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Abstract. Error estimation in nonlinear medical image registration is a nontrivial problem that is important
for validation of registration methods. We propose a supervised method for estimation of registration errors
in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural
network that learns to estimate registration errors from a pair of image patches. By applying the network to
patches centered around every voxel, we construct registration error maps. The network is trained using
a set of representative images that have been synthetically transformed to construct a set of image pairs with
known deformations. The method is evaluated on deformable registrations of inhale–exhale pairs of thoracic CT
scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method’s
ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold
standard approach. The two evaluation approaches show that we can train the network to robustly estimate
registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square
deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark
registration errors. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.024003]
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1 Introduction
The validation of nonlinear medical image registration is a com-
plex problem. As most registration methods do not provide an
indication of accuracy, subsequent processing is required to
assess the registration quality. Registration error estimation is
necessary to evaluate registration methods and can be used to
compare the performances of multiple registration methods
for a certain application quantitatively. It is also of importance
for error estimation in clinical image-based techniques that
(partly) rely on image registration, such as computer-aided diag-
nosis pipelines, radiation treatment planning, or image-guided
interventions. For all these applications, it is valuable to quantify
the registration error locally.

Image registration is often validated using overlap measures
(e.g., Dice score of tissue overlap), metrics that measure the
similarity of the registered images (e.g., normalized correlation
coefficient of the intensities), or target registration errors (TREs)
measured on corresponding points in the registered images.
Overlap and similarity measures fail to measure the registration
error directly, and their measurements do not necessarily corre-
late with the registration error.1 Furthermore, if the tissue seg-
mentations used to calculate the overlap cover a large volume,
the local error within that volume cannot be estimated. The pre-
ferred way to determine registration accuracy, therefore, is deter-
mining TREs on corresponding points in the registered images.
These points are commonly relevant anatomical landmarks

annotated by experts. For deformable registration problems,
these landmarks should cover the entire region of interest
to be accurate descriptors of the local registration error.
Unfortunately, annotation of dense sets of corresponding land-
marks, suitable for validation of deformable registration, is a
laborious effort sensitive to inconsistencies by the annotators.
A method that can estimate local registration errors is, therefore,
very useful in the evaluation of deformable registration
algorithms.

Recent work on validation of image registration avoids the
need for manual annotations of landmarks, while still aiming
to estimate registration errors. An example is the use of regis-
tration consistency in sets of triplets of images. Datteri et al.2

used triplet registration consistency to solve a linear system
of registration quality metrics to construct error maps for
atlas construction of MRI brain data. They show that the regis-
tration quality metric they estimate correlates well with the TRE
of two landmarks in the brain. Other recent efforts have explored
the use of machine learning to estimate the registration error
from image features. Muenzing et al. used a machine learning
approach to classify the registration error for an arbitrary voxel
in thoracic CT images into one of three classes for good, poor,
and wrong alignments. This approach uses features from the
images, as well as the Jacobian of the deformation field, and
reached a classification accuracy of 90%.3 This method was
incorporated in a registration boosting algorithm for the combi-
nation of multiple registration methods.4 The authors later added
to this boosting algorithm the ability to perform regression of
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the registration error, which they validated also on thoracic
CT data. They reported that the estimation error of this
regression approach was relatively large and required further
development.5 More recently, Sokooti et al.6 proposed a random
forest regression-based method for registration error estimation
in thoracic CT scans. They compared their method with
Muenzing et al. but found that their method suffered from an
unbalanced training set, with few samples of poor registration
results. A problem with both methods is that they require ground
truth registrations of images, which makes it hard to train on new
registration problems with different modalities or anatomy.

Registration error estimation is closely related to confidence
estimation of registration, where instead of direct estimates of
the error, estimates of the uncertainty of the registration result
are made. Examples include the use of bootstrap resampling,7

Bayesian methods,8,9 and inspection of a cost space based on
image features.10

In this paper, we present a supervised approach that makes
estimates of the registration error for the full image domain,
giving a full assessment of alignment errors in the registered
images. The method does not require any information on
the deformation field but estimates the error directly from
two registered images. Our approach is based on a sliding win-
dow convolutional neural network (CNN). CNNs have been
widely used in medical image analysis problems, primarily
for segmentation and detection tasks,11 but recently also for
image registration,12–15 for steering of the optimization by learn-
ing multimodal motion predictors,16 and for learning of multi-
modal similarity metrics.17,18 Previous work has shown that
using machine learning for error estimation in medical images
is a viable approach. The fact that CNNs are starting to be used
for image registration and have shown promising results
suggests that the use of CNNs for error estimation in image
registration is feasible.

The registration error estimating CNN is trained without the
need for ground truth deformation fields, requiring only a set of
representative images. From these images, a training set consist-
ing of synthetically deformed images is constructed. We validate
the registration error estimates on deformable image registra-
tions of public data sets of thoracic CTs and compare these
to ground truth registration errors on large sets of landmarks.
To assess the quality of the algorithm’s error maps for the
full image domain, we use gold standard registration error maps.

This paper is an extension of a previous paper, in which we
proposed the current method as proof of concept in 2-D image
registration for digital subtraction angiography images.19

2 Methods
The method produces registration error estimates for every posi-
tion in the image, resulting in a registration error map for the full
image domain. Let IFðxÞ and IMðxÞ be two images that are to be
registered. IF is the target image that is held fixed, while the
moving image IM is transformed to align with IF. Both images
are defined on their own d-dimensional spatial domain,
ΩF ⊂ Rd and ΩM ⊂ Rd, respectively. By registering IM to
IF, we find an approximation T̂ of the transformation
T∶ΩF → ΩM. The transformation T maps points in the fixed
image’s domain to corresponding points in the moving image’s
domain, such that the image IM½TðxÞ� is aligned to IFðxÞ. To
evaluate the quality of the estimate T̂, the TRE can be computed,
which measures the displacement from the true position of
a registered point, i.e.,

EQ-TARGET;temp:intralink-;e001;326;752TRE∶ΩF → Rþ∶x ↦ kT̂ðxÞ − TðxÞk: (1)

The TRE can be computed for a pair of manually annotated
corresponding landmarks x ∈ ΩF and y ∈ ΩM, since for
these points TðxÞ approaches y, subject to the quality of anno-
tation. In this paper, the goal is to fully automatically estimate
the TRE for all voxels in the image, which results in a map of
registration errors EðxÞ, defined for points x in the fixed image’s
domain.

The method we propose estimates the TRE for any voxel
from a pair of small image patches centered around the voxel.
Each pair consists of a patch from the fixed image IFðxÞ and a
patch from the registered moving image IM½TðxÞ�. In the current
implementation, both patches have a size of 33 × 33 × 33 vox-
els. We train a CNN to estimate displacement magnitude from
this pair of image patches. This displacement magnitude is
estimated in voxel distances. To enable error estimates in
millimeters and to account for different voxel sizes, we first
resample the images to 1 × 1 × 1 mm3 (Sec. 2.1). The network
is trained on pairs of synthetically deformed images (Sec. 2.2).
We describe the network’s architecture and the training process
in Secs. 2.3 and 2.4.

2.1 Image Resampling

The registration error is expressed as a physical distance, mea-
sured in millimeters. Because the pairs of image patches do not
provide the convolutional network with any means to estimate
the voxel size in millimeters, we resample the images such that
they have 1 × 1 × 1 mm3 voxels. The images used in the train-
ing set are resampled in the same way, such that the error is
estimated from cubic 33 × 33 × 33 mm3 regions in the image.
In all cases, resampling is performed using fourth-order B-spline
interpolation.

2.2 Training Set Construction

The training set consists of pairs of synthetically deformed pul-
monary CT images that simulate a fixed image IFðxÞ and a reg-
istered image IM½T̂ðxÞ�. The training set is constructed using the
assumption that the registration errors for lung registration in
pulmonary CTs are relatively small, i.e., in the order of a
few millimeters, which is motivated by the range of registration
errors in state-of-the-art lung registration algorithms.20 It is
furthermore assumed that registration errors have a high spatial
frequency, i.e., the value of the error can fluctuate a lot from
position to position.

We simulate registration errors as differences between two
transformations, denoted as T1 and T2. Both transformations
are applied to the same image I, resulting in images I½T1ðxÞ�
and I½T2ðxÞ�. These two images simulate two registered images
with error map E12ðxÞ ¼ kT1ðxÞ − T2ðxÞk (Fig. 1).

The synthesized deformations T1 and T2 are thin plate spline
(TPS) transformations, defined by displacements on a 6 × 6 × 6
grid of equidistant control points. The control point displace-
ment vectors are sampled from three uniform distributions
in the [0, 2] mm range. The resultant deformation from
T1ðxÞ − T2ðxÞ, therefore, has a range of [0, 4] mm. The TPS
that is fitted through the displacements of the control points
is defined as

EQ-TARGET;temp:intralink-;e002;326;94TTPSðxÞ ¼ xþ Axþ tþ
X

k

ckϕðkdkkÞ; (2)
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where A is an affine matrix, t is a translation vector, ϕ is the
kernel function ϕðrÞ ¼ r2 logðrÞ, and ck are the spline coeffi-
cients. The parameters A, t, and ck are computed from the dis-
placements dk, using the implementation in Ref. 21. To increase
the number of training pairs, this process for creating image
pairs and associated error maps is repeated 10 times for every
image. Using multiple transformations, we obtain a natural aug-
mentation of the data. Each pair of images is divided into 33 ×
33 × 33 patches. The corresponding true registration error for a
pair of patches around voxel x can be found in the simulated
error map E12ðxÞ. In addition to the augmentation provided by
the spatial transformations of the images, we also perform
augmentation of the image intensities in the patches. We scale
the patches with a random value from the normal distribution

N ð1; 0.01Þ and add a random offset from the normal distribu-
tion N ð0; 0.01Þ.

2.3 Network Architecture

The error is estimated by a three-dimensional (3-D) CNN
(Fig. 2). The network has four 3-D convolutional layers that
only differ in the number of feature maps they output: 32,
32, 64, and 64 feature maps, respectively. These layers learn
3 × 3 × 3 kernels and perform convolution without zero pad-
ding. After every two convolutional layers, the feature maps
are downsampled by 2 × 2 × 2 max-pooling layers with stride
2. The second pooling layer is followed by three fully connected
layers with 1024 units and a fully connected layer with a single

Fig. 2 The CNN architecture is comprised of two sequences of two convolutional layers and a pooling
layer and followed by three fully connected layers that compute the error estimate.

Fig. 1 From one image in the training set, two deformed versions are constructed using random TPS
transformations.
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scalar output. All convolutional layers and the first two fully
connected layers are followed by a rectified linear unit
(ReLU) activation function.

2.4 Training

The network is trained by minimizing the L1 norm of the differ-
ence between the network’s estimate of the registration error
Ê12ðxÞ and the actual registration error E12ðxÞ for a pair of
patches centered around voxel x

EQ-TARGET;temp:intralink-;e003;63;642L ¼ jE12 − Ê12j: (3)

The loss is minimized using the stochastic gradient descent
optimizer. We used mini-batches of 32 pairs of patches and a
learning rate that decreases every 10,000 iterations with a factor
10, starting at 0.001. To further prevent overfitting, the first two
fully connected layers were trained with Dropout22 with a drop-
out probability of p ¼ 0.5. Additionally, batch normalization is
applied to all convolutional and fully connected layers.23

3 Experiments
To test our approach, the method has been applied to estimate
registration errors in inhale-to-exhale registration of thoracic
CTs. The network was trained on similar images and synthetic
deformations as outlined in Sec. 2.2. The aim was to estimate
registration errors up to 4 mm in affine registrations and B-spline
registrations with varying grid spacing. To validate the estimated
errors, we used two approaches. In the first, we used a gold
standard approach that generates registration errors that are
compared to the network’s estimate to validate the method’s
ability to estimate error maps for the full image domain.
In the second approach, we compared the results to ground
truth TREs on manually annotated landmarks.

3.1 Materials

The network was trained and the full method was evaluated on
publicly available thoracic CT scans. We used data from four
data sets: the DIRLAB 4DCT set, the DIRLAB COPDgene
set, the POPI-model data set, and the CREATIS data set. The
name of each image in the rest of this paper is derived from
the file name in the downloaded material. All images come
with a set of expert-annotated corresponding points for land-
marks inside the lungs.

3.1.1 Data set 1: DIRLAB 4DCT data

The DIRLAB 4DCT data set contains data from four-
dimensional (4-D) CT scan sequences of five patients free of
pulmonary disease24 and five patients treated for thoracic
malignancies.25 For each patient, the 4-D CT consists of five
3-D CT images covering the respiratory cycle from end inhala-
tion to end exhalation. The 3-D CTs were cropped and sub-
sampled to 256 × 256 voxels in-plane, with voxel dimensions
ranging from 0.97 × 0.97 to 1.16 × 1.16 mm2.24,25 The images
consist of between 94 and 136 slices with a 2.5-mm slice thick-
ness. For each 4-D CT sequence, the extreme inhale and exhale
phases were made available from the DIRLAB website. For
each pair of inhale and exhale scans, a set of 300 corresponding
landmarks for both images was provided. The landmarks were

annotated by a single observer using a semiautomatic tool. Data
on interobserver reproducibility have been made available in
the form of average errors per image, which range from 0.70�
1.01 to 1.13� 1.27 mm.24,25

3.1.2 Data set 2: DIRLAB COPDgene study data

The COPDgene set is an extension of the DIRLAB 4DCT data
set and contains pairs of inspiratory and expiratory breath-hold
CT scans of 10 subjects reconstructed to a 512 × 512 in-plane
resolution and a 2.5-mm slice thickness, with in-plane voxel
dimensions between 0.590 × 0.590 and 0.652 × 0.652 mm2.26

For every pair of inspiratory and expiratory images, 300
corresponding landmark pairs are provided, which have been
annotated in a similar way as for the 4DCT data. Average repro-
ducibility errors of landmark annotations per image range from
0.58� 0.87 to 1.06� 2.38 mm.

3.1.3 Data set 3: POPI model

The POPI-model data set is a public 4-D CT scan consisting of
10 frames covering the full respiratory cycle, with 41 annotated
corresponding points in every frame. The data were published
together with deformation fields that model the breathing
motion of the thorax. The 3-D images are made up of 90 to
110 slices with a 3-mm slice thickness, a 1.05 × 1.05 mm2

in-plane voxel size, and each slice having a 512 × 512
resolution.27 The landmarks were annotated by multiple experts
using a procedure developed for a previous study, in which
interobserver variability was on average 2.3� 1.3 mm.28

3.1.4 Data set 4: CREATIS data set

The POPI-model data set was later extended with six more 4-D
CTs, each with a voxel size of 1 × 1 × 2 mm3, and 100 anatomi-
cal landmarks for the first and sixth frame, which correspond
to end of expiration and end of inspiration, respectively. The
landmarks were annotated by two observers with a mean inter-
observer error of 0.5� 0.9 mm.29 These six additional sets were
published as the CREATIS data set.

3.2 Training and Test Sets

The ten odd-numbered images from the DIRLAB 4DCT and
the COPDgene data sets were used to train the network. As
described in Sec. 2.2, random TPS transformations are applied
10 times for every image. From these transformed images,
115,860 patches were selected that make up the training set.
Although the displacements on the TPS grid were sampled
from uniform distributions, the errors in this set are not uni-
formly distributed due to the TPS interpolation. To balance
the training set, a uniform distribution was sampled from the
original training set. The network was trained and tested on a
system with a 3.50-GHz hexacore Intel Core i7-5930K CPU,
64 GB of memory, and an Nvidia Titan X graphics card with
12 GB of GPU memory. The neural network was implemented
in Lasagne30 and Theano31 and used the Nvidia CUDA and
CUDNN toolboxes. We trained the network for 200,000 itera-
tions. The even-numbered image pairs from the DIRLAB 4DCT
and COPDgene data sets, as well as the POPI and CREATIS
data sets, were registered and used for evaluation of the trained
network.
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3.3 Registration

Both the gold standard approach and the ground truth approach
require realistic registrations of the inhale–exhale pairs. Pairs of
corresponding images were registered using an algorithm based
on a registration algorithm that ranked third in the EMPIRE tho-
racic CT registration challenge.20,32 The registration algorithm
performs registration in three stages. The first stage performs
affine registration to get a coarse alignment. The second
stage uses a coarse B-spline transformation, and the third stage
uses a fine B-spline transformation. In each stage, the normal-
ized cross-correlation similarity metric is optimized using
adaptive stochastic gradient descent. A multiresolution strategy
is used with four resolutions in each stage. For stages 2 and 3,
the grid spacing of the B-splines was decreased in each step as
well. The last stage uses a lung mask to improve registration
inside the lungs. Lung masks for the images were made by seg-
menting all voxels with Hounsfield units below −250, which

results in a segmentation of lung tissue and the exterior of
the patient. After setting the largest morphological component,
i.e., the exterior of the patient, to zero, we are left with a rough
segmentation of the lungs. For further details on the registration
algorithm, see Ref. 32. The intermediate as well as the final
stage’s results are used for validation.

3.4 Gold Standard Evaluation Approach

In this case, we simulate a registration error map as the L2-norm
of the difference of two transformations T̂1 and T̂2, i.e.,
Egoldstandard ¼ kT̂1 − T̂2k. Hence, the network will make an esti-
mate for Egoldstandard from IM½T1ðxÞ� and IM½T2ðxÞ�. We used the
net transformation of the full registration sequences (affine,
coarse B-spline, and fine B-spline) as T1 and the net transfor-
mation after the first two stages (affine and coarse B-spline) as
T2. White Gaussian noise was added to both images to simulate

Fig. 3 Comparisons of a gold standard error map and error map estimate for six axial slices of
(a) DIRLAB image case08 and (b) COPDgene image copd06 for which the error maps have smallest
and largest RMSD values (see Table 1). The registrations’ fixed images are shown as a reference.
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noise difference between the two acquisitions. This noise sim-
ulates a signal-to-noise ratio (SNR) of 10, where the SNR is
defined as the ratio between the standard deviations of the vox-
els inside the lungs and the noise: SNR ¼ σlungs∕σnoise. The net-
work was run on the full images using the shift-and-stitch
approach.33 The estimated errors were compared to Egoldstandard.

3.5 Ground Truth Evaluation Approach

The ground truth validation approach uses the corresponding
landmarks provided with the data sets. These landmarks are
used to compute target registrations error as Euclidean distance
between points in the fixed image and the registered moving
image. For every landmark x ∈ ΩF and the corresponding land-
mark y ∈ ΩM, we compute the TREðx; yÞ ¼ ky − TðxÞk. These
values are compared to the error estimate Egroundtruth at posi-
tion x.

To show the performance of our algorithm on different kinds
of transformations, we let the algorithm estimate these registra-
tion errors for the final results of all three stages, i.e., for the
affine registration, the sequence of the affine and coarse B-spline
registration, and the full sequence of three stages.

4 Results

4.1 Validation Set: Registration Results

All images from the three public data sets were registered using
the method detailed in Sec. 3.3. The TREs of all registrations
were computed using the landmark sets supplied with the
images. Average TREs are shown in Table 2. On average,
the TREs for images in the COPDgene set were larger than
those in the DIRLAB 4DCT and CREATIS sets. This corre-
sponds to the much larger deformations prior to registration
for the COPDgene images compared with the DIRLAB 4DCT
set (displacements of 23.46� 5.92 mm for COPDgene versus
8.52� 3.62 mm for DIRLAB 4DCT and CREATIS).

4.2 Gold Standard Evaluation Approach

Qualitative comparisons between gold standard error maps and
estimated error maps by the convolutional network for two
examples are shown in Fig. 3. These examples show that the
network estimates error maps that resemble the gold standard
error maps, which is reflected in the histograms of the
differences between the gold standard and estimated errors.
The histograms in Fig. 3 show that the distribution of these
differences is close to symmetric. No clear over- or underesti-
mation of the error was found. The error maps for the examples
in Fig. 3 show that while the estimates mimic the gold standard
error map, the actual gold standard has a higher spatial fre-
quency. More abrupt fluctuations in the error map are missed
by the network.

The root-mean-square deviation (RMSD) between the gold
standard and estimated error maps over all voxels inside the lung
masks that were used for registration (Sec. 3.3) in the test image
pairs was 0.51 mm. The normalized RMSD, computed by divid-
ing the RMSD by the range of all actual registration error maps
combined, has a value of 6.85%. Table 1 also shows the normal-
ized RMSD values per image, where the RMSD was normalized
by dividing by the range of the image’s error map. Computation
of the gold standard error maps took 26� 13 min on average,
using a shift-and-stitch technique.

4.3 Ground Truth Evaluation Approach

We compare the network’s registration error estimates evaluated
at the landmarks to TREs for the landmarks. In all cases,
we evaluate the performance for landmarks inside the lung
masks used in Sec. 3.3. Figure 4 shows correlation plots and
a histogram of differences between estimated and ground
truth registration errors. These plots are shown for all three
stages of registration and contain the errors for landmarks
with a TRE below 4 mm, i.e., the range of errors in the training
set. Performance statistics for error estimation of the full regis-
tration algorithm (three stages) are shown in Table 2. RMSD
values between the TRE computed on the landmarks and the
corresponding estimate in the error map show that estimation
error in terms of RMSD and normalized RMSD is similar for
all three stages of registration (Table 3). The same can be con-
cluded qualitatively from the correlation plots in Fig. 4 and the
correlation plots per data set in Fig. 5. Note that the RMSD and
normalized RMSD values in Tables 2 and 3 are computed only
on the landmarks that have a TRE below 4 mm, as this corre-
sponds to the range present in the training set. To show the effect
of intensity augmentation, we computed the bias of the esti-
mated errors for the network trained with and without the inten-
sity augmentations described in Sec. 2.2 in Table 4. The bias is

Table 1 Gold standard statistics. For every image in the test set, the
RMSD and normalized RMSD between the gold standard error map
and estimated error map for all voxels inside the lung mask are
reported.

Data set Image pair RMSD (mm) Normalized RMSD (%)

DIRLAB case02 0.44 9.8

case04 0.58 12.4

case06 0.43 6.6

case08 0.32 5.4

case10 0.38 3.3

COPDgene copd02 0.29 6.8

copd04 0.30 4.8

copd06 0.35 8.0

copd08 0.37 5.0

copd10 0.25 7.9

POPI popi 0.25 6.2

CREATIS creatis01 0.96 7.7

creatis02 0.73 6.7

creatis03 0.90 6.4

creatis04 0.69 8.1

creatis05 0.89 6.5

creatis06 0.52 4.9

Average 0.51 6.85
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computed by subtracting the ground truth errors from the esti-
mated errors and averaging the results. When using the intensity
augmentations, the results are much less biased toward larger
errors.

5 Discussion
In this paper, we propose a supervised algorithm for the estima-
tion of image registration errors. We propose this method as an
alternative for measuring TREs on corresponding landmarks
that require expert annotations that are hard to come by and
are sensitive to inconsistencies by the annotators. The proposed
algorithm is based on a 3-D CNN that learns to estimate errors
from a set of pairs of training images. The network estimates the
registration error as a physical distance. Validation on the gold
standard error maps shows a good agreement between the esti-
mates and gold standard, with RMSD of 0.51 mm, showing sub-
voxel accuracy for registration error estimation. Using the gold
standard error maps, we consistently show that CNNs can com-
pute deformation norms and are, therefore, suitable for estima-
tion of registration errors. The gold standard validation method
uses realistic deformation models that mimic true registration by
taking the difference of two known deformation fields. This imi-
tates a real registration error map, which is also the norm of the
difference between the transformation estimated by the registra-
tion method and the true, but unknown transformation between
the images. In one aspect, the gold standard validation data are
not realistic, because both images are transformations from
one and the same image, namely the same inspiration image.
To compensate for that, we have added white Gaussian noise
to both input images.

Validation on ground truth landmarks shows that the network
can learn errors to within a small deviation from the TRE calcu-
lated on the landmarks. On average, the RMSD between the esti-
mates and ground truth TRE is 0.66 mm for the full registration
sequence. From this, we conclude that the estimates are close to
the true error, with a subvoxel accuracy. The comparison to
TREs is subject to uncertainty in the landmark placement as
well. The interobserver localization error in the landmark anno-
tation is on the order of 0.5 to 1 mm and exceeding 2 mm for the
POPI data set. The average error made by the algorithm falls
within this range, which is supported by the error bars in
Fig. 4. Given the better performance on the gold standard val-
idation set, we suspect the larger errors made when comparing to
landmark TREs are in part caused by errors in the landmark
annotations. It can further be explained by possible differences
in the gold standard and ground truth data sets. The deforma-
tions in the gold standard validation set may be smoother
compared to those in the ground truth set, which makes them
resemble the training set more. In addition, the gold standard
deformations have been applied to the same image, which
makes the estimation of the remaining deformation easier com-
pared to the ground truth validation problem. To make the net-
work more generic, we applied intensity augmentations in the
training set. Without these augmentations, the error estimates
are overestimated on average, as shown by the increased bias
in the estimates, as shown in Table 4.

The network’s architecture was optimized empirically.
We experimented with deeper and more shallow networks, as
well as a varying number of units per layer. The network’s
input patch size has been set to 33 × 33 × 33. We found that

Fig. 4 (a) Histogram of all differences between registration error estimates and ground truth.
(b) Estimated TRE versus true TRE for every landmark in the test set. Darker colors indicate higher
density of points. (c), (d), (e), and (f) Show similar correlation plots for specific registration pairs with
good and poor interobserver landmark annotation errors. In these plots, the black dotted lines show
the average annotation error on either side of the identity, with the gray areas indicating the average
annotation error plus the standard deviation.
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smaller patch sizes reduce the amount of context and, conse-
quently, reduce the performance of the network. However, larger
patch sizes only include more voxels at a larger distance from
the center voxels. This means that for very regular transforma-
tions, e.g., affine transformations, these voxels may add infor-
mation, but they will contribute far less to the error estimation
for error maps with a lot of local variations. In our experience,

larger patch sizes actually decreased the accuracy of the estima-
tions in the current setting. One further point that can determine
the optimal patch size is the range of registration errors the net-
work has to estimate, as the patch size should be large enough to
leave sufficient contextual information relative to the maximal
size of the errors. After initial experiments, we found the current
patch size was large enough to estimate errors up to 4 mm,
which is adequate for the majority of the registration errors
in the thoracic CT registrations. These assumptions may not
hold for other registration problems or other anatomical struc-
tures, such as interpatient brain MRI registration, where larger
errors can occur that will likely require larger patch sizes. To
train a network for a larger range of errors that at the same
time are spatially fluctuating, it may be necessary to switch to
architectures with multiple input patches at different sizes35 or
incorporating information at multiple scales.36

The TPS deformations used in the training set and the defor-
mation determined by the registration algorithm (B-spline defor-
mations) lead to different deformation fields. The choice for
TPSs was motivated by the fact that an error estimation algo-
rithm should be able to model deformations not captured by

Table 2 Performance statistics for error estimation at landmarks compared to ground truth TREs for the final stage of registration (i.e., complete
sequences of affine, coarse B-spline, and fine B-spline). RMSD and normalized RMSD are given for landmarks with ground truth TRE below 4 mm.
Landmark properties are given for all landmarks in the set, and averages are followed by standard deviations in parentheses.

Error estimation results Landmark properties

Data set
Image
pair

RMSD
(mm)

Normalized
RMSD (%)

Number of
landmarks with
TRE ≤4 mm

Registration
TRE (mm)

Annotation
error (mm)a

DIRLAB case02 0.55 21 300 0.94 (0.52) 0.70 (0.99)

case04 0.76 21 298 1.42 (1.00) 1.13 (1.27)

case06 0.72 19 296 1.17 (0.88) 0.97 (1.38)

case08 0.58 21 296 1.12 (0.89) 1.03 (2.19)

case10 0.58 21 298 1.02 (0.72) 0.86 (1.45)

COPDgene copd02 0.84 23 256 2.67 (3.82) 1.06 (1.51)

copd04 0.79 21 266 2.21 (3.45) 0.71 (0.96)

copd06 0.58 16 220 4.08 (6.04) 1.06 (2.38)

copd08 0.66 18 279 1.55 (2.49) 0.96 (3.07)

copd10 0.75 19 260 2.23 (3.10) 0.87 (1.65)

POPI popi 0.65 18 39 1.38 (1.24) 2.30 (1.30)

CREATIS creatis01 0.57 21 99 1.06 (0.58) 0.50 (0.90)

creatis02 0.56 17 97 1.15 (0.87) 0.50 (0.90)

creatis03 0.40 19 99 0.77 (0.42) 0.50 (0.90)

creatis04 0.46 17 98 0.74 (0.87) 0.50 (0.90)

creatis05 0.47 27 104 0.95 (0.80) 0.50 (0.90)

creatis06 0.58 22 112 0.89 (0.50) 0.50 (0.90)

aFor the DIRLAB and COPDgene sets, the annotation errors are calculated on larger sets of landmarks of which the published landmarks
are a subset. For the CREATIS set, the annotation errors are specified for the landmarks in all images combined. For details, see
Refs. 24–27,29, and 34.

Table 3 Performance statistics for error estimation at all landmarks in
the test set compared to ground truth TREs per registration stage.
Results for landmarks with TREs below 4 mm.

Registration
stage

Number of
landmarks

RMSD
(mm)

Normalized
RMSD

Affine 1863 0.70 0.18

Coarse B-spline 3344 0.65 0.17

Fine B-spline 3417 0.66 0.17
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the registration algorithm. The TPSs in the training set and the
B-splines used in registration are different in nature. From
Fig. 3, it seems that the network has created smoother error
maps compared to the gold standard error maps. This could
be explained by the relative smoothness of the training set defor-
mations. The current implementation has been tested on Elastix’
registrations, and the applicability of the methodology to other
registration methodologies and frameworks deserves further
attention. Possible difficulties could occur when the registration
suffers from shape collapse, where structures disappear or
appear because of extreme but wrong transformations caused
by structures that have insufficient overlap in the images.37

This will result in areas that have a high registration error
while looking very similar. Further experiments are required

to investigate this potential problem, which often occurs in
brain MRI registration.38

The images used in training and testing have all been
resampled to voxel sizes of 1 × 1 × 1 mm. This necessity stems
from the fact that the network has no information on the scale of
image features. However, resampling the images before estimat-
ing the error map has a clear advantage: it means that images that
initially have vastly different voxel sizes can be used as input
to the network, both for training and application. Since the
anatomy in the images will be roughly the same size in all
scans, the network can more easily train to recognize transfor-
mations of relevant anatomical features. A disadvantage is that
the images can get quite large (up to 322 × 601 × 601 for image
pair creatis06), which means that using a shift-and-stitch tech-
nique to compute the error map on full images requires more
memory than available in current GPUs, or that the network
needs to be run on multiple overlapping patches, which is not
time efficient.

The current method is not the first to use supervised learning
to estimate registration errors. The method by Muenzing et al.3

performs supervised classification of the registration error into
good, poor, and wrong alignment classes, rather than estimating
continuous values for the error. In contrast, our method esti-
mates the registration error directly using a regression approach
and only uses the registered images. The two methods are not
easily compared since the method by Muenzing et al. is opti-
mized to classify errors and minimizes the misclassifications

Fig. 5 Correlation plots of estimated registration errors against TREs for all landmarks per data set.

Table 4 Average bias in error estimates for training with and without
intensity augmentation.

Phase
Bias with intensity
augmentation (mm)

Bias without intensity
augmentation (mm)

Affine 0.16 (0.68) 0.32 (0.70)

Coarse B-Spline 0.14 (0.64) 0.61 (0.88)

Fine B-Spline 0.11 (0.65) 0.59 (0.93)
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between the poor and wrong alignment classes, and the good
and poor alignment classes. Our convolutional network has
not been optimized to distinguish three alignment classes and
a proper comparison is, therefore, not possible. The registration
error estimation method by Sokooti et al.6 does perform regres-
sion using random forests. Both methods require registered
images for training, using annotated landmarks at distinctive
points. As discussed in Sec. 1, these sets are hard to come
by and do not exist for every registration problem. In contrast,
our method does not require a true ground truth for training but
uses known random transformation to make training data,
requiring no manual annotation.

A useful extension to the current algorithm would be the
development of a similar method for multimodal registration.
In the multimodal case, creating a training set would require
simulating other modalities from a given image. Training multi-
modal registration errors using the current framework would
require pairs of perfectly registered multimodal images that
would then be deformed with known transformations. One way
to solve this would be to let the training and testing of the net-
work rely on modality-independent feature maps of the images
instead of the images themselves.39

6 Conclusion
An automatic supervised method for estimation of nonlinear
registration errors has been presented. We have shown that
CNNs are a viable approach for estimating continuous registra-
tion errors for the full image domain. We consider this a generic
approach for mono-modal data that only require a small number
of images to be applied to different anatomies and modalities.
Error estimation methods, such as the one presented in this
paper, are important to further development and evaluation of
registration algorithms, to combine multiple registration meth-
ods, and can be of use in clinical image-guided procedures that
rely on nonlinear image registration.
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