

Formulating parsing theory with bunch theory

Citation for published version (APA):
Leermakers, M. C. J. (1993). Formulating parsing theory with bunch theory. (IPO rapport; Vol. 927). Instituut
voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 08/09/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1cc954bb-3044-40d2-a2e3-a33de53f675f

Institute for Perception Research
P.O. Box 513, 5600 MB Eindhoven

RUjg 93/07
08.09.1993

Rapport no. 927

Formulating parsing theory
with bunch theory

R. Leermakers

(a 'journal version' of manuscript no. 909)

Formulating Parsing Theory with Bunch Theory
I

Rene Leermakers

(Institute for Perception Research

P.O. Box 513, 5600 MB Eindhoven

email: leermake@prl.philips.nl)

Abstract

Much of mathematics, and therefore much of computer science, is built on

the notion of sets. In this paper it is argued that in computer science it

is sometimes convenient to replace sets by a related notion, bunches. The

replacement is not so much a matter of principle, but helps to create a more

concise theory. Advantages of the bunch concept are illustrated by using it

in descriptions of functional parsing algorithms and attribute grammars.

I. INTRODUCTION

Parsers are often defined only for the subclass of context-free grammars for which they

are deterministic. Mathematically, these subclasses, such as LL and LR grammars, are

rather artificial compared to the entire set of context-free grammars. This makes determin

istic parsing algorithms less amenable to mathematical methods than their nondeterministic

generalizations. This is especially true if the generalization is described functionally. Thus, it

is generally wise to first develop a nondeterministic functional parser for arbitrary grammars

and to specialize to a subclass afterwards.

If a nondeterministic parser is applied to a grammar for which it is not deterministic, it is

of little use, however. For instance, if an LR parser encounters a shift-reduce conflict, it may

choose 'shift' where it should have 'reduced'. Angelic processes, ones that make only correct

1

choices, do not exist in the real world. Thus, in order to be useful, a nondeterministic parser

should be changed into a deterministic one that, whenever it has more than one option,

investigates all possibilities. Because more than one option may be successful, this strategy

entails that parser functions become multiple-valued. The usual step is to make the functions

set-valued. This means that an expression like f(g({)), where f and g are parser functions

becomes something like

{TJI(E g({) A TJ E /(()}.

As a consequence, in the deterministic case the parser does not have the simple form it could

have; its functions produce singletons instead of their elements.

Although one can try to hide the complexity introduced in the transition from nondeter

ministic functions to deterministic set-valued functions by using smart definitions (Hutton,

1993), or monads (Wadler, 1992), it would be preferable to avoid the problem altogether.

In this paper we take a different view on multiple-valuedness to achieve this. A nonde

terministic function can be seen as a deterministic one that returns a simple specification

of a nondeterministic process, producing any of the results of the nondeterministic func

tion, followed by the execution of the specified process. The task of the transformation to

multiple-valuedness is to switch from executing the processes to interpreting their specifica

tions. In this view, transforming nondeterministic functions to set-valued ones, amounts to

proposing sets as specifications of processes. Of course, { e1 , e2 } is a very ugly specification

of a process that could produce either e1 or e2. The usual notation is e1 le2 (Hoare, 1985).

A clear advantage of such expressions is that the specification of a deterministic process is

just the value to be produced. Specifications like e1 le2 are called bunches, and the I that

separates the elements of the bunch is called the bunch-union operator. We refer to the

property that a singleton bunch is exactly the same as its only element as the singleton

property of bunches.

Functions distribute over nondeterministic values:

f(e1le2) = f(e1)lf(e2).

2

The nondeterministic way to interpret this formula is: if f is applied to either e1 or e2 it

produces either f(e1) or f(e 2), which can both be nondeterministic. If we switch to inter

preting specifications of processes, rather than executing them, the same formula means: if

f is applied to the bunch e1 le2, the result is the bunch union of the bunch-valued results

of f(e1) and f(e 2). In other words, the requirement that bunches be interpreted implies

that function application must distribute over bunch union. This distributivity property of

bunches, together with their singleton property, make it possible to reinterpret the speci

fication of a nondeterministic function as the specification of a deterministic bunch-valued

one and vice versa, without transformations.

The distinction between sets and bunches resembles a quite common, but often implicitly

made, distinction: the one between strings and lists. Strings have the singleton property,

lists do not. We will advocate the use of both strings and bunches for defining the signatures

of functions.

The paper starts with a discussion of bunches, strings and signatures. Bunch theory is

subsequently illustrated by using it for the definition of top-down, Earley-like and LR(O)

parsers. Bunch-valued functions can also be used to generalize conventional functional ap

proaches as an alternative to going from a functional to a relational description. This will be

shown by giving a bunch-functional account of a relational extension of attribute grammars

that was proposed in (Hemerik, 1984), in the style of (Johnson, 1987). An earlier version of

this paper appeared as (Leermakers, 1993b).

II. BUNCH THEORY

As we saw above, a bunch is a specification of a nondeterministic process. Alternatively,

a bunch can be seen as a set-like aggregation, but it has some remarkable properties:

1. The singleton property: a singleton is the same thing as its only element; both specify

a process that produces only that single element.

3

2. The process that corresponds to a bunch produces definite values. Therefore, the

simplest specification of such a process is a simple enumeration of values. Thus,

elements of a bunch cannot be bunches that are not definite values.

3. The distributivity property: function application distributes over bunch union.

Bunch union I has the same properties as set union: it is associative, commutative and

idempotent. The main intuitive difference with sets is that a bunch is not 'one thing' if it

has more than one element. This is why a bunch with many elements cannot be one element

of another bunch: it can only be many elements of another bunch. This is also why a bunch

with many elements cannot be passed to a function or operator as one thing. Here are a

few examples of equalities for expressions involving bunches that illustrate the above:

3 + (112) = 415

(314) + (112) = 4151516 = 41516

cos(1rlO) = -111

(1 j 2) > 3 = false jfalse = false

Apart from enumerations, one has the empty bunch null. It is the identity of bunch union.

The bunch all denotes the bunch of all definite values. If e is one of the values in a bunch x,

we write e +- x. Here and henceforth, e is a definite value or, what is the same, a singleton

bunch.

Formalization

A formalization of bunches is the following:

• null is the empty bunch;

• if e is a definite value then e is a bunch;

• if x and y are bunches then xjy is a bunch.

All bunch properties that do not follow directly from these clauses are captured by

4

• (xly)lz = xl(ylz) = xjyjz;

• xix= x;

• xjnull = x;

• f(xly) = f(x)lf(y),

where x, y, z are bunches and f is a function.

Bunch expressions

Bunch-valued functions are defined in terms of bunch expressions. A bunch expression

denotes a bunch. A bunch expression is either a bunch, in which case it denotes itself, or

it is some constructor taking other bunch expressions, in which case the bunch denoted is

defined in terms of the bunches denoted by the constituent bunch expressions. A bunch

expression may contain free variables, in which case the bunch denoted is indexed by the

values of these variables. Unless stated otherwise, variables are definite; they cannot be

bound to bunches with cardinality unequal to one. Below follows the list of constructors

that will be used in this paper, with their meaning.

One constructor is bunch union. Hence, if x and y are bunch expressions then xjy is a

bunch expression. Not surprisingly, the denotation of xjy is the bunch union of the bunches

denoted by x and y.

The second constructor is if-then-else. Given a proposition P and bunch expressions x

and y, the expression

if P then x else y (1)

is a bunch expression. Normally, at least P will contain free variables. It will be clear that

for each assignment of values to the variables the complex expression (1) is equivalent to

the bunch denoted by x if P is true and to the bunch denoted by y otherwise.

5

Free variables in bunch expressions can be bound by A-abstraction. If i is a variable and

x is a bunch expression, then

Ai. X

is a bunch-valued function. For any definite value e, the function application

.Xi · x(e)

is a bunch expression and denotes the bunch denoted by x, after substituting e for every

occurrence of variable i in x. If f is a bunch-valued function and x a bunch expression, then

f(x) is a bunch expression denoting the result of distributing f over the bunch denoted by

x. Note that it is important to distinguish between functions and expressions. In expression

x in .Xi• x, variable i may occur more than once. If function .Xi· x is applied to a bunch

y, then the distributivity of functions over bunches means that the function applies to each

e+-y separately. That is, if x = i + i then .Xi• x(2l3) = (2 + 2)1(3 + 3); 2+3 is not included.

In jargon, the semantics of bunch notation is such that functions are not unfoldable: a

function invocation cannot necessarily be textually replaced by the expression that defines

the function (S~ndergard & Sestoft, 1990).

Our enterprise is to make it possible to reinterpret a nondeterministic functional def

inition as a multiple-valued one. Therefore, we shall finally define the ubiquitously used

'let ... in ... ' construct in bunch terms. Following (Norvell & Hehner, 1992), we view the usual

let construct as being composed of the guarded-expression construct

P t> x def if P then x else null,

where Pis called a guard, and let quantification

let i · x def .Xi· x(all).

Guards may involve bunch expressions through conditions of the form i +- x, where x is a

bunch expression and i a (definite) variable bound by let quantification. A simple example

IS

6

leti•i+-x l>f(i),

which corresponds to 'let i = x in f(i)' in a deterministic language, and to 'let i be a value of

x in f(i)' in a nondeterministic language. To diminish the need for disambiguating brackets,

we stip1,1late that I> takes precedence over I and let. The bunch all will in general be infinite,

so that a function that distributes over it might produce an infinite bunch as well. In our

application, however, the structure of bunch expressions will be such that let's produce only

finite bunches.

Laws

The following laws are useful for manipulating bunch expressions:

(2)

(Pi V P2) I> x = (Pi I> x)l(P2 I> x), (3)

P = i +- let i' · (P' I> i'), (4)

let i • i+-x I> f(i) = f(x). (5)

In (5), i is a variable that does not occur free in x. In (4), P' is obtained from P by replacing

variable i by i'. Laws (2) to (5) are easy to prove: the first three follow from the definition

of I>; the fourth follows from the distributivity of function application over bunches, and it

is also quite obvious from the nondeterministic point of view.

Notation

A typical function definition looks like

f = ,\X · (letY · (letZ · P(X, Y, Z) I> A(X, Y)))

7

(6)

where P is a predicate, A is a function and X, Y, Z are variables or strings of variables.

In this paper, we will use a notational convention that removes the .\'s and the let's from

definitions such as (6). Instead of (6) we write

f(X) = P(X, Y, Z) t> A(X, Y). (7)

So .\X· has changed into a formal argument on the left-hand side and we adopt the conven

tion that free variables at the right-hand side (here Y,Z) are bound by let's. The scope of

such an implicit let is in practice always clear: it is from the first occurrence of the variable

usually until "I", or else until the end of the bunch expression. Thus, whenever an expression

P t> x is encountered in this paper, with some free variables, its meaning is that all possible

values for the free variables must be tried to make the guard P true and all results x must

be combined in one bunch. Note that (7) is equivalent to

f(X) = :lz(P(X, Y, Z)) t> A(X, Y).

This equivalence may sometimes make algorithms easier to understand.

Strings

The distinction between sets and bunches may seem strange at first, but it resembles

a quite common, but often implicitly made, distinction: the one between strings and lists

(Hehner, 1993): strings have the singleton property, but lists do not.

In this paper, different kinds of strings are distinguished by their symbol for concatena

tion. The bunch IT; of strings over the bunch IT, with concatenator $, is defined as

• <: +-IT*· $,

• if e+-IT then e+-IT;;

• if X +- IT; and y +- IT; then x$y +- IT;.

8

Variable$ takes the value',' (for argument strings, used as input and output of functions,

see below) or it is empty, in which case elements are combined into strings by mere juxta

position. In parsing theory, for instance, strings of grammar symbols are normally written

without an explicit concatenator. We will follow this convention. String concatenation

binds tighter than everything else, and concatenation by juxtaposition takes precedence

over concatenation with ','.

Strings are subject to the equivalences

• (x$y)$z = x$(y$z) = xyz;

• t$x = x$t = x.

Hence, strings cannot be elements of strings of the same kind.

The formal definition of strings and the equivalences that hold for them are similar to

those of bunches. Only, string concatenation is not commutative and not idempotent, and

there is no distributivity law. Strings can be elements of bunches and of strings of a different

kind (with another concatenator). String concatenation distributes over bunch union.

Function signature

Given functions f : AH B and g : B H C, the signatures entail that the function f g

defined by

(f g)(x) = g(f(x)) (8)

is a type-correct composition that has signature AH C. If f is allowed to produce a bunch

of elements of B, then g(J(x)) is well-formed as well, due to the distributivity property of

bunches. This means that it is natural not to mark the bunch-valuedness of functions in

their signatures. Thus, f : A H B in general denotes a bunch-valued function. It can be

combined with g: B H C to produce a function Jg: AH C, which will be multiple-valued

if f or g is. Of course, it is not surprising that bunch-valuedness does not show up in

signatures: nondeterminism also does not.

9

Usually, one writes function signatures like

f:AxBr--+CxD

where A, B, C, Dare sets and Ax B = {(a, b)la EA I\ b EB}. If a function has more than

one argument, we adopt the convention that it actually takes a string of arguments. To keep

things symmetric, it also produces a string. Hence, we write

f: A,B r--+ C,D

where A, B, C, D are bunches and A, B follows from the distributivity of ',' over A and B.

The use of bunches as types thus eliminates the need for defining an operator on types for

each operator on values (Hehner, 1993). The empty type, usually called void, is simply the

empty string t:.

Summarizing, every function has one argument and one result, which are both strings

(possibly singletons). Thus, a general function can be applied to a bunch of strings and

produces a bunch of strings. See especially section VIII for advantages of this convention.

III. CONTEXT-FREE GRAMMARS: NOTATION

A context-free grammar is a four-tuple G = (VN, VT, P, S), where Sis the start symbol,

VN is the bunch of nonterminals, VT is the bunch of terminals. Furthermore, V = VN !VT is

the bunch of grammar symbols. Relating to grammar symbols, the following typed variables

are used: x,y+-VT, e,'TJ,p,(+-V;, A,B+-VN, X,Y +-V, o:,/3,,,8,µ,v+-V*. Lastly, Pis

the collection of grammar rules. A grammar rule for nonterminal A, with right-hand side o:,

is denoted as A-+ o:. If /3 can be derived from o: in any number of steps, we write o: ~ /3.

IV. GENERAL RECURSIVE DESCENT PARSING

Given some input string e of terminal symbols, a grammar determines for each string of

grammar symbols a whether or not e can be derived in any number of steps from a, i.e.

10

whether a~ e. Also, for each substring 1/ of e it may be determined whether or not a~ 1/·

Let us define for each a a bunch-valued recognition function [a] : v; 1---+ v;, as follows:

(9)

Stated differently, this defines a function[·] that operates on two strings of grammar symbols,

such that [·)(a,e) = [a](e). Note that t +- [S](e), equivalent to S ~ e, means that e is a

correct sentence.

In (9), the argument is split into two parts, the first of which is derivable from a. The

second part is output by the function. It follows, for all a and ,8, that

[a,B](e) = a,B ~ 1/ A e = "IP I> P

- {Split of a,B ~ TJ)}

a ~ T/1 A e = T/1P1 A /3 ~ 1/2 A P1 = T/2P I> P

- {Laws (2) and (4)}

P1 +-(a~ 1/1 A e = 1/IP~ I> p~) I> (,8 ~ 1/2 A P1 = T/2P I> p)

{Definition (9) of [a) and [,BJ}

P1 +-[a](e) I> [,B](p1)

{Law (5)}

[,B]([a](e)).

Thus, [a,B] = [a][,B], where [a)[,B] is the composition of functions [a] and [,B], defined by (8).

In other words, Q'. = X1••·xk implies [a] = [X1] ... [Xk] and [t](e) = e. In algebraic terms, the

mapping [·] is a homomorphism from V* to a function space of bunch-valued functions. As

the functions [a] are compositions of functions [X], an implementation for the latter implies

an implementation of the former. Now,

11

[X](e) = X .!.+ 1/ A e = 1/P t> P

- { X .!.+ 1/ involves zero derivation steps, or at least one grammar rule is applied}

((X +- VT A X = 1/) V (X -+ /3 A /3 .!.+ 1/)) A e = 1/ p t> p

- {Law (3)}

(x +- vT A e = x p t> p) 1

(X-+ /3 A /3 .!.+ 1/ A e = TJP t> p)

- {Law (2)}

(x +- vT A e = x p t> p) 1

(X-+ /3 t> (/3 .!.+ 77 A e = TJP t> p))

- {Definition (9)}

(x +- vT A e = x P t> P) 1

(X-+ /3 t> [/3](e)).

To summarize, we have, for terminals x and nonterminals A:

[x](e) = e = xp t> P,

[A](e) = A-+ a t> [a](e),

[XY/3](e) = [Y/3]([X](e)),

[tJ(e) = e.

(10)

Note the use of the distributivity property of bunches in the third line. If rules have reg

ular expressions at their right-hand sides, all this is easily extended (a, b denote regular

expressions):

[x](e) = e = xp t> P,

[A](e) = A -+ a t> [a](e),

[ab](e) = [b]([a](e)),

[alb](e) = [a](e) I [b](e),

[(a}](e) = e I [a](e),

[{a}](e) = e I [{a}]([a](e)),

[tHO = e.

12

(alternatives a, b)

(optional a)

(iterative a)

(11)

We use () to denote optionality because the usual square brackets are used for recognition

functions. The right-hand sides of lines three to six in (11) depend on a, b only via the

functions [a] and [b]. For this reason, these definitions are sometimes seen as applications of

combinators, i.e., higher-order functions. With f, g denoting arbitrary bunch-valued func

tions from some domain (e.g., V;) to itself, {f}, [f], fig are other such functions, defined

by

(flg)(e) = f(O I g(e), (alternatives f,g)

{fHe) = e 1 {f}U(O),

UHe) = e I f(e).

(iterative f)

(optional f)

It follows that [alb]= [a]l[b], [{a}]= {[a]}, and [(a)]= ([a]). Finally, [ab]= [a][b], where [a][b]

is the functional composition of [a] and [b], defined in (8). In other words, the recognition

function [a] for regular expression a can be obtained by replacing every grammar symbol X

that occurs in it by its function [X) and interpreting all constructors in the regular expression

(alternatives, concatenation, iteration, optionality) as combinators of recognition functions.

For a detailed exposition of combinator parsing, see (Hutton, 1992).

The symbol 'I' has been overloaded rather heavily by now. In some contexts, its meaning

can even be ambiguous: fig can be an application of the combinator, or it can be a bunch of

two functions. If confusion can arise, we distinguish with a subscript: la is the alternatives

operator of regular expressions, lb is bunch union, and le is the combinator. The three can

be combined in one line:

It was noted by (Meertens, 1986) that higher-order programming with nondeterministic

functions may lead to paradoxes. This made (Norvell & Hehner, 1992) conclude that a

nondeterministic function should be seen as a bunch of deterministic ones, as the ensuing

distributivity property would prevent paradoxes. However, the decomposition of a non

deterministic function into a bunch of deterministic ones is far from trivial, and even not

13

always possible. Moreover, there seems to be no fundamental reason why a nondetermin

istic function could not be seen as 'one thing'. Paradoxes only appear if the higher-order

function uses a functional argument in more than one place in its body. The above com

binators do not have this property, except for {f}. The 'paradox' in this case would be

that {flc9} =/= {f}lc{g}, which is quite logical in our context; the two sides are functions

corresponding to different regular expressions. By contrast, one still has {flb9} = {f} lb{g }:

combinators distribute over bunches. Thus, there is no paradox, only confusion between le

and lb•

Recursive-descent recognition functions like ours, with lists instead of bunches, were

introduced in (Wadler, 1985) and reformulated as a parsing monad in (Wadler, 1990). A

difference is that Wadler's functions produce lists of pairs that consist of a grammar symbol

and unparsed input, whereas in our case functions produce only unparsed input. This

difference is crucial in the monad context, because it means that our functions do not have

monad structure: the type of [X] does not depend on the type of X.

V. DETERMINISTIC RECURSIVE DESCENT PARSING

The singleton property of bunches is notationally convenient if one applies a general

parsing technique to grammars for which the technique happens to provide a deterministic

recognizer. If the general technique is defined with set-valued recognition functions, in the

deterministic case all these functions produce sets with at most one value. If a function

produces the empty set, this means that an error has been detected. If one works with

bunch-valued functions instead, in a deterministic recognizer these produce null if an error

has occurred and definite values otherwise.

There is a standard method to make parsing algorithms more deterministic: the addition

of look-ahead (Aho & Ullman, 1977). The application of look-ahead techniques to recursive

descent parsing involves two functions, first and follow:

first(a) = x+-VT I\ a~ x/3 t> x,

14

follow(X) = A~ aX/3 I> Jirst(/3) I
A~ aX/3 A /3 ~ t I> follow(A).

Although follow not necessarily terminates if it is interpreted as an algorithm, it uniquely

defines a smallest bunch follow(X), for every X. It is convenient to add to each grammar the

rule S' ~ S .l, where S' and .l are new symbols which appear only in this rule. S' is the new

start symbol and .l is formally added to VT. Of course, any correct input must now end with

.l. The above then implies that .l+- follow(S), and it is guaranteed that follow(X) =/- null

if :30 ,e(S ~ aX/3). If Xis one of the added symbols S', .l then follow(X) = null. It is not

difficult to verify that if for A =/- S' function [A] is redefined as

[A](e) = A~ a_/\ e = X1J A (x+-Jirst(a) V (a~ f AX+- follow(A))) I> [a](e),

the result of [S'](e) is not affected. If for all A =/- S' and every x at most one a exists

that makes the guard true, the choice of grammar rule is always unique. This is the case

for 11(1) grammars. For such grammars, the look-ahead technique makes each invocation

[A](e) produce either null if an error in the input string has been encountered, or a string

of terminals that still have to be parsed; the general algorithm specializes to a deterministic

recogmzer.

VI. RECURSIVE ASCENT PARSING

Bunch notation is equally useful for bottom-up parsing. To illustrate this, let us start

from the following specification of an Earley-like parser (t5 +-(Vf IVN Vj~)):

[A~ a· /3]('5) =
t5 +- v; A /3 ~ f 1> Ah' I (12)

t5 = X 1JP A /3 ~ X 1J I> Ap.

Note that the right-hand side does not depend on a, so that it would not be necessary to keep

it at the left-hand side. Nevertheless, we use dotted rules ('items') A~ a• /3 because they

15

are the usual device to denote partially recognized grammar rules. The use of items comes

down to an implicit rewriting of the grammar, in which the items are auxiliary nonterminals.

Hence, [A -+ a • ,8] can be seen as a recognition function for nonterminal A -+ a · ,8 of a

cover for the original grammar (Leermakers, 1993a). Another motivation for keeping the o:

in [A-+ a• ,8] is that it helps to understand what the function does; see below. Moreover,

the use of items simplifies the analogy of this section with section VII on LR-parsing, in

which states, which are sets of items, play a similar role.

If applied to a string e of terminal symbols, specification (12) reduces to

(13)

This means that, after adding a rule S'-+ S to the original grammar, it follows that

S' ~ [S' -+ -S](e)

if and only if e is a correct sentence.

The intuition behind (12) is the following. The input sentence being x 1 .•• xn, function

invocation [A-+ a· ,Bl(8) occurs only if there·are i, j (0 ~ i ~ j ~ n) such that o: ~ Xi+I··•Xj,

and either j = n and 8 is empty or 8 = X p and there is a k (j ~ k ~ n) such that

X ~ Xj+i ... Xk and p = Xk+i··•Xn. Function invocation [A -+ a· ,8](8) investigates which

prefixes of 8 can be derived from /3. The prefix may be not be empty if 8 starts with a

nonterminal. Each prefix of 8 derives Xj+1• ... x1 for some l (j ~ l ~ n). If the prefix can be

derived from ,8, /3 derives this same input string and A derives Xi+i····x1, the concatenation

of the strings derived by o: and ,8. The function thus returns A, followed by X/+1 .. ,Xn, the

part of the input sentence that has not yet been parsed. If more than one prefix can be

found, all answers are returned as a bunch. The result of the function can be seen as a

rewritten version of the string 0::8; it removes a prefix from 0::8 that includes at least o: and

replaces it by a nonterminal that derives the prefix: 0::8 is rewritten in a bottom-up way.

We strive for an implementation of (12) of the recursive ascent type. To this end, we

note that ,8 ~ Xr, means that either Xis introduced by a grammar rule B-+ µXv, with

µ ~ E, or X is already in ,8: ,8 = µX 11, with µ ~ f:

16

[A-+a·f,](S)=

s +- v; " ;, ~ € t> AS I
s = X 1] p A ;, = µX Tl A µ ~ € A Tl ~ 1] t> Ap I

s = X 1]21J1P A ;, ~ B171 AB -+ µX Tl Aµ ~ € A Tl ~ 1]2 t> Ap

= {Use (2) in the second and third line, adding an extra clause f, ~ B 1 (this is optional;

it is to make the result more efficient, see below) and introducing auxiliary variable (}

s +- v; " ;, ~ € t> AS I
S = X(A f, = µXv Aµ~ f t> (11 ~ 1J A (= 1JP t> Ap) I
S = X 1]21J1P A f, ~ B1 A B -+ µX 11 A µ ~ € A 11 ~ 1]2 t> (f, ~ B171 t> Ap)

= {Apply (13) in the second line (applicable because (+-Vi) and (12) in the third}

s +- v; " ;, ~ € t> AS I
S = X(A f, = µXv Aµ~ f t> [A-+ aµX · 11](() I

S = X172171p A f, ~ B1 AB-+ µXv Aµ~€ A 11 ~ 1]2 t> [A-+ a· f,](B171p)

= {Change 171p into p, 172 into 17, and use (4) (i is Bp) and (13) (17p consists of terminals)

in the third line}

s +- v; " ;, ~ € t> AS I
S = X(A f, = µXv Aµ~ f I> [A-+ aµX · 11](() I

h = X 1J p A f, ~ B1 A B -+ µX 11 A µ ~ € A B p +- [B -+ µX · 11](1J p) I> [A -+ a · f,](B p).

Using (5) and changing 1JP into(, one finally obtains

[A-+ a· f,](S) =

s +- v; " ;, ~ € t> AS I
S = X(A f, = µXv Aµ~ f t> [A-+ aµX · 11](() I

(14)

S = X(A f, ~ B1 AB-+ µXv Aµ~€ t> [A-+ a· f,]([B-+ µX · 11](()).

The conciseness of the last line is due to the distributivity property of bunches. In deriving

(14) a critical need is that not B +- VT, in other words, that terminals and nonterminals are

disjoint.

Note that if a function [A -+ a· f,] is invoked by another function, then its argument S is

17

in v;. It may recursively call itself with rewritten versions of this b, i.e., with prefixes of b

replaced by some nonterminal B, until this B appears in /3 in such a way that the symbols

before B (in /3) may derive the empty string.

The recognizer terminates for all non-cyclic grammars. Note that the conditions

j3 ~ l

j3 = µXv Aµ~ l

3if3 ~ B,) A B ~ µXv A µ ~ t

are independent of the input string, and for every /3, X the values of µ, v, B that make

them true can be computed before parsing. To get an efficient implementation such pre

computation is to be compounded with function memoization (Leermakers, 1992). It is

simple to add loop detection to the memoization technique to get an algorithm that always

terminates (Leermakers, 1993a).

In the case of a grammar without €-rules, (14) becomes even simpler:

[A ~ a · /3](b) =

b +- v; " J3 = l 1> Ab I
b = x c " J3 = xv 1> [A ~ ax · v](O I
b = X(A /3 ~ B, AB~ Xv I> [A~ a· J3]([B ~ X · v](()).

As far as I know, the recognizer of this section is a new variant of Earley-like parsing.

In (Leermakers, 1992) a closely related algorithm was given, with two functions per dotted

rule, instead of one. The functional parsing algorithm given in (Matsumoto et al., 1983) is

also quite similar to ours, even though it does not involve dotted rules.

Two aspects of (14) contribute to its simplicity compared to conventional formulations

of related algorithms: the way bunch notation handles 'nondeterminism' and the fact that

memoization (which corresponds to using a parse matrix) is separated from the core algo

rithm. For a discussion of the relation of the above algorithm with the standard Earley

parser, see (Leermakers, 1993a).

18

VII. LR(O) PARSING

Let us now give a recursive ascent LR(O) parser. The derivation is analogous to the

derivation of (14). In fact, recursive-ascent LR(O) parsing appears if one tries to make

recursive ascent Earley-like parsing more deterministic by combining items into states, i.e.,

sets of items. Because of the analogy with the preceding section, we just give the specification

and the implementation of the recognizer, and skip the proof.

The specification of the recognition function is, with q a state:

[q](8) =

8 ~ v; A A-+ a· {3 E q A /3 ~ t I> A-+ a· {3, 8 I (15)

8 = X(A A-+ a· {3 E q A /3 ~ XTJ A (= TJP I> A-+ a· {3,p.

To formulate the implementation, we need the auxiliary functions ini, defined as

ini(q) = {B-+ ·vlB-+ v A A-+ a· {3 E q A /3 ~ B,},

and the function goto:

goto(q,X) ={A-+ ax. /3IA-+ a. X/3 E (q u ini(q))}.

Then the following is an implementation of (15):

[q](8) =
8 ~ v; A A-+ a· {3 E q A /3 ~ t I> A-+ a· {3, 8 I

8 = X (A A -+ a · µXI E q A µ ~ t A

A-+ aµX · 1,p~ [goto(q,X)](() I> A-+ a· µX,, p I

8 = X(AC-+ ·µXv E ini(q) Aµ~ t A

C-+ µX · 11, p~ [goto(q,X)](() I> [q](Cp).

(16)

This algorithm is functionally equivalent to an LR(O) parser if the grammar has no t-rules,

though it does not use a parse stack. That is, if the grammar is LR(O), (16) is a deterministic

function. It consists of one function [·] with two arguments (q and 8), or, in the alternative

19

view, of as many single-argument functions (q) as there are states q, just like the recursive

ascent LR parsers of (Kruseman Aretz, 1988) and (Barnard & Cordy, 1988), which were the

first to totally avoid the use of parse stacks.

For some left-recursive grammars with €-rules, conventional nondeterministic LR(O)

parsers do not terminate (Tomita, 1986). The above algorithm terminates as long as the

grammar is not cyclic, and can be quite efficient if recognition functions are memoized. -Ter

mination for any grammar can be achieved by adding loop detection to the memoization

mechanism.

VIII. ATTRIBUTE GRAMMARS

Bunches can also be used in the theory of attribute grammars. In conventional attribute

grammars, each attribute has an associated function that computes its value in terms of

the values of other attributes. It is very natural to take such an attribute function to

be bunch-valued. If the function produces null, this means that the computation of its

attribute fails. If it produces a bunch with more than one element, attribute computation

is ambiguous. Bunch-valued attribute functions are particularly apt for natural-language

parsing, since both failure and ambiguity of attribute computation are natural phenomena

in this application of attribute grammars.

An attribute grammar is based on a context-free grammar, called the backbone grammar.

Each grammar symbol X of this grammar has a number of attributes. Its attributes come

in two kinds: inherited ones, the type of which is denoted collectively as inh(X), and

synthesized ones, with type syn(X).

It is convenient to extend the mappings inh and syn to V*, as follows:

and the same for syn:

inh(t) =€('void')

inh(a/3) = inh(a), inh(/3)

20

syn(E) = E

syn(a{3) = syn(a), syn(f3)

Note that inh(a), inh({3) is the concatenation of two bunches of strings. If types would have

been sets then inh(a) x inh(f3) would have been a set of pairs, which is quite different!

Below we will use bunch-valued attribute functions la that have domain inh(a) and

range syn(a):

fa: Fa, where Fa= inh(a) 1--+ syn(a).

A function of type Fa can be concatenated with a function of type F(J. The result is a

function of type Fa(J (inha,syna are variables of the types inh(a),syn({3), respectively):

fa# /(3 = f a(J, where

fa(J(inha, inh(J) = syn a+- fa(inha) I\ syn(J +- /(3(inh(J) I> syn a, syn(J

There is one unique function fe such that fe# la = la# fe = la•

Formally, an attribute grammar can be defined to consist of

1. A context-free backbone grammar G;

2. A function fx of type Fx for each terminal symbol x;

3. A function JA-+a for each granimar rule A--+ a, of type ·inh(A--+ a) 1--+ syn(A--+ a),

where

inh(A--+ a)= inh(A), syn(a)

syn(A--+ a)= syn(A), inh(a:)

To define formally how attribute functions are associated with grammar symbols, we

define dressed derivations. A dressed direct derivation is defined by

def A
- A--+ 'YI\ f A= f-r of -+"Y, (17)

where o is defined by

21

Jo, o JA-+OI = !A, where

f A(inhA) = syn A, inh°' +- JA-+°'(inhA, syn°') I\ syn°'+- Jo,(inh°') t> syn A.

This definition is formally circular: syn°' depends on inho,, which in turn depends on syn°'.

If inh(a), syn(a) are structured domains, however, not every aspect of syn°' necessarily

depends on every aspect of inho,, so that the function produced by a o composition may well

be effective (Johnson, 1987).

The transitive and reflexive closure of dressed derivations is defined just as for normal

derivations. Then, to each derivation S ~ x 1 ••• Xn corresponds a dressed derivation

Parsing algorithms for attribute grammars with bunch-valued attribute functions are

identical to algorithms for conventional attribute grammars. For example, the above recur

sive ascent parser can be modified such that it becomes a parser for attribute grammars:

[A~ a· ,B](h, ls, J°') =

(? t- v; I\ (,8, Jr; ~ E, Je) t> Ah, (JOI# Jr;) 0 JA-+o,{3)# h I

h = X(I\ ls= fx#Jc I\ ,8 = µXv I\ (µ,Jµ, ~ E,Je) t> [A~ aµX · v]((,fc,f°'#Jµ,#Jx) I
h = X(I\ ls= Jx#Jc I\ ,8 ~ B, I\ B ~ µXv I\ (µ,Jµ, ~ E,Je)

t>[A ~a· ,B]([B ~ µX · v]((, J,, Jµ,#Jx),Jo,),

Note the way in which the three arguments of [A~ a• ,8] in the last line are assembled as

the concatenation of the result of the call of [B ~ µX • v] and J°'.

After the recognition, one may execute f 8 ,() (which has no arguments assuming that

S' has no inherited attributes) to produce the required attributes, i.e., the synthesized

attributes of S'. Hence, one has the following parser:

parser(l) = (S',Js1)+-[S' ~ ·S](l,Je,fe) t> Js,(),

and Je = fx1# ... #Jxn if e = X1 ... Xn is the input sentence.

22

IX. CONCLUSIONS

Parsing theory should be formulated in a functional or relational way. In any case,

imperative formulations and push-down automata belong to the realm of implementation

details. It is a mystery why simple, stack-less, formulations of LR parsing were found

as late as 1988. The dominance of imperative programming and automata theory must

have played a role in the delay. To the degree that the deterministic case is considered to

have a special status, a bunch-functional approach is to be preferred over a relational one,

because one is interested in relations that are almost functions. If the theory of a parser is

developed functionally, this does not mean that parsers must be implemented in a functional

programming language, nor that the implementation must be recursive; it is not forbidden

to implement recursive algorithms with an explicit recursion stack to suit particular needs.

This paper is meant to establish, by way of illustrative examples, that the bunch concept

is a mathematical notion as respectable as sets and lists. The reader is invited to translate

any of the sections into set notation and observe the notational burden that he/she has to

add. The conciseness of bunch notation is not accidental: one writes a multiple-valued algo

rithm by writing its nondeterministic counterpart, without adding a 'process interpretation'

part. In addition to being shorter, · algorithms defined in bunch notation are often more

readable and more intuitive.

One could argue that almost the same conciseness can be obtained using sets and ex

tra operators to distribute functions over sets and to switch between singletons and their

elements. However, one should keep in mind that the bunch notion is more primitive than

its set relative: a bunch is an aggregation, a set is an encapsulated aggregation (Hehner,

1993). It is the encapsulation aspect of sets that leads to conceptual problems, to students

(a set that contains nothing is not nothing) as well as to scientists (the set that contains

everything, including itself, leads to a paradox). Being essentially simpler, bunches are not

troubled by such intricacies. In practice, it is fine to implement bunches with sets, as long

as one keeps in mind the difference between a notion and its implementation. After all, the

23

possibility of implementing sets in terms of lists does not mean that sets can be dispensed

with. One distinguishing aspect of bunch-valued functions, which goes beyond notational

issues, is that normal functions are embedded in them.

The notion of bunches has been introduced in (Hehner, 1984). Sets with nondetermin

istic interpretation, like bunches, were also proposed in (Hughes & O'Donnell, 1990). In

(Wadler, 1992) a kind of bunch-valued lambda-calculus is discussed. Bunch-valued func

tions also appear in (Meertens, 1986), (Bauer et al., 1987) and (Norvell & Hehner, 1992),

as nondeterministic specifications of programs.

I refer to (Hehner, 1993) for further elaborations on the bunch theme, and many other

applications. In (Leermakers, 1993a) bunch notation is adopted as a tool for the formulation

of parsing theory, in the spirit of this paper.

Acknowledgement

I thank (Lex Augusteijn I Paul Jansen I Frans Kruseman Aretz I Mark-Jan Nederhof I

Theo Norvell I a referee) for his useful comments.

REFERENCES

Aho A.V. & Ullman J.D. (1977) Principles of Compiler Design (Addison-Wesley).

Barnard D.T. & Cordy J.R. (1988) SL parses the LR languages, Computer Languages 13(2),

65-74.

Bauer F.L., Ehler H., Horsch A., Moller B., Partsch H., Puakner 0. & Pepper P. (1987) The

Munich Project GIP: Volume II: The Program Transformation System CIP-S, Lecture

Notes in Computer Science 292 (Springer-Verlag).

Hehner E.C.R. (1984) The Logic of Programming (Prentice-Hall).

Hehner E.C.R. (1993) a Practical Theory of Programming (Springer-Verlag).

24

Hemerik C. (1993) Formal Definitions of Programming Languages as a Basis for Compiler

Construction, Ph.D. Thesis, Technical university, Eindhoven, The Netherlands.

Hoare C.A.R. (1985) Communicating Sequential Processes (Prentice-Hall).

Hughes J. & O'Donnell J. (1990), Expressing and reasoning about non-deterministic func

tional programs, Functional Programming, (Glasgow 1989), edited by K. Davis and J.

Hughes, Workshops in Computing (Springer-Verlag).

Hutton G. (1992) Higher-order functions for parsing, Journal of Functional Programming

2(3), 323-343.

Johnson T. (1993) Conference on Functional Programming Languages and Computer Ar

chitecture, LNCS 274 (1987), 154-173.

Kruseman Aretz F.E.J. (1988) On a recursive ascent parser, Information Processing Letters

29, 201-206.

Leermakers R. (1992) A recursive ascent Earley parser, Information Processing Letters 41,

87-91.

Leermakers R. (1993a) The Functional Treatment of Parsing (Kluwer Academic Publish

ers).

Leermakers R. (1993b) The use of Bunch Notation in Parsing Theory, Proceedings of the

Third International Workshop on Parsing Technologies (Tilburg & Durbuy), 135-144.

Matsumoto Y., Tanaka H., Hirakawa H., Miyoshi H. & Yasukawa H. (1983) BUP: a bottom

up parser embedded in Prolog, New Generation Computing 1(2).

Norvell T.S. & Hehner E.C.R. (1992) Logical Specifications for Functional Programs, Pro

ceedings of the Second International Conference on the Mathematics of Program Con

struction (Oxford).

25

S!llndergard & Sestoft (1990) Referential Transparency, Definiteness and Unfoldability, Acta

Informatica 27, 505-517.

Tomita M. (1986) Efficient Parsing for Natural Language, A Fast Algorithm for Practical

Systems (Kluwer Academic Publishers, Boston).

Wadler P. (1985) How to replace failure by a list of successes, Conference on Func

tional Programming Languages and Computer Architecture (Nancy, France); LNCS

201 (Springer-Verlag), 113-128.

Wadler P. (1990) Comprehending Monads, Conference on Functional Programming Lan

guages and Computer Architecture.

Wadler P. (1992) The essence of functional programming, 19th Annual Symposium on

Principles of Programming Languages (Santa Fe).

26

