.
This yields a curve γ′ in the homotopy class of r′i with the same endpoints
as γ, and ∥γ′∥ ≤ ∥γ∥.

(c) In the final case, both ri and lj have bends on ∂(Di ∩ Dj). As before, we
shortcut γ such that it first passes through x and then through x′. Let the
arcs a, a′, c be as before, and let c′ be the arc ψ̄ ∩ Di. As a ∪ a′, as well
as c ∪ c′ are crossed an even number of times, but a ∪ c is crossed an odd

(b)

b′
b d

a
a′

c

(c)

c

c′ a
a′

(a)

Figure 5.8: The three cases of Lemma 5.6. Di ∩ Dj shaded.
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number of times, we have that either both a and a′, or both c and c′ are
crossed by γ. Replacing the arc between the crossings by the shortest path
on the corresponding lid yields a path through x with length at most that
of γ. Similarly, we can replace the remainder of the resulting path to also
pass through x′. From here, we can use the same technique as in case (b) to
obtain a curve γ′ in the homotopy class of r′i with the same endpoints as γ,
and ∥γ′∥ ≤ ∥γ∥.

5.2.1 Regular homotopies

f

g

γ0

γ1

Figure 5.9: A decomposed ho-
motopy. Subhomotopies Si
shaded green, and Bi shaded
orange.

Let G(a, b) denote the geodesic in R between f (a)
and g(b). Given a homotopy class σ, Gσ(a, b) de-
notes the geodesic between f (a) and g(b) in σ.
For γ ∈ Γ denote its homotopy class by σ(γ). If γ
is a geodesic in R, we say that σ(γ) is a straight
homotopy class.

For an optimal homotopy, we may without
loss of generality start by shortening γ0 into
the geodesic Gσ(γ0)

(0, 0) in its homotopy class,
use an optimal homotopy h from Gσ(γ0)

(0, 0)
to Gσ(γ1)

(1, 1), and end by lengthening the
geodesic Gσ(γ1)

(1, 1) into γ1. The resulting homo-
topy has cost max{∥γ0∥, cost(h), ∥γ1∥}, and the
computational challenge is to efficiently find an
optimal homotopy h.

We call a homotopy from Gσ(γ0)
(0, 0) to Gσ(γ1)

(1, 1) a regular homotopy of or-
der m if it can be decomposed into a sequence of homotopies S0, B1, S1, . . . , Bi, Si,
. . . , Bm, Sm, subject to the following constraints, see also Figure 5.9.

• Si(1) = Bi+1(0) for 0 ≤ i ≤ m − 1 and Bi(1) = Si(0) for 1 ≤ i ≤ m, that is,
the last leash of a homotopy matches the first leash of the next homotopy.

• For each homotopy Bi, the leashes all have the same endpoints on f and g,
but the leashes can move over spikes. Moreover, the longest leash in Bi is
either Bi(0) or Bi(1).

• For each homotopy Si, all leashes are geodesics in a single homotopy class σi,
but the endpoints of leashes can move along f and g.

• The respective homotopy classes of leashes in S0 and Sm are σ0 = σ(γ0)
and σm = σ(γ1).

In Lemma 5.7, we show that there exists a minimum-cost homotopy between
Gσ(γ0)

(0, 0) and Gσ(γ1)
(1, 1) that is a regular homotopy of order at most k. In

Lemma 5.8, we show that each σi (except possibly σ0 and σm) can be assumed to
be a straight homotopy class. For each homotopy Bi, some leash can be assumed
be the geodesic in R between its endpoints.
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For a homotopy h, denote by αh(t) ∈ [0, 1], the position of the start of leash h(t)
in the parameter space of f (such that f (αh(t)) = h(t, 0)). Symmetrically, denote
by βh(t) ∈ [0, 1] the position of the end of that leash in the parameter space of g
(such that g(βh(t)) = h(t, 1)). If h is monotone, then αh and βh : [0, 1] → [0, 1] are
continuous nondecreasing surjections.

Lemma 5.7. Let h be a monotone homotopy from Gσ(γ0)
(0, 0) to Gσ(γ1)

(1, 1) of cost less
than L, then there exists a regular homotopy of cost at most L.

Proof. By monotonicity, as t increases, the number of spikes in the swept region
of γt cannot decrease. Let {t1, . . . , tk} be the minimum value ti for which the swept
region of γti contains at least i spikes. For each leash γti of h, let Di = ghR(γti )
be its geodesic hull, and let li and ri ∈ Γ respectively be the backwards-convex
and forwards-convex curves on the boundary of Di connecting γti (0) with γti (1).
For 1 ≤ i ≤ k, define r′i and l′i+1 respectively to be the curves obtained by replacing
the arcs of ri and respectively li+1 inside Di ∩ Di+1 by the geodesic between the
crossings of li+1 and ri (if any), dashed in Figure 5.10(a). Then l′i lies in the swept
region of r′i , and r′i lies in that of l′i+1. Let r′′i and l′′i be the geodesics with the same
endpoints and homotopy class as r′i and l′i , respectively (see Figure 5.10(b)).

Lemma 5.3 gives us a homotopy Bi from l′′i to r′′i whose leashes have length
at most max{∥l′′i ∥, ∥r′′i ∥}. Including the cost of spikes, the cost of Bi is at most
max{∥l′′i ∥, ∥r′′i ∥}+ 1 + ε (for any ε > 0) by perturbing leashes to each encounter
at most one spike. Because l′′i is a geodesic in the same homotopy class as l′i , we
have ∥l′′i ∥ ≤ ∥l′i∥. Moreover, l′i is a copy of li with a subpath replaced by a shortest
path, so ∥l′i∥ ≤ ∥li∥. Finally, because li lies on arcs of the convex hull of γti , we
have ∥li∥ ≤ ∥γti∥. Therefore ∥l′′i ∥ ≤ ∥γti∥, and by symmetry, ∥r′′i ∥ ≤ ∥γti∥.
Since γti encounters a spike, and the cost of h is less than L, we have ∥γti∥ < L− 1.
Hence, cost(Bi) ≤ max{∥l′′i ∥, ∥r′′i ∥}+ 1 + ε ≤ ∥γti∥+ 1 + ε ≤ L.

Define r′′0 = Gσ(γ0)
(0, 0) and l′′k+1 = Gσ(γ1)

(1, 1). Moreover, let t0 = 0 and
tk+1 = 1. It remains to construct homotopies Si between r′′i and l′′i+1 for 0 ≤ i ≤ k.
Since there are no spikes interior to the region between r′i and l′i+1, they lie in the

ri li+1

γti

γti+1li ri+1

(a) (c)

r′i

l′i+1

l′′i+1

r′′i

(b)

γt

γ′′
t

Figure 5.10: (a) The region between ri and li+1 obtained from the geodesic hulls
of γti and γti+1 . (b) The curves r′i and l′i+1, and the corresponding geodesics r′′i
and l′′i+1 in the same homotopy class. (c) For all ti ≤ t ≤ ti+1, the curve γt lies in
the region between the curves γti and γti+1 .
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same homotopy class, which we denote by σi. To construct a homotopy from r′′i
to l′′i+1, we consider the curves γt with ti ≤ t ≤ ti+1, and replace them by the
geodesic γ′′

t = Gσi (αh(t), βh(t)) in homotopy class σi (see Figure 5.10(c)). These
geodesics move continuously with t, so it remains to show that ∥γ′′

t ∥ ≤ ∥γt∥. This
is not immediate since γ′′

t may lie in a different homotopy class than γt. Instead,
we use Lemma 5.6, which tells us that there is a curve with the same endpoints in
the homotopy class of r′i with length at most that of γt. Because γ′′

t is a geodesic
in the same homotopy class, its length is also at most that of γt.

The straight homotopy classes in R can be enumerated by taking the geodesic
between any two spikes in R, and extending it to the two points on the boundary
of R. It is at these points where the geodesic hits the boundary of R that the
homotopy class of the geodesic between points on the boundary of R changes: one
can slide these points clockwise or counter-clockwise such the geodesic between
them ends up in a different straight homotopy class. There are O(k2) straight
homotopy classes.

Lemma 5.8. For 1 ≤ i ≤ k− 1, we can assume σi to be a straight homotopy class without
increasing its cost.

Proof. Curve ri is forwards-convex and li+1 is backwards-convex, and the end-
points of ri on f and g are not ahead of those of li+1. If ri and li+1 are disjoint,
then we can find a geodesic in R separating ri and li+1, and hence r′′i and l′′i+1. If
they are not disjoint, then the shortest path between their points of intersection lies
on a geodesic between f and g, separating r′i and l′i+1, and hence r′′i and l′′i+1.

5.2.2 Computation

A tool that is commonly used to compute the Fréchet distance is the free space
diagram [5]. This tool captures between which points of f and g the geodesic is
sufficiently short to be used as a leash in a homotopy of a given cost L. Formally,
the free space diagram is defined as F (L) = {(a, b) ∈ [0, 1]× [0, 1] | ∥G(a, b)∥ ≤
L}. More generally, for a given homotopy class σ, we define Fσ(L) = {(a, b) ∈
[0, 1]× [0, 1] | ∥Gσ(a, b)∥ ≤ L} to capture the geodesics in σ of length at most L.

Let Σ be the set of homotopy classes consisting of σ(γ0), σ(γ1), and all straight
homotopy classes. There are 2+O(k2) = O(k2) such homotopy classes, assuming
k ≥ 1. Let h be a regular homotopy of cost at most L, and let ti and t′i be the values
of t in h at which the constituent homotopy Si starts and stops, respectively. For
all t ∈ [ti, t′i], we have ∥h(t)∥ ≤ cost(Si) ≤ L, so (αh(t), βh(t)) ∈ Fσi (L), where σi
is the homotopy class of the leashes in Si. For t ∈ [t′i−1, ti], the leashes h(t) are
part of homotopy Bi, and we even have ∥h(t)∥+ 1 ≤ L, such that accounting for
the spikes the leash passes over, we have cost(Bi) ≤ max{∥h(t′i−1)∥+ 1, ∥h(ti)∥+
1} ≤ L by the construction of Lemma 5.7. Recall that the endpoints of leashes
do not move throughout any homotopy Bi, so αh(t) = αh(ti) and βh(t) = βh(ti)
for all t ∈ [t′i−1, ti]. Additionally, as the construction of Lemma 5.7 preserves
monotonicity, we can assume αh and βh to both be continuous nondecreasing sur-
jections. By Lemma 5.8, we can also assume that each σi lies in Σ. For the sake of
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presentation, since αh and βh are constant in the intervals [t′i−1, ti], we assume from
now on that t′i−1 = ti, and prove that any homotopy with the structure imposed
by Lemma 5.9 can be turned into a regular homotopy of cost L.

Lemma 5.9. We can construct a regular homotopy of cost at most L if we can find ap-
propriate αh, βh, ti and t′i and values of σi ∈ Σ, with the following conditions. Let α
and β : [0, 1] → [0, 1] be continuous nondecreasing surjections. Let σ0 = σ(γ0), σm =
σ(γ1), and σi ∈ Σ for i ∈ {1, . . . , m − 1}. Let 0 = t0 ≤ t1 ≤ · · · ≤ tm+1 = 1.
Then, if (α(t), β(t)) ∈ Fσi (L) for each t ∈ [ti, ti+1], and additionally (α(t), β(t)) ∈
Fσi (L − 1) ∩Fσi+1(L − 1) for each ti with i ∈ {1, . . . , m}, this corresponds to a regular
homotopy of cost at most L.

Proof. We use geodesics of σi for t ∈ [ti, ti+1], and they move continuously. By
Lemma 5.3, we can find a homotopy Bi of cost at most L if the geodesics of σi
and σi+1 based at α(t) and β(t) both have length at most L − 1. Furthermore,
since (α(t), β(t)) ∈ Fσi (L) for each t ∈ [ti, ti+1], we can find a homotopy Si of cost
at most L between σi and σi+1.

Computing free space diagrams. To compute the free space diagram in our set-
ting, we subdivide the edges of f and g in such a way that for each pair of (subdi-
vided) edges, the length of the geodesic can be described as a quadratic function
in two parameters a and b. This subdivision is based on the lines through any
pair of spikes and vertices of ∂R, and finding their projection onto f or g, if any.
In total, this yields subdivided curves f ′ and g′ of O((n + k)2) vertices. Using a
standard rotating sweep around every spike and vertex, we can compute the pro-
jections in O((n + k)2 log(n + k)) time and sort them along every edge of f and g
in the same time, giving the subdivided curves f ′ and g′.

Now, given any straight homotopy class, or the homotopy class of γ0 or γ1, we
compute the quadratic function for each pair of edges (e f ′ , eg′) of f ′ and g′. To this
end, we take a straight homotopy class σ and determine the induced partition of
K into K1 and K2. Then we compute the convex hulls ghR(K1) and ghR(K2) of K1
and K2 relative to the domain R. Using the common inner tangents of ghR(K1)
and ghR(K2) in R we can find all pairs of edges (e f ′ , eg′) of f ′ and g′ for which the
geodesic in σ is straight, and determine the corresponding quadratic functions
(which are ellipses). For other pairs of edges of f ′ and g′, the geodesic contains
vertices of ghR(K1), ghR(K2), and R itself, and their lengths are determined by
a hyperbolic part in a, a hyperbolic part in b, and a constant part (between the
first and last vertices not on f ′ and g′). We fix an edge eg′ of g′ and traverse all
edges of f ′ sequentially, updating the three parts of the quadratic function when
needed. Updates of the constant part happen only at the ends of the geodesic, and
amortized we can do all updates in time linear in the number of parts of f ′, that
is, O((n + k)2).

Hence, we can compute all the quadratic functions for all straight homotopy
classes in time O(k2) (for the straight homotopy classes) times O((n+ k)2) (for the
number of segments of g′) times O((n + k)2) (for the number of segments of f ′).
In total, this is O((n + k)4k2) = O(n4k2 + k6) time. The O(n4 + k4) cells of the free
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space diagram each have O(k2) quadratic functions, at most one for each of the
homotopy classes.
Decision algorithm. For a parameter L, we define the reachable free space as the
set of coordinates (σ, a, b) ∈ Σ × [0, 1] × [0, 1], such that there exist continuous
nondecreasing surjections α : [0, 1] → [0, a] and β : [0, 1] → [0, b], a value m, val-
ues 0 = t0 ≤ t1 ≤ · · · ≤ tm+1 = 1, and homotopy classes σi ∈ Σ with σ0 = σ(γ0)
and σm = σ, such that for each t ∈ [ti, ti+1], we have (α(t), β(t)) ∈ Fσi (L) and for
each i ∈ {1, . . . , m}, we have (α(ti), β(ti)) ∈ Fσi (L − 1) ∩Fσi+1(L − 1). The reach-
able free space corresponds to the classes σ and points f (a) and g(b) that have
a monotone regular homotopy from Gσ0(0, 0) to Gσ( f (a), g(b)) of cost at most L.
Deciding whether a regular homotopy of at most a certain cost L exists is then
equivalent to testing whether (σ(γ1), 1, 1) lies in the reachable free space for pa-
rameter L. We can compute the reachable free space using dynamic programming.
In contrast algorithms for most variants of the Fréchet distance, which need only
information about the free space on the boundary of cells, we also need informa-
tion about their interiors. In our dynamic program, we compute the reachable
free space on the boundary of each cell.

The restriction of the free space to any cell and homotopy class is convex. There-
fore, if a point (σ, a, b) lies in the reachable free space, then for all a′ ≥ a and b′ ≥ b,
in the same cell as (a, b), if (a′, b′) ∈ Fσ(e)(L), then (σ, a′, b′) also lies in the reach-
able free space. Moreover, for σ and σ′ ∈ Σ, if (a, b) ∈ Fσ(L − 1) and (a, b) ∈
Fσ′(L − 1), then (σ, a, b) lies in the reachable free space if and only if (σ′, a, b) lies
in the reachable free space. Our dynamic program starts as follows: for a homo-
topy of cost at most L to exist, check whether (0, 0) ∈ Fσ0(L). If so, (σ0, 0, 0) lies
in the reachable free space, and otherwise the reachable free space is empty. Now
we propagate the reachable free space on a cell-by-cell basis, maintaining for each
cell [a, a′]× [b, b′] and for each homotopy class σ, two pieces of information. First,
the minimum a∗ ∈ [a, a′] for which (σ, a∗, b) lies in the reachable free space (if any);
and second, the minimum b∗ ∈ [b, b′] for which (σ, a, b∗) lies in the reachable free
space (if any). The first piece of information can be propagated to a neighbor-
ing cell [a, a′]× [b′, b′′], and the second piece can be propagated to a neighboring
cell [a′, a′′]× [b, b′].

To propagate this information, we use a horizontal sweep line that maintains
the reachable free space intersecting the sweep line for the cell [a, a′] × [b, b′] in
each of the O(k2) relevant homotopy classes, based on the coordinates (σ, a, b∗)
and (σ, a∗, b) in each of those homotopy classes. Naively, we can propagate this
information in O(k6) time per cell, using the coordinates of the O(k4) intersections
of the boundary of free space cells from different homotopy classes as events for
the sweep line.

After propagating the information through all O(n4 + k4) cells of the free space
in O(n4k6 + k10) time, we can return whether (σ(γ1), 1, 1) lies in the reachable free
space to decide whether there exists a homotopy of cost at most L.
Exact computation. The candidate values for the minimum-cost regular homo-
topy depend on the values of L where the a- or b-coordinates of different inter-
sections align. There are O(((n + k)2k4)2) intersections that can align in this way,
which yields O(n4k8 + k12) critical values, which we can enumerate in O(1) time
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per value. We perform a binary search over these critical values, using linear-
time median finding and running the decision procedure O(log nk) times to find
the minimum cost of a regular homotopy. Doing so, we compute the homotopy
height in O(n4k6 log n + n4k8 + k12) time.

5.3 Discussion

We have shown that in a spiked plane with polygonal boundary, we can compute
the homotopy height between two curves on the boundary in polynomial time for
various cases. In particular, this holds if all spikes have the same (unit) weight, or if
the two curves together form the entire boundary of the domain. We also provide
a 2-approximation algorithm for the general case. We have in addition shown that
intermediate leashes may require many inflection points for an optimal homotopy,
even if the polygonal domain is convex. The complexity of the leash has prevented
us from developing a polynomial-time algorithm, thus it remains open whether
the general case can be solved optimally in polynomial time.
Future work. Various other settings can also be studied. The case where f and g
are not on the boundary of the polygonal domain is a natural first step. However,
the monotonicity [27] that supports our results is not known to hold in this case,
which is likely a premise for efficient optimal algorithms. The algorithm [40] upon
which our approximation algorithm is based does not require f and g to lie on the
boundary. Hence, our approximation algorithm (Lemma 5.4) extends to deal with
the case where γ0 and γ1 are on the boundary, but f or g is not. If the initial leashes
γ0 and γ1 are no longer specified, but can instead by chosen in such a way that
the cost of an optimal homotopy is minimized, we readily get a 2-approximation
algorithm by using the algorithm by Chambers et al. [29] to solve the decision
variant combined with an appropriate search.







6
Concluding Remarks

In this thesis we studied the computational aspects of various similarity measures.
In each case, we optimized an aspect of a continuous deformation between the
compared objects, and measured the similarity of compared shapes based on this
aspect. We considered two such aspects, namely the maximum distance that a
point travels on its way from one shape to the other in Part I, and the size of the
largest intermediate shape throughout the deformation in Part II.

The objects we considered in this thesis were either curves or surfaces, but
the measures we studied for comparing them extend to other shapes as well. Ex-
amples of such shapes could be graphs, or higher-dimensional shapes. However,
one important restriction that is imposed by continuous deformations is that the
compared shapes must be homeomorphic.

In certain cases, it is desirable to meaningfully measure the similarity between
shapes that are not homeomorphic. The field of topological data analysis studies
the comparison of discrete point sets that do not necessarily contain the same num-
ber of points. Along the same lines, we want to be able to meaningfully compare
shapes that are almost homeomorphic, and still strive for some (weaker) sense of
continuity. To this end, we can allow small features that prevent a continuous de-
formation between compared shapes to be collapsed at a small cost. By collapsing
such features, the compared shapes can ideally be transformed into shapes that
are homeomorphic, and can thus be compared using continuous similarity mea-
sures. The contour tree distance as introduced in Chapter 2 is one approach that
can be used to compare shapes that are not homeomorphic, namely trees.

The contour tree distance provides a lower bound on the Fréchet distance be-
tween surfaces of genus 0 equipped with a real-valued function. This lower bound
is computed by computing the contour tree distance between the Reeb graphs of
those functions. We leave it open whether the contour tree distance is actually
equivalent to the Fréchet distance for real-valued functions on spheres. Whereas
for surfaces of genus 0 the Reeb graph will form a tree, this is not necessarily the
case for surfaces of higher genus.

Fortunately, the contour tree distance can be extended to graphs in several
ways, such that it provides a lower bound on the Fréchet distance between real-
valued functions on higher-genus surfaces. Loosely speaking, the freedom in gen-
eralizing the contour tree distance arises in how one allows cycles to be collapsed.
The lower bound that we obtain from such a generalization would ideally be as
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close to the Fréchet distance as possible, using only the information stored in the
Reeb graphs of the compared surfaces.

Moreover, for surfaces equipped with functions to Rd, we can derive real-
valued functions by projecting Rd to an arbitrary line in Rd. For any such line, the
contour tree distance (or its generalizations) form a lower bound on the Fréchet
distance between the original surfaces. Since the Reeb graph views a real-valued
surface simply as a graph, it seems that generalizations of the contour tree distance
will be are lot easier to compute than the Fréchet distance. In fact, since comput-
ing the Fréchet distance between surfaces in Rd is an active area of research, the
proposed lower bounds could provide a viable alternative for comparing surfaces.

Since projecting a surface in Rd onto a single line loses a lot of information,
we propose to extend the contour tree distance further. For a set of multiple such
lines, we wish to find matchings between their respective contour trees in such a
way that the matchings are in some sense compatible. To explain what we mean
by compatible, consider a pair of matched points on two contour trees. This pair
captures (at least) one pair of matched points on a pair of contours on the corre-
sponding surfaces. If we now consider contour trees for a second line, a compat-
ible matching between them would also match a pair of points of the aforemen-
tioned contours (which arose from a different line).

This second extension would provide a more tight lower bound for the Fréchet
distance, albeit at a computational cost. It is very appealing that, depending on
how closely the generalization of the contour tree distance matches the Fréchet
distance, Reeb graphs of non-homeomorphic surfaces can be compared this way.

Similar to how generalizations of the contour tree distance could be used to
compare shapes that are not homeomorphic, we can ask how homotopy height
can be generalized in order to compare different shapes. For this, we can use a
different way of moving between the compared shapes. In the setting of curves
on surfaces, we allow closed curves (or spheres in general settings) to emanate and
disappear at points. Moreover, when two closed curves collide at a point, we can
reconnect the two curves into a single one at the point of collision. Symmetrically,
we allow splitting a single curve in two using reconnections at a point on the curve.

The moves described above give rise to the homology height parameter, which
minimizes the total length of the longest intermediate set of curves throughout
the motion. Homology height allows for the comparison of homologous cycles.
Whereas it remains open whether computing the homotopy height between two
curves bounding an annulus is NP-hard, it can be shown that computing homol-
ogy height is NP-hard using a simple reduction from cut-width [74].

A second type of generalization of homotopy height concerns homotopies be-
tween higher dimensional shapes. The homotopies considered in this thesis in-
volve the motion of curves over a surface. The simplest higher-dimensional ana-
logue would be a motion of surfaces through a volume in such a way that the
area of the largest intermediate surface is minimized. Specifically, the natural
analogue to homotopies between the two boundaries of an annulus is that of a
homotopy between the two boundaries of S2 × [0, 1]. In this setting, homotopy
height turns out to be an NP-hard problem by a simple reduction from homology
height of curves on a surface [30]. Namely, a thickened version of a homology
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height instance can be embedded in S2 × [0, 1] in such a way that a minimum
height homotopy between the boundaries of S2 × [0, 1] is in correspondence with
the motion of the intersection pattern of the homology height instance with the
intermediate surfaces of an optimal homotopy.

Despite the computational hardness of optimal homotopies of surfaces, results
on the structure of optimal homotopies could lead to promising upper bounds on
their complexity. First, we conjecture that there is always an optimal homotopy
between the boundaries of S2 × [0, 1] that is monotone. This would also imply that
an optimal homotopy is a monotone isotopy, which also remains an open problem.
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Summary

Continuous Similarity Measures for Curves and Surfaces

Distinguishing objects is a crucial task for survival. Animals survive by distin-
guishing predators from prey, and poisonous plants from edible ones. As such,
objects come in different types, and to recognize the type of an object, one needs
a description of it. In theory, one would best describe it by listing all objects of
that type. However, there tend to be many objects of a given type, and sometimes,
objects of the same type may not have been discovered.

A more practical way to describe a type would be to provide a collection of
objects of that type, complemented by a collection of objects not of that type. For
an object of a given type, we expect that it is similar to the objects of the same type,
and dissimilar from other objects. To test whether an object is of a given type, one
can compare it to other objects that do and do not fit the description of that type.
The similarity of objects can be measured in many different ways, and different
applications tend to have different similarity measures that are suitable.

In this thesis, we investigate computational aspects of various similarity mea-
sures between curves, as well as surfaces. At the cost of accuracy, we give an intu-
ition behind the similarity measures studied, and provide example applications
for each of them. More formal definitions can be found in Chapter 1.

Image Deformation

Suppose two people take a picture of the same scene. It is very unlikely that the
pictures look exactly the same: the position of the camera and the lighting could
be different, one lens could distort one picture differently than the other, and per-
haps some objects have moved slightly. However, one can expect that one picture
looks very similar to a deformed version of the other picture. We investigate the
computation of such deformations in Chapter 2.

Simple Curve Deformation

Curve-like objects such as snakes and rivers change shape over time. In Chapter 3,
we study deformations between curves that prevent curves during the deforma-
tion from overlapping with themselves, since solid objects tend to not intersect
themselves. Among such deformations, we aim to find one that uses as little move-
ment as possible.
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Gift Wrapping

Consider a roll of gift-wrapping paper. We want to determine whether the roll
is wide enough to wrap a given object. More accurately, we want to cut out a
region of paper such that we can tape one side of the paper to the other in such
a way that no air is left trapped between the gift-wrapping paper and the object.
Alternatively, one can consider a tubular object, and ask how much a rubber band
must stretch to traverse the object. In Chapters 4 and 5, we essentially aim to
compute the amount a rubber band needs to stretch, or the necessary width of a
roll of gift-wrapping paper to wrap a given object.
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