EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Trajectory analysis : bridging algorithms and visualization

Citation for published version (APA):
Konzack, M. P. (2018). Trajectory analysis : bridging algorithms and visualization. [Phd Thesis 1 (Research TU/e
/ Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 09/05/2018

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/659c314f-e4c9-49d6-b948-5a7e11edfb4d

Trajectory Analysis:
Bridging Algorithms

and Visualization

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. EPT. Baaijens, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 9 mei 2018 om 16:00 uur

door
Maximilian Peter Konzack

geboren te Schwabach, Duitsland

Dit proefschriftis goedgekeurd door de promotoren en de samenstelling
van de promotiecommissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
promotor: prof.dr. M.T. de Berg
copromotor: dr. K.A. Buchin
copromotor: dr. M.A. Westenberg

leden: prof.dr. A. Kerren (Linnaeus University)
dr.ir. E.E. van Loon (University of Amsterdam)
prof.dr. R. Weibel (University of Zurich)
prof.dr.ir.].J. van Wijk

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven
is uitgevoerd in overeenstemming met de TU/e Gedragscode Weten-
schapsbeoefening.

NJ/O

Netherlands Organisation for Scientific Research

The work in this thesis is supported by the Netherlands’ Organization
for Scientific Research (NWO) under project no. 612.001.207.

INSTIT,,
Iy,
>
)

_ >
D=l

7, —

GAVAL
GWRVEOOy

S
&

%
', o
RETFNS

The work in the thesis has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algo-
rithmics).

Cover design: H.N. Adams © 2018. All rights reserved.
Used with permission.

Printing: Ipskamp Printing
ISBN: 978-90-386-4493-6

© 2018 by Maximilian Peter Konzack. All rights are reserved. Repro-
duction in whole or in part is prohibited without the written consent
of the copyright owner.

A catalogue record is available from the Technische Universiteit
. . . . Eindhoven
Eindhoven University of Technology Library University of Technology

Black
then
white are
all | see
in my infancy
Red and yellow then came to be
reaching out to me
lets me see
there is
SO
much
more and
beckons me
to look through to these
infinite possibilities
As below, so above and beyond, | imagine
drawn outside the lines of reason
Push the envelope
Watch it bend
Tool - Lateralus

Acknowledgments

Thank you all
Cannot put in words
Gratitude

At this point, | am looking back on this memorable phase of my life. It
hasbeen blissful, challenging, rewarding, difficult at times, and most
importantly satisfyingand foremost fulfilling. Becomingaresearcher
hasbeenajourney thatinfluenced me in ways that I would have never
imagined. To me, a PhD is not merely a degree as an intellectual ex-
ercise; it is much more than that. I have had the honor to practice
a variety of skills: reading, programming, writing drafts, defining re-
search questions, discarding drafts, reviewing papers, incorporating
feedback, giving presentations, writing emails, editing - yes, a lot of
editing — and, most importantly, talking to my supervisors.

First and foremost, I full-heartedly thank my supervisors Kevin
Buchin and Michel Westenberg. Kevin and Michel were much more
than academic mentors to me. They had an open ear and an open
door whenever it was necessary: when our first paper was accepted,
when one of our papers was rejected, when that paper was finally ac-
cepted, and also on personal matters. I learned from you how to walk
in academia and how practical and theoretical computer science en-
hance each other. I owe you a wholehearted thank you, Kevin and
Michel.

[am also very grateful that Mark de Berg was my promoter. Even
though Mark was not involved directly in the research of this thesis,
he supported me by discussing ideas and by handling the organiza-
tional matters around my PhD project. I cannot imagine a more ex-
perienced promoter who always listened to the concern at hand very
carefully. Thank you, Mark.

ACKNOWLEDGMENTS iii

By the interdisciplinary nature of my PhD project, I have had the hon-
or of collaborating with a wide variety of researchers. I would thank
all of my collaborators for their help and feedback: Maike Buchin,
Panos Giannopoulos, Pieter Gijsbers, Luca Giuggioli, Joachim Gud-
mundsson, Jed Long, Emiel van Loon, Thomas McKetterick, Wolf-
gang Mulzer, Trisalyn Nelson, Tim Ophelders, Wim Reddingius, An-
dré Schulz, Ferry Timmers, and Georgina Wilcox.

Furthermore, Iwanttothankallreviewers of my papers for their time,
effort, and feedback which greatly improved the content of this the-
sis.

[would like to thank my committee for thoroughly reading my thesis
and for their time serving in my defense: Andreas Kerren, Emiel van
Loon, Johan Lukkien, Robert Weibel, and Jack van Wijk.

In my time at the TU Eindhoven, I have had the pleasure to be sur-
rounded by many smart and excellent scientists. I thank all of my
colleagues and guest researchers: Hans Bodlaender, Quirijn Bouts,
Riet van Bull, Rafael Cano, Bram Cappers, Thom Castermans, Meivan
Cheng, Paul van der Corput, Alberto Corvo, Kasper Dinkla, Huib
Donkers, Anne Driemel, Stef van Elzen, Arthur van Goethem, Her-
man Haverkort, Michael Horton, Andrei Jalba Bart Jansen, Sandor
Kisfaludi-Bak, Sudeshna Kolay, Robert van Liere, Aleksandar
Markovic, Mehran Mehr, Ali Mehrabi, Wouter Meulemans, Daniel
Olah, Tim Ophelders, Astrid Pieterse, Jorn van der Pol, Marcel Roelof-
fzen, Ignaz Rutter, Roeland Scheepens, Max Sondag, Willem Sonke,
Bettina Speckmann, Mehmoud Talebi, Kevin Verbeek, Mickael Ver-
schoor, Huubvan de Wetering, Tim Willemse, Jackvan Wijk, Gehard
Woeginger, and Jules Wulms. Especially, I want to thank my office
mates, Q, Alj, Irina, Rafael, Thom, Max, and Huib, for all the fun times
and for all the hours that we spent with each otherl.

According to an African proverb, “it takes a village to raise a child”. I
feel lucky and happy for all fellow human beings who have accompa-
nied me through different stages in my life: Heather Adams, Jakob
Albert, Dorothea Eisenmann, Sebastian Faubel, Elfriede Fehr, Maxi-
milian Freidl, Simone GeiBelsdder, Stefan GeiBelsdder, Ruud Hagen,

INo office mates were locked in our office intentionally.

ACKNOWLEDGMENTS iv

Markus Harrer, Vera Harrer, Peter Hofmann, Johannes Klick, Irena
Kpogbezan, Aljoscha Krettek, Christian Kuschel, Michelle Meekes,
Bianca Mikolajewski, Francisco Montellano, Peter Neubauer,
Johanna Neubauer, Joana Pedro, Niels Peekstok, Rena Peters, Florian
Policnik, Marcus Raab, Tobias Reichard, Sonja Schlusche, Fabian
Schneider, Gustav Stahlke, Christian Vanderheijden, Andreas Wein-
lein, Andy Wong, and Michelle Zeuner. [am thankful that you ac-
cept me for who I am and for the time that we have shared with each
other.

[strongly believe that all my strengths, shortcomings, talents, and
other qualities have a single origin: my family. You shaped me like
no one else. Your pragmatism, discipline, curiosity, tenacity, and pa-
tience helped me tobe whoIam and to pursue this degree. [am grate-
ful for all of the past generations and current members of my family.
In particular, I want to thank my parents, Gabriele Konzack and Eber-
hard Konzack, for providing a good home and raising me to be the
person that I am. Danke, Mama und Papa!

[want to thank my math teacher, Frau Boer, who encouraged me fif-
teenyearsagotomove away from economics toward somethingmore
technical like mathematics or computer science. I think I finally lis-
tened. Vielen Dank, Frau Béer!

Finally, I thank all the people who directly and indirectly helped me
reach this milestone in my life. Within this limited amount of space,
it is impossible to name them all, which is why I thank you all.

Last but not least, I want to thank you, reader, for reading the results
of my PhD journey.

Maximilian Peter Konzack
Eindhoven, April 2018

Contents

Acknowledgments ii
1 Introduction 1
11 Computational Movement Analysis 2
1.2 Algorithms 3
1.3 Visualization. 5
1.4 Trajectory Analysis. 6
15 Overview 8

2 Background 11
21 Introduction. o .. 11
2.2 RelatedWork 12
2.3 Scopeand FOCUS. . . v v v v v it i e e e e e e e e 13
2.4 Typology for Analyzing Movement Data. 14
2.5 Overview of Trajectory Analysis Tasks. 18
251 Alignment 18

2.5.2 Transform 21

2.56.3 Categorization 24

2.5.4 Representation................... 28

2.6 Discussion 31
2.61 Workflow. oo 31

2.6.2 Scale and Uncertainty 31

26.3 Context. 32

264 SpaceandTime, 32

2.6.5 Interdisciplinarity 33

2.6.6 Specificity of Data Analysis. 33

2.7 Conclusions e 34

3 Computational Complexity of Problems on Trajectories 35

31 Introduction. 35
3.2 Preliminaries. e 36

CONTENTS

3.3 Single Curve Problems 39
3.31 Simplification. 39
3.3.2 Lower Bound on Simplification. 44

3.4 Problems on Two Trajectories. 48
341 OVerviewW. . . . v v vttt e 48
3.4.2 AlignmentMethods 49

3.5 Problems on Multiple Trajectories. 53
351 Overview. e 53
3.5.2 Lower Bound on the Fréchet Distance. ... 55

3.6 Conclusions e 59

4 Progressive Simplification 61

41 Introduction. 0. 61

4.2 Related Approaches. 64

4.3 Computing Simplifications Progressively. 65
4.31 Optimal Progressive Simplifications. 66
4.3.2 Greedy Heuristics 71

4.4 Constructing the Shortcut Graph for Arbitrary Scale72

4.5 Compressing the Shortcut Graph 74
4,51 Shortcut Graph Construction. 75
4,5.2 Finding Shortest Paths. 76

4.6 Experimental Evaluation 77

47 Conclusions e 81

5 Visual Analytics of Delays and Interaction 83

51 Introduction. o . 83

5.2 Interaction and Similarity Measures. 87

5.3 Fast Computation of Global Delays 91
5.31 Correlations and the Fast Fourier Transform 92
5.3.2 Approximation of Similarity Measures 93

5.4 Visual Analytics for Local Analysis of Delays 95
5.41 Requirements for Analyzing Interactions .. 96
5.4.2 Computing Matchings. 96
5.4.3 Interactive Analysis of Delays in Matchings. 99

5,56 Experiments. 103
5,561 Analysis of the GlobalDelay 104

5.5.2 Analysis of Delays on Ultimate Frisbee Data 107
5.5.3 Analysis of Delays on Pigeon Data. 110

CONTENTS

vii

5.5.4 Analysis of
5.6 Conclusions . . .

Delays on a Triplet of Pigeons. .

6 Visual Exploration of Migration Patterns in Gull Data

6.1 Introduction. . .
6.2 Related Work . .
6.3 Problem Definitio

n and Requirement Analysis . .

6.3.2 Requirements for Analysis Tasks.
6.4 Visual Analytics Approach
6.41 Computational Methods
6.4.2 Visualization Techniques.

6.5 Exploratory Analy
6.6 Evaluation
6.6.1 Dataset of

sisProcess

Migrating Gulls.

6.6.2 Expert User Evaluation.

6.6.3 Reflections
6.7 Conclusions . . .

7 Conclusion
71 Contributions . .
7.2 Looking Forward

References
List of Publications
Summary

Curriculum Vitae

112
116

119
119
122

. 125
6.31 Ecological Research Questions on Migration

126
127
129
130
132
134
136
137
138
145
147

148
149
151

153
171
172

175

. |

Introduction

Everything moves. Humans move from home to work; animals move
to forage; packages move from warehouses to customers; hurricanes
emerge over water and cause a path of devastation when they hitland;
thisenumeration of examples of movement can be extended by many
more. Consequently, movement analysis is central to understanding
the causal links in time and space between a moving entity and its
surroundingresources. Since movementis so ubiquitous, movement
analysis has many applications.

One such application is movement ecology. Movement ecology is
aninterdisciplinary scientific area which aims at understanding cues
and causes related to movement, specifically in regard to an organ-
ism and its environment. Understanding an organism’s movement
concerns internal factors — why, how, when and where an organism
moves to — and external factors that link an organism to its environ-
ment [Nathan et al., 2008].

Tracking individuals manually is tedious, and it does not allow con-
tinuous tracking or tracking over long distances. The availability of
new sensor technology has made it possible to track individuals re-
motely. Sensor technology, e.g.,, GPS, has drastically improved the
ability to capture movement [Kays et al,, 2015; Nathan and Giuggioli,
2013]. These technological advances have led ecologists and biolo-
gists, among other researchers, e.g., urban planners or sports ana-
lysts, to collect more and more movement datainrecent years. These
collections offer a great opportunity to understand movement.

1.1

COMPUTATIONAL MOVEMENT ANALYSIS 2

Consequently, domain experts, for instance ecologists, urban plan-
ners, sports analysts, or biologists, need methodologies that allow
them to generate knowledge from movement data. Quantification of
spatio-temporal properties is pertinent if the analyst knows what she
is searching for. Qualitative methods, such as exploration, presenta-
tion, or detection, help when the analyst knows little of her dataset or
does not yet have a specific objective in mind. Both quantitative and
qualitative methods are central to the movement analysis and com-
plement each other in it. All too often researchers consider only one
or the other; thisis true for contributions from algorithms, which typ-
ically focus on quantitative methods, aswell as for contributions from
visualization, which focus mainly on qualitative methods. Combining
quantitative and qualitative meansis therefore crucial to allow gener-
ating a wide range of knowledge from movement data.

In this thesis, we explore how movement analysis can be advanced
by enhancing the interplay between algorithms and visualization. In
the remainder of this chapter, we will first review how the fields of
algorithms and visualization contributed to the analysis of movement
before we give a brief summary of analysis tasks for movement data.
We then provide an overview of this thesis’s contributions by relating
them to the discussed analysis tasks for movement data.

Computational Movement Analysis

To deal with the increasing amount of movement data, researchers
have strong need to analyze movement data using automated means.
Computational movement analysis (CMA) is concerned with devel-
oping new computational methods, that detect patterns and
structures in movement data [Laube, 2014]. The goal of CMA is to de-
velopinsight into the behavior of moving phenomena from raw move-
ment data. Laube [2015] regards closing the semantic gap between
low-level tracking data and high-level concepts that an analyst wants
to investigate as today’s main challenge in CMA.

1.2

ALGORITHMS 3

The way in which movement data is being collected determines and
influences substantially its computational analysis. There are differ-
ent paradigms and manners to collect data. This thesis focuses on a
specific type of tracking data, which we will refer to as a trajectory. A
trajectory is a sequence of locations over time. Each location lies in
the plane (or can be projected onto the plane from geographic coordi-
nates) and has a corresponding time stamp indicating when the loca-
tion was captured. The movement between any two points in a trajec-
tory is unknown, so, in this thesis, we will use only the discrete loca-
tions and their time stamps as a representation of trajectories.

CMA is an interdisciplinary research field which involves various
methodological research areas to analyze movement: geographic in-
formation sciences, computer science, and statistics [Laube, 2014].
Even within computer science for instance, different fields of exper-
tise are needed in CMA to understand movement: data mining, visu-
alization, machine learning, computational geometry, database mod-
eling among others. Overlaps and synergies among those fields in
CMA help to elevate tooling and knowledge in CMA.

This dissertation explores the synergies between algorithms and vi-
sualization. Given a dataset, algorithms are needed to process the
data before visualizing them. Also, visualizations are central tounder-
stand how an algorithm works on a dataset. Thus, we are interested in
this thesis to investigate how techniques from both fields can be used
in concert to strengthen the analysis of trajectory data.

Algorithms

An algorithm in computer science is a sequence of actions that trans-
forms an input into an output with desired properties [Cormen et al,,
2009]. Ideally, an algorithm has provable guarantees on its output
and on its performance in terms of running time and storage require-
ments.

Designing, developing, and analyzing time-efficient and
space-efficient algorithms on geometric data is the focus of compu-

ALGORITHMS 4

tational geometry [de Berg et al., 2008]. Application domains that in-
volve spatial information, e.g., geographic information systems,
robotics, cartography, and computer vision, have always played an
importantrolein computational geometry. Naturally, movementdata
isanimportant topicin computational geometry due toits spatio-tem-
poral properties. Researchers from computational geometry have
thus developed new techniques and methods that have contributed
to movement analysis across fields [Demsar et al., 2015].

Figure 1.1: Segmentation of the trajectories of two migratory geese from
Alewijnse et al. [2014]. The yellow segments are stopovers, and
the blue glyphs indicate the end of a stopover.

However, the resulting graphical representations in these computa-
tional approaches often do not go beyond plotting the trajectories as

line segments and points on a geographic map (if the approaches are

implemented and evaluated experimentally at all). For example, Ale-
wijnse et al. [2014] propose a new method to segment a trajectory into

homogeneous pieces of similar movement characteristics, e.g., the

same speed. They visualized their experimental results by simply plot-
ting colored trajectories on top of an interactive geographic map rep-
resenting the segmentation, as shown in Figure 1.1. Presumingalarge

quantity of trajectories in a dataset, the visual abstractions from plain

trajectories are required to declutter the results and to enhance ana-
lytical reasoning.

1.3

VISUALIZATION 5

Visualization

Visualization is a field in computer science which is concerned with
the graphical representation of knowledge in form of data, and pro-
vides means to manipulate, explore, and alter the representations to
help the user in creating new knowledge. Card et al. [1999] formally
define visualization as “the use of computer-aided, interactive, visual
representation of data to amplify cognition.” Munzner [2014] argues
that visualization helps users to carry out their tasks more effectively.
Ultimately, the purpose of visualization systems is to gain insights
[van Wijk, 2006]. Hence, visualization enables movement analysts
to foster knowledge generation from collected data.

Since more and more analysts are collectingan increasing amount of
datainvariousapplications, it has become important for visualization
systems tointegrate users’ knowledge and inference capabilities into
analytical and visual data analysis processes to turn this information
overload into an opportunity [Keim et al., 2010b]. Visual analytics is
the research area that supports analytical reasoning with interactive
visual interfaces [Cook and Thomas, 2005]. Visual analytics couples
(see Figure 1.2) the analyst’s domain knowledge with methodologies
and visualizations [Keim et al,, 2010a]. Sacha et al. [2016] argue that vi-
sual analytics helps users in building trust in their generated knowl-
edge base and in generating knowledge gained from large and often
complex data. Because of this cross-disciplinary nature of visual ana-
lytics, it has been applied to many domains: sports analytics [Losada
etal,, 2016; Pileggi et al.,, 2012], biological networks [Dinkla et al., 2014],
fraud detection [Leite et al., 2018; Zhao et al., 2016], eye-tracking data
[Kurzhals and Weiskopf, 2013], and many more. Sun et al. [2013] pro-
vide a broad overview of the current state-of-the-art in visual analyt-
ics and its numerous applications.

However, current visualization systems and visual analytics systems
focus mainly on developing new visualizations based on specific do-
main knowledge. They often do not allow users the flexibility to re-
place or to experiment with various computational methods. Such vi-
sualizations are generally adapted to only one application or one spe-

1.4

TRAJECTORY ANALYSIS 6

Visual Data Exploration

interact
m with user
map ’Visualization ‘ gain
transform
visualize

refine experiments
I computation P Knowledge

Algorithm retrieve

refine
Automated Data Analysis parameters

feedback loop

Figure 1.2: The visual analytics process of this thesis, adapted from Keim
et al. [2010a]

cific dataset. For example, Andrienko et al. [2013] devised a compre-
hensive visual analytics tool for analyzing the collective movement of
agroupofindividuals. In their system, they make use ofa group’scen-
ter and presume that a center can be computed at equal time stamps
for each trajectory without allowing variability in time and space. De-
pending on the application, for instance trajectories with high sam-
pling rate, another method to compute a center might be worthwhile.
Consequently, a strong need exists to make visual analytics systems
more flexible to supportawide range of computational methods.

Trajectory Analysis

While movement data is used in many, varying applications, there
is a common set of frequently occurring fundamental analysis tasks.
Each analysis task has distinct computational requirements and vi-
sual design considerations. Munzner [2014] argues that task abstrac-
tion helps researchers to contemplate on the tasks’ similarities and
differences, to determine the tasks’ different goals, and to guide fur-

TRAJECTORY ANALYSIS 7

ther dataabstraction. Munzner’'sargument thus motivated ustoiden-
tify and structure analytical tasks for movement data based on the
number of trajectories in the data. This structure on the analytical
tasks is shown in Figure 1.3.

In Chapter 2, we devise a typology for movement data by grouping an-
alytical tasks with similar characteristics and means. We can group
analytical tasks in multiple ways. Our typology provides a way to ab-
stract analytical tasks for trajectory data. In Section 2.2, we discuss al-
ternative ways of abstracting analytical tasks for movement data.

Segmentation ‘
Classification

rOne Trajectory <+ Recurring Patterns ‘

Similarity
Two Trajectories
Trajectory Analysis - Interaction

Similarity
Interaction

Representative
Multiple Trajectories
Grouping

Clustering

Interesting Regions

Figure 1.3: Overview of analyses on trajectory data based on the number of
input curves. The colors indicate the task abstraction that we
use in Chapter 2: alignment methods are in purple, categoriza-
tions in blue, transforms in orange, and representations in red.

Given a single trajectory, we can segment the trajectory into pieces
that are homogeneous with respect to a parameter, such as speed or
direction of movement. Assigning labels to pieces of a trajectory that
are homogeneous based on a movement state is known as classifi-
cation. Such a movement state can be walking, flying, resting, etc.
When we compute recurring patterns, we identify subtrajectories

1.5

OVERVIEW 8

with repeating and similar movements, such as commuting or migra-
tion. Reconstructing a movement path is concerned with comput-
ing an approximation of the actual movement from discrete locations
and possibly additional data. Reducing the number of points within a
trajectory while approximating the input trajectory up to a given er-
ror is known as simplification.

The most prominent analysis on a pair of trajectories is to determine
their similarity. It deals with quantifying distances between two tra-
jectories. Determining interaction is concerned with detecting
whether trajectories are influencing each other, for example, the indi-
viduals of the trajectories are avoiding or attracting each other.

Similarity can also be computed among more than two trajectories,
for instance, to identify parts of the trajectories with similar charac-
teristics from multiple individuals. Likewise, we can identify interac-
tion events among more than two trajectories. Grouping trajectories
or pieces of trajectories based on similarity is called clustering. Clas-
sification assigns labels to parts of trajectories based on shared char-
acteristics. A representative is a single trajectory that approximates
the movement of all input trajectories. Identifying places that have
often been visited or where individuals stayed a certain duration are
known as interesting regions.

Overview

Hamming [1987] said: “The purpose of computation is insight, not
numbers.” Insight has diverse manifestations in human cognition, is
usually the first phase in problem solving, and requires restructuring
an input quaintly [Mayer, 1995]. In this thesis, we contribute to com-
putational movement analysis by enhancing the interplay between
(theoretical) algorithms and (dataset-driven) visualizations using in-
tegrated computational and visual analytics systems, as shown in Fig-
ure 1.2. Our approaches foster new opportunities for analyzing trajec-
tory data and allow movement analysts to enrich their knowledge ba-
sis and to gain new insights. This thesis makes several contributions

OVERVIEW 9

to the analysis of movement, which we will now survey.

In Chapter 2we provide a background on movementanalysisand pres-
ent a taxonomy of existing approaches from fields such as algorithms,
GIS, and visualization. The goals of this survey are to create an aware-
ness of the variety of existing methodologies and to help in advancing

interdisciplinary research on movement data in general.

Chapter 3 concerns the computational complexity of analysis tasks
on trajectory data. Specifically, we discuss the running times of algo-
rithms for movement data aswell aslower bounds for certain analysis
tasks. In addition to known bounds, we prove two new lower bounds.
First, we show for the simplification problem that an optimal simplifi-
cation cannot be computed in subquadratic time assuming the Strong
Exponential Time Hypothesis (SETH) when the points of the input
curve lie in Q(logn)-dimensional space, where n is the number of
points of the input curve. Secondly, we show that the discrete Fréchet
distance between k curves, each consisting of n points, cannot be com-
puted in O(nk—¢) time for any € > 0 again assuming SETH. Our results
permit ustounderstand which problems can be solved efficiently and
for which analysis tasks we need approximation algorithms or heuris-
tics. This chapter is partially based on joint work with Kevin Buchin,
Maike Buchin, Wolfgang Mulzer and André Schulz [Buchin et al., 2016].

Shneiderman [1996] posed the visual information-seeking mantra:
“Overview first, zoom and filter, then details-on-demand”. In interac-
tive maps, itis essential to draw a trajectory at different scales without
unnecessary flickering while zooming in or out. A progressive simpli-
fication addresses this problem by enforcing a consistent simplifica-
tion which only remove vertices when zooming out (and which only
addsvertices when zooming in). In Chapter 4 we present the first effi-
cient algorithm for the progressive simplification problem that
providesa guarantee on the complexity of the simplification and runs
in O(n3m) time, where nisthe number of points in the input curve and
m isthe number of scales. For continuous scaling, our algorithm com-
putesaprogressive simplification in O(n°) time. Our second contribu-
tion to the simplification problem concerns shortcut graphs. Short-
cut graphs are used within many simplification algorithms as data
structure. We show how to efficiently compute shortcut graphs at

OVERVIEW 10

multiple scales. A shortcut graph encodes at which scale a certain
subtrajectory is sufficiently well represented by only its start and end
point. We present a method to compute this information for all sub-
trajectories in O(n?logn) time. This improves upon a running time
of O(n3), which would be needed if we compute this information for
each subtrajectory individually. Furthermore, we show how to com-
pactly represent shortcut graphs. The results of this chapter are
based on joint work with Kevin Buchin and Wim Reddingius [Buchin
etal., 2018].

In Chapter Swe present a visual analytics tool that computes and visu-
alizes interaction events between two (or three) trajectories in which
delayed responses occurred. Our approach aligns the trajectories
based on spatial properties and exploits the temporal differences that
occur in the alignment. By allowing the analyst to choose various
alignment methods, includingdynamic time warpingand the Fréchet
distance, we enable users to also quantify the progression of similar-
ity over time. Our approach consists of multiple coordinated views in
which we use the temporal difference that occurs in the alignment
to visualize potential delayed responses. Furthermore, we provide a
novel approach to compute a global delay between two trajectories in
O(nlogn) time by using Fast Fourier Transforms. Chapter 5 is based
on joint work with Kevin Buchin, Maike Buchin, Luca Giuggioli,
Joachim Gudmundsson, Jed Long, Thomas McKetterick, Trisalyn
Nelson, Tim Ophelders, Michel Westenberg and Georgina Wilcox
[Konzack et al., 2017, 2015].

Next, we present a visual analytics tool in Chapter 6 that explores mi-
gratory trajectory data interactively. In our approach, we compute,
aggregate, and visualize stopovers, which are breaks from migration,
on top of a geographic map in addition to a density map and a cal-
endar view. We applied our visual analytics tool to a dataset of 75
lesser black-backed gulls, and validated our approach through an ex-
pert user interview. Our evaluation suggests that our tool enables
ecologists to visually explore migratory patterns in trajectory data.
This chapter isbased on joint work with Kevin Buchin, Pieter Gijsbers,
Emiel van Loon, Ferry Timmers and Michel Westenberg [Konzack
etal., 2018].

Background

2.1 Introduction

Researchers from many domains and applications collect trajectory
data to understand the cues and drivers behind an individual’s move-
ments. Methodologies for analyzing trajectory data benefit from the
numerous concepts and theories from multiple disciplines. Thus, it
isimportant to get an overview of the existing approaches. Therefore,
we will survey methodologies from various disciplines in this chap-
ter. We abstract low-level analytical tasks and survey their contribu-
tions, challengesand opportunities, and high-level goals as expressed
as means and characteristics.

Such an overview helps in designing and developing new methods to
analyze trajectory data as well as in identifying similarities and dif-
ferences between the analytical tasks. By connecting the high-level
goals that analysts often have in mind with the low-level analytical
tasks for trajectory data, we aim to provide a comprehensive and holis-
tic survey on the analysis of movement data.

The contributions in this chapter are:
+ asurvey of methodsusedtoanalyze and visualize trajectory data,

*+ atypology in which we arrange all approaches based on a task’s
means and characteristics, and

2.2

RELATED WORK 12

* adiscussion of general challenges in movement analysis.

Related Work

Taxonomies help in guiding researchers to abstract, to synthesize,
and to contemplate about aspects of their research problems and to
develop new methodologies. Here, we give an overview of past sur-
veys and taxonomies for visualization, for computational approaches,
and for movement data in general.

Within the visualization community, Munzner [2014] discusses the
link between why and how visualization systems work and what they
visualize. Brehmer and Munzner [2013] proposed a typology that
bridges the gap between low-level tasks and high-level tasks. Their
domain-agnostic typology is based on both why and how a visualiza-
tion task is performed.

Similarly, Schulz et al. [2013] explored the design space for visualiza-
tion tasks. They characterized tasksin a taxonomy of five dimensions:
the task’s goal (why), the task’s means (how), data characteristics
(what), the target and cardinality of data entities (where), the order
of tasks (when), and the (type of) users (who). As an example, Schulz
et al. [2013] applied their taxonomy to tasks for climate impact
research. We use two of the dimensions in this chapter, the task’s
means (how) and the task’s characteristics, to categorize methodolo-
gies for movement data.

Lam et al. [2018] extended the work by Schulz et al. [2013] on visualiza-
tion tasks by organizing design study papersinto a two-axes taxonomy
on the specificity, which spans from exploring via describing and ex-
plaining to confirming as task’s goals, and on the number of data pop-
ulations, which can be either a single entity or multiple entities.

Andrienko and Andrienko [2013] surveyed the state of the art of vi-
sual analytics approaches for movement data. They divided visual an-
alytics systems into four categories: looking at trajectories, looking
inside trajectories, showing a bird’s eye view of movement data, and

2.3

ScoPE AND Focus 13

investigating movement within its context.

Andrienko et al. [2011] modeled the links between the dimensions
space, time, and the moving entity of the trajectory as a taxonomy for
analytical methods on movement data. They defined tasks by com-
bining properties from these three dimensions. Furthermore, they
differentiated whether analysesoperated on these propertiesdirectly
(elementary analysis) or whether they worked on (sub)sets of these
properties (synoptic analysis).

In geography, the Space Time Cube (STC) is a representation for
movement data in which time is modeled explicitly as a third dimen-
sionin addition to the locations in the Euclidean plane [Hagerstraand,
1970]. Bach et al. [2014] gave an overview of all possible operations
on an STC. By defining these operations, they were able to describe
visualization systems for time series as sequences of operations on
an STC. They addressed how existing approaches can be operational-
ized on STCs, including interactive 2D visualizations that use anima-
tion.

Long and Nelson [2013b] surveyed quantitative methods for analyz-
ing movement data, in which they classified existing approaches into
seven categories: time geography, path descriptors, similarity indices,
pattern and cluster methods, individual-group dynamics, spatial field
methods, and spatial range methods.

Scope and Focus

In this section, we describe how we devised our typology from study-
ing existing approaches on movement data. First, we studied exist-
ing survey papers on this topic from the preceding section in addi-
tion to handbooks for computational geometry [Goodman et al,, 2017,
Sack and Urrutia, 1999] and a survey dedicated to the contributions
of the MOVE project [Demsar et al.,, 2015]. From these sources, we col-
lected valuable information from an array of references from various
disciplines, such as computational complexity, data mining, compu-
tational geometry, GIS, visualization, movement ecology, and visual

2.4

TYPOLOGY FOR ANALYZING MOVEMENT DATA 14

analytics. Then, we compiled an exhaustive list of analytical tasks in
a bottom-up fashion from these papers, as shown in Figure 1.3. We
merged common topics into a single theme, e.g., reconstructing a
movement path contains approaches for interpolation of trajectories
as well as map matching.

The starting points for our typology are the works by Munzner [2014]
and Schulz et al. [2013]. From the five dimensions distinguished by
Schulz et al. [2013], we selected means because they model actions
and are expressed as verbs, and we chose characteristics because
they cover aspects of the data that interest analysts. We dropped and
merged some values for meansand characteristics because they were
not generally applicable to movement data, but rather only to visu-
alization systems. By analyzing the relations between the low-level
tasks in terms of task A “is specialization of” B, we introduced a new
abstraction layer. For instance, interesting regions is a specific form
of a clustering or segmentation, so we aggregated these types of ap-
proaches into categorization.

Typology for Analyzing Movement Data

In Chapter 1, we covered why researchers collect movement data and
what motivates them to analyze trajectory data. We also introduced
(low-level) analytical tasks that researchers can use to compute or vi-
sualize trajectory data.

The objective of the typology in this chapter is to connect the low-
level analytical tasks to the high-level goals that analysts have, e.g., to
discover, explore, or identify patterns in a trajectory dataset. We use
two high-level goals to categorize and abstract the low-level analytical
taskstotypesofanalyseswith similar characteristicsand means:

* How and by which means can we conduct analytical tasks?
* What do these tasks aim to reveal in the data?

These two questions are inspired by the taxonomies by Schulz et al.
[2013] and Munzner [2014]; we adapted them for the spatio-temporal

TYPOLOGY FOR ANALYZING MOVEMENT DATA 15

properties of trajectory data. The first question is concerned with the
means of an analytical task and deals with the operations to reach a
goal. A mean is sometimes referred to as action or task, and it gives
insights into how an analytical task is carried out. The second ques-
tion deals with the characteristics that describe particular facets of
the trajectory data which the analytical task aims to reveal. Munzner
[2014] referstothe characteristicsas targets. Schulzetal. [2013] distin-
guished between low-level characteristics, which a user can perceive
and detect easily, and high-level characteristics, which require more
sophisticated techniques to mine.

We adapted and simplified the categories for the means and charac-
teristics to model aspects specific to movement data. In addition to
means and characteristics, we aggregated analytical tasks into types
of tasks with similar means and characteristics. Such a typology al-
lows usto study the structural properties between the analytical tasks
and to identify additional, more abstract topics for movement analy-
sis. In Table 2.1, we show our typology. An X denotes that the analy-
ses use these means and characteristics. An (X) denotes an implicit
dependency or usage of the given means or characteristics. For ex-
ample, all types of analytical tasks in our typology use similarity mea-
sures.

We now describe each part of our typology in more detail. First, we
give an overview of the means to analyze trajectory data. Next, we re-
view the characteristics of analytical tasks for movement data. Then,
we discuss the different types of analyses in depth.

Adding metadata, such as a new attribute, by a manual user action is
annotating. Contrarily, deriving new attributes from existing onesis
carried out computationally.

An analysis can have various scopes, and we identified the following
five query operations. Filtering or (sub)sampling of data points is
known as extracting. The identification of regions or individuals is
concerned with computationally detecting and finding associations
in trajectory data. In visualization systems, it is common to give an
overview of the data. Such a bird’s eye view gives a summary of the
dataset. Another important query operation is to compare the move-

TYPOLOGY FOR ANALYZING MOVEMENT DATA

16

Table 2.1: Our taxonomy for the analysis of movement.

~
<
()]
3
20
5
<

&
"3
%)
&
IS

<

9
o

.S/

o

&
v
@)

IS
.0
5
i
IS
7
4
9
(7
@

Means
Annotate
Derive
Extract
Identify
Summarize
Compare
Relation-
seeking

Characteristics
Trends

Outliers
Features
Distribution
Dependencies
Correlation
Similarity
Network

X)

X)

X X X

(X)
X

TYPOLOGY FOR ANALYZING MOVEMENT DATA 17

ments of two (or more) individuals by juxtaposing the results of both
trajectories. Contrarily, relation-seeking deals with analyzing possi-
ble links between two (or more) individuals.

Munzner [2014] identified three high-level characteristics that each
analytical task can have and which also apply to trajectory data. High-
level patternsin a dataset can be described as trends. On the contrary,
outliers are data points which do not fit well (or at all) into structures
and which represent anomalies with respect to other data points. The
third high-level characteristic is features which constitute particular
structures of interest.

Beyond these high-level characteristics, we identified other charac-
teristics for trajectory datasets. A distribution encompasses count-
ing occurences of spatio-temporal properties with respect to their
spatial and temporal extent, such as regions or frequencies for differ-
ent years or months, to spot typical values as well as anomalies. With
dependency, we refer to occurrences when movements in one trajec-
tory influence the movement in another trajectory. The correlation
between (the values of) two trajectories quantifies the (statistical) re-
lationship between the trajectories’ movements. Similarity charac-
terizes how a trajectory resembles another trajectory. A network ex-
presses individuals’ movement in terms of states and the relations
between these states, enabling analysts to reason on higher-level ab-
stractions from the movement data.

We divided analytical tasks on trajectory data into four typesin our ty-
pology: alignments, transforms, categorizations, and representations.
Within alignments, we survey approaches that quantify the inter-de-
pendency between two (or more) trajectories. Transforms modify
the number of points within a trajectory either by reducing or by add-
ing locations to the input trajectory. Categorization approaches are
concerned with identifying meaningful parts of trajectories, regions
of interest, or moving entities with specific spatio-temporal proper-
ties. Representations summarize movement by abstracting from
plain trajectories.

2.5

2.5

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 18

Overview of Trajectory Analysis Tasks

High-level research questions and goals are related to interpreting
the cues and mechanisms behind movement. New methodologies
achieve these goals to some extent by focusing on low-level
research questions related to a specific phenomenon and by limiting
their attention to only certain aspects of high-level goals. For exam-
ple, take the work by Alewijnse et al. [2014]. Their visualization proto-
type segments trajectories and allows an interactive selection of pa-
rameters. Alewijnse et al. [2014] mention only their high-level goals
within a case study (to distinguish between movement states, such
as migration and stopovers). They do not describe other operations
thatananalyst might want to investigate, such as seeking relations or
identifying trends. To fully understand why and how a method works,
it is essential to connect both. Our typology links low-level analytical
tasks to types of analyses.

We now survey each type using the following structure:

Background addresses the setting and the underlying motivation
for applying this analysis type to trajectory data;

Means and Characteristics concern the links between the aims
and the actions needed to for this analysis type;

State of the Art gives an overview of computational approaches as
well as visualizations for this analysis type (Here we survey the
approaches as such. For a discussion of the computational com-
plexity of the approaches we defer to Chapter 3);

Challenges and Opportunities dealswithlimitsand constraints for
this analysis type as well as possibilities for future work.

Alignment

Background. The movements of individuals often influence each
other, for instance, when pursuing a particular goal, e.g., foraging, or

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 19

Figure 2.1: Aligning two trajectories in a monotonous matching (dashed).

when traveling together as a flock or in a particular formation, like a
single file. Therefore, the movements of one individual correlate to
some extent with the movement of others. Given two (or more) trajec-
tories, a basic problem is quantifying how similar or dissimilar these
trajectoriesare toeach other. Such a quantification givesinsightsinto
how the movements of one individual are related to or depend on the
movements of another individual. Quantifying the interdependency
between moving entities allows analysts to express and trace the in-
fluence between trajectories over time. An alignment captures the
interdependency as a mapping from each point of one trajectory to a
point of the other trajectory that is similar.

Means and Characteristics. Alignment methods quantify similar-
ity and correlate locations from two (or more) trajectories. To align
similar features in different trajectories, it is necessary to identify
features. Furthermore, the dependencies between points of one tra-
jectory and points of another trajectory are also of interest in the com-
putation of alignments.

State of the Art. A variety of alignment methods from many applica-
tions exist. Alignment methods commonly interpret a trajectory as
a curve or a sequence parameterized/indexed by time. These align-
ments continuously map one trajectory onto another trajectory with-
out reversing time during the mapping. Naturally, these alignments
startsat the first points of both trajectoriesand ends at their endpoints.

An alignment method originally used for curve matching is the
Fréchet distance which minimizes the maximum distance between
two trajectories. The Fréchet distance has been applied to computa-

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 20

tional movement analysis [Buchin et al., 2008, 2010]. Lower bounds
are known (see Section 3.4.2) as well as algorithms to compute the
Fréchet distance exactly (see the works by Alt and Godau [1995],
Buchin et al. [2012], or Rote [2014]) or approximately [Driemel et al,,
2012; Dumitrescu and Rote, 2004].

Dynamic time warping is another alignment method [Berndt and Clif-
ford, 1994]. It minimizes the sum of distances between two trajecto-
ries within an alignment. Dynamic time warping is popular within
data mining and database systems. To bypass the near-quadratic
lower bound [Gold and Sharir, 2016], Salvador and Chan [2007] and
Al-Naymat et al. [2009] have developed heuristics.

The edit distance [Wagner and Fischer, 1974] and the longest com-
mon subsequence [Maier, 1978] are also popular alignment methods,
which have been applied to trajectory data [Chen et al., 2005; Vlachos
et al, 2002]. All these alignment methods share (conditional) near-
quadratic lower bounds, which makes it challenging to compute opti-
mal alignments for large datasets.

Wang et al. [2013] reviewed various alignment methods for time se-
ries experimentally. Among these techniques were dynamic time
warping, the longest common subsequence, and two versions of the
edit distance, but not the Fréchet distance.

Many movement patterns are closely linked to alignments. Anders-
son et al. [2008] developed an algorithm to detect the movement pat-
tern of leadership. Leadership is when one entity is followed by suffi-
ciently many other entities, but is not following another entity itself.
Here an entity is considered to follow another entity if the other tra-
jectory is in the front region, which is a circular sector facing the di-
rection of movement. Similar to leadership, a single file captures a
follow-behind relationship. Buchin et al. [2008, 2010] defined a single
file as a group of moving entities in which one leads the group, and all
others are following each other.

Similarly, the dynamic interaction measure developed by Long and
Nelson [2013a] detects follow-behind relationships between trajecto-
ries by making utilizing of spatial displacements. They applied the dy-
namic interaction measure to movement datasets from grizzly bears

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 21

and ultimate frisbee players on global, local, and episodic temporal
scales.

In Chapter 5, we use alignment methods to quantify action-reaction
patterns for three datasets: two different pigeon datasets and
ultimate frisbee data. We use the computed alignments to visualize
the inter-dependency between the trajectories.

Challenges and Opportunities. Defining and computing an align-
ment for multiple trajectories is challenging since the running time
for computing such alignments grows exponentially in the number
of trajectories. Thus, efficient approximation algorithms are needed
here. Another challenge is visualizing alignments of three or more
trajectories on two-dimensional screens.

To investigate when an individual does not interact with another indi-
vidual, it would be useful to define a reference model for no interac-
tion. Such a no-interaction model might vary between applications.
Exploring how computed interaction events are related to actual ob-
served interaction might be of help to define null models for interac-
tion.

2.5.2 Transform

Background. In applications like sports analysis, locations are
tracked with a high sampling rate (multiple locations per second).
Such high resolutions allow researchers to describe movement
almost continuously. However, this results in large datasets. That
makes it difficult to handle this data computationally, in particular
when methods with high computational complexity need to be used
(see Chapter 3). But applications also often face the opposite prob-
lem, that is, movement datasets which have been captured with low
precision or a sparse sampling rate. Movement analysts are there-
fore in need of transforms, techniques to reduce the number of loca-
tions within a trajectory while preserving the shape of the trajectory
to some extent, on the one hand, and on the other methods to enrich

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 22

trajectories by additional locations to improve the quality of the anal-
ysis on the other hand.

Means and Characteristics. Comparing features of a trajectory is
needed in transforms. Transforms also extract features to enhance
the results of the analysis. Similarly, detecting outliers is central to
transforming trajectories to differentiate regular locations from
anomalies.

State of the Art. Applications need to find a way to reduce the com-
plexity of a raw trajectory, such that the trajectory can be further pro-
cessed efficiently. Curve simplification then addresses the problem
of reducing the complexity of a trajectory by minimizing the num-
ber of vertices of the curve while preserving the original shape of the
curve up to a specific error €. We discuss curve simplification in Sec-
tion 3.3.1in more detail.

Figure 2.2: Computing a simplification (in green) from a trajectory.

For some applications, such as cartography, it is important to com-
pute a series of simplifications that are consistent across different
scales [Cao et al,, 2006; Visvalingam and Whyatt, 1993]. Consistency
here means that whenever a trajectory/curve is simplified further
(moving from a finer to a coarser scale), the simplification removes
only vertices. We refer to such a simplification as progressive sim-
plification. In Chapter 4, we give the first algorithm to compute min-
imum-complexity progressive simplifications.

Since trajectories are collected as a sequence of discrete locations,
the movement between two locations of a trajectory remains
unknown to the observer if the locations are not sampled frequently
enough. The reconstruction of the original movement path is, there-
fore, an important task because it enables analysts to understand the
actual movement by exploiting the exhaustive set of all possible move-

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 23

ment patterns on the movement path. For instance, interpolation of
movement is central to handle intermediate positions between two
locations in sparsely sampled movement data. Linear interpolation
usually works sufficiently well for densely sampled trajectories. By
employing the Brownian bridge movement model (BBMM), Buchin
et al. [2012] were able to compute movement patterns, including en-
counter, avoidance, attraction, regular visits, and following, from
movement data with low sampling rate and thus high uncertainty.
The BBMM assumesrandom movement between measured locations.
Buchin et al. [2015] showed how to integrate environmental context
into a BBMM-based analysis. They demonstrated on two ecological
datasets that the derivation of movement parameters and the move-
ment parameters’ spatial distribution via BBMM is a powerful tech-
nique for computational movement analysis.

Reassigning locations of a trajectory to positions on a road network
of a digital map is known as map matching. This transform remedies
the problem of inaccuracies in the tracking of individuals moving on
a known network. Greenfeld [2002] reviewed several approaches for
map matching. A map matchingalgorithm can either locally adapt lo-
cations iteratively or remap locations of a trajectory globally. Brakat-
soulas et al. [2005] devised an approach that allows both paradigms
and employs the Fréchet distance to match trajectories onto a street
network. They applied their approach to 45 trajectories from vehi-
cles in Athens, Greece. Similarly, Lou et al. [2009] developed a global
map matching approach that uses geometric and topological struc-
tures of the road network, which furthermore allows to define spatio-
temporal constraints. They compared the performance of their algo-
rithm with other map matching algorithms on synthetic data and the
GeolLife dataset [Zheng et al., 2009]. Newson and Krumm [2009] em-
ployed Hidden Markov Models in their map matching algorithm for
sparse trajectories.

Challenges and Opportunities. Because global map matching
algorithms generate curves that yield a smaller Fréchet distance to
the original trajectory than incremental map matching algorithms,
and because incremental algorithms run faster than global ones, it
would be worthwhile to investigate how this trade-off could be bal-

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 24

anced by, forinstance, integrating multiple sensorsinto a map match-
ing algorithm.

Computing optimal simplifications in subquadratic (or ideally, near-
linear) time remains an open problem, except for in some specific set-
tings [Agarwal and Varadarajan, 2000].

2.5.3 Categorization

Background. Understanding the cuesand drivers behind movement
motivates researchers to collect and to interpret trajectory data. A
partitioning of (sub)trajectories allows analysts to discern which re-
gions or (pieces of) trajectories are of interest. Assigning categories
to these partitions can be either explicit or implicit. We refer in both
cases to this problem as categorization.

Means and Characteristics. Categorization identifies features of
trajectories that break them into categories. A methodology for cate-
gorization derives trends that are prevalent in the data. Furthermore,
computing such partitions helps in seeking relations between cate-
gories. It is likely that a correlation of spatio-temporal properties ex-
ists within a category.

Figure 2.3: Segmenting a trajectory into three segments: the circular move-
ment (in green), a left turn (in red), and a right turn (in blue).

State of the Art (Segmentation). Dividinga trajectory into pieces with
similar movement parameters, such as speed, heading, or turning
angle, is known as segmentation. Segmentation allows us to detect

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 25

subtrajectories, that describe behavioral states of a moving entity, as
shown in Figure 2.3. There is a trade-off between the number of such
segments and how similar the (sub)trajectory is within a segment.
Given a spatio-temporal criterion on the similarity within a segment,
it is natural to formulate this problem as an optimization problem. To
avoid overfitting, we aim to minimize the number of segments.

Inthe past, either heuristics or optimizations of a global criterion have
been considered rather than the minimization of the number of seg-
ments [Aronov et al,, 2016]. Aronov et al. [2016] devised a framework
for optimal segmentation, given a so-called start-stop diagram, which
isarepresentation of valid and invalid segments on a given trajectory.
The start-stop diagram naturally leads to a quadratic-time algorithm
if a trajectory can be segmented only at data points. Alewijnse et al.
[2014] tackled the quadratic barrier on segmentation for a wide range
of criteria. Alewijnse et al. [2014] developed a visualization to allow
an interactive parameter selection for the segmentation criteria, and
they applied their prototype to a dataset of migrating geese.

Figure 2.4: Classification of trajectories into two classes: red and blue.
Given an unclassified trajectory (in black), the classification
problem asks to compute a class for this trajectory.

State of the Art (Classification). Classification is concerned with as-
signing (pieces of) trajectories to classes. The goal of a classifier is
to determine the discriminator between the classes. A classification
can have binary classes, e.g., walking or non-walking, or have mul-
tiple categories, such as walking, resting, foraging, etc. The assign-
ment of classes can have different spatial extents. A class can be as-
signed to either entire trajectories or pieces of them. Classification
was originally defined in statistics and later applied in machine learn-

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 26

ing [Bishop, 2007] and data mining [Zheng, 2015]. The original defi-
nition asks to learn from labels of a training dataset to classify a test
dataset which did not have labels, as shown in Figure 2.4.

Zheng et al. [2008a] and Zheng et al. [2008b] developed approaches to
learn modes of transportation and people’s motion modes and to ex-
perimentally infer the transition between different modes from tra-
jectory data by using techniques from machine learning. TrajClass
[Lee et al, 2008] classifies (sub)trajectories based on the density of
their locations and allows tuning for specific regions. Alewijnse et al.
[2017] classify subtrajectories based on the parameter of a movement
model.

State of the Art (Clustering). Similar to classification, clustering al-
gorithms aggregate pieces of trajectories with similar characteristics,
see Figure 2.5. Computing clusters works either top-down or bottom-

Figure 2.5: Clustering of four trajectories. Each cluster (in red, green, and
blue) captures subtrajectories with similar movements.

up. One type of top-down clustering algorithms are density-based ap-
proaches. The DBSCAN |[Ester et al., 1996] and the OPTICS [Ankerst
et al, 1999] algorithms are the most prominent algorithms for point-
based clustering. Andrienko et al. [2018, 2009, 2007] implemented
the OPTICS algorithm to visualize clusters in trajectory data exper-
imentally. Lu et al. [2015a] employed a modified version of the DB-
SCAN algorithm in their visual analytics system to detect clusters of
specific regions in urban areas.

Lee etal.[2008,2007] devised approaches that combine region-based
classification with density-based clustering to improve the accuracy
of the resulting clusters.

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 27

Gaffney and Smyth [1999] developed a clustering algorithm for trajec-
tories that uses a probabilistic mixture regression model by applying
an EM algorithm on the trajectories. They applied their clustering al-
gorithm to both simulated data and video data.

The subtrajectory clustering by Buchin et al. [2011] employed the
Fréchet distance to detect clusters of predetermined subtrajectory
lengths and with a specified number of moving entities within each
cluster. Gudmundsson and Valladares [2015] explored how to use
GPUs for the subtrajectory clustering algorithm.

In Chapter 6, we present a hierarchical clustering algorithm that is
integrated into a visual analytics system. We applied our approach to
a dataset of migratory gulls.

Figure 2.6: A recurring pattern (in blue) within a trajectory. Such patterns
can be either shape-based or distance-based.

State of the Art (Recurring Patterns). Moving entities often follow
the same or comparable similar routes; they also often pursue these
routes repeatedly. The consequent periodicity is observable along
different temporal scales: daily (commuting), annually (migration),
or seasonally. These recurring patterns are often modeled as
sequences, see Figure 2.6. Detecting recurring patterns in a trajec-
tory helps analysts to find subtrajectories with similar movement
characteristics. The approach by de Berg and Mehrabi [2016] reports
all subtrajectoriesthatare similartoagivenline segment with respect
todilation and direction deviation and has been applied to a dataset of
soccer players.

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 28

Caoetal.[2007] used a density-based clustering with DBSCAN to com-
pute recurring patterns. In their approach, user-specified periods
(days, weeks, or months) define the periodicity of the pattern. Their
approach considers time shifts and distortionsin the trajectories, and
they evaluated their approach experimentally on synthetic data.

State of the Art (Interesting Regions). Some places that individuals
visited are more crucial for pursuing a goal than others. Movement
inrelation to a place or aregion provides an indication about the rele-
vance of a place, for example: how many individuals visited a place or
how much time individuals spentin such a place. Interesting regions
can be viewed and modeled as a specific form of a clustering.

Regions that have been visited by many entities are so-called popu-
lar places. Benkert et al. [2010] studied the problem of finding popu-
lar places. They devised an O(/log n)-time algorithm for the discrete
model, given a set of trajectories with a total number of points of 1
(and at most nk, where k is the number of trajectories and n the num-
ber of points within a trajectory). Gudmundsson et al. [2013] explored
various optimization problems of square-shaped regions, so-called
hotspots, and devised algorithms for them.

Challenges and Opportunities. A common trait that all approaches
of this type share is that they require a valid discriminator which ap-
propriately describes the desired categorization. This presupposes
prior knowledge of the drivers and mechanisms that underlie move-
ment. Visualizations could help to guide the exploration of viable pa-
rameterizations experimentally.

Because clusters, interesting regions, and recurring patterns share
that they describe regions in the plane, it could be worthwhile to in-
vestigate how to model and visualize the links and dependencies
among these categories, e.g., by incorporating temporal properties.

2.5.4 Representation

Background. When a movement dataset has many trajectories, it is
more prevalent to summarize the trajectories by abstracting

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 29

them conceptually from their locations. A representation remedies
this by superimposing a structure upon all input trajectories. Suchan
abstraction helpstoreduce visual clutter in the data and the cognitive
load of processing it.

Means and Characteristics. Representations summarize features,
and they extract dependencies implicitly or explicitly,. Comparing
the distribution of the individuals’ locations is also required in rep-
resentations. Representations help analysts in seeking relations be-
tween trajectories as well as identifying movement states and rela-
tionships between movement states (networks).

State of the Art. In statistics, an average describesa typical value with-
in a set of values. A representative for such a set is calculated to ex-
press the typical characteristics. It is calculated from a population of
values. Similar abstractions are needed for movement data. Given
a collection of trajectories, a representative approximates the move-

Figure 2.7: Computing a representative from a collection of trajectories.

mentsofalltrajectoriestoacertain degree by being “in the middle” of
all trajectories, see Figure 2.7. A representative needs to capture the
progression of individuals’ movements either by using only locations
from the trajectories or by adding derived points from the trajectories
that express centrality.

Buchin et al. [2013a] defined a median trajectory intuitively by using
pieces of input trajectories and by staying in the middle of them. A
mean trajectory averages locations, one from each trajectory, like
a center of gravity. A median trajectory stays central with respect
to the number of given trajectories; whereas, a mean trajectory does
not. Buchin et al. [2013a] devised two algorithms to compute a median
trajectory: a simple median, based on the arrangement of lines and

OVERVIEW OF TRAJECTORY ANALYSIS TASKS 30

which is computable in O((nk)?) time, where k is the number of tra-
jectories and n the number of points in a trajectory, and a homotopic
median, based on geometric and topological concepts and which can
be constructed in O((nk)?*¢) time for € > 0. The running times for
these two medians are optimal because a median curve is composed
of O(nk) line segments, which can yield output sizes of up to O ((nm)?).

However, the algorithms by Buchin et al. [2013a] are not sensitive to
the time stamps of the data points of the trajectories. By computing a
central trajectory, van Kreveld et al. [2015] tackled the issue of find-
ing a time-sensitive representative. Their central trajectory consists
of points from the input trajectories and switches from one trajectory
to another when the smallest enclosing disk of the data points at time
tneedsimprovements. InR?, a central trajectory of complexity ©(nk?)
is computable in O(nk? log k) time. For trajectories in d-dimensional
space with d > 1, van Kreveld et al. [2015] devised another algorithm
to compute a central trajectory with a complexity of at most O(nk>/2)
in O(nk3) time.

Andrienko et al. [2013] designed a linear-time algorithm to compute a
centroid by iterating through all trajectories simultaneously and find-
ing a central location among the trajectories at corresponding time
stamps. Their technique presumes that all trajectories have the same
length.

In a large group of moving entities, we are interested in questions
like who traveled together in a subgroup and for how long. Flocks,
swarms, and moving clusters [Dodge et al., 2008] address these ques-
tions partially, but little work has been done on considering merg-
ing and splitting between different groups. Buchin et al. [2013b] ad-
dressed this gap by introducing the trajectory grouping structure
and presenting an algorithm that computes it efficiently. Kostitsyna
et al. [2015] extended this work by incorporating contextual informa-
tion into the grouping structure. They used the geodesic distance to
measure the distance between entities where obstacles, e.g., build-
ings, lakes, or walls, occur. The interactive analysis of grouping struc-
tures for varying parameters was investigated by van Goethem et al.
[2016].

2.6

2.6.1

DISCUSSION 31

Challenges and Opportunities. Context, such as geographical re-
gions or weather, provides important information, which can influ-
ence, how we formulate a suitable representative. Integrating con-
textual information into the computation of representations and vi-
sualizing representations in relation to the context is of high impor-
tance.

Representations might be of help when visualizing alignments
among multiple trajectories because a suitable representation can
serve as the basis of a visual abstraction of many trajectories.

Discussion

We reflect on our typology, analysis tasks, and methods surveyed by
relating gaps and challenges that we synthesized from previous re-
search.

Workflow

Often analytical tasks work in concert with each other to (pre)process
data or to improve computational results. We decided not to arrange
them into workflows since it is tedious to enumerate all meaningful
workflows and some analytical methods, e.g., segmentation can ei-
ther be a pre-computational step or the desired end result. Zheng
[2015] surveyed methodologies for trajectory data within the context
of data mining by identifying a generic workflow from preprocessing
and indexing of trajectory data to mining of patterns.

2.6.2 Scale and Uncertainty

Trajectory data consists of a sequence of locations over time. Uncer-
tainty of the path between those locations is inevitable, even when
the temporal sampling rate duringrecordingisincreased. Therefore,

DISCUSSION 32

granularity and uncertainty can significantly influence an analysis’s
interpretation [Shamoun-Baranes et al., 2011a]. Dodge et al. [2016] ar-
guethatitisessential toanalyze movementat multiple scalesbecause
different movement patterns are expressed and characterized at dif-
ferent spatial and temporal scales. Laube et al. [2007] identified four
temporal scales in the analysis of movement: globally, computed on
the entire trajectory; locally, at a specific time stamp; episodic,
computed on a subtrajectory where a spatio-temporal movement pa-
rameter of the trajectory —for instance the heading-is homogeneous;
and intervallic, on a fixed window of time stamps. Wood et al. [2010]
defined a three-level analysis for collective motion that encompasses
both spatial and temporal granularity: howindividual members move
within a collective, how the collective moves as a single entity, and
how the collective’s footprint evolves (individuals entering and leav-
ing the collective).

2.6.3 Context

Not only intrinsic factors explain the movements of an individual and
motivate entities to move; external factors also influence how an in-
dividual moves. Analysts, e.g., ecologists, use this contextual infor-
mation implicitly or explicitly in their research [Shamoun-Baranes
et al,, 2011a]. Storing information about how moving entities interact
with their environment is central to improve computational results,
e.g., in segmentation or statistical analysis. Dodge et al. [2016] claim
that only by incorporating and considering all factors in an analysis
a deeper understanding of patterns in movement data can be gained.
Integrating data from multiple sensors, like accelerator or weather
data, can help in filling the gap in capturing a moving entity’s behav-
ior more thoroughly.

2.6.4 Space and Time

A trajectory’s data points show high auto-correlation for space and
time [Dems3ar et al,, 2015; Shamoun-Baranes et al., 2011a]. The higher

2.6.5

2.6.6

DISCUSSION 33

the sampling rate a trajectory has, the higher the correlation is be-
tween space and time. In our survey, we did not distinguish between
approaches that interpret trajectories as discrete sequences of time-
stamped locations and approaches that (by suitable interpolation) in-
terpret trajectories as continuous movements over time. However,
the computational complexity might differ for approaches depending
on how the approach interprets trajectories (see Chapter 3).

Interdisciplinarity

Because movement analysis has many applications, collaborations
between researchers working on new methodologies and research-
ers from application domains are crucial to foster innovative, excit-
ing, and unusual new concepts for the analysis of movement [Dems$ar
et al, 2015; Dodge et al.,, 2016]. Disseminating these interdisciplinary
efforts can be challenging because finding suitable venues for a spe-
cific target audience across disciplines is difficult.

Specificity of Data Analysis

Lam et al. [2018] proposed a taxonomy for visualization systems that
includes the specificity of an analysis. They delineated a spectrum
of four categories for specificity that ranges from exploring and de-
scribing to explaining and confirming. Dem§ar et al. [2015] argue
that methods from information sciences, e.g., visualization, which are
apt for data exploration, could contribute to confirmatory (hypoth-
esis-driven) approaches in ecology that enhance the (presentation of
the computed) results. In addition, Dodge et al. [2016] point out that
simulation and predictive models for movement will become more
important in the future.

2.7

CONCLUSIONS 34

Conclusions

We surveyed approaches that analyze movement data in this chap-
ter. These methods come from various backgrounds: geographic in-
formation science, computational geometry, data mining, and visual-
ization. Our contribution is a typology for the analysis of movement.
We aggregated all approaches into four types: alignments that ar-
range trajectories to quantify the inter-dependency between them;
transformsthatchange the sequence of pointsinatrajectory toboost
the results for a subsequent analysis; representations that find struc-
tures from multiple trajectories; categorizations that identify (pieces
of) trajectories with similar properties.

Furthermore, we identified and connected high-level research ques-
tions to our typology by taking the means and characteristics of anal-
ysis tasks into account. For each type of analysis, we discussed limits
and future work. Then, we synthesized an overview of challenges on
movement data from previous papers.

In the subsequent chapters, we present approaches for some of the
aforementioned analytical tasks. We elaborate on the computational
complexity in next chapter.

3.1

3

Computational Complexity
of Problems on Trajectories

Introduction

Within the last decade, researchers from different fields worked on
developing new techniques and algorithms for movement data
[Demsar et al., 2015]. Each application of movement data has its spe-
cificrequirementsthat concern computational aspectsaswellas con-
straints related to how to present and to communicate scientific re-
sults.

In this chapter, we study the computational complexity of analytical
methods on movement data for a single trajectory, two trajectories,
and multiple trajectories. We discuss state-of-the-art algorithms for
computational problems on trajectory data.

The importance of the efficiency of algorithms is immanent if we
want to solve problems for large trajectory datasets. To illustrate the
importance of lowe bounds, consider the problem of computing an
alignment between two trajectories.

We know little about the factors that determines the hardness of a
problem on curves. In the past years, previous research explored and
proved quadratic bounds for problems concerning two curves. For

3.2

PRELIMINARIES 36

large-scale datasets, researchers now need to either restrict their in-
put by limiting the computations to small instances or by imposing
additional constraints on the input trajectories, or they need to devise
near-linear time heuristics or approximation algorithms. For prob-
lems concerning a large number of trajectories, however, less is
known about how to solve problems in polynomial time, and which
problems admit such a solution. Take the work by Buchin et al. [2011]
to cluster subtrajectories as an example of a problem on multiple sub-
trajectories for which more is known. First, they formulated this prob-
lem as an optimization problem on multiple subtrajectories. Then,
they showed that it is infeasible to solve it optimally in polynomial
time. This insight led them to resort an existing approximation al-
gorithm [Dumitrescu and Rote, 2004] to compute clusters efficiently.
Therefore, it is essential to use concepts and results from problems
on two trajectories in the context of computational complexity for
problems with multiple trajectories.

Analyzing the computational complexity of problems on trajectories,
discussed in this chapter, will serve asabasis for the design of method-
ologies for trajectory data, in the subsequent chapters, which are effi-
cient with respect to time and space.

Preliminaries

In this section, we review common definitions, conjectures, and prob-
lems that have been used in the past to prove lower bounds. A lower
bound for a computational problem provides insights into how effi-
ciently the problem can be solved by any algorithm. If a lower bound
exists for computational problem, then we know that we cannot de-
velop an algorithm for this problem that, in general, solves it faster
than the given lower bound.

Lower bounds need to make assumptions about the computations
that are possible and their efficiency. For instance, lower bounds can
be proven in a restricted model of computation like algebraic com-
putation trees [Ben-Or, 1983], which have been applied to show an

PRELIMINARIES 37

Q(nlogn) lower bound for computing the Fréchet distance between
polygonal curves [Buchin et al., 2007]. Using algebraic computation
trees for other problems to analyze movement, however, has so far
not been promising.

Often the model of computation is not made explicit; instead, a lower
bound is proven by reduction, that is, by showing that solving the
problem at hand would also provide a fast solution to a different, dif-
ficult problem. A classical example of this are NP-hardness proofs
which show that a problem is NP-hard by reducing an NP-hard prob-
lem toit.

NP-hardness is useful in determining whether we can hope to find
a polynomial-time algorithm. But for large datasets, the difference
between linear and quadratic running time may already determine
whether we can compute a solution. To prove (near-)quadratic lower
bounds, conditional bounds have proven to be useful. These are
again based on reductions, but not necessarily from an NP-hard prob-
lem.

The 3SUM problem asks to find three numbers which sum to zero
given a set of n real numbers. Since the 3SUM problem is assumed to
have a quadratic lower bound, it has been popular to show conditional
quadratic lower bounds [Gajentaan and Overmars, 1995]. However, to
the best of our knowledge, there are no known reductions from 3SUM
to problems concerning polygonal curves, which are of high interest
to trajectory analysis.

A new series of conditional lower bounds emerged which makes use
of the hypothesis that the satisfiability problem for CNF formulas can-
not be solved much faster than by exhaustive search. These lower
bounds seem promising for revealing the computational complexity
of problems in the analysis of movement.

Definition 3.1. The Strong Exponential Time Hypothesis (SETH)
states that for every € > 0, there is a k € N such that the satisfiabil-
ity problem on k-CNF formulas with n variables and m clauses cannot
be solved in mO9(1)2(1=8)n time,

Using SETH that conjectures an exponential running time allows us
to prove polynomial time lower bounds for a problem of interest. We

PRELIMINARIES 38

use the k-Orthogonal-Vectors problem, as defined by Abboud et al.
[2015], to prove lower bounds on certain problems with k trajectories.
It is defined as follows, using the notation [n] := {1, ..., n}.
Definition 3.2 (k-Orthogonal-Vectors (kOV)). Suppose we are given k
lists {o }iern1, {02 }icrnl, - - - {orf.(},-e[n] of vectors in {0, 1}9. We need
to decide whether there are k vectors orl.ll, orl.zz, e af.i with

d
> [1attn=o.

h=1te[k]

Any such collection of vectors is called orthogonal.

For example, given these {0, 1} vectors al, a?,..., ak with the follow-
ing values

al 01 ..01

o? 10 10

ak 01 11
then al, a?,..., ak are orthogonal vectors.

By using a specialized version of kOV, the 2-Orthogonal-Vectors prob-
lem, we can prove lower bounds on problems on a single trajectory
and on two trajectories. These proofs encode orthogonal vectors and
non-orthogonal vectors differently in the reduction so that they yield
specific values of the computational problem to which they want to
reduce to.

Definition 3.3 (2-Orthogonal-Vectors (20V)). Suppose we have two
lists {ai}iern) and {Bi}[n) of vectors a;, B; € {0, 1}9. We want to de-
cide whether there is a pair a;, §; satisfying

d
>, ailh]-Bjlh] =0.
h=1

We call such a pair of vectors orthogonal.

The k-Orthogonal Vectors problem is linked with the SETH by the fol-
lowing lemma, which has been studied by Abboud et al. [2015] and
Williams [2005].

3.3

3.31

SINGLE CURVE PROBLEMS 39

Lemma 3.1. If there is an € > 0 such that k-Orthogonal Vectors on n
vectorsin {0, 1} with d = Q(log n) can be solved in O(n—¢) time, then
SETH is false.

Single Curve Problems

Some of the most basic problems on movement data have been for-
mulated as computational problems for a single trajectory. These in-
clude simplifying a trajectory, segmenting a trajectory into pieces
with similar movement parameters, and reconstructing the original
movement path from a trajectory with discrete locations.

An important task is simplifying a trajectory to obtain a trajectory of
lower complexity which approximates the (original) trajectory suffi-
ciently well. We give a more detailed overview of simplification in
Section 3.3.1. In Section 3.3.2, we show that a subquadratic-time algo-
rithm isunlikely to exist for the simplification problem in high dimen-
sions.

Simplification

Many applications need to deal with a vast amount of movement data.
New sensor technology allows researchers to collect trajectory data
atanincreased samplingrate. Some analyses need toreduce the com-
plexity of a raw trajectory so that the trajectory can be compressed,
stored, visualized, and analyzed further more efficiently.

To simplify a trajectory based on its geometry, the trajectory can be
interpreted as a polygonal curve. Then, the problem of simplifying a
trajectory can be seen as the problem of minimizing the number of
vertices of the curve while sufficiently approximating and preserving
the original shape of the trajectory. The extent of the approximation
relies on a tolerance value that controls the quality of the simplifica-
tion. The simplification problem is defined formally as follows:

SINGLE CURVE PROBLEMS 40

Definition 3.4 (Simplification). Given

1. a trajectory T as a sequence of n time-stamped points (p;, t;) €
R9+1, where p; denotes a location in the d-dimensional plane,
t; > 0 atime stamp, and t(p;) = ¢;,

2. an upper bound of the number of points included in the simpli-
fication: M e N't,

3. atolerance value € > 0 thresholding the error of the simplifica-
tion, and

4. an error criterion 6(pip;, T[pip;]) comparing a line segment p;p;
to the corresponding subtrajectory

Tlpip;1 := ((pi t), (Pi+1, tix1), - .., (P),)

to decide whether 7[p;p,] is at most ¢ far from the line segment
pipj, with respect to a distance measure, e.g., the Hausdorff dis-
tance or the Fréchet distance,

we want to find an ordered subsequence S = (s1,52,...,5m) of the
points (p1, ..., pn), such that

1. m<Mm

2 t(s)) <t(sjp1)forl<j<m

3. sy =piandsm =pp,

4. If s;=p;and sj;1 = pk, then 6(sjsjr1, T[pipk]) <eforl <j<m.

We then call S an (M, €)-simplification of T.

Another way of defining a simplification is to allow points/vertices in
S which are not points from the sequence 7. This version of the sim-
plification problem permits a more flexible composition of a simplifi-
cation and finds simplifications of smaller tolerance values ¢.

We can define the error criterion § in various ways [Imaiand Iri, 1988].
With an error criterion §, we can choose from many similarity mea-
sures to determine the error between a subtrajectory 7[p;p;] and a
line segment p;p; of the computed simplification S. Next, we present
the most common error criteria for the simplification problem.

A common way to define a tolerance zone is by displacing the line
segment p;p; by € and then extending this zone by half circles around

SINGLE CURVE PROBLEMS 41

Figure 3.1: Example for the line segment model on pip; using the Euclidean
distance dz. The subtrajectory T[pip;] including px and pg41 is
not approximated by pip;. pip; approximates the subtrajectory
that includes p;.

pi and p; with € as the radius, as shown in Figure 3.1. This model is
known as the line segment model [Imai and Iri, 1988]. If all points
of the subtrajectory 7[pip;] lie within the tolerance zone of p;pj, then
pip; is a valid simplification for that subtrajectory, i.e., p;p; approxi-
mates T[p;pj]. The line segment model corresponds to taking the
Hausdorff distance [Hausdorff, 1914] as error criterion 6. Other tol-
erance regions have been considered. For instance, the line model
takes the region between the lines displaced by € as its tolerance zone
for a line segment of the simplification. A popular method to mea-
sure similarity between curves is the Fréchet distance [Alt and Go-
dau, 1995]. In this setting, the error criterion § measures the Fréchet
distance between 7[p;p,] and p;pj, and € represents the Fréchet dis-
tance.

The simplification problem, as defined in Definition 3.4, is so far not
stated as an optimization problem. There are two ways of defining
simplification as an optimization problem.

Definition 3.5 (min-# Simplification). Given T, €, and § from Defini-
tion 3.4, a min-#-simplification is an (M, €)-simplification for the min-
imal M that admits an (M, €)-simplification. We refer to the problem
of computing such a simplification as the min-# problem.

SINGLE CURVE PROBLEMS 42

Definition 3.6 (min-¢ Simplification). Given 7, M, and § from Defini-
tion 3.4, a min-e-simplification is an (M, €)-simplification for the mini-
mal € that admits an (M, €)-simplification. We refer to the problem of
computing such a simplification as the min-¢ problem.

For common distance measures §, the min-¢ problem can be solved
using an additional O(log n) factor by the min-# problem [Imai and
Iri, 1988]. Thus, a min-¢ simplification can be solved by any algorithm
for the min-# problem [Imai and Iri, 1988]. We therefore focus on
the min-# problem and refer to a min-# simplification as the optimal
simplification.

We now survey previous results for the problem of computing a sim-
plification on a polygonal curve.

Algorithms for the min-£ and the min-# problemswithrunningtimes
O(n?logn) and O(n?), respectively, are known for polygonal curves
in the plane [Chan and Chin, 1996]. For the L;-metric, Agarwal and
Varadarajan [2000] presented an O(n%/3+€)-time algorithm.

Imaiand Iri [1988] proposed one of the first optimal simplification al-
gorithms by computing a shortest path in a directed graph as an op-
timal simplification. As graph we take the complete graph with the
points p; asvertices and edges oriented from smaller to larger indices.
Each edge has a weight that captures the error measure of the corre-
sponding line segment, that is, the measure é between the line seg-
ment and the corresponding subcurve. An edge of this graph is also
referred to as a shortcut. For a given € > 0, an edge is a valid short-
cut when the weight of the edge is smaller or equal to €. The short-
cut graph is the graph containing only valid shortcuts. A simplifica-
tion can be computed by constructing the shortcut graph, and then
computing the path from the first to the last vertex that uses as few
edges as possible. Thus, a simplification can be computed in O(f(n) +
n?) time where f(n) describes the costs of constructing the shortcut
graph. Chan and Chin [1996] showed that f(n) = O(n?) for the Haus-
dorff distance (the line segment model). The graph approach is flex-
ible; it can be used with other error measures, such as the Fréchet
distance and covering rectangles [Imai and Iri, 1986].

SINGLE CURVE PROBLEMS 43

Applications often use non-optimal algorithms, specifically, the heu-
ristic by Douglas and Peucker [1973]. The heuristic works as follows:
it determines whether for a line segment pip; (initial call: i = 1,j =
n) each px € T[pip;] is at distance € to p;p;. If so, it returns p;p; as a
valid simplification. If not, it identifies the point p in 7[p;p;] farthest
from pp;, then recurses on the two subproblems: (p;, pi+1,...pk) and
(pk, Pk+1. ..., pj), and outputs the concatenation of the simplifications
from the subproblems as the simplification from p; to p;. The output
of thisalgorithm is neither a min-# simplification nor a min-¢ simplifi-
cation. The worst case running time of this heuristic is O(n?). Hersh-
berger and Snoeyink [1994] showed that the Douglas-Peucker heuris-
tic can be implemented to run in O(nlog n). The algorithm by Hersh-
berger and Snoeyink [1998] improved that running time to O(nlog* n)
for non-self-intersecting polygonal curves using the line model.

Cao et al. [2006] investigated simplifiying trajectories and how to de-
sign sound query spatio-temporal operations by modeling 2-dimen-
sional trajectories in R3, incorporating the time stamps in an
additional dimension, and projecting the data points in R3 back into
the plane. Gudmundsson et al. [2009] proved the soundness of all
operations for the line segment model. Additionally, Gudmundsson
etal. [2009] devised an approximative version of the Douglas-Peucker
heuristic for trajectories by applying the Douglas-Peucker simplifica-
tion to projections of the trajectory in R3. The running time for this
algorithm is O(nlog? n) for the line model and O(nlog?> n) for the line
segment model.

Agarwal et al. [2005] devised a greedy approximation algorithm for
curve simplification that runs in O(nlogn) time and returns a simpli-
fication for a given ¢ that does not have more vertices than a min-g/2
simplification. Their algorithm works with various error criteria, e.g.,
the Fréchet distance.

For curvesin RY, Barequet et al. [2002] developed efficient algorithms.
Their algorithms run in near-quadratic time for d = 3 and in subcubic
time for d = 4. When the distance is measured according tothe L;- or
the Lo-metric, then their algorithms achieve a running time of O(n?)
and O(n? log n) for min-¢ and min-#, respectively, in any fixed dimen-
sion. In particular, for L the dependency on the dimension is only a

3.3.2

SINGLE CURVE PROBLEMS 44

small-degree polynomial. It is possible to use any L, norm. By trans-
forming the simplification problem into the off-line ball-inclusion
testing problem, Barequet et al. [2002] enhanced the graph construc-
tion for shortcuts. An efficient data structure for the off-line ball-in-
clusion testing problem enabled Barequet et al. [2002] to obtain the
precedingrunningtimes for simplification in higher dimensions.

Lower Bound on Simplification

It is a longstanding open problem whether the (near-)quadratic run-
ningtime can be improved for finding the optimal simplification, min-
#, for the line segment model [Agarwal and Varadarajan, 2000].! Fur-
thermore, to the best of our knowledge, there has not been any lower
bound established for the simplification problem so far.

We prove that, at least in a sufficiently high (non-constant) dimen-
sion, a min-# simplification cannot be computed in subquadratic time
unless SETH fails. For L, our construction shows that the algorithm
by Barequet et al. [2002] essentially is optimal in high dimensions, as-
suming SETH. We focus in this proof on a conditional lower bound
on the Hausdorff distance, although the reduction also applies to the
Fréchet distance.

Theorem 3.1. Assuming SETH, there is no O(n?~¢)-time algorithm
that optimally, min-# or min-¢, simplifies a polygonal curve with n
edges in RY with d = Q(logn) dimensions for any € > 0 using
e-tolerance zones in the L;-, L»- or Lo-metric.

We prove this theorem by reducing the 2-Orthogonal Vectors prob-
lem to the simplification problem. Given two lists of 0/1-vectors
{ai}tiegn) and {Bi}ig[n] in dimension d, we interpret each vector as a
point in dimension d + 1, as follows: we define d&;[h] := a;[h] for 1 <
h < dand &[d + 1] := —6 with § = 2d2. We define ;[h] analogously,
except that B;[d + 1] := 6.

The idea of the reduction is illustrated in Figure 3.2. We construct
a curve that moves from a starting point through all &;, then passes

1See also http://cs.smith.edu/~orourke/TOPP/P24.html.

http://cs.smith.edu/~orourke/TOPP/P24.html

SINGLE CURVE PROBLEMS 45

a; € Bie
{0,139 x {—6} {0,1}9 x {5}
\\St&ft:endﬂ//,

(0,...,0,-96) ~ - (0,...,0,6)

checkpoints

Figure 3.2: Construction for the simplification lower bound.

through d checkpoints, continues through all Bi, and finally reaches
an endpoint. The threshold ¢ for the simplification is chosen such
that all points &; have a pairwise distance smaller than ¢, and similarly
for the points g

If the two corresponding vectors o and g are orthogonal, then the
checkpoints g will have a distance of at most € to the line segment
from d; to @, see Figure 3.3. In this case, the resulting simplification
uses the starting point, one point d;, one point /?,-, and the endpoint,
thus four points in total.

If a and B are non-orthogonal, then some checkpoints lie outside of
the tolerance zone for the embedded line segment d[BAj where @; =
1 and Bj = 1, so at least one checkpoint g needs to be included in a
simplification, see Figure 3.3. Hence, a simplification then consists
of at least five points: the starting point, a point d;, a checkpoint g, a
point g, and the endpoint.

=& &

@;=0,6=0 G;=0,8=1 ai=106-=1

Figure 3.3: Examples for different values of {0, 1} vectors d;, ﬁj: (i) and (ii)
show that the checkpoints g for orthogonal vectors are approxi-
mated by the tolerance zone of the line segment &;8;. For non-
orthogonal vectors, see (iii), the checkpoints lie outside of the
tolerance zone.

SINGLE CURVE PROBLEMS 46

To complete our embedding, we need to define how we compose the
input curve A for the simplification problem. Let us define
A = (ao,...,am) withm = 2n + 2 + d vertices by ap = am = (0, ..., 0),
ai=6;,forl<i<n,anyi=q,forl<i<d andan;qs+i=p,forl<i<n.
The checkpoints g; € R9*1 are defined as

0 forh=d+1
qgi[hl]=<—-6§ forh=i

% otherwise,

for 1 < i < d, where ¢’ will be chosen later depending on the met-
ric.

Proof of Theorem 3.1under the Lo-metric. By settinge = 1and §’ =
1/2, we impose that every simplification needs to include at least ao,
one point &;, one point §;, and am.

Assume there are orthogonal vectors a; and B;. Let £(t) be the line seg-
ment between &;and ,@j parameterized by tin the (d+ 1)-th coordinate.
For the midpoint £(0) of the segment, we have

i+ 1
€10, 5 forl<h<d
10)h] =4 * o3}
0 h=d+ 1.

Thereby, all g; have a distance less than 1 to £(0) and are therefore
within distance ¢ to the segment &8;.

In contrast, let us assume a; and B; are non-orthogonal. In this case,
there is a coordinate 1 < h < d such that &;[h] = ,[?,-[h] = 1. It follows
that /(t)[h] =1 forall t € [—6, §], and therefore

doo(£(t), gn) 2 1 —qgn[h] > 1 =¢.

Thus, for the line segment é[[h]ﬁj[h], gn has a distance larger than ¢
to this line segment. Consequently, if there is no pair of orthogonal
vectors, a simplification for distance € requires at least five vertices
because we need to include gs. O

SINGLE CURVE PROBLEMS 47

Proof of Theorem 3.1under the L1-metric.
We set € = d and §’ = 3/4d — 1/4 to enforce to include at least four
points in the simplification: ay, a point d;, a point §;, and am.

By the same argument as for L, we induce a simplification with four
vertices if a and B are orthogonal since

d—1 1
d1(qi £(0)) < T+6'+ > =d=c¢.

Now again consider the case that all a; and B; are non-orthogonal, so
there is a coordinate 1 < hg < d, such that ;[ho] = ﬁj[ho] =1. We
show that d1((t), qr) > eforallt € [—§,6]. We can restrict our at-
tentiontot € [—¢, €] due to the (d + 1)-th coordinate. Now consider a
coordinate h # ho,d + 1. If a;[h] = Bj[h] = 0, then £(t)[h] = 0. Other-
wise, £(0)[h] = 1/2 and £(t)[h] = £(0)[h](1 —¢&/8) for t € [—¢, €]. Conse-
quently, for any t we obtain

1 £ 1
di(£(t), qn) = (d— 1)(5(1_ 3)_ Z) +1—6

[d—l , 1} 1 (d—1)e
=|—+6+=|+=—
4 2 5

Thus, there is an optimal min-# simplification that uses exactly four
vertices if there is an orthogonal pair. O

Proof of Theorem 3.1 under the L,-metric. Inthiscase, wesete = /d,
and we further fix & = —1/2 + +/15d + 1/4, which implies that §’ > 0
and that v/(d—1)/4 + (1/2 + §’)? = &. By the choice of §’ and assum-
ing orthogonal vectors a and 3, we induce points & and § that approx-
imate all g; with distances of at most ¢.

Now again consider a pair of non-orthogonal vectors with a;[ho] =
Bj[ho] = 1. It is sufficient then to prove that d, (£(t), gn)? > €2 =d for
t € [—¢, €]. Using the same derivation as for L, we obtain

2 N2 1 € \2
d2(8(t), gn)? = (1 + &) +(d—1)(z_5/_2) |

3.4

3.41

PROBLEMS ON TWO TRAJECTORIES 48

The first summand is larger than 15/16d + 1/16 + 1/4 while the sec-
ond islarger than (d—1)/16 — (d— 1)e/6/4 > (d—1)/16— 1/8. Hence,
gn has a distance larger than ¢ to the segment, lies outside of the line
segment’s tolerance zone, and enforces that the optimal simplifica-
tion consists of at least five points. O

Theorem 3.1 follows from these proofs. As a result of this, we have
shown that we can reduce the 2-Orthogonal Vectors problem in d di-
mensions to an optimal curve simplification, min-# or min-¢,ind + 1
dimensions for the L3, L, and Lo metrics. By this lower bound, we
can therefore assume that for sufficiently large dimensions, we can-
not compute a simplification in subquadratic time.

Problems on Two Trajectories

Trajectories do not only occur in isolation. Researchers in applica-
tion fields, including biology, geography, and sports analysis, usually
track several moving entities at the same time. In this section, we sur-
vey the computational complexity of problems involving two trajecto-
ries at a time.

Determining the correlation and dependency of one moving entity
to another one is fundamental to understanding the relationship be-
tween those trajectories. As mentioned earlier, we view trajectories
as (time-stamped) polygonal curves, and we thus discuss computa-
tional problems concerning pairs of polygonal curves in the follow-
ing.

Overview

The computation of similarity between two curves has been studied
extensively within the last two decades. Computing similarity is the
most important problem between two curves, and the analysis of in-
teraction between trajectories makes heavy use of existing similarity
measures.

PROBLEMS ON TWO TRAJECTORIES 49

First, we review approaches on computing interaction between tra-
jectories briefly. Then, we survey methods for computing similarity
in more detail by addressing how they can be used to construct an
alignment between the trajectories.

Interaction is the inter-dependency between moving objects
[Doncaster, 1990]. Various aspects of interaction can be captured by
detectingthe underlying movement patterns of leadership, single file,
or following. Naturally, these types of movement patterns apply to
two and more trajectories.

Andersson et al. [2008] developed an algorithm to detect the move-
ment pattern of leadership by following a leader in the vicinity of a cir-
cular sector. Their algorithm to detect leadership runsin linear time
and space for two trajectories. For k trajectories, their algorithm runs
in O(k?n) time and O(nk) space for discrete time and in O(k?nlogk)
time and O(nk) space for continuous time.

Similar to leadership, a single file captures a follow-behind relation-
ship by a leadership of one moving entity and all others follow each
other [Buchin et al,, 2008, 2010]. Buchin et al. [2008] expressed a
follow-behind relationship by one trajectory moving along a similar
path as the other, but with a (possibly varying) time shift. This follow-
behind relationship is computable for two trajectories in O(nkavg)
time and O(n + kmax) space, where kqvg (resp. kmax) is the average
(resp. maximum) number of data points from the second trajectory
that have a suitable time shift relative toa data point of the first curve.

3.4.2 Alignhment Methods

A central problem for two trajectories is computing their similarity
in shape in order to capture the inter-dependency between the move-
ments. We survey the most common techniques to align two trajec-
tories. These methods usually compute only a single value to express
the similarity. Any of the methods, that we discuss, however, can be
modified to output a monotone matching between the trajectories.
A monotone matching starts with an edge at the first point of each
trajectory and ends with an edge at the last point of each trajectory.

PROBLEMS ON TWO TRAJECTORIES 50

Monotone matchings require that if a point p on one trajectory 7; is
matched toapoint g of another trajectory 73, then any point after p on
71 needs to be matched to either q or a point succeeding q on 7;. Such
a matching provides insights into the structure of the inter-depend-
ency between the trajectories because the monotonicity allows us to
capture local events between the moving entities while optimizing a
global criterion for the alignment. A discrete matching contains only
locations of the input trajectories; whereas for a continuous match-
ing, we allow all points that yield a monotone matching.

We discuss distances between trajectories instead of similarity mea-
sures because a distance can be easily converted to a similarity mea-
sure and vice versa by taking the inverse.

The Fréchet distance is an intuitive measure that describes the re-
semblance of shapes between two curves, which, naturally, applies
totwo trajectories. It minimizes the maximum distance for any mono-
tone matching between the curves. Altand Godau [1995] provided the
first known algorithm for the continuous Fréchet distance between
polygonal curves which runs in O(n?logn) time. Eiter and Mannila
[1994] developed an O(n?)-time algorithm for the discrete Fréchet dis-
tance.

The fine-grained complexity of the (discrete) Fréchet distance be-
tween two curves hasrecently attracted a lot of attention. After along
period without major progress, Agarwal et al. [2014] devised a sub-
quadratic O(W)-time algorithm for the discrete Fréchet dis-
tance on the word RAM. Buchin et al. [2014] developed a randomized
algorithm for the continuous Fréchet distance with a running time
slightly better than the classic bound of O(n?logn) [Alt and Godau,
1995]. Buchin et al. [2012] introduced a new notion of locally correct
Fréchet matchings where every submatching of the matching
betweenthe curves minimizesitslocal Fréchet distance. Alocally cor-
rect Fréchet matching is computable in O(n3logn) time for the con-
tinuous Fréchet distance and in O(n?) time for the discrete Fréchet
distance.

Answering a question posed by Buchin et al. [2014], Bringmann [2014]
showed that the (discrete) Fréchet distance cannot be computed in

PROBLEMS ON TWO TRAJECTORIES 51

O(n?—¢) time, for any € > 0, assuming the Strong Exponential Time
Hypothesis (SETH). Bringmann and Mulzer [2016] refined and
extended this result. They proved this lower bound by reducing 20V
to the discrete Fréchet distance. Moreover, Bringmann and Mulzer
[2016] showed that there cannot be an 1.399-approximation for the
Fréchetdistance in subquadratic running time assuming SETH.

An important alignment method for time series is Dynamic Time
Warping (DTW). DTW minimizes the sum of distances on a mono-
tone matching between the trajectories. We can transform the clas-
sical O(n?)-time dynamic program for the discrete Fréchet distance
into DTW by replacing the max-operation by a sum. Berndt and Clif-
ford [1994] defined DTW and the original algorithm using dynamic
programming to compute an alignment in O(n?) time.

Applications in data mining, speech recognition, and database sys-
tems have used DTW extensively in the past. Due to growing datasets,
heuristics and approximation schemes for DTW have been
developed to boost the running time. Salvador and Chan [2007] devel-
oped FastDTW, a linear-time heuristics for DTW, assuming the time
series can be simplified and subsampled in linear time. Their multi-
level approach which recursively projects a DTW path of alower reso-
lution to one of higher resolution performed well in practice. The ap-
proximation error depends on the chosen resolution of the recursion.
Al-Naymat et al. [2009] proposed a heuristic, SparseDTW, which uses
pruning to omit cells in the DTW computation. The running time,
however, can still be O(n?) in the worst case.

Recently, Gold and Sharir [2016] devised an exact algorithm for com-
puting DTW on one-dimensional time series that runs in
O(n?%logloglogn/loglogn) time. It is possible to extend their
algorithm to compute DTW in RY with d > 1 assuming the distance
metric used is polyhedral.

The work by Bringmann [2014] triggered proofs of a conditional lower
bound also for dynamic-time warping [Abboud etal., 2015; Bringmann
and Kiinnemann, 2015]. Assuming SETH, DTW cannot be computed
in less than O(n?~¢) time for any € > 0. Abboud et al. [2015] proved this
lower bound from a variant of the 20V problem on O/1-strings over an

PROBLEMS ON TWO TRAJECTORIES 52

alphabet of size five. Bringmann and Kiinnemann [2015] gave a proof
for the same lower bound on a 1D curve of binary strings of values
{0,1,2,4,8} in R, in which they encoded each coordinate of a curve
in a four-bit representation.

The Edit Distance (ED) is a popular method to align strings, correct
spelling, or process natural languages [Wagner and Fischer, 1974].
We can employ a similar dynamic program as for DTW where we sub-
stitute the sum of the distances by the sum of unit costs. In addition,
we require checking whether two elements p; € 74 and g; € 7 are the
same or close d(p;, q;) < €. If this is the case, we do not charge the
simultaneous movement of both entities within the matching with a
unit. The dynamic program for ED runs in O(n?) time.

Since ED has primarily been designed for and applied to mostly dis-
crete sequences, such as strings, and not for numerical values, Chen
et al. [2005] adapted ED for such sequences as Edit Distance on Real
Sequences (EDR).

Masek and Paterson [1980] devised an O(n?/log n)-time algorithm for
ED. After a long period, Gold and Sharir [2016] improved the upper
bound on ED to an O(n? logloglogn/loglogn) running time for a geo-
metric version of the ED, and they adapted their algorithm for DTW
to ED.

Similar to DTW, Abboud et al. [2015]; Bringmann and Kiinnemann
[2015] showed that a subquadratic-time algorithm for ED cannot exist
assuming the SETH.

The Longest Common Subsequence (LCSS) is the classic method to
find the longest subsequence of one string in another string [Maier,
1978]. For trajectories, LCSS essentially translates into finding the
longest subtrajectory that is similar to another trajectory. LCSS can
be seenasarestricted and simpler version of ED because the dynamic
programs are identical apart from that only two of the three opera-
tions in the ED are allowed within LCSS; namely, LCSS does not per-
mit insertion operations. This yields an O(n?) running time for the
dynamic program.

3.5

3.5.1

PROBLEMS ON MULTIPLE TRAJECTORIES 53

To show that LCSS cannot be computed in subquadratic time assum-
ing SETH, Bringmann and Kiinnemann [2015] and Abboud et al. [2015]
reduced from a version of the 20V problem to LCSS. Abboud et al.
[2015] used in their proof strings over an alphabet of size seven, where-
as Bringmann and Kiinnemann [2015] used binary strings, in which
each coordinate value of the curve isencoded by a five-bit string.

Problems on Multiple Trajectories

Most datasets involve more than just one or two individuals. Some
analyses can easily be extended to multiple moving entities, but for
others, a novel, specific analytical methodology needs to be designed.
Usually, these methods are computationally more involved because
computations on multiple trajectories at the same time are expensive.
However, little is known about what determines whether a polynom-
ial-time algorithm can exist for such problems and when faster alter-
natives, such asapproximationsor heuristics, needs tobe devised.

In this section, we therefore survey both upper and lower bounds for
problems involving multiple trajectories. We conclude by proving a
lower bound on the Fréchet distance for multiple trajectories.

Overview

Buchin et al. [2011] devised an algorithm to cluster similar subtrajec-
tories by employing an approximation algorithm for the Fréchet dis-
tance on the concatenation of the trajectories. Their algorithm under
the discrete Fréchet distance runs in O(n? + nk{) time and uses O(n{)
space, where / is the length of each subtrajectory measured in time
stamps. { is bounded by n/k, and k/ is in order of n. Under the continu-
ous Fréchet distance, we can compute a cluster of subtrajectories in
O(n??) time that uses O(nf£?) space.

If a clustering algorithm assigns labels to clusters, then this problem
in the context of trajectories is also known as classification. A classi-

PROBLEMS ON MULTIPLE TRAJECTORIES 54

fication may stem from either a clustering or a segmentation, but it
can also be directly computed. Alewijnse et al. [2017] gave an O(m? +
kmlog m)-time algorithm to classify k trajectories using m parameter
values in a parameterized movement model. Buchin et al. [2016] ex-
plored a new concept of flow diagrams to fill the gap between clas-
sification and clustering. A flow diagram is a sequence of activities
that represents many state sequences. They showed that computing
aminimal flow diagram is W[1]-hard if the number of state sequences
is variable, developed several heuristics for flow diagrams and evalu-
ated them experimentally on varying parameterizations.

Naturally, we can define an alignment between k trajectories at the
same time (see Section 3.4.2). To find an alignment among multiple
moving entities simultaneously, we need to extend our notion of a dis-
tance norm to multiple trajectories.

Dumitrescu and Rote [2004] defined the Fréchet distance on k curves.
The Fréchet distance is the minimal longest pairwise distance over
all monotonous matchings among the trajectories then. Dumitrescu
and Rote [2004] devised a 2-approximation algorithm by constructing
the Fréchet distance from the pairwise distanceson the k curves.

To compute a matching among k trajectories simultaneously, we can
adapt the aforementioned O(n?)-time algorithms for computing
DTW, LCSS, the Edit distance, and the Fréchet distance on two curves
into dynamic programs with an O(n¥) running time.

Little is known about lower bounds for those alignment methods on
multiple trajectories. Abboud et al. [2015] showed a lower bound on
LCSS that there cannot be an algorithm in sub O(n%—¢) time for any
€ > 0 and k strings over an alphabet of size O(k) assuming SETH.

It is still an open problem to show conditional lower bounds for other
alignment methods, such as DTW and the Edit distance, on multiple
curves. We show a similar lower bound as Abboud et al. [2015] for the
discrete Fréchet distance on k curves, as discussed in the following
section.

PROBLEMS ON MULTIPLE TRAJECTORIES 55

3.5.2 Lower Bound on the Fréchet Distance

Theorem 3.2. For any € > 0, the discrete Fréchet distance of k planar
point sequences of length n cannot be computed in O(n%—¢) time, un-
less SETH fails.

We show the lower bound on the discrete Fréchet distance between
k curves by areduction from the k-Orthogonal Vectors problem. First,
we needtointroduce some notation, so that we can prove Theorem 3.2.

Let A1,..., Ak be k sequences of points in the plane, and for each i =
1,2,...,k, wesetA; = (ail, . ai”). By aj‘.[h], for h =1, 2, we denote the
h-th coordinate ofaj‘:. WesetS=[n1]x[n2] x -+ x [nk].

We define a coupling of length m on S as a sequence C = (C1,...,Cm)
such that we have ¢; € 5,1 = (0,0,...,0), Cm = (n1,n2,...,nk), and
Ci+1[h] = ¢[h] or Cix1[h] = C[h]+ 1, foralli=0,....,m—1and h =
1,...,k. A coupling C defines an alignment of the curves Ay, ..., A,
and we define the coupled distance as
— h h ;
dc(A1, ..., Ax) := max {d(ac,-[h]' aC,-[h’]) |0<i<m,1<hh < k}

where d denotes the Euclidean distance. Let C be the set of all pos-
sible couplings on Aj, ..., Ai; then, the discrete Fréchet distance is
defined as

dr(A1,...,A) :=min{dc(A1,...,A) |CeC}.

Next, we describe our reduction.

Proof of Theorem 3.2. Suppose we have k lists {B;}ic[n], {af}ie[n], te
[k — 1], of vectors af, Bi € {0,1}9. From these vector lists, we want

to construct k curves B,Al,AZ,...,Ak"1. The encoding of curve B is
slightly different from the ones of the other k— 1 curves. The discrete
Fréchet distance among B, A, A2, ..., Ak-1 will be 1 if the given vector

lists contain a collection of k orthogonal vectors, and strictly larger
than 1, otherwise.

PROBLEMS ON MULTIPLE TRAJECTORIES 56

The coordinates of the vectors are encoded by coordinate gadgets
(CG), see Figure 3.4. Set 6 := 1/100,and fori=1,...,k—1,let

CGi(0) :=((—0.5-4,0),(0.5,0),(—0.5—-4¢,0),...,(0.5,0),(—0.5—4¢, 0))

be a curve with 2k — 1 vertices. We define CG;(1) as having the same
verticesas CG;(0), except that the 2i-th vertexisreplaced by (0.5+56, 0).
Further, we define

CGg(0) :=((—0.5,0),(0.5,0),(-0.5,0),...,(0.5,0), (—0.5,0))

with 2k — 1 vertices and CGg(1) in the same way, but with only 2k —3
vertices. We call the vertices at (0.5, 0) short spikes and the vertices
at (0.5 + 6, 0) long spikes.

A

B

(long)
spike

k — 1 spikes
k — 1 spikes
k — 2 spikes

v v
—0.5-6 0.5 —-0.5-6 0.5 0.5+6 —-0.5 0.5 —0.5 0.5
CG(0) CG(1) CG5(0) CGg(1)

Figure 3.4: Coordinate gadgets (distorted vertically for the purpose of illus-
tration).

Suppose that there were a coupling of CG1(1), CG2(1),...,CGk-1(1),
CGg(1) achieving a distance of at most 1. Then, we need to couple
each of the k — 1 long spikes of CG1(1),..., CGk-1(1) with a different
spike of CGp(1). But this is not possible since CGg(1) has only k — 2
spikes; thus, dr(CG1(1),...,CGg(1)) > 1. If we replace any CG«(1)
with a respective curve CG«(0), the distance becomes 1.

If CGg(0), then CGp(0) has k— 1 spikes and thus can accommodate all
long spikes; if CG;(0), then there are at most kK — 2 long spikes. These
can all be accommodated by CGg, and short spikes of the CG; can sim-
ply be coupled with a (—0.5, 0) on CGp.

PROBLEMS ON MULTIPLE TRAJECTORIES 57

Next, we encode the vectors and the vector lists into the curves
A1,A2,...Ak—1 and B by concatenating the coordinate gadgets. The
construction is depicted in Figure 3.5.

For each coordinate of the vectors, we use the coordinate gadgets as
aforementioned. Between the coordinates of a vector, we use a point
c:=(0,0.8661) to “synchronize” among the coordinate gadgets from
different vectors. The start of the vectors will be demarcated by v4 :=
(—0.499,—1) and v := (0,—0.8661). Additionally, we will use the
points t4 = (0.48,—0.01) and tg = (0.57, 1.005) to mark a successful
synchronized traversal, and s = (—0.499, 0) as a point that is close to
all except tg, see Figure 3.5.

Ay
[] C
S ta X
€ CG« € CG«
VB
va 1 .tB

Figure 3.5: The points used as vertices of the curves.

Two points are said to be close if their distance is at most 1: s is close
to all points except tg, and t4 is close to all points except va. The point
cisclose only to s and ta (and itself); tg is close only to t4 and vg, va is
close only to s and vg; vg only to s, ta and ts.

Now we can compose the curves A3, Ay, ... Ak—1 and B from the vec-
tors. We denote o as the operation of adding a vertex to a curve or of
concatenating curves. Let A]l. i=SoVao ()Ll(CGj(orf.[h]) oC) oty be
the curve of the vector element or{ By concatenating the constructed
curves A’l:, we set A/ := (QLlAD o s as the representation of the vec-
tor of. Furthermore, we define B; := vg o ()gzl(CGj(/Bi[h]) o) and
B:=5sovyo Q;lBi o tg o s similarly.

PROBLEMS ON MULTIPLE TRAJECTORIES 58

First, we argue that k vectors 0’111' orl.zz, e, orfkjll,,B,-k are orthogonal if
and only if the corresponding concatenated coordinate gadgets have
Fréchet distance of at most 1. If the vectors are orthogonal, then in
each coordinate, at least one vector has a 0-entry, and a coupling with
a distance of at most 1 is possible. On the other hand, if the vectors
are not orthogonal, there is one coordinate in which all vectors have
l-entries. The c vertices then force us to traverse all coordinates si-
multaneously so that we will have to couple k one-coordinate gadgets,
yielding a Fréchet distance larger than 1.

Now let us consider the vector lists and the complete curves when

they are orthogonal If the vector lists contain a k-tuple
orl.ll,orl.zz, . [k iy !, Bi, of orthogonal vectors, then the corresponding
curvesAl, ...,Ak=1 Bhave a Fréchet distance of at most 1. We can ob-

serve this by the following coupling: first, A! walks to the first point s
ofA1 while all other curves wait at s. Then, A% walks to the first point
s ofA22 while all other curves wait at s, etc. Finally, B walks to the first
point vp of B;, while all other curves wait at s. Since s is close to all
points except for tg, the distance so far is 1. Then, the A/ curves simul-
taneously jump to va while B waits at v, and subsequently the coordi-
nate gadgets are traversed simultaneously. Next, the A/ curves wait at
ta while B walks to the last point s. The A/ curves then simultaneously
move to the next s, and finish the traversal to the final vertex one after
another while the other curves wait at s.

Next, suppose that the curves AL, ..., Ak=1 B have a Fréchet distance
larger than 1. We argue then that there is a k-tuple of orthogonal
vectors. Indeed, suppose that no such k-tuple exists, and consider
the first time that B reaches tg. Since tg is close only to t4 and v, at
this point, all A/ must be at t4. It follows that before that, all A/'s must
have been simultaneously at v4 because on the construction of A'’s,
va comes before ts, and v, is close only to s and vg. For the same
reason, at this point, B also must be at vg. Thus, the coordinate gad-
gets of a k-tuple of vectors are traversed simultaneously, leading to a
Fréchet distance larger than 1 since all k-tuples are non-orthogonal.
Theorem 3.2 follows. O

3.6

CONCLUSIONS 59

Our construction also rules out a faster polynomial-time approxima-
tion scheme for the Fréchet distance on k curves unless SETH fails.
We computed the coordinates by hand, and they could be optimized
to prove a specific approximation lower bound.

Conclusions

By studying the computational complexity of specific analyses, we
surveyed many computational problems on trajectory data. This view
enabled us give insights for visual analytics systems into what kind of
analyses can be computed efficiently in terms of running time. By
reviewing existing lower bounds and proving new ones, we guide re-
searchers in their decision-making when to resort or to employ ap-
proximation algorithms or heuristics. We will now reflect on this
chapter’s application to the thesis as a whole.

Simplification of polygonal curvesis applicable to many domains and
problems. Since new sensors collect data at higher sampling rates,
preprocessing of trajectory data becomes also pertinent to any analy-
ses on trajectories. However, little is known whether simplifications
can be computed in near-linear time. Our lower bound suggests that
this might be not the case at least in sufficient high dimensions. Lit-
tle is also known about how we can compute a simplification consis-
tently across many scales. In Chapter 4, we explore how to compute
simplifications progressively which has been motivated by the visual
information-seeking mantra [Shneiderman, 1996] from information
visualization. Furthermore, the lack of lower bounds prompted us to
explore new efficient representations for shortcut graphs that apply
toprogressive aswellasnon-progressive simplification algorithms.

For two trajectories, finding an alignment between long sequencesin
near-quadratic time for all important similarity measures is very in-
volved. Furthermore, our lower bound on the Fréchet distance
among multiple curves and the lower bound for LCSS by Abboud et al.
[2015] suggest that finding an alignment among multiple individuals
is a challenging task. These insights led us to focus on small-scale

CONCLUSIONS 60

datasets with a sampling rate, mimicking continuous movement, in
computing interaction events (see Chapter 5). We will also use a
dataset of three pigeons moving together to show how an alignment
can be constructed on a triplet.

Computing an optimal clustering for a variable state space is W[1]-
hard [Buchin et al,, 2016]. Thus, to compute a clustering efficiently,
we are in need of approximation algorithms or heuristics. We there-
fore implemented a heuristic to compute a clustering, in this case an
aggregation of stopovers, for gull data in Chapter 6.

4.1

4

Progressive Simplification

Introduction

Given a polygonal curve as input, the curve simplification problem
asks for a polygonal curve that approximates the input well and that
uses as few vertices as possible. Because of the importance of data
reduction, curve simplification has a wide range of applications. Car-
tography is one such application in which the visual representation of
line features like rivers, roads, or boundaries of regions needs to be
reduced. Nowadays, maps are interactive, so we need curve simplifi-
cation that works with different levels of details. The visual informa-
tion-seeking mantra [Shneiderman, 1996] states “Overview first,
zoom and filter, then details-on-demand”. A natural way to follow this
mantra would be to simplify for each zoom level independently. This
however would have the drawback that the resulting simplifications
would not be consistent among different scales. Therefore, we
require progressive simplification, thatis, a series of simplifications
for whichthe level of detailis progressively increased for higher zoom
levels. This is shown in Figure 4.1a.

Existing progressive algorithms, e.g., [Cao et al,, 2006], work by sim-
plifying a curve, then simplifying the previous simplification, and so
on. More concretely, a common approach is to first discard the ver-
tex, whose removal introduces the smallest error (according to some
criterion); then, we proceed by removing the vertex with the small-

INTRODUCTION 62

est error from the simplified curve and so on. For instance, the algo-
rithm by Visvalingam and Whyatt [1993] always removes the vertex,
that together with its neighboring vertices forms the smallest area tri-
angle.

Such approaches stand in stark contrast to (non-progressive) curve
simplification algorithms, which aim to minimize the complexity of
the simplification while guaranteeinga (global) bound on the error in-
troduced by simplifying. The most prominent algorithm with a global
error bound is the algorithm by Douglas and Peucker [1973]. How-
ever, while heuristically aiming at a simplification with few vertices,
it does not actually minimize the number of vertices. Imai and Iri
[1988] introduced a general approach for the problem of minimizing
the number of vertices in a simplification. Their approach uses short-
cut graphs, which we describe in more detail below. In line with these
algorithms, the goal of our work is to develop algorithms that solve
progressive simplification as an optimization problem.

A (vertex-restricted) simplification S of a polygonal curve C is an or-
dered subsequence of C (denoted by S ¢ C) that includes the first and
the last point of C. An e-simplification S is a simplification that en-
sures that each edge of S has a distance of at most ¢ to its correspond-
ing subsurve, wherein the distance measure can, for instance, be the
Hausdorff or the Fréchet distance [Alt and Godau, 1995]. For an or-
dered pair of points (p;, p;) of C, we denote the distance between the
segment (p;, pj) and the corresponding subchain by &(p;, pj). We de-
note by (p;, pj) € S that (p;, pj) isan edge of S.

We now define the progressive simplification problem in the plane:
Definition 4.1. Given a polygonal curve C := (p1,p2,...,pn), where
each point p; of C lies in the plane R?, and a sequence (1,...,&m),
where 0 < €1 < &2 < -+ < gy, we want to compute a sequence of
(vertex-restricted) simplifications S1, S, ..., Sm such that

1. S;m € Sm—1 C -+ C 81 € C (monotonicity),
2. S;is an ¢;-simplification of ¢, and
3. 27, ISil is minimal.

We refer to a sequence of simplifications fulfilling the first two con-
ditions as progressive simplification. A minimal progressive sim-

INTRODUCTION 63

plification fulfills all three conditions, and the problem of computing
such asequence is called the progressive simplification problem. In
this chapter, we present an O(n3m)-time algorithm for the progres-
sive simplification problem in the plane.

The cornerstone of progressive simplification is that we require
monotonicity (see 1. in Definition 4.1) between simplifications of dif-
ferent scales: S; C Si—1, as illustrated in Figure 4.1a. This guarantees
that, when “zooming out”, only vertices are removed and cannot
(re)appear. As an error measure, we will mostly use the Hausdorff
distance [Hausdorff, 1914]. This is not essential to the core algorithm,
and we will discuss how to use the Fréchet distance [Alt and Godau,
1995] or area-based measures [Daneshpajouh et al.,, 2012] without af-
fecting the worst-case running time. Furthermore, our algorithm
generalizes to the weighted version of the problem in which
Zgl wi|S;| with positive weights w; is minimized, and to the continu-
ousversion, where S needs to be computed forall 0 < € < ey wherein
em is the error at which we can simplify the curve by the single line
segment (p1, pn); thus, we have ey = €(p1, pn). As in the discrete set-
ting, we require Sg C S¢ for €’ > ¢; the resulting algorithm minimizes
J1Sel de in O(n®) time.

In our algorithms, we will make use of the shortcut graph as intro-
duced by Imai and Iri [1988]. Given a polygonal curve C, a shortcut
is an ordered pair (i < j) of vertices. Given an error € > 0, a shortcut
(pi. pj) is valid if €(p;, pj) < €. The shortcut graph G(C, €), as shown in
Figure 4.1b, represents all valid shortcuts (p;, pj) with 1 < i <j < n.
A bottleneck in computing (progressive) simplifications is the con-
struction and space usage of these graphs. We therefore devise sev-

(a) (b)

Figure 4.1: Examples for (a) progressive and (b) global curve simplification.

4.2

RELATED APPROACHES 64

eral new techniques for computing these graphs more efficiently
withrespect totime and space. These techniquesapply to progressive
simplifications as well as (non-progressive) min-# simplifications. A
min-# simplification algorithm minimizes the number of vertices in
a simplification for a given ¢.

First, we present an algorithm that efficiently constructs shortcut
graphs independently of an error ¢, which makes computations on
different scales more efficient as well. To date, it has been known only
how to compute shortcut graphsin subcubic time ifan error € is given
upfront. We show how &(p;, pj) can be computed for an arbitrary line
segment (p;, pj) without fixing an error in advance by employing con-
vex hulls in the computation of the graph. This construction is also of
interest for min-¢ simplification, in which € needs to be minimized for
a given bound on the number of points in the simplification.

Secondly, we introduce a representation of the shortcut graph that
employs so-called shortcut intervals. Shortcut graphs are computed
to perform shortest path calculations, and as we will later argue and
demonstrate in an experimental evaluation, computing shortest
paths using shortcut intervals typically takes only O(nlogn) time.
This result tends to be more generally applicable for min-# simplifi-
cations. In our experiments, we compare our minimal progressive
simplification algorithm with several natural heuristics and evaluate
our techniques for shortcut graphs.

Related Approaches

Curve simplification is a well-studied problem in the past 30 years
due to its importance to applications in various domains. We survey
the most-related previous results on this problem.

Imaiand Iri [1988] introduced a general approach to min-# simplifica-
tion using the shortcut graph, and they provided corresponding algo-
rithms. Similar algorithmswere presented in a series of papers [Melk-
man and O'Rourke, 1988; Toussaint, 1985], resulting in algorithms
with a running time of O(n?) for min-# simplifications, and with a

4.3

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 65

running time of O(n? log n) for min-¢ simplifications [Chan and Chin,
1996] under the Hausdorff distance. These algorithms are based on
computing the shortcut graph for a specific error and then using bi-
nary search for the min-¢ problem.

For the L;-metric, Agarwal and Varadarajan [2000] presented an
O(n*3+€)-time algorithm. For this, they use a clique-cover represen-
tation for the shortcut graph. Agarwal etal. [2005] devised a greedy ap-
proximation algorithm that runs in O(nlogn) time which given € > 0
guarantees that it does not have more vertices than an optimal &/2-
simplification.

Applications often use heuristics, in particular the Douglas-Peucker
simplification [Douglas and Peucker, 1973]. The output of this algo-
rithmis neither a min-# simplification, nor a min-¢ simplification, nor
is the algorithm progressive.

Progressive simplifications are used in cartography [Qingsheng et al.,
2002]. A popular progressive algorithm is the one by Visvalingam and
Whyatt [1993] that always removes the point in a series of simplifi-
cations, that is part of the triangle with the smallest area. Inspired
by this, Daneshpajouh et al. [2012] defined an error measure for non-
progressive simplification by measuring the sum or the difference in
area between a simplification and the input curve. Cao et al. [2006]
referred to progressive curve simplification as “aging”. They devel-
oped a heuristic to this problem by iteratively simplifying previously
computed simplifications instead of the input curve.

Computing Simplifications Progressively

We will show how to solve the progressive simplification problem for
curves in the plane in O(n3m) time in Section 4.3.1. The same run-
ningtime holds for the weighted version, and based on this fact we are
able to show that the continuous progressive simplification problem
can be solved in O(n°) time. Our proofs apply to polygonal curves in
higher dimensions. As faster alternatives, we discuss greedy heuris-
ticsin Section 4.3.2, which we evaluate experimentally in Section 5.5.

4.31

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 66

Optimal Progressive Simplifications

By the monotonicity property of the progressive simplification prob-
lem (see 1. in Definition 4.1), we require that all points within a sim-
plification Sk of the sequence must also occur within all subsequent
simplifications S; with k < . Adding points to a simplification thus is
a crucial step as well as maintaining shortcuts. We, therefore, asso-
ciate a cost value cf.j. € Nfor each shortcut (p;, pj) in the shortcut graph
G(C, gx) of a simplification Sk. In Sections 4.4 and 5.5, we use the Haus-
dorff distance as an error measure to determine whether a shortcut
is valid, but because the shortcut graph is flexible in using any error
measure, we can employ any other distance measure for our algo-
rithms. In particular, for the Fréchet distance [Alt and Godau, 1995]
and area-based distances [Daneshpajouh et al,, 2012], we can simply
compute whether a shortcut is valid in O(n) time and therefore use
these measures without changing the worst-case running time. We
obtain a cost value cf.; for a shortcut (p;, pj) € G(C, k) by minimizing
the costs of all possible shortcuts in (p;, ..., p;) at lower scales recur-
sively. The dynamic program is defined as follows:

ifk=1

1
%=11+ min =1 ifl<k<m
k-1 Xy
e[1" (pi.p)) (bx,py)em

k

We use]_[k(pi, p;) to denote the set of all paths in G(C, &) from p; to
pj-

We compute all cost values from scale kK = 1 up to m by assigning a
weight cg. toeach shortcut (p;, pj) € G(C, &k). For each shortcut (p;, pj) €
G(C, &k), we compute CZ. by finding a shortest path min G(C, gk—1) from
pito pj, minimizing Y,)en Cx, ' thereby.

We can use any shortest path algorithm. We opted to employ Dijk-
stra’s algorithm that we need to run per scale kK on O(n) source nodes

of G(C, &k). This yields a worst case running time of O(n3m) because
thisalgorithm takesin O(n?) time on graphs with integer weights.

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 67

We increment ck = ck 14+1 for any shortcut (p;, pj) € G(C, €k-1). By

doing so, we avo1d recomputations of shortest paths and reuse cost
values whenever necessary.

We construct the sequence of simplifications from S, down to S;.
First, we compute Sy, by returning the shortest path from p; to p, in
G(C, €m) using the computed cost values at scale m. Next, we compute
ashortest path Pfrom p; to p;in G(C, gm—1) for all shortcuts (p;, p;) € Sm.
Simplification Sy—; is then constructed by linking these paths P with
each other. We build all other simplifications in this manner until S;
is constructed.

Correctness

We will now prove that this algorithm returns a valid and minimal
solution for the progressive simplification problem.

By constructing the simplifications from scale m down to 1, it follows
that, for any shortcut (p;, pj) € Sk with 1 < kK < m, there exists a sub-
sequence (p;, ..., pj) € Sk—1. We therefore have S¢ € Sk_1. Further-
more, each simplification Sk has a maximum Hausdorff distance &,
to C since we link only edges from G(C, &).

It remains to show that we minimize 27;1 |Si]. We therefore define a
set of shortcuts S/ forany1<i<j<nand1 <k <mas:

St ={(px Py eSkIx<i<j<y}.

Thus, S,'Z includes all line segments of S¢ that span the subcurve
(pi, ..., pj) with an error of at most & to C. |SZ| then is the number of
shortcuts in simplification Sk covering (p;, pj).

Lemma 4.1. Ifthe line segment (p;, pj) is part of simplification Sk, then
the associated cost value c’j satisfies ck = Zz 1 |S[|forany1 <k <m
and1l<i<j<n.

Proof. We show cg. = Zle |S,§j| by induction on k using the following
inductive hypothesis: foranyn>y > x > 1, if (px, py) € Sk, then c’;y =

K 1871 (H).

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 68

Base k = 1: Take any shortcut (p;, pj) € S1. We therefore observe that
(pi, pj) € G(C, €1). Furthermore, we know 8’1’ = {(pi, pj)}, and therefore
|S71=1. Thisyieldsc} =1 =3, 1=, Is]l.

Step k > 1: Take any line segment (p;, pj) € Sk+1- Thus, we observe
(Pi. P)) € G(C, k+1), Sy 1 = {(Pi P}, and S, | = 1.

Consider any 1 < / < k and a path m €]_[k(p,-.,'pj) such that
2ipx.py)en |Sz(y| is minimal. We now derive that n = S/ such that S;(y

is minimal for all (px, py) € m. Note that m = S[U C G(C, &) € G(C, &)
since g > &. We observe that 7 is both in [T (p;, p;) and]_[k(pi, p;). It
thus follows that:

min > o187 = min > 187 (4.1)
e[1" (PuP)) (px,py)en el ['(pi.p)) (px,py)en

From m = Séj, it follows that Szcy N S{Z = @ for any (px, py) and (py, p-)
in . Combining S;” for all (px, py) € m yields a non-overlapping se-
quence of shortcuts from p; to p;. This gives us:

Sl= min 317 42
e[['(pi.p}) (py,py)em

We now derive the following:

k+1 (H__'I)

. K xy, (41) K . Xy
i 1+ min Z Z|S£ | = 1+Z min Z IS, |

K 0
e[1" (PuP)) (px,py)em =1 1=1 €[T (Pi.P)) (py. py)en

k i k+1
4.2 i [Ser11=1(Pi.pj) i
(=)1+Z|Séj| k+1 i /}leéjl
=1 =1

C

O

Theorem 4.1. Given a polygonal curve with n points in the plane and
0 <& <...<é&m, aminimal progressive simplification can be com-
puted in O(n3m) time under distance measures for which the validity
ofashortcut can be computedin O(n) time. Thisincludesthe Fréchet,
Hausdorff, and area-based measures.

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 69

Proof. It remains to be proven that the combined size of the simplifi-
cations computed by our algorithm is minimal. Let (S],...,S’) be a
sequence of simplifications of a minimal progressive simplification,
and let (S1, ..., Sm) be the sequence computed by the algorithm. We
need to prove that 3" [S;| < 7" | IS/ holds.

Let us derive the following:

m
L 41 .
cm wemEd min E E |S;<y|
Xy m
el | (pl'p”)(px,py)enlzl

(4.1) & , (4.2) &
98 e 3 5 @S
1=1 €[(P1.Pn) (px.p,)em =1

rrpin
ne[[" (p1,pn) (Px.py)ET

Hence, the algorithm produces a simplification that minimizes the
overall cost function; our algorithm producesa progressive set of sim-
plifications in which each simplification consists of edges from the
corresponding shortcut graph such that the cumulative number of
vertices is minimized. We also know that any minimal simplification
S[(is a path in G(C, &) since it strictly connects shortcuts with an er-
ror of at most . We conclude from this that 217;1 [S| < 217;1 |5£|
holds. O

We now consider two variants of the progressive simplification prob-
lem: the weighted progressive simplification for which the objective
is to minimize the weighted cumulative size of the simplifications;
and the continuous progressive simplification. They are formally de-
fined as follows:

Definition 4.2 (Weighted Progressive Simplification). Given a polyg-

onal curve C := (p1,p2,...,Pn), where each point p; of C lies in the
plane, a sequence (€1,...,€m), where 0 < &1 <& < -+ < gm, and a se-
quence of corresponding weights w1, w, ..., wm, where each w; € R*,

we want to compute a sequence of (vertex-restricted) simplifications
81,82, ..., Smof C such that

1. Sm € Sm—1 C -+ € &1 € C (monotonicity),
2. S;is an ¢;-simplification of ¢, and
3. Z?;l w(|Si| is minimal.

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 70

Definition 4.3 (Continuous Progressive Simplification). Given a
polygonal curve C := (p1,p2,...,pn), where each point p; of C lies in
the plane and a we want to compute a sequence 831, Sy, ..., Sm with
(€1,...,€m), where g, is the error at which we can simplify C to the
line segment (p1,pp)and 0 <e; <€y <--- < gy, such that

1. Sm € Sm—1 C -+ C &1 € C (monotonicity),
2. S;is an ¢;-simplification of ¢, and
3. f(')n |Si| de is minimal.

For both of these problems, we can employ our preceding algorithm
to compute simplifications progressively. We first show how to adapt
our algorithm for the weighted progressive simplification problem,;
then we prove how to solve the continuous simplification problem.

Recall that in the weighted progressive simplification problem, we
are additionally given weights wi,..., w, and need to minimize
Zﬁl w;|S;| (see Definition 4.3). We achieve this by adapting the defini-
tion ofc{.}: For each shortcut (p;, pj)in G(C, €1), we have a cost ofcl.lj = w1
instead of 1; furthermore, cf.; = W+ minnel—[k_l(pi,pj) Z(px,py)en c’;;l, for
each (pi, pj)in G(C, ex) where k > 1. Note that the proofs above are triv-
ially extended to apply to this updated cost function. The weighted
progressive simplification allows us to solve the continuous progres-
sive simplification problem. We now show the following Theorem:
Theorem 4.2. Given a polygonal curve with n points in the plane, a
minimal continuous progressive simplification can be computed in
O(n?) time under distance measures for which the validity of a short-
cut can be computed in O(n) time. This includes the Fréchet, Haus-
dorff, and area-based measures.

Proof. Consider the maximal errors &(p;, p;) of all possible line seg-
ments (p;, pj) with i < j with respect to the Hausdorff distance (or an-
other distance measure). Then let £ := (g1, ..., e(g)) be the sorted se-
quence of these errors based on their value. Let M be the index of
the corresponding ¢y in this sorted sequence ¢ for the line segment
(P1, pn); thus, ey = €(p1, pn). Note that it is possible that M < (3), but
there isnoreasontouse any € > ey since at this point we already have
simplified the curve to a single line segment, (p1, pn).

4.3.2

COMPUTING SIMPLIFICATIONS PROGRESSIVELY 71

In a minimal-size progressive simplification, it holds that S; = S, for
all € € [€;, €i+1). This can be shown by contradiction: if S would be
smaller, we could decrease the overall size by setting all S with ¢’ €
[€i, €] to Se. Therefore, in a minimal continuous progressive simplifi-
cation we have

M M—1
f |Se| de = Z(Ek+l—5k)|35k|-
0

k=1

Thus, we can solve the continuous progressive simplification prob-
lem by reducing it to the weighted progressive simplification prob-
lem with O(n?) values . O

Greedy Heuristics

Ideally, we would like to be able to browse between simplifications of
different scales in any direction. To accomplish this, we need an effi-
cient way to compute not only from scale 1 up to m, which we define
as bottom-up ordering, but also from scale m down to 1, which we re-
fer to as top-down ordering.

Greedy approaches for simplification have helped in the past to con-
struct efficient approximation algorithms [Agarwal et al., 2005] and
heuristics [Caoetal., 2006] for (non-progressive) curve simplification.
By ignoring all costs, we can reuse our optimal algorithm top-down
and greedily. For a bottom-up construction, we just need to ensure
that we reuse points from the previous scale.

Due to the greedy choice and the monotonicity constraint within the
progressive simplification, many potential shortcuts are pruned. We
integrate a new pruning technique into the efficient shortcut graph
construction by Chan and Chin [1996]. When constructing a simplifi-
cation top-down progressively, we want to obtain all shortcuts
(pi. pj) € G(C, k) where x < i < j <y for some (px, py) € Sk+1. Similarly,
for constructing simplifications progressively bottom-up, we prune
the search space to all shortcuts (p;, pj) € G(C, €k) where (p;, p;) € Sk—1.
A bottom-up construction prunes more drastically than a top-down
construction by excluding particular points.

4.4

CONSTRUCTING THE SHORTCUT GRAPH FOR ARBITRARY SCALE 72

Cao et al. [2006] devised an efficient heuristic for simplifying polyg-
onal curves progressively from a finer to a coarser scale. Instead of
pruning graph G(C, &x) progressively, they construct a simplification
Sk for scale g¢ by computing it on G(Sk—1, €k). Thereby, the simplifi-
cations cascade recursively, which means that any guarantees on the
error of these simplifications with respect to C are lost. We therefore
obtain a new bound Zi;l g, onthe error between Sy and C. This heuris-
tic works with any min-# simplification.

Constructing the Shortcut Graph for Arbitrary
Scale

In this section, we present a novel algorithm to compute the
maximum error £(p;, pj) for any ordered (i < j) pair (p;, p;) with re-
spect to the Hausdorff distance (or any other distance measure) in
O(n?logn) time instead of O(n3) time [Chan and Chin, 1996]. This
technique can be applied to both non-progressive simplification al-
gorithms and progressive simplification algorithms to speed up the
computation of the maximum error &(p;, p;) of any line segment
(pi, pj) with i < ji.

Cao et al. [2006] showed experimentally that the shortcut computa-
tion by Chan and Chin [1996] is fastest for the Euclidean distance.
This shortcut representation, however, requires fixing an error value
in advance. To facilitate the construction of shortcut graphs for var-
ious error criteria, we are interested in computing the maximum er-
ror &(p;, p;) between any shortcut (p;, p;) and its induced subcurve
(pi, pj). This allows us to efficiently determine for any given error
bound whether a shortcut is valid or not. This is particularly useful
for continuous progressive simplification, for which we would other-
wise need to compute a quadratic number of shortcut graphs, thus
spending O(n*) time on computing shortcut graphs.

We can easily compute such a shortcut graph by annotating each
edge (p;, pj) with its maximum error &(p;, pj). This would take o(n3)

CONSTRUCTING THE SHORTCUT GRAPH FOR ARBITRARY SCALE 73

time if we compute &(p;, pj) for each edge separately. In this section,
we discuss how this can be improved to O(n?logn).

For a given p; € C, we construct a convex hull CH = (q1, ..., q;) where
CH ¢ ¢ in which we incrementally insert all points p; where { < j <
n. After inserting a point p;, we find the extreme points X{ and X, on
CH using the upward normal /i; and downward normal —7i; of the line
segment (p;, pj). An extreme point on CH in the direction of a vector
i is any point x € CH such that there cannot be a point y € CH with
fi-(y—X) > 0. See Figure 4.2a for an example.

ﬁUI LT

(b)

Figure 4.2: The convex hull of (p;, ..., pj). (a) Extreme points Xij and Xg with
respect to (pi, pj). (b) Division of the convex hull into regions

L,R, T and B.

The two extreme points on the convex hull for line segment (p;, p;)
do not always yield the furthest point on the corresponding subcurve.
An example of this is shown in Figure 4.2b. To resolve this, we need to
subdivide the area around (p;, pj) into four regions: T(op), B(ottom),
L(eft), and R(ight). The maximum error value of shortcut (p;, pj) is the
maximum distance from the furthest pointin eachregionto (p;, pj).

For region T, we compute the furthest p01ntX by finding an extreme
point in the upper convex hull CH;. The furthest point X’ within re-
gion B for the lower convex hull CHj is computed analogously. Both
convex hullsare represented as balanced binary search treesordered
x-monotonically. We obtain X't/ and Xg by a binary search on the nor-
mals of the line segments of CH: and CHj, respectively.

By obtaining candidates XU and XU on CH: and CH), respectively, we
compute X/. We continue our discussion for computing X‘t’[on CHt,

4.5

COMPRESSING THE SHORTCUT GRAPH T4

which is analogous to obtaining ng on CHp.

To compute Xéjl, we annotate each root node p, of a subtree T, € CH;
with the furthest point in T, to p;. The root of the binary search tree is
therefore annotated with the point in CH; furthest from p;. An exam-
ple of such a tree annotation is shown in Figure 4.3.

as q4=Xg[

2 i 9s

Figure 4.3: Annotating the binary search tree of the convex hull CH; to find

XV,
We employ range queries to isolate subtrees which lie completely
inside L. To isolate those subtrees, we traverse the search tree and
check for every subtree whether the left-most and right-most point
contained in the subtree are inside L. In this case, then by the convex-
ity of the hull, the entire subtree liesinside L. This then means we can
consider its annotation as a candidate for Xéjl.

To determine xif, we cannot reuse this approach since p; is the first
point added to the convex hull and p; the last. Therefore, we need to
run the annotation algorithm on the reversed sequence of C as well,
similarly to Chan and Chin [1996]. During the forward traversal, we
compute X;, X, and X/ incrementally; during the backward traversal,

we obtain X/.

Compressing the Shortcut Graph

For many types of spatial data, such as movement trajectories with
a high sampling rate, consecutive points p; and p; are expected to be
spatially close. We therefore presume that, if (px, pi) is a valid short-
cut for some point px, then (px, p;) might be a shortcut too. This ob-

4.51

COMPRESSING THE SHORTCUT GRAPH 75

servation inspired us to exploit so-called shortcut intervals, which
are contiguous subsequences of C with which a particular point forms
shortcuts. By employing a set of shortcut intervals, we can typically
find a shortest path for an arbitrary pair of points in O(nlogn) time in-
stead of O(n?). A similar approach has been used by Alewijnse et al.
[2014] to speed up trajectory segmentation. Our new shortcut rep-
resentations can be used with any simplification algorithm that uses
shortcut graphs.

Shortcut Graph Construction

We propose a novel representation of a shortcut graph called a short-
cut interval set. It is a minimally sized set of shortcut intervals cov-
ering all shortcuts: I(C, €) = ([1(€),...,In(€)) in which Ii(¢) is a set of
shortcut intervals starting in p;. Formally, any shortcut interval for
a point p; and tolerance value € is a maximal interval [x, y] where all
shortcuts from p; to p; for x <j < y are valid for &.

(a) I(C, £1) (b) I(C, €2) (c) I(C, &3) (d) I(C, €4)

Figure 4.4: Shortcut intervals sets of a polygonal curve for four different
error criteria.

In Figure 4.4, we show a shortcut interval set as a matrix; the shading
of a cell (i,j) with 1 < i,j < nindicates whether (p;, p;) is a valid short-
cut. Observe that independent of the tolerance value ¢, every column
or row within the matrix has only a few shaded regions. Hence, we ex-
pect |[;(€)| to be of constant size in practice, so I(C, €) has linear space
complexity in experimental settings. This representation is thus typ-
ically an order of magnitude smaller than explicitly storing the short-
cut graph G(C, ¢).

4.5.2

COMPRESSING THE SHORTCUT GRAPH 76

To handle degenerated cases, Chan and Chin [1996] used in their al-
gorithm to compute shortcut graphs efficiently in O(n?) time two sets
of shortcuts. After computing them, they intersected these sets to ob-
tain the shortcut graph. Since both have sizes of O(n?) in the worst
case, computing such an intersection takes O(n?). We can speed up
this computation of the intersection of these sets by not representing
them explicitly but by employing shortcut intervals instead. Given
the two shortcut interval sets I’(C, €) and I’/ (C, €), we want to compute
the intersection by obtaining an interval setI’(C, €) such that each ;(¢)
contains the overlap of the intervals in Ii’(s) with the intervals ofIl."(s).
An example of such an intersection is shown in Figure 4.5a. We can
compute this efficiently in O(n) time by sweeping over the shortcutin-
tervals of both sets Il.’(s) and I[.”(a) simultaneously, wherein computing
each encountered overlap takes O(1) time. Since each set contains
typically O(n) shortcut intervals, this operation runs in O(n) time in
practice.

Ii(e) —e o—¢ 0—0 o—

(a) (b)

Figure 4.5: Exploiting shortcut intervals. (a) Intersecting I’(C, €) and I’’(C, €)
to obtain I(C, €). (b) Finding the shortest path from p; to p: by
performing multiple range queries on T for each interval in I;(¢).

Finding Shortest Paths

To compute a simplification as a shortest path from some point ps
to another point p;, we can use breadth-first search in O(n?) time in
unweighted shortcut graphs. By using shortcut intervals, we can im-
prove the running time to O(nlogn) in practice. Our construction of
shortest paths can be employed in any simplification algorithm.

4.6

EXPERIMENTAL EVALUATION 77

First, we construct a balanced binary search tree T containing all
points (ps, ..., pt) ordered by their indices. Suppose we have a sub-
tree T, rooted at p, € T; our objective is to annotate p, with the short-
est path from p, to p: as well as the shortest path from any pointin T,
to pt. Hence, every node and subtree in T has an annotation.

Next, we annotate T by inserting all points from p: down to ps. We
annotate each node p; by the result of a range query on T for every
shortcut interval in I;(€). Arange query for a shortcutinterval [x, y] €
Ii(¢) isolates all subtrees for which (p;, p;) is a valid shortcut, p; € T
and x <j <y. We can then determine the shortest path from a point
pi to pt by retrieving the subtree annotations. See Figure 4.5b for an
example. After inserting all points, we return the annotation of node
ps which is the shortest path from ps to ps.

Depending on the input curve and the error value, we presume that
[I;(€)| is typically of size O(1) for an arbitrary point p;. There are cases
when the shortcut intervals in I;(¢) cover a small number of points. In
such a case, a shortcut interval is so small that performing the range
query is more time-consuming than simply checking the node anno-
tation of all points of that interval. There are O(n?) intervals in the
worst case, yielding a worst-case running time of O(n? log n), which is
slower than breath-first search in O(n?) time.

Therefore, we compute the shortest path for shortcut intervals [x, y]
where y—x < clogn for some constant c € R* by brute force in O(y—x)
time. By doing so, we obtain a worst-case running time of O(n?) for
this method.

Experimental Evaluation

We experimentally evaluated various simplification algorithmsin the
progressive setting and on different shortcut representations. Our
motivation for studying this problem was the visualization of trajec-
tories at varying scales, and so we used trajectory data from a migrat-
ing griffon vulture [Schmidt-Rothmund, 2017] to evaluate our algo-
rithms.

EXPERIMENTAL EVALUATION 78

This trajectory has high granularity and spans a large distance, mak-
ing it highly suitable for progressive simplification. We conducted
our experiments on a 64-bit Intel Core i7-2630QM machine with 8 gi-
gabytes of DDR3 SDRAM. All code was written in C# 6.0.

We ran our progressive simplification algorithm on a sample of 5000
points and on ten scales. The associated error criteria are sampled
linearly from the 10% smallest errors of shortcuts on that input. All
shortcut graphs are constructed using the algorithm by
Chan and Chin [1996] and represented as shortcut interval sets. We
used Dijkstra’s algorithm and employed pairing heaps as priority
queues [Fredman et al,, 1986] in our progressive simplification algo-
rithm.

The minimal progressive simplification algorithm (/I Opt.), depicted
in red in Figure 4.6a, has a similar cumulative simplification size as
the minimal simplification in a non-progressive simplification setting
(II No Hier.). Because greedy choices at earlier (coarser) scales prop-
agate errors on the construction of simplifications at finer scales, the
cumulative size of the progressive simplification for a top-down or-
dering (/I TD) is significantly larger than for any other algorithm. The
bottom-up construction (I BU) shows better performance because it
starts with the least aggressive greedy choice while pruning the short-
cut graph the most. II BU Naive is the approximate version of II BU
in which we progressively simplify previous simplifications instead
of using C (see [Cao et al,, 2006] and Section 4.3.2). This algorithm out-
performs all other Imai and Iri [1988] algorithms in terms of the cu-
mulative size of the simplification and the running time. The Douglas-
Peucker simplification (DP) [Douglas and Peucker, 1973] has the fast-
est running time for any length of the input curve (Figure 4.6b), but
has larger simplification sizes.

We wanted to explore which shortcut graph construction algorithm
facilitates simplifying curves on many scales, sowe compared the run-
ning time of constructing a shortcut graph using convex hulls with
the construction from Chan and Chin [1996] for a varying €. We eval-
uated how sensitive a construction algorithm for the shortcut graphis
with respect to multiple scales. To perform range querieson the anno-
tated convex hulls, we used left-leaning red-black trees [Sedgewick,

EXPERIMENTAL EVALUATION 79

1800
1600
1400

1200

1000
600
400
200

0

11 Opt. I No Hier. IITD I1BU 11 BU Naive DP TD/BU
Algorithm

(@)

—=—||Opt. —=IINo Hier. ——IITD II1BU ——II BU Naive ——DP TD —=—DP BU

1000

Cumulative simplification size
®
3

Time (seconds)
o
=

0,001
1,0E43 1,543 2,0643 2,56+3 3,0E43 3,5643 4,0E43 4,5643 5,0643

Length of the input curve

(b)

Figure 4.6: Performance of progressive simplification algorithms on 10% of
the smallest errors using 10 scales. (a) Comparison of the cu-
mulative simplification size for 5000 points. (b) Running time in
seconds on a log-scale with respect to the length of the input
curve.

2008]. Employing convex hulls involves precomputation costs for
building them; for a few scales, this can take up to 10 minutes (see
Figure 4.7a). However, these computational costs for building convex
hulls amortize for more than 65 scales which is when our construc-
tion starts to outperform the algorithm by Chan and Chin [1996].

Finally, we investigated the link between time and space complexity
when representing shortcut graphs using shortcut intervals. We ob-
served that constructing shortcut interval sets has a near-linear run-
ning time for varying lengths of the input curve; whereas, construct-

EXPERIMENTAL EVALUATION 80

—=—Convex Hulls —s—Chin Chan (Shortcut Interval Sets)
1600
1400
1200
B8 1000
<
8
@ 800
3
g 600
&
400
200
0
0 10 20 30 40 50 60 70 80 90 100
Number of error criteria
(a)
—a—Explicit Shortcut Graph ~ —e—Shortcut interval Set
16
14
12
)
T 10
o
S
g s
o
£ 6
IS
4
2
0
1,0E+3 1,5E+3 2,0E+3 2,5E+3 3,0E43 3,5E+43 4,0E43 4,543 5,0E43
Length of the input curve

Figure 4.7: Running times for constructing the shortcut graph. (a) Con-
structing different types of shortcut graphs on 5000 points. (b)
Comparison of the shortcut interval sets to explicit shortcut
graphs for varying lengths of the input curve. We construct short-
cut graphs with the smallest 10% of errors on the input curve.

ing shortcut graphs explicitly shows a running time that is above O(n)
(see Figure 4.7b). For varying ¢, our experiments suggest that shortcut
intervalsuse linear storage, as opposed to superlinear space complex-
ity that the representation by Imai and Iri [1988] uses (Figure 4.8a).
Our experiments indicate a linear running time for range queries on
shortcutinterval sets (see Figure 4.8b), which isdrastically faster than
running a quadratic-time breadth-first search (BFS).

CONCLUSIONS 81

—s—Shortcuts —e=Shortcut Intervals
8E+07

7E+07
6E+07
5E+07

4E+07

Amount

3E+07
2E+07
1E+07

OE+00
1,50E+3 3,00E+3 4,50E+3 6,00E+3 7,50E+3 O,00E43 1,05E+4 120E+4 1,35E+4

Length of the input curve

(a)

—=—BFS —=—Range Queries
4

35
3
25
2

15

Time (seconds)

1

0,5
-————————

0
1,50E+3 3,00E+3 4,50E+3 6,00E+3 7,50E+3 9,00E+3 1,05E+4 1,20E+4 1,35E+4

Length of the input curve
(b)

Figure 4.8: Results for exploiting shortcut intervals for error criterion € =
0.06 and varying lengths of the input curve. (a) Comparing the
space complexity between using explicit shortcut graphs versus
shortcut interval sets. (b) Running time comparison of finding
a shortest path from the start to the end of the curve, using
breadth-first search (BFS) or range queries on shortcut interval
sets.

4.7 Conclusions

We have presented the first algorithm that computes minimum-com-
plexity progressive simplifications given a polygonal curve with n
points in the plane. Our algorithm runs in O(n3m) time for m discrete
scales and O(n?) time for continuous scaling. To facilitate progres-
sive simplifications on many scales, we present a technique for effi-
ciently computing the maximum error for every potential shortcut
on C in O(n?logn) time. This technique facilitates computing both

CONCLUSIONS 82

non-progressive simplifications and progressive simplifications. Fur-
thermore, we developed a storage-efficient representation for the
shortcut graph that is capable of finding shortest paths in O(nlogn)
time, whichisalsoapplicable toany simplification algorithm that uses
a shortcut graph.

Our experimental evaluation shows that our progressive algorithm is
effective, yet too slow for larger trajectory data. As a future work, it
would be interesting to improve the worst-case running time for both
the discrete and the continuous case. Our experiments further indi-
cate that greedy heuristics that simplify bottom-up provide a reason-
able alternative in practice.

In general, it would be interesting to develop a near-linear time sim-
plification algorithm, which might be of benefit to compute progres-
sive simplifications faster. Our resultsin Chapter 3.3.2 suggest that we
depend on new approximation algorithms and heuristics for the sim-
plification problem to accomplish this because it might not be possi-
ble to compute an optimal simplification in subquadratic time.

Finally, the experiments show that our new representations of the
shortcut graphare efficient both in computingthe error e foralledges
and in computing shortest paths. It would be of interest to compute
shortcut intervals faster because this would make the min-# simplifi-
cation more viable for large data.

5.1

5

Visual Analytics of Delays
and Interaction

Introduction

In a wide range of applications, such as biology, urban planning,
sports, or ecology, movement data are being collected in the form
of trajectories. In recent years, technological advances have led to
a rapid improvement in the ability to record trajectory data [Nathan
and Giuggioli, 2013]. New technology allows scientists to collect data
of high resolution, over long durations, and for a large number of si-
multaneously moving entities. = Coupled with methodological
advancements, movement data offer an opportunity to better under-
stand the mechanisms and behavioral ecology guiding collective mo-
tion. In order to explore such data interactively, this research inte-
gratesinteraction and delayed responses on movement data in a new
visual analytics tool.

Interaction is the inter-dependency in the movements of two trajec-
tories [Doncaster, 1990]. The computation of interaction eventsis mo-
tivated by understanding combined movements of separation, attrac-
tion, and mutual repulsion that occurs between moving objects. One
way toidentify interaction involves computingan alignment between
the trajectories. Within an alignment, any point of one moving ob-

INTRODUCTION 84

ject is mapped to either a point or a range of points from the other
moving object. We are interested in exploring delayed responses in
the movement over time, where one moving object moves in a new
direction, an action pattern, and this is followed by an adaption of an-
other moving object, a reaction pattern. To capture such patterns, we
need so-called interaction measures, which are similarity measures
adaptedto cover aspects of interaction. An example of such an action-
reaction pattern is depicted in Figure 5.1.

decreasing action reaction

| |
| |
| |
Lo I .
'.-‘ ------------------ r |||||
| |
| |
| |
0 |interaction | ‘

start«———»end

edges of the matching

Figure 5.1: A sketch for an action-reaction pattern in an overlayed distance
and delay plot. The progression of the delay is depicted as a dot-
ted line, and the distances as a black line. At first, the interaction
decreases to an adjusted level. An action then results in a peak
of the distances, where one trajectory moves in a new direction.
The delay increases rapidly at this point, and the delay reaches
its maximum at the beginning of the reaction phase. The reac-
tion of the other trajectory results in a shrinking of the distances
again. After having reached its maximum, the delay decreases
accordingly. Finally, a new adjusted level is reached until a new
action invokes another action-reaction pattern.

Delay is the temporal difference for a pair of points from the trajec-
tories. In Figure 5.1, the progression of delays is visualized as a dotted
curve. Both positive and negative delays can occur over time, depend-
ing on whether the first point of the pair has a larger time stamp than
the second one or vice versa. A positive delay corresponds to the first
point being delayed, while a negative delay correspondsto the second
point being delayed.

Using the direction of movement and the displacement at
corresponding time stamps of the trajectories at equal times, Long
and Nelson [2013a] defined the dynamic interaction measure for the
calculation of strength and degree of interaction between moving ob-
jects. However, interaction often includes a delayed response. For ex-

INTRODUCTION 85

ample, delays are expected in interaction movement patterns for be-
haviors associated with pursuit and escape, confrontation, and avoid-
ance [Merki and Laube, 2012].

Computational methods for detecting a delayed response often
search for movement episodes from two trajectories with similar
characteristics, but with a delay for one of the trajectories. Reaction
delayis a key parameterin ascertaining both leadership and causality
since a moving entity requires time to perceive, process, and respond
to its neighbor’s motions. Hence, movement patterns are character-
ized by periods of interactive and non-interactive behavior. Such an
episode refers to a period of time, and it might, therefore, be express-
ed as a sequence of points ranging from one point to all of them. This
dependson the level of analysis of the interactive behavior. The scope
of the analysis can be varied from a local analysis over episodes to a
global analysis. A local analysis reveals the times and locations of dy-
namic interactions, and allows a finer treatment of the interaction it-
self [Long and Nelson, 2013a].

A ‘follow-behind’ pattern is detected in Buchin et al. [2008] by find-
ing episodes where two trajectories move through approximately the
same locations, but with a small delay. Nagy et al. [2010] compute a
similar pattern by looking at how one trajectory copies the direction
of movement of another with a delay. Using a time-ordering proce-
dure to analyze the cross-correlation of velocity and distance,
Giuggioli et al. [2015] extract interaction delays and are able to clas-
sify copying patterns in both space and direction.

There is a wide range of alignment methods, e.g, Dynamic Time
Warping [Berndt and Clifford, 1994], Edit Distance on Real
Sequences [Chen et al,, 2005], and the Fréchet distance [Alt and Go-
dau, 1995], that aim at simply identifying similar movement. We dis-
cuss these methods in more detail in Section 5.4.2.

In movement analysis there isa growing interest in analysis methods
that include visualizations. Andrienko et al. [2013] analyze delayed re-
sponses in the context of group movement. To identify a group order-
ing over time, they first precompute a centroid on the collection of
trajectories and then rank the interaction of a trajectory and the cen-

INTRODUCTION 86

troid for each trajectory of the group. One pattern that they detect is
the direction-based delay pattern by Nagy et al. [2010]. Its occurrence
is visualized in space and time.

Ouraimisavisualanalyticsapproachthat exploresdelayed responses
in the form of action-reaction patterns. For this purpose, we propose
an approach to analyze and visualize delays on two trajectories. We
expect that the trajectories have been recorded simultaneously and
with the same sampling rate such that the input data captures spatial
and temporal relationships at the same time.

Although our focus is on pairs of trajectories, we also show the appli-
cation of our methodology to a set of three simultaneous trajectories.
Computing and visualizing an alignment on k trajectories is cumber-
some since the computational time of current state-of-the-art tech-
niques for alignments grows exponentially in the number of trajecto-
ries. Thus, it is inherently demanding to develop an interactive visu-
alization for k trajectories that captures interaction events.

To determine whether two trajectories have interactions at all, we de-
velop a new approach to compute a global correlation in sub-quadra-
tic time in the length of the trajectories (see Section 5.3). The global
measure capturesthe overall interaction between the moving objects
by computing the correlation via the Fast Fourier Transform and ap-
proximates the global delay under an interaction measure.

We have implemented our approach in a prototype visual analytics
tool. Our approach shows that quantification of movement patterns
complements qualitative knowledge discovery, such asvisualizations,
so that we support movement analysts who are in need of both. We
also introduced a novel similarity measure between trajectories,
which incorporates spatial and directional characteristics. Crucial to
the approach to analyze delays locally is the computation of a match-
ing between simultaneously recorded trajectories. The matching al-
gorithm optimizes the alignment of the matching with respect to cer-
tain features of the trajectories. The temporal alignmentis then used,
which is induced by a matching, to analyze the delay. This approach
scales up to hundred points in the trajectories since it visualizes the
trajectories and their interaction patterns as a whole. We summarize

5.2

INTERACTION AND SIMILARITY MEASURES 87

our visual analytics approach in Section 5.4.

In this chapter, we conduct new, extensive experiments on both the
FFT-approach and the matching-based approach on three datasets
(see Section 5.5). We compare our results to those obtained by the
time-ordering approach by Giuggioli et al. [2015], DTW and others.
We extend the matching-based approach to three trajectories in or-
der to relate the result on the interaction among the three moving
objects with a pair-wise analysis of the triplet.

Interaction and Similarity Measures

Measuring interaction is closely linked to measuring similarity. In
this section, we describe properties of these measures and review in-
teraction measures used in our tool. Trajectory data can be repre-
sented as a sequence of points over time. Hence, it consists of direc-
tions and locations. Interaction measures can be distinguished into
these types. We are interested in several, different facets of interac-
tion. By combining existing measures into a single measure, the com-
bined measure expresses more complex interactions. In this work,
we analyze only discrete trajectories.

Definition 5.1. A discrete trajectory T is a sequence of n time-
stamped points (((p1, t1), (P2, t2), ... (Pn, tn)), where each p; € RY and
eacht;e Rt forie {1,...,n}. T(t;) selects the corresponding point in
the trajectory for a valid time stamp t;, so 7(t;) = p:.

Given a pair of trajectories, we define a delay as the time difference
for the corresponding time stamps of a pair of points. Without loss
of generality, we assume that a delay 7 has a discrete value between
Oandn—1,thust€{0,...,n—1}. The sampling rate of the underly-
ing dataset is then multiplied with 7 to obtain an actual delay, e.g., in
seconds.

Before elaborating on the interaction measures that we used in our al-
gorithms for computing a matching, we look at common properties
that these measures should provide. Without loss of generality, we
presume that the measures are given as a distance, i.e., smaller dis-

INTERACTION AND SIMILARITY MEASURES 88

tances values correspond to higher similarity. A distance can be eas-
ily transformed into a similarity measure and vice versa.

Definition 5.2. A metric on a set X with d : X x X — R satisfies the
following conditions forall x, y, z € X

dix,y)=0 (5.1)
d(x,y)=0ifandonlyifx =y (5.2)
d(x,y)=d(y, x) (5.3)
d(x,z) <d(x,y)+d(y, 2). (5.4)

We require the properties of a premetric (with symmetry). It is es-
sentially a metric, for which the distance might be zero for some x # y,
see equation (5.2), and the triangle inequality does not have to hold,
see equation (5.4).

Figure 5.2: A metric space with pe 71 and g € 73 in R?

Given a pair of points (p, q) € RYxR? on trajectories 7; and 73, a similar-
ity measure can be computed from spatial properties or the direction
of the movement (p, q). The movement vector pp’ is the directed line
segment from p to the consecutive point p” with length §,. The same
holds for q respectively.

The direction of p in 71 measures an angle 6, on the movement vec-
tor pp’ with regard to some other criteria. Very frequently, the head-
ing is used, which is the angle 6, that spans between pp’ and an axis,
usually the x-axis [Long and Nelson, 2013a], as depicted in Figure 5.2
for two-dimensional trajectories. Other notions for measuringangles
are possible as well. The turning angle is the angle between pp’ and
its consecutive movement vector [Kareiva and Shigesada, 1983]. The
angle between the line segment pqg and the movement vector pp’ is
the so-called exposure angle [Giuggioli et al., 2015]. It can be used to
identify leadership between the trajectories because it expresses rel-

INTERACTION AND SIMILARITY MEASURES 89

ative headings with respect to a line segment of a pair of points from
the moving objects.

Direction-based measurescalculate a correlation from the twoangles
6p and 6, from a pair of points (p, q). A simple directional similar-
ity measure for (p, q) is the cosine of the difference between 6, and
04 [Long and Nelson, 2013a]. If both entities are moving in exactly the
same direction, its value is 1. When the directions from the move-
ment vectors are pointing into opposite directions, the similarity val-
ueis—1.

Asimilarity measure for spatial propertiesuseseither the locations of
a pair of points or the movement vectors of a pair of points. By using
the Euclidean distance, we are able to measure the similarity of point
locations.

The displacement [Long and Nelson, 2013a] expresses a similarity be-
tween 6p and §,, the lengths of movement vectors pp’ and qq’. The
parameter a controls the behavior of the similarity measure.

|5p_5q|)a

55
&p + bq (5:9)

displacement(p,q) :=1— (

By using a large q, it restricts the displacement to regard large differ-
ences as more similar. To consider large differences as dissimilar, o
is set to one as a default.

Next, we survey premetrics that combine both directional and spatial
properties. The dynamicinteraction measure proposed by Longand
Nelson [2013a] is one of these premetrics; it multiplies the displace-
ment with the cosine on the difference of the headings.

_ o [h (180 =841\
s(p,q) :=cos(6p— 64) {1 (6p+6q) }

If one of the factors becomes zero, then either the impact of the head-
ing or the movement vector is suppressed. This means, therefore,
that the other part does not contribute anymore (see Figure 5.3).

INTERACTION AND SIMILARITY MEASURES 90

Figure 5.3: Cosine on heading between 6, and 6y yields zero for two-
dimensional trajectories.

This issue can be resolved by scaling the distance d(p, q) between
(p, q) by the similarity of the headings 6, and 64. The distance d(p, q)
can be an arbitrary LP norm on (p, q). We call this the directional dis-
tance:

ddir(p, q) :=d(p,q) - [2—cos(6p — Oq)].

Thus, the directional distance scales the actual distance on the pair
of points (p, q) by the similarity of directions. In contrast to this, the
dynamic interaction measure by Long and Nelson [2013a] uses the
movementvectorsinstead of a distance norm. The more the anglesof
p and g deviate, the more the distance between them stretches.

In order to measure similarity on kK moving objects simultaneously,
we need to extend our notion of a premetric to k trajectories. Given
points(p1, p2, ..., px)inRIYxRIx...xRY, we want to have an interaction
measure on k trajectories simultaneously: d(p1, p2, ..., Pk).

One way to compose such a measure is to use either the sum, the
squared sum, or the maximum of a pairwise interaction measure, e.g.,
for the directional distance and the sum, the combined distance mea-
sure is the following:

n n
d(p1, P2, ..., pk) =D, D dair(pi, pj)

i=1j=i+1

5.3

FAST COMPUTATION OF GLOBAL DELAYS 91

When we choose the max-value of the pairwise Euclidean distance d>,
the distance measure is the following:

d(p1,p2,...,pk):=__ max {d2(pi pj)}

1<i<n;i+1<j<n

An interesting question is how to define an interaction measure that
is sensitive to the movement in the trajectories. In Figure 5.4, a zig-
zag movement occursin one trajectory while the other trajectory pro-
gressesinthe globaldirection. Itis, therefore, desirable to design sim-
ilarity measures that capture such irregular movements as either a
special type of interaction, or as a particular similarity value.

Figure 5.4: Zig-zag movement of one trajectory while the other moves to-
wards the global direction

Fast Computation of Global Delays

Given a similarity measure d for interaction of time-stamped trajec-
tories, the global delay (7gi0bat) between trajectories 73 and 7; is the
time shift T that maximizes the similarity between 7; and a copy of 7>
whose points have been delayed by 7 time units. Hence, the global de-
lay Tgiobat has O(n) possible time shift values within the range [0, n —
1].

1
Toopal(71,) =argmax — >, d((D Ti+7). (56)

(i,i+T)€[0,n—1]2

5.31

FAST COMPUTATION OF GLOBAL DELAYS 92

For trajectories with many points, it is desirable to compute such
global delays efficiently. A simple but time-consuming approach
would be to individually compute the similarity between trajectories
for all possible time shifts. As an alternative to this O(n?) time algo-
rithm, it turns out that for the similarity measures defined in
Section 5.2, the global delay between two trajectories can be approx-
imated in time sub-quadratic in their length. Specifically by using
a Fast Fourier Transform (FFT), we can efficiently approximate the
similarities for all O(n) candidate values of the global delay in a total
of O(nlogn) time. From those candidate values, we extract the global
delay in linear time, which is the delay with the maximum similarity
of the candidate values.

Correlations and the Fast Fourier Transform

First, we will introduce the basic notions on Fast Fourier Transforms,
see for instance [Brigham, 1988], then we apply them to trajectories.
The correlation between two complex numbers a and b is defined as
the complex number corr(a, b) = a- b where a is the complex con-
jugate of a. More generally, the correlation between sequences A =
[ao,a1,...,apn—1]and B =[bg, b1, ..., bp—1] of complex numbers is de-

fined as:
n—1

corr(A, B) = Z a;i- bi.
i=0

The cross-correlation AxB definesa correlation for every time shift 7 €
[0,1,...,n—1], such that when T = 0, we have that (A » B); is exactly
corr(A, B).

n—1

(AxB); = Z a;- b(i+'r) mod n-
i=0

The FFT F and its inverse 7! take a sequence of n complex numbers
as input and return a sequence of n complex numbers. The cross-
correlation theorem states that AxB can be computed for the nvalues

5.3.2

FAST COMPUTATION OF GLOBAL DELAYS 93

of T using the Fast Fourier Transform as follows:
AxB=F"1(F(A)-F(B)).

X and X - Y operations on sequences act in an element-wise fashion.
Since Fand F~! bothtake O(nlog n) time to compute, the nvalues

[(AxB)o, ..., (AxB)n-1]

of the cross-correlation are computable in O(nlogn) time.

To obtain a global delay 74i0bal, S€€ €quation (5.6), we now apply these
fundamentals to trajectories. Trajectories contain a finite amount of
points. The cross-correlation, however, is based on the assumption
that the trajectories will repeat indefinitely. We discuss this conver-
sion of the trajectories in the following.

To account for trajectories that do not repeat, we must correlate time
stamps that are outside the range (ior i+ 7 ¢ [0, n— 1]) with a value
of zero. This is achieved by padding both sequences c(71) and c(72)
of complex values with n zeros. The function c resembles a trajec-
tory under a similarity measure as a sequence of complex numbers.
For 71, this yields a sequence C(71) = [¢(71(0)), c(71(1)), ..., c(T1(n —
1)),0,0,...,0]oflength2n. Computing the cross-correlation between
the padded sequences then correctly handles delayed time stamps
that are out of range. Correlations for negative delays—n < 7 < 0
are now stored atindex 2n + T of C(71) » C(72), and correlations for de-
lays 0 < T < nare simply stored at index 7. The interaction for a delay
is given by the corresponding correlation divided by n.

Approximation of Similarity Measures

We wish to use the FFT to compute the global delay between trajec-
tories under the similarity measures of Section 5.2. To accomplish
this, we convert both trajectories into a sequence of complex num-
bers such that the similarity under time shifts can be derived from
their cross-correlation. In particular, for a given interaction measure
d(p, q), we are looking for a function c that converts a data point of a

FAST COMPUTATION OF GLOBAL DELAYS 94

trajectoryintoacomplexnumber suchthat d(p, q) ~ corr(c(p), c(q)) =
c(p)-c(q) for all pairs of points p and g on the trajectories that we want
to compare. It is often convenient to write the function c in polar co-
ordinates, such that the magnitude of c(p) : Cis f(p) : R and its angle
in the complex plane is g(p) : R.

c(p) = f(p)edP),

The correlation between c(p) and c(q) is then given by

corr(c(p), c(q)) = f(p)e~ 9P - f(q)ed P = f(p)f(q)e (M9,

As an example, consider the direction-based similarity measure
d(6p, 6q) = cos(6p — O4). In this case, taking f(6p) = 1 and g(6p) = 6p
gives us c(8p) = e, and we obtain corr(c(8p), c(84)) = eBa=0)t =
cos(6q — 6p) + isin(6q — 6p) from which the exact original similarity
measure cos(6p — 64) can be derived. We show that if an interaction
measure d can be derived from the correlation in this way, the global
delay between two trajectories can be computedin O(nlogn)time.

For displacement-based similarity measures it is challenging to ex-
tract the original similarity measure from such a correlation. Instead,
we approximate displacements 6y, 65 from the displacement similar-
ity measure, see equation (5.5), by

mlog(dp + B)
6p)=1,andg(6p)=———.
f(ép) and g(6p) > Iog(1+%3)

To approximate the displacements §, and 64 well, 8 is chosen depend-
ing on an a from the displacement similarity measure.

Here 645 and 6y are normalized tolieintherange [0, 1]. The difference
between the original measure d(ép, §q) and our approximation

corr(c(6p), c(6q))

is shown in Figure 5.5. One clear difference is how small displace-
ments are correlated. Whereas the original measure barely corre-
lates small displacements, our approximation treats such

5.4

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 95

displacements as similar, which seems more natural. If this is not in-
tended, the function f can be tuned to suppress this correlation of low
displacements. In particular, taking f(x) = x7 allows us to discrimi-
nate more between small and large displacements, depending on the
parameter .

1 1
0.9 0.9
0.8 0.8

0.7 0.7
0.6 0.6
<7 0.5 <7 0.5
0.4 0.4
0.3 0.3

0.2 0.2
0.1 0.1
0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

d d
P P

(@) (b)

Figure 5.5: Comparison of displacements with our approximation (a) Dis-
placements a = 2 [Long and Nelson, 2013a] (b) Approximation

] _ _ _ Elog(dp+ﬁ)
using B =0.15, f(dp) =1 and g(dp) = 3 log(1+1)

Visual Analytics for Local Analysis of Delays

Varying the temporal scale in analyzing movement data is important
to extract movement patterns [Laube and Purves, 2011]. The global
analysis of delays, discussed in Section 5.3, enables to quantify
whether and how much the trajectories are correlated. To explore in-
teraction events in detail, an approach over time and space on a local
level is necessary.

In this section, we summarize our work from Konzack et al. [2015] in
which a matching between two trajectories was used to compute lo-
cal movement patterns on a so-called delay space. To capture them
in a visually salient way, we bundle the edges as patches to indicate
the source and relevance of the interaction event. Our focus lies on
episodes of movement in which two moving entities show similar
characteristics, but possibly with a delay.

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 96

5.41 Requirements for Analyzing Interactions

The main analysis task concerns the interpretation of interaction
events and patterns in two trajectories. Since interaction can be de-
fined in different ways depending on the context, our visual analytics
tool should allow the analyst to identify interaction patterns/events
in the data (R1) for various interaction measures.

There can be many events, which may impede visual analysis if they
are all shown in detail. The visualization should, therefore, allow an
aggregation of the surroundings of a movement pattern to help an an-
alyst focus on the progression of the interaction before and beyond
the current event. This leads to the requirement that critical events
should be visually salient (R2).

Interaction between moving objects occurs at different scales: glob-
ally over the trajectories as a whole, locally at either a specific point
in time or over some time interval, or in episodes (a partitioning) of
particular patterns [Laube et al,, 2007]. An analysis tool should, there-
fore, provide meansto analyze interaction at different scales (R3).

Our computational approach relies on determining a matching be-
tween two trajectories in what we call a delay space. For the purpose
of the analysis, it is necessary to understand the spatial structure of
the delay space and its relation to the corresponding matching in
space and time (R4).

5.4.2 Computing Matchings

To identify a potential interaction between two moving entities, we
are looking for pairs of data points, one from each trajectory, that are
similar according to one of the distance measures discussed in Sec-
tion 5.2. For this purpose, we first define the delay space as a grid of
distances for all pairs of points on the two trajectories, as shown in Fig-
ure 5.7(b). More formally, given two trajectories of lengths |77] = m
and | 72| = n, the delay space DL: [1,m] x[1,n] » Rt isagridofm x n
points (p;, gj) € T1 x 7.

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 97

To identify delayed interactions, we compute a plausible alignment
between the two trajectories. Such an alignment should map any
point of one of the trajectories to either another point or a contigu-
ous range of points of the other trajectory. We call such an align-
ment a matching between the trajectories. In the delay space, this
corresponds to a bi-monotone curve from the lower left corner (start-
ing points of both trajectories) DL[1, 1] to the upper right corner (end
points of both trajectories) DL[m, n]. Such a matching is shown as a
green curve in Figure 5.7(b).

As a basis for our analysis, we pick an alignment of overall high simi-
larity, a matching between two trajectories. There is a wide range of
similarity measures for trajectories that are based on finding such an
alignment.

Dynamic Time Warping (DTW) aligns two trajectories —or more gen-
erally two time series —as to minimize the (squared) sum of distances
between matched elements. An DTW alignment can be computed
in quadratic time using dynamic programming [Berndt and Clifford,
1994].

The Edit Distance (ED) is a widely used measure for similarity
between two strings [Wagner and Fischer, 1974]. It has been applied
in bioinformatics and language processing. The Edit Distance on
Real Sequences (EDR) is an adaption of ED for sequences with numer-
ical values, for instance trajectories [Chen et al., 2005]. The EDR tack-
les the problem of transforming numerical values from ED into inte-
ger values by defining a match on a pair of points. A pair of points is
matched in EDR when the distance between the pair is less than or
equal to an ¢ threshold. To compute the EDR, a similar dynamic pro-
gram as for DTW isused. The € threshold restricts the choices within
the dynamic program of EDR. DTW uses distances in the dynamic
program; whereas, EDR uses unit costs. The Longest Common Subse-
quence (LCSS) is, essentially, a restricted version of the ED, in which
only two of the three operations used in the ED are allowed [Maier,
1978].

Another alignment method minimizes the maximum distance along
the trajectories. For curves, it is based on the Fréchet distance, and

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 98

the corresponding matching can be computed in near-quadratic time
[Alt and Godau, 1995]; whereas, the direction-based Fréchet
distance minimizes the maximum direction difference between the
two curves [de Berg and Cook, 2011]. Specifically, we use a so-called
locally-correct Fréchet matching (LCFM). Such a matching has the
following property: if we take any sub-curve of the matching (starting
at a pair of time stamps (is, js) and ending at a pair (ie, je)) and consider
the sub-grid of the delay space restricted to the corresponding time
stamps (DL*: [is, ie] x [js,je] — R*), then an LCFM also minimizes
the maximum distance restricted to this sub-grid [Buchin et al.,, 2012].
Similar to thisrestriction, a profile function determines the structure
of such a matchingin a lexicographic Fréchet matching [Rote, 2014].
In our tool, we use the dynamic programming algorithm from Buchin
et al. [2012] to compute a discrete matching based on the Fréchet dis-
tance. The mainideaistoconstructatree, withDL[1, 1] astheroot, to
allvalid, subsequent, and monotonous paths towards the root. All ver-
ticeson the path from DL[m, n] to the root are the edges of the match-
ing. Thisalgorithm works with any premetric (see Section 5.2) though
Buchin et al. [2012] used it only with Euclidean distances.

To compute a matching on three or more trajectories, we need to ex-
tend the notion of a Fréchet matching from two trajectories to a set of
trajectories. Dumitrescu and Rote [2004] proposed a definition of the
Fréchetdistance on aset of curves. In their definition, the Fréchet dis-
tance is the longest leash in the set of curves, such that the length of
the longest leash is minimized over all tuples of points from the input
curves. Dumitrescu and Rote [2004] showed that a 2-approximation
of the Fréchet distance on the set of curves can be constructed from
all pairwise Fréchet distances.

Ourvisual analyticstool supportsany of the alignment methodsabove
and any similarity measures (see Section 5.2), which allows to use a
premetric in the delay space.

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 99

5.4.3 Interactive Analysis of Delays in Matchings

The visual analytics approach allows users to explore matchings on
two trajectories, the degree of interaction, and delays. The proposed
approach was implemented in a prototype visual analytics tool that
supports multiple coordinated views of the trajectories, matching, de-
lay space, delay plot, and distance plot for the purpose of visual ex-
ploration (requirement R4). To avoid visual clutter in the trajectory
plot, we bundle the edges of a matching in colored patches. Doing so
makes changes of the delay visible over time (requirements R2 and
R3), so that important local movement patterns can be perceived (re-
quirement R1). These local patterns might reflect changes in direc-
tion or distance, or show who is ahead and who is behind. A screen
shot of the tool is shown in Figure 5.6.

3 Q
r
A 4

77

|
. .
Xy
Delay space yy/ Trajec_tory and A
et 1mlimati /f matching 'S
visualization N - |

/ visualization ‘]\;

.""l‘ ,;f'"l

AAAAA

e |

Figure 5.6: Screen shot of the tool, showing the delay space, the trajec-
tory and matching visualization with an enlarged section of it,
the distance plot, and the delay plot. Ahead/behind behavior is
visualized by a glyph.

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 100

The analytical process behind our visual analytics tool consists of the
following steps:

1. Open and load a dataset

2. Select a similarity measure and an alignment method

3. Analyze the structure of the matching

4. Refine the parameters for the alignment method and the simi-
larity measure

5. Identify interaction events by browsing the edges

First, we need to open and load the dataset of the moving objects into
our visual analytics tool (step (1)). Next, we pick a similarity measure,
to construct the delay space, and an alignment method, that will drive
the structure of the computed matching (step (2)).

Then, we analyze the characteristics of the matching in the delay
space and the trajectory visualization (step (3)) by navigating through
the edges of the matching.

A matching enables an interactive, local analysis of delays by sliding
through the edges of the matching. The main interaction component
isthe slider between the trajectory visualization and the distance plot,
which browses the edges of the matching (although not the time
points), see Figure 5.6.

B reduces
delay to R

Rincreases
delay to B

matched
points

Trajectory R
““— Trajectory B

() (b)

Figure 5.7: Visualizations for a matching based on the directional distance
similarity measure. (a) Trajectories and a corresponding match-
ing (b) The delay space and a matching

A delay space is depicted in Figure 5.7(b). Trajectory B is on the y-
axis and trajectory R on the x-axis. The values are shown by a linear

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 101

heated body color scale, e.g., see [Munzner, 2014], and the matching is
visualized as a green path through the delay space. Diagonal line seg-
ments correspond to simultaneous movement of both objects, hori-
zontal line segments correspond to movement of the object in R and
stationary behavior in B, and vertical line segments correspond to
movement in B and stationary behavior in R. In Figure 5.6, a cursor
in the delay space points to the currently selected edge of the match-
ing-indices of the pair of points on the axes—accompanied by a glyph
to encode that trajectory B, symbolized by the blue triangle, is behind
trajectory R —the red square (see Figure 5.6 for an enlargement). This
stacking reverses when trajectory Bis ahead. If no delay occurs, both
symbols appear side-by-side.

A straightforward way to visualize the trajectories and the
corresponding matchingwould be to plot the trajectories in the plane,
and to connect matched points between the trajectories by a line seg-
ment. This would result in a very dense visualization and visual clut-
ter, however. A monotonous matching has a nice property that has
been used to simplify the visualization: in the matching, situationsin
which one point of one trajectory (the actor) is matched with several
points of an other trajectory (the reactor) occur often. This
correspondstoan interaction pattern with a delayed response. These
edges then can be bundled into a single patch to avoid visual clutter.
We color the patches to show source, the actor, and the relevance of
the corresponding reaction events (requirement R2).

An example visualization for two short trajectories, Band R, is shown
in Figure 5.7(a). Trajectory B is below R, and the reaction events of B
and R are associated with the colors blue and red, respectively. Both
moving entities start at the bottom of the plane, progress in the same
direction, approach each other, split into almost opposite directions,
and finally move in the same direction although at a large distance.
The matching is based on the directional distance. At the beginning,
almost no interaction occurs since both are moving along. The gray
patch indicates a delayed response by R, in which one point of B is
matched to the first two points of R. As the moving objects approach
each other, the structure of the patches becomes different. Within
the red patch, the color changes from gray to red indicating that R

VisuAL ANALYTICS FOR LocaL ANALYSIS OF DELAYS 102

increases the delay to B. The blue patch expresses that Breduces the
delay to R until the delay vanishes (the color becomes gray).

The trajectory visualization, in Figure 5.6, provides an overview of all
interactions between both trajectories in translucent colors. The se-
lected edge and its direct surroundings in the focus area are shown
in saturated colors. This helps to untangle the plot of the trajecto-
ries since the locations from different time stamps may overlap in
space. The delay isvisualized by glyphs: a circle for the actorandared
square or blue triangle for the reactor (the same visual encoding as
in the delay space visualization). If no delay is observable, both points
are depicted as circles.

The delay space visualization can be used to detect specific movement
patterns (requirements R1and R4). An example isa zig-zag movement,
as depicted in Figure 5.8 for the upper trajectory, while the other tra-
jectory proceedsin a straightline. The delay space based on the direc-
tional distance similarity measure shows a clear color change (a ver-
tical stripe) at the point of this movement. As the trajectory is short,
this pattern can also be observed in the trajectory plot. However, for
longer trajectories, the trajectory plot does not scale very well, and it
becomes more difficult to read; whereas, the matrix-based visualiza-
tion of the delay space easily scales up to hundreds of points.

(a) (b)

Figure 5.8: (a) Trajectory with a zig-zag movement pattern and a straight
trajectory. (b) Delay space based on the directional distance
similarity measure. The strong color change corresponds to the
zig-zag pattern.

5.5

EXPERIMENTS 103

As soon as we perceive the overall structure of the patches within the
matching and its delay space as unfruitful, we refine the alignment
method and/or the similarity measure (step (4)) so that we obtain a
new delay space and a novel matching. For this new setting, we apply
steps (2) to (4) until we are satisfied with the overall structure of the
matching.

Finally, we identify interaction events by browsing the edges of the
matching (step (5)) in more detail. The aim is to find consecutive epi-
sodesin both trajectories that correspond to high interaction. By trac-
ing the patches in form of action-reaction patterns in the trajectory
visualization and rapid color changes in the delay space visualization,
we are able to read off the time-stamps for those events in the delay
space visualization.

Additionally, the distance and delay plot, see Figure 5.6, help to detect
action-reaction patterns, which globally look as depicted in Figure 5.1,
since significant changes in the progression of delays (requirement
R3) are related to changes in the interaction between the moving ob-
jects. The distance and delay plot show progression of distance and
delay over time, respectively. The cursors help to read off exact val-
ues at the left side of the plots. The distances are also color-coded on
a heated body color scale, and the delays are plotted in the colors of
the trajectory.

Experiments

To evaluate our approach, we applied it on three datasets. First, we an-
alyze the interaction between two Ultimate Frisbee players [Long and
Nelson, 2013a]. On this dataset, we compute global delays with our
FFT-based approach on subsamples (episodes) to determine how well
these episodescorrelate. Then, we analyze the covering performance
between the attacker and the defender locally with our
matching-based visual analytics tool.

The second dataset is a pair of homing pigeons in collective flight [Pet-
tit et al, 2013]. We are interested here in extracting interactive move-

5.5.1

EXPERIMENTS 104

ment episodes by applying our visual analytics tool to a 2D projection
of the moving pigeons.

On the third dataset, a flock of homing pigeons [Santos et al., 2014b],
we selected three trajectories from the flock to analyze the interac-
tion within a matching among these three moving objects. We com-
pare the triplet matching with the pairwise matchings on the three
pigeons.

Analysis of the Global Delay

The trajectories in the Ultimate Frisbee dataset from Long and Nel-
son [2013a] describe the movements of a defender, trajectory B, cov-
ering an attacker, trajectory R, who tries to get a pass. The defender
wants to intercept or dissuade passes from being completed. The de-
fender’'s movement is a reaction to the attacker’s movements. In this
scenario, the delay can be used as a metric to evaluate the defender’s
performance in covering the attacker.

The trajectories were simultaneously recorded with a sampling rate
of 5 Hz, and each trajectory consists of 276 GPS locations. The dura-
tion of the recording is 60 s. Some missing locations occurred when
the players were stationary. To resolve this issue, we interpolated the
trajectories linearly over time for those missing locations. This inter-
polated dataset with 300 locations per trajectory has been used in our
analysis.

Long and Nelson [2013a] propose a global measure for dynamic inter-
action to determine whether a substantial amount of interaction be-
tween the players occurred. This global measure is derived from the
values from local dynamic interaction events. We compute a related
measure, the global delay by using our FFT-based approach (see Sec-
tion 5.3).

We analyze the global interaction using displacements because dis-
placements are sensitive to the time shifts that are used for finding
the global delay. This also allows us to evaluate the performance of
approximations for displacements from Section 5.3.2.

EXPERIMENTS 105

The main goal is to decide whether the trajectories have a substan-
tial amount of interaction or not. In order to distinguish between in-
teractive and non-interactive behavior, we selected subranges of the
Frisbee data, such that we can perceive the difference in the global
correlation among the trajectories. In Figure 5.9, the displacements
of the two players are plotted over time. The selected subranges are
indicated in saturated colors. We use the displacement measure with
a = 1 throughout this section. We first compare the global delay be-
tween Bl and R1; then, we compute the global delay between Bl and
R2. To overlay the displacements, we shift the time stamps of R2 onto
Bl by —30 s on each point of R2.

1.6
@Bl @Rl ®R2
1.4

1.2

[N

0.8

Displacement (m)

Time (s)

Figure 5.9: Displacements of Ultimate Frisbee data. The selected subranges
are indicated in saturated colors. The displacements for the sub-
range B1from trajectory B are blue. The values for the subranges
R1 and R2 from trajectory R are red and orange.

The set of trajectories Bl and R1, which we analyze for the global de-
lay, are temporally aligned, and they consist of a significant amount
of interaction within the first 20 seconds [Long and Nelson, 2013a].
In Figure 5.10(a), the correlation of displacements between Bl and R1
are computed for all possible time shifts and plotted as a black line.
The observable highest correlation is at 0 seconds, which constitutes
the global delay under the displacement similarity measure. Since
either one or the other trajectory has been time-shifted for an align-

EXPERIMENTS 106

ment in the global delay, the plots for the global delay are asymmaetri-
cal. We alsoran our FFT-based approach to approximate the displace-
ments globally. The results are shown in Figure 5.10(a) for two values
of B as dashed lines (8 = 0.0 and 8 = 0.15). We observe that these
values yield good approximations. However, there are some devia-
tions at the boundaries of the time-shifting. The best approximation
of displacements is when our FFT approach has a g between 0.0 and
0.15.

Figure 5.10: Displacements and our FFT-based approximations on sub-
ranges from Ultimate Frisbee data (a) Similarity of displace-
ments between trajectories B1 and R1 (b) Similarity of displace-
ments between trajectories B1 and R2

In the second set of trajectories Bl and R2 from Figure 5.9, we com-
pare trajectories that are not temporally aligned. In order to compute
a global delay between them, the time stamps of R2 have been shifted
by —30 s. The correlation of the displacements between Bl and R2 is
plotted in Figure 5.10(b) as a black line. No remarkable correlation is
observable, and the maximum delay, the global delay, is not at 0 sec-
onds. Our FFT-approximations of the displacements, with 8 = 0.0 and
B =0.15, yield oscillating values (dashed lines). The correlation’s val-
ues are below the displacements’, and we omitted negative values in
the plot.

EXPERIMENTS 107

5.5.2 Analysis of Delays on Ultimate Frisbee Data

In team sports, such as ultimate frisbee, players engage in bursts of
movement that can be characterized by different movement patterns.
Therefore, a local analysis is more informative than a global analy-
sis for the Ultimate Frisbee dataset [Long and Nelson, 2013a]. Multi-
ple episodes of different levels of interaction occur over time in this
dataset. Our aim is to segregate these segments into episodes of high
and low interaction.

_—

=

(a) (b) O (d)

Figure 5.11: Matchings under different similarity measures to detect a loop
pattern in the Ultimate Frisbee data: (a) based on the Euclidean
distance measure, (b) based on the similarity of headings, (c)
based on the dynamic interaction similarity measure, and (d)
based on the directional distance similarity measure. (a) high-
lights it as an interaction event. For (b) in the delay space, only
the adjustment of the defender B towards the attacker R is
found because it highlights the loop pattern partially as two
patches. Using the dynamic interaction measure in the delay
space (c) yields three patches, but the adjustments of the de-
fender after the loop are not captured as separate events. (a)
and (d) highlights the loop as an interaction event by a blue
patch followed by some smaller patches during the adjustments
within the reaction of the defender B.

To detect interaction events in our matching-based visual analytics
tool, we need to choose a similarity measure (see Section 5.2) for the
delay space that captures the movement pattern in a visually salient
manner (step (2) in Section 5.4.3) as well as an alignment method (see
Section 5.4.2). In Figure 5.11(a)-(d), matchings have been computed
for the defender B’s reaction pattern to the attacker R (step (4)). We
employed, as Long and Nelson [2013a)], an o = 1 in the dynamic in-

EXPERIMENTS 108

teraction measure. The loop and its adjustment between the players
afterwards are captured clearly in matchings based on the Euclidean
distance and the directional distance. As alignment method, we first
use an LCFM.

We opt to analyze the Ultimate Frisbee dataset under the directional
distance because this delay space is sensitive to direction-based and
spatial properties. During the episodes 0-25sand 36 -45s, both play-
ersshowalowdistance, demonstratinga high interaction. Thisis con-
sistent with the findings of Long and Nelson [2013a]. Our measures
detect an additional episode of interaction: during the interval 45 -
57 s, aturn by R is followed by a reaction of B, see Figure 5.11.

The progression of the distance over time, see Figure 5.12(a), follows
the structure of an action-reaction-pattern, as discussed in the previ-
ous section. In the delay plot, this event can also be seen in the form
of a significant change of the local delay, see Figure 5.12(b). Long and
Nelson [2013a] analyzed the covering performance by the dynamic in-
teraction measure on pairs of points with the same time stamp; that
is why our notion of delay therefore does not occur in their analy-
sis.

(a) (b)

Figure 5.12: Distance and delay plot for matching in Figure 5.11(d) follows the
structure of an action-reaction-pattern with delayed response.
(a) The distance plot within a reaction. (b) The delay plot shows
a significant rise at the point where the defender reacts as a
loop movement.

Next, we performed the same analysis using different alignment
methods, specifically DTW and EDR. We computed matchings on the
two trajectoriesusing DTW and EDR. These algorithms have the same
running time of O(n?) that computing an LCFM has. In the dynamic
programs for DTW and EDR, we maintained predecessor graphs to
construct a matching as well as to compute the distance value. The
original definition of EDR uses an epsilon on the absolute difference

EXPERIMENTS 109

on each dimension of a pair of points. However, we used an ¢ thresh-
old on the actual distance norm used in the delay space to match a
pair of points.

(a) (b) (c)

Figure 5.13: Delay spaces for the loop pattern in the Ultimate Frisbee data in
a log scaling using the Euclidean distance: (a) shows a Fréchet
matching. The matching in (b) is based on Dynamic Time Warp-
ing. In (c) a matching has been computed on the Edit Distance
for Real Sequences with an € = 1.6 on the delay space. (a)
stays longer in low distances after the horizontal stripe, within
the reaction event, than (b) and (c).

In Figure 5.13, we computed matchings in the delay space using the
Euclidean distance for the loop pattern of the Ultimate Frisbee data.
The horizontal stripe in the matchings of all three methods
corresponds to the reaction movement of the defender. All three
methods capture the loop. EDR recognizes the loop prematurely with
respecttothe other methodsover time. The progression of the match-
ing curve in DTW and EDR are somehow similar. However, an LCFM
consists of more vertical segments in the matching than DTW and
EDR. Hence, the LCFM has more bends to move through regions with
low distances in the delay space; whereas, the matchings based on
DTW and EDR tend to stay shorter in this area of low distances.

The threshold parameter € to match a pair of points heavily influences
the structure of a matching based on EDR. A relatively large or low
value forces the matching to prefer diagonal movements in the delay
space. A pre-analysis of the distribution of the distances that may oc-
cur in a possible matching needs to be conducted in order to spot a

EXPERIMENTS 110

suitable € value because a relatively large or low value for € forces the
matching to prefer diagonal movements even when it is possible to
take vertical or horizontal movements with lower distances. Hence,
EDR suffers from having to determine an appropriate € before com-
puting a matching; whereas, other techniques yield better results
without the need of a parameter at all.

5.5.3 Analysis of Delays on Pigeon Data

We analyzed the global delay first to confirm that the trajectories are
correlated (results not included) and then applied our
matching-based approach on a segment of paired homing pigeon
flight trajectories collected as part of a larger pairwise dataset by Pet-
tit etal. [2013]. The time span of the data is 140 s using a sampling rate
of 5 Hz. The trajectories have not been tuned or optimized. Pigeon B
flies a distance 1.62 km at an average speed of 16.75 £ 5.02 ms™! to
land 634 m from its starting point, and pigeon R flies 1.33 km at an av-
erage speed of 15.36+4.92 ms! toland a distance 572 m from its start
point. In this analysis, we used directional distance in combination
with LCFM.

An overview visualization is shown in Figure 5.14 for a selected event,
in which pigeon R reacts to the movement of pigeon B. The reaction
of pigeon R consists of a transition from aright turn to aleft turn. This
event is visible as a large blue patch in Figure 5.14(b). In the delay
space, as shown in Figure 5.14(a), this movement pattern is indicated
by the horizontal segment within the matching. Due to the adjust-
ment of pigeon R to the movement of pigeon B as a reaction, there
is a decline in the distance, see Figure 5.14(d). The delay continues to
increase at this point until the maximum delay is reached within the
reaction movement of pigeon R, see Figure 5.14(e). The movements
of the pigeons and their matching visualization are outlined in Fig-
ure 5.14(c); however, only the surroundings of the selected edge are
in the focus of the visualization.

Between O - 12 s and 20 - 66 s, the pigeons have low directional dis-
tance, indicating a high level of interaction, as can be seen in both the

EXPERIMENTS m

distance plot and the delay plot (see Figure 5.14). The delay plot indi-
cates that the leadership switches between these two episodes. The
directional distance then generally increases with the exceptions be-
tween from 95 s to 106 s and starting again at 120 s, when the pigeons
have a high level of interaction again. Between 106 and 120 s, one pi-
geon makes a loop while the other progresses in a straight line.

To evaluate these findings informally with those from another tech-
nique, we applied the time-ordering approach by Giuggioli et al. [2015]
on the pigeon dataset, see Figure 5.15. For this approach, we have fo-
cused on the velocity cross-correlation to identify and classify copy-
ing patterns in direction. The optimal movement episodes, based on
a directional separation, are similar to the episodes detected by our
approach. For computational convenience, the maximum allowed de-
lays were capped at4.5s.

rq0.7

r 10.6

r 10.5

Delay (s)
TDDC

r 104

0.3

Time (s)

Figure 5.15: Delay plot for the time-ordering approach. The white contour
lines are a threshold for motion that is sufficiently aligned to
represent interaction. The black segments are the optimal inter-
action intervals representing the best delayed interaction that
can be extracted using this method. Both positive and negative
delays are detected within this method as well.

EXPERIMENTS 112

The episodes0-18s,20-65s,and 120-130 s are consistent with those
from our approach. At around 105 sand 118 s, two short movement
episodes of interactive behavior have been found. They capture the
beginning and the end of the loop pattern, but it is not detected as a
whole. The deviations are probably due to the delay parameters of the
time-ordering approach since in our matching-based approach quite
large delays (max. 9.6 s) occur at around 120 s.

Comparedtothe time-ordering procedure, our approach exhibits var-
ious advantages. Out approach does not require a pre-smoothing of
the dataset, and it can be extended beyond pairwise analysis.

5.5.4 Analysis of Delays on a Triplet of Pigeons

Our approach has focused so far on the analysis of interaction
between two trajectories. However, it is common in applications to
track several moving objects asa collective movement, such asa flock
or a group. A procedure to analyze the interaction among more than
two trajectories simultaneously is, in fact, very much in need.

There are two reasons why a pairwise procedure on more than two
trajectoriesis likely to fail: one is practical and the other methodolog-
ical. The practical aspectisthatthe computational costincreasesvery
rapidly if one accounts for all possible pairs of trajectories. The
methodological problem is due to potential inconsistencies in iden-
tifying the correct sequence of events. For example, to explain it, let
us consider three simultaneously moving objects, A, B, and C. Sup-
pose that a pairwise procedure between A and B and between A and
C indicates, respectively, that B reacts to A with a (positive) delay Tga
and that C reacts to A with a (positive) delay Tca > Tga. If 754 is quite
different from tc4, the pairwise analysis between B and C most likely
will extract a delay t¢cg > 0, consistent with the fact that individual C
has responded to individual A later than individual B. But if the pair-
wise delays extracted are small, then it is not ensured that 7¢cg > 0. To
avoid these issues, one ought to extract the delay for all individuals at
once.

EXPERIMENTS 113

To do so, we extend our approach to compute a matching on three si-
multaneously moving objects, and we compare how the triplet analy-
sis differs from a pairwise analysis as well as how well a triplet match-
ing captures action-reaction patterns on a local scale.

We use a dataset of a flock of 10 pigeons from Santos et al. [2014b],
which has been made available on Movebank [Santos et al., 2014a]. It
consists of simultaneously recorded GPS data using a sampling rate
of 4 Hz. The pigeons have been tracked for several trips.

All pigeons from the flock are likely to interact with each other since
they are all socially familiar to each other [Santos et al., 2014b]. The
transitive, pairwise comparison of the pigeons in Santos et al. [2014b]
has shown results with significant repeatability, such that we can val-
idate the pairwise matchings with the one obtained directly from the
triple.

We have selected three trajectories from pigeons M, S, and Ubecause
they represent different roles within the flock. Pigeon M has a high
rank for leadership while pigeons Sand U have a low negative leader-
ship rank within the flock. Pigeons S and U are thus likely to exhibit
follower behavior. Santos et al. [2014b] explain that leadership roles
are stable within a flock across different flights.

A pairwise matching between pigeon M and S is shown in Figure 5.6.
The matching captures a circular movement wherein the distances
between the pigeonsvary, and changesin position, heading, and turns
occur. Atthe beginningofaflight, there are many adjustmentsamong
the pigeons to the collective movement of the flock, which is why we
use a sample of 200 points from Flight 5 from time-stamp 800 to 999;
whereas, Flight 5 consists of 3845 time-stamped points in total.

To measure similarity between a triple of points, we used the maxi-
mum of the pairwise Euclidean distance (see Section 5.2) in our meth-
ods, LCFM and DTW, to compute a triplet matching. For the pairwise
analysis, we used the Euclidean distance on the selected pair of tra-
jectories.

We projected the triplet matching into our visual analytics tool by
showing only the coordinates of the selected pair and leaving out the

EXPERIMENTS 14

valuesof the non-selected trajectory. An LCFM on a tripletresultsina
similar matching as a pairwise computation on the three trajectories
separately. This can be seen in Figure 5.16. A pairwise matching is
visualized as a blue curve in the delay space and the projected triplet
matching in green.

N

L 17

- F
(b) (c)

Figure 5.16: Delay spaces, in a logarithmic scale, for projections of a Fréchet
matching on three pigeons. The projections are in green, and
the pairwise LCFM is in blue beneath it. (a) shows the matchings
for the pair (M,U). The matchings in (b) are between pigeons M
and S. In (c) the matchings are shown for the pair (S,U). The
Fréchet distance is from (c), where the largest distances within
the triplet are obtained since the color in the delay space there
is the brightest of all projections of the triplet.

The triplet matching on the pair (S,U) coincides with the LCFM on
that pair of trajectories. The S-shape of the delay space is due to a
sharp turn by S within the circular, anticlockwise movement of the
flock. The longest leash is from the pair (S,U) since this projection
(see Figure 5.16) of the triple matching moves through a short seg-
ment within the S-turn in the brightest color of all three projections.
It hereby contains the largest Euclidean distance of the triplet match-
ing. The longest leash gives the pairs (M,S) and (M, U) slack for their
edgeswithin the triplet matching. This fact is likely to explain why the
pairwise projections deviate by having horizontal stripesin the triplet
matching. However, these projections still avoid large values in the
delay space.

EXPERIMENTS 115

/ / i
- a a4
() (b) ©

Figure 5.17: Delay spaces, in a logarithmic scale, for projections of a triplet
matching on pigeons based on DTW. The projections are in
green, and the pairwise LCFM is in blue beneath it. (a) shows
the matchings for the pair (M,U). The matchings in (b) are be-
tween pigeons M and S. In (c) the matchings are shown for the
pair (S,U). The maximum distance value for the triplet match-
ing is obtained from (c) since the distance values within the
S-movement of the matching have the brightest color in the
delay space, i.e. the largest values.

To evaluate this LCFM on a triple of trajectories, we have computed
a triplet matching based on DTW. Figure 5.17 shows the projections
in green and beneath it the LCFM on the selected pair in blue. The
projections for the pairs (M, U) and (S,U) follow the progression of the
pairwise LCFM. The triplet matching on the pair (M,S) clearly devi-
ates from the LCFM since it prefers diagonal movement in the de-
lay space. This can be explained by the fact that DTW optimizes the
squared sum of Euclidean distances. Asaresult, DTW prefers to min-
imize large distance values. The pairs (M,U) and (S,U) preserve a sig-
nificantly large distance with respect to (M,S).

Overall, the matchings between triplets provide results similar to
those obtained by pairwise matchings. Although, in general, such
equality may not be ensured as we explained earlier, for this dataset
it holds true independently of the alignment method used (DTW or
LCFM).

5.6

CONCLUSIONS 116

Conclusions

We proposed a new approach to analyze interaction events between
two trajectories. First, we determined with our FFT-based approach
whether any interaction between the trajectories took place. After-
wards, we applied our main technique on the dataset, a versatile vi-
sual analytics tool, that enables time delays to be incorporated in in-
teraction movement analysis.

Delayed responses play a key role in detecting interaction events in
movement data on a global and local scale. These events are mod-
eled within the so-called delay space wherein we compute a matching
between the moving objects. The purpose of our methodology is to
gain insight into action-reaction patterns by analyzing those match-
ings.

Our visual analytics approach uses multiple coordinated views to ex-
plore the movement data interactively. The edges of the matching
are visualized as colored patches to convey the structure of the inter-
action events. The relevance of the movement pattern is determined
by the delay among the moving entities, which is used as a color satu-
ration for the patches.

The experiments show that the structure of a matching provides im-
portant insights into action-reaction patterns in movement data. The
computation of a matchingrelies on the alignment method. We eval-
uated various types of state-of-the-art methods to compute a
matching. All of them are supported in our visual analytics tool. In
general, DTW and LCFM gave good results in our experiments. If the
movement of trajectories is relatively aligned, then both DTW and
LCFM vyielded good results. However, LCFM gives better alignments
as soon as delayed responses appear within the movement data since
DTW tends to prefer diagonal movements in the delay space.

We surveyed various interaction measures in our tool as well that
combine movement vectors, distance norm, or headings of the tra-
jectories. By combining the Euclidean distance norm and the differ-
ence in the headings, we introduced the novel premetric, the direc-

CONCLUSIONS M7

tional distance. In our experiments, using the directional distance
yielded large patches; e.g., in the loop movement of the Ultimate Fris-
bee dataset. The directional distance captured action-reaction rela-
tionships better as visible colored patches in the visual analytics tool
than other similarity measures.

The concept of a delay space and a matching can be generalized to
more than two trajectories. We showed this on a triplet of trajecto-
ries. In these experiments, the results on the triplet were consistent
with those from a pairwise analysis. They did not provide additional
insights to our datasets, however.

Visualizing the delay space and matching between simultaneously
moving objects is challenging since the delay space then has at least
three dimensions. Our delay space visualization is limited to support
only two trajectories as x and y-axes. Therefore, a novel technique
needstobe developed tovisualize amatching on more than two trajec-
tories. Beyond the examples presented in our experiments, our meth-
ods are widely applicable to the analysis of individual human move-
ment in a crowd, prey-predator interaction, wilding mating behavior,
as well as sports analysis.

CONCLUSIONS 118

138608

72.80s

(a) (b)
(c)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, @
(e)

Figure 5.14: Visualization of pigeon trajectories and corresponding delay
space based on the directional distance similarity measure (a)
The delay space. (b) The focus area. (c) The trajectories and
their corresponding matching. (d) The distance plot. (e) The
delay plot.

6

Visual Exploration of
Migration Patterns in Gull
Data

6.1 Introduction

The study of animal movement has long been of interest. Starting in
the 1990s, the availability of new technology has led to increasingly
detailed and diverse types of data relating to movement
[Rutz and Hays, 2009]. GPS-based movement tracks are currently
among the most frequently collected types of data. Because of its rela-
tive accuracy and high sampling rate, the GPS technology drastically
improved the ability to describe and gain new insights about animal
movement. The continuing miniaturization allows at the same time
to collect data for an increasing range of species and conditions [Kays
et al,, 2015]. Today, animal movement tracks form one of the main
data sources when studying the mechanics of movements,
navigational cuesand drivers of movement, constantly leading tonew
insights on animal physiology, behavior, and demography
[Dingle, 2014]. Through those advances, ecologists are beginning to
ask novel questions about the causes of movement and its
consequences for individuals, populations, and ecosystems for which

INTRODUCTION 120

formal analysistechniquesare notalwaysreadily available. Kaysetal.
[2015] claim that interdisciplinary research between data scientists
- computer scientists, statisticians — and ecologists will be required
to develop new tools efficiently, which will eventually lead to new in-
sights and scientific breakthroughs.

The goal of data visualization is to provide insights into data [van Wijk,
2006]. New visualization techniques and visual encodings help users
to understand their datasets. Furthermore, visual analytics can be
used to generate knowledge from large and often complex datasets
by developing and deploying analytical and visualization techniques
[Sacha et al,, 2016].

Migration Patterns in Gull Data
(o] + |] a
B :
4%

([[+]
—_——
8 \\@

Figure 6.1: Overview of the visual analytics tool: The stopover aggregation
visualization (1) enables the user to investigate and select stop-
overs. The density map (2) shows the spatial distribution of the
selected moving entities. Within the calendar view (3) the tem-
poral distribution of the stopovers of the selected entities over
time is visualized. The list of gulls (4) shows the names and
genders of the selected entities.

To support an ecologist in her search for new knowledge, a visualiza-
tion expert needs to spend time and effort to understand the relevant
questions, data and the general ecological context of a study-system
- knowledge which has often not been acquired a priori. Ecologists
do, on the other hand, not commonly have an overview of the analysis

INTRODUCTION 121

and visualization possibilities that are now technically feasible; nor do
they know how these could help answer certain ecological research
questions. Thus, a knowledge gap between domain experts and visu-
alization designers exists [Slingsby and Dykes, 2012; van Wijk, 2006].
Explorative visualization can help fill this gap as it provides a means
for ecologists to discover new trends, to present a dataset visually,
to identify pertinent subsets, to compare the movement of individ-
uals, and to locate moving entities, among other tasks. Abstracting
such tasks helps to reason about the similarities and differences be-
tween them, to distinguish between different goals, and to further
guide data abstraction [Munzner, 2014]. Eventually, exploratory visu-
alization provides a novel analytical means that leads to new ecologi-
cal insights. In addition, it may help users build trust in their gener-
ated knowledge base [Sacha et al,, 2016].

The current practice of ecologists to investigate and visualize move-
ment is by developing and using Matlab or R libraries [Slingsby and
Dykes, 2012; Slingsby and van Loon, 2016]. Those results are either an-
alyzed and visualized statically or plotted on top of satellite maps. Few
bird ecologists examined movement data in interactive visualizations
with multiple coordinated views, or used a Google Earth-based tool
for exploring GPS data from a bird’s eye perspective, both of which
have been of limited value [Slingsby and Dykes, 2012]. It seems that
atight integration of different spatio-temporal views of the data, with
a flexible selection would be beneficial to ecologists to focus on data

analysis mechanisms rather than on laborious coding [Spretke et al,,
2011].

In this chapter, we present such a technique. It comprises a novel vi-
sual analytics approach to help explore animal migration patterns in-
teractively. Our approach provides analytical and visual means to un-
derstand different aspects of migration through an aggregation at var-
ious spatial scales, with interlinked geographical maps, and views on
spatio-temporal events. Migration is ubiquitous in ecology. It is the
seasonal displacement of individuals between sites. In our approach,
we identify and aggregate stopovers. A stopover is a break within a
migratory trajectory. Functionally, stopovers are important for forag-
ing, resting, or socializing with conspecifics, but stopovers can also be

6.2

RELATED WORK 122

used diagnostically to recognize different migration strategies: along
the coast, over the sea, or overland.

Past research on visualizing gull migration lack an aggregation of the
trajectories [Slingsby and van Loon, 2016], or impose visual clutter
by drawing the results of the clustering as colored data points on a
map [Spretke et al., 2011]. Our visual analytics approach remedies this
by employing a stopover aggregation visualization, a density map,
and a calendar view (see Figure 6.1). The stopover aggregation and
density map are plotted on top of interconnected, zoomable
geographic maps. The user can select stopovers, and impose
constraints on spatio-temporal properties of the selection.

We applied our approach to a dataset of 75 migrating Lesser Black-
backed Gulls (Larus fuscus), which we will henceforth denote as
‘gulls’ in this chapter. We evaluated our tool by consulting an expert
user [Tory and Moller, 2005] whose expertise on bird migration to as-
sess the strengths and weaknesses of our approach. We identified
both ecological research questions and the requirements for the vi-
sual design, and mapped them to analytical tasks that the expert user
completed. In this chapter we use the terms moving entities and indi-
viduals interchangeably.

Our qualitative evaluation confirms that our approach helps ecolo-
gists in their analysis of migration patterns so that they are able to
visually identify and isolate groups of individuals with a certain migra-
tion behavior rather than in non-visual computations. This
speedsup and fosters their analytical workflow because our approach
empowers ecologists tofocuson interpreting the dataand on develop-
ing new questions without being distracted by coding or by algorith-
mic technicalities.

Related Work

To identify different homogeneous movement episodes in trajectory
data, trajectoriesare commonly segmented, i.e. cutinto parts, accord-
ing to characteristics of the movement. Segmentation together with

RELATED WORK 123

classification or clustering of movement data helps to summarize and
visualize large trajectory datasets. Visualization techniques for move-
ment data support users in identifying new trends within datasets.
We survey pastresearch onvisualization and clustering of movement
data from various application backgrounds to give an overview of re-
cent achievements in these fields.

Segmentation algorithms have been successfully applied to migrat-
ing geese [Alewijnse et al, 2014; Buchin et al, 2013c] and gulls
[Spretke et al., 2011] among many other studies [Beyer et al., 2013; Gu-
rarie et al., 2016; Lavielle, 1999; Le Corre et al., 2014; Madon and Hin-
grat, 2014; Thiebault and Tremblay, 2013; Zhang et al,, 2015]. These ap-
proaches segment individual trajectories into pieces of similar move-
ments. Buchin et al. [2016] presented algorithms to summarize seg-
mentationsofalarger number of trajectoriesin a flow diagram, which
they then applied to trajectories of football players to analyze spatial
formations and plays.

To aggregate movement data, Andrienko and Andrienko [2011] trans-
formed trajectories into aggregate flows between spatial regions in
their visual analytics approach. This type of aggregation allows group-
ings of essential characteristics of the movement. In their approach,
the user can interactively control the overall level of abstraction of
the visualization. Andrienko and Andrienko [2011] applied their ap-
proach to deer and stork data and to trajectories in an urban context,
where the aggregated results are visualized as flow maps or as transi-
tion matrices.

Density visualization is a powerful visualization technique for analyz-
ing many trajectories. One such example is the work by Willems et al.
[2009], which presents a multi-scale density visualization for trajecto-
ries. They demonstrate it on vessel trajectories. The visualization of
the density fields is derived from the convolution of the dynamic ves-
sel position with a kernel that takes the speed of the movement into
account. The density fields are illuminated as height maps on top of
a heat map. Additionally, Willems et al. [2009] visualize the individ-
ual’s contribution of a moving point within the overall density.

RELATED WORK 124

Scheepens et al. [2011] use a similar approach to visualize densities of
maritime trajectories, for which they apply a cascade of filtering and
selection mechanisms on top of density maps. Their selection mecha-
nisms are sensitive to the user’srole, either a domain expert or an op-
erator, and to the task at hand. An operator is usually only concerned
with events connected to his work task, such as surveillance of a par-
ticular port.

Densities of movement data do not have to be necessarily visualized
as araster map on top of a geographical map. Slingsby et al. [2008] de-
ploy hierarchical, interactive treemaps to explore spatio-temporal
movement patterns of couriers in London.

Clustering on urban data has been studied by Lu et al. [2015a,b] on
taxi data. Lu et al. [2015a] explore Origin Destination (OD) pairs as
aninteractive selection of clustered regions. The underlying summa-
rization uses a modified DBSCAN algorithm, which utilizes a density
computation. Lu et al. [2015b] ranked trajectories of taxi data based
on their similarity of travel time. In their visual analytics tool, they
visualized the ranking as bands over time. Before ranking the trajec-
tories, they are mapped onto the underlying street network first, and
then segmented.

Slingsby and van Loon [2016] present an exploratory visual analysis
approach for animal movement data. They applied it, as we did, on
gull data, and they devised ecological and visualization requirements
on the analytical process. Their visual encodings range from point
plots over density maps to tile maps and, thus, cover partially our vi-
sualization techniques. The visual analytics software consists of a cen-
tral view, a satellite map with an overlaid visual encoding and user in-
teractions, and two interconnected timelines: one for a sequence of
days and the other one for the times during those days. They did not,
however, consider a summary and aggregation of the gulls’ trajecto-
ries, which we provide and use as the main technique to interact with
the user in our study.

Spretke et al. [2011] developed a visual analytics approach for migrat-
ing seagulls. It supports interactive data exploration and enrichment
of movement data by adding attributes dynamically from existing

6.3

PROBLEM DEFINITION AND REQUIREMENT ANALYSIS 125

ones, and incorporating weather information, such as wind and tem-
perature. They clustered the trajectories of gulls into three move-
ment states: day migration, night migration, and stopover. They also
segmented the trajectories based on spatio-temporal characteristics
(45 minutes resting and less than two km continuous flight). Their
visualization with interconnected views lacks an abstraction for visu-
alizing clusters since Spretke et al. [2011] mapped the clustering to
only colors, and plotted the clusters as plain data points yielding vi-
sual clutter.

Kodlzsch et al. [2013] reflected on the visual design of migrating birds
by exploring different visualization techniques to encode spatio-tem-
poral characteristics of migration. They related ecological research
questions to their visual design which inspired us to link our ecologi-
calresearch questions to the requirements of our visual design.

Problem Definition and Requirement Analysis

Animal migration is an intriguing phenomenon in nature and has as
a consequence always received much attention as a research topic
in biology. It is increasingly being studied through visual and quan-
titative techniques due to the availability of tracking data in combina-
tionwithrelevant environmental datalayers, see the works by Buchin
et al. [2013c]; Klaassen et al. [2011]; Shamoun-Baranes et al. [2011b];
Slingsby and van Loon [2016].

In our study, we focus on the interactive analysis of animal migra-
tion tracks. In this section, we lay out a number of important ecolog-
ical research questions that can be partially answered through these
means. By relating those domain research questions to analytical re-
quirements, we aim for a |holistic problem analysis
[Brehmer and Munzner, 2013] of migratory animal movement.

6.3.1

PROBLEM DEFINITION AND REQUIREMENT ANALYSIS 126

Ecological Research Questions on Migration

Even though there is a large body of knowledge about bird migration
[Berthold, 2001; Newton, 2008] and some common principles are gen-
erally recognized (a migrating organism would maximize its fitness
behaviorally by minimizing either energy consumption, time expen-
diture, or the risk incurred during migration) [Alerstam, 2011; Aler-
stam and Lindstrém, 1990; Hedenstrom, 1993]; our understanding of
underlying drivers as well as the (behavioral, ecological, and physio-
logical) mechanisms is still far from complete.

In the case of the focal species in this study (the Lesser Black-backed
Gull), for instance, exact energy budgets are unknown, the compar-
ative advantage of migration (versus overwintering in the breeding
area) is unclear, and the reason for the wide spread in overwintering
sites by individuals from a single colony are also unknown [Shamoun-
Baranesetal, 2017]. Onthe other hand, some aspects of the migration
of this species have been studied, leading, e.g., to the conclusion that
it minimizes the energetic costs rather than time spent during migra-
tion [Klaassen et al., 2011].

In this study, we explore how an interactive analysis of trajectory data
can help us gain more insight into the possible role of individual dif-
ferences, sex, and time-dependent conditions (such as weather pat-
terns or ephemeral food resources) as well as the characteristics of
stopover sitesduring migration. The ecological questions that we con-
sider are listed in Table 6.1. These questions have been designed to
cover insights into a summary of stopovers and the exploration of the
relation between trajectories and the actual movement.

Questions E1 to E3 focus on the relation between attributes of the
movement tracks (which can be considered as predictor variables)
and migration decisions (which can be considered as response vari-
ables). However, both the predictor and the response variables have
not been operationalized; therefore, inferential testing through, e.g.,
multiple regression is yet not feasible. Rather, an explorative analysis
is required to help to define those variables.

PROBLEM DEFINITION AND REQUIREMENT ANALYSIS 127

Questions E4 to E6 deal with the uniqueness of stopover sites. For
these questions, the reference (e.g., direct surroundings, other indi-
viduals) is not clearly defined; hence, part of the challenge here is to
discover the type and scale of reference that is meaningful.

Table 6.1: Overview of the ecological research questions that we explore in
our visual analytics tool for migration.

Ecological Research Question

E1 How doindividuals’ differences, sex, and temporal conditions
relate to the route choice?

E2 How doindividuals’ differences, sex, and temporal conditions
relate to the choice of the stopover site?

E3 How doindividuals’ differences, sex, and temporal conditions
relate to the timing of stopping and commencing to migrate?

E4 What is special about the places to where migrating individ-
uals move relative to the direct surroundings (at the same
time/within the same time window)?

E5 What is special about the places to where migrating individ-
uals move relative to the place where they come from (at
the same time/within same time window)?

E6 What is special about the places to where migrating in-
dividuals move relative to other individuals (at the same
time/within same time window)?

6.3.2 Requirements for Analysis Tasks

We now map these ecological research questions to more abstracts
requirements that our approach needs to support. These
requirements are listed in Table 6.2 and help in abstracting generic
tasks from the spatio-temporal characteristics of migratory trajectory
data.

In our approach, we want to identify spatial patterns (T1). This re-
quirement covers a comprehensive visualization of all trajectories, al-
lowing the user to understand and compare spatial patterns in migra-
tion (E1) across different scales. A grouping of gulls with similar move-
ments provides insights into different categories of migratory behav-
iors (E6). A sequence of stops from an origin to a destination (E5) can
be expressed as such a grouping. The behavior of individuals should
be distinguishable from overall group patterns to investigate how the

PROBLEM DEFINITION AND REQUIREMENT ANALYSIS 128

migration strategy of an individual deviates from the group
movements (E6).

We want to identify temporal patterns (T2) across several scales,
ranging from day/night patterns over a period of days to seasonal pat-
terns. A visualization should allow to specify an episode to constrain
the selection to lie within a start and end date (E4, E5, E6).

Another analytical requirement is to identify stopovers (T3). This re-
quirement deals with a more aggregate view of the data to identify
important or often used places (E2) where migrating gulls come to-
gether (E6). Stopovers can also be considered at the level of an indi-
vidual to visualize its migration strategy on top of an exchangeable
map, such as a geographic or a topographic map, to investigate the
surroundings of a stopover (E4) with different visual cues. A visual-
ization should, furthermore, provide insight into the proximity of the
stopover. Statistics on a stopover help usunderstand the nature of the
stopover (E2).

Within our analytical framework, we want to compare groups and
individuals (T4). This requirement concerns grouping individuals
that show similar migration strategies (E1), e.g., travel mostly along a
coastline, over land, or over sea. Avisualization should enable a visual
linkage between these groups (E5), but also the comparison of one or
more individuals with a group (E6). Subgroups can be selected by the
user individually or by characteristics of the gulls, such as gender (E1,
E2, E3).

Table 6.2: Summary of the requirements for our visual analytics tool.

Requirements for the Visual Analysis

T1 Identify spatial patterns.

T2 Identify temporal patterns.

T3 Identify stopovers.

T4 Compare groups and individuals.

VisuAL ANALYTICS APPROACH 129

6.4 Visual Analytics Approach

Our visual analytics approach (see Figure 6.1) enables users to explore
migration patterns interactively. We identify stopovers, and aggre-
gate them in a visualization, so that the user can investigate and in-
teract with stopovers. The tool allows the user to select a sequence of
stopovers from an origin to a destination. Such a selection imposes
a direction of movement for moving entities within a migration. The
selected group of moving entities isrendered in the density map, the
calendar view, and the list of gulls. In the density map, the spatial
usage of the selected gulls is shown while the calendar displays the
counts of stopovers per day of selected or all stopovers. The
geographic maps for the density map and the stopover aggregation
are interconnected.

1. idle 2. stops 3. triangulate
z

Figure 6.2: The computational process to aggregate stopovers consists of
four phases: (1) the identification of idle points; (2) the com-
putation of stops; (3) the triangulation of stops; (4) the aggrega-
tion of stopovers on various scales. The first two phases identify
stopovers (T3). The resulting triangulation from phase (3) is used
in phase (4) to compute summaries on different spatial scales
from fine to coarse (T1).

Our visual analytics approach is implemented as an interactive web-
site! so that it is widely accessible to researchers who want to explore
migration patterns.

By visually exploring a dataset, trust into the knowledge base of the
dataset can be built [Sacha et al., 2016], and it allows ecologists to fo-

1http: //www.win.tue.nl/~kbuchin/proj/gullmigration

http://www.win.tue.nl/~kbuchin/proj/gullmigration

6.41

VisuAL ANALYTICS APPROACH 130

cus on data analysis instead of implementing source code to isolate
groups with different migration behavior [Spretke et al., 2011].

In this section, we will first discuss the algorithmic techniques which
underlie our visual analytics tool; then, we will relate these to the re-
quirements of our tool. Finally, we will link the requirements to our
visualization design.

Computational Methods

To allow a clustering across different spatial scales (T1), we have ap-
plied a single-linkage agglomerative clustering to aggregate
stopovers. Since gulls have frequent stops along their migration
routes which are heterogeneous in duration and local detours, we
cannot readily apply stopover criteria used in existing algorithms
[Buchin et al.,, 2013c] for segmenting the trajectories. Our algorithm
supports two parameters to facilitate flexible stopover definitions.
These parameters are thresholds on the speed of a point to its succes-
sor within a trajectory, defaulted to 3.5 kTm, and a maximum distance
between two moving entities, defaulted to 500 meters. The distance
threshold determines whether two points from distinct trajectories
are within the same stopover. Our chosen defaults provide sensible
parameters to describe stopover criteria for gulls.

In Figure 6.2, we show the aggregation algorithm that we employed; it
has four phases. The first two phases focus on identifying stopovers
(T3), while phases (3) and (4) exploit spatio-temporal characteristics
of migration (T1, T2). The first three phases are executed sequentially.
After that, phase four is executed for different spatial scales. We will
discuss each phase in more detail in the following.

First, we classify points as idle if the speed of a point with respect to
the previous point of the trajectory of an individual is below the given
threshold. This allows us to distinguish between movement and non-
movement for an individual.

Next, we compute stopovers (T3) by employing Ritter’'s Bounding
Sphere algorithm [Ritter, 1990] onto the idle points and thresholding

VisuAL ANALYTICS APPROACH 131

the distance between two idle points. A stop is the smallest disk con-
taining idle points (Figure 6.2 shows five idle points that together de-
fine a stop). Ritter’s algorithm, with a running time of O(nd) in gen-
eral for n points in d dimensions, is exceptionally efficient with a lin-
ear running time in our case because we compute the sphere in the
plane and n points at a stop. A drawback of this algorithm is that the
obtained disk is approximately 5% larger than the optimal minimum-
radiuscircle. By identifying these stops, we are able torepresent them
as a visual abstraction.

In the third phase, we take the centers of all disks, which represent
stopovers of idle points, and compute a Delaunay triangulation
[de Berg et al.,, 2008] on those centers. Because a Delaunay triangu-
lation maximizes the minimum angle within the triangulation, i.e. it
avoids narrow triangles, it is a suitable means to compute all possible
edges between stopovers.

Finally, to aggregate the stops, we perform a single-linkage cluster-
ing by applying Kruskal's algorithm [Kruskal, 1956] on the Delaunay
triangulation from a fine to a coarse scale (T1), where the distances
between the corresponding stops —disks — serve as edge weights. We
spanan edge uv between the centers of the smallest enclosing balls at
uand v for only the moving entities incident to this edge. We exclude
in this computation those individuals who are not traveling along that
edge uv. This step allows us to construct a summary of the stopovers
that reduces visual clutter across multiple spatial scales.

The density map is dynamically computed on a set of gulls, and al-
lows comparisons between different groups (T4). The computation
of a density map consists of three steps in our approach: first, we in-
terpolate the data linearly for each individual, using a sample reso-
lution of 15 minutes to bypass irregular sample intervals. Then, we
bin the counts for each individual on a grid of all possible locations.
The counts of a cell are the occurrences of all moving entities within
that grid cell. Eventually, we discretize the binned values to five quin-
tiles (see Figure 6.3) and compute the contour lines of the density map.
Such a density map allows users to perceive the distribution and the
spatial extent of the trajectories (T1).

VisuAL ANALYTICS APPROACH 132

Figure 6.3: Color scale for the quintiles in the density map.

Figure 6.4: Activity at night of gull Sanne. The coloring of the individual gull,
Sanne, shows considerable movement at night, in black, during
the migration.

As we are interested in investigating day and night patterns of trajec-
tories (T2), we need to classify subtrajectories as day or nighttime. To
determine whether a data point of a trajectory, given as longitude, lat-
itude, and a time stamp, occurs during day, night, or twilight, we used
the method described in Forsythe et al. [1995]. This method is robust
across the latitude, and the computational error ranges from a max-
imum of one minute near the equator up to two minutes near 60 de-
grees north latitude.

6.4.2 Visualization Techniques

The stopover aggregation (T3) provides an overview of the stopovers
and the segmented trajectories, moving among the stopovers. We
represent each stopover as a disk, of which the radii encode the quan-
tiles on the number of trajectories at the stopover. This encoding al-
lows us to visualize the spatial distribution of the stops within a stop-
over. The selected stopovers have an orange halo, and the number
indicates the sequential ordering of the stopovers from the origin to
the destination (see Figure 6.1). Edges are colored in a light shade of

VisuAL ANALYTICS APPROACH 133

gray per default without any selection. The more moving entities of
the selection travel along an edge, the stronger it will be saturated in
a darker shade of gray. Our encoding enables users to have a visually
salient selection.

To change the spatial layout of the stopover aggregation from coarse-
grained to fine-grained (T1), we allow the user to select an aggrega-
tion level (see phase four in Section 6.4.1) by providing a slider, which
is only visible if no selection has been made. The map type can be
changed to a satellite view (see Figure 6.4) to investigate the vicinity
of the stopover (T3), as it is provided by other state-of-the-art map ser-
vices.

The density map provides an overview of the spatial usage of a set of
moving entities or all of them (T1). We ensure that individual trajecto-
ries that deviate substantially from others are clearly visible by using
an appropriate kernel size. This way, the density map also supports
task T4. As for the stopover aggregation, the map type can be changed
to a satellite view as well (T3).

To investigate the migration strategy of an individual, we provide a
trajectory visualization. The trajectory is drawn on top of the density
map (Figure 6.4). Day, night, and twilight are color-coded in light blue,
black, and purple (T2), respectively. This color-coding allows a user
to see whether a gull travels long or short periods on a particular day
and also how many days the entire journey takes. The text labels on
top of the trajectory show the stopovers of an individual and can be
turned off and on. They indicate the sequence and the direction of
the movement for an individual.

The calendar view is shown when a stopover, a set of gulls, or an in-
dividual gull has been selected (T4). It provides information on the
distribution of stops per day and which gulls stopped on a specific
day (T2). Such temporal information can be encoded in various ways,
suchasatimeline orapunchcard chart. A calendar hasthe advantage
of showing multiple years at the same time. Our tool allows users to
toggle between showing the distribution at the selected stopovers or
at all stopovers. The number of stops are visualized in the same sat-
urated scale of blue as the one used in the stopover aggregation. Se-

6.5

EXPLORATORY ANALYSIS PROCESS 134

lecting a time frame within the calendar helps to exploit temporal pat-
terns (T2), and such a selection is visualized as a contour in the same
shade of orange as the one used for the selection in the stopover ag-
gregation (see Figure 6.6).

After evaluating the metadata of the used dataset [Stienen et al., 2016],
we focused on visualizing only the gulls’ names and gender in addi-
tion to their trajectories because the ancillary data did not provide
any pertinent statistics (categorical or numerical) beyond gender and
name. The gullswithin the selection are sorted alphabetically by their
names of the gulls. Males’ names are colored in blue and females
in red. Subselections of previous selections are supported in various
ways (T4).

Exploratory Analysis Process

Our visual analytics tool provides two ways to explore migration: an-
alyzing migration patterns at the level of stopovers, and investigating
the spatio-temporal characteristics of a single moving entity. Within
the more comprehensive analytical process of exploring stopovers,
we also support the inspection of an individual at any time.

The analysis process for exploring stopovers is the following:

1. Spot interesting stopovers

2. Select a promising stopover

3. Investigate the selected stopover(s)

4. Refine the selected stopover(s)

5. Inspect the individual trajectories of the resulting set

Users start by attaining a general overview of the dataset by zoom-
ing, panning, and inspecting the interconnected maps. By hovering
over interesting stopovers (see Figure 6.5(a)), users gain insight on
the structure and the relevance of the stopovers (step 1).

Next, users select a stopover of their choosing by clicking on it (step 2).
This immediately updates all other views: the density map, the calen-
dar, and the list of gulls.

EXPLORATORY ANALYSIS PROCESS 135

e
B 8 stops,
L | Harry, Jeroen, Marie, Marieke, Michelle, Peter,

Ronny, Sjarel

=IIII (1]
N RS 'S

(a) (b)

Figure 6.5: Hovering over a stopover (a) shows the amount of gulls at that
stopover and their genders as a tooltip. Within the calendar (b),
a tooltip shows the number of stops at this day for the selection
and the names of the gulls stopping at that day.

Subsequently, users explore the nature of the selection (step 3). In the
calendar view, wusers can toggle between showing the
counts of all stopovers or just the selected ones. By hovering a day in
the calendar, a tooltip (Figure 6.5(b)) is shown with the names of the
gulls stopping at that day. Alternatively, the inspection process on a
single gull can help to gain insights here, too (step 5).

The current selection of stopover(s) may be incomplete or inconclu-
sive, so users can refine the selected stopover(s) (step 4). By adding
another stopover to the selection, users define a sequence from an
origin, the first selected stopover, to a destination, the most recently
selected stopover. In the stopover aggregation (2) of Figure 6.1, we
show a stopover sequence from Spain/Portugal to the Netherlands/-
Belgium. A deselection of stopovers is supported, and restricting the
selection to a specific gender is supported too so that users can inves-
tigate gender-specific differences (see Figure 6.7). By using the slider
for the aggregation level, users are able to adjust the granularity of
the stopover aggregation.

Additionally, users can define a time range wherein the sequence of
stopovers must lie (see Figure 6.6). This imposes a temporal restric-
tion in which each individual within the selection must have at least
one sequence of stopovers matching to the selection sequence, a stop-
over at the origin after or during the start date of the time frame, and
a stopover at the destination before or during the end date of the time
frame. On a single stopover selection, the origin and the destination
then coincide.

[t is also possible to define a subgroup manually from the current se-
lected entities.

EVALUATION 136

EEEE NN NN NN NN RN R ,,,I'

Wed
T [| I
Fi [| I
sat[I | I

Figure 6.6: A selected time range from October to November within the
calendar view at a stopover.

The users apply steps 3 and 4 until they are satisfied with their find-
ings. Eventually they discern the individual trajectories from the re-
sult set of moving entities (step 5).

The analytical process to inspect a trajectory of a single moving entity
is defined by selecting the individual first, and then investigating the
movements of the trajectory on top of the density map. The visual
encoding can be altered to exploit geographical characteristics and
stopovers along the trajectory.

6.6 Evaluation

To assess the effectiveness of our visual analytics tool in terms of
strengths and weaknesses, we applied it to a dataset of migrating gulls
over a period of three years and evaluated the visual analytics tool by
interviewing an expert user in a two-hour session.

Our domain expert (one of the co-authors) has a background in ecol-
ogy who has studied bird migration in the past. He had seen a previ-
ous prototype of our approach, but he had not experimented with the
visual analytics tool nor had he studied the dataset we used before-
hand.

We conducted the evaluation with the expert user in three phases.
First, we gave instructions and explanations on the visual design, the
user interaction, the computation of stopovers, and the analytical fea-
tures. This phase took 25 minutes. After that, we dealt with specific
analytical questions on the dataset. We developed a catalog of ana-
lytical tasks, see Table 6.3, that covers different facets of the tool and
links ecological research questions with the requirements for our ap-
proach, see Table 6.1and 6.2in Section 6.3. In the final phase, we asked

6.6.1

EVALUATION 137

about applying our tool on an area of interest and then we asked ques-
tions about the usability of the tool. Those reflections will serve as a
discussion of our approach.

Dataset of Migrating Gulls

Thelesser black-backed gullisaninterestingand challenging species
to analyze since it has a broad diet and can feed on many resources
(both terrestrial and marine), can fly efficiently in many different
weather conditions, and can rest on both land and sea. Consequently,
migration can take place across almost any landscape, and foraging
is possible almost anywhere along its migration route. This species
generally adopts a fly-forage migration strategy which avoids carry-
ing loads and instead switches frequently between flying and feeding
[Klaassen et al., 2011].

We applied our visual analytics tool to a comprehensive dataset col-
lected by Stienen et al. [2016] to investigate our ecological research
questions about the lesser-black backed gull. Stienen et al. [2016] col-
lected almost 2.5 million data points from 101 gulls. This dataset is
unique with respect to other gull datasets since such a large number
of gulls have not been tracked over three years at such a fine scale
resolution thus far. All of the gulls in the dataset have been tracked
for at least ten days, and more than half of the gulls had locations
for more than 100 days. This dataset contains 75 lesser black-backed
gullsaswellas 26 herring gulls. Since the herring gulls stayed at their
breeding site, we have focused on the lesser black-backed gulls in
our study. Their breeding sites were at the Belgian and Dutch coast,
and during autumn the lesser black-backed gulls migrated to south-
ern Spain, Portugal, and northern Africa. Further details about the
dataset and the ecological studies that it supports and are provided in
Stienen et al. [2016].

EVALUATION 138

6.6.2 Expert User Evaluation

All analytical tasks (see Table 6.3) were completed successfully. The

ecologist completed most of the tasks within two to five minutes.
However, task AStook nine minutesin total since thistaskrelied heav-
ily on several inspection processes and the expert user’s having to

contemplate onthe meaning of “interestingmovements during night-
time”.

We discuss the analytical tasks sequentially from top to bottom and

elaborate on the differences in solving similar tasks as well.

To accomplish Al, the expert user first inspected different aggrega-
tion levels (T1) and zoomed in at different levels within the stopover
aggregation visualization. Next, he investigated the whole map by
hovering over several stopovers (E4, T3). Eventually, he identified
the stopover in northern Spain and Portugal as a stopover with many
gulls.

Tasks A3 and A7 are similar tasks to Al, but the expert user did not use
the aggregation slider. For A3, the user browsed over a couple stop-
overs (E4), and spotted three stopovers in Brittany (northern France)
where only female gulls stayed (E2, T4). The expert user instantly
recalled the stopovers from A3 in A7, and started to hover over sev-
eral stopovers (E2, E4) until he found suitable stopovers in Brittany,
England, and other parts of France, where more females than males
stopped. He implicitly assumed there might be stops where there are
more males than females (compare Figure 6.7).

To solve task A2, the user immediately selected the singleton stop-
over in England and noted that there are multiple stopovers in north-
ern Africa (E4). He next used the slider for the aggregation level after
that until there was only one stopover in northern Africa left and se-
lected this one as a destination (E5). Subsequently, the domain expert
inspected the individual trajectories from the selection using this
route (T1, T4).

Task A4 differs from task A2 by adding a temporal constraint (E3, T2)
on an origin-destination selection (E5). The domain expert wanted to

139

EVALUATION

€l ‘cl ‘L1 ¥3 ‘€3 ‘¢3 ulw g ‘9ouel JoA0 ulened uonesdiw ayl aquosag LIV
élejelqio ul Janodols

71 ‘Tl 63 ‘c3a ‘13 ulw g 9y3 e s)IN8 4O 81noJ uoileJgIw 8yl 8qlIosap NoA pjnom moH QLY
¢(ureds)

vl ‘cl G3 ‘c3 ‘13 ulw g plpe suilisia s1ng Jo A3a3eu3s uonpeadiw ayj usaq sey JeYMm 6Y
ipueiduy o3 uleds

11l G3 ‘v3 ulw g uJaymou elajods guipealq syl wods guipesgiw aite sIng yoiym 8y

R ¥3 ‘c3 ulw | *S]1NS 91w UeY] 91BWS} 810W YiIM Janodols e puld LY
éooueld

71 ‘€l ‘LL 93 ulw ¥ UJBYINOS Ul 8uf3seod ayi guole 3uppesgiw aJe s)INg YoIym oy

1 ‘el ‘¢l ‘LL 63 ‘13 ulw 6 ‘awNRYSIu ulNp sjuswaAow ullsalaiul Yiim 1ng B pul4 GY
évloc sunpe
10 pua 113un g0z aunp 3uluuidaq pouad ayl Sulnp puejdul

€l ‘cl ‘LL 63 ‘e3 ulw G'¢ 03 (8dueu4 uiaymiou) Aueng wod} uiresdiw ase sNg YoIym vv

148 ¥3 ‘c3 ulw g 'S1IN8 @1ewa) Ajuo yim Jsaodols & puid eV

71 ‘1l G3 ‘v3 Ulw g ¢Boldy udayiou o3 puejgug wody Suiedgiw ale s)Ins yoiym v

€Ll 3 ulw ¢ *S1IN3 4O 30] ® y3m Janodois e puld LY

suosanQ yoJeas awl]

juswalinbay -ay 1e21801003 uope|dwo)d ysel 1ednAeuy

‘yoeoudde uno Jo sjuswalinbai ay3 pue

suolasanb yoieasal 1e21801008 01 payul] Usa(Q dAeY 8soy| ‘palajduwod Jasn padxa ayl 1eyl sysel jedinfjeuy :g°9 ajqer

EVALUATION 140

PP A
))
5T ok P
- L) ¥
ot . S ' o
"
-
',V'
;
A
/
. ‘;
(a) (b)

Figure 6.7: Density maps for females (a) and males (b) reveal that females
stop more often in Brittany, the most northwestern part of
France, than males and that males tend to take larger detours
during migration along the sea.

use the aggregation slider similarly as in A2 for Brittany, but he did
not find a unique way because, if the clustering is too coarse, there is
no stopover in England, and, if it is too fine, there are many stopovers
in Brittany. The expert user accepted this trade-off and selected a se-
quence from England to the largest stopover in Brittany (T1). Next, he
restricted the time frame within the calendar appropriately (T2), enu-
merated the gulls Harry and Sanne, and expressed that he wanted to
select a region, Brittany as such, because he thought that he other-
wise might miss some birds from other stopovers in Brittany.

In task A8, he again shared the same desire to be able to select by re-
gion after having selected yet another origin-destination pair, over
an intermediate stopover in this case. Thus, a weakness of our ap-

EVALUATION 141

WA
‘ t’ L

. Aug1at

&

2013,
% / o

% 'Apr 04
_?:] /2014
. # P

I RS X AP’”..'Apro:& y
) eﬁ'lt\ 72014 possy

i]
T ;

\) -
” /S 2 I AL
‘ 5 9
D R
;_, ?5'124’

(a) (b)

Figure 6.8: Overview of the movements of gulls (a) Angel and (b) Eric. Both
show considerable movement at night in France, Spain, and Por-
tugal.

proach is that our visual analytics tool does not support a selection
by region.

In task A5, finding a gull with interesting movements during night-
time (E1), the user first investigated the complete list of gulls by hover-
ingover them (T4). He was surprised that he sometimes could not see
long trajectories. After discovering that half of the gulls stayed at the
breeding spot, he wanted to select all of the gulls from all stopovers
excluding the breeding spot (E5, T4) to investigate their night move-
ments outside of the breeding spot since he presumed that those mo-
tions at the breeding spot are probably due to human interference.
He moved further throughthe list of gulls, noting that selecting a stop-
over (T3) might be more effective, but then he found the gull Angel

EVALUATION 142

who had a suitable long trajectory (E1) (see Figure 6.8). Then, he de-
fined “interesting” in this context as distinctively different patterns
in travel duration, speed, or trajectory shape between a series of con-
secutive days and nights (E5).

He assumed implicitly that gulls could float on the sea and be moved
by tidal forces, as known from the literature [Shamoun-Baranes et al,,
2011b; Slingsby and van Loon, 2016]. Therefore, these patterns were
not considered as interesting per se; only when occurring at a differ-
ent rate during day and night.

We classified the locations of a trajectory based on the time stamps
and the corresponding geographical position as twilight, daytime, or
nighttime (see Section 6.4.1), and visualized this on the trajectory. The
visualization tool, therefore, does not provide direct information
about the actual time beyond the day and night time periods for a
given date. In order to compare trajectory lengths between day and
night straightforwardly, the domain expert sought for periods around
the equinox since daytime and nighttime are then almost equally dis-
tributed (based on this the ecologist did, e.g., skip a stopover of Angel
in November since then the nighttime is longer). He, subsequently,
switched to another individual, Eric, and zoomed out to get an over-
view of Eric’s overall movements (E1). After some panning and zoom-
ing, he founditinterestingthat Eric, asmany others, traveledas much
during the day as during the night. He hypothesized that there might
always be light at certain landmarks available to help the gulls navi-
gate.

While Angel’s and Eric’s trajectories (see Figure 6.8) do not show
much difference between the lengths of day/night stretches, there
are enormous differences in the lengths of the tracks between An-
gel and Eric. This poses the question whether Angel was coping with
adverse wind-conditions (during the segment with shorter distances
per day/night) while Eric possibly had strong wind support.

In task A6, the user investigated the coastline of the Atlantic ocean,
and selected the stopover covering this area in southern France. Af-
ter wondering whether he missed some gulls within the selection, he
inspected the list of individual gulls (E6, T4). The domain expert dis-

EVALUATION 143

tinguished between gulls traveling up north at the coastline, Anke,
Sjarel, and Hilbran, southwards, Roxanne and Jasmin (partially), in
both directions, Lea, or not all, Joke and Ian. To investigate the mi-
gration of the gull Marie, a partial coastline migration, he needed to
zoom in and out further to obtain a higher resolution for the text la-
bels of the stopovers. He wondered whether he had covered all of
them, and he hovered and selected other stopovers south of the previ-
ous selection (T3). Eventually, he noticed that those gulls are a subset
of the previously analyzed gulls.

L& h.~. ".l‘f"\
“ 3 & ayApr 16y
o =ad w2015,
<& Aug20 |
& 40 2014
LR &

o
Tt y
Mar 07 _,
R

v

2015

g 2014 30
3
Mar 02
2015 5
7 .
Mar 04
,-/ . z%r15 b
- Py
o . U
A s 1 Nov23
b “‘ i - = B9 g
\‘ 8 - o
Jan17 Feb 27
2015
2015 S
(@) (b)

Figure 6.9: Trajectory visualization for (a) gull Annelies, who is migrating in
a clockwise two-way migration, and (b) gull Ella, who visits Eng-
land before migrating south (anticlockwise).

Tasks A9 and A10 dealt with migration strategies at specific locations
(E1), Madrid, and Gibraltar. To obtain a more detailed aggregation,
the domain expert first used the slider in task A9. Then, he noted
movements within the density map of Madrid, and selected the stop-
over at Madrid. He enumerated Joke, Lea, and Michelle, and noticed

EVALUATION 144

that only females visited the stopover (E2, T4). The expert user then
defined a migration strategy for a group or an individual by identify-
ing the most southern stopover during their/its migration (E5). By
inspecting the individual trajectories, he traced that Madrid was the
most southern stopover for Joke during the migration. Lea, in con-
trast, visited a stopover south of Madrid, and traveled a week later
than Joke had. The ecologist noticed instantly that Michelle, who had
been recorded for two years and pursued different migration strate-
gies. At the stopover in Gibraltar (A10), the expert user switched often
between Annelies’ and Ella’s trajectories, the two gulls who stopped
in Gibraltar, since he was interested whether both were visiting Eng-
land (E5). He summarized that Annelies migrates in a clockwise two-
way migration (E1), and Ella who migrates a year later than Annelies,
visits England before migrating south (in an anticlockwise two-way
migration) (see Figure 6.9). The ecologist used date information with-
in the green stopover of an individual trajectory (T2) to accomplish
this. He remarked that both pursued a coastline migration, and he as-
sumed that gulls learn to shortcut during migration through experi-
encesbased onlearnedlandmarksandresources from previous visits
at the coastline. In ecology, it is commonly believed that bird species
gain a better navigation capacity over the years through past learning
experiences. Therefore, older birds are assumed to have better navi-
gation abilities.

The final analytical task A1l of describing the migration pattern over
France wasdriven by the user’s interest in whether a stopover isused
during a spring or autumn migration. He reflected first on the mean-
ing of a migration pattern and defined it as how many stops the gulls
take (E2) and at what times they stop (E3, T3). To accomplish this task,
he selected the largest stopover in Brittany and analyzed the temporal
distribution of the selection (T2) in the calendar view by toggling be-
tween showing the distribution at all stopovers or at this selected one.
After investigating some other stopovers (E4), the domain expert con-
cluded that the majority of stopovers in France is used during spring
migration, including the large stopover in Brittany, and seldom dur-
ing autumn migration. He found this fact interesting because he had
previously assumed that the gulls would use the same stopovers in

EVALUATION 145

[mEmE

() (b)

Figure 6.10: Stopovers in the calendar view for all gulls visiting England (a)
at the stopover in England and (b) at all stopovers.

both directions.

6.6.3 Reflections

After the task-oriented questions, we asked the expert user to apply
the visual analytics tool to an area in which he isinterested. He chose
the stopover in England because he wanted to know whether the vis-
its to England were before, during, or after the breeding season (E2).
He zoomed in on the area around England and analyzed the move-
ments within the density map (E1). By using the aggregation slider,
he obtained the finest resolution of the clustering. Next, by toggling
between the temporal distribution at all stopovers and at the selected
stopover, it became clear that the gulls visited England after breed-
ing (E2), as shown in Figure 6.10. The ecologist was surprised that
the gulls had visited England mainly in 2014. He hypothesized that
this fact might be weather-related and/or dependent on wind condi-
tions (E5). Using a temporal restriction from mid-July to September,
he found that the gulls Harry, Jules, and Sanne were regular visitors
to England. He was surprised that these gulls had visited England that
early (E3). The ecologist was also interested in investigating the differ-
ences among the entities (E6) during two time range selections. He
used the tooltips in the calendar view heavily to perform this compar-
ison.

Afterwards, we asked the ecologist to elaborate upon his reasoning
behind the selections. Regarding origin-destination selections, he
would not select more than three stopovers at the same time. He

EVALUATION 146

would like to be able to select by region only at a very aggregate level.
In particular, a gridded map to select areas of interest, such as cities
or agriculturalregions, would be beneficial to the expert user. Thisin-
dicates that a hierarchical clustering, as we employed it, is crucial to
aggregating stopovers dynamically on different spatial scales.

The time restriction within the calendar view has been used by the
expert user to isolate yearly cycles, and this feature enabled him to
identity pre-, post-, and peribreeding visits in this way.

Then, we asked him to outline his workflow after finding something
of interest in our tool, and to contemplate on the purpose of our ap-
proach. The expert user saw our approach as “a visual data query-
ing tool” to generate subsets of the dataset. He would select individ-
uals showing a certain behavior, and look at their space-time usage
after finding something of interest. Subsequently, he would continue
his research by computing some metrics, correlations, and statistics
on the selected individuals in R to test a hypothesis on these groups.
This confirms that our approach helps ecologists to visually and inter-
actively explore and identify migration patterns before they proceed
with non-visual analytical tasks.

By exploiting spatio-temporal relations between stopover sites, show-
ing characteristics of a particular stopover, and visualizing
spatio-temporal properties of an individual’s trajectory in our tool, we
enhance such analytical tasks for ecologists from manually extrac-
tion through custom prototyping — which would consume several
hours-toavisualuser interaction that takesa couple of minutes. Fur-
thermore, ecologists can identify individuals who share a certain mi-
gration strategy, and they also infer migration routes of individuals
[Shamoun-Baranes et al,, 2017] at a selected stopover site. Hence, our
approach enables ecologists to visualize movement datasets with
many movement tracks as well as individuals in the trajectory aggre-
gation and thus speeds up the inspection process of discovering inter-
esting stopover sites, individuals, or tracks drastically.

6.7

CONCLUSIONS 147

Conclusions

This study presents a novel approach to visually explore migratory
trajectory data. We computed anaggregation of stopovers fromthose
trajectoriesalongwith the movements between them in different spa-
tial scales, and visualized it interactively together with a density map
and a calendar view. To investigate the tracks interactively, we enable
users to select stopovers, and to add restrictions on spatio-temporal
properties of the selection. By applying our approach to a dataset of 75
migrating Lesser Black-backed Gulls and by evaluating our approach
with an expert user, we validated our visual analytics tool.

Our findings show that this exploratory visual analytics tool supports
ecologists to investigate research questions on migration interactive-
ly. Our tool especially enhances the identification of (groups of) indi-
viduals exhibiting similar spatio-temporal migratory behavior, and it,
additionally, facilitates the discovery of stopover sites with environ-
mentally conditions which stand out.

Since we used a single criterion for all stopover sites and individu-
als in our clustering, we think it is worthwhile to investigate varying
rules per individual and per region. This would enhance the flexibil-
ity in the stopover aggregation.

As part of future work, we plan to integrate environmental data, such
as information on land use, weather conditions (primarily wind), sea
currents and daylight, to facilitate the spatial exploration in the con-
text of relevant variables.

7

Conclusion

The miniaturization of tracking devices, an increase in their accuracy,
and cheaper production costs of those sensors have led to a rise in
collections of movement data. The development of new analytical
tooling has not kept pace with these ongoing trends of tracking move-
ment.

Understanding the drivers behind movement is the ultimate goal for
movement analysts. Many researchers from various fields contrib-
uted to computational movement analysis through interdisciplinary
collaborations to analyze movement by automated means [Demsar
etal, 2015].

The contributionsof thisthesisareinline with those interdisciplinary
advances. We first elaborated on the methodological gap between
algorithms and visualization in the analysis of movement. Then, we
explored how the interplay between geometric algorithms and visual
analytics can be enhanced in the analysis. By combining algorithms
and visualizations into integrated approaches, as in our visual analyt-
ics tools, we showed that algorithms and visualization complement
each other in the analysis of movement.

7.

CONTRIBUTIONS 149

Contributions

We revisit thisthesis’'s contributionsin this section. We state for each
chapter open problems and future work.

In Chapter 2, we gave an overview of existing approaches in computa-
tional movement analysis as well as in the visualization of trajectory
data. Our typology helps researchers to become aware of technolo-
gies and methods outside of their specialization to create new inno-
vative tools and by that closing the semantic gap between trajectory
data and concepts on movement that an analysts wants to investigate
[Laube, 2015].

Our second contribution, described in Chapter 3, concerns theoret-
ical results on the computational complexity of trajectory analysis.
Assuming the Strong Exponential Time Hypothesis, we proved two
lower bounds: that a simplification cannot be computed in subqua-
dratic time for polygonal curves with n points that lie in Q(logn) di-
mensions; and that we cannot compute the Fréchet distance for k
curves, each with n points, in O(n%—¢) time for any € > 0. In our sur-
vey of computational problems on movement data, we stated known
lower and upper bounds. It is worth to note that there are no lower
bounds known to us for dynamic time warping and the Edit distance
with k curves. Furthermore, it would be interesting to investigate
whether a simplification can be computed in subquadratic time for
fixed dimensions, such as R2, which has both practical and theoreti-
cal ramifications.

Then, we studied a novel formulation of the simplification problem
in Chapter 4: progressive simplification, which is a series of simplifi-
cations that are consistent across different scales. A progressive sim-
plification makes it possible to zoom in and zoom out of an interactive
map without unnecessary flicker. We proposed the first algorithm to
compute a minimum-complexity simplification progressively which
runs in O(n3m) time for m scales and an input curve with n points. For
continuous scales, our algorithm runs in O(n>) time. Our second con-
tribution in Chapter 4 is a new representation of shortcut graphs that

CONTRIBUTIONS 150

appliestoany simplification algorithm using shortcuts. We proposed
an algorithm to compute the error for all shortcuts in O(n? log n) time,
which is an improvement over O(n3) time, and we devised a
compressed shortcut graph that, under reasonable assumptions, al-
lows finding a shortest path in O(nlog n) time. It would be interesting
to apply these representations in a non-progressive setting and fur-
ther evaluate them experimentally. Moreover, it is beneficial to in-
vestigate a lower bound to this type of simplification and to explore
whether a more efficient algorithm can be devised.

In Chapter 5, we presented a visual analytics tool for exploring inter-
action events between two (or three) trajectories. By computing an
alignment, we identify delayed responses which we used to visualize
action-reaction patterns. In our delay space visualization, we were
limited to two trajectories because we use each trajectory on one axis.
Thus, we need novel visualization techniques that work for multiple
trajectories. Even visualizing a matching among multiple trajectories
is a challenging task because an ‘edge’ is spanned among multiple
individuals. Furthermore, it remains a challenging task to compute
such alignments among k individuals in O(nk—¢) time for any ¢ since
we expect that most of the commonly used alignment methods have
such a lower bound. Developing new approximation schemes for
alignments among k individuals would be of interest from an algo-
rithmic perspective and fruitful for applications that analyze interac-
tion in large groups of trajectories. Visualizing the resulting align-
ments among many individuals continues to be a challenging prob-
lem.

Our final contribution of this thesis (see Chapter 6) is an exploratory
visual analytics approach to investigate migration patterns of animal
tracking data interactively. We have seen that segmenting, cluster-
ing, and aggregating trajectory data help eliminating visual clutter
and that such aggregations can serve as a beneficial means for analyz-
ing migration routes interactively. Our qualitative evaluation, by ap-
plying our approach to a dataset of 75 migratory lesser black-backed
gulls and by consulting an expert user, suggests that our visual ana-
lytics tool empowers ecologists to be able to focus on visual data ex-
ploration instead of laborious non-visual prototyping. As we stated

7.2

LOOKING FORWARD 151

in Chapter 6, it is beneficial to integrate environmental data so that
users can explore the proximity of migration routes. Moreover, it
would be interesting to aggregate stopovers with more flexibility to
tailor our aggregation to specific spatio-temporal properties and to
visualize such stopovers for instances as regions. To date, clustering
algorithms for movement data use mostly spatio-temporal properties
to aggregate subtrajectories. This presents an opportunity to investi-
gate how integrating environmental data into the clustering compu-
tation can improve the clustering results.

Looking Forward

We now reflect on how our contributions may influence the analysis
of movement data as a whole and what themes are beyond the scope
of this thesis.

In the context of this thesis, we focused on trajectory data in the plane.
Researchers increasingly collect data from multiple sensors, in ad-
dition to location-based trajectory data, to integrate context and to
describe the underlying cues of the movement more precisely. The
computational approaches of this thesis can be extended and applied
to multidimensional trajectories by adapting the corresponding sim-
ilarity measures. Visualizing such multidimensional datasets is chal-
lenging because it considerably widens the design space for present-
ing and exploiting the relationships between multidimensional sen-
sor data. For instance, linking and brushing of two-dimensional views
that exploit the causal links between attributes of sensor data might
be of help. Another possibility would be to investigate how three-di-
mensional visualizations can be used in a meaningful way since there
are trade-offs in visualizing data in three dimensions versus two di-
mensions [Munzner, 2014]. Designing and exploring such visualiza-
tions, however, lay beyond the scope of this thesis.

For movement analysis, we have seen that “the whole is greater than
the sum of its parts”. Enhancing the interplay between algorithms
and visualization allows analysts to interpret their datasets as

LOOKING FORWARD 152

integrated approaches. Visualizations are essential to understand
how an algorithm works on datasets. Given a dataset, an algorithm
is necessary to transform and to visualize data. A knowledge gap and
an interest gap usually exist between a visualization researcher and
another (computer) scientist according to van Wijk [2006]. Typically,
knowing only the basics of the other field(s) is not enough to advance
or contribute to the other area. Thus, to evolve computational meth-
ods for movement analysis holistically, we need to foster intradisci-
plinary advances, as in this thesis. Furthermore, intra- and interdis-
ciplinary advances are essential in closing the semantic gap between
the low-level tracking data and the high-level concepts that analysts
‘speak’ and understand [Laube, 2015]. This thesis fosters such intra-
disciplinary advances, and the contributions we made here demon-
strate the benefits of doing so.

We have seenin thisthesisthat disciplines benefit from the exchange
of concepts and ideas between them. Enriching knowledge among
disciplinesallowsresearcherstoinvestigate awiderrange ofresearch
questions and to ask more diverse research questions on the causal
links between an individual, its movement path, its drivers, and its
proximity. Therefore, it is interesting to ask how common knowledge
of movement analysis can be defined and taught among multiple dis-
ciplines. For instance, in recent years, it has become popular to teach
computational and programming basics to non-computer scientists
as “software carpentry”. Another example is the concept of literacy;
for instance, visualization literacy assesses the abilities of a person
to read and understand visualizations [Boy et al., 2014]. These are ex-
amples of teaching methodologies to scientists in other fields, which
may help to foster and educate common knowledge among multiple
disciplines. But this exchange of knowledge needs to also go from
applications to computer science. This thesis is a stepping stone to
move computer science and its applications in the analysis of move-
ment closer to each other.

References

Abboud, A., Backurs, A., and Williams, V. V. (2015). Tight hardness re-
sults for LCS and other sequence similarity measures. In Proceed-
ings of the IEEE 56th Annual Symposium on Foundations of Com-
puter Science (FOCS 2015), pages 59-78.

Agarwal, P K., Avraham, R. B,, Kaplan, H., and Sharir, M. (2014). Com-
puting the discrete Fréchet distance in subquadratic time. SIAM
Journal on Computing, 43(2):429-449.

Agarwal, P K., Har-Peled, S, Mustafa, N. H,, and Wang, Y. (2005).
Near-linear time approximation algorithms for curve simplifica-
tion. Algorithmica, 42(3-4):203-219.

Agarwal, P K. and Varadarajan, K. R. (2000). Efficient algorithms for
approximating polygonal chains. Discrete and Computational Ge-
ometry, 23(2):273-291.

Al-Naymat, G., Chawla, S., and Taheri, J. (2009). SparseDTW: A novel
approach to speed up dynamic time warping. In Proceedings of
the 8th Australasian Data Mining Conference (AusDM 2009), vol-
ume 101, pages 117-127. Australian Computer Society, Inc.

Alerstam, T. (2011). Optimal bird migration revisited. Journal of Or-
nithology, 152(1):5-23.

Alerstam, T. and Lindstrém, A. (1990). Optimal bird migration: the
relative importance of time, energy, and safety. In Bird Migration,
pages 331-351. Springer-Verlag, Berlin, Germany.

Alewijnse, S., Buchin, K., Buchin, M., Kolzsch, A., Kruckenberg, H.,
and Westenberg, M. A. (2014). A framework for trajectory segmen-
tation by stable criteria. In Proceedings of the 22nd ACM SIGSPA-
TIAL International Symposium on Advances in Geographic Infor-
mation Systems (ACM GIS 2014), pages 351-360. ACM.

REFERENCES 154

Alewijnse, S. P A., Buchin, K., Buchin, M,, Sijben, S., and Westenberg,
M. A. (2017). Model-based segmentation and classification of trajec-
tories. Algorithmica.

Alt, H. and Godau, M. (1995). Computing the Fréchet distance be-
tween two polygonal curves. Computational Geometry: Theory
and Applications, 5(1-2):78-99.

Andersson, M., Gudmundsson, J., Laube, P, and Wolle, T. (2008). Re-
porting leaders and followers among trajectories of moving point
objects. GeoInformatica, 12(4):497-528.

Andrienko, G., Andrienko, N., Bak, P, Keim, D., Kisilevich, S., and
Wrobel, S. (2011). A conceptual framework and taxonomy of tech-

niques for analyzing movement. Journal of Visual Languages &
Computing, 22(3):213-232.

Andrienko, G., Andrienko, N., Fuchs, G., and Garcia, J. M. C. (2018).
Clustering trajectories by relevant parts for air traffic analysis.

IEEE Transactions on Visualization and Computer Graphics,
24(1):34-44.

Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D.,
and Giannotti, F. (2009). Interactive visual clustering of large col-
lections of trajectories. In Proceedings of the IEEE Symposium on
Visual Analytics Science and Technology (VAST 2009), pages 3-10.
[EEE.

Andrienko, G., Andrienko, N., and Wrobel, S. (2007). Visual analytics
tools for analysis of movement data. ACM SIGKDD Explorations
Newsletter, 9(2):38-46.

Andrienko, N. and Andrienko, G. (2011). Spatial generalization and
aggregation of massive movement data. I[EEE Transactions on Vi-
sualization and Computer Graphics, 17(2):205-219.

Andrienko, N. and Andrienko, G. (2013). Visual analytics of move-
ment: An overview of methods, tools and procedures. Information
Visualization, 12(1):3-24.

Andrienko, N. Andrienko, G., Barrett, L., Dostie, M., and Henzi,
P (2013). Space transformation for understanding group move-

REFERENCES 155

ment. IEEE Transactions on Visualization and Computer Graph-
ics, 19(12):2169-2178.

Ankerst, M., Breunig, M. M., Kriegel, H.-P, and Sander, J. (1999). OP-
TICS: ordering points to identify the clustering structure. In Pro-
ceedings of the 1999 ACM SIGMOD International Conference on
Management of Data (SIGMOD 1999), volume 28, pages 49-60.

Aronov, B, Driemel, A. van Kreveld, M., Loffler, M. and Staals,
F (2016). Segmentation of trajectories on nonmonotone criteria.
ACM Transactions on Algorithms, 12(2):26.

Bach, B, Dragicevic, P, Archambault, D., Hurter, C., and Carpendale, S.
(2014). Areview of temporal data visualizations based on space-time
cube operations. In Proceedings of the Eurographics Conference
on Visualization.

Barequet, G., Chen, D. Z,, Daescu, O., Goodrich, M. T,, and Snoeyink,
J. (2002). Efficiently approximating polygonal paths in three and
higher dimensions. Algorithmica, 33(2):150-167.

Ben-Or, M. (1983). Lower bounds for algebraic computation trees. In
Proceedings of the 15th ACM Symposium on Theory of Computing
(STOC 1983), pages 80-86. ACM.

Benkert, M., Djordjevic, B.,, Gudmundsson,], and Wolle, T. (2010).
Finding popular places. International Journal of Computational
Geometry and Applications, 20(01):19-42.

de Berg, M. Cheong, O. van Kreveld, M., and Overmars, M.
(2008). Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, Germany.

de Berg, M. and Cook, A. F. (2011). Go with the flow: The direction-
based Fréchet distance of polygonal curves. In Theory and Prac-
tice of Algorithms in (Computer) Systems, pages 81-91. Springer-
Verlag, Berlin, Germany.

de Berg, M. and Mehrabi, A. D. (2016). Straight-path queries in trajec-
tory data. Journal of Discrete Algorithms, 36:27-38.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to
find patterns in time series. In Proceedings of the Workshop on

REFERENCES 156

Knowledge Discovery in Databases (KDD 1994), volume 10, pages
359-370.

Berthold, P. (2001). Bird Migration: A General Survey. Ornithology
series. Oxford University Press, Oxford, United Kingdom.

Beyer, H. L., Morales,]J. M., Murray, D., and Fortin, M.-]. (2013). The
effectiveness of bayesian state-space models for estimating be-

havioural states from movement paths. Methods in Ecology and
Evolution, 4(5):433-441.

Bishop, C. M. (2007). Pattern recognition and machine learning.
Springer-Verlag, Berlin, Germany.

Boy, ., Rensink, R. A,, Bertini, E., and Fekete, J.-D. (2014). A principled
way of assessing visualization literacy. I[EEE Transactions on Visu-
alization and Computer Graphics, 20(12):1963-1972.

Brakatsoulas, S., Pfoser, D., Salas, R., and Wenk, C. (2005). On map-
matching vehicle tracking data. In Proceedings of the 3Ist Interna-
tional Conference on Very Large Data Bases (VLDB 2005), pages
853-864. VLDB Endowment.

Brehmer, M. and Munzner, T. (2013). A multi-level typology of ab-
stract visualization tasks. I[EEE Transactions on Visualization and
Computer Graphics, 19(12):2376-2385.

Brigham, E. O. (1988). The Fast Fourier Transform and its applica-
tions. Prentice Hall, Upper Saddle River (NJ), United States of Amer-
ica.

Bringmann, K. (2014). Why walking the dog takes time: Fréchet dis-
tance hasno strongly subquadratic algorithmsunless SETH fails. In
Proceedings of the IEEE 55th Annual Symposium on Foundations
of Computer Science (FOCS 2014), pages 661-670.

Bringmann, K. and Kiinnemann, M. (2015). Quadratic conditional
lower bounds for string problems and dynamic time warping. In
Proceedings of the IEEE 56th Annual Symposium on Foundations
of Computer Science (FOCS 2015), pages 79-97.

Bringmann, K. and Mulzer, W. (2016). Approximability of the discrete
Fréchet distance. Journal of Computational Geometry, 7(2):46-76.

REFERENCES 157

Buchin, K., Buchin, M., and Gudmundsson, J. (2008). Detecting single
file movement. In Proceedings of the 16th ACM SIGSPATIAL In-
ternational Symposium on Advances in Geographic Information
Systems (ACM GIS 2008), pages 288-297. ACM.

Buchin, K., Buchin, M., and Gudmundsson, J. (2010). Constrained free
space diagrams: a tool for trajectory analysis. International Jour-
nal of Geographic Information Science, 24(7):1101-1125.

Buchin, K., Buchin, M., Gudmundsson,], Horton, M., and Sijben, S.
(2016). Compact flow diagrams for state sequences. In Proceed-
ings of the 15th International Symposium on Experimental Al-
gorithms (SEA 2016), pages 89-104. Springer-Verlag, Berlin, Ger-
many.

Buchin, K., Buchin, M., Gudmundsson, J., Loéffler, M., and Luo, J. (2011).
Detecting commuting patterns by clustering subtrajectories. Inter-

national Journal of Computational Geometry and Applications,
21(3):253-282.

Buchin, K., Buchin, M., Knauer, C., Rote, G., and Wenk, C. (2007).
How difficult is it to walk the dog. In Proceedings of the 23rd Eu-
ropean Workshop on Computational Geometry (EuroCG 2007),
pages 170-173.

Buchin, K., Buchin, M., van Kreveld, M., Loffler, M., Silveira, R. 1., and
Wenk, C. (2013a). Median trajectories. Algorithmica, 66(3):595-
614.

Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., and Staals,
F (2013b). Trajectory grouping structure. In Proceedings of the
13th Symposium on Algorithms and Data Structures (WADS 2013),
pages 219-230. Springer-Verlag, Berlin, Germany.

Buchin, K,, Buchin, M., Meulemans, W., and Mulzer, W. (2014). Four
Soviets walk the dog - with an application to Alt’s conjecture. In Pro-
ceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 1399-1413.

Buchin, K., Buchin, M., Meulemans, W., and Speckmann, B. (2012).
Locally correct Fréchet matchings. In Proceedings of the 20th

REFERENCES 158

European Symposium on Algorithms (ESA 2012), pages 229-240.
Springer-Verlag, Berlin, Germany.

Buchin, K,, Sijben, S., van Loon, E. E, Sapir, N., Mercier, S., Arseneau,
T.]J. M., and Willems, E. P. (2015). Deriving movement properties and
the effect of the environment from the brownian bridge movement
model in monkeys and birds. Movement Ecology, 3(1):18.

Buchin, M., Kruckenberg, H., and Kélzsch, A. (2013c). Segmenting tra-
jectories by movement states. In Advances in Spatial Data Han-
dling: Geospatial Dynamics, Geosimulation and Exploratory Vi-
sualization, pages 15-25. Springer-Verlag, Berlin, Germany.

Cao, H., Mamoulis, N., and Cheung, D. W. (2007). Discovery of peri-
odic patterns in spatiotemporal sequences. IEEE Transactions on
Knowledge and Data Engineering, 19(4):453-467.

Cao, H., Wolfson, O., and Trajcevski, G. (2006). Spatio-temporal data
reduction with deterministic error bounds. The VLDB Journal -
The International Journal on Very Large Data Bases, 15(3):211-228.

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings
in information visualization: using vision to think. Morgan Kauf-
mann, Burlington (MA), United States of America.

Chan, W. S. and Chin, F. (1996). Approximation of polygonal curves
with minimum number of line segments or minimum error. Inter-
national Journal of Computational Geometry and Applications,
6(01):59-77.

Chen, L., Ozsu, M. T, and Oria, V. (2005). Robust and fast similar-
ity search for moving object trajectories. In Proceedings of the
2005 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2005), pages 491-502. ACM.

Cook, K. A. and Thomas, J. J. (2005). Illuminating the path: The re-
search and development agenda for visual analytics. IEEE Com-
puter Society, Los Alamitos, CA, United States of America.

Cormen, T. H,, Leiserson, C. E,, Rivest, R. L., and Stein, C. (2009). Intro-
duction to algorithms. MIT Press, Cambridge, MA, United States of
America.

REFERENCES 159

Daneshpajouh, S., Ghodsi, M., and Zarei, A. (2012). Computing polyg-
onal path simplification under area measures. Graphical Models,
74(5):283-289.

Deméar, U, Buchin, K., Cagnacci, F, Safi, K., Speckmann, B., Van de
Weghe, N., Weiskopf, D., and Weibel, R. (2015). Analysis and visual-
isation of movement: an interdisciplinary review. Movement Ecol-
ogy, 3(1):5.

Dingle, H. (2014). Migration: the biology of life on the move. Oxford
University Press, Oxford, United Kingdom.

Dinkla, K., El-Kebir, M., Bucur, C.-1,, Siderius, M., Smit, M.], Westen-
berg, M. A,, and Klau, G. W. (2014). eXamine: Exploring annotated
modules in networks. BMC Bioinformatics, 15(1):201.

Dodge, S., Weibel, R., Ahearn, S. C,, Buchin, M., and Miller, J. A. (2016).
Analysis of movement data. International Journal of Geographic
Information Science, 30(5):825 - 834.

Dodge, S., Weibel, R., and Lautenschiitz, A.-K. (2008). Towards a taxon-
omy of movement patterns. Information Visualization, 7(3-4):240-
252.

Doncaster, C. P (1990). Non-parametric estimates of interaction from
radio-tracking data. Journal of Theoretical Biology, 143(4):431-443.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduc-
tion of the number of points required to represent a digitized line or
its caricature. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, 10(2):112-122.

Driemel, A., Har-Peled, S, and Wenk, C. (2012). Approximating the
fréchet distance for realistic curves in near linear time. Discrete
and Computational Geometry, 48(1):94-127.

Dumitrescu, A. and Rote, G. (2004). On the Fréchet distance of a set of
curves. In Proceedings of the 16th Canadian Conference on Com-
putational Geometry (CCCG 2004), pages 162-165.

Eiter, T. and Mannila, H. (1994). Computing discrete Fréchet distance.
Technical Report CD-TR 94/64, Technical University of Vienna.

REFERENCES 160

Ester, M., Kriegel, H.-P, Sander,], Xu, X,, et al. (1996). A density-based
algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of the Workshop on Knowledge Discovery
in Databases (KDD 1996), volume 96, pages 226-231.

Forsythe, W. C., Rykiel, E.], Stahl, R. S.,, Wu, H.-i,, and Schoolfield,
R. M. (1995). A model comparison for daylength as a function of lat-
itude and day of year. Ecological Modelling, 80(1):87-95.

Fredman, M. L., Sedgewick, R., Sleator, D. D., and Tarjan, R. E. (1986).
The pairing heap: A new form of self-adjusting heap. Algorithmica,
1(1):111-129.

Gaffney, S. and Smyth, P (1999). Trajectory clustering with mixtures
of regression models. In Proceedings of the 5th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing (KDD 1999), pages 63-72.

Gajentaan, A. and Overmars, M. H. (1995). On a class of O(n?) prob-
lems in computational geometry. Computational Geometry: The-
ory and Applications, 5(3):165-185.

Giuggioli, L., McKetterick, T.]J., and Holderied, M. (2015). Delayed re-
sponse and biosonar perception explain movement coordination in
trawling bats. PLOS Computational Biology, 11(3):1-21.

van Goethem, A, van Kreveld, M., Loffler, M., Speckmann, B., and
Staals, F. (2016). Grouping time-varying data for interactive explo-
ration. arXiv preprint arXiv:1603.06252.

Gold, O. and Sharir, M. (2016). Dynamic time warping and geomet-
ric edit distance: Breaking the quadratic barrier. arXiv preprint
arXiv:1607.05994.

Goodman, J. E,, O'Rourke, J., and Toth, C. D. (2017). Handbook of dis-
crete and computational geometry. CRC Press, Boca Raton (FL),
United States of America.

Greenfeld, J. S. (2002). Matching gps observations to locations on
a digital map. In 81th Annual Meeting of the Transportation Re-
search Board, volume 1, pages 164-173.

Gudmundsson,], Katajainen, J., Merrick, D., Ong, C., and Wolle, T.

REFERENCES 161

(2009). Compressing spatio-temporal trajectories. Computational
Geometry: Theory and Applications, 42(9):825-841.

Gudmundsson, J., van Kreveld, M., and Staals, F. (2013). Algorithms
for hotspot computation on trajectory data. In Proceedings of the
21st ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems (ACM GIS 2013), pages 134-143.

Gudmundsson, J.and Valladares, N. (2015). A GPU approach to subtra-
jectory clustering using the Fréchet distance. IEEE Transactions
on Parallel and Distributed Systems, 26(4):924-937.

Gurarie, E., Bracis, C., Delgado, M., Meckley, T. D., Kojola, 1., and Wag-
ner, C. M. (2016). What is the animal doing? Tools for exploring be-

havioural structure in animal movements. Journal of Animal Ecol-
ogy, 85(1):69-84.

Hagerstraand, T. (1970). What about people in regional science? In
Papers in Regional Science Association, volume 24, pages 6-21.
Springer-Verlag, Berlin, Germany.

Hamming, R. (1987). Numerical methods for scientists and engi-
neers. Dover Publications, Mineola (NY), United States of America.

Hausdorff, F. (1914). Grundziige der Mengenlehre. Verlag Von Veit &
Comp., Leipzig, Germany.

Hedenstrom, A. (1993). Migration by soaring or flapping flight in
birds: the relative importance of energy cost and speed. Philosoph-
ical Transactions of the Royal Society of London B: Biological Sci-
ences, 342(1302):353-361.

Hershberger, . and Snoeyink, J. (1994). An O(nlog n) implementation
of the douglas-peucker algorithm for line simplification. In Pro-
ceedings of the 10th Annual Symposium on Computational Geom-
etry (SoCG 1994), pages 383-384. ACM.

Hershberger, J. and Snoeyink, J. (1998). Cartographic line simplifica-
tion and polygon CSG formulae in O(nlog* n) time. Computational
Geometry: Theory and Applications, 11(3-4):175-185.

Imai, H. and Iri, M. (1986). Computational-geometric methods for

REFERENCES 162

polygonal approximations of a curve. Computer Vision, Graphics,
and Image Processing, 36(1):31-41.

Imai, H. and Iri, M. (1988). Polygonal approximations of a curve -
formulations and algorithms. In Toussaint, G. T, editor, Computa-
tional Morphology, pages 71-86. Elsevier, Oxford, United Kingdom.

Kareiva, P and Shigesada, N. (1983). Analyzing insect movement as a
correlated random walk. Oecologia, 56(2-3):234-238.

Kays, R., Crofoot, M. C,, Jetz, W., and Wikelski, M. (2015). Ter-
restrial animal tracking as an eye on life and planet. Science,
348(6240):aaa2478.

Keim, D. A.,, Kohlhammer,], Ellis, G., and Mansmann, F. (2010a). Mas-
tering the information age solving problems with visual analytics.
Eurographics Association.

Keim, D. A, Mansmann, F, and Thomas, J. (2010b). Visual analytics:
how much visualization and how much analytics? ACM SIGKDD
Explorations Newsletter, 11(2):5-8.

Klaassen, R. H,, Ens, B.], Shamoun-Baranes, J., Exo, K.-M., and Bair-
lein, F. (2011). Migration strategy of a flight generalist, the lesser
black-backed gull larus fuscus. Behavioral Ecology, 23(1):58-68.

Kolzsch, A., Slingsby, A., Wood, J.,, Nolet, B, and Dykes, J. (2013). Visu-
alisation design for representing bird migration tracks in time and
space. In Short Papers of the Workshop on Visualisation in Envi-
ronmental Sciences (EnvirVis 2013).

Kostitsyna, I., van Kreveld, M., Loffler, M., Speckmann, B., and Staals,
F (2015). Trajectory grouping structure under geodesic distance.
In Proceedings of the 31st Annual Symposium on Computational
Geometry (SoCG 2015), volume 34, pages 674-688.

van Kreveld, M.], Loffler, M., and Staals, F. (2015). Central trajectories.
arXiv preprint arXiv:1501.01822.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and
the traveling salesman problem. In Proceedings of the American
Mathematical Society, volume 7, pages 48-50.

REFERENCES 163

Kurzhals, K. and Weiskopf, D. (2013). Space-time visual analytics of
eye-tracking data for dynamic stimuli. JEEE Transactions on Visu-
alization and Computer Graphics, 19(12):2129-2138.

Lam, H., Tory, M., and Munazner, T. (2018). Bridging from goals to tasks
with design study analysis reports. IEEE Transactions on Visual-
ization and Computer Graphics, 24(1):435-445.

Laube, P (2014). Computational movement analysis. Springer-
Verlag, Berlin, Germany.

Laube, P (2015). The low hanging fruit is gone: achievements and
challenges of computational movement analysis. SIGSPATIAL Spe-
cial, 7(1):3-10.

Laube, P, Dennis, T, Forer, P, and Walker, M. (2007). Movement be-
yond the snapshot — dynamic analysis of geospatial lifelines. Com-
puters, Environment and Urban Systems, 31(5):481-501.

Laube, P and Purves, R. S. (2011). How fast is a cow? cross-scale anal-
ysis of movement data. Transactions in GIS, 15(3):401-418.

Lavielle, M. (1999). Detection of multiple changes in a sequence of
dependent variables. Stochastic Processes and their Applications,
83(1):79-102.

Le Corre, M., Dussault, C.,, and Cété, S. D. (2014). Detecting changes
in the annual movements of terrestrial migratory species: using
the first-passage time to document the spring migration of caribou.
Movement Ecology, 2(1):19.

Lee, J.-G., Han,], Li, X,, and Gonzalez, H. (2008). TraClass: trajectory
classification using hierarchical region-based and trajectory-based
clustering. Proceedings of the VLDB Endowment, 1(1):1081-1094.

Lee, J.-G., Han,], and Whang, K.-Y. (2007). Trajectory cluster-
ing: a partition-and-group framework. In Proceedings of the
2007 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2007), pages 593-604. ACM.

Leite, R. A., Gschwandtner, T, Miksch, S., Kriglstein, S., Pohl, M.,
Gstrein, E., and Kuntner, J. (2018). EVA: Visual analytics to identify

REFERENCES 164

fraudulent events. IEEE Transactions on Visualization and Com-
puter Graphics, 24(1):330-339.

Long, J. A. and Nelson, T. A. (2013a). Measuring dynamic interaction
in movement data. Transactions in GIS, 17(1):62-77.

Long, J. A. and Nelson, T. A. (2013b). A review of quantitative methods
for movementdata. International Journal of Geographic Informa-
tion Science, 27(2):292-318.

Losada, A. G., Theroén, R., and Benito, A. (2016). Bkviz: A basketball
visual analysis tool. IEEE Computer Graphics and Applications,
36(6):58-68.

Lou, Y, Zhang, C,, Zheng, Y, Xie, X,, Wang, W., and Huang, Y. (2009).
Map-matching for low-sampling-rate gps trajectories. In Proceed-
ingsofthe 17th ACM SIGSPATIAL international conference on ad-
vances in geographic information systems, pages 352-361. ACM.

Lu, M., Wang, Z, Liang, J., and Yuan, X. (2015a). OD-Wheel: Visual
design to explore od patterns of a central region. In Proceedings of
the 8th IEEE Pacific Visualization Symposium (PacificVis 2015),
pages 87-91. IEEE.

Lu, M., Wang, Z.,, and Yuan, X. (2015b). Trajrank: Exploring travel be-
haviour on a route by trajectory ranking. In Proceedings of the 8th
IEEE Pacific Visualization Symposium (PacificVis 2015), pages
311-318. IEEE.

Madon, B. and Hingrat, Y. (2014). Deciphering behavioral changes
in animal movement with a ‘'multiple change point algorithm-
classification tree’ framework. Frontiers in Ecology and Evolution,
2:30.

Maier, D. (1978). The complexity of some problems on subsequences
and supersequences. Journal of the ACM, 25(2):322-336.

Masek, W.]. and Paterson, M. S. (1980). A faster algorithm computing
string edit distances. Journal of Computer and System Sciences,
20(1):18-31.

Mayer, R. E. (1995). The search for insight: Grappling with gestalt psy-

REFERENCES 165

chology’s unanswered questions. In The Nature of Insight, pages 3
—32. The MIT Press.

Melkman, A. and O'Rourke, J. (1988). On polygonal chain approxima-
tion. In Toussaint, G. T, editor, Computational Morphology, vol-
ume 6 of Machine Intelligence and Pattern Recognition, pages 87—
95. Elsevier, Oxford, United Kingdom.

Merki, M. and Laube, P. (2012). Detecting reaction movement pat-
terns in trajectory data. In Proceedings of the 15th AGILE Inter-
national Conference on Geographic Information Science (AGILE
2012), pages 25-27.

Munzner, T. (2014). Visualization Analysis and Design. CRC Press,
Boca Raton (FL), United States of America.

Nagy, M., Akos, Z,, Biro, D., and Vicsek, T. (2010). Hierarchical group
dynamics in pigeon flocks. Nature, 464(7290):890-893.

Nathan, R., Getz, W. M., Revilla, E,, Holyoak, M., Kadmon, R., Saltz, D.,
and Smouse, P E. (2008). A movement ecology paradigm for unify-

ing organismal movement research. Proceedings of the National
Academy of Sciences, 105(49):19052-19059.

Nathan, R.and Giuggioli, L. (2013). A milestone for movement ecology
research. Movement Ecology, 1(1):1.

Newson, P and Krumm, J. (2009). Hidden markov map match-
ing through noise and sparseness. In Proceedings of the 17th
ACM SIGSPATIAL International Symposium on Advances in Geo-
graphic Information Systems (ACM GIS 2009), pages 336-343.

Newton, 1. (2008). The Migration Ecology of Birds. Elsevier, Oxford,
United Kingdom.

Pettit, B., Perna, A, Biro, D., and Sumpter, D. J. T. (2013). Interaction
rules underlying group decisions in homing pigeons. Journal of
The Royal Society Interface, 10(89):20130529.

Pileggi, H., Stolper, C. D., Boyle, J. M., and Stasko, J. T. (2012). Snapshot:
Visualization to propel ice hockey analytics. [EEE Transactions on
Visualization and Computer Graphics, 18(12):2819-2828.

REFERENCES 166

Qingsheng, G., Brandenberger, C., and Hurni, L. (2002). A progressive
line simplification algorithm. Geo-spatial Information Science,
5(3):41-45.

Ritter, J. (1990). An efficient bounding sphere. In Graphics Gems,
pages 301-303. Academic Press Professional, Inc.

Rote, G. (2014). Lexicographic Fréchet matchings. In Proceedings
of the 30th European Workshop on Computational Geometry (Eu-
roCG 2014).

Rutz, C. and Hays, G. C. (2009). New frontiers in biologging science.
Biology Letters, 5(3):289 - 292.

Sacha, D., Senaratne, H., Kwon, B. C, Ellis, G, and Keim, D. A.
(2016). The role of uncertainty, awareness, and trust in visual analyt-
ics. IEEE Transactions on Visualization and Computer Graphics,
22(1):240-249.

Sack, J.-R. and Urrutia, J. (1999). Handbook of computational geome-
try. Elsevier, Oxford, United Kingdom.

Salvador, S. and Chan, P. (2007). Toward accurate dynamic time warp-
ing in linear time and space. Intelligent Data Analysis, 11(5):561-
580.

Santos, C. D, Neupert, S, Lipp, H.-P, Wikelski, M., and Dechmann,
D. K. (2014a). Data from: Temporal and contextual consistency of
leadership in homing pigeon flocks. Movebank Data Repository.

Santos, C. D., Neupert, S., Lipp, H.-P, Wikelski, M., and Dechmann,
D.K. (2014b). Temporal and contextual consistency of leadership in
homing pigeon flocks. PLOS ONE, 9(7):1-5.

Scheepens, R.,, Willems, N., van de Wetering, H., Andrienko, G., An-
drienko, N., and van Wijk, J. J. (2011). Composite density maps for
multivariate trajectories. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2518-2527.

Schmidt-Rothmund, D. (http://www.movebank.org accessed in June
2017.). Griffon Vulture NABU Moessingen, 186178781. Movebank:
archive, analysis and sharing of animal movement data. World
Wide Web electronic publication.

http://www.movebank.org

REFERENCES 167

Schulz, H.-],, Nocke, T, Heitzler, M., and Schumann, H. (2013). A de-
sign space of visualization tasks. IEEE Transactions on Visualiza-
tion and Computer Graphics, 19(12):2366-2375.

Sedgewick, R.(2008). Left-leaning red-black trees. In Dagstuhl Work-
shop on Data Structures, page 17.

Shamoun-Baranes, Judy andvan Loon, E. E,, Purves, R. S., Speckmann,
B., Weiskopf, D., and Camphuysen, C.]. (2011a). Analysis and visual-
ization of animal movement. Biology Letters.

Shamoun-Baranes, J., Bouten, W., Camphuysen, C.], and Baaij, E.
(2011b). Riding the tide: intriguing observations of gulls resting at
sea during breeding. Ibis, 153(2):411-415.

Shamoun-Baranes, J., Burant, J. B, van Loon, E. E,, Bouten, W., and
Camphuysen, C. (2017). Short distance migrants travel as far aslong
distance migrantsinlesser black-backed gulls larus fuscus. Journal
of Avian Biology, 48(1):49-57.

Shneiderman, B. (1996). The eyes have it: A task by data type taxon-
omy for information visualizations. In Proceedings of IEEE Sym-
posium on Visual Languages 1996, pages 336-343. IEEE.

Slingsby, A. and Dykes, J. (2012). Experiences in involving analysts in
visualisation design. In Proceedings of the 2012 BELIV Workshop:
Beyond Time and Errors-Novel Evaluation Methods for Visual-
ization, pages 1-4. ACM.

Slingsby, A., Dykes, J., and Wood, J. (2008). Using treemaps for vari-
able selection in spatio-temporal visualisation. Information Visu-
alization, 7(3-4):210-224.

Slingsby, A.and van Loon, E. (2016). Exploratory visual analysis for ani-
mal movement ecology. In Computer Graphics Forum, volume 35,
pages 471-480. John Wiley & Sons, Inc., Hoboken (N]J), United States
of America.

Spretke, D., Bak, P, Janetzko, H., Kranstauber, B, Mansmann, F, and
Davidson, S. (2011). Exploration through enrichment: a visual ana-
lytics approach for animal movement. In Proceedings of the 19th
ACM SIGSPATIAL International Symposium on Advances in Ge-

REFERENCES 168

ographic Information Systems (ACM GIS 2011), pages 421-424.
ACM.

Stienen, E. W., Desmet, P, Aelterman, B, Courtens, W.,, Feys, S., Van-
ermen, N, Verstraete, H., Van de Walle, M., Deneudt, K., Hernan-
dez, F, et al. (2016). GPS tracking data of Lesser Black-backed
Gulls and Herring Gulls breeding at the southern North Sea coast.
ZooKeys, (555):115 - 124.

Sun, G.-D., Wu, Y.-C, Liang, R.-H., and Liu, S.-X. (2013). A survey
of visual analytics techniques and applications: State-of-the-art re-
search and future challenges. Journal of Computer Science and
Technology, 28(5):852-867.

Thiebault, A. and Tremblay, Y. (2013). Splitting animal trajectories
into fine-scale behaviorally consistent movement units: breaking
points relate to external stimuli in a foraging seabird. Behavioral
Ecology and Sociobiology, 67(6):1013-1026.

Tory, M. and Moller, T. (2005). Evaluating visualizations: do expert re-
views work? IEEE Computer Graphics and Applications, 25(5):8-
11.

Toussaint, G. T. (1985). On the complexity of approximating polygonal
curves in the plane. In Proceedings of the International Sympo-
sium Robotics and Automation IASTED.

Visvalingam, M. and Whyatt, J. D. (1993). Line generalisation by re-
peated elimination of points. The Cartographic Journal, 30(1):46~
51.

Vlachos, M., Kollios, G., and Gunopulos, D. (2002). Discovering simi-
lar multidimensional trajectories. In Proceedings of 18th Interna-
tional Conference on Data Engineering (ICDE 2002), pages 673-
684. IEEE.

Wagner, R. A. and Fischer, M. . (1974). The string-to-string correction
problem. Journal of the ACM, 21(1):168-173.

Wang, X., Mueen, A, Ding, H., Trajcevski, G., Scheuermann, P, and
Keogh, E. (2013). Experimental comparison of representation meth-

REFERENCES 169

ods and distance measures for time series data. Data Mining and
Knowledge Discovery, 26(2):275-309.

van Wijk, J. . (2006). Bridging the gaps. IEEE Computer Graphics
and Applications, 26(6):6-9.

Willems, N., van de Wetering, H., and van Wijk, J. J. (2009). Visual-
ization of vessel movements. In Computer Graphics Forum, vol-
ume 28, pages 959-966. John Wiley & Sons, Inc., Hoboken (NJ),
United States of America.

Williams, R. (2005). A new algorithm for optimal 2-constraint sat-
isfaction and its implications. Theoretical Computer Science,
348(2):357-365.

Wood, Z., Galton, A., Bhatt, M., Guesgen, H., and Hazarika, S. (2010).
Zooming in on collective motion. In Proceedings of 19th European
Conference on Artificial Intelligence (ECAI 2010), pages 25-30.

Zhang, J., O'Reilly, K. M., Perry, G. L., Taylor, G. A., and Dennis, T. E.
(2015). Extending the functionality of behavioural change-point
analysis with k-means clustering: a case study with the little pen-
guin (eudyptula minor). PLOS ONE, 10(4):e0122811.

Zhao, J., Glueck, M., Chevalier, F, Wuy, Y., and Khan, A. (2016). Egocen-
tric analysis of dynamic networks with egolines. In Proceedings of

the 2016 CHI Conference on Human Factors in Computing Sys-
tems (CHI 2016), pages 5003-5014. ACM.

Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transac-
tions on Intelligent Systems and Technology, 6(3):29.

Zheng, Y., Chen, Y, Xie, X, and Ma, W.-Y. (2009). GeolLife2.0: a
location-based social networking service. In Proceedings of the
10th International Conference on Mobile Data Management:
Systems, Services and Middleware (M DM 2009), pages 357-358.
IEEE.

Zheng, Y, Li, Q. Chen, Y, Xie, X,, and Ma, W.-Y. (2008a). Understand-
ing mobility based on GPS data. In Proceedings of the 10th Inter-
national Conference on Ubiquitous Computing (UbiComp 2008),
pages 312-321. ACM.

REFERENCES 170

Zheng, Y., Liu, L., Wang, L., and Xie, X. (2008b). Learning transporta-
tion mode from raw gps data for geographic applications on the web.

In Proceedings of the 17th International Conference on World
Wide Web (WWW 2008), pages 247-256. ACM.

List of Publications

Buchin, K., Buchin, M., Konzack, M., Mulzer, W., and Schulz, A. (2016).
Fine-grained analysis of problems on curves. In Proceedings of the

32nd European Workshop on Computational Geometry (EuroCG
2016).

Buchin, K., Konzack, M., and Reddingius, W. (2018). Progressive sim-
plification of polygonal curves. In Proceedings of the 34nd Euro-
pean Workshop on Computational Geometry (EuroCG 2018).

Konzack, M., Gijsbers, P, Timmers, F, van Loon, E, Westen-
berg, M. A, and Buchin, K. (2018). Visual exploration of mi-

gration patterns in gull data. Information Visualization, page
1473871617751245.

Konzack, M., McKetterick, T., Ophelders, T, Buchin, M., Giuggioli, L.,
Long, J., Nelson, T.,, Westenberg, M. A,, and Buchin, K. (2017). Vi-
sual analytics of delays and interaction in movement data. Interna-
tional Journal of Geographic Information Science, 31(2):320-345.

Konzack, M., McKetterick, T. J., Wilcox, G., Buchin, M., Giuggioli, L.,
Gudmundsson,], Westenberg, M. A., and Buchin, K. (2015). Ana-
lyzing delays in trajectories. In Proceedings of the 8th IEEE Pacific
Visualization Symposium (PacificVis 2015), pages 93-97.

Summary

Smaller and cheaper tracking devices with at the same time higher
accuracy allow researchers to track large numbers of individuals to
in their quest to understand the phenomena behind movement. The
availability of this technology led to the continuing trend to collect,
publish, and share movement datasets in data repositories. Because
movement is ubiquitous, researchers from various disciplines are in-
volved in tracking individuals, analyzing their trajectories, and ulti-
mately, understanding the connection between movement and its
drivers.

Methods to analyze these datasets have been developed in a variety
of research areas. For example, researchers in algorithms are con-
cerned with analyzing geometric problems and designing new algo-
rithms for trajectory data, and visualization researchers develop nov-
elvisualrepresentations from trajectory data to gain insights. Domain
experts, from ecology, urban planning, or sports analytics, need new
analytical methods for both: methods to quantify spatio-temporal
properties and means to analyze movement data qualitatively, for in-
stance exploration. To date, new methods in algorithms and visual-
ization are being developed only within their field. However, both al-
gorithms and visualization are crucial and complement each other in
the analysis of movement data.

In this thesis, we explore how combining algorithms and visualiza-
tion can enhance the analysis of movement data. Thus, we aim to fill
the methodological gap between algorithms and visualization by inte-
grating computations, their context, and their visual representations
more closely. Filling this gap will help movement analysts to external-
ize their cognition by integrating algorithmic means, visual means,
andtheir domain knowledge into a holistictooling. The contributions
of this thesis make it possible for movement analysts to benefit from

SUMMARY 173

the exchange of ideas and concepts between algorithms and visualiza-
tion.

Our contributions to the analysis of movement are manifold. We pro-
vide a thorough overview of the state-of-the-art in movement analysis
in which we survey results to computational movement analysis as
well as advances in the visualization of movement. We present a new
taxonomy for the analysis of trajectory data, that can aid researchers
in designing new analytical methods.

The second contribution of this thesis are results on the
computational complexity of movement analysis tasks. We present
two new lower bounds. We show that a simplification cannot be com-
puted in subquadratic time for a trajectory of n points, presuming
those points lie in Q(logn) dimensions and assuming the Strong Ex-
ponential Time Hypothesis. Then, we prove that the discrete Fréchet
distance for k trajectories, each of length n, cannot be computed in
O(nk—%) time for any € > 0 assuming the Strong Exponential Time Hy-
pothesis. Furthermore, we provide an overview of previous results
on algorithms and their algorithmic complexity for analyzing move-
ment data.

Subsequently, we present a new algorithm to compute progressive
simplifications, i.e., a series of simplifications that are consistent
across multiple scales, in O(n®m) time with n as the number of points
in the input curve and m as the number of scales. Progressive simpli-
fications are particularly important for showing trajectories (or other
line features) on interactive, zoomable maps. Our algorithm
computes a progressive simplification for a range of continuous
scales in O(n?) time. A core element in simplification algorithms is
the so-called shortcut graph. It stores for any line segment whether
the segment approximates its induced subcurve given an error value.
Moreover, we developed a new representation for such shortcut
graphs allowing us to compute (non-)progressive simplifications
more efficiently: a technique for computing the maximum error for
all shortcuts in O(n?logn) time instead of O(n3) time, and a
compressed shortcut graph allowing us to find shortest paths typical-
ly in O(nlogn) time.

SUMMARY 174

Our fourth contribution in this thesis is a versatile visual analytics
toolto explore interaction eventsasaction-reaction patterns between
two (or three) trajectories. We use alignment methods that allow us
to capture delayed responses; we visualize these delays in addition
to statistics on the alignment. Furthermore, we present a novel ap-
proach for computing a global delay between two trajectories, each
of consisting of n points, in O(nlog n) time, by employing Fast Fourier
Transforms. We applied our approach to three different datasets and
compared it to existing approaches on dynamic interaction.

The final contribution of this thesis is a visual analytics approach that
helps ecologists to explore animal migration patterns interactively.
We identify and aggregate stopovers, which are breaks from migra-
tion. The aggregation is visualized on top of a geographic map for
varying spatial scales in addition to interconnected views to explore
spatio-temporal events. We evaluated our approach with an expert
user on a dataset of 75 lesser black-backed gulls.

Curriculum Vitae

Maximilian Konzackwasborn on 17 February 1987 in Schwabach, Ger-
many. He completed his secondary education at Fachoberschule
Fiirth (Germany) in 2005. After the alternative civilian service of 10
months at a sheltered workshop, he studied computer science for his
Bachelor’s degree at the University of Applied Science in Nuremberg,
Germany from 2006 until 2010. Next to a sabbatical in social work of
sixmonths, he continued his studiesin the Masters’ program for com-
puter science at the Free University Berlin. His Master’s thesis was
on crossing numbers of spanning trees, supervised by prof dr. Wolf-
gang Mulzer. Then, he joined the Google’s Summer of Code 2013 for
a three months project, before he started working as a PhD student in
the Algorithms Group at the Eindhoven University of Technology in
2013. The outcomes of this work are elaborated in this thesis.

Titles in the IPA Dissertation Series since 2015

G. Alpar. Attribute-Based Iden-
tity Management: Bridging the
Cryptographic Design of ABCs
with the Real World. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-01

Al). van der Ploeg. Efficient
Abstractions for Visualization

and Interaction. Faculty of Sci-
ence, UvA. 2015-02

R.JM. Theunissen. Supervi-
sory Controlin Health Care Sys-
tems. Faculty of Mechanical En-
gineering, TU/e. 2015-03

T.V. Bui. A Software Architec-
ture for Body Area Sensor Net-
works: Flexibility and Trust-
worthiness. Faculty of Mathe-

matics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Devel-
opers’ Teamwork from within
the IDE. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2015-05

T. Espinha. Web Service Grow-
ing Pains: Understanding Ser-
vices and Their Clients. Faculty
of Electrical Engineering, Math-

ematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Net-
works. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2015-07

E. Costante. Privacy through-
out the Data Cycle. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2015-08

S. Cranen. Getting the point
— Obtaining and understand-
ing fixpoints in model check-
ing. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security
of proprietary cryptography.
Faculty of Science, Mathemat-
ics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV
and TLS security protocols.
Faculty of Science, Mathemat-
ics and Computer Science,
RU. 2015-11

Y.Dajsuren. On the Designofan
Architecture Framework and

Quality Evaluation for Automo-
tive Software Systems. Faculty
of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental
Evaluation of Higher-Order At-
tribute Grammars. Faculty of
Science, UU. 2015-13

S. Picek. Applications of Evo-
lutionary Computation to Cryp-
tology. Faculty of Science, Math-
ematics and Computer Science,
RU. 2015-14

C. Chen. Automated Fault Lo-
calization for Service-Oriented
Software Systems. Faculty of
Electrical Engineering, Mathe-
matics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing
Energy-Aware Software. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Sci-
ence, UT. 2015-16

R.W.]. Kersten. Software Anal-
ysis Methods for Resource-
Sensitive Systems. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-17

]J.C. Rot. Enhanced coinduction.
Faculty of Mathematics and Nat-
ural Sciences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty

of Mathematics and Computer
Science, TU/e. 2015-19

D. Gebler. Robust SOS Spec-
ifications of Probabilistic Pro-
cesses. Faculty of Sciences, De-

partment of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski.
Closer to Reliable Software:
Verifying functional behaviour
of concurrent programs. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Sci-
ence, UT. 2015-21

R.]. Krebbers. The C standard
formalized in Coq. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2015-22

R.van Vliet. DNA Expressions —
A Formal Notation for DNA.Fac-
ulty of Mathematics and Natural
Sciences, UL. 2015-23

$.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Program-
ming. Faculty of Mathe-
matics and Natural Sciences,
UL. 2016-01

8.].C.Joosten. Verification of In-
terconnects. Faculty of Math-
ematics and Computer Science,
TU/e.2016-02

M.W. Gazda. Fixpoint Logic,
Games, and Relations of Con-
sequence. Faculty of Mathe-

matics and Computer Science,
TU/e.2016-03

S. Keshishzadeh. Formal Anal-
ysis and Verification of Em-
bedded Systems for Health-
care. Faculty of Mathemat-

ics and Computer Science,
TU/e.2016-04

PM. Heck. Quality of Just-
in-Time Requirements: Just-
Enough and Just-in-Time. Fac-
ulty of Electrical Engineering,

Mathematics, and Computer
Science, TUD. 2016-05

Y. Luo. From Conceptual
Models to Safety Assurance -
Applying Model-Based Tech-
niques to Support Safety As-
surance. Faculty of Mathe-
matics and Computer Science,
TU/e.2016-06

B. Ege. Physical Security Analy-
sis of Embedded Devices. Fac-
ulty of Science, Mathemat-

ics and Computer Science,
RU. 2016-07
Al van Goethem. Algo-

rithms for Curved Schema-
tization. Faculty of Mathe-
matics and Computer Science,

TU/e. 2016-08

T. van Dijk. Sylvan: Multi-
core Decision Diagrams. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Sci-
ence, UT. 2016-09

I. David. Run-time resource
management for component-
based systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Syn-
thesis using Modal Logic
and Partial Bisimilarity - A
Treatise Supported by Com-
puter Verified Proofs. Fac-
ulty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dy-
namics of Requirements Pro-
cess Improvement. Faculty of
Mathematics and Computer Sci-

ence, TU/e. 2016-12

FM.]. van den Broek. Mo-
bile Communication Secu-
rity. Faculty of Science, Math-
ematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2016-14

M.]. Steindorfer. Efficient Im-
mutable Collections. Faculty of
Science, UvA. 2017-01

W. Ahmad. Green Computing:
Efficient Energy Management
of Multiprocessor Streaming
Applications via Model Check-
ing. Faculty of Electrical Engi-
neering, Mathematics & Com-
puter Science, UT. 2017-02

D. Guck. Reliable Systems -
Fault tree analysis via Markov
reward automata. Faculty of
Electrical Engineering, Math-
ematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and
Buffer Analysis of Real-time
Streaming Radio Applications
Scheduled on Heterogeneous
Moultiprocessors. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2017-04

A. Krasnova. Smart invaders
of private matters: Privacy of
communication on the Internet
and in the Internet of Things
(IoT). Faculty of Science, Math-
ematics and Computer Science,
RU. 2017-05

AD. Mehrabi. Data Struc-
tures for Analyzing Geomet-
ric Data. Faculty of Mathe-

matics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engi-
neering Source Code: Empiri-
cal Studies of Limitations and
Opportunities. Faculty of Sci-
ence, UvA. 2017-07

W. Lueks. Security and Pri-
vacy via Cryptography — Hav-
ing your cake and eating it
too. Faculty of Science, Math-
ematics and Computer Science,
RU. 2017-08

AM. Sutii. Modularity and
Reuse of Domain-Specific Lan-
guages: an exploration with
MetaMod. Faculty of Mathe-
matics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the
Dynamic Semantics of Domain
Specific Languages. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2017-10

Q.W. Bouts. Geographic Graph
Construction and Visualiza-
tion. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and
Verification of Synchronisa-
tion Classes in Java: A Prac-
tical Approach. Faculty of

Electrical Engineering, Math-
ematics & Computer Science,
UT. 2018-01

S. Darabi. Verification of Pro-
gram Parallelization. Faculty
of Electrical Engineering, Math-
ematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequa-
tions and Eilenberg-type Corre-
spondences. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2018-03

P. Fiterau-Brostean. Active
Model Learning for the Analy-
sis of Network Protocols. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2018-04

D. Zhang. From Concur-
rent State Machines to Re-
liable Multi-threaded Java
Code. Faculty of Mathemat-
ics and Computer Science,

TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types,
Programs and Logic. Faculty of
Science, Mathematics and Com-
puter Science, RU.2018-06

A. Lele. Response Modeling:
Model Refinements for Timing
Analysis of Runtime Schedul-
ing in Real-time Streaming
Systems. Faculty of Mathe-
matics and Computer Science,
TU/e.2018-07

N. Bezirgiannis. Abstract Be-
havioral Specification: unify-
ing modeling and program-
ming. Faculty of Mathe-
matics and Natural Sciences,
UL. 2018-08

M.P. Konzack. Trajectory Anal-
ysis: Bridging Algorithms and
Visualization. Faculty of Math-
ematics and Computer Science,
TU/e.2018-09

	Acknowledgments
	Introduction
	Computational Movement Analysis
	Algorithms
	Visualization
	Trajectory Analysis
	Overview

	Background
	Introduction
	Related Work
	Scope and Focus
	Typology for Analyzing Movement Data
	Overview of Trajectory Analysis Tasks
	Alignment
	Transform
	Categorization
	Representation

	Discussion
	Workflow
	Scale and Uncertainty
	Context
	Space and Time
	Interdisciplinarity
	Specificity of Data Analysis

	Conclusions

	Computational Complexity of Problems on Trajectories
	Introduction
	Preliminaries
	Single Curve Problems
	Simplification
	Lower Bound on Simplification

	Problems on Two Trajectories
	Overview
	Alignment Methods

	Problems on Multiple Trajectories
	Overview
	Lower Bound on the Fréchet Distance

	Conclusions

	Progressive Simplification
	Introduction
	Related Approaches
	Computing Simplifications Progressively
	Optimal Progressive Simplifications
	Greedy Heuristics

	Constructing the Shortcut Graph for Arbitrary Scale
	Compressing the Shortcut Graph
	Shortcut Graph Construction
	Finding Shortest Paths

	Experimental Evaluation
	Conclusions

	Visual Analytics of Delays and Interaction
	Introduction
	Interaction and Similarity Measures
	Fast Computation of Global Delays
	Correlations and the Fast Fourier Transform
	Approximation of Similarity Measures

	Visual Analytics for Local Analysis of Delays
	Requirements for Analyzing Interactions
	Computing Matchings
	Interactive Analysis of Delays in Matchings

	Experiments
	Analysis of the Global Delay
	Analysis of Delays on Ultimate Frisbee Data
	Analysis of Delays on Pigeon Data
	Analysis of Delays on a Triplet of Pigeons

	Conclusions

	Visual Exploration of Migration Patterns in Gull Data
	Introduction
	Related Work
	Problem Definition and Requirement Analysis
	Ecological Research Questions on Migration
	Requirements for Analysis Tasks

	Visual Analytics Approach
	Computational Methods
	Visualization Techniques

	Exploratory Analysis Process
	Evaluation
	Dataset of Migrating Gulls
	Expert User Evaluation
	Reflections

	Conclusions

	Conclusion
	Contributions
	Looking Forward

	References
	List of Publications
	Summary
	Curriculum Vitæ

