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We consider the challenges and trade-offs involved in the manufacturing of engineered proteins. Manufac-

turing these proteins involves high risk of financial losses due to the purity and yield trade-offs, uncertainty

in the process outcomes, and high operating costs. In this setting, the biomanufacturer must determine how

much protein to manufacture in the upstream fermentation operations, and then how much of it to waste in

each subsequent purification operation because of the purity–yield trade-offs. We develop a Markov decision

model to optimize three layers of interdependent decisions in protein manufacturing: the optimal amount

of protein to be produced in upstream operations, the optimal choice of chromatography technique to be

used in downstream operations, and the optimal choice of pooling windows during chromatography. The

proposed stochastic model dynamically optimizes these three layers of interdependent decisions to maximize

the expected profit. The structural analysis derives functional relationships between the purity–yield trade-

offs and operating costs, and characterizes the optimal operating policies. The optimal policy also suggests

when the biomanufacturer is better off failing early and cutting losses. We use a state aggregation scheme to

reduce the computational efforts, and quantify the savings obtained from the use of the optimization model

in industry practice at Aldevron.

Key words : Stochastic optimization, protein manufacturing, quality requirement, random yield.

1. Introduction

More than 8,000 therapeutics are in the global pharmaceutical research and development

pipeline to treat cancer, diabetes, and many other diseases (Long and Works 2013). These

therapeutics are the “next-generation” drugs produced by biomanufacturing technologies.

Unlike traditional pharmaceuticals that are chemically synthesized, biopharmaceuticals

are manufactured through live systems (e.g., bacteria, viruses, mammalian cells, etc.). The

use of live systems introduces unique manufacturing challenges and trade-offs due to the

uncertainty in production outcomes. In this paper, we focus on the biomanufacturing of

1



Martagan et al.: Managing Trade-offs in Protein Manufacturing
2 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-16-014.R3

engineered proteins. These proteins are uniquely designed and manufactured as part of

pharmaceutical research and development (R&D).

Protein manufacturing operations consist of two main steps: upstream fermentation and

downstream purification processes. The upstream fermentation process results in a batch

mixture containing the protein of interest along with several unwanted impurities. The

downstream purification process consists of a series of chromatographic steps to eliminate

the unwanted impurities. To satisfy the customer order, the biomanufacturer must meet

the yield requirement (i.e., the desired amount of protein) and purity requirement (i.e., the

minimum acceptable quality). However, meeting both of these requirements is challenging

because of the purity–yield trade-offs. For example, the biomanufacturer needs to waste

some amount of the protein at each chromatography step to improve the batch purity. If

too much protein is wasted, then the yield requirement might not be achieved. In con-

trast, if too little protein is wasted, then the purity requirement might not be achieved.

High purity requirements impose another layer of challenge. For example, the batch often

needs to be free of impurities if the potential end users are humans. To achieve such high

purity targets, biomanufacturers need to successfully manage the purity–yield trade-offs

at multiple interdependent chromatography steps.

Although the purity–yield trade-off is inevitable, it is possible to control it by simul-

taneously optimizing the choice of chromatography technique and pooling window (i.e.,

the chromatography operating policy). In the presence of multiple impurities, simultane-

ously optimizing these two chromatography decisions is challenging because each impurity

exhibits a distinct separation performance in different chromatography techniques. There-

fore, it is important to choose the right chromatography technique and pooling window to

simultaneously eliminate multiple impurities based on their purity–yield trade-offs.

An expensive but feasible way of addressing these challenges is to deliberately increase

the amount of protein obtained from fermentation. Producing higher amounts of protein

during fermentation might alleviate the failure risks and the purity–yield trade-offs involved

in chromatography operations. However, it also leads to higher operating costs. In addition,

each production order involves a predetermined yield requirement, and producing proteins

in excess of this requirement does not guarantee additional revenue.

Therefore, a protein manufacturing project is required to successfully manage three lay-

ers of operating decisions: (1) optimizing the protein mass obtained from fermentation
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(see Section 2.2), (2) optimizing the pooling window used at a chromatography technique

(see Section 2.3), and (3) optimizing the choice of chromatography technique used in each

purification step (see Section 2.4). In practice, these three layers of operating decisions are

interdependent, and need to be optimized through a unifying framework. In this paper,

we develop a stochastic optimization model that simultaneously addresses these three lev-

els of interdependent decisions, and answer the following questions: When is it optimal

to fail early and avoid future losses? What is the best protein amount to be manufac-

tured during fermentation? What are the best choices of chromatography techniques and

pooling windows? How much protein should be sacrificed at each chromatography step to

improve the purity? How can biomanufacturers overcome challenges in conforming to high

purity requirements? Answering these questions will shed light on the practical concern of

biomanufacturers regarding how much to waste. The waste in this setting corresponds to

(i) the amount of protein produced in excess of the yield requirement, and (ii) the amount

of protein sacrificed at each chromatography step to improve the batch purity.

Main contributions and organization of the paper. Our contributions are summarized

as follows: (i) We build a stochastic optimization model that simultaneously addresses

the upstream protein mass decisions, the chromatography technique selection decisions,

and the pooling window decisions in the presence of multiple impurities. (ii) We analyze

the structural properties of the upstream protein mass problem, and characterize three

critical protein threshold values. These thresholds provide formal guidelines to reduce the

production costs of biomanufacturing operations. The structural results provide a rigorous

framework to analyze the financial trade-offs in practice. (iii) We characterize functional

relationships between the purity–yield trade-offs and operating costs, and determine the

structural properties of the optimal policies. Such structural characteristics of the optimal

policies have not been analyzed in the literature. (iv) The resulting model is complex to

analyze analytically and computationally. We develop an aggregation scheme based on the

structural results, and successfully simplify the problem by transforming its continuous

state space into a binary state space for each impurity. The proposed approach provides

a new perspective to handle industry-scale problems at a 100% purity requirement. (v)

We quantify the potential impact of the optimization model with an industry case study.

The case study shows that substantial improvement in the expected profit can be achieved

using the optimization framework. This research has been conducted in collaboration with
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Aldevron, a biomanufacturer specializing in protein manufacturing. The research outcomes

have been shared and validated with a larger biotechnology community through industry

working group sessions (BioWGS 2016).

To the best of our knowledge, Martagan et al. (2017) was the first to develop a Markov

decision model for protein purification operations. However, they assume that the upstream

protein mass problem and the downstream chromatography technique selection problem

have been solved, and mainly focus on the pooling window selection problem. This aligns

with the current practice where process improvements are limited to one of the decision

layers in isolation. In contrast, this paper demonstrates the value obtained when these

three decision layers are optimized simultaneously. The case study in Section 7 shows that

the improvements achieved by the simultaneous optimization framework are almost double

of that achieved by optimizing an individual decision layer alone.

The remainder of the paper is organized as follows. The problem setting is introduced in

Section 2 and the relevant literature is discussed in Section 3. The optimization model is

developed in Section 4, and the structural properties are analyzed in Section 5. Section 6

presents a state aggregation scheme. A case study from Aldevron is presented in Section 7,

and concluding remarks are provided in Section 8.

2. Background on Protein Manufacturing

The first stage in biomanufacturing is the upstream fermentation operations, where the cells

grow and produce the protein of interest. The batch obtained from fermentation consists

of a mixture of the protein of interest along with several impurities. These impurities

are unwanted byproducts, such as contaminants, dead cells, ammonia, lactate, and other

metabolic residues. The batch proceeds with downstream purification operations, where

these impurities are eliminated through a series of chromatography operations.

Chromatography operations are carried out in columns packed with special resins bind-

ing to either proteins or impurities. A chromatography technique uses the difference in the

physical and chemical properties as a separation principle. For example, a chromatogra-

phy technique could exploit the difference in molecular size, charge, hydrophobicity, etc. A

typical purification process consists of 2 to 6 chromatography steps. In practice, the scien-

tist first collects data on the performance of different chromatography techniques through

scouting experiments, and then uses this data during the production runs.
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2.1. Yield and Purity Requirements

Purity is a typical measure of batch quality, and it represents the ratio of the amount

of the protein to the total amount of the protein and impurities available in the batch.

Depending on the application, the final purity requirement specified by the client could be

up to 99% or even 100%. For example, if the users are humans, then the batch often needs

to be free of unwanted impurities to satisfy regulatory requirements. In this paper, we are

specifically interested in proteins whose potential end users are humans, and hence the

final batch should conform to high purity requirements (i.e., ≥ 99.9% purity). The yield

requirement represents the amount (mass) of the protein that needs to be produced. We

use the terms “amount” and “mass” interchangeably hereinafter. The yield requirement is

specified by the client along with the purity requirement. When the yield requirement is

not achieved, the biomanufacturer incurs penalty costs per unit of protein in shortage.

2.2. The Upstream Protein Mass Problem

The scientist operating the fermentation process does not have the ability to prevent or

limit the formation of impurities, as they are natural metabolites. Several studies have doc-

umented evidence related to the impurities obtained during the fermentation process based

on the physicochemical conditions (Tsao et al. 2004, Xing et al. 2010). The scientist has

the ability to selectively increase the amount of the protein obtained from the fermentation

using several controls, e.g., adjusting the harvesting times or increasing the productivity

of the cell lines. The objective of this study is not to develop fermentation control policies

to increase the protein amount. Instead, we focus on identifying the optimal amount of

protein that should be obtained at the end of the fermentation process.

Increasing the protein amount obtained from a batch is an important research topic, and

it is referred to as the problem of increasing the titer. Although increasing the protein mass

obtained from a batch is possible, it may significantly boost the upstream operating costs,

because these costs are nondecreasing in the amount of protein. Increasing the protein mass

to more than is required could hurt the profitability of a batch, as the customers may not

purchase the proteins manufactured in excess of their yield requirement. Identifying the

best amount of protein to be obtained from the upstream batch is a challenging problem

because of the random yield losses and uncertain purity outcomes in the downstream

purification operations. Although higher protein mass increases the upstream costs, it

alleviates the downstream purification risks. Due to these trade-offs, a formal decision-

making framework is required in practice.
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Figure 1 An example of chromatography outcome with multiple impurities (Industry data from Aldevron)

2.3. The Pooling Window Selection Problem

Figure 1 (a) shows an example of the outcome obtained from a chromatography operation.

Each column in Figure 1 (a) is called a lane, and represents the volume flowing through

the chromatography equipment during a specified time interval (e.g., one minute). The

y-axis in Figure 1 (a) describes the composition of the volume collected as a function of

the molecular size of the protein and impurity constituents. Each lane is comprised of some

fraction of the total amount of the protein of interest, and some fraction of different types

of impurities. For example, consider lane 8 in Figure 1 (a). In this lane, there are 8 different

types of molecules; one of them is the protein of interest, and the remaining ones are

different types of impurities (as shown by the arrows). We translate the chromatography

outcome in Figure 1 (a) into the diagram in Figure 1(b). Figure 1(b) plots the fraction of

total protein mass per lane and two representative impurities.

The scientist decides which chromatography technique and pooling window to use simul-

taneously. First, we introduce the pooling window decision for a given chromatography

technique. For simplicity, we plot only two different impurity types in Figure 1(b), namely

Impurity A and B, and use this example to discuss the purity–yield trade-off in pooling

decisions. If the scientist pools lanes 3–15 in Figure 1(b), then she collects all protein

along with Impurity A and B. On the other hand, if she pools lanes 9–15, she compro-

mises on the yield (i.e., collects a smaller fraction of the protein) but completely eliminates

Impurity A and some fraction of Impurity B. Alternatively, the scientist might decide to

significantly compromise on the yield (i.e., lose ≈ 55% of the protein) by pooling lanes
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Figure 2 Difference in the separation capability of two chromatography techniques (Industry data from Aldevron)

12–15, but this decision helps to achieve 100% purity because all unwanted impurities

are eliminated. This example illustrates the purity–yield trade-off typically encountered in

chromatography operations.

Note that Figure 1 illustrates only one sample outcome of a chromatography step.

However, in practice, the amount of protein and impurities associated with each pooling

window is random. This randomness adds another layer of challenge in decision-making.

In addition, pooling window decisions can become more complex when a chromatography

technique demonstrates a distinct affinity toward different types of impurities. In practice,

depending on the outcome of a chromatography step, the scientist makes decisions regard-

ing the chromatography technique and the pooling window for the subsequent step. This

leads to the related problem of chromatography technique selection.

2.4. The Chromatography Technique Selection Problem

Figure 2 shows the output of two different chromatography techniques based on industry

data. Both outputs shown in Figure 2 use the same starting material but different tech-

niques to separate the protein from unwanted impurities. The starting material contains

the protein along with Impurity A and B. The x-axis in Figure 2 represents the lanes, and

the y-axis denotes the fraction of the molecules corresponding to each lane. The solid curve

in Figure 2 represents the protein, and the other two curves represent the impurities.

Note that the choice of chromatography technique influences the relative positions of the

molecules and their corresponding amount in each lane. For example, Impurity A is located
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on the left of the protein under the first chromatography technique in Figure 2. However,

the same impurity overlaps completely with the protein under the second chromatography

technique in Figure 2. It is clear that the second technique is not capable of separating

Impurity A from the protein of interest. However, it provides a better separation outcome

for Impurity B than first chromatography technique. The relative locations of the protein

and impurities and their corresponding amounts in each lane are complex functions of

the physical and chemical properties, and vary for each chromatography technique. Note

that the choice of chromatography technique directly influences the underlying purity–

yield trade-offs, as the relative locations of protein and impurities are different for each

chromatography technique.

2.5. Interdependency between Chromatography Technique and Pooling Window

The pooling window decision is strongly influenced by the choice of chromatography tech-

nique. For example, if the scientist needs to completely eliminate Impurity B in Figure 2,

then she could pool lanes 12–15 on the first chromatography technique (wasting ≈ 55%

of the protein of interest), or she could pool lanes 2–11 on the second chromatography

technique without compromising the protein. This illustrates the complex interdependency

between the choice of chromatography technique, pooling windows, and purity–yield trade-

offs. In practice, a starting material could contain up to 100 different impurities to be

separated using 5 to 10 available chromatography techniques. The combinatorial complex-

ity arising from multiple impurities, chromatography techniques, pooling windows, and

purity–yield trade-offs makes the purification decisions complex in practice.

2.6. Decision Making in Practice

We organized a series of working group sessions, and interviewed several small- and

medium-sized biomanufacturers to understand the industry-wide practice. We learned that

operating decisions are often made based on a combination of the industry guidelines and

scientists’ experience. For example, a standard purification protocol suggests a three-step

strategy with (1) a capture step to remove critical contaminants, (2) intermediate step(s)

to remove bulk impurities, and (3) a polishing step to eliminate remaining impurities. The

handbook of GE Healthcare provides an excellent summary of the common guidelines for

purification processes (GE Healthcare 2010). These protocols often match an impurity type

with a chromatography technique, e.g., if the impurity is affinity-tagged, then use the anion



Martagan et al.: Managing Trade-offs in Protein Manufacturing
Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-16-014.R3 9

exchange chromatography (GE Healthcare 2010). Popular heuristics also use the highest

resolution criteria (i.e., the chromatography technique that has the least overlap between

the protein and impurities) or the highest selectivity criteria (i.e., the chromatography

technique that has the highest distance between the protein and impurity peaks) as a

heuristic for decision-making. On a given chromatography technique, the scientist identifies

the specific type of impurities to be eliminated, and selects the pooling window accordingly.

Note that these guidelines and heuristics are defined based on the biological and chemical

dynamics, but do not incorporate the financial trade-offs into decision-making.

For the upstream protein mass decisions, companies often plan for excess production to

buffer against uncertainties in subsequent operations. Company-specific guidelines are often

used to constrain a minimum and maximum limit on the production quantities, e.g., “do not

produce more than threefold of the yield requirement,” “only buffer against the expected

yield losses in downstream,” or “always run the bioreactor at maximum capacity.” Based

on the working group sessions, we observed that Operations Research (OR) applications in

the biomanufacturing industry are still in infancy. However, biomanufacturers across the

world are realizing that they need to undergo a data-driven OR-based transformation to

fully realize the societal benefits of bioscience research.

3. Literature Review

The relevant literature can be classified into two categories: fermentation optimization and

chromatography optimization. In the field of fermentation optimization, several studies

focus on developing models for cell growth and product formation (Patel et al. 2000, Tsao

et al. 2004, Xing et al. 2010). These cell growth models are also incorporated into optimiza-

tion models to determine the optimal control policies that increase the titer (Saucedo and

Karim 1997, Yang et al. 2000, Peroni et al. 2005, Gnoth et al. 2007, Martagan et al. 2016).

However, the literature typically focuses on the underlying biology of the fermentation

process, and often does not account for the uncertainties, financial trade-offs, and interac-

tions between the fermentation and chromatography decisions. There are limited number

of simulation studies that model the manufacturing uncertainties (Saraph 2003, Petrides

and Siletti 2004), but these simulation models do not yield insights on the structural char-

acteristics of the optimal policies. To address this gap, we develop a stochastic optimization

model and provide analytic results on the optimal policies and financial trade-offs.
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The literature on chromatography operations includes several studies on the chromatog-

raphy technique selection problem. For example, Vasquez-Alvarez and Pinto (2004) pre-

sented two mixed-integer linear programming (MILP) models to optimize the choice of

chromatography techniques. One of the MILP models minimizes the number of steps to

achieve the desired purity, whereas the other MILP model maximizes the purity. The

authors of Lienqueo et al. (2009) developed a mixed integer nonlinear programming

(MINLP) model to optimize the choice of polypeptide tag and chromatography steps

to maximize profit. A flowsheet optimization mechanism was developed by Nfor et al.

(2013) to eliminate multiple impurities with the minimum number of steps. However, the

aforementioned studies do not account for the interaction between the chromatography

technique and pooling window decisions. There are only a few studies that consider the

interdependency between these two operating decisions. For example, Polykarpou et al.

(2011) developed an MINLP model that determines the best chromatography technique

and pooling window to minimize the number of steps. Then, Polykarpou et al. (2012)

extended this work by developing an MILP model that overcomes the drawbacks of the

nonlinear model. The proposed MILP model helps to achieve a predetermined purity level

with the minimum number of steps. However, existing studies often focus on deterministic

models, and aim to minimize the number of steps. In contrast, we develop a stochastic opti-

mization model that captures the process uncertainties and financial trade-offs involved in

both the fermentation and purification operations.

In the context of stochastic optimization, Martagan et al. (2017) was the first to build

a Markov decision model to optimize the pooling windows. However, the authors assume

that the upstream production quantity and the choice of chromatography technique are

predetermined, and only focus on optimizing the pooling windows. The authors character-

ize new performance guarantees for meeting the production requirements, and propose a

zone-based decision-making approach. In contrast, this paper captures a broader scope, as

it addresses the upstream protein mass problem, the chromatography technique selection

problem, and the pooling window selection problem simultaneously.

4. Model Formulation

In this section, we provide a Markov decision model that maximizes the total expected

profit obtained from a specific order. We decompose the optimization problem into two

sub-problems: the upstream protein mass problem and the downstream purification problem.
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Decision Epochs: We consider a discrete-time, finite-horizon Markov decision model.

The set T = {t : 1, . . . , T − 1} denotes the decision epochs for the downstream purification

problem, where each decision epoch t ∈ T represents the beginning of a chromatography

step. The maximum number of chromatography steps required to achieve the desired purity

level is T − 1 because of the limitations in the number of available chromatography tech-

niques. Next, we let t= 0 denote the decision epoch for the upstream protein mass problem,

where the scientists determine the amount of protein to be obtained from fermentation.

Hence, the set T ∪ {0} denotes all the decision epochs of the optimization problem. The

end of the planning horizon is captured by T , such that the batch is either shipped to the

customer or scrapped at a penalty cost at the final time t= T .

State Space: First, we focus on the state space for the downstream purification prob-

lem. Let pt ∈ P represent the amount (mass) of the protein available in the batch at the

beginning of the chromatography step t ∈ T . Note that pt ∈ [0, p1] for all chromatography

steps t ∈ T , because the amount of protein pt available at the beginning of each step t is

bounded by the starting material p1. Next, we define the different types of impurities and

their corresponding amounts available in the batch. Let K= {k : 1,2, . . . ,K} be the set of

K distinct types of impurities, where K <∞. Let ik,t ∈ Ik denote the amount of impurity

type k ∈ K available in the batch at the beginning of chromatography step t ∈ T . The

impurity state (i1,t, . . . , iK,t) ∈ I1× . . .×IK represents the set of all distinct types of impu-

rities k ∈ K and their corresponding amounts ik,t available in the batch at the beginning

of the chromatography step t ∈ T . Note that ik,t ∈ [0, ik,1] for each impurity type k ∈K at

chromatography step t∈ T . The amount of protein p1 and the amount of impurities ik,1 for

each impurity type k ∈K at the beginning of the first chromatography step is determined

by the upstream fermentation process. We define the state ∆ as the stopping state, i.e.,

an absorbing state with zero cost representing the end of the optimization problem, where

the batch is either shipped or scrapped. Therefore, (pt, i1,t, . . . , iK,t)∪∆ is the state of the

downstream purification problem for all chromatography steps t∈ T .

Next, we consider the state space for the upstream protein mass problem. The amount of

protein p0 and impurity ik,0 for all impurity types k ∈K at the beginning of the upstream

fermentation operation is represented by the state (p0, i1,0, . . . , iK,0). It is assumed that there

are no proteins or impurities available in the batch at the beginning of the fermentation
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process. Therefore, the starting state of the upstream protein mass problem is p0 = 0 and

ik,0 = 0 for all impurity types k ∈K.

Action Space: We first present the set of actions for the downstream purification

problem. Let C = {c : 1,2, . . . ,C} be the set of available chromatography techniques, where

the action c∈ C denotes the choice of the chromatography technique c to be used at a given

purification step t∈ T . The action space C is finite and countable, as there is limited number

of chromatography techniques available in a given biomanufacturing facility. Next, let Lc =

{1,2, . . . ,Lc} denote an ordered set of lanes available at each chromatography technique

c∈ C. Note that the maximum number of lanes Lc on a chromatography technique c could

be different for each technique c ∈ C. A pooling window wc ∈Wc on the chromatography

technique c represents a subset of consecutive lanes from the set Lc. More specifically, the

set of all possible pooling windows for a chromatography technique c is Wc = {(i, . . . , j)⊆

Lc : j = i+m, i = {1, . . . ,Lc},m = {0,1, . . . ,Lc − i}} = {wc : w1,w2, . . . ,wNc}, where Nc is

the maximum number of pooling windows available on a chromatography technique c. Let

at(pt, i1,t, . . . , iK,t) represent the action taken at the beginning of the purification step t∈ T

and state (pt, i1,t, . . . , iK,t). In the downstream purification problem, the scientist makes

the joint decision (c,wc) ∈ C ×Wc on the chromatography technique c ∈ C and pooling

window wc ∈ Wc used at the purification step t ∈ T . Additionally, the scientist has the

possibility for taking the stopping action S by either scrapping the batch or shipping it to

the customer. Note that at(∆) = S for t∈ T ∪{T}.

In the upstream operations, the scientist has the ability to selectively increase the protein

mass p1 in the range [0, pmax] through a set of controls. In practice, these controls correspond

to manufacturing protocols related to the choice of buffers, adjustment of physical and

biological parameters, feeding strategies, etc. Determining these controls itself is a process

design problem (see Saucedo and Karim 1997, Yang et al. 2000, Xing et al. 2010, Martagan

et al. 2016), and is outside our scope. Instead, we are interested in determining the protein

amount p1 to be produced in the upstream fermentation operation. Therefore, p1 ∈P is the

decision variable in the upstream operation, and this production amount serves as starting

material for the downstream purification operations.

Transitions: In the downstream purification problem, the state transitions define the

amount of the protein of interest pt and the amount ik,t of each impurity type k ∈K that

remains in the batch after the chromatography technique c ∈ C is performed using the
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pooling window wc ∈Wc at purification step t∈ T . First, we model the changes in ik,t after

the completion of the chromatography step t∈ T . For a given impurity type k ∈K, we let

the random variable (Ψk|c,wc) denote the fraction of impurity amount that remains in the

batch after using the chromatography technique c and the pooling window wc. Therefore,

ik,t+1 = (ψk|c,wc)ik,t, (1)

where (ψk|c,wc) is the realization of (Ψk|c,wc). The random variable (Ψk|c,wc) has the

density function gk(·|c,wc) with support [0,1] for (c,wc)∈ C ×Wc and k ∈K. This density

function is characterized based on the physicochemical properties of the impurity k ∈ K
and its response to the chromatography technique c∈ C (See Vasquez-Alvarez et al. (2001)

and Polykarpou et al. (2011) for details). Because a chromatography technique exploits the

physicochemical properties of the protein and impurities to separate one from the other,

the density function gk(·|c,wc) is unique for each impurity type k ∈K, and is independent of

time t∈ T and impurity amount ik,t for all k ∈K. The density function gk(·|c,wc) is defined

by the choice of chromatography technique c, pooling window wc, and physicochemical

characteristics of impurity type k ∈K.

Similarly, we let the random variable (Θ|c,wc) denote the fraction of protein pt that

remains in the batch at the beginning of chromatography step t+ 1, given that there are

pt units of protein at the beginning of the chromatography step t, and the action (c,wc)

is performed. This implies that the remaining amount of the protein is wasted during the

chromatography step t. Therefore,

pt+1 = (θ|c,wc)pt, (2)

where (θ|c,wc) is the realization of (Θ|c,wc). The random variable (Θ|c,wc) has the density

function f(·|c,wc) with support [0,1] for all (c,wc)∈ C×Wc and k ∈K. Note that f(·|c,wc)
is a function of the chromatography technique c ∈ C and pooling window wc ∈Wc, but is

independent of step t∈ T and impurities ik,t for all k ∈K. The state transitions as a result

of the action (c,wc)∈ C ×Wc are therefore captured by(
pt+1, i1,t+1, . . . , iK,t+1

)
=
(
θpt,ψ1i1,t, . . . ,ψKiK,t|c,wc

)
. (3)

The realizations (θ,ψ1, . . . ,ψK |c,wc) in Equations (1)–(3) are independent of protein mass

pt, impurity mass it and chromatography step t, but are dependent on the chromatography
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technique c, pooling window wc and impurity type k. This is because a chromatography

technique separates a specific protein from an impurity by exploiting the physicochemical

properties, such as molecular weight, electric charge, and hydrophobicity. These physico-

chemical characteristics are specific to each molecule, and independent of other impurities

(Vasquez-Alvarez et al. 2001, Polykarpou et al. 2011). The system transitions to the stop-

ping state ∆ when at(pt, i1,t, . . . , iK,t) = S at t ∈ T ∪ {0}. At the final time T , the only

available action is to stop, i.e., aT (pT , i1,T , . . . , iK,T ) = S for all pT ∈P, ik,T ∈ Ik, k ∈K.

In the upstream protein mass problem, let (i1,1, . . . , ik,1) denote the impurities that result

from the fermentation process. Thus, if the scientist decides to produce p1 units through a

set of predetermined manufacturing protocols, then the system transitions from the initial

state (p0, i1,0, . . . , iK,0) to the state (p1, i1,1, . . . , iK,1).

Purity Requirement and Purification Costs: The cost of running a purification step

using chromatography technique c ∈ C is denoted by rc, and consists of setup costs (e.g.,

calibration, column preparation, and washing), material costs (e.g., resins and buffers), and

equipment and labor costs. The biomanufacturing company also incurs high penalty costs

when the purity and yield requirements specified by the end user are not met. Let γd and pd

denote the purity requirement and the yield requirement, respectively. The batch purity γt

at state (pt, i1,t, . . . , iK,t) is a quality measure defined by γt = pt
pt+

∑
k ik,t

for any t∈ T ∪{T}.

In practice, if the drug is in the final phase of clinical trials or if the end users are humans,

then the purity requirement is often very high, with γd ≥ 99.9%. The biomanufacturing

company incurs high penalty costs cf when the batch fails to meet the predefined purity

requirement γd. The customers are typically large pharmaceutical companies conducting

clinical trials; if a batch does not meet the purity requirement, it cannot be used in the

R&D efforts by the customer. Therefore, the customers often do not purchase the batch

if it fails to meet the purity requirement. The penalty cost of quality failure cf could vary

from company to company, as it includes penalty costs associated with lost sales, project

delays, loss of reputation, cost of disappointing the customers, its impact on future orders,

etc. Note that cf does not include the chromatography operating cost rc.

Yield Requirement and Revenue: At manufacturing step t∈ T ∪{0, T}, the revenue

obtained from stopping the batch at state (pt, i1,t, . . . , iK,t) is defined as follows:
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rs(pt, i1,t, . . . , iK,t) =


r(pd) if pt ≥ pd and γt ≥ γd,

r(pt)− c`(pd− pt) if pt < pd and γt ≥ γd,

−cf otherwise.

(4)

If the batch meets the purity and yield requirements (i.e, pt ≥ pd and γt ≥ γd in Equa-

tion 4) then the biomanufacturer obtains revenue r(pd). In this case, the customer only

purchases the amount ordered pd, and does not pay for proteins produced in excess. On

the other hand, if the batch satisfies the purity requirement but not the yield require-

ment (i.e., γt ≥ γd and pt < pd in Equation 4), then the biomanufacturer obtains revenue

r(pt) which is a function of the protein amount pt produced. However, the biomanufac-

turer also incurs a yield penalty cost c`(pd− pt), which is a function of the yield shortage

(pd − pt)+. We assume that r(pt) is increasing in pt when pd ≥ pt ≥ 0, and c`(pd − pt) is

decreasing in pt when pd ≥ pt ≥ 0. If the batch does not conform to the purity requirement

(i.e., γt < γd in Equation 4) then no revenue is obtained, and the biomanufacturer incurs

a large penalty cost of failure cf . Note that cf > r(pd), and the yield penalty cost could be

very large depending on the shortage amount (pd− pt)+. Note that cf > c`(pd− pt) for all

pd > pd− pt ≥ 0 and cf ≥ c`(pd).

Upstream Costs: The cost of upstream fermentation operations is captured by cu(p1),

and represents the operating costs (e.g., labor, equipment, and raw materials such as buffers

and cell lines) required to obtain p1 ∈ P units of protein at the end of the fermentation

given that p0 = 0 and ik,0 = 0 for all k ∈K. We assume that cu(p1) is nondecreasing in p1,

as additional resources are required to increase the protein mass during fermentation.

The Value Function: We develop a finite-horizon Markov decision model that identi-

fies the best choice of chromatography technique and pooling window for the downstream

purification problem, and the best choice of protein amount p1 ∈P for the upstream pro-

tein mass problem. The objective is to maximize the total expected profit obtained from

a batch. Let Vt(pt, i1,t, . . . , iK,t) denote the value function for the downstream purification

problem when there are pt units of the protein of interest and (i1,t, . . . , iK,t) units of impu-

rity type k ∈K in the batch at the beginning of the tth chromatography step, t∈ T . At the

end of the planning horizon t= T , the value function is

VT (pT , i1,T , . . . , iK,T ) = rs(pT , i1,T . . . , iK,T ). (5)



Martagan et al.: Managing Trade-offs in Protein Manufacturing
16 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-16-014.R3

For all t≥ 1, the value function of the downstream purification problem is

Vt(pt, i1,t, . . . , iK,t) = max
(c,wc)∈C×W

{
− rc + E

[
Vt+1(Θpt,Ψ1i1,t, . . . ,ΨKiK,t)|c,wc

]
,

rs(pt, i1,t . . . , iK,t)
}
, (6)

where the expected value function at t+ 1 is

E
[
Vt+1(Θpt,Ψ1i1,t, . . . ,ΨKiK,t)|c,wc

]
=

∫
θ

∫
ψ1

. . .

∫
ψK

Vt+1

(
θpt,ψ1i1,t, . . . ,ψKiK,t

)
×

f(θ|c,wc)× g1(ψ1|c,wc)× . . .× gK(ψK |c,wc)dψK . . .dψ1dθ. (7)

We combine the upstream protein mass problem at t= 0 with the downstream purifica-

tion problem at t= 1, and obtain the objective function V0(p1) of the biomanufacturer:

V0(p1) =−cu(p1) +V1(p1, i1,1, . . . , iK,1). (8)

We let V∗0 denote the optimal expected profit of the optimization problem in Equa-

tion (8), i.e., V∗0 = maxp1∈P V0(p1). The model is a non-discounted finite-horizon model

because it represents a short-term planning horizon (each chromatography step takes less

than 6 hours) compared to the overall protein R&D timeline (often more than 3 months).

Therefore, discounting the value function could lead to a bias in this setting.

5. Structural Analysis

We investigate the structural properties of the downstream purification problem at t≥ 1

(Section 5.1), and then use these insights to analyze the upstream protein mass problem at

t= 0 (Section 5.2). In the remainder of the paper, we use a discretization scheme to analyze

the structural properties of the optimal value function and policies. All proofs are available

in the electronic companion. For notational convenience, we suppress the subscript t when

possible in the remainder of the paper.

5.1. Analysis of the Downstream Purification Problem

First, we present the modeling assumptions on the downstream purification operations.

Assumption 1. Let wn
c ∈ Wc be the nth pooling window on a chromatography tech-

nique c ∈ C at any step t ∈ T . For each technique c, the pooling windows wn
c ∈ Wc

can be ordered such that
∫ 1

j
f(θ|c,wn

c )dθ ≤
∫ 1

j
f(θ|c,wn+1

c )dθ and
∫ 1

m
gk(ψk|c,wn

c )dψk ≤∫ 1

m
gk(ψk|c,wn+1

c )dψk for all k ∈K on a given technique c∈ C, 0≤ j ≤ 1, 0≤m≤ 1.
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Assumption 2. Let p+, p ∈ P with p+ > p, and i+k , ik ∈ I with i+k > ik for k ∈K. Then,

rs(p, i1, . . . , iK)− rs(p, i1, . . . , i+k , . . . iK)≥ rs(p+, i1, . . . , ik, . . . , iK)− rs(p+, i1, . . . , i
+
k , . . . , iK).

Using the index n, Assumption 1 presents an ordering scheme for the pooling windows

wn
c ∈Wc for a given chromatography technique c∈ C. This assumption is a broader version

of the increasing failure rate property used in Markovian deterioration models. In prac-

tice, Assumption 1 reflects the purity–yield trade-off discussed in Section 2, and makes the

downstream purification problem practically relevant and challenging. This assumption is

validated with industry data, and holds in practice because of the principles of chromato-

graphic separation described in Section 2. Note that Assumption 1 does not guarantee a

stochastic ordering in chromatography techniques. In practice, different chromatography

techniques have different affinities to each impurity type, and therefore a stochastic order-

ing across chromatography techniques does not often exist. Assumption 2 is validated with

industry data, and indicates that the penalty associated with an incremental increase in

impurity is higher at lower levels of protein than higher levels of protein.

Proposition 1. The value function Vt(pt, i1,t, . . . , iK,t) is nondecreasing in pt for all ik,t,

k ∈K, and nonincreasing in ik,t for all pt ∈P, k ∈K at the chromatography step t≥ 1.

Proposition 1 indicates that the value function associated with the downstream purifi-

cation problem never decreases as the protein amount pt increases, and never increases as

the impurity amount ik,t increases for all impurity types k ∈ K at chromatography step

t∈ T . The monotonicity of the value function is used in Theorems 1–3 to characterize the

structural properties of the optimal purification policies.

Theorem 1. At a given impurity level (i1,t, . . . , iK,t) and chromatography step t ∈ T ,

there exist three protein threshold values, p̌t, p̄t, and p̂t, such that Vt(pt, i1,t, . . . , iK,t) =−cf
for all pt ≤ p̌t, Vt(p̄t, i1,t, . . . , iK,t) = 0, and Vt(pt, i1,t, . . . , iK,t) = a > 0 for all pt ≥ p̂t, where

a is a constant. Note that p̂t ≥ p̄t ≥ p̌t for all chromatography steps t∈ T .

Theorem 1 shows that there exist three protein threshold values, p̌t, p̄t, and p̂t, for a given

impurity level (i1,t, . . . , iK,t) at chromatography step t∈ T . The threshold values associated

with the first chromatography step have important managerial implications. For example,

p1 ≤ p̌1 corresponds to a deficient starting material that eventually leads to failure. If the

upstream protein mass is p̌1 < p1 < p̄1, then it means that the amount of protein obtained
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from the fermentation is too little, and the biomanufacturing company is expected to incur a

financial loss rather than profit. The threshold value p̄1 represents the break-even point for

the downstream operations. Finally, the threshold value p̂1 helps to prevent overproduction,

as manufacturing more than p̂1 units of protein does not improve the expected profit. Using

these insights, Theorem 2 identifies the batch states (p̌t, i
′
1,t, . . . , i

′
K,t) that would lead to

failure at t∈ T .

Theorem 2. There exists (p̌t, i
′
1,t, . . . , i

′
K,t) such that: (i) p̌t

p̌t+
∑

k i
′
k,t
<γd, and (ii) for any

state (pt, i1,t, . . . , iK,t) where pt ≤ p̌t and ik,t ≥ i′k,t for k = 1,2, . . . ,K, it is optimal to stop

the purification, i.e., a∗t (pt, i1,t, . . . , iK,t) = S.

Theorem 2 shows that there exists a set of states, Σt = {pt ≤ p̌t and ik,t ≥ i′k,t, ∀k ∈K} at

t ∈ T , such that the biomanufacturing company has no financial incentive for conducting

the purification operations when the starting batch state is in Σt. From a practical per-

spective, if failure is inevitable in the downstream, it is better to fail earlier rather than

later to avoid operating costs.

Theorem 3. If Assumption 1 and Assumption 2 hold and the technique c ∈ C is used

at t ∈ T , then the optimal pooling policy a∗t (pt, i1,t, . . . , iK,t|c) = wn∗
c is nondecreasing in pt

for pt > p̌t at a given impurity level (i1,t, . . . , iK,t) for all ik,t < i
′
k,t, k ∈K.

Theorem 3 indicates that the optimal pooling policy wn∗
c using a particular chromatogra-

phy technique c∈ C has a threshold-type structure when the pooling windows are ordered

based on the ordering scheme described in Assumption 1. More specifically, Theorem 3

suggests that the optimal pooling policy at each step preserves at least some predetermined

fraction θ∗ of the protein, and the scientist tends to be less concerned in terms of yield

losses and impurities that are carried along with the protein, as pt increases. These optimal

pooling threshold values provide guidelines that are easy to implement in practice, and

have not been previously characterized in the literature.

5.2. Analysis of the Upstream Protein Mass Problem

Next, we provide insights related to the upstream protein mass decisions at t= 0. Theo-

rem 4 presents the structural characteristics of the objective function V0(p1).

Theorem 4. Let cu(p1) = cu1 × p1 + cu2, where cu1 > 0 and cu2 is a constant. Under the

stopping cost structure in Equation (4), V0(p1) is decreasing in p1 for p1 ≥ p̂1. For p1 < p̂1,

V0(p1) is not necessarily monotonic in p1 and its rate of decrease is bounded by cu1.
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Theorem 4 indicates that producing higher amounts of protein does not necessarily

improve the expected profit until the production amount p1 reaches a threshold value p̂1,

after which point the expected profit decreases in p1. Theorem 4 also characterizes the

bounds on its rate of decrease based on the upstream operating costs. This behavior is due

to the complex interaction between the fermentation and chromatography operations, and

demonstrates the challenges in optimizing the protein mass decisions in practice.

Next, Proposition 2 compares the performance of popular policies for the upstream pro-

tein mass decisions, and identifies the conditions under which a particular policy dominates

its alternatives. The operating policies considered in Proposition 2 are identified based on

the industry feedback (BioWGS 2016). To generate managerial insights, we use a discretiza-

tion scheme δ in Proposition 2, where pε = dpd/δe represents the specific yield requirement

based on this discretization scheme. In practice, the discretization unit δ corresponds to

the least count measured (often one milligram, depending on the application).

Proposition 2. Let Π1 and Π2 be two different upstream operating policies with the

corresponding value functions VΠ1
0 and VΠ2

0 , respectively.

(1) Let Π1 be the upstream policy a0 = p1, such that p1 > p̂1, p1 ∈P. Let Π2 be the upstream

policy a0 = p̂1. Then, VΠ2
0 > VΠ1

0 .

(2.a) Let Π1 be the upstream policy a0 = p1, such that p̄1 ≤ p1 < p̂1, p1 ∈ P. Let Π2 be the

policy a0 = p̂1. Then, VΠ1
0 > VΠ2

0 if the following condition holds: cu(p̂1)− cu(p1)> r(pd).

(2.b) Let Π1 and Π2 be the upstream policies identical to part (2.a). Then, VΠ2
0 > VΠ1

0 if

the following condition holds: cu(p̂1)− cu(p1)< r(pd)− r
(
(pε− 1)δ

)
+ c`(δ).

(3) Let Π1 be the upstream policy a0 = p1, such that p̌1 ≤ p1 < p̄1, p1 ∈ P. Let Π2 be the

upstream policy a0 = p̄1. Then, VΠ1
0 > VΠ2

0 if cu(p̄1)− cu(p1)> cf .

(4) Let Π1 be the upstream policy a0 = p1, such that p1 ≤ p̌1, p1 ∈P. Let Π2 be the upstream

policy a0 = S. Then, VΠ2
0 > VΠ1

0 .

Proposition 2 assumes that the optimal purification actions are taken. Then, part (1) in

Proposition 2 compares two upstream operating policies: Π1 produces more than p̂1 units,

and Π2 produces only p̂1 units. Part (1) shows that Π2 is always better than Π1. Part (2)

compares the policy Π1, which produces p̄1 ≤ p1 < p̂1 units, against Π2, which creates p̂1

units. Part (2.a) states that Π1 is better than Π2 if the cost of increasing the upstream

protein mass is expensive. For example, increasing the protein mass might require excessive
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re-engineering in practice. The condition in Part (2.b) compares the incremental change in

the revenue and yield penalty cost associated with protein mass p̄1 ≤ p1 < p̂1 against the

incremental increase in the upstream operating costs associated with the protein mass p̂1.

In a practical context, part (3) represents a setting where the failure cost is less critical

than the additional cost needed to improve the protein mass. Part (4) shows that it is

always better to abandon the project if the starting material has less than p̌1 units of

protein.

6. The Reduced-Dimension MDP Model

A typical industry setting could contain hundreds of different impurities with 5-10 candi-

date chromatography techniques, each having 50-100 candidate pooling windows. Although

the action space is manageable, the size of the state space increases exponentially in the

number of impurities. The state space could easily explode in most industry settings,

making the optimization problem challenging to solve. To address this issue, we use an

aggregation scheme to revise the state space, transitions and the value function of the opti-

mization model, and refer to this revised version as the reduced-dimension model. Then,

we use the structural insights obtained in Section 5 to identify the conditions under which

the reduced-dimension model is exact. The state space, transitions, rewards and the value

function of the reduced-dimension model are as follows.

State Space: Each impurity state ik,t ∈ Ik is a binary variable ik,t ∈ {0,1} for all

k ∈K at time t∈ T ∪{T}, such that, the state ik,t indicates whether the specific impurity

type k ∈ K is present in the batch (ik,t = 1) or has been completely eliminated (ik,t = 0)

by the time t ∈ T ∪ {T}. Therefore, the impurity state (i1,t, . . . , iK,t) is a 2K dimensional

vector representing which impurities are present in the batch and which ones have been

completely removed. The state pt ∈P representing the amount of the protein available in

the batch at time t∈ T ∪{T} remains the same as Section 4.

State Transitions: Transitions in the protein state pt ∈ P remain the same as the

ones described in Section 3. However, the transitions associated with the impurity states

(i1,t, . . . , iK,t) are simplified using the probability distribution function Pk(ik,t+1|ik,t, c,wc)

for each impurity type k ∈K at time t∈ T ∪{T}. Pk(ik,t+1|ik,t, c,wc) represents the proba-

bility of achieving the impurity state ik,t+1 ∈ {0,1} as a result of the chromatography tech-

nique c and the pooling window wc, given that the state of the impurity type k ∈K before
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that chromatography step is ik,t ∈ {0,1}. The transition probabilities for the upstream

protein mass problem at time t= 0 remain the same as the ones described on Section 3.

Since a chromatography technique exploits the difference in the physicochemical prop-

erties of each impurity type k as a separation principle, the probability distributions

Pk(ik,t+1|ik,t, c,wc) are independently distributed for each impurity type k under the

action (c,wc) ∈ C × Wc. Therefore, the state transitions associated with all impurities

(i1,t+1, . . . , iK,t+1) ∈ I1× . . .×IK are captured by a joint probability distribution that can

be written as product of marginals, i.e., Pk(i1,t+1|i1,t, c,wc)× . . .×P (iK,t+1|iK,t, c,wc).

Rewards and the Value Function: The costs and rewards remain the same as

Section 4. We note that the revenue rs(p, i1, . . . , iK) obtained from stopping the batch at

state (p, i1, . . . , iK) is a special case of Equation (4) where γd = 100%. Therefore, the value

function of the downstream purification problem and the upstream protein mass problem

remain the same as Equations (5)-(8). The expectation operation in this model is

E
[
Vt+1

(
pt+1, i1,t+1 . . . , iK,t+1

)
| c,wc

]
=

∫
θ

1∑
i1,t+1=0

. . .
1∑

iK,t+1=0

f(θ|c,wc)×P1(i1,t+1|i1,t, c,wc)× . . .×PK(iK,t+1|iK,t, c,wc)

×Vt+1

(
θpt, i1,t+1, . . . , iK,t+1

)
dθ.

Proposition 3 summarizes the state aggregation scheme used in the reduced-dimension

model, and identifies the conditions under which this aggregation scheme is exact.

Proposition 3. For each impurity type k ∈K, the values of the impurity state ik,t ∈ Ik
can be aggregated and viewed as a binary variable, ik,t ∈ {0,1}, such that, ik,t = 0 represents

the case where the impurity type k has been removed from the batch by the time t∈ T ∪{T},

and ik,t = 1 denotes the case where a positive amount ik,t ∈ (0, ik,1] of impurity type k is

present in the batch at time t∈ T ∪{T}. This aggregation scheme is exact when the purity

requirement is equal to 100%.

Proposition 3 indicates that the state aggregation scheme is exact for a special instance

of the optimization problem where the final purity requirement is γd = 100%. Proposition 3

uses the specific characteristics of the transition probabilities and stopping costs under the

100% purity requirement, and indicates that it is sufficient to keep track of which impurity

types are present in the batch rather than capturing their corresponding amounts. The idea
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with the aggregation scheme is intuitive. It relies on the fact that the transition probabilities

depend on the type of impurities but not their amounts (i.e., chromatography performs

the separation based on the physical and chemical properties) and that all impurity types

need to be removed under the 100% purity requirement.

Proposition 3 provides a way to address the curse of dimentionality for a special instance

of the optimization problem which is frequently encountered in practice. For example, if

the potential end users are humans, these drugs should abide by very high purity standards

(i.e., ≥ 99.9%). Such high standards are also required to conduct Phase I-III clinical trials.

Because of high penalty costs, process uncertainties, and manufacturing trade-offs, dealing

with the 100% purity requirement could be a significant challenge in practice.

All structural results discussed in Section 5 are valid for the reduced-dimension model.

For example, the monotonicity in Proposition 1, the threshold values in Theorem 1, the

structural characteristics in Theorem 3 and Theorem 4, and the operating policies in

Proposition 2 are not impacted by the aggregation scheme. Theorem 2 can be interpreted

such that it is optimal to stop the purification operations when pt ≤ p̌t for a given impurity

state (i1,t, . . . , ik,t), ik,t = {0,1} for all k ∈K at t∈ T .

7. Insights from an Industry Case Study

7.1. Problem Setting

The purification data used in this case study is obtained from Aldevron, a biomanufacturer

specializing in the production of proteins. The production requirement is 8 mg of protein

at a 100% purity. The target protein is manufactured for in-vitro studies. Scouting runs

indicate that the purification process involves 6 candidate chromatography techniques with

an average of 170 possible pooling windows per chromatography technique. The starting

material consists of a mixture of 6 impurities along with the protein of interest. Statistical

analysis of the scouting data indicates that the protein and impurity fractions per lane are

uniformly distributed, and the expected outcome of each technique is shown in Figure 3.

The solid line in Figure 3 represents the expected fraction of the protein of interest corre-

sponding to each lane using a specific chromatography technique. The dotted lines repre-

sent the different types of impurities contained in the starting material. Figure 3 explicitly

plots one specific impurity type (Impurity A) on different chromatography techniques, and

masks the information on remaining impurities to protect client confidentiality.
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Figure 3 Expected separation outcomes of the candidate chromatography techniques

Figure 3 illustrates the complex interdependency between the choice of chromatogra-

phy technique and pooling window. For example, the relative position of the protein and

Impurity A is different at each chromatography technique. In this setting, simultaneously

determining the right chromatography technique and pooling window could be challenging

in practice due to the complexity arising from the differences in the separation outcomes.

The cost and revenue information used in this case study represent typical industry

values obtained from a cross section of several local biomanufacturing companies (BioWGS

2016), and is normalized for confidentiality purposes. The normalized values of costs and
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revenue are as follow: chromatography operating costs are rc = $3 for each chromatography

technique, as they use similar types of resins and buffers in this case study, revenue r= $2

per milligram of protein produced at 100% purity, yield penalty cost c` = $2 per milligram

of protein short, and failure cost cf = c`×pd = $16. The upstream operating cost is cu(p) =

0.1 + p× 0.05. We refer to these cost and revenue values as the base case.

7.2. Overview of Analysis

We use the case study to demonstrate the potential impact of the optimization framework

in practice, and to provide an understanding of the problem configurations that have high

potential for improvement. We compare the performance of the following five strategies:

1. Current Practice (CP): Upstream protein mass, downstream chromatography tech-

nique and pooling window selection decisions are made based on standard practice.

2. Fermentation Optimization (FO): Downstream chromatography technique and

pooling window selection decisions are made based on the current practice, and only the

upstream protein mass decisions are optimized.

3. Pooling Window Optimization (PO): Upstream protein mass and downstream

chromatography technique selection decisions are made based on the current practice, and

only the pooling window selection decisions are optimized.

4. Fermentation and Pooling Window Optimization (FO+PO): Downstream

chromatography technique selection decisions are made based on the current practice, and

only the upstream protein mass and the pooling window selection decisions are optimized.

5. Joint Optimization (JO): Upstream protein mass, downstream chromatography

technique and pooling window selection decisions are optimized simultaneously.

Feedback received from industry working group sessions indicate that current process

improvement activities only focus on a single layer, e.g., the pooling window optimization

problem. Therefore, this section focuses on (1) helping operations managers understand

how going beyond CP, FO, and PO makes a difference, and (2) quantifying the potential

gains in the expected profit and operational efficiency through the use of the JO frame-

work. For this purpose, a key performance metric used in this section is the percentage

improvement (IMP%) that could have been achieved in practice by adopting one of the

FO, PO, FO+PO, or JO strategies instead of CP.

Because companies like Aldevron incur strict penalties on yield shortages and quality

failures, we focus on a sensitivity analysis to revenue and penalty costs. For this pur-

pose, we evaluate an extensive set of configurations with r ∈ {1,1.5,2,2.5,3} and c`
r
∈
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{0,0.25,0.5,0.75,1,1.25,1.5,1.75,2}. These configurations are identified based on the input

received from our industry partners. For brevity, we only report the results for low-revenue,

low-penalty projects
(
r = 1.5 and c`

r
∈ {0,0.5,1}

)
, base-case variations

(
r = 2 and c`

r
∈

{0.5,1,1.5,2}
)
, and high-revenue, high-penalty projects

(
r= 3 and c`

r
∈ {1,1.5,2}

)
. Scenar-

ios with c` = 0 are also reported as a benchmark.

Decision Making in Practice. In this case study, the scientist adopts the three-step

purification approach described in Section 2.6. The chromatography technique selection

decisions are made based on the highest resolution criteria. Numerical experiments also

confirm that the highest resolution criteria outperforms the highest selectivity criteria in

this specific case study. Therefore, chromatography techniques (3), (5) and (1), shown

in Figure 3, are used in the first, second, and third steps, respectively. In the first step,

the scientist pools lanes 1-8. As a result, she aims to eliminate impurity types 2, 3, 5,

and 6 with an expected yield loss of 35%. In the second step, she aims to eliminate the

remaining impurities. Therefore, she pools lanes 1-10 with an expected yield loss of 35%. If

trace amounts of impurities remain, then the scientist tends towards a yield-conservative

strategy with 10% yield loss in the last step (lanes 7-18). In the upstream operations, 75%

excess is typically planned as a buffer (BioWGS 2016). This leads to 28 mg of protein

production (i.e., 8× 1.35× 1.35× 1.1× 1.75≈ 28) in the upstream process.

Optimal Policies. Operating policies corresponding to other strategies are as follows.

Table 1 shows the optimal upstream production quantities under JO. These production

quantities are further analyzed in Section 7.3. Under JO, chromatography technique 5 with

30% yield loss is expected to be used (lanes 1-11), followed by chromatography technique 2

with 20% yield loss (lanes 1-12). The optimal chromatography techniques recommended by

JO are robust to the scenarios. This is mainly because all techniques have the same oper-

ating cost. Optimal pooling windows under PO are state dependent, but chromatography

technique 3 with 30% yield loss is expected to be used (lanes 1-9), followed by chromatog-

raphy technique 5 with 30% yield loss (lanes 1-11). If trace amounts of impurities remain,

then it is expected that chromatography technique 1 with 15% yield loss will be used (lanes

8-18). PO produces 27 mg protein in the upstream (i.e., 8× 1.3× 1.3× 1.15× 1.75≈ 27).

The optimal upstream production quantities p∗1 under FO are reported in Table 1.
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Table 1 Potential benefits of the joint optimization framework in practice

CP FO PO FO+PO JO

r c`/r V0(p1 = 28) p∗1 V0(p
∗
1) IMP% V0(p

∗
1 = 27) IMP% p∗1 V0(p

∗
1) IMP% p∗1 p̂1 p̄1 V0(p

∗
1) IMP%

1.5 0 2.3 30 2.4 3% 2.6 15% 25 2.7 17% 21 25 10 3.0 33%

1.5 0.5 1.6 30 1.8 9% 2.1 29% 25 2.1 31% 23 26 12 2.7 68%

1.5 1 1.2 32 1.3 8% 1.6 33% 28 1.7 40% 25 27 14 2.5 105%

2 0 5.9 30 6.0 2% 6.3 7% 25 6.3 8% 21 26 6 6.8 17%

2 0.5 5.0 32 5.3 6% 5.6 12% 28 5.7 14% 25 27 10 6.5 30%

2 1 4.1 35 4.7 14% 4.9 19% 30 5.1 24% 25 30 12 6.1 48%

2 1.5 3.3 37 4.1 27% 4.2 30% 31 4.5 40% 25 30 13 5.7 76%

2 2 2.4 38 3.5 49% 3.6 49% 33 4.0 68% 25 30 14 5.3 124%

3 0 13.0 32 13.3 2% 13.6 5% 28 13.7 5% 25 27 4 14.5 11%

3 1 10.4 38 11.5 11% 11.6 11% 33 12.0 16% 25 30 11 13.3 28%

3 1.5 9.1 40 10.7 18% 10.5 16% 34 11.2 23% 25 31 12 12.8 41%

3 2 7.8 40 9.8 26% 9.5 22% 34 10.4 34% 27 31 14 12.3 58%

7.3. Potential Impact in Practice

Table 1 presents the upstream protein production amount p1 and the expected profit V0(p1)

under different settings. The columns labelled “IMP%” in Table 1 quantify the percentage

improvement in the expected profit that could be achieved in practice by using the FO,

PO, FO+PO, or JO strategies instead of CP. The bold entries in Table 1 represent the

base case.

In the base case, we observe that optimizing the pooling windows alone provides consid-

erable savings compared to CP, with 19% improvement in the expected profit. This result

aligns with Martagan et al. (2017). In addition, it is important to note that optimizing the

fermentation operations alone yields notable savings of 14% improvement in practice. How-

ever, the percentage improvement obtained by the JO framework significantly outperforms

other strategies. For example, the JO framework yields 48% improvement in the base case,

which is the double the 24% improvement achieved by the combined strategy FO+PO.

Even if c` = 0 at r = 2, JO continues to outperform other strategies, with 17% improve-

ment while other strategies achieve at most 8% improvement. This indicates that there is

significant room for improvement in current practice through the use of JO. This is mainly

because JO provides a comprehensive framework that incorporates the financial trade-offs,

process uncertainties and the underlying chemical dynamics into decision-making.
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We observe that FO does not provide significant savings for low-revenue, low-penalty

projects (e.g., IMP% ≤ 9%). In such projects, purification optimization mostly dominates

the potential savings in Table 1. The intuition behind this behavior is that at lower levels

of revenue, the cost of producing higher amounts of protein in the upstream does not

necessarily outweigh the resulting benefits in the downstream. This is mainly why the

production quantities and expected profit of FO and CP are very close for low-revenue,

low-penalty projects in Table 1. In contrast, we observe that JO enables a large room for

improvement on CP, and its magnitude increases as margins become lower. For example,

at a fixed c`/r in Table 1, the potential savings through JO increase as revenue decreases.

Even in case of no penalty costs at r = 1.5, JO achieves a 33% improvement over CP.

The intuitive explanation is that it becomes more critical to meet client requirements with

minimal waste as margins decrease. Therefore, projects with lower margins receive higher

benefits from the use of JO.

For high-revenue, high-penalty projects, the improvements using FO and PO are compa-

rable, but FO outperforms PO as c` increases. This indicates that, if penalties and revenues

are high, it can be effective to deliberately increase the upstream production to alleviate

downstream purity–yield trade-offs. Note that FO can reduce the expected yield shortages

only by producing higher amounts of protein; whereas PO can reduce it only by managing

the purity–yield trade-offs. Therefore, FO increases the production amount at high c` in

order to reduce shortage penalties, and the corresponding upstream costs pay off due to

high revenues and reduced penalties. On the other hand, JO outperforms all strategies in

Table 1. Even compared to the combined strategy FO+PO, JO provides an addition of

6%–24% improvement at r= 3. Moreover, Table 1 indicates that the percentage improve-

ments increase as c` increases at a fixed value of r. This is because it becomes critical to

reduce the expected yield shortages as c` increases. At high penalty levels, Table 1 reports

very high improvements on CP. This clearly indicates that CP can be very inefficient at

high penalties because it does not consider the financial trade-offs of each decision layer.

Next, we compare the production quantities p∗1 under the five manufacturing strategies

to obtain insights related to how much to waste in the upstream. In Table 1, we observe

that FO produces higher amounts of protein compared to FO+PO and JO. This is mainly

because FO tends to buffer against the possible inefficiencies in downstream operations.

The results in Table 1 indicate that expanding the scope of the optimization model from
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FO to JO helps to reduce the upstream production quantities. For example, in the base

case, FO recommends the production of 35 mg of protein, whereas FO+PO recommends 30

mg, and JO enables savings of an additional 5 mg by producing 25 mg. In addition, Table 1

presents the break-even points p̄1 and the maximum threshold values p̂1 under JO. Note

that the values of p̄1, p
∗
1 and p̂1 are nondecreasing in c` to buffer against yield shortages.

The difference between p̂1 and p̄1 ranges between 13-27 mg in Table 1. This shows that

there is a large amount of room for profit in this case study. The optimal production

quantities are closer to p̂1 than p̄1 in Table 1. Results from additional experiments indicate

that p∗1 approaches p̂1 as the upstream costs reduce. In Table 1, we observe that p∗1 and

p̂1 values do not change significantly in r and c` under JO. We believe this is mainly

due to the robustness of the optimal downstream policies at high protein levels (i.e., the

optimal policy uses the same chromatography techniques in all scenarios, and the pooling

window selections are not sensitive at high protein levels). Note that the optimal production

amount of the base case (p∗1 = 25 mg) is almost three times greater than the demand

requirement (pd = 8 mg). This illustrates how complex and challenging it is to satisfy

production requirements in the biomanufacturing industry.

Table 1 shows that the percentage improvement using JO can be more than the double

the amount achieved by FO or PO. This is mainly because JO helps to better address the

practical concern of “how much to waste” in the upstream and downstream operations. For

example, JO enables the reduction of upstream production quantities by 3 mg compared to

CP (in the base case, on average), and is still able to meet the demand. In the downstream

operations, the total expected yield loss under JO is 6.35 mg less than that under CP (in

the base case). Overall, JO produces less, wastes less, and achieves the highest expected

profit compared to other strategies. This underscores the importance of JO.

7.4. Benefits to Downstream Purification Operations

Figure 4 considers four representative scenarios from Table 1, and plots the value function

of JO, PO, and CP in the first chromatography step. Note that JO optimizes the chro-

matography technique and pooling window selection decisions at t= 1, and the behavior

of V1 in p1 impacts the upstream protein mass decisions. To quantify the potential benefits

to the downstream operations, we analyze (1) the difference between the value functions

of PO and CP at t= 1, and (2) the difference between the value functions of JO and PO
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Figure 4 The value function of JO, PO, and CP in the first chromatography step.

at t= 1. The former quantifies the impact of pooling window optimization, and the latter

represents the added value of optimizing the chromatography technique selection.

The value function of JO, PO, and CP converge to a constant value at higher levels

of protein in Figure 4 (see Theorem 1). As an extreme case, consider p1 = 40. In Fig-

ure 4, adopting PO instead of CP results in 2%–6% improvement in the value function

at state p1 = 40. However, using JO instead of PO yields another 7%–15% improvement.

This implies that choosing the right chromatography technique drives the potential room

for improvement at high levels of protein. Similar to Section 7.3, we see that projects with

higher penalties or lower margins encounter the most benefit from JO. In addition, Fig-

ure 4 shows that the gap among the value functions of JO, PO, and CP is higher when

the starting material is in the range p̄1 ≤ p1 ≤ p∗1. This corresponds to a risky business

case where the biomanufacturer is likely to incur yield shortages. In such cases, Figure 4

shows that smartly managing the purity–yield trade-offs through the optimal selection of

chromatography techniques and pooling windows plays a critical role in reducing penalties.

Figure 4 shows that JO reaches the break-even point p̄1 and the maximum profit thresh-

old p̂1 by using less protein than PO. For example, in the base case (Figure 4c), JO uses 2
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mg less protein than PO to break even, and needs 7 mg less than PO to reach the threshold

p̂1. The average of all scenarios considered in the numerical analysis indicates that JO can

break even by using 2 mg less protein than PO, and 4 mg less than CP. We observe that

scenarios with higher penalties or lower margins achieve higher reduction in the break-

even points. These differences are one of the key indicators of the improved operational

efficiency under JO.

In the downstream operations, the expected profit depends on the starting amount p1. To

quantify the potential impact, we focus on the average improvement in the range 21≤ p1 ≤

35. This range includes the optimal production quantities of JO and FO+PO. In the base

case (Figure 4c), optimizing the pooling windows enables an average of 22% improvement

in practice. Optimizing the chromatography techniques together with the pooling windows

provides another 18% improvement in the value function of PO, on average. In other

scenarios, the average percentage improvement achieved by using the JO framework instead

of PO are 29% (Figure 4a), 14% (Figure 4b), and 40% (Figure 4d). These improvements

underscore that an OR-based decision-making approach would make a significant difference

in the survival and competitiveness of SMEs.

8. Conclusions

We focus on biomanufacturing decisions for engineered proteins. In this setting, research

and development are often conducted by a large pharmaceutical company, but the bioman-

ufacturing operations are performed by a contract biomanufacturer due to high failure

risks and specific domain knowledge. Manufacturing challenges for engineered proteins can

be associated with several factors, such as limitations in chromatography operations, ran-

domness in process outcomes, yield losses, stringent quality requirements, and failure risks.

There are excellent studies that contribute to the knowledge behind the biology and chem-

istry of these operations, but there is a significant need for an optimization framework that

links the underlying biology and chemistry with the financial trade-offs and manufacturing

challenges encountered in practice.

In this study, we build a stochastic optimization model that addresses three layers of

interdependent decisions: (1) the amount of protein to be produced in fermentation, (2)

the chromatography techniques to be used in purification, and (3) the choice of pooling

windows based on the purity–yield trade-offs. We characterize the structure of the optimal
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policies, and derive functional relationships related to costs and purity–yield trade-offs. We

use a state-aggregation mechanism to reduce the computational efforts to solve complex

problems at 100% purity. Studies in the literature and feedback received from industry

partners indicate that most process improvement activities focus on one of these decision

layers in isolation. However, the case study example in Section 7 shows that the percentage

improvement under the joint optimization framework is almost double that which can be

achieved by optimizing a single decision level. This is mainly because the joint optimiza-

tion model better addresses the practical concern of minimizing waste in upstream and

downstream operations. The results obtained from the case study are encouraging to sup-

port the survival and competitiveness of SMEs. Nevertheless, the potential impact of this

framework extends beyond SMEs. As Tom Foti, the vice president of Aldevron states “We

are producing 50-liter cultures here, but our clients [large pharmaceutical companies] are

dealing with 5,000-liter cultures. If we can build optimization models here, and demon-

strate the feasibility of how it works, our clients could also do that. If they can reduce

health care costs, that could be directly passed off to the patients” (Aldevron 2017).

Insights obtained from this framework can lead to several future research directions.

First, one can extend the model to make decisions with limited data. Second, pricing deci-

sions and renegotiation schemes can be analyzed under the joint optimization framework.
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