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Abstract 

Sorption thermal energy storage is a promising concept for seasonal heat storage. Advantages of sorption heat storage 
are high energy storage density (compared to sensible and phase change heat storage) and negligible energy losses 

during storage over long time periods. In order to investigate the potential of sorption thermal energy storage, a high 

power open sorption heat storage system has been designed and built for household space heating applications. In this 

paper, the characteristics of the open zeolite 13X/water sorption energy storage system will be presented. The setup 

consists of four segments with a total capacity of 250 liters of zeolite. A segmented reactor has been designed to reduce 

the pressure drop over the system, which results in less required fan power. This configuration also decreases the 

response time and makes the system scalable. Dehydration of the reactor is performed by supplying hot air to the zeolite 

bed. Hydration is performed by supplying humidified air to the bed. In all the segments, the pressure drop, temperature, 

and humidity are monitored. Furthermore, inside one of the reactor segments, the temperature is monitored at different 

locations in the zeolite bed. Several tests, using different mass flow rates, have been performed. During the tests, a 

maximum temperature step of 24 ˚C was realized. The maximum delivered power was 4.4 kW and the obtained storage 

capacity was 52 kWh. The reactor efficiency was 76 % taking into consideration the conductive heat losses through the 

reactor wall and the sensible heat taken up by the thermal mass of the solids. Furthermore, it has been noticed that the 

flow through the bed was not completely uniform. This has a negative influence on the performance of the system.  

 

Keywords: Thermochemical heat storage; open sorption system; segmented reactor; high power; zeolite 13X 

 

Nomenclature 

Roman letters  

  Cross section area [m2] 

   Isotherm model affinity constant [-] 

   Specific heat capacity at constant pressure [kJ/(kg · K)] 

    Activation energy of desorption [J/mol] 

  Adsorption enthalpy [kJ/mol] 

      Local velocity deviation index [-] 

  Molar mass [kg/mol] 

   Mass flow rate [kg/s] 

   Isothermal model exponent constant [-] 

  Power [kW] 

  Pressure [Pa] 

  Thermal energy [kJ] 

   Zeolite water loading [mol/kg] 

   Gas constant [J/(K · mol)] 

  Time [s] 

  Temperature [K] 

  Velocity [m/s] 

   Volume [m3] 

  Absolute humidity [kg/kg] 

  

Greek letters  

   Isothermal model parameter 

  Efficiency [-] 

  Density [kg/m3] 

  

Subscripts  

    Equilibrium 

    Reaction front 

    Theoretical 

  



  

1 Introduction  

Currently, the energy sector is undergoing a transition towards a more sustainable future. The use of fossil fuels is 

slowly phased out and more energy is produced by renewable energy sources. A promising renewable energy 

production technology is solar thermal, especially since heating accounts for 64% of the total energy consumption in 

Dutch households [1]. However, there is a seasonal mismatch between supply and demand regarding to solar thermal 

energy. During summer, solar energy is abundant but the demand for heating is low, while in winter the demand is high 

but the supply is low. This mismatch between supply and demand could potentially be resolved by seasonal thermal 

energy storage.  

 
A promising method to store heat is by using sorption energy storage. This method allows for almost loss-free heat 

storage for a long time period [2, 3, 4]. The principle of sorption energy storage is based on a reversible interactions 

between the sorbate and sorbent according to A(s) + B(g)  AB(s) + heat. During the endothermic charging process, 

heat is added to the sorption material, breaking the bonds of the sorbate to the sorbent, storing heat. At a later time, the 

stored heat can be retrieved by combining the sorbent and sorbate together (discharging). Here, the sorbent (A) is 

zeolite 13X and the sorbate (B) is water vapor. Zeolite is a good candidate to be used in reactor studies because of its 

high stability [5]. Since heat is not stored in a temperature difference between the material and the environment, but 

rather in the chemical bonds between sorbate and sorbent, there are no significant energy losses over long time periods. 

 

In the past decade, lab or pilot setups have been developed and tested, attempting to integrate thermochemical heat 

storage in an overall system. Most of the systems utilize a packed-bed configuration. A disadvantage of the packed bed 

reactor design is the risk of formation of non-reactive zones, leading to a lower energy storage density. Table 1 shows 
open systems using zeolite as storage material.  

 

Table 1: Open system prototypes along with operating conditions 
Project name Year Material  Tcharge [ºC] Tdischarge [ºC] Energy density [kWh/m3] Max Power  [kW] 
       

STAID [6] 2015 80 kg zeolite 13X 120-180 20 114 2.25 

ASIC [7] 2014 50 kg zeolite 4A/X 230-180 25 148 1.5 

E-HUB/ECN [8] 2014 150 kg zeolite 13X 185 25-60 58 0.4 

PROMES-CNRS [9] 2014 400 kg SrBr2 80 25 203 0.8 

MONOSORP [10] 2006 70 kg zeolite 4A 170 20 120 1.5 

 
Johannes et al. [6] realized a high power open sorption heat storage system (STAID), which contains two reactor 

segments, each containing 40kg of zeolite 13X. The system is to be integrated in a domestic ventilation system, and 

provide space heating during peak hours. The hydration temperature was kept at 20 ºC with a sorbate vapor pressure of 

approximately 16.3-15.8mbar. Running the segments in parallel, the system is able to supply a maximum thermal power 

output of 2.25 kW during 6 hours, with a maximum COP of 6.8. The power output is constant for 6 hours during the 

discharge phase. However, following this constant power period, the power output decreased during 4 hours to the point 

where the material is fully discharged. A maximum outlet temperature of 57 ºC was achieved.  

 

In order to avoid the formation of non-reactive zones Zettl et al. [7] of the Austria Solar Innovation Center (ASIC) 

developed a rotating drum reactor filled with 50 kg zeolite 4A or zeolite X. This method is expensive and requires extra 

mechanical energy to revolve the reactor. At a hydration temperature of 25 ºC, the applied sorbate water vapor pressure 
was 25mbar. The system is able to deliver a maximum thermal power of 1.5 kW with a maximum COP of 12, taking 

into account the electrical power to operate the process. The maximum outlet temperature of the system is 60 ºC.  

 

The E-HUB/ECN developed a prototype using two packed bed modules, totaling 150 kg zeolite 13X [8]. The aim is a 

compact long-term heat storage solution for low-energy single family houses. An air-to-air heat recovery unit was 

installed to increase the inlet temperature up to 40 ºC using residual heat in the outflow, which allows for higher outlet 

temperatures. The air flow to the zeolite bed is humidified to 12mbar water vapor pressure. The maximum delivered 

power is 0.4 kW, and the maximum outlet temperature of the system is 70 ºC. 

 

The MONOSORP prototype is developed as an open heat storage system for space heating in the built environment [10]. 

The storage material is zeolite 13X and the system contains honeycomb structures instead of ordinarily employment 
fills. These structures have a large number of small straight channels that ensure a low pressure loss. The hydration 

temperature is approximately 20 ºC and the applied water vapor pressure is 12mbar. The maximum outlet temperature is 

approximately 42 ºC. The system delivers a maximum power output of 1.5 kW.  

 

Michel et al. [9] developed a large scale prototype using 400kg of SrBr2 packed in eight separate modules on top of 

each other. Each module has a reactive bed with a thickness of 7.5cm and a diffuser with a thickness of 1.5cm. In order 

to maximize the reactor energy storage density, the number of modules and diffusers should be minimized by using 

thicker reactive beds. However, a larger thickness limits mass transfer and reduces the thermal power output. This 

indicates that there is an optimum value in terms of reactive bed thickness. Gaeini et al. determined the optimal aspect 

ratio of the reactive bed [11]. This aspect ratio is implemented in the design of the pilot reactor of this work.  



  

In this work, the design of a sorption storage system is presented, taking into account the issues reported in literature. 

The developed pilot reactor has several key characteristics to achieve a high-power, flexible system:  

 

 The reactor segments have an optimum aspect ratio, which maximizes the efficiency and minimizes the 

pressure drop [11]. 

 The system is modular, which allows for easy upscaling.  

 The segmented approach of the system reduces the pressure drop over the reactor vessels and decreases the 

sensible heat loss, therefore increasing the efficiency.  

 The first reactor segment is equipped with additional thermocouples to investigate the formation of non-
reactive zones.  

 

The developed sorption energy storage system can be used to store heat for domestic applications. The main prospect of 

this technology is heat storage for domestic applications. It can provide temperatures suitable for space heating and with 

the addition of a heat recovery unit, temperature suitable for hot tap water. Experiments have been performed to 

demonstrate the power and capacity of the setup, and to investigate the non-reactive zones in the reactor bed. The 

developed pilot setup is in terms of energy density and sorption temperature is mapped in Figure 1, together with the 

previously described zeolite prototypes of Table 1.  

 
Figure 1: Energy density vs sorption temperature of sorption heat storage prototypes based on zeolite with similar 

charging temperatures (~180 °C) and discharging water vapor pressure in the range 9 - 16 mbar. Square marker: 

energy density based on system/reactor volume. Circle marker: energy density based on material volume. TU/e: 

operating conditions reported in Table 2. TU/e (ET): operating conditions reported in Table 2 except for reactor inlet 
temperature, set at 50 °C. 

 

2 System analysis 

A prototype setup is designed and built at the Eindhoven University of Technology. The setup is briefly explained here. 

More details can be found in [12]. Zeolite 13X (KÖSTROLITH) has been chosen as sorption material because of its 

high stability and relatively high energy storage density. More information on the material can be found in the detailed 

investigation done by Gaeini et al. [13].  

 

2.1 Experimental setup 

A segmented design has been selected for the system. This implies that there are a number of smaller separated 

compartments filled with zeolite. A segmented design has been selected because it has a number of advantages [14]: 

 The pressure drop through the reactor will be reduced. Therefore, less fan power is required. 

 Because the sorption material is divided over a number of reactors, only a part of the sorption material will be 

heated up when charging or discharging. This results in a faster response time and lower energy losses due to 

less sensible heat required to heat up the sorption material. 

 It allows for easy scalability by increasing the number of segments. 



  

The system consists of four reactor segments, each containing 62.5 liter of zeolite. All segments are identical, except for 

the first segment. This segment contains additional thermocouples, which allows monitoring of the temperature 

development inside the zeolite bed. The zeolite is placed between two perforated plates supported by a frame, to keep 

the grains in place. The inlet and outlet are placed on two opposite side walls, at the top and bottom of the reactor, 

respectively. The reactor design and sensor placement is displayed in Figure 2.  
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Figure 2: Reactor design and sensor placement. 

 

In the setup, the air mass flow rate, humidity and air temperature are controlled. A schematic overview of the complete 

system is displayed in Figure 3. The air from a pressurized grid is fed to each segment with a controlled flow rate. After 

the mass flow controllers, 3-way valves have been installed in order to direct the air flow to the bubble columns for 

hydration, or to bypass the bubble columns for dehydration. The water level in the bubble columns are controlled to 

reach the desired humidity. After the bubble column in each path, another 3-way valve is placed to blow off the air flow 

during the stabilization period. The air passes through electric heaters, which simulate the solar thermal collectors. Then, 

the air passes through the reactors and is finally blown off to the environment. In each line, a number of sensors are 
placed, as shown in Figure 3. A picture of the setup is displayed in Figure 4.  
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Figure 3: Schematic overview of the experimental setup. 

 

 



  

 
Figure 4: The setup without insulation. 

 

2.2 Experimental methodology 

The operating conditions of the setup are displayed in Table 2. 

 
Table 2: Typical operation parameters of experiments. 

Parameter Hydration Dehydration Unit 

Inlet temperature 13 180 [°C] 

Inlet vapor pressure 1348 85 [Pa] 

Absolute humidity 10.2 0.41 [g/m3] 
Air mass flow rate 50 35 [g/s] 

 
The theoretical energy storage capacity and thermal power of the setup can be calculated with Equations 1 and 2, 

respectively. Here,      is the water uptake of zeolite 13X, which is determined using Langmuir-Freundlich 

equilibrium models and the inlet water vapor pressures during charging and discharging [13].       is the average 

adsorption enthalpy of zeolite 13X, which can be determined by using a mean value from the van ‘t Hoff equation [13]. 

V is the volume of the zeolite bed, ρbulk the bulk density of the zeolite, ṁ the air mass flow rate, x the absolute humidity 

of the air and Mwater the molar mass of water. This results in an energy storage capacity of 12.5 kWh and a thermal 

power of 1.6 kW per reactor segment.  

 

                         (1) 

 

     
             

      

 
 

(2) 

The humidity at the inlet and outlet at one reactor segment is monitored. Therefore, the energy density can be calculated 

based on the experimentally obtained water uptake. However, temperature sensors are also placed in the setup allowing 

the energy storage capacity to be calculated based on the temperature. The advantage of calculating the energy storage 

capacity based on the inlet and outlet temperatures compared with the calculating it based on the inlet and outlet 

humidity is that the latter does not require an assumption for the average adsorption enthalpy. Therefore, the extracted 

energy from a segment while discharging has been calculated with Equation 3. Herein, cp is the specific heat capacity of 

air and t0 and te are the start and the end time, respectively. 

                                               
   

  

 
 

(3) 

The same equation can be used to calculate the introduced energy into the segment during charging (         ). The 

efficiency of the system is calculated with Equation 4 [15]. Here, Qcharging is the energy required to dehydrate the reactor 
segments. The air fed to the system comes from a pressurized grid. Therefore, the required fan power in an actual 



  

system has not been included in the efficiency. It also should be noticed that the thermal energy that is blown off 

through the outlet when charging is not considered as a loss in the calculation. This is because the energy can (partly) be 

used for the pre-heating of a segment or sensible heat storage. Finally, despite the storage of energy being loss-free, 

there are some losses during the charging and discharging of the reactor. When the reactor is discharged, a temperature 

difference between reactor and ambient is created causing heat losses to the surroundings. 

 

  
            

         

 
 

(4) 

In order to determine if the reactor performs optimally, it needs to be determined if the zeolite bed is charged and 

discharged uniformly. The flow uniformity index is introduced to evaluate this aspect [16, 17] and is displayed by 

Equation 5. Herein, Urf is the experimentally obtained local reaction front velocity based on temperature measurements. 

Urf,avg is the average reaction front velocity, which can be calculated with Equation 6. The flow uniformity index can be 
obtained when the flow velocity over the whole cross section area of the bed is known. In the experimental setup, the 

flow is investigated at six different points per layer as shown in Figure 2. Therefore, the local velocity deviation index is 

used to define the uniformity of the flow at these six points.  

 

      
             

       

 
 

(5) 

The local front velocity     is not obtained directly, but estimated at the thermocouple location by calculating the time 

between the beginning of the experiment and the time at which the thermocouple temperature started to decrease, 

indicating that the reaction front passed that location of the bed. The average velocity        , at which the reaction 

front is traveling through the bed, has been calculated based on Equation 6. Herein, A is the cross section surface of the 

zeolite bed.  

 

           
    

                

 
 

(6) 

 

3 Results 
In this section, experimentally obtained results are presented and discussed. First, the general performance of the 

prototype setup is demonstrated based on the energy storage capacity and thermal power output. Then, the importance 

of partial discharging of the reactor segments are evaluated. Furthermore, the flow uniformity as an effective factor on 

the performance of the system, is investigated.  

 

3.1 Energy storage capacity and thermal power demonstration 

To demonstrate the energy storage capacity and power of the system, all four segments have been discharged multiple 

times at different air mass flow rates. The temperatures at the inlets and outlets of all the segments have been monitored. 

The results of the experiment with an air mass flow rate of 50 g/s per segment are shown in Figure 5. 

 

The energy that is extracted from a segment while discharging, is calculated with Equation 3. The time interval that is 

used to calculate the extracted energy is 18 hours, based on the time it takes to discharge a segment at an air flow rate of 

50g/s. The results of this calculation are shown in Figure 6. Figure 6 also includes the thermal power of the segments. 

To calculate the power, the temperature step at which the system was running steadily has been used. The system has 

been considered steady between 4 and 9 hours, in Figure 5. 

 
The expected theoretical energy storage capacity of the reactor segments is 12.5 kWh, based on the energy density of 

zeolite. From the results in Figure 6, it can be observed that the recovered energy from a reactor segment varies between 

12.5 and 14 kWh, with an average capacity of 13 kWh. Especially the first segment performs better than expected. This 

is because the zeolite has been replaced in this reactor, which probably improved the packing of the material, and hence 

increased its bulk density.  

 



  
 

Figure 5: Inlet and outlet temperatures per segment while discharging at 50 g/s. 

 

 

 
Figure 6:  Energy storages capacities and delivered powers per segment. 

 

 
Figure 7: Absolute humidity at the inlet and outlet of segment one while discharging at 50 g/s. 

 

The expected power of a reactor segment has been calculated with Equation 2. This resulted in an expected power of 

1.55 kW per reactor segment at an air mass flow rate of 50 g/s. However, the experimentally obtained power is 1.1 kWh, 

as can be observed in Figure 6. This difference is caused by a lower humidity produced in the bubble columns 

compared to the expected one. There is an overpressure in the humidifiers due to the pressure drop over the components 

after the bubble columns (Figure 2). In the humidifiers, the air is humidified to a certain vapor pressure, which is not a 

function of the total pressure. Therefore, x (in kg water/kg air) is lower than if ambient pressure air would have been 

used, resulting in lower thermal power in accordance with equation 2. In Figure 7, the humidity at the inlet and outlet of 

a reactor segment is shown. It can be seen that the inlet and outlet humidity do not reach the same value. This is because 

the sensors do not correct for the total pressure. Therefore, a pressure sensor has been installed near the humidifier to 

correct the humidity by dividing it to the total pressure, which is also shown in Figure 7. When this correction is 
included in the theoretical power calculation, a power of 1.1 kW is obtained for an air mass flow rate of 50 g/s, which is 

the same as the experimentally obtained power. 

 

The temperature development during dehydration of the zeolite reactors is displayed in Figure 8. It can be observed that 

water is released at certain temperatures, since the temperature at the outlets does not increase with the same trend as at 

the inlets. The average energy fed to each segment for dehydration is 17 kWh. Therefore, 4 kWh more energy is fed to 

the reactor during dehydration (charging) than what is recovered during hydration (discharging). There are two main 

reasons for this. First, there is approximately 2.5 kWh of sensible heat required to heat up the reactor and the sorption 



  

material to 180˚C. Then, there are losses to the environment due to temperature differences. However, a relatively high 

efficiency of 76.4 % is calculated for this system. When the sensible heat of the reactor and sorption material can be 

used, the efficiency can be increased up to 91.2 %. Furthermore, it can be noticed that the difference between the inlet 

and outlet temperature is about 10˚C when the reactors are fully charged, which is probably due to losses. 

 

 
Figure 8: Inlet and outlet temperatures per segment when charging at 35 g/s and 180˚C. 

 

In order to estimate the reactor energy density with a sorption temperature suitable for domestic hot water production, 
the reactor inlet temperature has been increased from 10 °C to 55 °C by preheating the inlet air with the heaters (Figure 

2). An outlet temperature of approximately 75 °C has been reached. The airflow rate during this experiment was 30 g/s 

and the discharging time was in the order of 18 hours, with the outlet temperature starting to decrease after 

approximately 14 hours from the beginning of the discharge. The average energy content per segment was 8.8 kWh, 

which resulted in an energy density of approximately 0.49 and 0.29 GJ/m3. 

 

 
 

Figure 9: Bed temperature profiles during a discharging experiment with a reactor inlet temperature of 55 °C and an 

airflow rate of 30 g/s. [18] 

 

3.2 Partial discharge of segments  

In practice, a segment can be partially discharged if, for example, not all its energy content is required by the thermal 

load. In that case, water might diffuse from the hydrated to the dehydrated part of the bed. This will result in energy 

losses because the first water molecules adsorbed by the zeolite contain more energy than the last adsorbed molecules.  

Therefore, the effects of diffusion have been investigated. This has been done by discharging a reactor segment in two 

separated periods, with a shutdown period among the two partial discharge periods.  

 

The temperature development in the middle layer of the bed of an experiment with a waiting time of 23 hour has been 
included in Figure 10. From the left graph, it can be observed that the bed has been fully hydrated at 4 of the 6 locations, 

before the air mass flow rate was stopped. In the right graph, the second discharging stage can be observed. It can be 

observed that there is a temperature increase of approximately 4˚C at the locations where the bed was supposedly 

already hydrated. This might be caused by water diffusion. However, to be more certain, another experiment with a 

longer waiting period has been performed. The temperature development of this experiment has been included in Figure 

11. 

 



  
 

 
Figure 10: Temperature development at the in- and outlets of the reactor segments when discharging at 40 g/s in two 

consecutive periods with approximately 1 day in between. 

 

From Figure 11, it can be observed that the first discharging stage is similar to the results presented in Figure 10. 

However, in the second discharging stage, the temperature increase at the hydrated part of the bed is approximately 8˚C. 

This indicates that more water has been diffused away from this hydrated region. However, the energy storage capacity 

did decrease by 1.5 % in the experiment presented in Figure 10, while it only did decrease by 1.2 % in the experiment 

presented in Figure 11. Therefore, it can be concluded that diffusion within this type of material, at these operating 

conditions, is a slow process, and it does not have a significant effect on the energy storage capacity of the present setup. 

 

 

 
Figure 11: Temperature development at the inlets and outlets of the reactor segments when discharging at 40 g/s in two 

consecutive periods with approximately 7 days in between. 

 
3.3 Flow uniformity 

Flow uniformity defines the flow velocity distribution through a cross section of the zeolite bed. A high flow uniformity 

is important for the system to work as efficiently as possible. Therefore, the flow uniformity has been investigated 

experimentally by considering the temperature development in the reactor bed. 

 

In Figure 12, the temperature development inside the zeolite bed are shown. In these graphs, the vertical black dashed 
lines indicate the times at which the bed is expected to be hydrated (with perfect flow uniformity), which have been 

calculated with Equation 6. From Figure 12a, it can be observed that the calculated time corresponds relatively well 

with the experimentally obtained time. Furthermore, it can be observed from figure 12b-d that the flow through the bed 

is not completely uniform based on the temperatures in the bed. For instance, at the middle layer of the bed (figure 12c), 

the zeolite at the outlet side wall is discharging about twice as fast as the middle of the bed at the same height. Because 

of this, the outlet temperature of the reactor starts to decrease while other parts of the zeolite are still discharging.  

 

Figure 13 shows the local flow deviation index (LFDI) explained in section 2.4. The LFDI is determined with an air 

mass flow rate of 50g/s per segment. In Figure 13, the colored bars are the results of an experiment after replacing the 

zeolite and the gray bars are the results before the zeolite has been replaced. It can be observed that the differences 

between these experiments are large. Therefore, the packing of the zeolite has a big impact on the flow distribution 
through the bed. However, some trends are visible. The highest reaction front velocities can be expected near the walls, 

due to the higher porosity at the wall regions [11, 19, 20]. This was also observed while performing the experiments. 



  

The overall highest velocity was observed at the outlet wall. This is because the air is blown into the reactor with a 

relatively high velocity, and the inlet is directed at the outlet wall. This directs the flow directly into the bed at the outlet 

wall side. The lowest velocity is observed in the middle of the bed. 

  
(a) (b) 

  
(c) (d) 

Figure 12: Temperatures development at various locations in the bed while discharging at an air mass flow rate of 

50 g/s per segment. (a) inlet and outlet temperature, (b) temperature on the top layer, (c) temperature on the middle 

layer and (d) temperature on the lowest layer. The vertical dashed lines are expected discharge times. 

 

 

 
 

Figure 13: Local velocity deviation indexes when discharging at 50 g/s per segment: the colored bars are the results 

from an experiment after replacing the zeolite and the gray bars are the results from an experiment before the zeolite 

replacement and repacking of the bed. 

 

The average of the absolute values of the velocity deviation indexes for different location of temperature sensors and 

different flow rates are displayed in Table 3. It can be observed that mass flow rate, and thus the pressure drop over the 

bed, has an effect on the uniformity of the flow. In general, the flow uniformity increases when the mass flow decreases. 

It can be noticed that the velocity deviation indexes are higher at the top thermocouple layer than at the other two layers. 

This is probably due to the effect of the inlet turbulent airflow. While advancing through the porous bed, the airflow 

increases its uniformity.  
 

 

 

 



  

Table 3: Absolute average velocity deviation indexes per layer at 30, 40 and 50 g/s air mass flow. 

Parameter Top layer Middle layer Bottom layer Average 

50 g/s  0.241 0.137 0.091 0.156 

40 g/s 0.225 0.128 0.084 0.146 

30 g/s 0.208 0.121 0.085 0.138 

 
4 Conclusions and outlook 

In this paper, the development of a zeolite 13X/water sorption storage system has been described. The system has been 

developed to investigate the possibilities of a large scale seasonal sorption thermal energy storage for households. The 

setup consists of four separate segments with 62.5 liter zeolite each.  
With the setup, a number of experiments have been performed. From the results in this paper, it can be concluded that 

the setup storage efficiency is 76 % and that it can be increased to 91 % if the sensible heat of the solid materials of the 

reactor can be recovered. However, the energy that is blown of through the outlet when charging was not considered as 

a loss in the calculation because it could still be usable. The setup is able to store about 54 kWh thermal energy and can 

deliver powers of 4.4 kW. The power is lower than expected, which is caused by a lower air humidity x, caused in turn 

by a high pressure in the humidifier. Therefore, minimizing the pressure drop in the system improves also the thermal 

performance of the system. 

An experiment with an elevated inlet temperature of 55 °C has been performed with an air flow rate of 30 g/s. An 

energy density of 0.49 GJ/m3 referred to the material volume has been measured with a sorption temperature of 

approximately 75 °C. This latter result opens opportunities for domestic hot water production with this reactor 

prototype, assuming that a heat recovery system is integrated.  
Diffusion of water inside a partially hydrated zeolite bed has also been investigated experimentally. From these results, 

it can be concluded that local diffusion does occur, but that it is a very slow process. Therefore, diffusion does not have 

a significant effect on the energy storage capacity of the reactor segments. 

Furthermore, the uniformity of the flow through the zeolite bed has been investigated, since flow uniformity is 

important to have a constant power during the discharging time and to make a complete system work as efficiently as 

possible. From the performed experiments, it is observed that the flow uniformity is not ideal and that the distribution of 

the zeolite grains has a big effect on the flow distribution.  
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