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Deformable image registration
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ABSTRACT

Deformable image registration can be time-consuming and often needs extensive parameterization to perform
well on a specific application. We present a step towards a registration framework based on a three-dimensional
convolutional neural network. The network directly learns transformations between pairs of three-dimensional
images. The output of the network are three maps for the x, y, and z components of a thin-plate spline
transformation grid. The network is trained on synthetic random transformations, which are applied to a
small set of representative images for the desired application. Training therefore does not require manually
annotated ground truth deformation information. The methodology is demonstrated on public data sets of
inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation
of the registration quality. Advantages of this methodology include fast registration times, and its minimal
parameterization.
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1. INTRODUCTION

A common problem with state-of-the-art deformable image registration algorithms is the amount of time re-
quired to optimize the cost function. Another problem is that every new application of a registration algorithm
will require a specific parameter setting to achieve optimal performance, i.e. registration algorithms that are
designed to work well on high quality images of healthy patients, are not guaranteed to work on images of lower
quality or images containing pathology using the same parameter setting. These parameter settings are often
adjusted manually or not at all. To address these issues, we propose a novel registration approach based on fully
convolutional neural networks. By turning image registration into a supervised problem, a registration algorithm
can be trained in such a way that it is specifically optimized for a certain class of images, for example a certain
type of pathology or a specific anatomy, taking away the need for manual parameterization. The proposed
method estimates a transformation model for two input images directly from the images, resulting in a very fast
registration algorithm.

1.1 Related work on machine learning in medical image registration

The application of machine learning techniques to image registrations has been studied in recent papers. The
application areas include rigid 2D-to-3D registration, scoring the registration accuracy, and learning multimodal
similarity metrics. The more recent papers include deep learning techniques like convolutional neural networks,
which have been applied to a large number of other medical image analysis tasks such as segmentation, shape
modeling, and detection tasks.1 Previous works have employed machine learning techniques to directly perform
rigid registration and elastic registration, to aid optimization of a similarity metric, to learn similarity metrics,
and to validate image registration. Gouveia et al. compared multiple regression approaches for rigid 2D-to-3D
registration approaches applied to simulated X-ray registration problems.2 Miao et al. used convolutional neural
networks to learn a regression of rigid registration parameters in 2D-to-3D registration.3 Gutiérrez-Becker et al.
developed a method that uses regression forests to learn multimodal motion predictors. These motion predictors
were then used to estimate update steps for rigid deformable multimodal registration problems.4 Muenzing et
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al. and Sokooti et al. developed methods that can learn to estimate registration quality metrics for non-linear
registration based on classification and regression of the registration error respectively.5,6 Eppenhof and Pluim
developed a convolutional neural networks approach for regression of registration errors.7 This method was
trained on artificial transformations applied to a small set of training images. Simonovsky et al. and Wu et al.
used convolutional neural networks to learn a similarity metric for multimodal image registration.8,9

Recent works have also attempted to use convolutional neural networks to estimate full displacement vector
fields. Sokooti et al. used a convolutional neural network to estimate elastic deformations from affinely reg-
istered pulmonary CT images.10 De Vos et al. registered 2D MNIST data and 2D slices from 4D CTs using
a convolutional neural network that was trained by backpropagating a similarity metric between the fixed and
transformed moving images as measured by the normalized correlation coefficient.11

1.2 Aim of this paper

This paper aims to show that deformable transformations for 3D medical images can be estimated at very high
speeds using convolutional neural networks. The network learns displacements on a thin-plate spline grid that
registers two 3D pulmonary images. The training does not require a manually annotated set of ground truth
images, instead relying on learning synthetic transformations that are applied to a small set of representative
images for the registration problem. Hence, no explicit choice for a similarity metric is required, because relevant
features and metrics are implicitly learned from the data. In this paper we evaluate the network on a publicly
available pulmonary data set, that is distinct from the training set, and comes with corresponding landmark
annotations for computation of target registration errors.

2. METHODS

2.1 Transformation model

Let IF : ΩF → R and IM : ΩM → R be two real-valued images defined on their own d-dimensional spatial
domains ΩF ⊂ Rd and ΩM ⊂ Rd. Registration aims to find a transform T : ΩF → ΩM between the domains of
the fixed image IF and the moving image IM . We aim to find the transformation T for two three-dimensional
images IF and IM using a convolutional neural network. The transform is defined as a thin-plate spline (TPS)

T(x) = x +Ax + t +
∑
k

ckφ (‖dk‖) (1)

where A is an affine matrix, t is a translation vector, and ck are spline coefficients. The parameters A, t, and ck
are computed from the displacements dk.

2.2 Network architecture

These displacements are defined on a grid covering the full image domain. The network’s input are the two
images IF and IM . The network’s output consists of three maps, corresponding to the x, y, and z-components
of the displacements dk. The network is based on a smaller version of the VGG-architecture12 (Figure 1).
Compared to the original VGG-implementation we have a pair of three-dimensional images as inputs instead of
a single image, and instead of computing one output, the output consist of three maps corresponding to the x,
y, and z components of a 6 × 6 × 6 TPS grid. All convolutional layers use 3 × 3 × 3 kernels with zero-padding
to retain the size of the layer’s input. The convolutions are followed by ReLU activation functions, except for
the last 1 × 1 × 1 convolutional layer, which has no activation function, allowing it to do regression of the grid
components. Each convolutional layer is followed by a 2× 2× 2 max-pooling layer that downsamples the input
by a factor of two along each axis.



Figure 1. Network architecture. The network learns the displacements on an 6 × 6 × 6 grid as three maps: one for every
component of the thin plate spline grid. The input to the network is an image with two channels, where the channels
correspond to the fixed and moving image of the registration.

Figure 2. During training the inputs to the network are two transformed versions of the same image. During testing, the
inputs are the fixed and moving images.

2.3 Training

The network was trained by minimizing the squared error of the estimated displacements d̂k averaged over the
number of estimated vectors:

MSE =
1

N

N∑
k=1

‖dk(x)− d̂k(x)‖2. (2)

This loss was optimized using stochastic gradient descent with a decaying learning rate

η(t) = η0/(1 + η0λt) (3)

with η0 = 0.1 and λ = 10−4. We used single-instance batches (i.e. batch size = 1), and batch normalization on
all convolutional layers with exponential moving averages of the normalization statistics over past iterations.13

In the current implementation the network is trained on 96× 96× 96 voxel images. For all experiments in this
abstract the images are downsampled to this size using fourth-order B-spline interpolation before being used
in the network. We found the current input size and architecture are a good trade-off between the amount of
memory required and the accuracy of the network’s estimates.

2.4 Training set

The training examples are constructed from a small set of images by applying synthetic transformations. For
every iteration during training, a small random affine transformation is applied to an image I(x) from the training



set which results in an image I(Toffset(x)). We apply a larger transformation to the same image, composed of
the offset transformation and a second, larger transformation Tlearned, that is actually learned by the network
(Figure 2). The offset transformation serves as a form of data augmentation and is a purely affine transformation

Toffset(x) = Ax + b = (I + B)x + b, (4)

with I the 3D identity matrix, and the elements of B and b (in voxel units) sampled from a normal distribution
N (0, 0.1). The learned transformation is modeled as a TPS transformation. The displacements d in Equation (1)
are assigned to a 6× 6× 6 grid that uniformly covers the image’s domain. The magnitudes of the displacements
are sampled from a three-dimensional uniform distribution. The range of this distribution needs to be set per
application, based on the expected range of deformations. Combining the two transformations, every datum in
the training set consists of a pair of images I(Toffset(x)) and I((Tlearned ◦Toffset)(x)) with TPS transformation
grid Tlearned(x) as target. Both transforms are applied on-the-fly on an image from the small training set,
resulting in unique inputs for every iteration of training.

2.5 Dataset

We used 3D thoracic CT images to train the network and validate our approach. This data comes from two
data sets: the DIRLAB set14 being used for validation and the CREATIS data set for training.15 The sets
contain 10 and 7 pairs of 3D CT images respectively, showing the lungs at the end of inspiration and at the end
of expiration. The DIRLAB CT data come with corresponding landmark annotations for the inspiration and
expiration frames, with 300 landmarks per pair of images. Because the lungs move mainly upwards as a result of
the breathing motion, the ranges of the displacements of the TPS transformation grid during training are set to
dz ∈ [−1, 5] voxels for the z-direction (inferior to superior), while dx ∈ [−1, 1], dy ∈ [−1, 1] voxels (corresponding
to the right to left, and posterior to anterior). We compare our method’s target registration error (TRE), to
state-of-the art lung registration methods which also were tested on the DIRLAB data.

3. EXPERIMENTS

To test the network’s ability to estimate deformations of the lungs, it was run on the ten inspiration-expiration
pairs of the DIRLAB data set. Figure 4 shows the improvement in TRE by our method. The graphs show a
clear improvement for large deformations (larger than 10 mm prior to registration). Correlation plots for the
x-, y-, and z-components of the vector field show a correlation between the ground truth and estimation, with
Pearson correlation coefficients of 0.54, 0.65, and 0.80 for x, y, and z displacements respectively (Figure 3). To
address the sliding motion of the ribs against the lung tissue registration was limited to the lung fields extracted
using lung masks. Target registration errors measured using the annotated landmarks and comparisons with
other methods are shown in Table 1. Note that the compared algorithms all explicitly model the sliding motion

Figure 3. Correlation plots for each of the vector field components. Every point corresponds to a landmark in the ten test
images. Darker colors indicate a higher density of points.



Figure 4. Post-registration TREs against pre-registration TREs. Every point corresponds to a landmark in the ten test
images. Darker colors indicate a higher density of points.

interface of the ribs and the lungs; something that is not included in our algorithm, which may contribute to
larger TRE values. Estimation of the transformation took on average 55 ± 5 milliseconds on an NVIDIA GTX
Titan X GPU compared to 100 minutes16 for the method by Wu et al. and 58 minutes16 for Delmon et al. Timing
information for the methods by Schmidt-Richtberg et al. and Berendsen et al. is not reported in literature.

4. DISCUSSION

This paper describes an approach to estimate deformable image transformations directly from two images using
convolutional neural networks for the purpose of 3D image registration. We have validated the method on
CT inspiration-expiration pairs with corresponding landmark annotations. Our method shows that learning
approaches are a viable approach for this registration problem. Especially the fast registration times make the
method interesting for deformable registration problems where low latency is important, for example in radiation
treatment. Other advantages are that manually annotated is not necessary to train the network. We have shown
that a simple form of data augmentation allows training on a very small set of images, and can generalize to a
different data set of CT images made on a different scanner from a different patient group. By using artificial
deformations, only a set of images that is similar to the target application are required to train the network.
Making these deformations more realistic is an important topic for future research. Two limitations of the
current implementation are the limited input size, which is likely the largest cause of registration errors, and
the inability of the network to estimate large displacements, as the TRE reduction plot in Figure 4 shows. We
hypothesize that accurate estimation of a larger range of errors requires multi-stage or multi-resolution strategies.
A possible solution is training multiple networks to perform a sequence of registrations at different resolutions
or with different transformation models. In our experiments we found that estimating the correct range of
the displacements for the training transformation is very important when training. Future work will aim to
further improve the accuracy of the method, by focusing on making the deformations used in the training set
more realistic for pulmonary images, by training on larger images, and using a more fine-grained transformation
model.
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