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a b s t r a c t 

Background and objectives: The automatic classification of retinal blood vessels into artery and vein (A/V) 

is still a challenging task in retinal image analysis. Recent works on A/V classification mainly focus on 

the graph analysis of the retinal vasculature, which exploits the connectivity of vessels to improve the 

classification performance. While they have overlooked the importance of pixel-wise classification to the 

final classification results. This paper shows that a complicated feature set is efficient for vessel centerline 

pixels classification. 

Methods: We extract enormous amount of features for vessel centerline pixels, and apply a genetic-search 

based feature selection technique to obtain the optimal feature subset for A/V classification. 

Results: The proposed method achieves an accuracy of 90.2%, the sensitivity of 89.6%, the specificity of 

91.3% on the INSPIRE dataset. It shows that our method, using only the information of centerline pixels, 

gives a comparable performance as the techniques which use complicated graph analysis. In addition, 

the results on the images acquired by different fundus cameras show that our framework is capable 

for discriminating vessels independent of the imaging device characteristics, image resolution and image 

quality. 

Conclusion: The complicated feature set is essential for A/V classification, especially on the individual 

vessels where graph-based methods receive limitations. And it could provide a higher entry to the graph- 

analysis to achieve a better A/V labeling. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Many systemic diseases including diabetes and hypertension

ause blood vessels change (becoming tortuous, narrowing etc.)

nd even leakage may occur, leading to serious complications

ike blurry vision and hand/feet tingling and pain [1] . A retinal

mage provides direct access to vascular abnormalities and enables

urther quantitative analysis on the retinal vasculature. The study

n retinal arteries and veins has received much attention in the

eld of retinal image analysis, since many artery-vein related

iomarkers have been found significantly associated with the

rogress of diseases. In diabetic retinopathy (DR), the narrowing

n arterioles and the widening on venules are observed, which

esult in a lower arteriolar-to-venular diameter ratio (AVR) of DR
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atients [2–4] . In hypertension, decrease on generalized arteriolar

iameter is associated to the increased blood pressure level [5] .

dditional measurements such as tortuosity (generalized vascular

urvature) [6,7] , vessel branching angle [8,9] and junction expo-

ents [9,10] have received more and more interest. It is important

o note that these clinical relevant features behave differently on

rteries and veins respectively under pathological conditions. For

nstance, the arterial vessel wall is more elastic and thinner than

he venous wall, thus abnormal arteries are usually more tortuous

han veins [11] . Therefore, quantitative biomarkers extracted from

rteries and veins separately might reveal more information for

iseases progress rather than examining them together. 

Due to the fact that high resolution fundus imaging is mostly

ow cost and fast, retinal screening programs usually produce

uge amounts of data for analysis. It is then unrealistic to let

uman observers manually label the arteries and veins. Therefore,

eveloping a fully automatic artery/vein (A/V) classification system

s a prerequisite for automated large-scale retinal image analysis.
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Fig. 1. The general pipeline for an automatic A/V classification program, where (a): image preprocessing, (b): pixel-wise A/V classification, (c): vessel topological structure 

construction and (d): A/V label assignment. 
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Several automatic A/V classification systems have been proposed in

literature [12–16] . In summary, most of these methods consist of 4

main modules: (1) image pre-processing, (2) pixel-wise A/V prob-

ability assignment, (3) vessel topological structure construction

and (4) A/V label determination (see Fig. 1 ). In the pre-processing

step, images are enhanced by image processing techniques such

as luminosity normalization and histogram equalization which

correct for the illumination and background inhomogeneity. After-

wards, the retinal vessels are segmented yielding a vessel binary

map. In the pixel-wise A/V classification module, intensity-based

features are extracted for all vessel centerline pixels. Using these

features, a supervised or unsupervised machine learning technique

is exploited to assign a probability (between 0 and 1) to these

pixels. After that, a topological structure of the vascular network

is built in order to extract the connectivity relation between each

individual segment. It improves the result of pixel-wise classifi-

cation, because arteries only cross veins but not themselves and

vessels connected to each other must be of the same type. Finally,

the A/V label of each vessel segment, or even a full vessel tree is

determined by using both the local and contextual information. 

In the last few years, publications on A/V classification mainly

focus on constructing the topological structure of vessels using

graph theory. Joshi et al. used Dijkstra’s graph search algorithm

to connect vessel segments as subtrees and clustered them into

arterial and venous classes [13] . Dashtbozorg et al. applied graph

analysis on individual vessel segments and determined the type

of vessels by combining the graph label and the pixel-wise A/V

label [14] . Hu et al. constructed the vascular structure by a

graph-based and a meta-heuristic algorithm [15] . Estrada et al.

incorporated domain-specific features with a topology framework

to construct a global likelihood model for A/V classification [17] . 

Exploiting vessel contextual information for A/V classification

is novel, while good pixel-wise classification is also a crucial

entry step. Because even if the graph analysis was perfect, an

incorrect local A/V probability might still result in wrong A/V

label estimation and further affect the corrected labeling of the

whole vessel tree. The recent frameworks proposed in literature

still use the information extracted by a small amount of features

for supervised/un-supervised classification. Joshi et al. extracted

only 4 features, Dashtbozorg et al. used 19 features (after feature

selection), Niemeijer et al. [12] and Hu et al. [15] used 31 features,

Mirsharif et al. [18] used 8 features (after feature selection) and

Xu et al. [19] used 21 features for pixel-wise classification. Addi-
 i  
ionally, the category of features used in these works is limited,

here only the local intensity values on multiple color channels

e.g. RGB, HSB and CIExyz) are used. 

In this paper, we show that a more complicated feature set

s more efficient in the discrimination of artery and vein. We

eveloped a novel framework for pixel-wise A/V classification,

hich extracts features of different categories for vessel centerline

ixels. An advanced feature selection technique, named genetic-

earch feature selection, is applied to obtain the optimal subset

f features for classification. Then this framework was validated

n five retinal image databases, including two public datasets and

hree clinical datasets. 

. Method 

Arteries carry oxyhemoglobin which transports oxygen

olecules from respiratory organs (e.g. lungs) to the rest of body

e.g. tissue), while veins carry deoxygenated hemoglobin which

ithout the bound oxygen. Oxyhemoglobin is visually brighter and

eoxygenated hemoglobin is darker. Therefore, on retinal images

rteries are mostly brighter than veins, which makes the pixel in-

ensities of vessels become very important features for discrimina-

ion. In the proposed method, we examined many intensity based

eatures such as red, green, blue, hue, saturation, brightness etc.

or every vessel centerline pixel. While if we simply feed the color

ntensities (such as RGB or HSB) of a pixel to a machine learning

lassifier, the classification results are usually disappointing. It

urns out that our brain must take into account more information

han considering only the local intensities to determine the vessel

ype. In addition, the fundus cameras installed in eye clinic are

ifferent from each other in the sense of field-of-view, image

esolution, imaging flashlight and the embedded post-processing

echniques. A well-trained system might work perfectly on the

mages from one dataset, but it may fail on the ones from others. 

In this paper, we developed a framework to address this issue,

hich extracts a large amount of features for each vessel pixels,

ollowed by a feature selection algorithm. The methodology starts

y enhancing the contrast and correcting the luminosity variation

f imported image. Afterwards, we apply vessel segmentation

echnique to obtain the vessel binary map as well as centerlines.

or each centerline pixel we extract in total 455 features contain-

ng the categories of local intensity, contextual intensity, global

ntensity and spatial information. Then we use genetic-search
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w  
ased feature selection technique to search for the subset of

eatures giving the best performance using a supervised classifier.

sing the selected features, the classifier assigns an A/V probability

o each pixel (pixel-wise classification). Finally, the label of each

essel segment is determined by averaging the A/V probability

alues assigned to its pixels (segment-wise classification). 

.1. Image preparation 

The imported images are preprocessed before the feature

xtraction step including (a) image luminosity normalization, (b)

essel segmentation and centerline extraction, (c) vessel width

easurement and (d) optic-disc center detection. 

.1.1. Image luminosity normalization 

Retinal images often suffer from local illumination and back-

round variation. It is mainly due to the non-uniform illumination

nd the irregular surface of the retina. This problem seriously af-

ects intensity-based A/V separation, because at the central region

nd the peripheral region of the image, blood vessels might have

uite different appearances, where arteries might even be darker

han veins. Therefore, we apply two illumination normalization

pproaches to the images and make it locally homogeneous. 

The pixel intensity of a retinal image f ( x, y ) can be modeled by

n illumination-reflection model: 

f (x, y ) = r(x, y ) l(x, y ) , (1) 

here r ( x, y ) is the reflection property with regard to the absorbed

ight spectrum of a material, and l ( x, y ) is the general luminosity

round a small local area, which causes the inhomogeneity of

ixel intensity. The normalization approach proposed by Foracchia

t al. [20] divides the local pixel intensity by the average intensity

ithin its neighbor to cancel the luminosity factor, as described

y: 

(x, y ) = 

r(x, y ) l(x, y ) 
1 
n 2 

∑ n 2 

i r(x i , y i ) l(x i , y i ) 
≈ r(x, y ) 

1 
n 2 

∑ n 2 

i r(x i , y i ) 
. (2) 

In the above equation, the numerator is the pixel intensity at

osition ( x, y ). The denominator is the mean filter applied to the

 × n neighbor around ( x, y ). Since l ( x, y ) is the image luminosity

aused by the remote light source, we assume l ( x, y ) within a cer-

ain region has little change, so N ( x, y ) computes the ratio between

ocal reflection and the average reflection inside its n × n neighbors.

In addition, we use another normalization method, the multi-

cale Retinex method (MSR) proposed by Jobson et al. [21] , which

ses the logarithm transformation to eliminate the term l ( x, y ).

rom the reflection model, we have 

 (x, y ) = log I(x, y ) − log [ G (x, y, σ ) ∗ I(x, y ) ] , (3) 

here I ( x, y ) is the original image intensity at position ( x, y ),

 ( x, y, σ ) is the Gaussian surrounding of ( x, y ) with scale σ and 

∗

enotes the convolution operation. By taking the inverse-logarithm

ransform on R ( x, y ), we obtain a luminosity homogeneous image. 

.1.2. Vessel segmentation and centerline extraction 

Retinal vessel segmentation is a hot topic in retinal image

nalysis, and many techniques are developed and proposed in

iterature including supervised and un-supervised approaches [22–

4] . The outcome of a segmentation technique is a vessel binary

ap, where the foreground is blood vessel and the background

s retinal tissue. For artery/vein classification, a preferred vessel

egmentation technique should solve two issues: closely parallel

essels and crossing vessels. Because in the region around the

ptic disc, arteries and veins are often closed and parallel to

ach other, thus they can be easily segmented as one merged

essel instead of two. In addition, arteries only cross with veins
n retinal images. So a segmentation map that preserves the

essel junction points well would benefit further analysis and

rovide extra information for the classification. The segmentation

echnique proposed by Zhang et al. [23] applies multi-scale and

otating filters in a position and orientation domain named ‘orien-

ation scores’. An orientation score is a 3-D space with 3 axis: the

patial coordinate x, y and the orientation θ , in which vessels with

ifferent orientations lay in different planes. The benefit of this

onstruction is that difficult cases like parallel closed vessels are

iscriminated by the utilization of spatial location and orientation,

nd vessel crossings are solved because they are disentangled. Ro-

ating derivatives are taken in the directions that are perpendicular

o the vessel structures at their corresponding orientation planes,

hich is similar to the vesselness filtering technique by Frangi

t al. [25] . The multi-scale nature of the Gaussian derivative filters

nsure that disentangled vessels with various sizes are equally

nhanced. Afterwards the 3D structure is projected on the spatial

lane by taking the maximum filter response over all orientations

ielding a 2D enhanced vessel map. A proper threshold value is

pplied on the enhanced image to obtain a binary vascular map. 

The vessels within the optic disc region are eliminated by the

D mask. An iterative thinning algorithm [26] is used to obtain

he centerline of vasculature. Junction points like vessel branchings

nd crossings are also removed in a manner that pixels connected

o each other represent an individual vessel segment. 

.1.3. Vessel width estimation 

The caliber of vessels is measured in order to characterize

hem as small, medium or large vessels. It does not need to be

ccurate, thus we estimate the width values by a simple distance

ransform applied on the vessel segmentation map. It calculates

he Euclidean distance d of every foreground pixel (blood vessel)

o the nearest background pixel (not blood vessel), such that the

alue 2 × d − 1 of every centerline pixel represents the width of

he vessel. In some cases, the extracted centerline pixel might

ot exactly be located at the same position as we found on the

istance map. Therefore, we apply a maximum filtering process

n the distance map, such that even if the extracted centerline

eviates a little bit from the real one, we can still obtain the vessel

aliber values. In this study, we estimate the centerline deviation

s 2 pixels, therefore we apply a 5 × 5 maximum filter. 

.1.4. Optic-disc center detection 

Detection and parameterization of the optic disc enables the

reation of a binary mask which is used to remove the vessels

ithin the optic disc (OD) region as a preprocessing step. In

ddition, the centralis position is used in calculating some of

he spatial features, which are introduced in Section 2.2 . In this

ork, we use the automatic OD detection technique proposed by

ashtbozorg et al. [27] . It uses a new convergence index operator

amed super-elliptical filter (SEF) to detect semi-elliptical convex

hapes in the image. It performs well in localizing both the OD

nd the fovea. Furthermore, in order to prevent artifacts, such as

he OD or the fovea is not clear in the image and the interference

f other elliptical shapes like hemorrhages and large junction of

essels, a setup called paired SEF (PSEF) is introduced. It simul-

aneously localizes the OD and the fovea with two individual SEF

lters which are located at a specified distance to each other.

he PSEF filter is applied on the normalized green channel image

hich gives the best contrast. The locations of the OD and the

ovea are determined by finding the position giving the maximum

aired filter response. 

.2. Features extraction 

For each centerline pixel we extract in total 455 features,

hich reveal information about the spatial location, local intensity,
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Table 1 

The complete set of features extracted for each centerline pixel. 

Category Description Index 

Local intensities The pixel intensity of normalized R, G, B, H, Sat., Bri., RG, MSR-R, MSR-G, MSR-RG, Ill. F1–F11 

Vessel width The vessel width estimated at each pixel. F12 

Spatial coordinate Euclidean distance to OD and image center , angle with respect to OD . F13–F15 

Circular zone A The mean, std, min, med and max of the 11 local intensities within a circular region with radius 0.5 ∗vessel width . F16–F70 

Circular zone B The mean, std, min, med and max of the 11 local intensities within a circular region with radius 1.0 ∗vessel width . F71–F125 

Circular zone C The mean, std, min, med, max of the 11 local intensities within a circular region with radius 2.0 ∗vessel width . F126–F180 

Centerlines The mean, std, min, med and max of the 11 local intensities along every centerline . F181–F235 

Vessel segments The mean, std, min, med and max of the 11 local intensities within every vessel segment . F236–F290 

All centerlines The mean, std, min, med and max of the 11 local intensities of all centerline pixels . F291–F345 

All vessel segments The mean, std, min, med and max of the 11 local intensities of all vessel segment pixels . F346–F400 

Whole field-of view The mean, std, min, med and max of the 11 local intensities of all pixels inside the field-of-view . F401–F455 

Fig. 2. The discrimination between an artery and a vein is obvious when they are close to the center of the image (right figure: top left), while it becomes difficult at the 

peripheral part (right figure: bottom right), where the red circles indicate the arteries and the blue circles indicate the veins. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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neighborhood intensity and global intensity (as summarized in

Table 1 ). In followed section, we introduce the feature categories

that are considered for A/V classification. 

2.2.1. Polar coordinates 

First, according to the work by Zamperini et al. [28] , spatial

location has strong discriminative power in A/V classification.

Therefore, we extract the polar coordinate for each centerline

pixel with respect to the OD center. In addition, we measure the

distance from every pixel to the image center. It is motivated by

the fact that most fundus cameras focus the imaging light on

the center of the image, resulting in that the central region is

mostly clearer than the peripheral region giving more reliable

information than the latter. Therefore, the spatial location might

act as weighting factor to the other intensity-based features and

be helpful for improving the classification performance. For in-

stance, Fig. 2 shows an artery and a vein originated from the optic

disc (top left) toward the peripheral region (bottom right). In the

illumination-normalized red channel, the difference between the

artery (red circle) and the vein (blue circle) is obvious when close

to the OD, while the discrimination become much more difficult

at the peripheral part, even for the same two vessels. 

2.2.2. Local intensities 

For each centerline pixel, we exploit 11 intensity-based features

which are commonly used in literature [14,29] . They include

luminosity normalized red (R), green (G), blue (B), hue (H), satura-

tion (Sat.), brightness (Bri.) and the mean squared of red and green

(RG), which is computed by 

√ 

1 
2 (R 2 + G 

2 ) . The multi-scale retinex

(MSR) values are computed on the R, G and RG channel. Finally,
he image illumination term, G ( x, y, σ ) ∗I ( x, y ) with a sufficiently

arge σ , in Eq. 3 is computed on RG channel as the 11th local

ntensity feature. 

.2.3. Circular neighbor intensities 

After the local intensity features, for all centerline pixels, we

xtend our feature vector by considering their neighborhood. Sim-

lar to the study by Zamperini et al. [28] , for each color channel,

hree circular regions are considered around each centerline pixel

ith radius 0.5, 1 and 2 times of the vessel width, named zone A,

one B and zone C, respectively (as shown in Fig. 3 ). In every zone,

he mean, standard deviation (std), median (med), minimum (min)

nd maximum (max) values are computed. Zone A measures the

essel central reflex (if it exists), zone B expands the measurement

o the vessel segment and zone C looks at both the vessel and

ackground pixels. Moreover, we compute the five measurements

n the pixel intensities along each centerline, in order to keep

he classification consistent for every vessel segment. Finally, the

utomatic vessel segmentation method might not produce perfect

egmentation on all vessels, which means the centerlines we

btain are not all exactly at the center of vessels. Therefore, our

ontextual features consist of the five measurements calculated on

he pixels within the whole vessel segment for each vessel. 

.2.4. Global intensities 

In order to avoid the effect of color differences between images,

e introduce a set of global features to our feature vector, which

epresents the characteristics of the whole image. The mean, stan-

ard deviation, median, minimum and maximum are calculated

n the pixels of all vessel centerlines. With the same motivation
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Fig. 3. Three circular regions centered at each centerline pixel with radius 0.5, 1 

and 2 times of the vessel width are drawn, named zone A, zone B and zone C 

respectively. The mean, std, med, min and max of the intensity values within each 

region are used as features. 
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iscussed above, we also calculate the five measurements on all

essel segments, and within the whole field of view. 

.3. Genetic-search feature selection technique 

After the feature extraction step, a novel framework based on

volutionary computation is used to find the subset of features

iving the highest pixel-wise A/V classification accuracy. The

roposed feature vector contains 455 features, which results in an

xtremely high dimensional space for feature selection. Traditional

eature selection procedures such as the greedy forward/backward

election and the best-first selection can easily stop at any local

inima. Therefore, we exploit an advanced evolutionary algorithm

hich is inspired by the natural selection process in biology [30] .

n nature selection, the fitness of individuals, which represents

he chance they survive in the environment, is determined by

 unique combination of phenotypic traits. Phenotypic traits are

ncoded by a genetic sequence in chromosomes, and thus they

re inheritable. They are propagated from the elder to the next

eneration via reproduction. After several generations, favorable

raits gather together yielding a population with great fitness. 

When this concept is exploited for feature selection, the phe-

otypic traits are the extracted features, and the genetic sequence

s a binary vector where the elements 1 or 0 indicate if a feature

s used or not. The fitness of each gene is the performance of

he classification using the indicating subset of the features. For

very generation, we select the parents and obtain their offspring

y mating and mutation (as shown in Fig. 4 ). After expanding

he population pool, the fitness of every individual is computed

nd the survivors are selected. By simulating the evolution, we

radually converge to the global optimum in the feature space,

nd finally end up with the subset of features giving the desired

ccuracy. 

The evolution is initialized by setting randomized sequence

 i = { c 1 , c 2 , . . . , c n } in the population pool where c n ∈ {0, 1} and

 is the length of sequence (the number of feature in use). The

nitial sequences have different levels which are determined by a

evel function l(C i ) = 

∑ n 
j=1 c j . Since the C i is a binary vector, level

 ( C i ) represents the number of features in use for each sequence. 

At each generation, individuals are paired with each other in

he population pool yielding parents ( C i , C j ). Then two variation

perators, mating and mutation, are performed on ( C i , C j ) to obtain

heir offspring. Firstly, we apply mating to expand the pool, which

andomly select elements of the two individuals and exchange
hem. The number of exchanged parts is a percentage, p mate ∈ (0,

), of the length of C i . In addition, during selecting the recombi-

ation parts, we use a parameter p pres ∈ (0, 1) to determine the

mount of 1s and 0s to be selected. Therefore, we exchange the

nformation of using and not using certain features during mating.

fter obtaining the offspring, we compute the fitness, which is

he performance of a simple classifier, such as accuracy, sensitivity

r specificity, on a given dataset, of every individual. Genes given

igher fitness are directly survive (by using a predefined criterion),

nd the remains move forward to the next step where mutation

appen. By mutating, we randomly select several elements of the

emained individuals, then switch their values. A predefined value

 mute ∈ (0, 1) determines the number of elements to be mutated.

fterwards, the fitness of mutated genes are recalculated and the

urvivors are chosen. Finally, two groups of survivor are combined

nd fed to the next generation. The evolution progress stops after

 certain number of generations, or the average fitness in the

ool reaches a threshold value. The framework is summarized in

lgorithm 1 . 

lgorithm 1 Genetic-search feature selection. 

1: Initilize population pool with random candidates 

2: Ev aluate the fitness of each candidate 

3: repeat 

4: procedure Mating 

5: Select parents from the pool 

6: Recombine each parent to get their offspring 

7: Ev aluate the fitness of resulted offspring 

8: for all offspring do 

9: if the fitness satisfies the survival criteria then 

10: Add the individual to the population pool 

11: else 

12: procedure Mutation 

13: Mutate the individual 

14: Ev aluate the mutated offspring 

15: if the fitness satisfies the survival criteria then 

16: Add the individual to the pool 

17: else 

18: Eliminate the individual 

19: until termination condition is satisfied. 

. Experimental results 

.1. Materials 

The proposed framework is validated on the images of five

atabases including the DRIVE, INSPIRE-AVR, Nidek, Canon and

opcon datasets: 

DRIVE dataset is a public dataset provided by Staal et al. [31] .

he images are fovea-centered and were acquired by a Canon CR5

on-mydriatic 3CCD camera with a 45 ° field of view (FOV) at

esolution of 768 × 584 pixels. The dataset is originally split into

 training set and a testing set, each of which contains 20 images.

he ground truth of vessel segmentations and A/V labels of the

RIVE images, provided by Hu et al. named RITE dataset [32] , are

sed for validation. 

INSPIRE-AVR dataset (referred as INSPIRE) is a public dataset

rovided by Niemeijer et al. [33] . It contains 40 OD-centered

mages at resolution 2392 × 2048, where the vessel centerlines

nd the vessel types are labeled by Dashtbozorg et al. [34] . 

NIDEK dataset consists of 200 retinal images, where 100 are

ovea-centered and 100 are OD-centered images, with size of

744 × 3744 acquired in the Ophthalmology department of the

cademic Hospital Maastricht (AZM) the Maastriche Study [35] in
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Fig. 4. Offspring are obtained via two steps: mating and mutation. 

Fig. 5. The proposed framework is validated on 5 databases using the pipeline as shown. 
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the Netherlands. These images were captured using a NIDEK

AFC-230 non-mydriatic auto fundus camera. The blood vessels

are segmented by the automatic vessel segmentation described

in previous section and the vessel types were labeled by experts

using the manual annotation tool in “RHINO” software developed

by Dashtbozorg et al. [36] . 

Canon dataset and Topcon dataset both contain 60 fovea-

centered and 60 OD-centered retinal images. The images were

captured by a Canon Cr-1 Mark II and a Topcon NW300 on 12

healthy subjects, and each subject received 5 acquisitions. The

images of Canon camera have size of 3456 × 2304 pixels and the

images of Topcon camera have size of 2048 × 1536 pixels. Similar

to the NIDEK dataset, the automatic vessel segmentation is used

for vessel extraction, the A/V labels are obtained using the manual

annotation tool in “RHINO” software. 

3.2. Experiment settings 

The A/V features are extracted directly for vessel centerline

pixels on the original size images. The feature extraction process is

implemented in a CUDA parallel programming. Half of the images

from each dataset are used for feature selection and classifier

training and the rest are for testing. In the training phase, the

training images are firstly processed by image normalization and

vessel segmentation. Vessel centerlines including large, medium

and tiny size of vessels are extracted, and the features are obtained

as discussed above. Afterwards, the optimal feature subset is found

via the genetic-search feature selection technique. The fitness of

each gene is computed as the average accuracy of a Linear Dis-

criminate Analysis (LDA) classifier using a 10-fold cross-validation

on the training data. Since we are dealing with a large set of data,

we set the stop criteria for all datasets to be 10 generations, and

the individuals of 100 features are prior to survived at each gener-

ation. When the evolution is terminated, the individual giving the

highest fitness is selected and a final LDA classifier is trained using

all training data with the optimal features. For the test phase,

the same preprocessing steps are applied to the test images. The

trained classifier assigns a probability value (between 0 (vein) and

1 (artery)) to each centerline pixel, and a threshold value of 0.5 is

used for the A/V label decision. The performance of classification

on the centerline pixels, named pixel-wise classification, is eval-

uated by computing the sensitivity (arteries classified correctly),

the specificity (veins classified correctly) and the accuracy (the

average of sensitivity and specificity): 

Sensit i v it y = 

T P 

T P + F N 

, (4)
peci f icity = 

T N 

T N + F P 
, (5)

ccuracy = 

T P + T N 

T P + T N + F P + F N 

, (6)

here TP, TN, FP and FN represent the true positive, true negative,

alse positive and false negative, respectively. In addition, we apply

 voting procedure to the A/V probabilities, named segment-wise

lassification, where the label of each segment is determined as

he majority vote of pixels belong to that segment. Then the pixel

abels are corrected based on the segment label, and the same

erformance measurements are calculated (see Fig. 5 ). 

.3. Results 

For each dataset, we apply a 10-fold cross validation on the

est images. The results are summarized in Table 2 . In this ta-

le, we categorize the datasets into fovea-centered images and

D-centered images, where the DRIVE dataset contains only

ovea-centered images, the INSPIRE dataset contains only OD

entered and the rest contain both types. The results are shown

n terms of accuracy (Acc.), sensitivity (Sens.), specificity (Spec.)

nd area-under-the-curve (AUC). In Table 3 , we compare the

erformance of our framework with the most recent works on

/V classification using the two publicly available datasets: the

RIVE and the INSPIRE. In Table 4 , we compare our results on

he INSPIRE dataset with the results of greedy-forward feature

election, principal component analysis (PCA) and without using

ny feature selection techniques. 

Figs. 6 and 7 illustrate the sample of A/V classification results

or each dataset using the proposed framework. At each row,

e show the original retinal image, the A/V ground truth for

he vessel centerline, pixel-wise classification and segment-wise

lassification results. The vessels with red and blue color represent

he correctly classified artery and vein, while the yellow color

epresents the wrongly classified vessels. 

. Discussion 

In this paper, we present a framework for automatic pixel-

ise artery/vein classification on retinal color images. We have

alidated the framework on various datasets including publicly

vailable datasets: the DRIVE and the INSPIRE dataset, and three

linical datasets: the NIDEK, the Canon and the Topcon datasets.

e divided the dataset into fovea-centered (FOV) and optic disc-

entered (OD) groups, where the two types of images are validated

eparately. Moreover, each group is equally divided into a training
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Table 2 

The performance of the proposed framework on the DRIVE, INSPIRE, NIDEK, Canon and Topcon datasets. 

Dataset Resolution Fovea-centered images Optic disc-centered images 

Num. Acc. Sens. Spec. AUC Num. Acc. Sens. Spec. AUC 

DRIVE 565 × 584 20 72.0% 70.9% 73.8% 0.78 − − − − −
INSPIRE 2392 × 2048 − − − − − 20 90.2% 89.6% 91.3% 0.95 

NIDEK 3744 × 3744 50 81.1% 81.3% 81.6% 0.89 50 83.6% 83.2% 84.9% 0.91 

Canon 3456 × 2304 30 76.8% 77.8% 75.3% 0.84 30 78.3% 79.4% 76.1% 0.85 

Topcon 2048 × 1536 30 82.5% 83.5% 81.8% 0.90 30 86.9% 87.6% 86.2% 0.93 

Table 3 

Result of the proposed framework compared with the most recent A/V classification on the DRIVE and INSPIRE dataset. Bold values indicate the best 

performance in each column. 

Method Num. a DRIVE INSPIRE 

features Accu. Sens. Spec. AUC Accu. Sens. Spec. AUC 

Proposed framework 100 72.0% 70.9% 73.8% 0.78 92.0% 89.6% 91.3% 0.95 

Hu et al. [15] 31 88.0% − − − − − − −
Estrada et al. [17] − 91.7% 91.7% 91.7% − 90.9% 91.5% 90.2% −
Dashtbozorg et al. [14] 30 87.4% 90.0% 84.0% − 84.9% − − −
Niemeijer et al. [12] 27 − 80.0% 80.0% 0.88 − − − 0.84 

a Num. feature: the number of features used for the classification. 

Table 4 

The comparison between genetic search approach, greedy forward approach, greedy 

backward approaches, PCA and without feature selection using the INSPIRE dataset. 

Bold values indicate the best performance in each column. 

Dataset Method Acc. Sens. Spec. AUC 

INSPIRE Genetic-search 90.2% 89.6% 91.3% 0.95 

Greedy-forward 83.0% 81.7% 85.7% 0.87 

PCA 85.6% 85.4% 86.0% 0.86 

No feature selection 85.5% 85.4% 86.5% 0.89 
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et and a testing set. The framework extracts 455 features for each

essel centerline pixel including information over multi-scales

copes (from local pixel intensity to global luminosity). On the

raining images, we use a genetic-search based feature selection

echnique to look for the subset of features giving the highest

erformance. Afterwards, a LDA classifier is trained with the

ptimal subset of features and validated on the testing sets. 

As we can see from Table 2 , the proposed framework achieved

n average pixel-wise accuracy of 83% on high resolution retinal

mages (more than 3 megapixels) including the INSPIRE, NIDEK,

opcon and Canon dataset. However, on the DRIVE dataset where

he images have the resolution of only 0.45 Megapixels, we obtain

 lower performance compared to other works in A/V classifica-

ion (as shown in Table 3 ). This is because when images have low

esolution, our feature vector provides limited information for the

lassification of centerline pixels. For instance, features F16–F180

easure the intensity within three circular regions centered at

he centerline pixels, with the radii of 0.5, 1.0 and 1.5 of the

orresponding vessel width. On the low resolution images like

he DRIVE dataset, the average width of trunk vessels is around

 pixel, which results in the circular regions have almost the same

ize (radii of 2, 3.5 and 5 pixels). Therefore, the mentioned features

F16–F180) do not contribute significantly for the discrimination

f arteries and veins in low resolution images. 

In Table 3 , we compare our results with recent works on

he INSPIRE dataset. Our pixel-wise approach achieve an average

ccuracy of 92.0%, sensitivity of 89.6% and specificity of 91.3%,

hich performs slightly better than the techniques proposed by

strada et al. [17] and outperform than the framework proposed

ashtbozorg et al. [14] , where complicated graph analysis is

xploited. Additionally, our AUC value (0.95) is much better than

he value (0.84) obtained by Niemeijer et al. [12] . In Table 4 , the
erformance of genetic-search feature selection is compared with

reedy-forward feature selection, principal component analysis

nd without feature selection on the INSPIRE dataset. As we can

ee, the subset of features selected by genetic-search algorithm

rovides better result than the other three regular strategies. Note

hat the performance of the greedy-forward feature selection is

ven worse than using the full feature set, which is similar to the

ndings reported by Niemeijer et al. [12] . 

In Fig. 6 and Fig. 7 we show the examples of pixel-wise

nd segment-wise classification results for each dataset. First

f all, the results demonstrate the good performance of our

ramework on large and small vessels near the optic disc.

hese vessels are important in biomarker measurements such as

entral-retinal-arteriole-equivalent (CRAE), central-retinal-venous- 

quivalent (CRVE) and arterial-to-venous diameter ratio (AVR).

owever, the classification of vessels near the OD is a challenge

ask, since some of them have limited contextual information for

oing graph-based analysis. Secondly, the performance of pixel-

ise and segment-wise classification are very similar. In general,

he voting procedure for deciding vessel segment labels improves

he pixel-wise accuracy a lot, because it considers the average

robability of all vessel segment pixels instead of using only one

ixel. However, our feature vector has already examined informa-

ion along the vessel centerlines (F181–F235, F291–F345) during

he feature extraction. Therefore, in our framework the voting pro-

edure is not necessary as it does not significantly improve the

erformance of classification, which could speed up the processing.

From the selected features for classifying the vessels in the

OV- and OD-centered images, we note that the contribution of

eatures for both image types is different. The pie charts (inner and

uter) shown in Fig. 8 a compare the predictive power of multiple

eature categories in terms of the FOV- and OD-centered images.

irstly, the best 100 feature subsets giving the highest accuracy on

he training data are chosen, and the number of times that each

eature is being selected in feature selection process is counted.

eatures which are selected more than 60 times are considered as

he most important ones. The percentage values shown on the pie

harts indicate the proportion the feature categories account for

n the important-features set. As we can compare the two charts,

he category of circular zone C, centerlines, vessel segments, all

enterlines and whole field-of-view are almost identical. The cate-

ory of circular zone A and B account for 16% and 13% for the OD

mages, while both of them are only 11% for the FOV images. This
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Fig. 6. A/V classification results on the DRIVE, INSPIRE and NIDEK datasets. The figures include: 1st column: the original images; 2nd column: the A/V label of the vessel 

centerlines; 3rd column: the pixel-wise classification and 4th column: the segment-wise classification. Red: correctly classified arteries; blue: correctly classified veins; 

yellow: wrongly classified vessels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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is because the former contains vessels of mainly large and medium

size, while the latter contains vessels of many different sizes. It im-

plies that when classifying large vessels, the information extracted

locally (by the small and medium regions) are more discriminative

in comparison with the case when many small vessels are in-

volved. In turn, when using only local intensities is not enough to

classify small vessels, global information become predictive. As we

can see in the charts that the category of all vessel segments for

the OD images is 7%, while it increases to 13% for the FOV images.

Additionally, spatial coordinate becomes an important category in

the FOV images, while its count is less than 60 for the OD images.

We can also compare the characteristic of images acquired by

different cameras through the selected feature sets. In Fig. 8 b, we

show the importance of different feature categories for the A/V
lassification on the INSPIRE, NIDEK, Canon and Topcon datasets

sing only the OD-centered images. Similarly, the number of times

ach feature is being selected by the best 100 subsets is counted.

he percentage values shown on the vertical-axis indicate the pro-

ortion the features account for in the important-features set. As

e can see from the charts, some of the features perform variously

n the four datasets. For example, the red-related and brightness-

elated features for the INSPIRE dataset have a proportion of 14%

nd 10%, which are much higher than the corresponding values of

he other 3 datasets. It implies that these two intensity categories

re more descriptive for the images of the INSPIRE than NIDEK,

anon and Topcon. For the NIDEK camera, the green-related and

aturation-related features account for 18% and 14%, while these

wo intensities have lower percentage values on the other datasets.
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Fig. 7. A/V classification results on the Canon and Topcon datasets. The figures include: 1st column: the original images; 2nd column: the A/V label of the vessel centerlines; 

3rd column: the pixel-wise classification and 4th column: the segment-wise classification. Red: correctly classified arteries; blue: correctly classified veins; yellow: wrongly 

classified vessels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. A comparison of the importance of different feature categories for the A/V classification on the (a) fovea-centered and OD-centered images. (b) INSPIRE, NIDEK, Canon 

and Topcon datasets. 
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Fig. 9. Box plots of the individual fitnesses on the INSPIRE dataset obtained using various numbers of selected features ( x -axis: number of feature, y -axis: fitness (accuracy) 

of individuals). 
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For the Canon dataset, the brightness related features only account

for 2%, which is the lowest value among the corresponding values

for all cameras. The retinex-green-related features becomes the

least descriptive category on the Topcon images with only 3%

proportion. These findings imply that our proposed framework

is able to capture the special characteristics of the images, and

perform a robust automatic pixel-wise artery/vein classification for

the images by different fundus cameras. 

Additionally, from Fig. 8 b, we can learn the features which are

the descriptive one among all the datasets. The green-related and

hue-related features mostly account for more than 10% among all

the datasets. The saturation-related features are also descriptive,

where they account for 8% on INSPIRE, Canon and Topcon datasets

and the percentage increases to 14% for the NIDEK. Moreover, the

retinex-related features give discriminative information for the

A/V classification on the 4 datasets. Most of them account for

more than 8% on all the datasets, except for the values of the

retinex-green on the Topcon and the retinex-red on the INSPIRE

are only 3%. It suggests that these intensity features could provide

simplified pixel-wise classification on images of multiple cameras

with less feature extracted and performance preserved. 

The box plots in Fig. 9 show the influence of individual levels

(i.e. the number of features selected by the selection techniques)

on the classification performance using the INSPIRE dataset. Each

plot shows the distribution of accuracy obtained by individuals

with level ranging from 20 to 200 with step size 20. As we

can see, the performance of classification increases when more

features are selected. The best performance 92.2% is found in

the population pool of level 120, i.e. 120 features are selected.

After that, the performance begins to drop. This reveals that fixing

the individuals’ level during the genetic search procedure helped

improving the searching efficiency if the best individual levels are

known/estimated. In this study, as we can see from the figure that

the third quantile of level 100 gives better performance that the

others, which means better individuals are more likely to be found

in the pool of 100, therefore we fix the individual level at 100 in

all the experiments. 

5. Conclusion 

In conclusion, we propose a framework for retinal artery/vein

pixel-wise classification. It improves the accuracy by extracting a
arge set of features for each pixel. Afterwards, a genetic-search

eature selection technique is used to select the optimal subset

f features for classification. Our experimental result on public

atasets shows that its performance on pixel-wise classification

s already comparable with recent works using graph-analysis.

he improved pixel-wise classification gives a higher entry to the

raph-analysis step to achieve better classification. Moreover, it

uggests that our framework is capable of blood vessels classifica-

ion on images by different fundus cameras, as we use a large set

f features which covers the characteristics of multiple cameras. 
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