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Abstract
In a tidal channel with adjacent tidal flats, along–channel momentum is dissipated on the flats during rising tides. This leads
to a sink of along–channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces
the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in
tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are
at least of the same order as the channel width, and amplitudes and gradients of along–channel velocity are large. The M2

amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The
M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a
term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep–Vlie double–inlet system
of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum
sink, lead to a decrease of approximately 2% in M2 amplitudes and an increase of approximately 25% in M4 amplitudes. As
a result, the net import of coarse sediment is increased by approximately 35%, while the transport of fine sediment is hardly
influenced by the momentum sink. For the Marsdiep–Vlie system, the M2 sea surface amplitude obtained from the idealised
model is similar to that computed with a realistic three–dimensional numerical model whilst the comparison with regard to
M4 improves if momentum sink is accounted for.
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1 Introduction

In shallow coastal seas, such as the Wadden Sea in Northern
Europe, the tidal motion is highly nonlinear, as is evident
from the presence of residual and higher harmonics in
the primary tide (Buijsman and Ridderinkhof 2007). Well-
known sources of these nonlinear tides are the advection
of momentum, quadratic bottom stress, depth dependent
friction, divergence of excess mass (i.e. mass stored between
mean sea level and actual sea surface) and the hypsometry
of the embayment (e.g. Parker 1991; Friedrichs and Aubrey
1994, and references therein). As a result, the sinusoidal
shape of the curves of the sea surface height and current
velocity at a fixed location is distorted. This tidal asymmetry
leads to a net transport of fine and coarse sediment (Groen
1967; Aubrey 1986; Boon and Byrne 1981; van de Kreeke
and Robaczewska 1993).
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In this study, the focus is on nonlinear tides by
hypsometry and in particular by dissipation of momentum
on tidal flats. When the water level rises, water flows from
the channel onto the flats, carrying with it longitudinal
momentum. The mass is temporarily stored on the flats,
until it flows back into the channel during the falling tide.
The momentum, on the other hand, dissipates rapidly due to
high friction on the tidal flats. That is, the flats act like mass
storages and momentum sinks (Dronkers and Schönfeld
1959; Dronkers 1964).

In contrast to mass storage, which has been extensively
studied (Speer and Aubrey 1985; Friedrichs and Aubrey
1994; Ridderinkhof et al. 2014), the role of the momentum
sink on tidal dynamics is less well understood. Numerical
model studies (e.g. Brown and Davies 2010) show that tidal
asymmetry strongly depends on the distribution of channels
and flats, thereby suggesting the importance of processes
such as the momentum sink. de Swart et al. (2011) and
Alebregtse (2015)1 studied numerically the momentum sink
in a semi-enclosed embayment. They demonstrated that the
amount by which the momentum sink deforms tidal curves
depends on the ratio of flat–to–channel area, the shape of
the tidal flats and the distribution of flats along the channel.
However, no details about the underlying processes were
given.

The considerations above motivate further investigation
of the generation of overtides by a momentum sink, which
is conducted here. Similar to Alebregtse (2015), the model
of Speer and Aubrey (1985) is extended with a momentum
sink term. The model of Speer and Aubrey (1985) has
been successfully validated against field data (see also
Friedrichs and Aubrey 1988, 1994). Here, two main new
aspects are introduced. First, the approach is analytic in
nature, and approximate solutions of the cross-sectionally
averaged shallow water equations are explicitly constructed
using perturbation methods that exploit the smallness of the
Froude number. This enables the assessment of the impact
of the momentum sink and quantification of the difference
between solutions that do and do not account for it. Second,
a double inlet system (rather than a semi-enclosed bay) with
an M2 tidal wave entering at both ends is considered. In
particular, this permits investigating what happens in double
inlet systems when the two waves entering at opposite sides
differ in amplitude or phase, as typically occurs in nature.
Examples of such embayments are the Western Wadden
Sea in the Netherlands, with the Marsdiep and Vlie inlets
(e.g. Ridderinkhof 1988, also considered here), the Laguna
de Términos in México (David and Kjerfve 1998) and the
Santa Marı́a La Reforma in California (Serrano et al. 2013).

This study has two specific aims. The first is to assess
changes in tidal characteristics of sea surface elevation and

1Chapter 4, submitted.

current velocity due to the momentum sink in double inlet
systems with different parameter settings. The parameters
that will be varied are the width of the tidal flats and
the channel width, the drag coefficient, the slope of the
flats, the phase difference between the incoming tidal waves
and the length of the embayment. The second aim is to
understand the mechanisms behind these changes in tidal
characteristics.

The paper is organised as follows. In Section 2, the
model is presented. In Section 3, a perturbation method is
used to find approximate solutions to the cross-sectionally
averaged shallow water equations. The results are presented
in Section 4, followed by a discussion in Section 5. Here,
mechanisms leading to the model results are explained
together with a qualitative comparison with the model
output of a complex numerical model. Section 6 contains
the conclusions.

2Model formulation

2.1 Physical domain and geometry

The tidal embayment considered in this study consists of
a channel of constant width b∗

c with adjacent tidal flats.
The embayment is connected to an open sea on both sides,
has length L∗ and geometry symmetric with respect to the
centerline of the channel (see Fig. 1).

The along–channel coordinate is x∗, the lateral coordi-
nate y∗, the vertical coordinate z∗ and the time coordinate
t∗. The origin is placed in the middle of the embayment
at the height of the undisturbed sea level. The undisturbed
water depth on the flats is d∗

f and in the channel it is h∗
c .

The width of the channel or of the flats henceforth refers to
the width of the wetted part of the channel or flats. The total
width b∗ of the embayment is dependent on the sea surface
elevation ζ ∗, and hence also on t∗ and x∗. The geometry
of the cross section is based on that of Speer and Aubrey
(1985). It is assumed that the lowest part of the flats are
located at the level of low water. The total width reads

b∗ = b∗
max − 2d∗

f

tan ϕ

(
1 − ζ ∗

d∗
f

)
, (1)

where, b∗
max is the width of the embayment including the dry

parts of the flats and ϕ the angle of inclination of the flats
as in Fig. 1. It follows from the figure that partly horizontal
flats with a kink are possible if

ϕ ≥ tan−1

(
4d∗

f

b∗
max − b∗

c

)
.
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This motivates the introduction of a parameter q ≥ 1
defined as

q = tan(ϕ)
b∗

max − b∗
c

4d∗
f

.

The total width of the embayment now reads

b∗ = b∗
max − b∗

max − b∗
c

2q

(
1 − ζ ∗

d∗
f

)
. (2)

The parameter q ≥ 1 determines flat steepness; q = 1
means linear flats and larger q values imply steeper flats (in
Fig. 1, q = 5).

2.2 Governing equations

The hydrodynamics in the embayment are modelled by the
cross-sectionally averaged shallow water equations. They

(a)

(b)

Fig. 1 Geometry of the open embayment (a sideview at any
longitudinal position, b topview). Here, b∗

max is the width of the
embayment including the dry parts of the flats, b∗(t∗) the width of
the wetted part of the embayment and b∗

c the width of the channel.
Furthermore, h∗ is the undisturbed depth (being h∗

c in the channel and
d∗
f on the flats), ϕ the angle of inclination of the flats, L∗ the length

of the embayment and ζ ∗ the sea surface elevation. The origin is at the
intersection of the dotted lines. In (a), the x∗ axis points into the paper.
The blue area in (b) is the wetted part

read

b∗

b∗
c

∂ζ ∗

∂t∗
+ ∂(ζ ∗ + h∗

c )u
∗

∂x∗ = 0, (3)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + g∗ ∂ζ ∗

∂x∗ + r∗u∗

ζ ∗ + h∗
c

= M∗, (4)

with

M∗ = b∗ − b∗
c

b∗
c

u∗

ζ ∗ + h∗
c

∂ζ ∗

∂t∗
H

(
−∂ζ ∗

∂t∗

)
. (5)

Here, u∗ (ms−1) is the current velocity averaged over the
cross-section of the channel (excluding the flats) in the
along–channel (x∗) direction, ζ ∗ (m) is the sea surface
elevation, g∗ (m s−2) is the gravitational acceleration,
r∗ (ms−1) is a friction parameter and H is the step or
Heaviside function, which is one (zero) when its argument is
positive (negative). Further, M∗ is the momentum sink term
which is derived and put into context of previous studies in
Appendix A.

In Eqs. 3–5, it is assumed that the channel width b∗
c is

constant, the water in the channel has a constant density,
there is no effect of wind or waves and the stresses that result
from averaging nonlinear momentum fluxes over the cross
section can be ignored. On the tidal flats, the velocity in
the along–channel direction is assumed to be zero. Instead
of a quadratic bottom stress τ ∗

b = ρ∗cd |u∗|u∗, with cd a
drag coefficient and ρ∗ the water density, a linear stress
τ ∗
b = ρ∗r∗u∗ is used to allow for analytical approximations.

The friction parameter r∗ is determined by demanding that
the energy dissipated in one tidal cycle (averaged over the
spatial domain) is to be the same in both formulations (e.g.
Lorentz 1922; Terra et al. 2005). Thus,∫ L∗/2

−L∗/2
〈cd |u∗|u∗2〉 dx∗ =

∫ L∗/2

−L∗/2
〈r∗u∗2〉 dx∗, (6)

in which 〈·〉 denotes the average over one tidal cycle. As, a
priori, u∗ is not known, r∗ is determined iteratively.

The system of Eqs. 1–5 will be considered in the
weakly nonlinear regime, i.e. magnitudes of nonlinear
terms are small compared to those of linear terms. In that
case, as will be shown in Section 3, solutions consist of
waves that propagate in both the positive and negative
x–direction. The (Riemann) boundary conditions are that
at both open sides of the embayment, a prescribed T ∗–
periodic tidal wave (where T ∗ = 2π/σ ∗, with σ ∗ the M2

tidal frequency) propagates into the embayment and that
waves may freely exit the domain. This choice implies that
boundary conditions are independent of the dynamics inside
the domain.

Furthermore, it is imposed that the average volume of
water over one tidal period is constant and that there is no
net transport of water through the embayment. The former
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poses a condition for the residual sea surface elevation and
the latter a condition for the residual current velocity.

3Model analysis

Equations 3–5 are nonlinear and cannot be solved analyti-
cally, necessitating the derivation of approximate solutions,
either numerical or perturbative. The former have the advan-
tage that they remain valid over extended regions in param-
eter space, as they do not require nonlinear terms to be
much smaller than the linear ones. The benefit of perturba-
tive methods is that they result in closed form solutions that
yield information about the effect of different physical forc-
ing terms on solutions. As mentioned in Section 1, here a
perturbation analysis is made. For this, dimensionless equa-
tions containing a small parameter are needed in which all
variables are of order 1. Let

u = u∗

U
, ζ = ζ ∗

Z
, x = x∗

L
and t = t∗

T
(7)

be dimensionless variables, where

U = Z

√
g∗
h∗

c

, Z = d∗
f , L =

√
g∗h∗

c

σ ∗ and T = 1

σ ∗ . (8)

The scales U and Z are typical values for the current velocity
and the sea surface elevation amplitude, respectively. The
scales L and T are typical values for a frictionless tidal
wave length and period of the principal constituent (both
divided by 2π ), quantifying the length and time scale of the
dominant dynamics. The scaled versions of Eqs. 3–4 are

(1 + β − βαε(1 − ζ ))
∂ζ

∂t
+ ∂

∂x
[(1 + εζ )u] = 0, (9)

∂u

∂t
+ εu

∂u

∂x
+ ∂ζ

∂x
+ ru

1 + εζ

−εβ
u

1 + εζ

∂ζ

∂t
H

(
−∂ζ

∂t

)
= 0. (10)

The Froude number is denoted by ε:

ε = Z

h∗
c

= U√
g∗h∗

c

. (11)

In many tidal embayments (e.g., the Wadden Sea), ε is
around 10−1 and here assumed to be a small parameter.
The dimensionless length of the channel is L = L∗/L.
Furthermore,

β = b∗
max − b∗

c

b∗
c

, αε = 1

2q
, and r = r∗T

h∗
c

. (12)

The parameter β is the ratio of the tidal flat width to the main
channel width, the parameter α controls the steepness of the
sides of the flats and r is the dimensionless friction parameter.
It is assumed that the area of the flats is of the same order as
the channel area, that the slope of the tidal flats is steep and

that friction is moderate. The consequence of these choices
are that the magnitude of the momentum sink and mass
storage are comparable with that of other nonlinear terms
in the equations of motion, such as advection. Note that
Friedrichs and Aubrey (1994) and Speer and Aubrey (1985)
assume β to be small. However, inlet systems like those
in the Wadden Sea are characterised by β ≈ 2 (Dronkers
2005). Thus, it is assumed that

β, α, r = O(1),

where the symbol O(1) denotes that they are of order 1.
Moreover, O(ε) parts of the friction parameter r and the
O(ε2) parts of the last term in Eq. 10 are neglected. All
dimensionless variables are assumed to be of order 1, so the
magnitude of the terms in the dimensionless equations is
determined by the parameters they involve.

The Lorenz linearisation condition (6) in dimensionless
variables reads

Uh∗
ccd

T

∫ L/2

−L/2
〈|u|u2〉 dx = r

∫ L/2

−L/2
〈u2〉 dx, (13)

with the additional assumption that

Uh∗
ccd

T
= O(1).

Substituting the perturbation series u = u0 + εu1 + · · ·
and ζ = ζ0 + εζ1 +· · · in Eqs. 9–10 and collecting terms of
order 1, one obtains the so-called O(1) problem. Likewise,
collecting terms of order ε yields the O(ε) problem. The
O(1) and O(ε) problem will be treated separately in the
following sections.

3.1 The O(1) problem

The O(1) problem is linear and reads

(1 + β)
∂ζ0

∂t
+ ∂u0

∂x
= 0, (14)

∂u0

∂t
+ ∂ζ0

∂x
+ ru0 = 0, (15)

hence, it admits nontransient solutions of the form

(ζ0(x, t), u0(x, t)) = Re
{
(ζ̂0(x), û0(x))e−it

}
, (16)

with ζ̂0(x) and û0(x) complex amplitudes and Re {·} denoting
the real part of a complex number. Equation 16 describes the
primary tidal wave in the system. By eliminating u0 from
Eqs. 14–15 and substituting ζ0 from Eq. 16, an ordinary
differential equation (ODE) for ζ̂0 is found:

∂2ζ̂0

∂x2
+ k2ζ̂0 = 0, (17)

with complex wave number k satisfying k2 = (1 + β)(1 +
ir). This has the general solution

ζ̂0(x) = Aeikx + Be−ikx, (18)
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where A and B are complex–valued integration constants.
When Eq. 18 is substituted into Eq. 16, and choosing the
root with positive real part (i.e, Re {k} > 0), it follows that
the first term on the right hand side of Eq. 18 describes
the spatial structure of a right–propagating wave, while the
second term describes the structure of a left–propagating
wave. Equations 14–15 allow for solutions that consist of
waves propagating in opposite directions. Following the
considerations in Section 2, conditions at both the left
(x = −L/2) and right (x = L/2) boundary are imposed
on the waves that enter the domain. At the left boundary,
the incoming wave progressing to the right has a sea
surface elevation amplitude zl . At the right boundary a left–
propagating tidal wave enters with a sea surface elevation
amplitude of zr . The phase difference between the incoming
tidal waves at the boundary is θ . Hence, the sea surface
variations corresponding to right–propagating wave at x =
−L/2 and the left–propagating wave at x = L/2 are,
respectively,

zl cos(Re {k} x − t) and zr cos(Re {k} x + t − θ).

Thus, high water related to the incoming wave at the left
boundary occurs at time t = −Re {k} L/2 and at the right
boundary it occurs a time θ later. These boundary conditions
are met by choosing

A = zle
−Im{k} L

2 and B = zre
−Im{k} L

2 +iθ , (19)

with Im {·} denoting the imaginary part of a complex
number. Note that, when θ = 0 and zl = zr , the two
incoming waves have equal phase and amplitude. In that
symmetric case, the velocity u0 vanishes in the middle of the
channel (at x = 0) and water motion in half the embayment
(from x = −L/2 to x = 0) behaves as if in a semi-enclosed
embayment with the left–propagating wave representing the
wave reflected at the closed boundary. Once the sea surface
elevation ζ0 is known, the along–channel current velocity u0

follows from either Eq. 14 or Eq. 15 using Eq. 16,

û0(x) = ik

i − r

(
Aeikx − Be−ikx

)
. (20)

As mentioned in Section 2.2, the friction parameter r is
determined from the Lorentz linearisation condition (13).
First, u0 is calculated with Eq. 20–16, using an initial guess
for r . Next, r is updated to satisfy Eq. 13, with u = u0 and
the integrals are calculated numerically. A new value for u0

is calculated using this updated value for r , and the process
is iterated until the relative change in r between successive
iterations is less than 0.0001%. This r–value is also used in
the O(ε) problem below.

3.2 The O(ε) problem

The O(ε) problem reads

(1 + β)
∂ζ1

∂t
+ ∂u1

∂x
= − ∂

∂x
(u0ζ0)︸ ︷︷ ︸
I

+βα(1 − ζ0)
∂ζ0

∂t︸ ︷︷ ︸
II

, (21)

∂u1

∂t
+ ∂ζ1

∂x
+ ru1

= −u0
∂u0

∂x︸ ︷︷ ︸
III

+ru0ζ0︸ ︷︷ ︸
IV

+βu0
∂ζ0

∂t
H

(
−∂ζ0

∂t

)
︸ ︷︷ ︸

V

. (22)

These equations have the same form as those of the O(1)

problem, but with the known O(1) solutions forcing the
unknowns u1 and ζ1 through the inhomogeneous terms on
the right hand side of Eqs. 21–22. Every term in the inho-
mogeneity originates from nonlinear terms in Eqs. 9–10.
In Table 1, the physical source of every nonlinear term is
presented.

Since the inhomogeneities I, II, III and IV in the O(ε)

problem consist of products of the O(1) solutions, which
themselves are M2 signals, they are composed of M0 and
M4 harmonics. Term V is different from terms I–IV in the
sense that it is not quadratic. Because of the presence of
the discontinuous step function H , that term consists of an
infinite number of harmonics,

βu0
∂ζ0

∂t
H

(
−∂ζ0

∂t

)
=

∞∑
m=−∞

pme−imt , (23)

where the complex coefficients pm are given in Appendix B.
Note that pm depends in a nonlinear way on β through ζ0

and u0. The nontransient solution of the O(ε) problem has
the form

(ζ1(x, t), u1(x, t)) = (〈ζ1〉(x), 〈u1〉(x))

+
∞∑

m=1

Re
{
(ζ̂1,m(x), û1,m(x))e−imt

}
.

(24)

In the remainder of this section, 〈ζ1〉, 〈u1〉, ζ̂1,m and û1,m

are calculated.

Table 1 Source of the forcing terms

Term Source

I Divergence of excess mass

II Mass storage

III Advection of momentum

IV Depth dependent bottom friction

V Momentum sink
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The residual current velocity 〈u1〉 is determined by
averaging Eq. 21 over a tidal cycle using the condition that
there is no net transport of water, 〈u(1 + εζ )〉 = 0. So,
the residual current only compensates for Stokes transport
created by the tidal wave. This yields

〈u1〉 = −〈u0ζ0〉 = −1

2
|û0||ζ̂0| cos(φû0 − φ

ζ̂0
)︸ ︷︷ ︸

I

, (25)

where |û0| and φû0 are the amplitude and phase of the O(1)

current velocity û0. Likewise, |ζ̂0| and φ
ζ̂0

are the amplitude

and phase of the O(1) sea surface elevation ζ̂0.
The residual sea surface elevation 〈ζ1〉 results from the

tidal average of Eq. 22 and imposing the condition that the
average volume of water over one tidal period remains the
same,

∫ L/2
−L/2〈ζ1〉 dx = 0,

〈ζ1〉 = − 1

L

∫ L/2

−L/2

∫ x

0
E(s) ds dx +

∫ x

0
E(s) ds (26)

with

E(x) = −1

4

∂|û0|2
∂x︸ ︷︷ ︸

III

+|û0||ζ̂0|

⎛
⎜⎜⎝r cos(φû0 − φ

ζ̂0
)︸ ︷︷ ︸

IV

− β

4
sin(φû0 − φ

ζ̂0
)︸ ︷︷ ︸

V

⎞
⎟⎟⎠ . (27)

In Eq. 26, the variable s is used as a dummy variable for
x. It follows from Eq. 27 that advection of momentum (III),
depth dependent bottom friction (IV) and momentum sink
(V) lead to residual sea surface elevation.

In order to obtain solutions for ζ̂1,m, Eq. 24 is substituted
into Eqs. 21–22. Subsequently, u1 is eliminated, which
results in an ODE for every ζ̂1,m,

∂2ζ̂1,m

∂x2
+ (km)2ζ̂1,m = fm(x), (28)

with (km)2 = (1 + β)m(m + ri) and

f1 = 2βαζ̂0︸ ︷︷ ︸
II

+2
∂p1

∂x︸ ︷︷ ︸
V

, (29)

f2 = −i
∂(û0ζ̂0)

∂x︸ ︷︷ ︸
I

−1

4

∂2û2
0

∂x2︸ ︷︷ ︸
III

+r
∂(û0ζ̂0)

∂x︸ ︷︷ ︸
IV

− 2βαζ̂ 2
0︸ ︷︷ ︸

II

+2
∂p2

∂x︸ ︷︷ ︸
V

,

(30)

fm≥3 = 2
∂pm

∂x︸ ︷︷ ︸
V

. (31)

It follows from Eqs. 29–31 that advection of momentum
(III), depth dependent bottom friction (IV) and divergence
of excess mass (I) create an M4 harmonic in the sea
surface elevation. The mass storage on the tidal flats (II)
generates M2 and M4. The momentum sink (V) generates
M2, M4, M6, M10, M14, M18, . . . . The momentum sinks
skips generation of M8, M12, M16, . . . , because pm = 0
if m > 2 and even. Solutions of the ODEs in Eq. 28 are
obtained using variation of parameters,

ζ̂1,m = Cmeikmx + Dme−ikmx

+eikmx

2ikm

∫ x

−L/2
e−ikmsfm(s) ds

+e−ikmx

2ikm

∫ L/2

x

eikmsfm(s) ds,

in which Cm and Dm are complex–valued integration
constants. The boundary conditions for the O(ε) problem
(21)–(22) are similar as those for the O(1) problem. At
x = −L/2, it is imposed that the M2m tidal wave that enters
the domain has sea surface amplitude zl,m. Similarly, at the
right boundary (x = L/2) a left–propagating M2m tidal
wave enters with a given sea surface amplitude zr,m and a
phase shift θm with respect to the incoming wave at the left
boundary. These conditions are met when

Cm = zl,me−Im{km} L
2 and Dm = zr,me−Im{km} L

2 +iθm .

To study the overtides generated inside the domain by
incoming M2 waves, zl,m and zr,m are chosen to be zero,
except when the comparison is made with a complex
numerical model in Section 5.3.

The complex amplitudes û1,m of the O(ε) current
velocity u1 are found by substituting Eq. 24 in Eq. 22. This
yields

û1,2 = 1

2i − r

⎛
⎜⎜⎝1

4

∂û2
0

∂x︸ ︷︷ ︸
III

+∂ζ̂1,2

∂x
− r

2
û0ζ̂0︸ ︷︷ ︸

IV

− 2p2︸ ︷︷ ︸
V

⎞
⎟⎟⎠ , (32)

û1,m �=2 = 1

im − r

⎛
⎝∂ζ̂1,m

∂x
− 2pm︸︷︷︸

V

⎞
⎠ . (33)

It follows from these expressions that advection of
momentum (III), depth dependent bottom friction (IV)
create M4 velocities and the momentum sink (V) generates
M2, M4, M6, M10, . . . velocities.

4 Results

In order to address the two objectives set out in Section 1,
parameter values will be chosen that are representative of
a prototype double inlet system, viz. the Marsdiep–Vlie
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system in the Western Wadden Sea. The embayment is
roughly 60 km long, 15 km wide and the channel has an
averaged depth of 10 m. The primary tide is the semi–
diurnal lunar tide M2 and its first overtide M4 is clearly
present (Buijsman and Ridderinkhof 2007). The total tidal
range is around 1.4 m at the Marsdiep and 1.8 m at the
Vlie and the moment of high water at the Marsdiep differs
by approximately 90 min from that at the Vlie (Royal
Netherlands Navy 2016). The default parameter values used
are listed in Table 2.

4.1 Impact of themomentum sink on tides
in the default setting

In Fig. 2, results are shown of the primary tide M2 and its
first overtide M4 of the sea surface elevation and current
velocity in the regime where all forcings in Eqs. 21–22 are
taken into account and for the case where the momentum
sink is turned off (term V = 0). Panels (a) and (c) of
this figure reveal that including the momentum sink lowers
the M2 amplitude and increases the M4 amplitude of both
the sea surface elevation and the current velocity of the
order of centimetres, respectively, centimetres per second.
For the M2 amplitudes, that change is approximately 2%,
for the M4 amplitudes, approximately 25%. The increase in
absolute value of the residual sea surface elevation due to
the momentum sink is of the order of 0.5 cm, corresponding
to a relative change of 30%. Note that in Fig. 2a, c, the M2

amplitude of both the sea surface elevation and the current
velocity at the left boundary differs from that at the right
boundary, even though the amplitudes of the incoming tidal
waves at the boundaries are equal.

Table 2 Default setting of parameters, representative of the Marsdiep–
Vlie embayment. Sources for these values are Dronkers (2005) and
Royal Netherlands Navy (2016)

Parameter Dimensionless Dimensional

L 2π
7.8 57 km

cd 0.0025

zl, zr 0.7 0.7 m

df 1 1 m

zl,m, zr,m 0 0 m

θ π
4 93 min

θm 0 0 min

hc 10 m

g 10 m s−1

σ 0.00014 s−1

ε = Z
hc

0.1

β = bmax−bc

bc
2

α = 1
2qε

1

Figure 2b, d reveal that the M2 phase of both the
sea surface elevation and the current velocity is hardly
influenced. However, the phase of the M4 component of
the sea surface elevation is lowered by approximately 15◦.
The phase of the M4 harmonic of the velocity is lowered
by approximately 10◦. Figure 2b illustrates that the M2 sea
surface elevation has the character of a propagating wave
near the boundaries, but it turns into a standing wave in the
middle of the channel as the phase becomes constant there.
The M4 component of the sea surface elevation has the
character of a standing wave with a jump in phase around
x∗ = − 6 km. Both the M2 and M4 components of the
current velocity have the character of standing waves with
jumps in phase around x∗ = 15 km.

4.2 Impact of themomentum sink on sediment
transport

Changes in tidal harmonics as described above may lead to a
difference in sediment transport. The net sediment transport
due to the primary tide and its first overtide is calculated as
in de Swart and Zimmerman (2009) (after Groen 1967),

〈S∗〉 = ν∗

4γ ∗ U∗2
M2

U∗
M4

cos(τ )

(
2

1 + a2
+ 1

1 + 4a2

)

−a
ν∗

2γ ∗ U∗2
M2

U∗
M4

sin(τ )

(
1

1 + a2
+ 1

1 + 4a2

)
,

(34)

with ν∗ (s m−1) an erosion parameter and γ ∗ (s−1) a settling
parameter (1/γ ∗ is the timescale in which sediment settles
to the bed), a = σ ∗/γ ∗, τ = arg(εû1,2) − 2 arg(û0 + εû1,1)

the relative phase of the M2 and M4 harmonic, and U∗
M2

=
U|û0+εû1,1| and U∗

M4
= U|εû1,2| the M2 and M4 amplitude

of the current velocity. Coarse sediment is characterised by
a small a ≈ 0.01, while a ≈ 5 is representative for fine
sediment. Figure 3 shows the tidally averaged volumetric
sediment transport per unit mass and width 〈S∗〉, divided
by ν∗/4γ ∗, both for when the momentum sink is included
and when it is not. The purple lines shows the situation
with coarse sediment and the red ones the situation with
fine sediment. The arrows indicate the direction of the
sediment transport. The figure reveals that including the
momentum sink increases the absolute value of the transport
of coarse sediment by approximately 35% and has little
impact on the transport of fine sediment. On the left (right)
side of the channel, the flood current is to the right (left).
Hence, the momentum sink increases transport of coarse
sediment in the flood direction, that is, it leads to an
import of coarse sediment. Furthermore, Fig. 3 shows that
fine sediment is transported through the embayment, from
the right boundary to the left boundary. Coarse sediment
accumulates around x∗ = 5 km and suggests the formation
of a tidal watershed at this location.
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Fig. 2 a, b Amplitude and phase
of the sea surface elevation ζ ∗
versus distance x∗, for different
harmonics M0, M2 and M4 and
for the default parameter setting
(Table 2). The solid line
represents the solution
accounting for all the nonlinear
terms (I–V), including the
momentum sink (term V). The
dashed line represents the
solution with the momentum
sink neglected. The shaded area
marks the difference between
them. c, d As (a) and (b), but for
the current velocity u∗

(a) (b)

(c) (d)

Fig. 3 Tidally averaged sediment transport 〈S∗〉, divided by (ν/4γ ), versus distance x∗. The purple lines shows the transport of coarse sediment,
a = 0.01 and red the one of fine sediment, a = 5. The solid line represents the solution with the momentum sink taken into account and the dashed
line the solution where it is not. The arrows illustrate the direction of the sediment transport and indicate the formation of a shoal at x∗ = 5 km.
Values of the remaining parameters are those in Table 2
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4.3 Sensitivity study

In this section, it is investigated how sensitive the results of
the preceding section are to changes in model parameters.
The difference in amplitude due to the momentum sink is
henceforth denoted by ΔAmpl.

Figure 4 shows ΔAmpl in sea surface elevation for
various harmonics as a function of x∗ and for different
values of flat–to–channel area ratio β, slope parameter α

and drag coefficient cd . Red colours denote an increase and
blue colours a decrease in amplitude. Figure 5 is similar to
Fig. 4, but for the current velocity instead of the sea surface
elevation. The difference in phase due to the momentum
sink is not shown since it remains close to zero for the M2

harmonic and close to 10◦–15◦ for the M4 harmonic when
the parameters β, α and cd are varied. The M0 component
of the current velocity is also left out since Eq. 25 already
shows that �Ampl = 0.

What stands out in Figs. 4–5 is that ΔAmpl in both the sea
surface elevation and current velocity is most sensitive to
changes in flat–to–channel area ratio β, and less to changes
in slope parameter α and drag coefficient cd . Figure 4
reveals that the momentum sink lowers the M2 amplitude
and increases the M4 one for almost all β values considered.
Furthermore, it illustrates that ΔAmpl depends nonlinearly
on β. In particular, the sensitivity of ΔAmpl to β decreases,
as β increases. Figure 5 shows that these conclusions also
hold for the current velocity.

Furthermore, Fig. 4 reveals that, although ΔAmpl in
M0 and M2 are rather insensitive to changes in α, the
response of the M4 harmonic of the sea surface elevation on
changing α values is more interesting. On the right side of
the embayment, for small α, the momentum sink increases
(red colours) the M4 sea surface elevation amplitude while
for larger values of α, the M4 amplitude is decreased (blue
colours). From the bottom panels of Figs. 4–5 it follows that,

Fig. 4 Contours of the
momentum sink–induced
amplitude difference ΔAmpl in
sea surface elevation versus
flat–to–channel area ratio β (top
row), slope parameter α (middle
row), drag coefficient cd (bottom
row) and along–channel variable
x∗ for the M0 (left column), M2
(middle column) and M4 (right
column) harmonics. The bold
values on the vertical axis
represent the default setting,
β = 2, α = 1 and cd = 0.0025.
The remaining parameters have
the same value as in Table 2
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Fig. 5 Contours of the
momentum sink–induced
amplitude difference ΔAmpl in
current velocity versus flat–to–
channel area ratio β (top row),
slope parameter α (middle row),
drag coefficient cd (bottom row)
and along–channel variable x∗
for the M2 (left column) and M4
(right column) harmonics. The
bold values on the vertical axis
represent the default setting,
β = 2, α = 1 and cd = 0.0025.
The remaining parameters have
the same value as in Table 2

for smaller values of the drag coefficient, the momentum
sink lead to a larger difference in sea surface elevation and
current velocity amplitude.

The sensitivity of ΔAmpl in sea surface elevation and
current velocity to the embayment length L∗ and the phase
difference θ between the incoming tidal waves is presented
in Figs. 6 and 7. For increasing θ values, the spatial
pattern of ΔAmpl shifts towards the right, and the M2

and M4 sea surface elevation amplitude and M4 current
velocity amplitude decreases. Particularly noticeable about
the sensitivity of ΔAmpl on L∗ is that the M2 sea surface
elevation amplitude has a local maximum at L∗ ≈ 45 km.

5 Discussion

5.1 Physical interpretation of the results

In this section, some results obtained in the preceding
section are interpreted by analysing the expressions from
Section 3. To that end, it is helpful to rewrite term V in the
O(ε) problem (22) using the continuity Eq. 14. That term
becomes:

βu0
∂ζ0

∂t
H

(
−∂ζ0

∂t

)
= −β

1 + β
u0

∂u0

∂x
H

(
−∂ζ0

∂t

)
. (35)
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(a)

(b)

Fig. 6 a Contours of the momentum sink–induced amplitude differ-
ence ΔAmpl, of the sea surface elevation versus the phase differences
between the incoming tidal waves θ and along–channel variable x∗
for the M0 (left panel), M2 (middle panel) and M4 (right panel)

harmonic. The bold value on the vertical axis represent the default set-
ting θ = π/4. The remaining parameters have the same value as in
Table 2. b As (a), but for the current velocity u∗

This shows that the momentum sink is similar to the
advection term when the tide falls and, in particular, that the
momentum sink term is always smaller than the advection
term, by virtue of β/(1 + β) = (b∗

max − b∗
c )/b

∗
max < 1.

The impact of the momentum sink on the residual sea
surface elevation becomes apparent by this similarity. In
fact, since 〈H (−∂ζ0/∂t)〉 = 1/2, integration over one tidal
period of the O(ε) momentum Eq. 22 using Eq. 35 results in

∂〈ζ1〉
∂x

= −1

4

∂|û0|2
∂x

⎛
⎜⎜⎜⎝ 1︸︷︷︸

III

+ β

2(1 + β)︸ ︷︷ ︸
V

⎞
⎟⎟⎟⎠

+ |û0||ζ̂0|r cos(φû0s − φ
ζ̂0

)︸ ︷︷ ︸
IV

. (36)

It follows from this expression that the momentum sink
increases the absolute value of the gradient of residual sea
surface elevation. This clarifies the results in Fig. 2a.

In Section 4, it was found that the momentum sink
reduces the amplitude of the M2 harmonic for most parameter
values. To understand why, note that term M∗ in Eq. 5
(which arises as term V in the O(ε) momentum equation)
represents a force per mass unit, as it appears on the right
hand side in the dimensional momentum Eq. 4. During the
falling tide, this force acts against the direction of the current
(as shown in Eq. 35, term V and u0 have opposite signs
when ∂ζ0/∂t < 0), whilst during the rising of the tide
it is inactive (term V is zero). In other words, when the
water level drops, stagnant water enters the channel from
the flats, thereby slowing the channel current. During the
rising of the tide, water flows from the channel onto the
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Fig. 7 As Fig. 6, but for different embayment lengths L∗. The bold value on the vertical axis represent the default setting L∗ = 57 km

flats, which leaves the channel current unaffected. All in all,
this implies that term V reduces the current of the principal
tidal component. The continuity Eq. 14 implies, in turn, that
the same holds for the sea surface elevation.

In a system resembling the Marsdiep–Vlie system, the
momentum sink increases the M4 amplitudes (Fig. 2).
This can also be explained using Eq. 35. This equation
expresses that the momentum sink term is the product of
a constant, the advection term and the step function. The
advection term consists of an M0 and M4 harmonic and
the step function consists of an M0 and odd harmonics.
The M4 component of the momentum sink is therefore
the product of the M4 harmonic of the advection term
and the M0 harmonic of the step function. That is, the
momentum sink generates an M4 harmonic with the same
phase as the M4 generated by advection (see Appendix B
for details). Ridderinkhof et al. (2014) showed that
advection leads to stronger and shorter flood currents (flood
dominance). The momentum sink therefore also favours
flood dominance. Since Fig. 3 shows that the transport of

coarse sediment is in the flood direction, it implies that
the current is flood dominant. Thus, the M4 generated by
the momentum sink increases the total M4 current velocity
amplitude.

Figure 4 showed that, when the slopes of the flats
are small (large α), the M4 amplitude of the sea surface
elevation is decreased by the momentum sink while it is
increased for the default value of α. The reason for this
is similar to the above. When α is large, the mass storage
is the dominant mechanism producing the M4 overtide in
the sea surface elevation. Since this term generates M4 that
is out of phase with the M4 generated by the momentum
sink, including the momentum sink reduces the total M4

amplitude of the sea surface elevation.
Figure 2 revealed that the amplitudes of the sea surface

elevation (and the current velocity) are different at the two
boundaries. In these experiments, the amplitudes of the
incoming tidal waves are equal, so even then, the resulting
amplitudes at the boundaries differ. This is already included
in the linear dynamics. The O(1) solution (18)–(20) of the
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linearised problem yields, if zl = zr , that

|ζ̂0(−L/2)|2−|ζ̂0(L/2)|2 = 4z2
l e

−Im{k}L sin(θ) sin(Re {k}L).

(37)

Hence, for equal amplitudes of incoming waves, the
amplitude at the boundaries differ when θ and Re {k(r, β)}
L are not a multiple of π , with the difference depending
on the phase difference θ , the friction parameter r , the
length of the channel L and the flat–to–channel area ratio
β. Furthermore, it follows from Eq. 37 that, in a longer
embayment, the difference in amplitude due to the phase
difference of the incoming tidal waves, becomes smaller.
Physically, this makes sense, since in a longer embayment,
a wave needs more time to propagate from one side to the
other. All this time it is subject to friction. Hence, for large
L, ζ̂0(±L/2) is mainly determined by the incoming wave.
Figure 8 quantifies the difference |ζ̂0(−L/2)| − |ζ̂0(L/2)|
between the O(1) sea surface elevation amplitude at the
left and right boundary for different flat–to–channel area
ratios β and phase differences θ between the incoming tidal
waves. The difference varies between + 10 and − 50 cm
and is largest for small β and large θ values (blue area).

5.2 Model limitations

In this study, the bottom stress is linearised to obtain ana-
lytically tractable (linear) O(1) and O(ε) problems. When
the M2 tide is dominant, nonlinear bottom stress is known
to especially generate odd overtides M6, M10,. . . (Parker

Fig. 8 The difference between the O(1) sea surface elevation
amplitude at the left (x = −L/2) and right (x = L/2) boundary
versus flat–to–channel area ratio β and phase difference θ between the
tidal waves entering the embayment at the left and right boundary. The
remaining parameters have the same value as in Table 2. In particular,
the amplitudes zl and zr of the incoming tidal waves are equal. The red
dot denotes the default value of β and θ

1984). It is possible to include an approximation of the M6

generated by the nonlinear bottom stress. However, as stated
in Friedrichs and Aubrey (1994), one–dimensional numer-
ical models, even with nonlinear bottom stress, simulate
observed M6 variations rather poorly. The authors remark
that this might be due to the invalid assumption of a constant
drag coefficient cd . Therefore, as in Friedrichs and Aubrey
(1994), the focus of this study is on the primary tide and its
first overtide.

In natural tidal embayments, along–channel velocity
u is strongly reduced on the flats, but does not vanish
completely. The choice of vanishing u on the flats is made
to consider the extreme case. As is shown in Section 4, there
are (physically relevant) parameter regimes in which the
momentum sink generates noticeably overtides. It would be
interesting to relax this assumption in a future study.

The trapezoidal cross section is chosen to approximate
concave–up tidal flats which typically occur in nature
(Friedrichs 2011). The approximation is such that the partly
linear flat is tangential to the convex bed at y∗ = ±b∗

max/2
and y∗ = ±b∗

c /2 (see Fig. 9). In this study, steep slopes
and wide flats are chosen to obtain a system in which all
nonlinear terms, and in particular both the momentum sink
and the mass storage, are O(ε), i.e., β = O(1) and q =
O(1/ε). Other choices are possible. For example, Speer and
Aubrey (1985) considered moderate slopes and narrow flats,
i.e. β = O(ε) and q = O(1). In that case, the momentum
sink term is O(ε2) and the mass storage is O(ε).

Furthermore, for simplicity, an embayment with a
constant depth and width is chosen. Also, effects of wind,
waves, density differences and radiation damping (as in
Roos and Schuttelaars 2015) are ignored. These are possible
extensions of the model.

5.3 Comparison with results of a complex numerical
model

In this section, the results of Section 4 are compared
with hydrodynamics simulations of the Dutch Wadden Sea
performed using the General Estuarine Transport Model

Fig. 9 The trapezoidal cross section considered in the idealised model
(solid line), which is an approximation of the concave–up flats (dashed
line)
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(a) (b)

Fig. 10 a Transect across the Marsdiep–Vlie inlet systems located in
the Western Wadden Sea. Colours indicate the bathymetry used in
GETM. b The M2 and M4 amplitudes of the sea surface elevation cal-
culated by GETM on this transect (dotted lines). The solid lines are the

M2 and M4 as in Fig. 2 (including the momentum sink). The dashed-
dotted line represents the M4 harmonic calculated by the idealised
model when an external M4 tidal wave is included in the boundary
conditions. The point x∗ = 0 is located by the red dot in panel (a)

(GETM). GETM is a three–dimensional finite difference
model solving the primitive equations and includes a drying
and flooding algorithm of the tidal flats. The resolution
was 200 m horizontally; there were 30 vertical layers and
a realistic bathymetry and forcing (see Duran-Matute et al.
(2014) for further details and an extensive comparison with
several tidal gauges).

A transect across the Western Wadden Sea is chosen
(see Fig. 10a) across which the tidal channels connect
the Marsdiep and Vlie inlet (similar as in Ridderinkhof
1988). In Fig. 10b, the M2 and M4 amplitude of the sea
surface elevation in April 2009 (a calm month in terms
of wind) along this transect are depicted together with
the ones from the idealised model (as in Fig. 2). The
magnitude and spatial distribution of the M2 harmonic of
the sea surface elevation as calculated by the idealised
model and that of GETM roughly agree. The M4 amplitude
calculated by GETM is approximately four times larger as
that calculated by the idealised model. However, when the
momentum sink is accounted for, the error becomes smaller
(reduction of approximately 7%). A possible explanation
for this difference is that, in the idealised model, there is
no M4 harmonic in the tidal wave entering the domain. In
GETM, the M4 amplitude of the sea surface elevation 14 km
northwest of Texel is approximately 0.082 m. The dashed-
dotted line in Fig. 10b represents the M4 harmonic of the
sea surface elevation when such an M4 tidal wave entering
at the boundaries is imposed. That is, the sea surface
elevation of the right–propagating wave at x = −L/2 and
the left–propagating wave at x = L/2 are chosen to be,
respectively,

zl cos(Re {k} x − t) + εzl,2 cos(Re {k} x − t) and

zr cos(Re {k} x + t − θ) + εzr,2 cos(Re {k} x + t − θm),

with zl = zr = zl,2 = zr,2 = 0.7 and θ2 = 0. In that case,
the difference between the M4 amplitude of the idealised
model and that of GETM decreases at the boundaries, but
increases in the middle of the channel.

Figure 2 suggests that the amplitude of the sea surface
elevation at the Vlie will be higher than at the Marsdiep.
This agrees with data presented in the Royal Netherlands
Navy (2016) and the results of GETM also demonstrate this
behaviour (Fig. 10b). In Section 5.1, it was shown that this
amplitude difference is also possible without a difference in
the external forcing.

6 Conclusions

The first objective of this study was to assess changes in
tidal characteristics of sea surface elevation and current
velocity due to the momentum sink in double inlet systems.
It is found that the momentum sink decreases the M2

amplitude of both the current velocity and the sea surface
elevation and favours flood dominant tides. In a prototype
system, viz. the Marsdiep–Vlie system in the Western
Wadden Sea, it implies a decrease of M2 amplitudes of
approximately 2% and an increase of both M4 amplitudes
by 25%. The absolute value of the residual sea surface
elevation increased by 30% due to the momentum sink,
whereas the residual current velocity was unaffected. The
phases of the M2 tidal harmonic of both sea surface
elevation and current velocity were not influenced by the
momentum sink; only the M4 phases were lowered by
approximately 10◦–15◦. In total, this amounts to an increase
of net import of coarse sediment by approximately 35%.
Accumulation of coarse sediment was found inside the
domain, indicating the formation of a tidal watershed. The
transport of fine sediment was hardly influenced.
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It is found that the changes in tidal characteristics
are most sensitive to the flat–to–channel area ratio. The
change in amplitude depends nonlinearly on that ratio;
the sensitivity is smaller for larger values of the ratio.
Furthermore, it is found that the momentum sinks affects
the tidal harmonics of the sea surface elevation and current
velocity more strongly when the drag coefficient is small
and when the slope of the tidal flats decreases, at the right
side of the channel (0 < x < L/2), the sea surface
elevation M4 amplitude does the same. A phase difference
between the incoming tidal waves leads to spatial shifts of
the curves that show amplitudes and phases versus along–
chanel distance and to a small decrease of the M2 and M4

amplitudes. Finally, it is found that the difference in M2

sea surface elevation amplitude due to the momentum sink
has a local maximum for a length of the embayment at
approximately 45 km.

The second objective was to understand the mechanims
behind the changes in tidal characteristics due to the
momentum sink. The reduction of the M2 harmonic
amplitude of the sea surface elevation and current velocity
by the momentum sink is attributable to that, during the fall
of the tide, still water enters the channel and slows down
the current. The increase in M4 amplitude of the sea surface
elevation and current velocity is explained by noting that the
momentum sink acts as an advective term during the fall of
the tide, but with a smaller amplitude. Since advection is
known to favour flood currents (e.g. Friedrichs and Aubrey
1988; Ridderinkhof et al. 2014), the momentum sink does so
as well and increases the M4 amplitude in a flood dominant
system.

A comparison with the complex numerical model GETM
showed that the two models produce similar M2 amplitudes
of the sea surface elevation. When the momentum sink is
accounted for and an M4 harmonic is added to the incoming
tidal waves, the amplitude of the M4 harmonic of the sea
surface elevation shows a closer resemblance to the one
modelled by GETM.
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Appendix A: Derivation of termM∗ in Eq. 4

In this section, the expression for the momentum sink
term M∗ in Eq. 4 is derived. The derivation only concerns
dimensional equations and the asterisks are omitted to keep
notation as simple as possible. Equations 3–4 follow from
integrating the depth averaged shallow water equations over

the channel width. The latter equations read

∂ζ

∂t
+ ∂(ζ + h)ū

∂x
+ ∂(ζ + h)v̄

∂y
= 0, (38)

∂(ζ +h)ū

∂t
+∂(ζ +h)ūū

∂x
+∂(ζ +h)ūv̄

∂y
= −g(ζ+h)

∂ζ

∂x
− τ̄b

ρ
,

(39)

where, ū (ms−1) is the depth averaged longitudinal velocity,
v̄ (ms−1) the depth averaged lateral velocity and τ̄b (Nm−2)
the bottom stress. Note that ζ does not depend on y.

Integration of Eq. 39 over the constant width of the
channel [−bc/2, bc/2], using the continuity Eq. 3 and
neglecting the stresses (ū−u)(ū−u) arising from averaging
over the width, yields

bc(ζ + hc)
∂u

∂t
+ bcu

∂ζ

∂t︸ ︷︷ ︸
A

− ub
∂ζ

∂t︸ ︷︷ ︸
B

+bc(ζ + hc)u
∂u

∂x

+
∫ bc/2

−bc/2

∂(ζ + h)ūv̄

∂y
dy︸ ︷︷ ︸

C

+bcg(ζ + hc)
∂ζ

∂x
+ bc

τb

ρ
= 0,

(40)

in which u (without the bar) represents the cross-sectionally
averaged velocity. Term A arises from integration of the first
term in Eq. 39 over the width of the channel and term B

from integrating the second term in Eq. 39 and subsequently
substituting the continuity Eq. 3. Term C represents the
lateral exchange of longitudinal momentum between the
channel and the flats, and it equals

C = (ζ + h)v̄ū|y=bc/2 − (ζ + h)v̄ū|y=−bc/2 . (41)

This expression is subsequently rewritten in terms of cross-
sectionally averaged velocities. Integration of the continuity
Eq. 38 over the right and left flats yields the volume
transport (per unit length) through the boundary of the main
channel,

(ζ + h)v̄|y=±bc/2 = ±b − bc

2

∂ζ

∂t
. (42)

During the rising of the water level, v̄ is positive at y = bc/2
and along–channel momentum is transferred towards the
flats. When the water level falls, water moves from the
flats to the main channel. Since the momentum is dissipated
on the flats, no along–channel momentum returns to the
channel. This motivates the choice

ū|y=±bc/2 = uH

(
∂ζ

∂t

)
. (43)

Substitution of Eqs. 42–43 in (41) yields

C = (b − bc)uH

(
∂ζ

∂t

)
∂ζ

∂t
. (44)
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The momentum sink term M as in the main text is now
obtained by combining terms A, B and C, using 1 −
H (x) = H (−x) and dividing by bc(ζ + hc), which yields

M = A + B + C

bc(ζ + hc)
= b − bc

bc

ū

ζ + hc

H

(
−∂ζ

∂t

)
∂ζ

∂t
.

If the momentum sink is neglected ( ū|y=±bc/2 = u), then
A + B = −C and hence, M = 0.

To frame Eqs. 3–5 in context of previous studies, note
that Dronkers (1964) suggested that

M = j1
b − bc

bc

u

ζ + hc

∂ζ

∂t
,

where j1 = 0 when the water level rises and otherwise
depends on the velocities on the flats. Speer and Aubrey
(1985) and Friedrichs and Aubrey (1988) assumed the term
(b − bc)/bc to be small, and M was therefore neglected.
Speer (1984) also considered the case with j1 = 1. In that
case, the tidal flats act as momentum storage regions. The
choice made in Alebregtse (2015), de Swart et al. (2011)

and the current study is j1 = H
(
− ∂ζ

∂t

)
.

Appendix B: Fourier coefficients
of momentum sink term

In the main text term V is written as

βu0
∂ζ0

∂t
H

(
−∂ζ0

∂t

)
=

∞∑
m=−∞

pme−imt .

The Fourier coefficients pm are

pm = iβ

4

(
c∗

2+mû∗
0 ζ̂

∗
0 − c2−mû0ζ̂0

)
−β

2
c∗
m|û0||ζ̂0| sin(φû0 − φ

ζ̂0
),

where (in this appendix) ·∗ denotes the complex conjugate
and

cm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
if m = 0

0 if m �= 0 and even
−i

mπ
e
−imφ

ζ̂0 if m odd,

such that

H

(
−∂ζ0

∂t

)
=

∞∑
m=−∞

cmeimt . (45)

In order to see that the phase of the M4 harmonic of term V
equals that of the advection term, note that term V can be
written as a product of a constant, the advection term and
the step function as in Eq. 35. From Eqs. 16–20, it follows
that the advection term consists of an M0 and M4 harmonic,

u0
∂u0

∂x
= AM0 + Re

{
AM4e

−2it
}

, (46)

where AM0 is a real number and AM4 a complex number.
Since the even Fourier coefficients of the step function
cm are zero, multiplying (46) and (45) yields that the M4

harmonic of the product equals

c0Re
{
AM4e

−2it
}

.

Hence, the phase of the M4 harmonic of term V equals
arg(AM4) and thus the phase of the M4 harmonic of the
advection term.
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