

Implementation of second synthesis module in Spraakmaker

Citation for published version (APA):
van Leeuwen, H. C. (1991). Implementation of second synthesis module in Spraakmaker. (IPO rapport; Vol.
833). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 08/11/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/64c8398a-e3e3-4070-bf02-03563a65dd65

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 833

Implementation of second
synthesis module in
Spraakmaker

H.C. van Leeuwen

HvL/hvl 91/17
08.11.1991

Implementation of second synthesis module in Spraakmaker

Hugo C. van Leeuwen

1 Introduction

This report describes the implementation of the second synthesis module in Spraakmaker. As
the word 'second' implies, at the time of writing there are two synthesis modules. The fust
is the old one, copied from the os program, built around the data structures used in DS. Due
to these data structures, in os the processes are not functionally separated. For instance, the
frame buffer (this is the buffer in which the AP-parameters are stored) is filled in the duration
module, because the duration module needs initial durations of phonemes, which it derives
from the diphones. It is not really necessary to fill the framebuffer at that moment, hut in
DS it does no harm since it should be filled anyway. However, in Spraakmaker we want the
modules to be as independent as possible, and we do not want a common data structure
separate from the grid. Therefore, we do not want to fill a framebuffer-we don't even want
to have a framebuffer-before we are actually in the synthesis process. As a consequence,
the strategy followed in the old synthesis module falls short for our current purposes.

Therefore, a second synthesis module has been developed, designed specifically to synthe
size the symbolic data represented in the grid . This report is the technica! documentation of
that module.

2 Module structure

The synthesis module is written in PASCAL and consists of several files. Five of them are
stored in the 'synthesis2' directory (this is: 'srn$root: [speech2-1. speech2-2] '), and directly
concern the second synthesis module. Some other files are also concerned, which deal with
the passing of data from PROLOG to PASCAL . As this mechanism is structured in a manner
common to all PROLOG-PASCAL couplings, it will not be described here, hut in the general
Spraakmaker documentation provided by Rick te Lindert. The five files directly concerning
the second synthesis module are listed below:

• SPEECH2_ENV .PAS: defines the constants, types, variables and procedures global for the
four files below

• FILL-FRAMES .PAS : contains the routines which fill the framebuffer and compute the
relevant duration and pitch parameters .

• SPEECH2.PAS: contains the routines which receive the symbolic data from the PROLOG
part of Spraakmaker, and the routine which is invoked by Spraakmaker to effectuate
synthesis.

• AP2.PAS: contains an outer shell for (LPC) synthesis of a framebuffer.
• APOBUF2.PAS : contains the kemel of (LPc) synthesis of a framebuffer .

The files are structured as depicted in figure l. In this report only SPEECH2-ENV .PAS and
FILLJ'RAMES .PAS will be discussed; SPEECH2 .PAS is described in the general Spraakmaker
documentation, AP2.PAS and APOBUF2.PAS are slight variations on algorithms of the LVS
system (Allain, 1990).

1

SPEECH2

AP2 FILLFRAMES

APOBUF2

SPEECH2_ENV

Figure 1: The structure of the five synthesis files.

3 Input/output

By the time the synthesis module is invoked, the Spraakmaker grid contains a host of symbolic
data. However, not all data are relevant for the synthesis process. The synthesis module
needs the diphones, the frame counts , the durations and pitch contour information. To be
more specific, for each sentence in the grid, the phon. dur, the frames. nr, the diph. d, the
into. freq and . decli, and the pitch. anchor, . ons et, . offset, . dur and . exc, and timing
information as to how the pitch movements are related to the diphones, is transferred to the
synthesis module.

To visualize this a bit, in figure 2 a sample grid is given. Only the relevant streams
are given (the phonemes are included for better understanding). The given values are not
computed by Spraakmaker hut generated by hand, and therefore do not necessarily represent
realistic values.

The timing of the pitch movements with relation to the segmental structure (say, the
phonemes) is defined by means of the sync marks . Some of the sync marks in the pitch
stream will be related to sync marks in the phon stream. This will anchor the movement.
The convention is: the left sync mark for 'vo' movements is anchored to the phon stream, and
the right sync mark for 'eov' movements. This seems somewhat awkward, (why not always
take the left sync mark?), but visually this gives better results. The 'eov' movements only
occur at the end of an intonation domain, and if the left sync mark were anchored , it would
appear visually as if the movement would take place after the intonation domain.

This convention still leaves a lot of sync marks unanchored in the pitch stream. This is
in deed correct, as the moment an accent-lending movement (anchored at 'vo') changes into
declination is defined by the . dur and . ons et/ offset fields rather than the place where
the sync mark separating the two movements is anchored in the phon stream. Thus, in the
given example, the timing of the first anchored movement should be read as follows. The
movement , the type ofwhich is 'l', is anchored between the 'd' and the 'I' in the phon stream
(which is indeed the vowel onset, 'vo'; however, 'vo' is a label which has been used in the
derivation, and due to which indeed the left sync mark is attached to the phoneme stream,

2

sent:
i_dom:

declarative
i_domain

word.ace: + +
phon.pho: - d I t I s @ n t E s t

.dur: 31 46 69 46 69 79 54 62 46 69 79 46 31

frames.nr: 4 314 415 412 415 416 314 414 412 414 414 412 4
diph.d: 511D1 D111 IlTl Tlll Ilsl slcl clNl NlTl TlEl Elsl slTl TlSil

into.freq: 93.50
.deel: -4.65

pitch.type:
.anc:
.onset:
.offset:
.dur:
.exc:

0 1
vo

50
var 120
0.0 6.0

%

var
-3.0

A
vo
-10

60
-3.0

0

var
0.0

Figure 2: A sample grid containing the streams which are relevant for the synthe
sis module. The sentence is enclosed by 'gaps'; this is needed for the representa
tion of the diphones. For each intonation domain (i_domain) a starting frequency
and a declination must be given. Each intonation domain further consists of a
number of pitch movements . Anchored movements ('vo' (vowel onset) and 'eov'
(end of voicing)) must be alternated with unanchored movements ('none' or'-').
One other movement is also possible , a movement which is anchored to a pre
vious anchored movement : 'prv'. The combination of an anchored and a 'prv'
movement counts as one anchored movement in the alternation scheme.

but serves no further function in the synthesis module). The movement has a duration of
120 ms, and ends 50 ms after the anchor (ons et defines when the movement starts relative
to the anchor, offset defines when the movement ends, relative to the anchor. Only one of
these two may be defined).

Note that the absolute frame number of the anchor of a movement is not present in the
grid . Although the timing relations are transferred to the synthesis module by means of a
frame number, the user cannot directly access this value, nor can he/ she use it to alter the
timing relations; the values are first computed by Spraakmaker when the data are sent to the
synthesis module. If a user wants to alter the timing of a pitch movement, one should either
relate the anchoring sync mark to another sync mark in the phoneme stream, or adjust the
onset or offset fields of the movement . The first option is useful for big shifts (e .g. a different
syllable is to receive accent), the second for small shifts (the timing within the syllable). Of
course, if one wants, one can screw things up by choosing extreme values for the onset/offset,
but one is advised not to or else suffer the consequences. For anchored movements either the
onset or the offset should be specified. (In the current implementation, specification of both
will lead to selecting the onset value, specification of neither will result in an offset of O ms).
Onset, offset and duration are assumed to be given in milliseconds. Excursion is assumed
to be given in semitones. The type of the pitch movement is transferred to the synthesis
module, but only for feedback purposes (e.g . in error messages it may help to locate the
source of trouble more quickly) .

3

3.1 The input

The synthesis module expects the following data as input, to be given by Spraakmaker:

• A diphone array containing the diphones to be synthesized, and the number of diphones
in that array:

dip$_arr : diphone_array; This is an array containing the diphones (and triphones
if they occur). The array ranges from 1 to max_char (currently 512), and each
element of the array is a string of (currently maxima!) 30 characters, each denoting
a diphone, e.g. 'HlAAl'.

nr$_of _diphones : integer; This is the number indicating the actual number of
diphones transferred . Call this value n .

• A duration array containing the segment al durations of the phonemes, and the number
of durations in that array:

dur$_arr : duration_array; This is an array containing the durations. The ar
ray ranges from 1 to max_char (currently 512), and each element of the array is
an integer denoting the duration of a phoneme in ms. Note that the phonemes
themselves are not transferred to the synthesis module.

nr$_of _durations : integer; This is the number indicating the actual number of
durations transferred. Typically, this has the value n + 1, unless triphones are
involved .

• A 'frames' array containing the number of frames of each half diphone/phoneme, and
the number of frame_numbers. Note that this is not the frame buffer 'frame_buf'.

fra$_arr : frames_array; This is an array containing the frame numbers. The
array ranges from 1 to 2*max_char (1024), and each element of the array is an
integer denoting the number of frames in half a diphone .

nr$_oLframenrs : integer; This is the number indicating the actual number of
frame numbers transferred. Typically, this has the value 2 * n, unless triphones
are involved.

• A specification for the pitch contour. This is a dynamic structure, to be accessed by one
pointer, the 'pitch_spec_pointer' (see section 4, SPEECH2_ENV.PAS). Each sentence
contains a number of intonation domains. An intonation domain is either empty or
fi.lled. A fi.lled intonation domain corresponds to the utterances, an empty intonation
domain corresponds to the pauses between them. Each domain (both empty and filled)
has a duration (.dur) [ms], a starting frequency (.freq) [Hz], a declination (.deel)
[st / s] (= semitones per second) , a number of moves (. move), and a next field (. next)
pointing to the specification for the next domain . The values of these fi.elds vary for
empty and fi.lled domains. For filled domains, all fields are relevant. For empty domains,
only the duration field must be specified, and the . move field should be NIL.

Each move contains the following fields:

4

taip: Indicates the symbolic representation of the movement (e.g., 'l', 'a', 'fl', etc.
This is the type that is given in the grid. It serves for error and warning messages
only, to be able to locate the source of trouble more quickly.

anchor : Indicates the type of anchor. This must be one of the enumerated type
'anchor_taip' = (vo,eov,prv,none) . Here, 'vo' denotes vowel onset, 'eov' denotes
end of voicing, 'prv' (=previous) denotes that movement directly follows previous
movement, and 'none' denotes no anchor .

frame : Indicates the frame number to which the movement is anchored. Only an
chored movements should receive a frame number. The 'vo' movements should
contain the frame number associated with the left sync mark, the 'eov' movements
the frame number associated with the right sync mark. The 'prv' and 'none'
movements should contain the (integer) value zero.

time : Indicates the absolute time at which the movement is to start. When
FILLFRAMES is entered, this should always contain the (real) value zero. In the
routine COMPUTE-ABS_TIME the frame numbers given in the 'frame' field will be
translated to an absolute time, indicating the starting time of the movement (not
the time of the anchor), which are stored in this field.

ons et : Indicates the onset of the movement, if any. If the onset is specified, the
offset field must be unspecified. Since any number, including zero, is a valid value,
this parameter is specified by a string. The string '-' means unspecified, all other
strings should be ASCII representations of real numbers.

offset : Indicates the offset of the movement, if any. If the offset is specified, the
onset field must be unspecified. Since any number, including zero, is a valid value,
this parameter is specified by a string. The string '-' means unspecified, all other
strings should be ASCII representations of real numbers.

dur : Indicates the duration in ms of the movement, specified as an integer. Variable
durations must be coded as the (integer) value 0.

exc : Indicates the excursion in semitones of the movement, specified as a real.

next : Pointer to the next movement . Should be NIL if no movement follows the
current one.

3. 2 The output

The output of the synthesis module is speech. However, since in this report only the first part
(viz. FILL-FRAMES) of the synthesis module is described, the output of FILL-FRAMES (which
thus is input to AP2) is a frame buffer such as is common in the LVS environment. See for
more information on frame buffers Allain (1990).

4 The implementation of SPEECH2_ENV .PAS

The global declarations are given in the file SPEECH2_ENV .PAS. Most of them are straight
forward, so not everything will be discussed.

The dollar sign, '$ ', in some of the constants or varia bles denotes that these are global.
On encountering them in FILLJ'RAMES one can see that they are not defined locally, but

5

TYPE
anchor_taip = (vo,eov,prv,none);

pitch_move_pointer = -pitch_move; { ---------- }

pitch_move = record { 1 freq }

taip str; { --> 1 deel 1--> pitch_spec_ }

anchor anchor_taip; { 1 dur 1 pointer} }

frame integer; { 1 move 1 }

time real; { ---1------ }

onset str; { V }

offset str; { ---------- }

dur integer; { taip 1 }

exc real; { anchor 1 }

next pitch_move_pointer; { frame 1 }

end; { time 1 }

{ onset 1 }

pitch_spec_pointer = -pitch_spec; { offset 1 }

pitch_spec = record { dur 1 }

freq real; { exc 1 }

deel real; { 1 next 1 }

dur integer; { ---1------ }

move pitch_move_pointer; { V }

next pitch_spec_pointer; { pitch_move_pointer }

end;

Figure 3: The pi tch_spec_pointer data structure

globally in SPEECH2_ENV.PAS. I defined the first four constants because I didn't want to
work with meaningless numbers, although this may be awkward to someone who is used to
working in the LVS environment (in which case the numbers would not be meaningless) . Now,
I hope to achieve one has a somewhat better notion of the meaning of the parameter which
is being altered .

The 'pi tch_spec_pointer' deserves some discussion, since it is the input data structure
for FILL_FRAMES. lt is given in figure 3. Each pi tch....spec_pointer corresponds with an
intonation domain, be it a filled or an empty one. If it is an empty one, the dur field should
contain the duration of the pause, and the move field should be NIL . The other fields may
contain arbitrary values, hut preferably are set to zero .

For filled intonation domains all fields must contain correct values. The fields freq and
deel must contain the starting frequency and the declination of the filled intonation domain,
respectively. The move field must now point at a list containing the movements of the intona
tion domain. The respective movements are specified in the pi tch...move record, the various
aspects of which are stored in the various fields . This is discussed in more detail in section 3.1.

The various ' ... $_ ... ' (dip$_fil to frame$_buf) arrays and variables are filled with in
formation in SPEECH2 (by means of various RECEIVE_ ... routines), and used in FILL-FRAMES.

The other variables are mainly used in 'speech2' (I do not know why they are put here ,
in SPEECH2_ENV, rather than in SPEECH2 itself). The same goes for the procedures, they are
not used in FILL-FRAMES . Probably, this is due to its historically determined origin.

6

Thus, it might be wel! possible that a somewhat better structure could be achieved (with
variables placed where they belong), but currently the priorities are such that these minor
improvements will not be implemented.

5 The implementation of FILLFRAMES.PAS

The module FILLFRAMES consists of two parts. One part fills the framebuffer with diphone
data and sets the duration parameter for each frame, the second part sets the pitch parameter
for each frame . The first part is realized by routine FILLJ'RAME-BUF, the second by routine
DETERMINE_PITCH.

5.1 FILL-FRAME-BUF

The routine FILL-FRAME-BUF determines the value of the duration parameter ('$dur' =
17) for each frame. It essentially loops only once over all diphones (see the source code,
line 646). The variable 'dip$_index' is incremented by the routine NEXTDIPHONE, which
returns the name of the next diphone. The routine TREAT _DIPHONE reads the diphone into
the framebuffer and does some smoothing if allowed .

Then, the routine PROCESS-NEXT -PHONEME sets the duration for the 'current' phoneme .
This is somewhat intricate. If a diphone is read, say the second one in the example, 'Dlil',
it completes the first phoneme, this is /d/ (or the second if you want to count /s1/ as
a phoneme) . First then the duration of this phoneme can be adjusted (the /d/). The first
parameter of this routine indicates out of how many parts the phoneme is built up. Generally,
this is two, but the first and the last phonemes (viz. the /s1/ phonemes) consist only of one
part, and triphones of three.

Inside PROCESS_NEXT _PHONEME, the 'nr_oLparts' determines the total number of
frames out of which the phoneme is built up . Together with the NEXT _DURATION, the dura
tion per frame is determined in ADJUST _DURATION (simply by means of a division). However,
the way to store it in the framebuffer is not in absolute milliseconds, but in a percentage of
the global frame duration, which is expressed in samples per frame. Therefore, some arith
metic juggling takes place in SET _DURATION. See the comments in the source code for further
explanation.

As one can see in the source code of routine FILLFRAME_BUF, inside the while loop
PROCESS_NEXT _PHONEME is called with 'nr_oLparts' having the value 2 (corresponding with
normal phonemes), and before and after the loop it is called with value 1 (corresponding with
the boundary phonemes). Inside the loop, however, as an exception, the routine can also be
called an extra time with value l. This corresponds with a triphone.

A triphone (only occurring in the ZELLE diphone set for /h/ phonemes) is represented in
the grid as in (1):

phon.segm:
phon.dur:
frames.nr:
diph:

a h a

120 50 120

4110 3 519
AA1H1AA1

(1)

Suppose that TREAT-DIPHONE has just read the 'AA1H1AA1' 'diphone'. Then the first call
of PROCESS_NEXT-PHONEME with value 2 will set the duration of the first /a/ (processing
the frame counts 4 and 10) . Then, since 'AA1H1AA1' is a triphone, PROCESS_NEXT _PHONEME

is called once again with value 1, thus setting the duration for the /h/ and processing only

7

one frame count, viz. 3, which is exactly what we want, since here the phoneme /h/ consists
only of one part!

In FILLFRAME-BUF, after each call to PROCESS_NEXT _PHONEME a check is performed in
order to see if the actual number of frames read in the framebuffer corresponds with the
number specified by Spraakmaker. If it does not, an error message is issued. When this
occurs in a session in which the sentence has just been typed, this error should be taken
seriously, i.e., someone should dive into the source code. If it occurs when a grid has been
undumped, the error indicates that a different diphone file has been used to compute the
frame counts than to synthesize the speech, or that one has edited in the grid such that the
integrity of the data has been lost .

5.2 DETERMINE-PITCH

The routine DETERMINE-PITCH determines the value of the pitch parameter ('$pitch'
1) for each frame . It consists of three parts, COMPUTE....ABS_TIME, which transforms the
frame numbers into an absolute time in milliseconds, GENERATE_CONTOUR, which gener
ates a straight-line representation of the pitch contour (a list of slopes and durations), and
COMPUTE-HERTZES, which samples the straight-line representation at the moments a frame
begins.

5.2.J COMPUTE....ABS-TIME

The routine COMPUTE-ABS-TIME only looks at anchored moves. For the anchored moves, 'vo'
and 'eov', it stores the specified frame number in the variable 'target', and it increments the
actual frame number 'frame_count' until 'target' is reached. While doing so, it integrates
the duration of the individual frames in the variable 'time'. This results in 'time' containing
the time in milliseconds at which the frame 'target' will be synthesized. The time at which
the anchored movement actually starts can then be computed from the fields onset, offset
and dur, as specified in the source code, and is stored in the time field.

5.2.2 GENERATE_CONTOUR

The routine GENERATE_CONTOUR expects as input a list of 'idom specifications', a list of
pitch movements for each intonation domain . In practice, this list will consist of alternating
'empty' and 'filled' (see above) intonation domains . As its output, it computes a straight-line
representation of the pitch contour. This consists of one starting frequency in Hertz, and
a list of slopes and durations, where the slopes are given in semitones per second and the
durations in milliseconds, which appear to be the natura! units to use. The straight-line
representation is stored in the data structure 'sent-contour' given in figure 4. The straight
line representation represents the pitch as function of time for the whole sentence. So, the list
of 'idom specifications' (each of which may contain a list of movements) which is put in, will
be put out in one single list, representing both the empty and the filled intonation domains.

Although the first element of the straight-line representation will always concern an empty
domain, lets first discuss the filled domains. All filled domains contain a specification of the
starting frequency. The starting frequency of the first filled list will be the starting frequency
of the straight-line representation. The starting frequencies of the succeeding intonation
domains will be accounted for by adjusting the slopes in the straight-line representation
for those parts that correspond with the 'empty' intonation domains. The task is thus to
determine the slopes and durations.

8

type
contour_pointer = -contour_element;
contour_element = record

slope real;
dur
next

end;

real;
contour_pointer;

sent_contour = record
freq real;
cont : contour_pointer;

end;

{

{

{

{

{

{

{

{

{

{

{

{

{

1 freq 1

sent_contour 1 cont 1
---1----

1
V

slope 1

1 dur 1
1 next 1
---1-----

V
contour_pointer

Figure 4: The data structure used for the straight-line representation.

}

}

}

}

}
}

}

}

}

}

}

}

}

For the 'filled' intonation domain this is done in the inner while loop of the body of GEN

ERATE-CONTOUR (line 1034) . One can only determine the slopes and durations of unanchored
movements if one knows where the enclosing anchored movements end and start . So, when
encountering an anchored movement ('vo' or 'eov'), two elements (viz. the unanchored and
the anchored, respectively) must be added to the list, for unanchored movements ('none'),
none . Only for 'prv' movements exactly one element must be added to the list.

Thus, for unanchored movements only the extra amount of excursion must be stored, plus
a check if one has not specified two adjacent unanchored movements . For a 'prv' movement
(see PRV _CASE, line 984), all specifications can be directly found in the 'pm-' fields. By means
of ADD-MOVE the movement is added to the list . Before it is actually added by means of
NEW _SLOPE it is checked whether the added element will exceed the specified duration of the
intonation domain. If so, the element is truncated, all further movements are ignored, and
a warning message reporting this is issued. The amount of processed time is updated, and
the excursion is reset . Should a 'prv' movement directly follow an unanchored movement, an
error message is issued, hut the program is continued and the unanchored movement will not
be realized (since, how would you try to realize it?).

The anchored movement is certainly the most complicated case. In principle, it adds two
elements to the list, the unanchored and the anchored movement . This is the 'normal case',
which very much resembles the case of a 'prv' movement, except for the fact that in this case
the preceding unanchored movement is added to the list first (see NORMAL-CASE, line 969).
However, it is possible that the duration of the unanchor0d movement becomes negative, for
instance because two anchored movements have a slight overlap. In that case, no element
should be added to the list for the unanchored movement, and the element that is added
to the list for the anchored movement should be altered a bit. This case, that the duration
becomes negative, is further divided into two cases, the 'overlapping case' and the 'initial
case'. In the overlapping case two anchored movements have a certain amount of overlap,
in the initial case the first anchored movement starts before the 'starting_time' of that
intonation domain.

The 'overlapping case' (see OVERLAPPING_MOVEMENTS, line 946) is the case which is
actually confronted with con.flicting information: two anchored movements overlap. It tries

9

to make the best of it, depending on the type of movements. If the movements have a different
absolute slope they are assumed to be of 'equal strength' and both movements are shortened
equally. If the movements are of the same absolute slope, the last movement is shortened by
the full amount of overlap.

An example of the first case are an 'a' and a '2' that overlap because the syllable is too
short (this will be the most common case), or a '1' and an 'a' (this will hardly occur). In this
case the duration of the two movements is equally shortened and the slope is retained . If the
movements have equal (absolute) excursions, the resulting pitch will be the same as in the
case that there is no overlap. Of course, if the absolute excursions are not equal then this is
not true. In any case, only the durations are adjusted and the slopes are retained.

An example of the second case are an 'a' and a 'fl' that overlap because the syllable is too
short. In this case the 'a' is fully realized, and the 'fl' is shortened by the amount of overlap.
Since both movements have a negative slope this is better than adjusting the duration of
both. This ad-hoc convention has been discussed with Jacques Terken and awaits a better
proposal. It is based on the assumption that the first movement is perceptually dominant
(since it often concerns an accent-lending movement, whereas the second does not; the second
one is probably anchored at 'eov', otherwise there would not be an overlap).

It can happen, of course, that the amount of overlap is too big, and that for instance the
previous movement is fully 'eaten' by the current; the duration of the previous movement
does not suffice to give half of the overlap (case one, see IN FORM _USER-ABOUT _OVERLAP,

line 864) or the current movement does not suffice to gi ve the full overlap (case two, see
INFORM_USER-ABOUT--5HORTENING, line 846). In such a case an error message is issued,
reporting that the pitch contour is ill-specified. The program continues, hut the pitch contour
that will be generated may be totally unacceptahle. In the other case, that there is overlap
but the movements are not 'eaten', a warning message is issued so as to inform the user or
rule developer that the synthesis module has autonomously removed the overlap. In this case
the resulting contour should sound acceptable .

The 'initial case' is the case that the first movement starts before the starting time of
the intonation domain. This is typically the case if the first syllable is to be accentuated. In
this case not only must the unanchored movement be omitted from the list, also the starting
frequency must be adapted. That is to say, if it concerns the first filled intonation domain.
The straight-line representation is suspended at the starting frequency, and normally this is
the frequency given in the first intonation domain of the current sentence. Note that in the
grid each intonation domain has a starting frequency, whereas the straight-line representation
only has one . The starting frequencies of the other intonation domains are used to determine
the slopes in the straight-line representation corresponding with the empty domains.

The initia! case also has two suhdivisions. One is if the first anchored movement starts at
t < t0 (to is the starting time of the intonation domain, 'start_time') hut ends t > to, i.e.,
the movement partly falls before t0 . The second is if the first anchored movement also ends at
t < t0 , i.e., it fully falls before t0 . The first case is well possihle in normal situations, i.e ., could
well follow from a normal specification, the last case should not occur in normal situations,
however, one cannot exclude the possihility that for some reason it has been specified.

In the first case, the case that the movement partly falls before t0 , two actions
are taken (see MOVEMENT-PARTLY _BEFORE, line 928). The first is the computation of
the new starting frequency. If it concerns the first intonation domain (in this case
'Lcontour = curr_element'), the new starting frequency is stored in the appropriate field.
If not, the slope of the element in the straight-line representation corresponding with the
'empty' intonation domain must be adjusted such that the new starting frequency is reached

10

at to (see PROCESS_NEW...FREQ, line 883) . The second action is that the duration of the an
chored movement is adjusted (viz. to become the length of the part that falls in t > t0) and
that the element is added to the straight-line representation (as in the overlapping case). In
the second case, the case that the movement fully falls before t0 , only the first action is taken:
computation and installation of the new starting frequency (see MOVEMENT _FULLY -BEFORE,

line 916). In this case, not only the slope of the anchored movement is needed, also the
amount of extra declination is taken into account.

With this, the 'filled' intonation domains have been discussed. Now, it is easy to un
derstand how the 'empty' intonation domains are treated (see EMPTY -1NTO_CASE, line 783).
Actually, only the duration of the empty intonation domain is of importance . The frequency
at the end of a filled intonation domain results from the specified movements, and the starting
frequency of the next filled intonation domain is given in the grid. The duration of the empty
domain is used to 'connect' these two. One element, corresponding to the empty domain, is
added to the straight-line representation, such that the starting frequency given in the grid
is reached.

If the empty domain lies between two filled intonation domains, this is straightforward:
compute the slope by means of the routine ST--5LOPE and add it to the list. There is no need
to check whether it exceed the end of the intonation domain, since it is specified to exactly
reach it . However, each sentence specification always begins and ends with an empty domain,
so these are not enclosed by filled domains (and thus have given frequencies). In these cases
a slope of zero semitones / second is installed . This is achieved by making the beginning and
end frequencies of the slope equal.

With this, most of the specifics of GENERATE _CONTOUR have been discussed. Two minor
points remain . One is that the duration of the last element in the straight-line representation
is prolonged with 1/ lOOO th of a millisecond to ensure that the length of the straight-line rep
resentation is (somewhat) Jonger than the length of the framebuffer . Since we are computing
with reals, due to rounding errors one cannot guarantee that the length is exactly the same.

The second is that in the implementation use is made of separate small routines without
parameter passing. Although this is known to be dirty, it has been applied all the same. The
reason for this is that quite a lot of parameters should be passed to quite a deep level. If
they would be passed in the regular way, to my feeling this would obscure the source code
more than is the case now . Those who disagree are invited to rewrite my code.

5.2.3 COMPUTE-HERTZES

The task of COMPUTE--1iERTZES is to sample the straight-line representation (which is a con
tinuous representation of the pitch contour as a function of time) at the starting moments of
each frame (the frame buffer is a discrete data structure). For each frame in the frame buffer
the pitch parameter ('$pitch'= 1) must be set . Since each frame starts at a distinct mo
ment, the pitch of that moment can be computed from the straight-line representation. This
sampling is done in the for loop of the routine.

Since the duration and the pitch are not directly stored in milliseconds and hertzes in a
frame, some arithmetic juggling is necessary to store and retrieve the right values (see Allain
(1990)).

The invariant of the loop is that the frequency has been computed up to the time of the
current frame (frame..nr) . Thus, in the first statement of the loop, the current frequency is
stored in the current frame.

Next, the duration of the current frame is computed. Probably, the if statement to
compute this in the default case is not necessary, since in this implementation the relative

11

duration always has a value unequal to zero, hut the statement adds to the robustness of the
routine .

Then, the new frequency belonging to t = (current time + duration current frame) (which
is the time the next frame starts) is computed, in order to preserve the precondition. This
is done by decrementing the duration of the current slope in the straight-line representation
by the duration of the current frame while accounting for the slope: the new frequency
is computed given the old frequency, the slope and the duration . These are the last two
statements of the loop. Every once in a while, however, the duration of the current slope
of the straight-line representation is shorter than the duration of the frame (since, for each
frame the duration of the current element in the straight-line representation is decremented).
In that case, first the last part of the current element is accounted for (the while loop), and
then the first part of the next element is taken (with adjustment of the duration which is to
be accounted for). A while loop is chosen (rather than an if statement) since it is conceivable
that the duration of one frame spans more than one element in the straight-line representation
(although this will generally not be the case). Thus the precondition is restored.

When all frames have been treated the work is done. Some checks are added after the
for loop to ensure there has been no error in the line of thought.

5.3 Other units

Throughout the routine GENERATE-CONTOUR the computation of the frequencies is done via
separate routines, ST_FRQ and ST_FREQ. The 'sT' in these routines stands for 'semitones',
which currently is the unit used to express excursions and declination in the grid. Compu
tation of frequencies via a separate routine is done in order to enable an easy shift to other
units (e.g . ERBs, (=equivalent rectangular bandwidths)). To shift to other units, only these
routines have to be adjusted. Currently, the routine ST _FRQ computes a new frequency (in
Hz) given the old one (in Hz) and an excursion (in semitones). The routine STJ'REQ com
putes a new frequency given the old one, a slope (in semitones/second) and a duration (in
milliseconds).

A third 'sT' routine is also available, ST-5LOPE. This routine computes the slope (in
semitones/second) of an element in the straight-line representation, given the beginning and
end frequency (in Hz) and the duration (in milliseconds). It takes some mathematica! in
sight to see that this routine will also suffice to adjust a previously computed slope (in
PROCESS_NEW _FREQ) in the 'initia} case', hut in fact one may always summon slopes like
this.

6 References

Allain, P . (1990). LSV programmers manual, Manual no. 107, Institute for Perception
Research, 120 pages.

12

