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A functional CLT for partial traces of random matrices

Jan Nagel

March 7, 2018

Abstract

In this paper we show a functional central limit theorem for the sum of the first

⌊tn⌋ diagonal elements of f(Z) as a function in t, for Z a random real symmetric

or complex Hermitian n × n matrix. The result holds for orthogonal or unitarily

invariant distributions of Z, in the cases when the linear eigenvalue statistic tr f(Z)

satisfies a CLT. The limit process interpolates between the fluctuations of individual

matrix elements as f(Z)1,1 and of the linear eigenvalue statistic. It can also be seen

as a functional CLT for processes of randomly weighted measures.

1 Introduction

It is the purpose of this paper to add a new perspective to the central limit theorem for

linear eigenvalue statistics. The main objects are the eigenvalues λ1, . . . , λn of a random

real symmetric or complex Hermitian matrix Z. Given a test function f , the linear

statistic of these eigenvalues, denoted by X
(n)
1 (f), is tr(f(Z)) = f(λ1) + · · ·+ f(λn). For

many distributions of eigenvalues and smooth enough functions we have, after centering,

the convergence in distribution to a normal random variable,

tr(f(Z))− E[tr(f(Z))] =

n∑

k=1

f(λk)− E[f(λk)]
d−−−→

n→∞
N (0, σ2

1(f)). (1.1)

Over the last two decades, CLTs for linear eigenvalue statistics have grown into a hugely

popular field of study within random matrix theory. To give a partial overview, the

convergence in (1.1) was proven for invariant matrix models or orthogonal polynomial en-

sembles [Joh98, Pas06, Shc08, KS10, DP12, Dui15, BD17], for general Wigner or Wishart

matrices [BS08, LP09a, Shc13], for matrices of compact groups [Joh97, Sos00], and for non-

Hermitian matrices [RS06, NP10]. Comparing (1.1) with classical CLTs, for example for

sums of independent random variables, it is highly remarkable that there is no additional

scaling factor n−1/2. This phenomenon is usually attributed to the strong dependence

structure of the eigenvalues. Indeed, the classical orthogonal polynomial ensembles have
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a joint eigenvalue density containing the Vandermonde determinant ∆(λ) =
∏

i<j |λi−λj |,
which leads to a repulsion of eigenvalues. It was shown however by [CL95, Sos02] that

in general the variance of the linear eigenvalue statistic does not remain bounded for

non-smooth test functions f .

One sees a very different picture when, instead of the trace, we consider the fluctua-

tions of an individual matrix element f(Z)1,1. Limit theorems for such entries have been

considered by [LP09b, LP11, PRS12, ORS13]. The random variable f(Z)1,1 depends not

only on the distribution of the eigenvalues, but also on the eigenvectors. We will assume

the matrix of eigenvectors to be Haar distributed on the orthogonal group (for real Z) or

on the unitary group (for complex Z), and to be independent of the eigenvalues. This is

satisfied for the prominent case of unitarily invariant ensembles (see Section 2.1). Then

the central limit theorem takes the form

√
n(f(Z)1,1 − E[f(Z)1,1])

d−−−→
n→∞

N (0, σ2
0(f)). (1.2)

Unlike for the full trace, an additional scaling is necessary. Although one might expect

f(Z)1,1 to scale as 1
n
tr f(Z), the fluctuations of the former random variable are much

larger. We remark that in our setting the convergence (1.2) is in fact a consequence of

(1.1) (see Theorem 2.1).

In this paper, we show that we can in some sense interpolate between the different

CLTs in (1.2) and (1.1) by summing a varying number of diagonal elements. The main

object of interest is thus the partial trace X
(n)
t (f), defined by

X
(n)
t (f) =

⌊tn⌋∑

i=1

f(Z)i,i =
n∑

k=1

w
(n)
k,t f(λk), (1.3)

which is a weighted version of the linear eigenvalue statistic tr f(Z), where the weights

w
(n)
k,t are norms of projections of the eigenvectors (see (2.3)). In our main result, Theorem

2.2, we show that in a setting where the convergence (1.1) of the linear eigenvalue statistic

holds, the process

(
X

(n)
t (f)− E[X

(n)
t (f)]

)
t∈[0,1]

(1.4)

converges as n → ∞ in distribution to a centered Gaussian process. The variance of

the limit process at time t is given by (t − t2)σ2
0(f) + t2σ2

1(f). That is, the fluctuations

interpolate between the limit variance of the CLTs in (1.2) and (1.1) and, unless σ2
0(f) =

σ2
1(f), the limit is not a Brownian motion.

A core argument in the proof is the independence of eigenvalues and eigenvectors.

Assuming a convergence as in (1.1), the main task is then to handle the fluctuations

induced by summing a varying number of entries of the eigenvector matrix. The main

ingredient for this is a functional limit theorem for sums over subblocks of Haar distributed
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matrices proven by [DMR12, BDMR14]. This result itself relies on a powerful theorem of

[MŚS07], allowing to evaluate higher order cumulants for entries of Haar matrices. Our

strategy also allows us to prove a functional CLT for (1.4), when instead of the mean

E[X
(n)
t (f)], one centers by the expectation conditioned on the eigenvalues. The result is

the quenched convergence in Theorem 2.3, which gives a convergence in distribution under

the law of the eigenvector matrices, valid for almost all (sequences of) eigenvalues. With

this centering, the limit process is a Brownian bridge. This also shows that the results are

not restricted to the random matrix setting, but could also be viewed in the framework

of randomly weighted sums, when the weight are coming from Haar distributed matrices

as in (1.3). For example, the functional CLT of Theorem 2.3 is also true for deterministic

sequences λi or more general point processes, see Remark 2.4.

Convergence of partial traces has been considered before in a couple of papers for

particular distributions of random matrices. If Z is unitary and f the identity, a functional

limit theorem for the partial trace has been proven in [D’A00]. A more general way

of summing entries of unitary matrices was considered in [DDN03]. In [Rai98], real

symmetric matrices are considered and the statement of Theorem 2.3 is proven under

a strong moment condition on the λi, using zonal polynomials. Using the arguments

of Section 3.3, this would lead to a convergence of (1.4), again under higher moment

conditions.

This paper is structured as follows. In Section 2, we state and discuss our main as-

sumptions and state our results. The proofs can be found in Section 3 and a lengthy

variance computation is contained in Section 4.

Acknowledgments: The author is very grateful to Maurice Duits for several helpful

discussions and for inspiring the author to investigate the partial traces.

2 Random ensembles and main results

Let us begin with a closer look at the partial trace. When Z = Z(n) is a n× n complex

Hermitian matrix, by the spectral theorem we may write Z(n) = U (n)Λ(n)(U (n))∗, where

U (n) is a n×n unitary matrix, Λ(n) is real diagonal with the eigenvalues λ1, . . . , λn on the

diagonal and A∗ denotes the conjugate transpose of A. If Z(n) is real symmetric, U (n) is

orthogonal instead. With this decomposition, we have for the partial trace as defined in

(1.3),

X
(n)
t (f) =

⌊tn⌋∑

i=1

f(Z)i,i =

⌊tn⌋∑

i=1

(
U (n)f(Λ(n))(U (n))∗

)
i,i
=

⌊tn⌋∑

i=1

n∑

k=1

|U (n)
i,k |2f(λk). (2.1)
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The main object of our study is then the random non-negative finite measure X
(n)
t defined

by

X
(n)
t =

n∑

k=1

w
(n)
k,t δλk

. (2.2)

with δz the Dirac measure in z and the weights are given by

w
(n)
k,t =

⌊tn⌋∑

i=1

|U (n)
i,k |2. (2.3)

In this case µ(f) is just the shorthand notation for
∫
f dµ. Note that the total mass of

X
(n)
t is given by ⌊tn⌋. The representation (2.2) shows that statements about the partial

trace are in fact statements about a weighted version of the classical empirical eigenvalue

distribution, which we denote by µ̂(n) and which corresponds to all weights being equal

to n−1. In (2.2), the weight of λi is a norm of the first ⌊tn⌋ entries of the corresponding

eigenvector. Setting t = 1, all weights in (2.2) become 1, so that µ̂(n) = 1
n
X

(n)
1 . In other

words, nµ̂(n)(f) is the linear eigenvalue statistic.

Another prominent eigenvalue measure is the spectral measure µ
(n)
1 of the pair (Z(n), e1),

defined by the functional calculus relation µ
(n)
1 (f) = e∗1f(Z

(n))e1 = f(Z(n))1,1. That is,

the CLT in (1.2) is in fact a statement about µ
(n)
1 (f). The spectral measure can be ob-

tained from the partial trace by µ
(n)
1 = X

(n)
1/n. Although for classical ensembles of random

matrices, the measures µ̂(n) and µ
(n)
1 have the same limit in probability as n → ∞, the

fluctuations around this limit are very different, which becomes evident in the different

central limit theorems in (1.1) (for nµ̂(n)) and in (1.2) (for µ
(n)
1 ). The additional random-

ness of the weights in the spectral measure leads to substantially larger fluctuations. Let

us remark that a similar behavior can be observed on the scale of large deviations: while

µ̂(n) satisfies a large deviation principle with speed n2 , see [BAG97] or [AGZ10], for µ
(n)
1

this is reduced to speed n [GR11, GNR16].

2.1 Assumptions

In order to present the results for complex and real matrices in a unified expression, we

follow the classical notation of [Dys62] and introduce the parameter β, where β = 1 if

U (n) is real and orthogonal and β = 2 if U (n) is complex and unitary. Let β ′ = β/2. We

will always make the following assumption:

(A1) The matrices U (n) and Λ(n) are independent and U (n) is Haar distributed on the

unitary group (β = 2) or on the orthogonal group (β = 1).

Under assumption (A1), we can write the distribution of (U (n),Λ(n)) as P = PH ⊗ PΛ,

where PH is the Haar measure on the unitary group and PΛ is the distribution of the
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eigenvalues. We denote expectation with respect to PH and PΛ by EH and EΛ, respectively.

Any convergence in distribution will be under P unless we specify otherwise. Without

loss of generality, assume that all matrices (U (n),Λ(n)) for n ≥ 1 are defined on a common

probability space. While the distribution of U (n) is completely specified by (A1), we need

that the empirical measure of the eigenvalues converges to a deterministic limit. Apart

from Theorem 2.3, we also assume a CLT for the linear eigenvalue statistic. Note that

the two next assumptions are also conditions on the test function f : R → R.

(A2) There exists a deterministic probability measure ν, such that µ̂(n) converges weakly

to ν PΛ-almost surely. Furthermore, µ̂(n)(f) converges to ν(f) and µ̂(n)(f 2) converges

to ν(f 2).

(A3) There exists a σ2
1(f) ∈ [0,∞) such that

X
(n)
1 (f)− E[X

(n)
1 (f)]

d−−−→
n→∞

N (0, σ2
1(f)).

Let us comment on the assumptions above. Suppose the matrix Z(n) is distributed

with density proportional to

exp{−nβ ′ trV (X)} (2.4)

with respect to the Lebesgue measure in each independent real entry in X . The potential

V : R → (−∞,∞] is supposed to be continuous and satisfy the growth (or confinement)

condition

lim inf
|x|→∞

V (x)

2 log |x| > max(1, β−1). (2.5)

The density (2.4) implies that assumption (A1) is satisfied and that the eigenvalues have

a joint density proportional to

∏

i<j

|λi − λj|β
′

n∏

i=1

exp{−nβ ′V (λi)} (2.6)

with respect to the Lebesgue measure on R
n (see [Meh04]). It follows from the large

deviation principle of [BAG97] that the empirical eigenvalue distribution µ̂(n) converges

exponentially fast to a compactly supported measure ν. Since the probability of deviating

from the limit in the weak topology decays exponentially fast, the weak convergence holds

almost surely on any joint probability space. That is, assumption (A2) is satisfied for any

f continuous and bounded. If moreover ν is supported by a single interval and the effective

potential

1
2
V (x)−

∫
log |x− ξ| dν(ξ) (2.7)
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attains its infimum only on the support of ν, then the largest and smallest eigenvalues each

satisfy a large deviation principle [BADG01, APS01]. This implies that the probability

of the extremal eigenvalues deviating from the support of ν decays exponentially and

one easily obtains that (A2) holds also for continuous f growing at most polynomially at

infinity.

Turning to assumption (A3), it was shown in [Joh98, KS10] that when β = 2, V is

real analytic, ν is supported by a single interval and f is continuously differentiable in a

neighborhood of the support of ν and growing at most polynomially, then (A3) is satisfied.

For β = 1, the conditions on V are more restrictive. [Shc08] gives a list of conditions on

V , adding for example edge regularity, under which (A3) is holds for the same class of f

as in the complex case.

As already mentioned in the introduction, the CLT in (A3) (and also assumption

(A2)) is not only proven for random matrices with density (2.4), but for a large variety of

models, for example general Wigner or Wishart matrices. Such matrices have in general

no Haar distributed matrix of eigenvectors, such that assumption (A1) fails to hold.

However, given a random matrix Z(n) satisfying (A2) and (A3), we may take U (n) Haar

distributed on the orthogonal or unitary group, and define Z̃(n) = U (n)Z(n)(U (n))∗. Then

the matrix Z̃(n) trivially has a Haar distributed matrix of eigenvectors independent of the

eigenvalues. The second and third assumption continue to hold, so that now Z̃(n) satisfies

all asumptions.

Finally, let us remark that the method in the present paper also works if a weak

convergence as in (A3) holds with a non-Gaussian limit, but to stay within the framework

of CLTs for the linear eigenvalue statistic, we restrict the presentation to the Gaussian

case.

2.2 Results

The following first theorem can be seen as a preview on the process convergence in The-

orem 2.2 and highlights already the different effects the weights and eigenvalues have on

the fluctuations. It shows a CLT for the weighted spectral measure or a single entry of

the trace, more precisely, the asymptotic normality of

√
n(µ

(n)
1 (f)− E[µ

(n)
1 (f)]) =

√
n(µ

(n)
1 (f)− µ̂(n)(f)) +

√
n(µ̂(n)(f)− E[µ̂(n)(f)]), (2.8)

where we recall that µ
(n)
1 = X

(n)
1/n and µ̂(n) = 1

n
X

(n)
1 , as defined in the beginning of Section

2. The random weights are responsible for the weak convergence of the first term on the

right hand side, while under (A3) the second term has fluctuations of smaller order, and

vanishes in the limit. Moreover, although both terms depend on the eigenvalues, they are

asymptotically independent.
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Theorem 2.1 Assume that (A1) and (A2) hold with f ∈ Cb(R), then
√
n(µ

(n)
1 (f)− µ̂(n)(f))

d−−−→
n→∞

N (0, σ2
0(f)),

where σ2
0(f) =

2
β
(ν(f 2)−ν(f)2). If additionally

√
n(µ̂(n)(f)−E[µ̂(n)(f)])

d−−−→
n→∞

N (0, σ̂2(f))

with σ̂2(f) ∈ [0,∞), then

√
n(µ

(n)
1 (f)− E[µ

(n)
1 (f)])

d−−−→
n→∞

N (0, σ2
0(f) + σ̂2(f)).

In particular, if (A3) holds, then this convergence follows with σ̂2(f) = 0.

Let us remark that for Z a random matrix satisfying (A1) and (A2), the first conver-

gence in Theorem 2.1 may be rewritten as

√
n(f(Z)1,1 − 1

n
tr f(Z))

d−−−→
n→∞

N (0, σ2
0(f)) (2.9)

and if the distribution of Z satisfies also (A3), then the second convergence in Theorem

2.1 is equivalent to (1.2).

As described in the introduction, the main objective is to show how the fluctuations

of the linear eigenvalue statistic emerges from summing individual matrix elements. So

now we consider the process

X (n)(f) =
(
X

(n)
t (f)− E[X

(n)
t (f)]

)
t∈[0,1]

(2.10)

as a random element of D[0, 1], equipped with the Skorokhod-topology and the Borel-σ

algebra. Our main result is then the following theorem.

Theorem 2.2 Under assumptions (A1), (A2) and (A3), the process X (n)(f) converges

as n → ∞ towards the continuous centered Gaussian process X (f) with covariance

Cov(Xs(f),Xt(f)) = (t ∧ s− ts)σ2
0(f) + tsσ2

1(f),

with σ2
0(f) as in Theorem 2.1 and σ2

1(f) as in (A3).

The proof of Theorem 2.2 relies on a decomposition of the process X (n)(f) into a sum

of two processes similar to (2.8). We have

X (n)(f) = W(n)(f) + Z(n)(f), (2.11)

where

W(n)
t (f) = X (n)

t (f)− EH

[
X (n)

t (f)
]
, 0 ≤ t ≤ 1 (2.12)
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is the process centered with respect to PH and

Z(n)
t (f) = EH

[
X (n)

t (f)
]
− E

[
X (n)

t (f)
]
, 0 ≤ t ≤ 1. (2.13)

Since EH [|Ui,k|2] = 1/n, we have by (2.2) and (2.3)

W(n)
t (f) =

n∑

k=1

⌊tn⌋∑

i=1

(
|Ui,k|2 − 1

n

)
f(λk) (2.14)

and

Z(n)
t (f) =

⌊tn⌋
n

(
Xn(f)− E[Xn(f)]

)
. (2.15)

This decomposition has a similar effect as (2.8). The elements of the unitary matrix U

are the main source for the fluctuations of W(n)(f) and this process is asymptotically

independent of Z(n)(f). Since by assumption (A3), Z(n)
t (f) converges to a Gaussian

multiplied by t, this will result in the convergence of the sum. The main step in the proof

of Theorem 2.2 is then the following functional limit theorem for the process W(n)(f).

Note that assumption (A3) is not needed for this part.

Theorem 2.3 Suppose (A1) and (A2) are satisfied. Then PΛ almost surely, as n → ∞,

the process W(n)(f) converges in distribution under PH towards σ0(f)B, where B is a

standard Brownian bridge.

Remark 2.4 The weak convergence in Theorem 2.3 can be seen as a quenched conver-

gence, valid for almost all realizations of sequences of eigenvalues. It demonstrates that

after centering with respect to PH , the origin of the random fluctuations of the partial trace

is solely in the weights (2.3), that is, in the eigenvector matrix. The eigenvalues give only

a deterministic contribution in the limit, depending only on the equilibrium measure ν.

It is therefore not relevant for the result that the λi are eigenvalues of a random matrix.

Instead, Theorem 2.3 holds for any randomly weighted measure as in (2.2) with weights

(2.3). For example, one could replace the support points of this measure with i.i.d. ran-

dom variables, or realizations of a point process, as long as they are independent of the

weights and assumption (A2) holds. The same remark can be made about the first con-

vergence in Theorem 2.1. It does not require (A3) and although it is not explicitly stated,

the convergence holds under PH for PΛ almost all support points of the random measure

µ
(n)
1 .

3 Proofs

3.1 Proof of Theorem 2.1

Let β ′ = β/2. It follows from the Haar distribution of U (n) that the vector of weights

(|U (n)
1,1 |2, . . . , |U (n)

1,n |2) has a homogeneous Dirichlet distribution Dirn(β
′), which is defined
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by the Lebesgue density for the first n− 1 coordinates proportional to
(
x1 · · ·xn−1(1− x1 − · · · − xn−1)

)β′−1
1{xi>0,x1+···+xn<1}.

The uniform distribution on the standard simplex corresponds thus to β = 2. We will

prove the CLT for weights following the general distribution Dirn(β
′) for any β ′ > 0,

since it makes no difference in the proof. The starting point is the observation that the

Dirichlet distribution can be generated by self-normalizing a vector of independent gamma

random variables. More precisely, let γ1, . . . , γn be independent random variables with

distribution Gamma(β ′), then
(

γ1
γ1 + · · ·+ γn

, . . . ,
γn

γ1 + · · ·+ γn

)
∼ Dirn(β

′). (3.1)

where γ1, . . . , γn are independent gamma distributed with parameters (β ′, 1) and mean

β ′.

Define the non-negative measure

µ̃
(n)
1 =

1

nβ ′

n∑

k=1

γkδλk
, (3.2)

then by (3.1) the normalized measure µ̃
(n)
1 · µ̃(n)

1 (1)−1 has the same distribution as µ
(n)
1 . We

first prove the convergence with µ
(n)
1 replaced by µ̃

(n)
1 . Assume without loss of generality

that ν(f) = 0. The moment generating function with respect to PH is

EH

[
exp

{
t
√
n(µ̃

(n)
1 (f)− µ̂(n)(f))

}]
=

n∏

k=1

EH

[
exp

{
t(
√
nβ ′)−1γkf(λk)

}]
exp{−t

√
n
−1
f(λk)}

=

n∏

k=1

(
1− t(

√
nβ ′)−1f(λk)

)−β′

exp{−t
√
n
−1
f(λk)}

= exp

{
n∑

k=1

(
−β ′ log

(
1− t(

√
nβ ′)−1f(λk)

)
− t

√
n
−1
f(λk)

)}
, (3.3)

where we used the independence of the weights and the independence of weights and

eigenvalues and we take |t| < β ′||f ||−1
∞ . Expanding the logarithm as log(1 + x) = x −

x2/2 + r(x) with |r(x)| ≤ |x|3 for |x| ≤ 1/2 this gives

EH

[
exp

{
t
√
n(µ̃

(n)
1 (f)− µ̂(n)(f))

}]
= exp

{
t2/2(β ′)−1µ̂(n)(f 2) +Rn(t, f)

}
, (3.4)

with |Rn(t, f)| ≤
√
n
−1
(β ′)2|t|3||f ||3∞ for n large enough. By Assumption (A2), µ̂(n)(f 2)

converges to ν(f 2) = ν(f 2)−ν(f)2 almost surely with respect to PΛ, so that by dominated

convergence

lim
n→∞

E

[
exp

{
t
√
n(µ̃

(n)
1 (f)− µ̂(n)(f))

}]
= exp

{
t2/2(β ′)−1ν(f 2)

}
, (3.5)
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that is,

√
n(µ̃

(n)
1 (f)− µ̂(n)(f))

d−−−→
n→∞

N (0, (β ′)−1ν(f 2)). (3.6)

In order to come back to the original measure µ
(n)
1 (f) = µ̃

(n)
1 · µ̃(n)

1 (1)−1 we write

√
n
(
µ
(n)
1 (f)− µ̂(n)(f)

)
=

√
n
(
µ̃
(n)
1 (f)− µ̂(n)(f)

)
µ̃
(n)
1 (1)−1 +

√
nµ̂(n)(f)

(
µ̃
(n)
1 (1)−1 − 1

)
.

(3.7)

By the strong law of large numbers, µ̃
(n)
1 (1) converges almost surely to E[µ̃

(n)
1 (1)] =

E[(β ′)−1γ1] = 1. So to conclude the convergence (3.6) with µ̃
(n)
1 replaced by µ

(n)
1 , it

suffices to show that the second term in (3.7) vanishes in probability. Since µ̂(n)(f) con-

verges almost surely to ν(f) = 0, this will follow if
√
n(µ̃

(n)
1 (1)− 1) is bounded in L2(P),

which is easily checked by

nE
[
(µ̃

(n)
1 (1)− 1)2

]
= nE



(
1

n

n∑

i=1

((β ′)−1γi − 1)

)2

 = (β ′)−2Var(γ1) = (β ′)−1. (3.8)

This implies then that the last term in (3.7) vanishes in probability and then by (3.6)

the left hand side converges to N (0, (β ′)−1ν(f 2)) in distribution. This proves the first

convergence in Theorem 2.1.

The second convergence in Theorem 2.1 will follow from Lemma 3.1 below. To apply

it to the present setting, we may set P1 = PH , P2 = PΛ,

X(n) =
√
n
(
µ
(n)
1 (f)− µ̂(n)(f)

)
, Y (n) =

√
n(µ̂(n)(f)− E[µ̂(n)(f)]). (3.9)

By assumption, Y (n) converges in distribution under PΛ to Y ∼ N (0, σ̂2(f)). From 3.4

we get PΛ-almost surely

lim
n→∞

EH

[
exp

{
tX(n)

}]
= exp

{
t2/2(β ′)−1µ̂(n)(f 2)

}
, (3.10)

for any t ∈ (−β ′||f ||−1
∞ , β ′||f ||−1

∞ ). Since the moment generating functions are continuous,

almost sure convergence for fixed t implies almost sure pointwise convergence, which im-

plies that the convergence (3.11) holds with X ∼ N (0, σ2
0(f)). Lemma 3.1 implies then

the convergence of X(n)+Y (n) to X+Y . Noting that E[µ̂(n)(f)] = E[µ
(n)
1 (f)], this finishes

the proof. ✷

Lemma 3.1 Let (Ω1 × Ω2,G,P1 ⊗ P2) be a probability space and X(n) : Ω1 × Ω2 → Ω′

and Y (n) : Ω2 → Ω′ random variables, where Ω′ is a separable metric space with Borel

σ-algebra. If Y (n) converges to Y in distribution under P2 and

E1[F (X(n))] −−−→
n→∞

E[F (X)] (3.11)

10



P2-almost surely for any bounded continuous F : Ω′ → R, where E1,E is the expectation

with respect to P1,P1 ⊗ P2 respectively, then

(X(n), Y (n))
d−−−→

n→∞
(X, Y ) (3.12)

in distribution under P1 ⊗ P2, with X and Y independent.

Proof: The main observation is that functions F : Ω′ × Ω′ → R with F(x, y) =

F (x)G(y) and F,G bounded continuous are sufficient to determine convergence in distri-

bution, see Lemma 4.1 in [HJ77]. For such F,G, we have

∣∣E[F (X(n))G(Y (n))]− E[F (X)]E[G(Y )]
∣∣

≤
∣∣E[(F (X(n))− E[F (X)])G(Y (n))]

∣∣ +
∣∣E[F (X)](E[G(Y (n))]− E[G(Y )])

∣∣

=
∣∣E2[(E1[F (X(n))]− E[F (X)])G(Y (n))]

∣∣ +
∣∣E[F (X)](E[G(Y (n))]− E[G(Y )])

∣∣.

The first term vanishes by dominated convergence using (3.11), the second one by the

convergence of Y (n) under P2. ✷

3.2 Proof of Theorem 2.3

3.2.1 Representation by a bivariate process

We will first show the statement of Theorem 2.3 for piecewise constant functions h with

h(λ) =

M∑

m=1

γm1(am,bm](λ), (3.13)

for some real γm, 1 ≤ m ≤ M , and a1 < b1 ≤ a2 < · · · ≤ bm such that ν((−∞, ·]) is

continuous at all ai, bi. The last condition only excludes countable many points for the

choice of ai, bi and in particular still allows to approximate any f ∈ L2(ν). Let U (n) be a

sequence of n× n unitary or orthogonal Haar distributed matrices. We denote by W̃(n) a

process indexed by subsets A×B of {1, . . . , n}2, such that

W̃(n)
A,B =

n∑

i,j=1

(
|U (n)

i,j |2 − 1
n

)
1A(i)1B(j).

If A and/or B are of the form {1, . . . , ⌊tn⌋} with t ∈ [0, 1], we replace the corresponding

index by t.

We consider (W̃(n)
s,t )s,t∈[0,1] as a random element of D([0, 1]2), the multidimensional ver-

sion of the Skorokhod-space. D([0, 1]2) contains all X : [0, 1]2 → R which are “continuous

from the north-east” and have existing limits in each quadrant, i.e., limsցs0,tցt0 X(s, t) =

11



X(s0, t0) and limsցs0,tրt0 X(s, t), limsրs0,tցt0 X(s, t) and limsրs0,tրt0 X(s, t) exist. We

endow D([0, 1]2) with a generalization of Skorokhod’s J1-metric defined by

d(X, Y ) = inf
λ1,λ2

max

{
sup
s∈[0,1]

|λ1(s)− s|, sup
t∈[0,1]

|λ2(t)− t|, sup
s,t∈[0,1]

|X(λ1(s), λ2(t))− Y (s, t)|
}
,

(3.14)

where the infimum is taken over all continuous one-to-one mappings λi : [0, 1] → [0, 1]

fixing 0. Then as in the one-dimensional case, D([0, 1]2) with metric (3.14) is separable

and although it is not complete, there is an equivalent metric such that D([0, 1]2) becomes

complete, see Section 5 of [Str72] or [BW71], Section 3. As in the classical case layed out

in Section 12 of [Bil99], convergence with respect to the metric (3.14) with a continuous

limit actually implies convergence in supremum norm.

It was shown in [DMR12], that for suitable index sets, W̃(n) converges to
√
2/βB,

where B is a bivariate tied-down Brownian bridge, a centered Gaussian process on [0, 1]2

with continuous paths and covariance

E[B(s, t)B(s′, t′)] = (s ∧ s′ − ss′)(t ∧ t′ − tt′). (3.15)

Theorem 3.2 ([DMR12], Thm 1.1) As n → ∞, the process (W̃(n)
s,t )s,t∈[0,1] converges

in distribution under PH to
√

2/βB, with B a bivariate tied down Brownian bridge.

Now consider h as in (3.13), then

W(n)
t (h) =

n∑

k=1

⌊tn⌋∑

i=1

(
|Ui,k|2 − 1

n

)
h(λk)

=

M∑

m=1

γm

n∑

k=1

n∑

i=1

(
|Ui,k|2 − 1

n

)
1(am,bm](λk)1{1,...,⌊tn⌋}(i)

=
M∑

m=1

γmW̃(n)
t,Am

, (3.16)

with Am = {k | λk ∈ (am, bm]}. For a ∈ R, let

F (n)(s) = 1
n
|{λ(n)

k : λ
(n)
k ≤ a}| (3.17)

be the normalized number of eigenvalues ≤ s, then we claim that

W(n)(h)
PH= W̃(n)(h) :=

M∑

m=1

γm
(
W̃(n)

·,F (n)(bm)
− W̃(n)

·,F (n)(am)

)
, (3.18)
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where
PH= denotes equality in distribution under PH . To see this, let π by a permutation

of {1, . . . , n} such that λπ(1) ≤ · · · ≤ λπ(n). If Π is the permutation matrix with entries

Πi,j = 1π(i)=j , then Π is orthogonal. By the invariance of the Haar measure, we have

U
PH= UΠ, which implies that

W(n)
t (h)

PH=
n∑

j=1

⌊tn⌋∑

i=1

(
|(UΠ)i,j |2 − 1

n

)
h(λj)

=

n∑

j=1

⌊tn⌋∑

i=1

(
|Ui,π−1(j)|2 − 1

n

)
h(λj)

=
n∑

j=1

⌊tn⌋∑

i=1

(
|Ui,j|2 − 1

n

)
h(λπ(j))

=

M∑

m=1

γm

n∑

j=1

⌊tn⌋∑

i=1

(
|Ui,j|2 − 1

n

)
1{am<λπ(j)≤bm}, (3.19)

and the last line equals the right hand side of (3.18). The equality in distribution in (3.19)

holds also when both sides are viewed as a function of t, which implies (3.18). We are

now almost in the situation to apply Theorem 3.2.

3.2.2 A subordination argument

Assumption (A2) implies the PΛ-almost sure convergence of F (n)(s) defined in (3.17) to

F (s) = ν((−∞, s]) for all s ∈ S = {a1, b1, . . . , aM , bM}. Together with Theorem 3.2 this

will yield the convergence of W̃(n) at random time points given by F (n), and we show in

this section the convergence

(W(n)
t (h))t∈[0,1]

d−−−→
n→∞

(
Wt(h)

)
t∈[0,1]

:=

(
M∑

m=1

γm

√
2
β

(
Bt,F (bm) − Bt,F (am)

)
)

t∈[0,1]

(3.20)

PΛ-almost surely in distribution under PH . Recall that by (3.18) we have W(n)
t (h)

PH=

W̃(n)
t (h). We defined all unitary U (n), n ≥ 1, and therefore also all W̃(n), n ≥ 1 on a

common probability space. By the Skorokhod representation theorem, there exists a

modification of this space, such that W̃(n) →
√
2/βB almost surely, with respect to a

measure we again denote by PH . The product structure implied by assumption (A1)

allows us to extend this to a product space with law PH ⊗ PΛ such that

(
(W̃(n)

s,t )s,t∈[0,1], (F
(n)(s))s∈S

)
−−−→
n→∞

((√
2
β
Bs,t

)
s,t∈[0,1]

, (F (s))s∈S

)
(3.21)
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PH ⊗ PΛ-almost surely in D([0, 1]2)× R
2M . By (3.18), we need to consider

sup
t∈[0,1]

∣∣W̃(n)
t (h)−Wt(h)

∣∣

= sup
t∈[0,1]

∣∣∣∣∣

M∑

m=1

γm
(
W̃(n)

t,F (n)(bm)
− W̃(n)

t,F (n)(am)

)
−

M∑

m=1

γm

√
2
β

(
Bt,F (bm) − Bt,F (am)

)
∣∣∣∣∣

≤
M∑

m=1

|γm|
(

sup
t∈[0,1]

∣∣∣W̃(n)

t,F (n)(bm)
−
√

2
β
Bt,F (bm)

∣∣∣+ sup
t∈[0,1]

∣∣∣W̃(n)

t,F (n)(am)
−
√

2
β
Bt,F (am)

∣∣∣
)
.

(3.22)

An individual supremum in (3.22) can then be bounded as

sup
t∈[0,1]

∣∣∣W̃(n)

t,F (n)(s)
−
√

2
β
Bt,F (s)

∣∣∣

≤ sup
t∈[0,1]

∣∣∣W̃(n)

t,F (n)(s)
−
√

2
β
Bt,F (n)(s)

∣∣∣+
√

2
β
sup
t∈[0,1]

∣∣Bt,F (n)(s) − Bt,F (s)

∣∣ (3.23)

with s ∈ S. Since B is uniformly continuous, the convergence of Theorem 3.2 holds

with respect to the supremum norm on D([0, 1]2), which implies that the first term in

(3.23) vanishes as n → ∞. Since F (n)(s) → F (s) for s ∈ S and using again the uniform

continuity of B, the second term vanishes as well. By the bound in (3.22) the convergence

W̃(n)(h) → W(h) follows PH ⊗ PΛ-almost surely in D([0, 1]). The product structure of

the extended probability space implies then that for any bounded continuous G we get

EH

[
G(W(n)(h))

]
= EH

[
G(W̃(n)(h))

]
−−−→
n→∞

E
[
G(W(h))

]
(3.24)

PΛ-almost surely, that is, (3.20) holds.

Since B is a centered Gaussian process with continuous paths, the same holds for

W(h). To calculate the covariance we first note that according to (3.15),

Cov
(
γm

√
2
β
(Bs,F (bm) − Bs,F (am)), γℓ

√
2
β
(Bt,F (bℓ) − Bt,F (aℓ))

)

= γmγℓ
2
β
(s ∧ t− st)

[
F (bm) ∧ F (bℓ)− F (bm)F (bℓ)− (F (bm) ∧ F (aℓ)− F (bm)F (aℓ))

− (F (am) ∧ F (bℓ)− F (am)F (bℓ)) + F (am) ∧ F (aℓ)− F (am)F (aℓ)
]
.

(3.25)

For m 6= ℓ the minima in (3.25) all cancel and this reduces to

γmγℓ
2
β
(s ∧ t− st)

[
− (F (bm)− F (am))(F (bℓ)− F (aℓ))

]

= −(s ∧ t− st) 2
β

∫
γm1(am,bm]dν ·

∫
γℓ1(aℓ,bℓ]dν,

14



while for m = ℓ we get

γ2
m

2
β
(s ∧ t− st)

[
(F (bm)− F (am))− (F (bm)− F (am))

2
]

= (s ∧ t− st) 2
β

[∫
γ2
m1(am,bm]dν −

(∫
γm1(am,bm]dν

)2
]
.

Summing over m, ℓ, this yields for the covariance

Cov(Ws(h),Wt(h)) = (s ∧ t− st) 2
β

[∫
h2dν −

(∫
hdν

)2
]
. (3.26)

That is, W(h) = σ1(h)B, with B a standard Brownian bridge. It remains to replace the

elementary function h as in (3.13) by an arbitrary f .

3.2.3 Extension to general f

Let f ∈ L2(ν), G be a bounded uniformly continuous functional from D([0, 1]) to R, and

ε > 0. Denoting now by d the Skorokhod J1-metric on D([0, 1]), let δ < 1 be so small

that d(X, Y ) ≤ δ implies |G(X) − G(Y )| ≤ ε. In order to extend the convergence of

W(n)(h) with h as in the previous sections replaced by f , we need an a-priori estimate on

the distance of the processes W(n)(h) and W(n)(f). The proof is postponed to the end of

this section.

Lemma 3.3 There exists a constant c > 0, such that for η > 0 and g : R → R measurable,

lim sup
n→∞

PH

(
sup
t∈[0,1]

|W(n)
t (g)| > η

)
≤ lim sup

n→∞

c

η2
(µ̂(n)(g2)− µ̂(n)(g)2),

PΛ-almost surely.

Note that for g satisfying (A2), the upper bound in Lemma 3.3 is equal to cσ2
0(g)/η

2.

We may approximate f by a piecewise constant function h = hε as in (3.13), such that

||f − h||L2(ν) ≤ δ2ε. We want to apply Lemma 3.3 with g = f − h, however in order to

control the upper bound we need to control µ̂(n)(fh). For this, we write f = f+−f− with

f± ≥ 0, and assume the positive and negative part f+ and f− is approximated by h+ and

h− respectively, with h± ≥ 0 and such that h± ≤ f±. Then we can estimate

µ(n)(fh) = µ(n)(f+h+) + µ(n)(f−h−) ≥ µ(n)(h2
+) + µ(n)(h2

−) = µ(n)(h2), (3.27)

such that

µ(n)((f − h)2) ≤ µ(n)(f 2 − h2). (3.28)
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By assumption (A2), µ(n)(f 2) → ν(f 2) PΛ almost surely and the elementary form of h as

in (3.13) implies µ(n)(h2) → ν(h2) as well. This implies that (3.28) converges PΛ almost

surely to ν(f 2 − h2) ≤ 2||f − h||L2(ν)||f ||L2(ν). We have PΛ almost surely

EH [|G(W(n)(f))−G(W(n)(hε))|] ≤ ε+ 2||G||∞PH

(
d(W(n)(f),W(n)(hε)) > δ

)

≤ ε+ 2||G||∞PH

(
||W(n)(f)−W(n)(hε)||∞ > δ

)
,

(3.29)

so that we obtain from Lemma 3.3 with g = f − h and (3.28)

lim sup
n→∞

∣∣EH [G(W(n)(f))]− E[G(W(hε))]
∣∣ ≤ ε+ 2||G||∞δ−2ν(f 2 − h2)

≤ ε+ 4||G||∞δ−2||f − h||L2(ν)||f ||L2(ν)

≤ ε+ 4ε||G||∞||f ||L2(ν). (3.30)

Furthermore, if we set W(f) = σ1(f)B, then W(hε) and W(f) are Gaussian processes

with covariance (s ∧ t − st)σ2
1(hε) and (s ∧ t − st)σ2

1(f), respectively, and if ε → 0 and

then h = hε → f in L2(ν),

W(hε) = σ1(hε)B −−→
ε→0

σ1(f)B = W(f). (3.31)

The combination of (3.30) and (3.31) shows that we may replace h in (3.24) by any

f ∈ L2(ν), so that W(n)(f) converges to W(f) in distribution under PH , for PΛ-almost

all λ. ✷

Proof of Lemma 3.3: We write

W(n)
t (g) =

n∑

j=1

⌊tn⌋∑

i=1

(
|Ui,j|2 − 1

n

)
g(λj) =

⌊tn⌋∑

i=1

Yi,n

where

Yi,n =
n∑

j=1

(
|Ui,j|2 − 1

n

)
g(λj).

By the invariance of the Haar distribution, the vector of increments (Y1,n, . . . , Yn,n) is ex-

changable under PH , meaning that any permutation of the Yi,n has the same distribution.

Corollary 2 in [Pru98] shows that there exists a universal constant c > 0, such that

PH

(
sup

1≤k≤n

∣∣∣∣∣

k∑

i=1

Yi,n

∣∣∣∣∣ > η

)
≤ cPH



∣∣∣∣∣∣

⌊n/2⌋∑

i=1

Yi,n

∣∣∣∣∣∣
> η/c




and the right hand side can be bounded by c3EH [W(n)
1/2(g)

2]/η2. The calculations in Sec-

tion 4, more precisely taking the lim sup in (4.9), show that this upper bound implies the

statment of Lemma 3.3. ✷
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3.3 Proof of Theorem 2.2

After completing the proof of Theorem 2.3, this proof follows from Lemma 3.1, as in

the proof of Theorem 2.1. Set P1 = PH ,P2 = PΛ, and X(n) = (W(n)
t (f))t∈[0,1], Y

(n) =

(Z(n)
t (f))t∈[0,1]. Then by Theorem 2.3, the convergence (3.11) holds with limit X =

(Wt(f))t∈[0,1] and by assumption (A3), Y (n) converges in distribution under P2 to Y =

(tZ(f))t∈[0,1], with Z(f) ∼ N (0, σ2
1(f)) (recall (2.15)). Then Lemma 3.1 implies the

convergence

(X (n)
t (f))t∈[0,1] =

(
W(n)

t (f) + Z(n)
t (f)

)
t∈[0,1]

d−−−→
n→∞

(
Wt(f) + tZ(f)

)
t∈[0,1]

(3.32)

under P, with Wt(f) and Z(f) independent. This is the convergence claimed in Theorem

2.2. ✷

4 Calculation of the covariance

In this section we prove that in the setting of Theorem 2.3 for s, t ∈ [0, 1],

lim
n→∞

CovH
(
Xs(f),Xt(f)

)
= (s ∧ t− st)σ2

0(f) (4.1)

PΛ-almost surely, where CovH denotes the covariance with respect to PH . This requires to

compute some mixed moments of entries of the eigenvector matrix U (n), where for the sake

of a lighter notation, we drop the superscript. We recall that if U = (Ui,j)i,j is Haar dis-

tributed on the unitary (β = 2) or the orthogonal (β = 1) group, (|Ui,1|2, . . . , |Ui,n|2)
is Dirn(β

′) distributed. Each |Ui,j|2 follows then a beta distribution with parameter

(β ′, β ′(n− 1)) and therefore

EH [|Ui,j|2] =
1

n
, EH [|Ui,j|4] =

1 + β ′

n(β ′n+ 1)
. (4.2)

Moreover, if j 6= k, then (Ui,j , Ui,k) is Dirichlet distributed with parameter (β ′, β ′, β ′(n−
2)), which implies

EH [|Ui,j|2|Ui,k|2] =
β ′

n(β ′n+ 1)
. (4.3)

If additionally m 6= i, then using

EH [|Ui,j|2] =
n∑

m′=1

EH [|Ui,j|2|Um′,k|2] = EH [|Ui,j|2|Ui,k|2] + (n− 1)EH [|Ui,j|2|Um,k|2], (4.4)
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we see that by (4.2) and (4.3)

EH [|Ui,j|2|Um,k|2] =
(n− 1)β ′ + 1

n(n− 1)(β ′n + 1)
. (4.5)

These identities can also be obtained from [CS06] or for β = 2 from Proposition 4.2.3 of

[HP06]. Now let s, t ∈ [0, 1] and set sn = ⌊sn⌋, tn = ⌊tn⌋. If s ∈ {0, 1} (or t ∈ {0, 1}),
then Xs(f) = 0 (or Xt(f) = 0) and (4.1) is trivially true. So assume that s, t ∈ (0, 1), and

n is so large that sn, tn ≥ 1. Without loss of generality , let s ≤ r. Then we get by (2.2)

for the mixed moment with respect to PH

EH

[
X(n)

s (f)X
(n)
t (f)

]
= EH

[(
n∑

i=1

sn∑

l=1

|Ul,i|2f(λi)

)(
n∑

j=1

tn∑

m=1

|Um,j |2f(λj)

)]

=
sn∑

l=1

tn∑

m=1

n∑

i,j=1

EH

[
|Ul,i|2|Um,j |2

]
f(λi)f(λj).

This sum can be decomposed according to whether l = m or not as

sn∑

l,m=1,l 6=m

n∑

i,j=1

EH

[
|Ul,i|2|Um,j|2

]
f(λi)f(λj) (4.6)

+

sn∑

l=1

n∑

i,j=1

EH

[
|Ul,i|2|Ul,j|2

]
f(λi)f(λj) (4.7)

+

sn∑

l=1

tn∑

m=sn+1

n∑

i,j=1

EH

[
|Ul,i|2|Um,j |2

]
f(λi)f(λj). (4.8)

The inner sum in (4.6) and (4.8) satisfies l 6= m and is equal to

n∑

i=1

EH [|Ul,i|2|U2
m,i|]f(λi)

2 +
∑

i 6=j

EH [|Ul,i|2|Um,j |2]f(λi)f(λj)

=
β ′

n(β ′n + 1)

n∑

i=1

f(λi)
2 +

(n− 1)β ′ + 1

n(n− 1)(β ′n + 1)

∑

i 6=j

f(λi)f(λj)

=
β ′

n(β ′n + 1)
X

(n)
1 (f 2) +

(n− 1)β ′ + 1

n(n− 1)(β ′n+ 1)
(X

(n)
1 (f)2 −X

(n)
1 (f 2))

=
(n− 1)β ′ + 1

n(n− 1)(β ′n+ 1)
X

(n)
1 (f)2 − 1

n(n− 1)(β ′n+ 1)
X

(n)
1 (f 2).
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And for the inner sum in (4.7) we get

n∑

i=1

EH [|Ul,i|4]f(λi)
2 +

∑

i 6=j

EH [|Ul,i|2|Ul,j|2]f(λi)f(λj)

=
1 + β ′

n(β ′n + 1)

n∑

i=1

f(λi)
2 +

β ′

n(β ′n+ 1)

∑

i 6=j

f(λi)f(λj)

=
β ′

n(β ′n + 1)
X

(n)
1 (f)2 +

1

n(β ′n+ 1)
X

(n)
1 (f 2).

So summing over l, m becomes not very difficult and we obtain

EH

[
X(n)

s (f)X
(n)
t (f)

]

= (sn(sn − 1) + sn(tn − sn))

(
(n− 1)β ′ + 1

n(n− 1)(β ′n + 1)
X

(n)
1 (f)2 − 1

n(n− 1)(β ′n + 1)
X

(n)
1 (f 2)

)

+ sn

(
β ′

n(β ′n+ 1)
X

(n)
1 (f)2 +

1

n(β ′n+ 1)
X

(n)
1 (f 2)

)
.

From this we have to substract the product of expectation, which we expand as

EH

[
X(n)

s (f)
]
EH

[
X

(n)
t (f)

]
=

sntn
n2

X
(n)
1 (f)2 =

sn(tn − 1)

n2
X

(n)
1 (f)2 +

sn
n2

X
(n)
1 (f)2.

For the covariance we can then combine conveniently:

CovH(X
(n)
s (f), X

(n)
t (f))

= sn(tn − 1)

((
(n− 1)β ′ + 1

n(n− 1)(β ′n+ 1)
− 1

n2

)
X

(n)
1 (f)2 − 1

n(n− 1)(β ′n+ 1)
X

(n)
1 (f 2)

)

+ sn

((
β ′

n(β ′n + 1)
− 1

n2

)
X

(n)
1 (f)2 +

1

n(β ′n+ 1)
X

(n)
1 (f 2)

)

=
sn(tn − 1)

n(n− 1)

(
1

n(β ′n+ 1)
X

(n)
1 (f)2 − 1

β ′n + 1
X

(n)
1 (f 2)

)

+
sn
n

( −1

n(β ′n+ 1)
X

(n)
1 (f)2 +

1

β ′n+ 1
X

(n)
1 (f 2)

)
. (4.9)

Now PΛ-almost surely 1
n
X

(n)
1 (f) → ν(f) and 1

n
X

(n)
1 (f 2) → ν(f 2) by (A2), such that as

n → ∞, (4.9) converges to

st(β ′)−1(ν(f)2 − ν(f 2)) + s(β ′)−1(ν(f 2)− ν(f)2) = (s ∧ t− st)(β ′)−1(ν(f 2)− ν(f)2),

which is precisely the right hand side of (4.1).
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