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� A framework is introduced to model network interactions underlying interictal epileptic discharges.
� Interdependency of brain areas is assessed by independent component analysis of synchronized

spikes.
� It is concluded that a network approach is promising in the case of complex epilepsies.

a b s t r a c t

Objective: The interictal epileptic discharges (IEDs) occurring in stereotactic EEG (SEEG) recordings are in
general abundant compared to ictal discharges, but difficult to interpret due to complex underlying net-
work interactions. A framework is developed to model these network interactions.
Methods: To identify the synchronized neuronal activity underlying the IEDs, the variation in correlation
over time of the SEEG signals is related to the occurrence of IEDs using the general linear model. The
interdependency is assessed of the brain areas that reflect highly synchronized neural activity by apply-
ing independent component analysis, followed by cluster analysis of the spatial distributions of the inde-
pendent components. The spatiotemporal interactions of the spike clusters reveal the leading or lagging
of brain areas.
Results: The analysis framework was evaluated for five successfully operated patients, showing that the
spike cluster that was related to the MRI-visible brain lesions coincided with the seizure onset zone. The
additional value of the framework was demonstrated for two more patients, who were MRI-negative and
for whom surgery was not successful.
Conclusions: A network approach is promising in case of complex epilepsies.
Significance: Analysis of IEDs is considered a valuable addition to routine review of SEEG recordings, with
the potential to increase the success rate of epilepsy surgery.
� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction video-EEG seizure monitoring and MRI, do not result in a single
About 30% of the epilepsy patients are drug-resistant
(Mohanraj and Brodie, 2006), of which half are potential candi-
dates for epilepsy surgery. If non-invasive examinations, such as
hypothesis on the epileptogenic zone then the patient may become
a candidate for preoperative invasive EEG recordings. Furthermore,
if there are multiple hypotheses on possible locations of the
epileptogenic zone or if the epilepsy is suspected to originate in
deep-sited anatomical structures, depth electrode or stereotactic
EEG (SEEG) recordings (Talairach et al., 1992) are considered to
be the best choice.

The clinical assessment of SEEG recordings is primarily aimed at
identifying the brain area that is responsible for the seizures of the
patient, the so-called seizure onset zone (SOZ). Knowledge of the
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location of the SOZ and its relation to functional areas, as well as
seizure propagation pathways, is crucial for the surgical treatment
of drug-resistant epilepsy patients (Bartolomei et al., 2008). To
record sufficient seizure activity, long term video-SEEG recording
is performed, which is labor-intensive and time-consuming. It
may take weeks (typically two to three weeks) to record before
conclusions can be drawn regarding the exact location of the SOZ.

There is a vast amount of literature, especially from the Institut
de Neurosciences des Systmes Marseille, addressing advanced sig-
nal analysis procedures to identify the SOZ based on ictal activity.
Bartolomei et al. (2008) reported on the Epileptogenicity Index (EI),
which quantifies the appearance of fast oscillations before the sei-
zure starts, and estimated the delay of its appearance with respect
to the seizure onset. Following this frequency-based method, it
was shown that brain structures that generate a rapid discharge
with early involvement during seizures produce a high EI value.
However, a later study (Bartolomei et al., 2011) indicated that
the EI calculated for different brain areas of patients with temporal
lobe seizures disclosed relatively high epileptogenicity in distant
cortices, thus indicating a more complex organization of the
epileptogenic networks. In a recent review Bartolomei et al.
(2017) outlined the concept of the epileptogenic network and the
contribution of SEEG signal analysis to this concept, which is
mainly based on the analysis of the spatiotemporal dynamics of
multiple brain areas involved in the epileptogenic process. Wend-
ling, Bartolomei and coworkers (Wendling et al., 2001a; Bartolomei
et al., 2001; Wendling and Bartolomei, 2001) used non-linear cor-
relation methods to characterize the dynamic interactions
between neural populations involved in the epileptogenic network,
including time delays and directionality of these couplings. The

correlation coefficient h2, introduced by Pijn and Lopes da Silva
(1993), da Silva (1989) and further elaborated on by Kalitzin
et al. (2007), estimates the non-linear relationship between sig-
nals. Similarly to Wendling, Bartolomei and coworkers (Wendling
et al., 2001a; Bartolomei et al., 2001; Wendling and Bartolomei,

2001) in the current study the correlation coefficient h2 is used
to estimate the coupling strength. However, a shortcoming of the
estimation of time delays based on a time-varying correlation
function is that its results may exhibit large variations that are
physiologically implausible (van Houdt et al., 2012). Therefore, to
overcome this problem, in the current study a regularization pro-
cedure is introduced to avoid large variations in the time delay
estimated between spatially neighboring signals.

The non-linear correlation studies of couplings between neural
populations were mainly introduced for the analysis of seizure
activity. However, SEEG recordings also reflect a vast amount of
interictal epileptic discharges (IEDs) (Smith, 2005), which are in
general abundant compared to ictal discharges. Several methods
to analyze interictal activity in SEEG recordings have been
reported. The first attempts involved basic techniques such as
spectral analysis and linear cross correlation (Alarcon et al.,
1994). Later studies (Bourien et al., 2005; Wendling et al., 2009)
investigated which brain structures frequently co-activated during
the evolvement of IEDs. Amini et al. (2011) used the linear wavelet
cross-correlation coefficient as a coupling measure and estimated
leading brain areas based on time delays. More recently,
Bartolomei et al. (2016) identified the irritative zone (the region
which initiates the IEDs) by calculating the spike frequency index
(SI) for each brain area involved in the IEDs occurring in SEEG
recordings. The SI demonstrated a 75% concordance of the irritative
zone and the SOZ in case of cortical dysplasia and 56% concordance
in all other cases studied (N = 32). The conclusion of the authors
was that when the IEDs arise from complex network interactions
the spike frequency index probably is not a suitable descriptor to
identify the SOZ.
In the current study a network analysis approach is followed to
identify the spatiotemporal interactions of the neuronal popula-
tions involved in the IEDs. The time-varying correlation estimated

by the non-linear correlation coefficient h2 is used together with
the IED density function as input in the general linear model
(GLM) (van Houdt et al., 2012). The output of the GLM indicates
the brain areas with SEEG signals that are highly synchronized
compared to background activity during the evolvement of the
IEDs. To investigate the interdependency of these areas, indepen-
dent component analysis (ICA) is applied followed by a clustering
of its resulting spatial distributions. The averaged spike clusters
yield information about the spatiotemporal interactions and the
directionality of the interactions, indicating which of the brain
areas involved might be related to the SOZ.

The framework of analysis developed in this study was evalu-
ated for five patients who underwent successful surgery. The
result of the quantitative analysis of the IEDs of these patients
was compared to the SOZ as identified by visual review and the
resection that rendered the patient seizure free. Additionally, the
analysis was performed for two so-called ‘failures’, patients for
whom the hypothesis based on SEEG recordings did not lead to
a satisfactory surgical outcome. The analysis approach as intro-
duced in this study appears to be, especially, suitable to unravel
the complex network interactions underlying the IEDs of these
patients. Overall, it will be shown that our approach offers the per-
spective of analyzing interictal SEEG recordings for presurgical
evaluation, with the potential to increase the success rate of surgi-
cal intervention.
2. Materials and methods

2.1. Patients and electroclinical details

The analysis framework was applied on SEEG recordings of
seven patients (N = 7) with drug-resistant epilepsy (see for
patient characteristics Table 1). Extensive pre-surgical assessment
was performed at the Academic Center for Epileptology, location
Kempenhaeghe (Heeze, The Netherlands), including long-term
video-EEG monitoring and an epilepsy protocol for 3T MRI mea-
surements to study the presence of anatomical abnormalities
(Table 1, column 3). The electro-clinical hypotheses (Table 1, col-
umn 4) guided the placement of the depth electrodes. The resec-
tion strategy was determined according to the hypothesis of the
SOZ (Table 1, column 5), which was based on the standard review
of the SEEG recordings. Five of the seven patients included in this
study were seizure-free after surgery or had a satisfactory seizure
reduction (Engel class 1&2). The follow-up period for seizure
assessment was one year. For these five patients there were
abnormalities visible at MRI. Further details of these patients
can be found in van Houdt et al. (2012), who compared the
results of EEG-correlated fMRI analysis to the SEEG recordings
of these five patients. The other two patients were diagnosed
with an MRI-negative epilepsy and were not seizure free after
operation (Engel 3&4). The patient data were acquired solely
according to clinical procedures. Each of the patients signed a
statement authorizing the anonymous use of his or her clinical
data for scientific research.

2.2. Data acquisition and preprocessing

Each patient was implanted with several platinum depth
electrodes (DIXI medical, Besanon, France). These electrodes have
5–18 contacts of 2 mm each with an intercontact distance of
1.5 mm. The diameter of the electrodes is 0.8 mm. Besides depth
electrodes, in patients 3 and 4 subdural strip electrodes with 4–8



Table 1
Patient characteristics and the clinical hypotheses based on preimplantation neuroradiological (MRI) and electro-clinical examinations of the patients. The resection was guided
by the hypothesis regarding the seizure onset zone (SOZ) as result of the presurgical video-SEEG recordings. The outcome of surgery is given for each of the seven patients studied
in terms of the Engel Epilepsy Surgery Outcome Scale.

Patients Age/gender Lesion (Electro)-clinical
hypothesis

SOZ Resection Engel
class
outcome

1 42/F Porencephalic cyst frontal R; hippocampal
sclerosis R

Temporal R; Parietal R;
Insula R

Mesial Temporal R Anterior temporal R and
amygdalohippocampectomy R

2

2 24/M Hippocampal sclerosis L; infarct occipital L Temporal L; Occipital L Mesial Temporal L Anterior temporal L and
amygdalohippocampectomy L

1

3 39/M Nodular heterotopia occipital L and R;
cortical dysplasia mesial temporal R and
occipital R

Temporal R; Occipital R Mesial Temporal R Anterior temporal R and
amygdalohippocampectomy R

2

4 46/F Hippocampal sclerosis L Temporal L;
Temporoparietal
junction L; Insula L

Mesial Temporal L;
Lateral Temporal L

Extended anterior temporal L
and
amygdalohippocampectomy L

1

5 48/M Infarct Temporo-occipital R Occipital R; Temporal R Mesial Temporo-
occipital R

Temporo-occipital R 1

6 44/F Negative Temporal L; Insula L;
Cingulum L

Cingulum L Anterior Cingulum L 4

7 15/F Negative Frontal R; Frontal L Middle Frontal
gyrus (F2) R

Middle Frontal gyrus (F2) R 3
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contacts (DIXI medical, Besanon, France) were implanted. A con-
tact in white matter tissue was chosen as the common reference
electrode for all channels. The implantation of the electrodes was
performed at the Academic Center of Epileptology, location Maas-
tricht University Medical Center (Maastricht, The Netherlands). A
pre-implantation structural MRI scan (Intera 3.0 Tesla, Philips
Medical Systems, Best, The Netherlands) was acquired with
gadolinium contrast-enhancement. After implantation a CT (Sensa-
tion 16, Siemens, Berlin, Germany) and structural MR scan (Intera
3.0 Tesla, v.s.) were acquired to verify the positions of the elec-
trodes and the absence of postoperative hematomas. When no fur-
ther complications occurred, the long-term recording was
performed at the Academic Center for Epileptology, location Kem-
penhaeghe (Heeze, The Netherlands).

The EEG was examined by an experienced EEG specialist who
identified on average 471 � 282 IED’s, which amounts to 19.6 �
11.8 IEDs per hour in the 24 h recordings used. The number of IEDs
identified at the SEEG recordings of each of the patients studied is
listed in Table 2 (column 2). Isolated IEDs (spikes, sharp waves and
spike-and-wave discharges) were annotated at the maximum of
the spike amplitude of the IEDs. An interval centered around the
maximum of the IEDs was selected with a time duration of 2.5 s.
Data was recorded at a sample rate of 600 Hz (Stellate Harmony
6.1 C, Natus Medical Inc., San Carlos, USA). Fieldtrip (Oostenveld
et al., 2011) was used to read the data in EDF+ format and to apply
bandpass filtering in the frequency range of 1–70 Hz in order to
Table 2
Results for the patient group, showing the number of IEDs analyzed (#IEDs), the IED activity
quantified), and the SOZ as determined as result of visual review of the SEEG recordings. The
column. For patients 1 and 7 the overlap is indicated for two focal areas identified. The loc
electrodes are labeled by their anatomical position (e.g. LH = left hippocampus, RH = right h
in some cases, refer to a different region depending on the patient studied.

Patients #IEDs IED activity (visual review) IED activity (quantified

1 831 RH 2–11; RP 1–3; RF 2–4 Focal areas: (1) RH 3–9
2 260 LH 1–6; LH 10–11 LH 1–5
3 177 RSP 1–3; RH 1–8 RH 1,2,5–8; RSA 1–3; R
4 883 LH 1–9; LST 2–4; LSO 4–6; LE 6–8 LH 4–8; LE 5–7; LSO 1
5 502 LH 1–10; RH 1–10; RO 2–6; RZ

1–4; RI 4–6
RO 2–8; RZ 1–7; RI 2–4

6 270 LH 1–10; LT 3–4; LF 1–2; LP 1–2 LH 6–9; LX 3–9;
7 379 RY 7–12; RX 8–12; RC 3–8; LC 6–8;

LX 9–12
Focal areas: (1) LC 4–8
RY 7–12; RX 10–14; RC
reduce high-frequency noise. Both monopolar and bipolar deriva-
tions were created within MATLAB (The MathWorks Inc., Natick,
MA, 2015). The SEEG analysis framework developed in this study
uses C++, MATLAB and Mathematica 10.0 (Wolfram Research,
Inc., Champaign, IL). OpenMP was used for multi-thread
processing.
2.3. Overview of the analysis framework

The SEEG analysis, outlined in Fig. 1 (top row), consists of three
steps addressing the following questions: (1) is the activity under-
lying the SEEG signals synchronized during the IEDs? (Section 2.4),
(2) which brain areas are involved in the generation of the activity
underlying the IEDs? (Section 2.5), and (3) what is the interdepen-
dency between multiple active brain areas and can we identify the
area that corresponds to the irritative zone? (Section 2.6). Visual-
ization of the analysis results relative to the cortical anatomy is
outlined in Fig. 1, bottom row. The methodology is illustrated by
the analysis of the SEEG recordings of one of the patients studied.
2.4. Synchronous epileptic activity

To estimate the synchronization of each possible combination
of SEEG signals during the occurrence of the IEDs, a non-linear cor-

relation analysis is applied. The correlation coefficient h2
XY is used
as determined by visual review and as result of applying the analysis framework (IEDs
overlap of IED activity (quantified) with the SOZ is indicated in percentages in the last

ation is described by the depth electrode label and involved contact points. The depth
ippocampus, RO = right occipital, RP = right parietal, RT = right temporal), which may,

) SOZ activity Overlap IED activity
(quantified) and SOZ

; (2) RO 1–6; RP 1–4 RH 7–10 Focal areas: (1) 75%; (2) 0%
LH 1–11 45%

SL 3–4; RSP 2 RH 6–11 50%
–5; LST 2–3 LH 7–8; LSP 8 67%
; RT 3–4 RO 1–6; RZ 1–4 90%

LC 2–4 0%
; LX 5–12; LA 14–16; (2)
4–5,8; RA 6–7,10

RY 10–13; RX 8–12 Focal areas: (1) 56%; (2) 0%



Fig. 1. Overview of the developed methodology, outlining the analysis of SEEG recordings (top) and the visualization of its results (bottom).
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in the analysis, which models the degree to which any arbitrary
signal Y can be interpreted as a transformed version of signal X
(Pijn and Lopes da Silva, 1993; da Silva, 1989; Kalitzin et al.,

2007). In other words, we estimate a signal bY given by bY ¼ SðXÞ
where S is the perturbation function. The difference between the

true Y and the estimated bY is defined as the unexplained variance.

The non-linear coefficient 0 6 h2
XY 6 1 is then given by

h2
XY ¼

Pn
i¼1ðYi � YÞ2 �Pn

i¼1ðYi � SðXiÞÞ2Pn
i¼1ðYi � YÞ2

; ð1Þ

where Xi and Yi are samples of the signals X and Y, respectively, n is
the number of samples and Y is the average amplitude of signal Y.
Originally, the perturbation function S was defined by a piece-
wise linear approximation of the regression curve modeled from
the scattergram of X and Y (da Silva, 1989). A linear approximation
was chosen by these authors because of its computational effi-
ciency. The downside of this method is that the scattergram is
required to be divided into bins, which makes its results dependent
on the size of the bins. In this study, however, we opt to use a cubic
spline instead of a piece-wise linear function, because the cubic
spline describes the data better with a lower unexplained variance
as result and does not require binning. The parameters of the cubic
spline function can be found by using a linear least-squares fit.

The analysis to identify synchronized activity is outlined in a
flowchart shown in Fig. 2, top row. The correlation analysis is per-
formed on windows centered around the maximum of the IED (see
Fig. 2, top left) with a window size of 250 ms, which is large
enough to encompass the IED spike and wave discharges (de
Curtis et al., 2012). In addition to the improved perturbation func-
tion, in our approach a method is introduced for the accurate esti-
mation of the time delay between the SEEG signals. The time delay
is estimated based on the averaged correlation function of all IEDs,
as shown in Fig. 2 (top middle), instead of the commonly used time
delay estimation based on a single IED (Wendling et al., 2001a).
The correlation function is calculated for the time windows of anal-
ysis wk centered around the kth IED, while shifting one signal rel-
ative to the other with a time-shift of �50 ms 6 s 6 50 ms. The

correlation function is denoted by h2
ijðwk; sijÞ, where

ði; jÞ ¼ 1; . . . ;#contacts are indices for the depth electrode signals.
The averaged correlation for all IED-centered windows of anal-

ysis �h2
ijðsijÞ is computed according to
�h2
ijðsijÞ ¼

1
N

XN
k¼0

h2
ijðwk; sijÞ; ð2Þ

where N is the number of IEDs. From its corresponding graph (see
Fig. 2, top middle) the time delay ðsijÞmax is estimated as the time-
shift that results in a maximum averaged correlation value:

ðsijÞmax ¼ arg max
sij

�h2
ijðsijÞ: ð3Þ
Regularization of the delay matrix
However, because multiple local maxima may be present that

are nearly equal to the global maximum maxsij
�h2
ijðsijÞ the time

delay estimation may be unstable and lead to outliers in the delay
matrix. In order to provide a robust estimation of the time delays, a
regularization procedure is introduced that incorporates spatial
information. In this procedure the average correlation function
�h2
ijðsijÞ is maximized, while simultaneously requiring a certain

smoothness between neighboring entries in the delay matrix. The
procedure for smoothness regularization of the delay matrix is
explained in more detail in Appendix A. After regularization of
the delay matrix the problem of outliers is solved, with as result
a more plausible range of delay values. Shown are the regularized
correlation and delay matrices (see Fig. 2, top right) that were
obtained for 843 IEDs occurring in the first 24 h of the SEEG record-
ing of patient 1. In order to compute the correlation matrix

h2 ¼ ðh2
ijÞmax ;regularized

n o
and the delay matrix s ¼ ðsijÞmax ;regularized

n o
,

it is necessary to evaluate both the combinations i ! j and j ! i
since the correlation coefficient is asymmetric, i.e. �h2

ij –
�h2
ji

(Pijn and Lopes da Silva, 1993).

2.5. Brain areas involved in the IEDs

To estimate the likeliness of a brain area to generate epilepti-
form activity, the GLM is applied, which is a generalized form of
multiple regression analysis. The GLM is used to model the statis-
tical relation between the occurrence of the IEDs and the associ-
ated time-varying correlation of the SEEG signals. This approach
is based on the assumption that mutual correlations between elec-
trodes increase during epileptiform activity (Bettus et al., 2008).
The univariate GLM is evaluated for all pairs i and j and is formu-
lated as follows



Fig. 2. Overview of the analysis applied to the SEEG recordings of patient 1, as indicated in steps 1 and 2 of the flowchart for SEEG analysis (see Fig. 1). Top row: The non-
linear correlation is computed for windows centered around the maximum of IEDs, shown by the vertical dotted line (left), from which the time delay can be estimated
(middle) and summarized in correlation and time delay matrices (right). Shown in the middle is the averaged correlation as function of the estimated time delay. Bottom row:
A sliding window analysis is performed (left) in which the changes in non-linear correlation over time are computed (middle). These time-varying correlation functions are
together with the IED density function the input of the General Linear Model (GLM). The result of the GLM analysis reveals at which contact points SEEG signals are recorded
that are significantly involved in the IEDs (right).
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h2
ijðtÞ ¼ bijIEDðtÞ þ aij þ cijt þ gijCONFðtÞ þ �ðtÞ; ð4Þ

where h2
ijðtÞ is the dependent variable describing the time-varying

correlation. The time-varying changes in the correlation h2
ijðtÞ are

computed using the sliding window approach, in which the correla-
tion is estimated by overlapping time windows with a length of
250 ms and a sliding step of 50 ms (Fig. 2, bottom left). At a 600
Hz sampling rate, these windows correspond to 150 and 30 sam-
ples, respectively. The current study expands upon the GLM analy-
sis for SEEG, introduced by van Houdt et al. (2012), by taking the
delay estimation into account. In order to achieve optimal values

in time-varying correlation h2
ijðtÞ, in the current study a correction

for the time delay is applied to each combination
i; j ¼ 1; . . . ;#contacts according to the delay matrix computed for the
considered patient. Formally the time-varying correlation is com-
puted according to

h2
ijðtÞ ¼ h2

ij wðtÞ; ðsijÞmax;regularized

� �
ð5Þ

where wðtÞ is the sliding window centered around time t.
The correlation function is modeled by a linear combination of

independent variables (i.e. regressors). The predictor of interest is
the IED density function (Fig. 2, bottom middle) denoted by
IEDðtÞ, obtained by counting the number of IEDs that occur
throughout the SEEG recording selected for analysis. The other
independent variables are confounding variables: a constant a, a
linear trend b, and the confounder density function CONFðtÞ. The
model residual is given by �ðtÞ. Artifacts that may occur in the
EEG are included in the confounder density function CONFðtÞ,
which counts the number of artifacts that occur during the sliding
window.

The GLM is expected to yield high regression coefficients bij for
contact points that are highly synchronized during the occurrence
of IEDs. After the initial estimation of the matrix of regression coef-
ficients b ¼ fbijg, several procedures are employed to distinguish
epileptically active regions from false positive regions. First, the
b-matrix is thresholded according to a significance level in order
to reduce false positives. The p-values obtained from the GLM pro-
cedure are adjusted according to the false discovery rate (FDR)
(Yekutieli and Benjamini, 1999) to correct for multiple testing,
with every entry of the b-matrix thresholded at q < 0:01. In exten-
sion to the method as introduced by van Houdt et al. (2013), a sym-
metry requirement on the regression coefficient is imposed, since
synchronization during the occurrences of IEDs is expected to
occur in both directions, i.e. bij � bji. Non-symmetric matrix ele-
ments can indicate the presence of an artifact. In order to remove
the non-symmetric part of the b-matrix, entries for which the con-
dition j½asymðbÞ�ijj ¼ 1

2 ðbij � bjiÞ
�� �� > 1

2r holds are removed, where r
is the standard deviation of the distribution of significant b-matrix
values. Lastly, a selection of the highest b-matrix values is done in
order to select the most likely regions of focal activity. To select a
suitable threshold, Otsu‘s method (Otsu, 1979) is applied, which is
based on the estimation of Gaussian distributions in the b-matrix
histogram. The final b-matrix is shown in Fig. 2 (bottom right),
indicating for the example patient two distinct anatomical regions
(encircled in black) targeted by three electrodes (RO, RP and RH). In
conclusion, the GLM reduces the number of signals to be analyzed
and thereby facilitates further analysis.
2.6. Interdependency assessment

In order to evaluate the interdependency of the brain areas
involved in IEDs, ICA is applied to create spatial distributions of
each individual IED, followed by hierarchical clustering to identify
spike clusters that have similar underlying spatiotemporal interac-
tions. Proposed by Jutten and Herault (1991), ICA is a statistical
model where observed data is represented by a weighted sum of
estimated source signals. This is expressed by ~yðtÞ ¼ W~xðtÞ where
~xðtÞ is the observed data,~yðtÞ are the estimated independent com-
ponents andW is the unmixing matrix. Numerous variations of ICA
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are available and have been used in the context of EEG analysis
(Lipping et al., 2003; da Silva Braga et al., 2014). The current study
employs the InfoMax ICA decomposition introduced by Makeig
et al. (1997), which is a commonly used algorithm available in sig-
nal processing toolboxes such as EEGLab (Delorme and Makeig,
2004). A first requirement for Infomax ICA is that the sources must
be statistically independent of each other, which is fulfilled when
the sources have a low mutual information. The measure of statis-
tical independence is the mechanism for source decomposition
used by InfoMax ICA. The second requirement is that the observed
data is stationary and not normally distributed. The EEG signals
fulfill these requirements, since EEG is quasi-stationary, i.e. it is
stationary within short time intervals during normal brain activity
(Sanei and Chambers, 2007), while it is assumed that the EEG activ-
ity is not normally distributed.

InfoMax ICA is applied for each individual IED (Fig. 3, top left)
thus generating a corresponding spatial weighting distribution W
(Fig. 3, top right). The spatial weighting distribution provides a
footprint of each individual IED, which can subsequently be clus-
tered to identify groups of IEDs and investigate whether indepen-
dent focal areas can be identified. To this end, Ward’s method is
applied (Ward, 1963), which is a general agglomerative hierarchi-
cal clustering procedure that merges clusters at each step based on
a distance metric. The Frobenius norm of the matrix W, given by

kWkF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1jWijj2

q
, is the distance metric used in order to

cluster the spatial distributions. Since the most interesting infor-
mation is contained within the first few independent components,
the latter containing mostly noise, the distance metric is only cal-
culated on the first 10 components of the weighting matrices. An
average of the IEDs and the spatial distribution of the independent
components of these discharges is shown in Fig. 3 (bottom left).
Fig. 3. Overview of the clustering procedure to assess the interdependency of focal brain
analysis procedure (see Fig. 1). ICA is applied for each spike individually (A), resulting in
average of all IEDs selected for further analysis and of their spatial distributions. Hierarchi
a dendrogram (C). The gap statistic (Tibshirani et al., 2001) is used to estimate the nu
averaged spatial distributions for each cluster are shown, displaying a clear separation o
electrodes RO/RP.
The hierarchical clustering is based on the similarity of the spatial
distributions of the independent components of the individual
IEDs. The number of clusters that can be discriminated as output
of the clustering procedure can be estimated based on a dendro-
gram (Fig. 3, bottom row).

In order to estimate the number of clusters quantitatively, the
gap statistic (Tibshirani et al., 2001) is employed. The gap statistic
compares the clustering of SEEG recordings against a second clus-
tering result of a randomly generated dataset of the same dimen-
sions and the same range of values. The gap statistic compares
the within-cluster dispersion between both clustering results,
which is a measure of the average distance between the elements
within all clusters. The within-cluster dispersion is expected to
become lower as the number of clusters increases, since elements
within a cluster are increasingly alike. The difference between
within-cluster dispersion measured in both datasets forms the
gap statistic. Based on the gap statistics two well-separated spike
clusters that differ in spatiotemporal distribution, i.e. the shape
of the IEDs and the anatomical area at which these discharges
are maximal can be distinguished (Fig. 3, bottom row, right). More
details on the gap statistic applied to hierarchical clustering can be
found in Tibshirani et al. (2001).

In some cases the gap statistic can be inconclusive. In those
cases, an alternative approach to estimate the number of clusters
is used. In this approach the number of clusters is manually esti-
mated based on the expected number of independent focal areas.
The intermediate results are then clustered for a second time using
a K-means algorithm to discover groups of similar clusters or devi-
ating clusters. Again, Otsu’s method (Otsu, 1979) is applied, but
now for selecting the contact points of electrodes with the highest
response by considering the accumulated weighting of the first 10
components.
areas applied for patient 1, as indicated in steps 3 and 4 of the flowchart of the SEEG
a spatial distribution matrix W for each spike (B). Shown at the bottom left is the

cal clustering is applied to the set of individual spatial distributions, which results in
mber of clusters, indicating two spike clusters for this patient. The corresponding
f the epileptic activity at either the electrode RH or at the crossing of the tips of the
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Visualization
To visualize the brain areas and their interactions, an in-house

developed depth electrode navigation software tool is employed.
This tool provides automatic detection of depth electrodes and
can visualize these electrodes on top of the underlying anatomy
(Meesters et al., 2014). The spatial distribution of the activity
underlying the IEDs recorded with the depth electrodes is visual-
ized in a 2D- and 3D-viewport against pre-implantation MRI or
against the cortical rendering (see for example Figs. 4–7). Further-
more, a model of the underlying interactions of the brain areas is
visualized by the use of arrows, given with the estimated delay
and indicating whether the brain areas are lagging or leading. In
addition, each arrow corresponds to the depicted associated corre-
lation, which is a measure of coupling strength.

3. Results

To evaluate the analysis framework the SEEG recordings were
analyzed retrospectively for five patients (patients 1–5) who all
underwent successful epilepsy surgery (Engel class 1&2). Further-
more, it will be shown that the network analysis approach devel-
oped in this study is successful for the patients included with a
focal partial epilepsy, who were not seizure free after surgery
(patient 6 and 7, Engel class 3&4). The results, as summarized for
the seven patients in Table 2, are evaluated against the electroclin-
ical hypotheses, the SOZ, the resected area and the surgical out-
come. Furthermore, the activation patterns underlying the IEDs
are displayed at the depth electrodes in relation to the brain anat-
omy for each of the seven patients studied.

3.1. Evaluation of the analysis framework

The analysis framework was evaluated for the five patients with
disrupted anatomy visible at MRI (see Table 1, column 3) who
underwent successful surgery. Patient 1 had a right frontal poren-
cephalic cyst from birth with partial involvement of the right insu-
lar and temporal regions. For this patient, nine electrodes were
implanted in the right hemisphere, targeting the hippocampus,
temporal operculum, insula, cingulum, frontal and occipital lobes,
and the area surrounding the patient’s porencephalic cyst (Fig. 4,
bottom left). The contact points at which the IED activity was
Fig. 4. The results of the SEEG analysis for patient 1, indicating the spatiotemporal patter
the electrodes RH, RO and RP (bottom right). The yellow box indicates the overlap o
interactions (top left) displays the electrodes with significantly involved activity under
patient are displayed together with the 3D-CT scan of the patient’s head (bottom left). (Fo
to the web version of this article.)
maximal according to visual review are listed in column 3 of
Table 2. These results can be compared to the quantified maximal
IED activity as determined by the result of the analysis framework
(Table 2, column 4). For this patient there are two spike clusters
active, one in the right hippocampus (electrode RH) and one at
the site of the right insula, at the crossing of the RO and RP elec-
trode (Fig. 4, right top row). The spatial distribution of the individ-
ual clusters is displayed color-coded at the corresponding
electrodes in a sagittal and axial MR scan (Fig. 4, right bottom
row). The spike cluster that is maximal at the right hippocampus
coincides with the SOZ as indicated by the yellow box in the sagit-
tal MRI scan. The overlap as indicated in column 6 of Table 2 is
computed by the intersection of: (1) the set of contact points iden-
tified by quantified IED activity, and (2) the set of contact points
that correspond to the SOZ according to clinical review. The over-
lap is normalized by the number of contact points corresponding to
the SOZ. For the first cluster, the overlap between the quantified
IED activity and the SOZ is measured at 75%, indicating a good con-
cordance. The second cluster involving the RO and RP electrodes
targeting the right insula showed no overlap with the SOZ. The
patient underwent a right anterior temporal lobe resection and
amygdalohippocampectomy, which led to satisfactory seizure
reduction.

In Fig. 5 an overview is given of the analysis results for patients
2, 3 and 4. The semiology of patient 2 indicated left temporal lobe
epilepsy. The question when planning the implantation of the
depth electrodes was whether the left hippocampus was involved
in seizure generation and whether there could be an epileptogenic
area related to the MRI abnormalities due to an earlier infarction at
the left occipital lobe. Five depth electrodes were implanted in the
left occipital lobe and a single depth electrode was implanted in
the left hippocampus (Fig. 5A, left). The EEG signals that were,
according to the GLM, significantly involved in the IEDs were
mainly recorded with the electrodes LH, LB and LM. However,
after ICA and subsequent spike clustering, a single spike cluster
could be identified with a maximum at electrode LH (Fig. 5A,
middle). The maximum, centered around LH5, coincided with the
SOZ, as indicated by the yellow box in the sagittal MR scan
(Fig. 5A, right). The overlap between the quantified IEDs and the
SOZ is 45% (see Table 2, column 6). The patient was rendered
seizure-free after a standard left temporal lobe resection and
n of the two spike clusters (upper right) and visualizing the significant activation at
f the activity underlying the IEDs and the SOZ. The model of the spatiotemporal
lying the IEDs indicated by the white dots. The nine electrodes implanted for this
r interpretation of the references to colour in this figure legend, the reader is referred



Fig. 5. Results of the SEEG analysis for patients 2 (A), 3 (B) and 4 (C). In the left column the implanted electrodes are shown together with the 3D-CT scan and the
spatiotemporal model of the interactions underlying the IEDs. The middle column shows the output of Independent Component Analysis followed by hierarchical clustering,
indicating the number of spike clusters and their spatiotemporal patterns. In the right column, the activity corresponding to these spike clusters is projected on anatomical
MRI slices with the location of the SOZ indicated by the yellow box. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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amygdalohippocampectomy. For patient 3, three depth electrodes
were implanted in the right temporal and occipital lobes (RH, RC,
RI). Furthermore, three subdural strip electrodes were placed
(Fig. 5B, left) in the right anterior basal temporal (RSA), posterior
basal temporal (RSP) and lateral temporal regions (RSL). According
to the GLM the EEG signals recorded with electrodes RH, RSA, RSL
and RSP were significantly involved in the IEDs. ICA with subse-
quent cluster analysis yielded two spike clusters (Fig. 5B, middle),
which was supported by the gap statistics. The spike cluster shown
at the top row is dominant at electrode RH, whereas the second
spike cluster shown at the bottom row is dominant at the subdural
strip RSP. Note that the spikes recorded at the subdural RSP strip
are inversed in polarity because of the placement of the RSP strip
posterior basal to the hippocampal electrode. The most significant
activity is recorded at the tip of the RH-electrode, however, the SOZ
is located more posterior in the right hippocampus (see the yellow
box in Fig. 5B, right, top row). The overlap between the quantified
IEDs and the SOZ is 50% (see Table 2, column 6). A right anterior
temporal lobe resection and amygdalohippocampectomy led to a
satisfactory seizure reduction.

The recordings of patient 4 (Fig. 5C) reflected large IEDs at the
left temporal and left occipital lobes. For this patient seven depth
electrodes were implanted in brain areas including the left and
right hippocampus (LH and RH), left insula (LX, LY) and left parietal
(LE, LO, LS) lobes. In addition, five subdural strip electrodes were
implanted in the right basal (RSB) and lateral temporal (RSL)
regions, the left anterior basal temporal lobe (LST), left temporo-
occipital (LSO) and parietal lobes (LSP). According to the GLM,
EEG signals measured with the electrodes LH, RH, LX, LY, LSO,
LST, and RSL were significantly involved in the IEDs. However, after
ICA, together with hierarchical clustering, two clearly distinct spike
clusters were obtained that were both dominated by activity at the



Fig. 6. Results of the SEEG analysis for patient 5. (A) The SEEG recording showing IEDs at the depth electrodes. (B) The output of the General Linear Model indicating that most
of the SEEG signals are significantly involved in the epileptic discharges. (C) The spatiotemporal distribution of the distinct spike clusters involved. At the left, the spike
clusters are shown with maximal activity at electrodes RO and RZ. The overlap with the SOZ is indicated by the yellow boxes. At the right, the spike clusters with maximal
activity at, respectively, the electrodes targeting the left (LH) and right (RH) hippocampus. (D) The model of the network organization which shows the depth electrodes that
are part of the epileptic network (left). The association strength ratios are denoted in percentages and the estimated delays are given in milliseconds. The implanted depth
electrodes are shown together with the CT-scan at the right.

Fig. 7. Results of the SEEG analysis for patient 6. (A) The SEEG recording showing the IEDs at a selection of depth electrodes. (B) The output of the General Linear Model
displaying which SEEG signals are significantly involved in the epileptic network. Positive b values (red) indicate increased correlation during IEDs, while the negative b
values indicate a decorrelation during IEDs. (C) The three distinct spike clusters with the complete network involved (left), dominant activity at electrode LH (middle) or
dominant activity at the electrodes LY/LX (right). (D) The model of the spatiotemporal interactions underlying spike cluster 1 (left) and the implanted electrodes visualized
relative to the 3D-CT scan (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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electrodes located at the left temporal lobe (Fig. 5C, middle).
Cluster 1 reflects simultaneous activity from LH and LSO mainly
and with a smaller amplitude LST, while for cluster 2 the
activity recorded with the LH electrode dominates. The left
hippocampus targeted by the LH electrode coincides with the
SOZ (Fig. 5C, right) showing a 67% overlap (see Table 2, column 6).
For this patient, a left extended temporal lobe resection and
amygdalohippocampectomy was performed rendering this patient
seizure-free.

Patient 5 had a cystic lesion due to a perinatal infarction in the
temporo-occipital lobe of the right hemisphere. Eight depth elec-
trodes were implanted adjacent to the infarction, with in addition
one electrode implanted in each the left and right hippocampus
(Fig. 6D, right). The GLM reflects a diffuse pattern, indicating signif-
icant activity measured by all electrodes (Fig. 6B). Therefore, no
electrodes were excluded from further analysis. ICA was applied
followed by hierarchical clustering. The interactive method was
employed for estimating the number of clusters since the gap
statistic was inconclusive. Cluster 1 is mainly dominated by activ-
ity recorded at several contact points of RO and RZ, whereas cluster
2 reflects more diffuse activity with involvement apart from the
activity at RO and RZ of the electrodes LH, RI, RP and RT, albeit of
lower intensity. Further visual review indicated that for cluster 1
the activity dominated alternately at electrode RO and RZ, whereas
cluster 2 mainly reflects distributed activity over six of the
implanted electrodes. The clustering results of this patient reveal
in addition two spike clusters, with dominant activity at both the
left and right hippocampal electrodes (Fig. 6C, right). These clusters
consist of, respectively, 24 and 13 IEDs, amounting to less than 5%
of the total number of IEDs occurring in the selected SEEG record-
ings of this patient. It appeared that the pathological brain area tar-
geted by the electrodes RO and RZ coincided with the SOZ, as
indicated by the yellow boxes at Fig. 6C, with an overlap of 90%
(see Table 2, column 6). An extended resection of the brain area
including the cystic lesion was performed rendering this patient
seizure-free.

3.2. Network analysis approach

A network underlying the IEDs is assumed to consist of nodes,
which are the brain areas involved in the evolvement of the IEDs,
and the connections between these nodes. The connections are
expressed by the association strength (correlation value � 100 %),
while the estimated time delay (in ms) indicates the direction,
i.e. whether the node is leading or lagging. The scope of the net-
work analysis procedure was, however, limited for the five patients
who participated in the evaluation study because the implantation
strategy of the depth electrodes was mainly guided by the abnor-
malities visible at MRI. The two spike clusters of patient 1, located
adjacent to the porencephalic cyst and probably originating in the
right hippocampus and insular area, were independently active.
For patient 2 a single spike cluster was identified with an origin
in the left hippocampus. The spatiotemporal interactions of the
spike clusters identified for both patient 3 and 4 are restricted to,
respectively, the right and left temporal lobe (see Fig. 5B,C). For
these patients there was a negligible time delay between the spikes
recorded at the hippocampal electrodes and the subdural electrode
strips. Thus, the SOZ of 4 out of 5 patients evaluated (patient 1–4)
originated in either the left or right hippocampus and a standard or
more extended temporal lobe resection plus amygdalohippocam-
pectomy led for each of these patients to a satisfactory seizure out-
come. The SEEG recordings with the most complex interactions of
the MRI-positive epilepsy patients were recorded for patient 5
(Fig. 6A). Spike clusters with the most dominant activity were
identified at the RO and RZ electrodes with varying spike ampli-
tude but without significant time delay between these electrodes.
Furthermore, the electrodes placed in the left and right
hippocampus revealed independent interictal spiking (Fig. 5C),
but did not interact with the RO and RZ electrodes. In summary,
there is no evidence for interactions with distant brain areas for
the 5 patients included in the evaluation study with an epilepsy
related to pathologic brain tissue identified at MRI.

The network analysis approach appeared, especially, suitable
for patients who had, according to visual review, an epilepsy with
underlying complex network interactions. For one of the two
patients studied (patient 6), who was not seizure free after SEEG
guided resections, electro-clinical review indicated focal partial
seizures with secondary generalization. Visual review of the SEEG
recordings pointed at a neocortical left temporal lobe epilepsy,
possibly with involvement of the contralateral temporo-parietal
regions. For this patient, in total nine electrodes were implanted
in the left hemisphere and two electrodes were implanted in the
right hemisphere, including a depth electrode in each of the hip-
pocampi (Fig. 7D, right). Visual analysis of seizure data identified
the left anterior cingulum targeted by depth electrode LC as the
SOZ. However, the patient was not seizure-free after resection of
this area. The SEEG recordings of this patient mainly reflect IEDs
recorded at the depth electrodes implanted in the left frontal and
temporal lobes (Fig. 7A). GLM analysis (Fig. 7C) revealed significant
activity measured from six depth electrodes (LH, LX, LC, LF, LY
and LT). Subsequently, ICA followed by hierarchical clustering
yielded three spike clusters (Fig. 7C, upper row) with involvement
mainly of five electrodes (LH, LC, LY, LX and LT). Spike cluster 1
reflects the interaction of the activity underlying the discharges
recorded at the electrode targeting the left hippocampus (LH),
which is leading the activity recorded, respectively, at the
electrodes targeting the left temporal pole (LT), anterior insula
(LX) and anterior cingulum (LC). Spike cluster 2 is mainly recorded
at the electrode targeting the left hippocampus and its direct
neighborhood, while the third spike cluster was maximal at the
LY electrode targeting the left insula. The interactions between
brain areas for cluster 1 are visualized in (Fig. 7D) in which the
delay values are depicted, showing the LH-LX electrodes as the
focal area with propagation towards the other electrodes, with
small delays towards LY and LT and larger delays to LC and LF.
The network interactions as identified by the analysis framework
applied in this study all point to the left hippocampus as being
responsible for the initiation of the IEDs of this patient. The
interictal activity (quantified) is not concordant with the clinical
hypothesis regarding the SOZ and has 0% overlap (see Table 2,
column 6).

Patient 7 was diagnosed with an epilepsy of unknown origin
with secondary generalization and with either a left, right or bilat-
eral frontal onset. For this patient, 9 electrodes were implanted in
the right hemisphere and 6 in the left hemisphere (Fig. 8D). GLM
analysis indicated significant activity measured mainly from LC,
LX, RA, RC, RX and RY (Fig. 8B). ICA followed by hierarchical clus-
tering yielded three spike clusters (Fig. 8C, upper row). All clusters
indicate IEDs with high amplitude arising from the right insula
(RY). Furthermore, all clusters indicate activity from the left and
right insular and cingulate regions. The depth electrodes implanted
in the left and right insular areas (LX, RX and RY) and area of the
cinguli (LC, RA and RC) were interictally active. According to the
clinical hypothesis based on these depth electrode recordings the
SOZ was located in the area of the right middle frontal gyrus. How-
ever, resection of this area did not lead to a satisfactory seizure
reduction.

Delay estimation by the regularization procedure did not lead to
plausible results for this patient, showing mostly delays estimated
around 0 ms, likely due to the varying shape of the IEDs within
each spike cluster. In order to resolve these issues, a local maxi-
mum based analysis of the correlation function given by Eq. (2)



Fig. 8. Results of the SEEG analysis for patient 7. (A) The SEEG recording showing the IEDs at different depth electrodes. (B) The output of the General Linear Model displaying
which SEEG signals are significantly involved in the epileptic network. Positive b values (red) indicate increased correlation during IEDs, while the negative b values indicate a
decorrelation during IEDs. (C) Independent Component Analysis followed by hierarchical clustering indicates three spike clusters. All spikes clusters display complex activity
involving multiple involved electrodes. (D) The model of the network organization showing that the activity recorded at LX is leading for cluster 1 (left) and the activity
recorded at electrode RY for cluster 2 (right). The implanted electrodes are displayed relative to the 3D-CT scan (middle). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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is performed. Details of this additional procedure are given in
Appendix B. The first cluster shows that activity from the left insula
and cingulum precedes the activity seen in the right hemisphere
(Fig. 8C, left). The second cluster indicates the right hemisphere
as a clear onset region, showing large delays up to 30 ms to the left
cingulum (Fig. 8C, middle), but indicates simultaneous activation
of the sources targeted by LX and RY, but also including LC and
RC. The third cluster appears to be a mixture of clusters 1 and 2,
showing distributed activity originating from both the left and
the right hemisphere (Fig. 8C, right). In conclusion, the results of
the analysis framework indicate that the most dominant IEDs of
this patient, both in number and amplitude, are initiated in the
right middle frontal gyrus and right anterior insula. However, the
activity originating in the left middle frontal gyrus and left anterior
insula also contributes to the IEDs of this patient. Furthermore, as
result of the network analysis approach it appears that the elec-
trodes in the left middle frontal gyrus and left anterior insula are
leading in cluster 1, while cluster 2 shows that electrodes from
the right middle frontal gyrus and right anterior insula are leading.
For cluster 2, concordance of the focal areas identified in the right
hemisphere, at electrodes RX and RY, and the SOZ is measured at
56% (see Table 2, column 6). Evidently, the focal area identified
by cluster 1 at electrodes LX and LC did not overlap with the SOZ
as identified by visual review of the SEEG recordings. After surgical
intervention of the right middle frontal gyrus the seizures started
to reoccur, but now clearly with a left hemispheric origin, thus
indicating that surgical intervention was successful for the seizures
arising from the right hemisphere.
4. Discussion

A framework developed to map the spatiotemporal interactions
of interictal stereo-EEG was evaluated, retrospectively, for the
depth electrode recordings of epilepsy surgery candidates (N = 7).
For five of these patients who underwent successful surgery it
was investigated whether multiple focal brain areas were interact-
ing. Furthermore, the leading brain area was identified and related
to the electro-clinical hypotheses with regard to the SOZ. The addi-
tional value of the analysis framework was further demonstrated
by the presentation of the results for two patients with complex
network interactions underlying their IEDs. These patients had
no satisfactory seizure outcome despite long term SEEG recordings
guiding their surgery. The analysis framework applied to the SEEG
recordings of these two patients yielded spike clusters originating,
according to the network analysis approach, in leading brain areas,
which did not coincide with the resected area. The results pre-
sented here provide evidence that for these patients systematic
network analysis of the activity underlying the IEDs would have
been of importance in addition to routine review of SEEG record-
ings to guide resective surgery.
4.1. Methodology: limitations and improvements

In order to study the couplings and time delays between SEEG
signals during the occurrence of IEDs non-linear correlation analy-
sis was applied. Contrary to the commonly used method (see e.g.



S. Meesters et al. / Clinical Neurophysiology 129 (2018) 1276–1290 1287
Wendling et al. (2001a), van Houdt et al. (2012)) the time delay esti-
mation is based on the average correlation function of a large num-
ber of IEDs. In the current study a matrix representation is used for
the correlation and time delay estimates in order 1) to avoid errors
due to highly varying correlation values at distinct contact points of
a particular electrode, and 2) to enable regularization of the delay
estimations. The newly introduced regularization procedure led
to a delay matrix that contains fewer outliers and reflects a range
of delay values that is within amore plausible range based on phys-
iological expectations. In case of high variability of the interictal
spike activity, like for patient 7, the delay estimation appears to
be inaccurate despite regularization. Therefore, an alternative
approach for delay estimation was introduced, which diminishes
the influence of IEDs of deviating shape, resulting in a more accu-
rate delay estimation for this patient. The non-linear correlation

coefficient h2 together with the regularization procedure provides
a robustmethod to estimate delays. However, non-linearmultivari-
ate regression methods, such as generalized synchronization (GS)
or phase synchronization (PS) (Pereda et al., 2005), might be possi-
ble alternatives, although these methods were not applied yet to
the extent of our knowledge for SEEG signal analysis.

The current study adopts and extends the use of the GLM
approach firstly introduced by van Houdt et al. (2012) for the pur-
pose of the identification of these brain areas that generate highly
synchronized activity during the occurrence of the IEDs. The appli-
cation of the GLM is a crucial step preceding ICA based on individ-
ual IEDs, because it reduces the number of signals to be analyzed,
leading to better modeling outcomes and significantly reduced
computation time. The outcome of the GLM is represented in a
b-matrix, which, as opposed to the approach by van Houdt et al.
(2012), does not require the averaging of the time-varying correla-
tion of multiple depth electrode signals. Non-significant and arti-
factual matrix entries could in most cases be removed
successfully from the b-matrix through statistical significance test-
ing and through symmetry filtering. Correcting for multiple com-
parisons through the FDR method effectively imposes stricter
requirements on the p-value, which, especially for large matrices,
is important to reduce false positives. Imposing a requirement on
symmetry was effective in reducing outliers in the b-matrix. How-
ever, if it is not possible to reduce the number of SEEG signals, as
was the case for patient 5, for whom the results are presented in
Fig. 6B, a high number of multicolinear variables remain, which
have an adverse effect on the performance of ICA because 1) an
artifactual source present in the EEG may be spread out over mul-
tiple components, and 2) a single SEEG signal is representing mul-
tiple components. A possible solution is to apply principal
component analysis (PCA) as a dimension reduction step before
applying ICA (Hyvarinen and Oja, 2000). An unexpected outcome
of the GLM was that its results reflect negative values for several
patients, which were retained regardless of the filtering procedure
based on FDR-adjusted p-values or by imposing a symmetry
requirement. Negative b-values might be the result of sudden
unexplained discharges or changes of the SEEG signals that could
not be adequately compensated for by the confounder density
function. Overall, the GLM has proven to be useful for selecting
the brain areas that generate the highly synchronized activity
underlying the IEDs.

The application of ICA followed by hierarchical clustering
appeared to be an effective method for identifying spike clusters
with a distinct spatiotemporal pattern. The clustering of spatial
distributions was inspired by Van ’t Ent et al. (2003) who applied
spike cluster analysis of IEDs occurring in the magnetoencephalo-
gram (MEG). The foremost limitations of the hierarchical clustering
method are that it may be unclear how many spike clusters should
be selected, and, secondly, which of the selected clusters reflect
focal activity. In the current study, the optimal number of clusters
was quantitatively determined by the gap statistic. However, the
optimal number of clusters may include, regardless of the restric-
tive statistics, clusters with a very low number of spikes, like for
patient 5 with a spike cluster originating in the left and right hip-
pocampus. The relevance of these spike clusters remains unclear,
also because they were not interacting with the spike cluster
which was concordant with the SOZ. The gap statistic did not pro-
duce a conclusive answer for patient 5 (see Fig. 6) and patient 6
(see Fig. 7) since the criterion for determining the number of clus-
ters as described by Tibshirani et al. (2001) could not be met. For
these cases it was possible to successfully use the interactive
method described in Section 2.6 to estimate the number of clus-
ters. In future work it should be investigated whether the use of
advanced ICA models can yield sources with a greater statistical
independence and therefore provide more robustness to noise.
Examples of this type of advanced models are convolutive ICA
(Dyrholm et al., 2007) or mean-field approaches (Højen-Sørensen
et al., 2002), which incorporate reverberations and convolutive
mixing, and may be more appropriate for dealing with SEEG data
than the InfoMax algorithm as applied in the current study. A pos-
sible alternative to the approach of hierarchical clustering followed
by the gap statistic is the robust growing neural gas network intro-
duced by Qin and Suganthan (2004), which provides an outlier-
resistant scheme and a cluster repulsion method for the removal
of IEDs with an aberrant waveform, and furthermore allows for
the automatic estimation of the number of clusters.

A network analysis approach was applied to characterize the
spatiotemporal interactions of the network underlying the IEDs.
The aimwas to identify the leading or lagging nodes within the spa-
tiotemporal network by the robust estimation of time delay to each
spike cluster individually. The robust estimation of time delays
between SEEG signals indicates the area of early onset of the IEDs,
which coincides, according to the results presented for each of the
patients studied, with the SOZ, and, furthermore, indicates the
interaction of this area with brain areas involved in the network
activity underlying the IEDs. Because of the complex nature of
directionality estimation from SEEG recordings, averaging the
spikes within a cluster, which reflect the same spatiotemporal
interactions, can lead to an increased non-linear correlation coeffi-
cient (Pijn and Lopes da Silva, 1993) and thereby provide a more
accurate estimate of the time delay. However, small time delays
may occur, as was seen for patients 3–5, because the electrodes
were positioned close together, which may require a higher SEEG
sample rate than 600 Hz to determine the directionality. However,
the identification of leading and lagging nodes of the network was
shown to be successful for patient 6 (see Fig. 8C, left), for whom the
activity underlying the first spike cluster stipulated that the
mesiotemporal area precedes the cingulum and for patient 7, for
whom independent focal areas were identified as being responsible
for the three distinct spike clusters. In future work it should be
assessed whether the potential of the directionality index, as intro-
duced by Wendling et al. (2001a,b, 2010), in combination with the
robust estimation of time delay as introduced in this study to unra-
vel the leading and lagging of nodes of the network underlying IEDs
could improve these results. A downside of any correlation-based
technique is that a high correlation does not necessarily infer cau-
sation and information flow. Other methods, such as non-linear
Granger causality, may provide a distinction between spurious
information flow and true information exchange and, therefore,
could possibly be more accurate at identifying the area of early
onset of epileptic discharges. However, the limitation in our study
are the short time windows used to analyse the IEDs (250 ms, or
150 data points at a sample frequency of 600 Hz). Due to the limited
analysis epoch there may be insufficient statistical power for a reli-
able analysis using standard Granger causality. Variations such as
the non-linear Kernel Granger causality (Marinazzo et al., 2011)



Fig. 9. Example of the regularization procedure for patient 1. Left: Delay matrix estimated from the estimation of maximum correlation. Middle: Delay matrix obtained after
the regularization procedure. Right: Selection of an appropriate smoothness parameter k through a stability analysis.
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have been created to support relatively short signals, but are, as of
date, unproven for SEEG analysis. Recently, it was shown by
Bartolomei et al. (2017) that graph theoretical analysis of interictal
SEEG recordings may provide us with a possible biomarker to iden-
tify abnormalities in the interictal network. In future work it should
be assessed whether graph theoretical analysis as described by e.g.
Bullmore and Sporns (2009) and Stam and van Straaten (2012)
enables to describe the interactions of the distinct brain areas
involved in the IEDs and whether it can improve the ability to pin-
point that area that is responsible for the epilepsy of the patient.

4.2. Clinical perspective

The first 24 h of SEEG recordings generally do not reflect any
seizures, but may contain a large number of IEDs and can therefore
provide an initial overview of the epileptic activity patterns related
to the epilepsy of a patient. In practice this could lead to a reduc-
tion of the recording time needed.

However, an important prerequisite for analysis of these SEEG
data using the framework of analysis as presented is the accurate
annotation of IEDs. Considerable time and effort by a skilled EEG
technician is required to annotate long-term SEEG recordings. It
is, therefore, of utmost importance to proceed towards a (semi-)
automatic framework for SEEG analysis through the automatic
detection of IEDs.

A major limitation of any intracranial EEG-recording is the spa-
tial resolution that can be achieved. For the five successfully oper-
ated patients the implantation strategy was mainly guided by the
abnormalities visible at the MRI, which limits the network analysis
approach. For example, for patient 1 (see Fig. 4) a relatively low
number of electrodes were placed in the temporal lobe, thus limit-
ing further investigation of interactions between the left hip-
pocampus and insular cortex. Interactions between these regions
would be expected based on the classification of network interac-
tions reported on by Kahane and Bartolomei (2010). The same lim-
itation of spatial sampling was seen for patient 2 (see Fig. 5A), for
whom an electrode was targeting the left hippocampus, but there
were no electrodes implanted in the left temporal lobe. However,
the implantation of depth electrodes for the two failure patients
was not guided by abnormalities visible on MRI. The epileptic
events of these patients were characterized by rapid, and for one
of the patients generalized, propagation of the activity underlying
the IEDs. Therefore, the implantation of depth electrodes was much
more widely distributed than for the 5 patients who had abnormal-
ities visible at MRI. On basis of this hypothesis, the patients
received a more distributed implantation of electrodes in both
hemispheres. It was shown that for these patients with complex
focal epilepsy, for whom seizures could not provide a conclusive
clinical image, network analysis of IEDs is potentially a valuable
tool to describe the spatiotemporal interactions of the epileptic
discharges and to identify the SOZ. Overall, the approach as
introduced in this study might increase the success rate of resec-
tive surgery, or could be helpful to select these patients who
should be further investigated as candidates for alternative
treatments.
5. Conclusion

A framework of analysis was developed to identify the network
interactions underlying the IEDs occurring in SEEG recordings. The
interdependency was assessed between brain areas that reflected
highly synchronized neural activity. The time delay between nodes
of the network was estimated by a new robust method and was
used to map the spatiotemporal network interactions. The addi-
tional value of a network analysis became apparent, especially,
for MRI-negative patients with a complex epilepsy. In conclusion,
the analysis of IEDs by the analysis framework introduced in this
study is considered a valuable addition to the routine review of
SEEG recordings, with the potential to increase the success rate
of epilepsy surgery.
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Appendix A. Regularization of the delay matrix

Details are provided of the regularization procedure for the
reduction of outliers in the delay matrix. Since two neighboring
SEEG contact points measure activity from an overlapping area, it
is assumed that the correlation and associated estimated
delay vary continuously between neighboring matrix entries.
Based on this assumption, a smoothness constraint is implemented
within the energy term used for regularization, formulated
according to

EX ¼
X
ði;jÞ2X

�h2
ijðs	ijÞ � k Ds	ij

��� ���; ðA:1Þ



Fig. 10. Example outcome of the correlation profiles of h2
ijðwk; sijÞ (left) and its transpose h2

jiðwk; sijÞ (right). The local maxima are denoted by black dots. It can be observed that
the local maxima are anti-symmetric around the origin s ¼ 0.

Fig. 11. Results of the delay computed from the weighted arithmetic mean of a set of delays weighted by their correlation value. The results for both sets sIJ (A) and sJI (B) are
shown, displaying the approximately anti-symmetry property around the origin s ¼ 0. The averaged norm of both delays sI$J (C) displays that the EEG signals measured from
electrodes implanted in the left hemisphere are lagging behind those in the right hemisphere.
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where �h2
ijð
Þ is the average correlation function (see Eq. (2)), s	ij is the

time delay value to be optimized at the indices for depth electrode
signals ði; jÞ, and k is a weighting term for the degree of smoothness
applied to the delaymatrix. Here,X is an area of the delaymatrix cor-
responding to the contact points of any two electrodes, for example
containing the time delays from every signal measured by the RC
electrode to every signal measured by the RH electrode (see Fig. 9,
middle). Optimization is performed within X to ensure that the
smoothness is evaluated in the same anatomical areas. The Laplace
operator D ¼ r 
 r is used to measure the ariation between neigh-
boring values in the delay matrix within X. In order to ensure
smoothness to all neighboring values, a 9-connected discrete
approximation of the two-dimensional Laplace operator
is used. The nine-point Laplacian with stepsize h is given

by Du ¼ �h�2½8ui;j � ui�1;j � uiþ1;j � ui;j�1 � ui;jþ1 � ui�1;j�1 � ui�1;jþ1�
uiþ1;j�1 � uiþ1;jþ1� (Lindeberg, 1994). We used stepsize h ¼ 1.

The time delay s	ij is optimized by maximizing the energy func-
tion EX, which is done in a three-step procedure:

1. Initial values for the maximum correlation and the correspond-
ing delay are computed for all entries in X based on the
time-shifts that resulted in maximum correlation.

2. A direct search method is applied which optimizes each matrix
entry ði; jÞ individually by computing the energy term for a
range of delay values (�10 ms around s	ij). The delay value cor-
responding to the highest energy is updated according to

s	ij ¼ s	ij
� �

new
.

3. Step 2 is repeated until convergence is reached, i.e. s	ij � s	ij
� �

new

within a tolerance level, or until the maximum number of iter-
ations is reached.

The smoothness parameter k can be estimated through a stabil-
ity analysis. In this procedure, the minimum and maximum delay
values of the matrix are inspected for increasing k (see Fig. 9, right).
The appropriate value of k is the point at which the minimum and
maximum delay values no longer change for an increment of k.
Appendix B. Local maximum based correlation analysis

The recordings of patient 7 in this study reflected a large vari-
ability in the shape of the IEDs, demonstrating multiple activated
brain areas (see Fig. 8). Due to this high variability the regulariza-
tion procedure in Appendix A did not lead to plausible results for
delay estimation. To resolve this issue, a re-evaluation is per-

formed of the correlation function h2
ijðwk; sijÞ. The first step is the

detection of the local maxima of the correlation function. In order
to prevent the detection of maxima caused by with noise, only the
local maxima that survived a blurring of scale r ¼ 10 (correspond-
ing to a kernel of size 10 ms) were maintained. The results of local

maxima detection for both h2
ijðwk; sijÞ and its transpose h2

jiðwk; sijÞ
are shown in Fig. 10. Subsequently, the locations of the local max-
ima and their correlation coefficient are included in a weighted dis-
tribution, where each delay at the q-th local maximum
sq ¼ sijðwk; qÞ is weighted by its corresponding correlation

h2
q ¼ h2

ijðwk; sqÞ. The delay between any two EEG signals i and j is
then estimated by the weighted arithmetic mean according to

ŝij ¼ 1
k

P#IEDs
k

1
q

P#maxima
q h2

qsq
� �. P#maxima

q h2
q

� �
.

Since the correlation function for an individual spike may con-
tain noise, several preprocessing enhancement steps are applied.
Firstly, a second-order Gaussian derivative filter with scale
r ¼ 10 is applied to the monopolar EEG data for each spike. This
procedure enhances the spike amplitude while reducing low-
amplitude background activity. Furthermore, since low-frequency
background activity is known to produce relatively high correla-
tion in some cases, a total variation measure is applied to weigh
the correlation function according to EEG activity. In practice this
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leads to a reduction of peaks in the correlation function associated
with background activity. The correlation function for each spike is

weighted according to h2
ijðwk; sijÞ 
 logðTVwk ;i=TVwk ;ref Þ, where TV is

the total variation TVwk ;i ¼
PT

t¼0ky0iðtÞk and yi is the EEG signal for
the ith channel within window wk and T is the time length of the
window. The derivative y0i is calculated by a first-order Gaussian
derivative filter (r ¼ 5). The total variation for a given channel i
is compared to a reference value TVwk ;ref that is associated with
background activity. The logarithm is used in order to get a weight-
ing that is zero when the total variation is equal to the reference.

For the case of patient 7, we are particularly interested in the
delays relative to the RY electrode. Since there may be variation
in the used reference signal j, three reference electrodes RY9,
RY10 and RY11 are used, which displayed similar activity through-
out all spikes. The results corresponding to the second cluster of
patient 7 (see Fig. 8) are shown in Fig. 11 for the delay of every
electrode with respect to the reference electrode RY (A) and the
transposed delay estimation (B). It can be observed that the two
results are approximately anti-symmetric and behave according
to the condition sIJ � �sJI , where I and J denote whole electrodes,
which enforces the reliability of the delay computation. The end
result is computed by the averaged norm of both delays according

to sI$J ¼ 1
2

P#electrodes
i ksIJk þ

P#electrodes
i ksJIk

� �
, shown in Fig. 11C.
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