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Abstract

Buckled membranes become ever more important with further miniaturization and development
of ultra-thin film based systems. It is well established that the bulge test method, generally
considered the gold standard for characterizing freestanding thin films, is unsuited to characterize
buckled membranes, because of compressive residual stresses and a negligible out-of-plane
bending stiffness. When pressurized, buckled membranes immediately start entering the ripple
regime, but they typically plastically deform or fracture before reaching the cylindrical regime. In
this paper the bulge test method is extended to enable characterization of buckled freestanding
ultra-thin membranes in the ripple regime. In a combined experimental-numerical approach, the
advanced technique of digital height correlation was first extended towards the sub-micron scale,
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to enable measurement of the highly varying local 3D strain and curvature fields on top of a single
ripple in a total region of interest as small as ~25 um. Subsequently, a finite element (FE) model
was set up to analyze the post-buckled membrane under pressure loading. In the seemingly
complex ripple configuration, a suitable combination of local region of interest and pressure
range was identified for which the stress-strain state can be extracted from the local strain and
curvature fields. This enables the extraction of both the Young’s modulus and Poisson’s ratio from
a single bulge sample, contrary to the conventional bulge test method. Virtual experiments
demonstrate the feasibility of the approach, while real proof of principle of the method was

demonstrated for fragile specimens with rather narrow (~25 um) ripples.

Keywords: Bulge Test Method; Buckled Membrane; Wrinkled Membrane, Ultra-thin Films,
Freestanding Films; Digital Image Correlation (DIC); Digital Height Correlation (DHC); Global Digital

Image Correlation (GDIC)

1. Introduction

The bulge test methodology has become the standard technique for mechanical characterization
of thin films [1] especially for freestanding membranes. This is due to (1) the possibility of precise
sample processing facilitated by recent developments in micro-fabrication technology; (2) the
need for minimal sample handling, which is especially challenging at small scales; (3) the relatively
simple data processing for determining the membrane stress and strain values, needed to extract
the mechanical properties. The method essentially involves fixing a freestanding membrane over
a small window opening and applying a known pressure to it, while measuring the resulting

membrane deflection (or curvature). Various models have been developed, based on the sample
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geometry, to convert the pressure-deflection data to the a (elasto-plastic) stress-strain curve,
which is used to determine mechanical properties such as Young’s modulus, Poisson’s ratio,
residual stresses, and plasticity parameters [1-3]. During the last 30 years ample research has
been devoted to improve the accuracy of the bulge test by studying the underlying assumptions
such as the influence of bending stiffness [4] and initial conditions e.g. initial film thickness and
residual stress [1,5,6]. Among the different varieties of the bulge test method, the plane-strain
bulge test is most popular [7], where it was shown that for rectangular membranes with in-plane
aspect ratio larger than 4, the stress state in the center of the membrane reduces to a plane strain

condition. This means that the stress and the strain are given by [4]:

_ 26 1
kit = g @)

P
h_ 2
Ott o= (2)
1 @ _
et = G Yaky) — 1, (3)

where K, is the curvature in the transverse direction, a is half of the width of the membrane, §
is the deflection of the apex of the membrane, P is the applied pressure and h is the membrane
thickness. g, and €, denote the normal stress and strain in the transverse direction, respectively.
As a consequence of the plane strain condition in the center of the rectangular membrane, the

transverse stress and the transverse strain can be related by the following constitutive equation:

Ot = (1_va) €ets (4)

where ( £

1—v2) is the plane strain modulus. To extract the Young’s modulus (E) and the Poisson’s

ratio (v) separately, an additional test needs to be performed, e.g., a bulge test on a circular or
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square membrane for which a different stress-strain equation holds, resulting in the biaxial

modulus (%) [2,8].

However, such freestanding membranes often buckle as a result of processing induced
(compressive) residual stresses in combination with their small out-of-plane bending stiffness,
particularly for ultra-thin membranes. In some cases, the buckling is exploited as a functional part
in devices, e.g., in bi-stable micro actuators [9-11]. Moreover, the buckling phenomenon in
freestanding thin membranes has gained a lot of attention in Micro Solid Oxide Fuel Cells (uSOFC),
where stacks of freestanding membranes serving as electrodes or solid electrolytes, are often
buckled as a result of the processing. While initially buckling was considered an issue [12], recent
literature suggests that it can actually be beneficial to have these membranes in a buckled state
to enhance their functional properties. It has been shown that buckled membranes are
mechanically more stable at elevated temperatures, i.e. lower thermomechanical tensile stresses
develop compared to a ‘flat’ membrane, often having significant tensile stresses already at room
temperature [13], [14]. Mechanical models have been developed to exploit the behavior of such
USOFC membranes in the post-buckling regime and consequently expand the design space into
the low-stress post-buckling regime [12,13]. Recently, controlled buckling patterns in uSOFC solid
electrolyte membranes (Figure 1a) using ‘strain engineering’ have been employed to demonstrate
local tuning of ionic conductivity of the electrolyte as an alternative of solid solution doping [15].
Furthermore, in the exciting field of graphene, where buckles and ripples are intrinsically present
in the suspended configuration (Figure 1b), these phenomena are receiving considerable

attention [16] to be exploited in various applications [17], such as improved hydrogen absorption
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on a rippled graphene surface (due to local curvature), for future efficient hydrogen-based fuel

cells [18].

rqt&tﬁ"ﬁf.-n*-"‘ oy W
i

|
i

Figure 1: Examples of applications of buckled membranes: (a) design and placement of electrodes to locally
strain-engineered ionic transport of the solid electrolyte freestanding membrane for uSOFC application [15]
(reproduced with permission), (b) SEM micrograph showing ripples in a bilayer suspended graphene

membrane [16] (reproduced with permission).

The presence of such buckling patterns in test samples, as shown in Figure 2, prevents the
application of the conventional bulge test. All available literature to date confirms that the
conventional bulge test methodology cannot be used to characterize buckled membranes since
even at high pressures, buckling patterns typically do not disappear in the membranes and some
stress components near the edge of the membrane stay compressive [2,19]. Only in very few
cases, the samples can be pressurized, beyond the point where the buckling pattern completely
disappears, where the bulge equations (1)-(4) might apply [2,19]. Alternatively, the sample may

deform plastically before entering the cylindrical regime. Therefore, such buckled samples are
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typically discarded and the processing needs to be modified to prevent the buckles to occur, in
order to mechanically characterize the membranes accurately. Such processing modifications can
be time consuming, costly and sometimes even infeasible or undesired. Moreover, any processing

change could influence the actual properties to be determined.

Figure 2: (Top) Typical ‘flat’ freestanding bulge test membrane. (Bottom) Buckled membrane

meandering/telephone cord type pattern [19] (reproduced with permission).

Clearly there is a need for a convenient characterization methodology to determine the material

properties of the buckled samples in their original (buckled) state.

This paper introduces a characterization methodology for testing buckled samples, which builds
on the bulge test theory and thus exploits its aforementioned advantages. The approach adopted
here is to numerically model the bulge test-like pressure loading of the buckled membrane in the
rippled regime, to which the meandering pattern (see Figure 2 bottom) starts transitioning as
soon as even minute pressure is applied [20], to understand the mechanics and provide relations

for the relevant membrane stress and strain components. To relate the stresses and strains using



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

simple constitutive equations for extracting the material properties, regions of interest (ROI) with
simplified stress states are identified and explored. Furthermore, to accurately measure the
complex non-uniform three-dimensional displacement field of the buckled membranes, recent
advances in bulge test methodology involving integration of Global Digital Image Correlation

(GDIC) with conventional bulge test theory to [8] are exploited.
2. Methodology

2.1 Digital height correlation based bulge test

In conventional bulge test theory, the stresses and the strains obtained using equation (2) and (3)
are based on the assumption that they are homogeneous over the membrane, i.e. an infinitely
long cylinder or full sphere is assumed. This assumption does not hold anymore when the bending
effects at the boundaries play a significant role for films with a relatively large thickness [8].
Inhomogeneous fields are also expected in the case of buckled membranes, even for a very small
thickness, and in the pressure loaded case. This challenge is addressed by adopting a recently
developed Digital Height Correlation (DHC) based bulge test technique [8], to capture the non-

uniform 3D displacement fields.

The fundamental concept underlying this extension is to apply digital image correlation on the
topographical (height) maps of subsequent load increments (pressure increments), resulting in
corresponding displacement fields. Curvature fields can subsequently be computed from the
displacement fields. Based on the sample geometry, relations such as equation (2) can be used
locally to obtain stress from curvature data, while the local strain can be obtained directly from

the displacement fields. Therefore, the key assumption of a uniform cylindrical shape and uniform
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deformation adopted in the conventional bulge test methodology does not need to be fulfilled.

Consequently, more accurate, local stress and strain fields can be obtained.

Digital Height Correlation is a variant of Global Digital Image Correlation (GDIC) and it is based on
the conservation of height, instead of brightness, between a (topographical) reference
image f(X) and a corresponding deformed image g(x), where X is the in-plane position vector,
i.e. X = xé, + ye,, with €, and é,, denoting the Cartesian unit vectors. The conservation of height

is written as:
@) = g(% +u (e, +uy,(D)é)) — u, (), (5)

where u, and u,, are the in-plane displacement components in x and y direction respectively,

while u, is the out-of-plane displacement component. The image residual r(X) is defined as:
r(X) = f(¥) — g(f + u, (¥)e, + uy(f)e?y) —u, (%) + ny (%), (6)
~ g@) + (Vg - 8)u,® +u, (@) + (Vg - 8))u, (#) — u, (%) + no(@), (7)

where 1, is the image noise and Vg is the gradient of the deformed image g. The square of the

image residual is minimized over the region of interest in the GDIC algorithm,
y? = f r(%)2dX, (8)
ROI
where v is the global residual. The 3D displacement vector is given by:
UX) = up(X)e, + uy,(X)é, + u,(x)é,. (9)

To make this a well-posed optimization problem, the displacement field is parameterized as a

sum of basis functions ¢;(X) that act over the ROl and weighted by a discrete set of degrees of

8
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freedom A;. The choice of the basis and shape functions is based on the expected deformation
complexity. It should be noted that different shape functions may be required in the x,y and z
directions to capture the deformation. It has been shown that the shape of square and

rectangular bulged membranes are well described by polynomial functions [21].

l m n (10)
W(E) = ) LD+ ) hpi@e, + ) Ap(De,
i i i
where the basis functions ¢; are chosen here to be polynomial functions, given by:
@; = x%yF (11)

Subsequently, the strain fields can be computed from the extracted displacement fields using an
appropriate strain definition. To determine the relevant stress components, the curvature field is
obtained with the same DHC measurement. The curvature tensor k is determined by taking the

spatial gradient of the outward normal vector 7i field as:

k(%) = V@i (), (12)
where the outward normal vector is the normalized gradient of the position field z(X), as given
by:

Vz(%) (13)

T =E)

The curvature fields in transverse direction is given by:

Ktt(f) = Ex(f) : K(f) : Ex(f): (14)
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where Ex is a vector tangent to the membrane surface along the x direction. These curvature
fields will be used to determine the local stress components. For instance, for a local region with
a plane strain state (in the middle of a non-buckled rectangular membrane), the curvature can be

related to the hoop stress by:

(15)

P
O = ——
tt tiey

where P is the applied (uniform) pressure and t is the thickness of the membrane.

2.2 Experimental setup and procedure

A custom-made, gaseous pressure medium based bulge test setup (similar to the setup reported
in Ref. [22]) is used (see Figure 3b) for the experiments. The setup consists of a sample holder
block attached to a pressurized N; reservoir through a pressure regulator. A commercially
available pressure regulator (MFCS-EZ by Fluigent) was used with a range of 0 — 200 kPa and a
resolution of 6 Pa (0.03% of full range). The pressure regulator and consequently the bulge test
setup has a fast response and settling time, which is an advantage over liquid based setups. While
liguid pressure-medium setups reach higher pressures, as needed for testing stiff (thick or
narrow) films or plates, they can suffer adversely from pressure buildup problems in case of a
minute leakage or the presence of gas bubbles in the pressure medium. This is usually not a
problem in gaseous pressure-medium setups, since any drop in pressure due to leakages is
directly compensated through the connected large reservoir. Furthermore, the setup is less
sensitive to pressure changes due to ambient temperature variations compared to liquid based

setups.

10
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Figure 3: Schematic of experimental setup for performing bulge test experiments: (a) high-resolution
optical profilometry object, (b) bulge test setup, (c) pressure regulator to control pressure loading with
regulator N, supplied with through a cylinder reservoir, (d) magnified view of cross-section of a typical bulge
sample with a thin film deposited in a silicon frame with an etched window in the center. The sample is

fixed by gluing it onto the bulge tester sample holder.

The setup is placed under a commercially available optical profilometer, Sensofar Plu 2300. The
profilometer is used in confocal mode to obtain full-field topographical images. The highest
magnification lens, with a magnification of 150x and Numerical Aperture (N.A.) of 0.95 is used to
obtain high resolution images of the narrow ripples which are 20 — 30 um wide. The resulting
field of view is 84x63 um? with in-plane spatial sampling (pixel size) of 0.11 um, while the

effective height resolution obtained is in the range of 25 nm.
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Rectangular bulge test samples used for the proof of principle experiment were fabricated by
deposition of a (proprietary) multi-layered stack consisting of transition metals and oxides on a
monocrystalline 650 um thick silicon wafer. The freestanding window was created by wet etching
from the back side of the wafer with a 1x5 mm? window. The sample has a total thickness of
64 nm and (volume averaged) Young’s modulus (estimated by volume averaging using the rule
of mixtures) of 217 GPa and Poisson’s ratio of 0.35. In general, application of DIC requires a good
pattern providing sufficient image contrast. In case of digital height correlation this contrast is
achieved by local differences in height on the sample surface. Since the native surface roughness
of the samples is in the order of a few nanometers, below the resolution of the profilometer, a
‘height’ pattern is applied. For this purpose, 500 nm mono-dispersed polystyrene microspheres
(by micromod®) were used. The microspheres were applied using the drop-casting method. The
particles are provided in a dense suspension and are further diluted (by a dilution factor of ~40)
in ethanol to achieve the required particle density on the sample surface (see Figure 4). A
relatively dense pattern is required to capture the expected inhomogeneous displacement fields.
Since the particles do not form a continuous layer, adhering to the sample surface (upon contact,
without the need for an adhesive) as single particles or homogeneously distributed aggregates
composed of few particles, their influence on the mechanics of the membrane is assumed to be
negligible. Moreover, during the pressure loading step, the particles adhere well to the sample
and no pattern change or degradation is observed, which is important for reliable application of

DIC.

12
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Figure 4: Images of ripples in a pressurized membrane with, optical image (left) and topographical image
of an area imaged during the experiment, marked in the optical image by the red rectangle (right). The
region of interest marked by the rectangle with black dashed lines is selected for DHC. The roughness
pattern visible in the topographical image consists of clusters of 500 nm polystyrene microspheres, applied

as a DHC pattern.

2.3 Numerical modelling

A non-linear FE model was set up to simulate the pressure loading of the test sample using the
commercial FE program, MSC Marc/Mentat®. Since in the test specimens the meander profile
starts transitioning to a ripple profile as soon as a slight pressure is applied [20] [see Figure 6], the
analysis is focused on ripple and the cylindrical regime. As the substrate is many orders of
magnitude stiffer than the film, it is modelled with rigid boundary conditions at the edges of the
film. The rectangular membrane was meshed uniformly with quadrilateral 4-node thick-shell

elements having three translational and three rotational degrees of freedom at each node. A
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mesh convergence study was performed and it was found that the solution becomes mesh

independent at a size of 80x400 elements (used as the mesh size for the model).

Four batches of multi-layer test samples were available for testing, with varying material stack
thickness ratios and hence different overall membrane thickness and volume averaged Young's
modulus. The focus here is on developing a methodology for obtaining thickness-averaged
mechanical properties of the buckled membranes. This is also the case for conventional bulge test
which also provides thickness-averaged data only. Therefore, the Young's modulus and Poisson's
ratio in the FE model were set to 153.45 GPa and 0.351, respectively, based on a batch of
samples planned for fabrication but was never produced. Note, however, that the exact
properties used for the FE model are unimportant for the analysis and conclusion made and the
model serves as a general platform for virtual experiments. The dimensions of the membrane in
the FE model were taken as 1 X 5 mm? in accordance with the size of the test samples, while the

membrane thickness was set to a value of 50 nm based on the median thickness batch.

To induce buckling in the membrane in-plane compressive load is required. The residual
compressive stress was simulated through a thermal loading step resulting in an in-plane stress
applied by the substrate (frame) on the freestanding membrane. This is caused by higher
contraction of the substrate w.r.t the membrane on cooling down from a high temperature. Since
the substrate was modelled by rigid membrane boundaries, the difference in coefficient of
thermal expansion («) of the substrate and the membrane (—2.6 X 10 — 6 °C ™) was assigned to

the membrane, to simulate this effect.

14
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Figure 5: Three-step thermo-mechanical loading procedure for gradual onset of buckling, initially as a ripple
profile, finally settling into a meandering profile at the last load increment. In load step 1, the pressure is
increased while temperature is kept constant to result in an inflated cylindrical profile. Subsequently, in
load step 2, the temperature is decreased while the pressure is kept constant, resulting in thermal stresses
that (gradually) manifest themselves as increasing residual compressive stress while the pressure is
reduced (as the temperature is kept constant) in load step 3, triggering the onset of ripples. Note that the
top sub-figures represent membrane defection for the corresponding load increment with a line profile of

half of the longitudinal center line.

In order to avoid typical numerical instabilities at the bifurcation point (i.e. suddenly going from
a flat to meandering shape in a single increment), a method used to model strongly buckled
square membranes from Ref. [23] was adopted here. This involves bypassing the bifurcation point

by adopting the three-step loading procedure illustrated in Figure 5. First the membrane is bulged
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by application of a pressure load (Figure 6as). Then, compressive residual stresses are induced in
the bulged membrane by applying the thermal loading step. In the final step the pressures is
gradually decreased to let the membrane slowly settle down into a rippled profile (Figure 6a;). If
the pressure is completely removed the membrane transitions from a rippled to a meandering
configuration (Figure 6a1). Using this method, in addition to bypassing the bifurcation point, the
strong and sudden geometrical nonlinearities expected at the transition from planar to
meandering configuration are avoided by gradually settling from the cylindrical to the rippled

configuration.
3. Numerical analysis

3.1 Simulation results

Using the three step loading procedure, explained in the previous section, the numerical model
adequately captures the three different regimes seen in the experiments, i.e. the rippled,
meandering regime, and the cylindrical regime. Moreover, the evolution of the rippled regime,
with increasing pressure as well as the transitions between the different regimes seems are well
captured. Comparison with experimentally observed regimes shown in Figure 6 provides a

qualitative validation of the model.
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Figure 6: Comparison between numerically modelled (a) and experimentally observed [24] (b) buckling
regimes: meandering regime (as, b1), rippled regime (a, b;) and cylindrical regime (as, bs), with membrane
size 1x5 mm?(a) and 0.65x4.5 mm? (b). Note that similar buckling (meandering and rippled) regimes as in
Ref. [24] are observed in our samples (see Figure 4), however, since cylindrical regime is not reached, the

images are not shown here.

In order to also quantitatively validate the FE model, the Energy Minimization Method (EMM)
based model reported by Kramer et al. ([24]) is exploited here. This model was developed to

describe the rippled regime for a similar rectangular membrane with width a and thickness h, as

discussed here. The model is able to predict the reduced ripple wavelength 1 = %, the reduced

peak-to-peak amplitude Aw = ATW and the reduced ripple free amplitude w,; = % (see Figure

p(1-v?)a*

2
7), as a function of the reduced prestrain €, = Ehiz and the reduced pressure p = F

17
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Figure 7: Centre line profile of (half of) the membrane along the longitudinal direction, extracted from FE
simulation at increasing pressure values loads, with the middle profile (in blue) corresponding to é,=-500
and p = 7.48x10" displaying relevant parameters. The three profiles display the evolution of the buckling

pattern with increasing pressure.

For realistic values of the applied pressure and residual stress (due to thermal loading) the results
for our test specimens lie significantly outside the boundaries of the plotted results presented in
Ref. [25], due to their very small thickness. In order to validate the FE model, smaller temperature-
load and pressure values are applied to enable a comparison with the EMM results. Based on the
values of E, v and the coefficient of thermal expansion («), used in the FE model, a temperature
difference of 0.347 °C and a pressure load of 0.0818 Pa is calculated, which corresponds to a
reduced strain, €yesc 0f —500 and a reduced pressure P, of 7.4811 x 10%, respectively, thus
bringing the €, and p values within the bounds of the reported EMM results available (in Ref.
[25]). A line profile along the longitudinal axis in the middle of the membrane from the FE
simulations is displayed in Figure 7 with the calculated reduced parameters which are given in
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Table 1, along with the corresponding parameters from the EMM results at the same €, and p

values.

Table 1: Comparison of A, Wys and Aw predicted by EMM [25] and by the present FE analysis

FE EMM
pl 0.242+0.01 0.250 £0.005

Wy 20+ 0.4 19.7+0.2

AW 2310.4 26+0.1

As can be seen in Table 1, the FE and EMM results agree for all three parameters within readout
error from the FE and EMM results. However, the deviation for Aw is significant. On the one hand,
the higher variation for Aw can partially be attributed to a higher readout error from the EMM
plots, reflecting in the error bar in Table 1. On the other hand, the peak-to-peak amplitude varies
over the length of the line profile in the FE results (see Figure 7), thus an average value of a
relatively small magnitude is taken thereby, possibly contributing to the relatively high deviation.

Based on the adequate agreement for all three values, FE model is considered valid.

3.2 Numerical analysis of a suitable regions of interest:

As the model adequately captures the mechanics of the pressure loaded buckled membrane, it is

well suited to be used as a numerical framework to test the methodology developed here, i.e.
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serving as a virtual experiment. Various ROIs are analyzed, where, with suitable modifications,

bulge test analysis can be applied. The criteria for choosing a suitable ROl are:

1. The presence of a simplified stress or strain state, e.g. plane-strain
2. Membrane stresses can be conveniently calculated using an analytical equation, e.g. Eq. (2)

3. Membrane strains (using DHC) can be accurately determined

While the cylindrical regime may seem promising from the analysis point of view as classical
simple plane strain bulge equations may be applicable there, most initially-buckled membranes
(of various types) fracture before reaching the cylindrical regime, while those membranes that
can sustain a high enough pressure typically go into plasticity before entering the cylindrical
regime. Alternatively, the meandering regimes is not interesting form a practical point of view, as
it is only accessible at minute pressures [20]. Since the rippled regime exists throughout almost
the whole pressure loading cycle, only the rippled regime is here considered for further analysis.

Therefore, the analysis must be performed in the ripple regime.

There are multiple reason for choosing the ROl along the longitudinal center line of the
membrane. First, it is observed in the FE simulations and the experiments that the magnitude of
the ripples close to the longitudinal edge is lower than that of the same ripples in the center of
member, see Figure 8. This is due to the boundary constraints provided by the edge (on the edge
ripples can, of course, not form). Second, considering the third criterion of accurate
determination of the membrane strains using DHC keeping the ROl always in the field of view is
important. Due to symmetric deformation, an ROl in the center of the membrane experiences the

least rigid body motion, while closer to the membrane edge the large out of plane rotations result
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in large rigid body motion. Furthermore, these large out-of-plane rotations can affect the image
residual, due to the change in effective viewing angle of the pattern, as discussed below. Finally,
the boundary conditions at the edge are never as perfect as assumed in a Finite Elements
simulation, especially when a dry etch is used to free the membrane, therefore, it is best to do
the analysis far away from the edge, where these local boundary effects are negligible due to the
well-known Saint-Venant's principle in solid mechanics. Therefore, the most suitable ROI is

identified as an ROl along the longitudinal center line far away from the edges.

1.2 T T

Center line profile
— Edge line profile

S
o
T

Center line profile
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Figure 8: Comparison of simulated center line profile and edge line profile (calculated at the first free node

from the edge), at the first FEM increment that shows ripples (i.e. point 3 in Figure 5).

It can be assumed that the membrane is in a state of plane stress with respect to the thickness

direction, since the thickness of the membrane is very small relative to the other two dimensions
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(with free contraction in the thickness direction). Indeed, the stress in the thickness direction due
to the applied pressure is negligible compared to the in-plane stress. Furthermore, isotropic
material behavior is assumed (which is common for thin films produced with thin film deposition
techniques). Therefore, the isotropic linear elastic plane stress equations (Eq. (16) and (17)) apply

for the present analysis.

1 1
€yy =7 0yy =V Oxx, (16)
1 1 (17)

Exx = —anyy + Eaxx,

where €,,,, and €,, are the normal membrane strains in the longitudinal and transverse direction,
respectively, while, o), and oy, are the membrane stresses in the longitudinal and transverse

direction respectively.

The FE analysis shows that in the cylindrical regime the magnitude of the transverse stress g, is
much larger than the longitudinal stress gy, as expected for a rectangular geometry. In the last
loading step, as the pressure is being reduced, at a certain stage (labelled point 3 in Figure 5), the
longitudinal stress becomes compressive while the transverse stress is still tensile. As soon as the
stress state in the longitudinal direction becomes compressive, the membrane releases the
compressive stress by buckling, in the form of a rippled pattern. Given its small thickness and
consequently negligible bending stiffness, the membrane does not possess the ability to support
a compressive stress, which is therefore released in a buckling pattern. This phenomenon is

illustrated in Figure 9. After the emergence of the ripples, as the pressure is further decreased,
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the longitudinal stress remains almost zero. The transverse stress however is still tensile and it
keeps on decreasing with decreasing applied pressure. The small longitudinal stress varies over
the width of a ripple due to the bending induced stress, and is therefore most compressive at the
valley of the ripple while being least compressive at the peak of the ripple. At the crossover point
in the middle of a ripple where the curvature is zero (marked with point Cin Figure 11a) however,
where bending effects do not contribute, the compressive stress is only due to the residual stress

and ~300 times lower than g, (at the ripple transition point), i.e. negligible.

800 T T ,
Transverse stress
————— Longitudinal stress
600 1
Ripple regime Cylindrical regime
©
o
=, 400 1
2]
(%]
o
9 200+ 1
0 L U B :::,':,‘:,- ,,,,,,,,,,,,,,,,,,,,,,, _
Ripple onset/7
0 8 10

4 6
Applied pressure [kPa]

Figure 9: Calculated transverse and longitudinal stress at the center in transverse direction and near the
center in longitudinal direction, i.e. in the middle of a ripple where the curvature is zero, as a function of
the applied pressure in the ripple and cylindrical regimes, revealing that the longitudinal stress stays close

to zero in the rippled regime.

23



391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

Accordingly, this configuration is close to uniaxial tension, i.e. there is only a non-zero stress in
the transverse direction while the deformation in the longitudinal direction is governed by free

contraction. Therefore Eq. (16) and (17) reduce to:

1 (18)
€yy = —anxx
1 (19)
€Exx = Eo-xx
Inserting Eq. (19) into Eqg. (18):
€yy = —VExy. (20)

Eqg. (19) and (20) provide a direct (explicit) relationship between the relevant stress and strain
components, which is linear, similar to the conventional plane strain bulge test. Furthermore,

unlike the plane strain bulge test, where the Young's modulus and the Poisson's ratio are coupled
in the plane strain modulus (%), here E and v can be obtained separately from a single

experiment.

At this point it is important to note that in the regions where the ripples have locally diminished
along the longitudinal direction, e.g. point A in Figure 7, neither plane strain, nor plane stress
condition holds with respect to the in-plane directions due to which Eq. (16) and (17) cannot be
reduced to a simpler form to yield E and v, even in a coupled form. Therefore, the analysis is best
performed at the true center of the membrane (i.e. the middle in longitudinal direction), where
the ripples disappear for the highest pressure, making the above-mentioned analysis valid for the
largest pressure regime (another reason is that the rigid body motion is lowest at the true center

as discussed above).
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The validity of the uniaxial tensile state (Eq. (19) and (20)) is assessed with a virtual experiment.
The stress and strain state is extracted from a node at the cross-over (zero curvature) point
(denoted as point C in Figure 11) in the ripple in the center of the membrane. The Young's
modulus is extracted from the gradient of the o,, — €,, plot (see Figure 10a), whereas the
Poisson's ratio is extracted from the €,, — €,, plot (Figure 10b). The Young's modulus (with a
value of 154.5 GPa) is extracted with an error of 0.68 %, while the resulting Poisson's ratio (with
avalue of 0.357) reveals an error of 1.7 % with respect to the respective reference (input) values

in the FE model.
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Figure 10: Stress and strain values extracted from FE results in the rippled regime to obtain Young’s
modulus (E) and Poisson’s ratio (v): (a) Transverse stress (o,.,) vs. transverse strain (€, ) with a linear fit

to provide E, and (b) Longitudinal strain (€,,,) vs. transverse strain (€, ) with a linear fit to provide v.
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Note that Eq. (15) is still valid in the rippled regime, allowing to relate the local curvature and
applied pressure to the transverse stress at the crossover point. This is the case, since at the
crossover point the local curvature in the longitudinal direction is almost zero, whereas gy, is
negligible w.r.t oy, (as illustrated in Figure 9), thus the pressure applied to the face of the
membrane is entirely balanced by the transverse stress. The validity of Eq. (15) in the rippled
regime is numerically assessed by computing the transverse stress oy, from k., (extracted from
the FE simulation) and the applied pressure P (known in the simulation). The resulting value was
plotted against the transverse strain €,, extracted from the FE simulation to determine the

Young’s modulus, which has an error of 1.4 %.

Based on the relatively small errors in the extracted values, it is concluded that the proposed
method is promising. This analysis sets the basis of the characterization methodology. In a real
experiment, g;; can be determined using Egs. (12) - (15) from the position field in the deformed
configuration. While €,,, and €, can be obtained from the 3D displacement fields using Egs. (26)
- (29), as will be shown in the next section. Furthermore, for the membranes that have not
ruptured before reaching the cylindrical regime at higher pressure, this method can be used in
conjunction with the plane strain equation. In that case, the same ROI analyzed in the rippled

region can also be analyzed in the cylindrical plane strain state.

Practical application of DHC to the bulged buckled membranes requires highly accurate
determination of 3D displacement fields as well as the position field in the reference
configuration. This procedure is first tested in a virtual experiment. To this end, the displacement
fields are extracted from the FE simulation in a typical ROI, from peak to valley in the longitudinal

direction (marked in Figure 11a point A to B).
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Figure 11: A schematic illustrating: top, middle and bottom layers of membrane long the longitudinal

direction (a); and L‘f and L{ used for determining the transverse membrane strain (€,,) (b); and
longitudinal and transverse sections represented on FE simulation of rippled membrane (c). A, (-) and A, (-
) denote operators that act on the specified field to produce the field’s finite difference in, respectively, the

x- and y- direction.

These displacement fields and the resulting analysis correspond to the membrane mid-plane. In
DHC however, only the membrane surface (top or bottom, see Figure 11a) can be analyzed and
thus only displacements at the surface are determined. This causes a discrepancy of less than

0.5 % between the transverse displacements extracted from the mid-plane and the outer surface
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(top/bottom) plane in the FE simulation. However, for the longitudinal displacement, due to the
significant curvature in that direction, the displacement at the surface is found to be considerably
different with respect to the displacement at the mid-plane. Nevertheless, the average of the
longitudinal strain over a full and half ripple width (as considered here), on the top surface should
be the same as on the mid-plane, since the difference in the length of a line profile from the peak
to the valley of the ripple in the top surface, middle and bottom planes (Figure 11a) will be
negligible, especially for small strains. This has been validated by the FE simulation. Therefore,
the average longitudinal strain over half the ripple width is computed, and plotted against the

transverse strain in Figure 13a, resulting in a value of Poisson’s ratio with an error of only 0.3 %.

Another important observation can be made from Figure 12b, which shows that the longitudinal
displacement is in the order of a few nanometers. The best optical in-plane resolution is
approximately 250 nm. Even considering a subpixel resolution of ~0.01 pixels that can be
captured with DIC techniques, the longitudinal displacement cannot be captured accurately due
to the physical resolution limit. Furthermore it has been discussed in literature [26] that for large
out-of-plane rotations (high curvature changes), a systematic error in the displacement fields
might be introduced. To address this shortcoming, the longitudinal (in-plane) strain is disregarded
and only the rigid body motion in the longitudinal direction is used, together with the height
displacement field for determining the longitudinal membrane strain €,,,, see Figure 13b. The
resulting Poisson’s ratio still has an error limited to 0.3%. Therefore, only the rigid-body motion
will be included as the displacement description in DHC to capture the longitudinal displacement

field.
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Figure 13: Graphs of the longitudinal strain (€,,) as a function of the transverse strain (€,,) linear fits to
extract the Poisson’s ratio, where €,,,, is averaged over a line-profile that ranges from ripple peak to valley,

for (a) €, obtained from both w,, and u, (from FE simulations) and (b) €,,,, obtained only from u,.

4. Proof of principle experiment

Here, the results of a successful test serving as a proof of principle experiment to show the
feasibility of application of the method in a real experiment are shown. Pressure increments of
2.5 kPa were applied to the sample and kept constant while the topographical images were

acquired with the profilometer.

An ROI shown in Figure 4 from the peak to valley of a ripple is selected for DHC analysis. As
discussed in Ref. [8], a limited number of degrees of freedom (dofs) has to be used to capture the
deformation kinematics accurately. Too few dofs restrict the kinematics while too many can cause
the correlation to diverge while making it sensitive to image noise. Here, the expected order of
displacements is determined from the out-of-plane and transverse displacement fields extracted
from the FE simulations (Figure 12), defining the initial set of shape functions to be used for the
DHC analysis. More shape functions are subsequently added to optimize the correlation until the
residual fields cannot be further minimized. The longitudinal displacement only consists of a rigid-

body term.

Uy = 4x°%% + ,x%1 + A3x1y0 + Auxty?t (21)
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uy = A5x°° (22)
Uy = Aexy0% + ;x0T + Agxly® + Agxlyt + 41022y + 41112yt + A1,x2%y? (23)
+ A13x°%92 + Aaxty? + Asx1y® + A6x°y3 + A,x09* + 2,5x0%y°
4 A19x%y8 4+ A50x°y7 + Ap1xty3 + Appxty* 4+ A3x1y5 + 1yuxty®
4 Aosx1y8 + Ayex3y8 4+ 257x5y8 + Aygx0y8 + 1y9x2y”°
The number and order of shape functions needed to capture the out-of-plane displacement is
significantly higher than those required for the in-plane (transverse) displacement field, see
Eq.(21) and (23). This is expected since the predicted (from FE simulations) displacement field in
the height direction is considerably more complex than the in-plane (transverse) displacement
field, see Figure 12. This is not a problem since the optimization of the dofs related to out-of-
plane shape functions is more robust than the in-plane shape functions, since the out-of-plane
displacement field directly affects the image residual, whereas, the in-plane displacement field

affects the image residual through the (noisy) image gradient (see Eq. (7)).
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Figure 14: Residual fields for selected region of interest: (a) before correlation, i.e. f(X) — g(¥) and (b)
after correlation, i.e. f (X) — g(ic’ + Uy (%) + uy, (X) ) + u,(X). Note the region in the black rectangle in (b),

which contains an irreproducible feature, was masked from the correlation.
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Figure 15: Displacement fields for selected region of interest obtained by DHC: (a) height displacement field

(u,) and (b) transverse displacement field (u,,).

The quality of the correlation in DHC is typically assessed by analyzing the residual fields. Figure
14a, and Figure 14b show the residual before and after correlation, respectively. The signature of
the pattern is vaguely visible after convergence, due to the increasing rotation of the membrane
during bulging, resulting in an altered viewing angle. However, the residual field has a very low
RMS value indicating that the correlation was successful. Moreover, a good qualitative agreement
can be seen between the shape of the displacement fields extracted from the simulations (Figure
12) and the displacement fields obtained from DHC analysis (Figure 15), confirming that the

deformation kinematics has been adequately captured.

Subsequently, the required membrane strain €,, and €,,, are calculated from the obtained 3D
displacement fields. This involves determination of strain with respect to a non-flat (rippled) initial
configuration (f). The stretch ratios and principal logarithmic strains resulting from the

deformation are given by:
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€xx = IN(Ap) (24)

€yy = In(4;) (25)

. length | . -
where A; and A; are the stretch ratios (1 = current length ) in the transverse and longitudinal

original length

directions, respectively, and given by:

LY 26
/1t=—} (26)

Lt

L? 27
/11=—} (27)

L

LY and L’; are denoted in Figure 11b and defined as:

L9 = \/ (Aelr + u))” + (By(2r + uz))2 28

= J(00) + (82)))° (29)

where Z; is the height map of the reference image (i.e. f (X)), while A,(+) denotes an operator
that acts on a field to produce the finite difference of the field in the x-direction. Since the
reference surface is expected to be non-smooth due to the applied pattern and its intrinsic
surface roughness, the height map and resulting displacement fields will be non-smooth. A
surface polynomial fit of the reference image is used to smoothen this field. Similarly, for
determining the surface normal and curvature values using Eq. (13), a smoothed position

field (Zf + u,) is adopted instead of the deformed configuration (topographical image) g@@).

Likewise, L‘? and L’; are given by:
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(30)

1 = (84,0 + w) + (8 +u,))

(31)

L{ = J(Ay(Y))Z +(8y(2) )2
where Ay (+) is the operator that produces the finite difference of the specified field in the y-
direction. Subsequently the transverse stress is determined using Egs. (12) - (15). The transverse
stress g, is plotted again the transverse strain €, in Figure 16a resulting in a Young’s modulus
of 211 + 8 GPa. In order to obtain the Poisson’s ratio, the mean longitudinal strain €,,, (instead
of €;;, as discussed in the previous section) is plotted against the transverse strain €, resulting in
a value of 0.36 + 0.12. These values are in adequate agreement with the predicted (volume
averaged) Young’s modulus and Poisson’s ratio of respectively 217 GPa and 0.35, respectively.
Therefore, the proposed methodology can be applied to obtain the elastic properties from a

buckled membrane.
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Figure 16: Stress and strains obtained from DHC results plotted to determine Young’s modulus E and
Poisson’s ratio v: (a) transverse stress (0y,) vs. transverse strain (€,.,) with a linear fit to obtain the Young’s
modulus (E) and (b) mean longitudinal strain (e_yy) vs. transverse strain (€, ) with a linear fit to obtain

the Poisson’s ratio (v).

5. Conclusions and Recommendations

It is well known from literature that conventional bulge testing, which is frequently used to
characterize freestanding membranes, does not apply to the particular class of buckled
membranes. In this paper, the conventional bulge test methodology has been extended to
characterize the elastic properties of buckled membranes. This has been achieved by developing
a validated FE based numerical model, which captures the complex mechanics of the (pressure-
loaded) buckled membrane. A recently developed DHC approach has been employed to obtain

local, complex 3D displacement (strain) and curvature fields.

Interestingly, the virtual experiments revealed that, embedded in the seemingly complex ripple
configuration, a simplified state of uniaxial stress exists in the transverse direction. This implies
that the transverse stress can be directly related to the transverse strain, yielding Young’s
modulus. Poisson’s ratio can be extracted directly from the ratio of the longitudinal strain and the
transverse strain. This is a significant advantage over the conventional bulge test theory where
Young’s modulus and Poisson’s ratio are intrinsically measured in a coupled manner, either

through the plane strain modulus or the biaxial modulus. As a result, tests on two sample
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geometries, typically rectangular and square shape, are needed to obtain Young’s modulus and

Poisson’s ratio independently.

The numerical model also showed that applying DHC to measure the displacements in the
longitudinal direction would require high-order shape functions and a displacement resolution
that cannot be achieved with an optical system. This problem was solved by exploiting the fact
that the contribution of the ‘in-plane’ longitudinal displacement to the longitudinal strain is
negligible, allowing to obtain an accurate value of Poisson’s ratio by only considering the height

displacement to determine the longitudinal strain.

Proof of principle experiment clearly show that the method is applicable on real samples, even
with rather narrow ripples dimensions (20-30 um) and only few data points, as the fragile samples
were very susceptible to deformation induced failure. Residual maps indicate proper convergence
and the shape of the displacement fields captured with DHC adequately match the predicted
displacement fields extracted from the FE simulation, confirming that the buckled membrane
kinematics are being properly captured. Moreover, the resulting values of Young’s modulus and

Poisson’s ratio are consistent with the expected values based on the material stack.

As both the stress and strains are measured under uniaxial tension, the method is not necessarily
confined to the elastic regime and should work as well in the plastic regime (yielding plasticity
parameters), if the specimens would plastically deform. Furthermore, by applying cyclic pressure
loading, fatigue testing, as suggested in Ref. [27] for plane strain loading, can be applied with
uniaxial tension. Using a feedback loop to maintain a constant membrane stress, as suggested in

Ref. [28], a creep test in uniaxial tension can be performed.
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