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Introduction

Optical communication links carry most of the data that is transmitted
around the world. Home connections are being replaced by optical links.

We like to achieve the highest possible data rates for the smallest cost.
Replacing links should be delayed as long as possible.

Therefore advance transmission protocols (equalisation, modulation,
coding) are required.

INFORMATION THEORY tells us what the ultimate performances are
(e.g. capacity), and what the techniques are that achieve ultimate
performance.

Wireless communication is characterized by major developments (coding,
mimo, cooperative communications, etc.), often boosted by information
theoretical methods.

Optical Communication is going through a similar innovation cycle
now. Information theory can also be useful here.
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Claude Shannon (1916-2001)

1948: “A Mathematical Theory of Communication,”
Bell Syst. Tech. J.: Shannon combined the noise
power spectral density N0/2, the channel bandwidth
W , and the transmit power P, into a single parameter
C , which he called the channel capacity. More
precisely

C = W log2(1 +
P

N0W
)

represents the maximum number of bits that can be
sent per second reliably from transmitter to receiver.
Codes can be used to achieve capacity.

1938: Shannon also applied Boole’s algebra to
switching circuits (MSc thesis, MIT).

WW2: Shannon developed cryptographic equipment
for transoceanic conferences (Roosevelt-Churchill). His
ideas can be found in “Communication Theory of
Secrecy Systems”, a confidential report from 1945,
published in 1949.

1949: Shannon introduced the sampling theorem to
the engineering community.



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

Shannon

Entropy, Conditional
Entropy, Mutual
Information

Capacity Discrete
Memoryless Channel

Capacity Gaussian
Channel

WAVEFORM
CHANNELS

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

REMARKS

Entropy

Let X be a discrete random variable with alphabet X and probability mass
function p(x) = Pr{X = x} for x ∈ X .

Definition

The entropy H(X ) of discrete random variable X is defined as

H(X ) =
∑
x∈X

p(x) log2

1

p(x)
[bit].

Example

Binary random variable X with alphabet X = {0, 1}. Let

X =

{
0 with probability 1− p,
1 with probability p.

Then the entropy of X is
H(X ) = h(p),

where

h(p)
∆
= (1− p) log2

1

1− p
+ p log2

1

p
[bit].
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Entropy, Binary Entropy Function

Example
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Observe that h(p) = h(1− p) and that e.g. h(0.1) = 0.4690.

Think of H(X ) as the uncertainty in X .

It can be shown that 0 ≤ H(X ) ≤ log2 |X |.
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Conditional Entropy

Let X and y be discrete random variables with alphabets X and Y
respectively and joint probability mass function p(x , y) = Pr{X = x ,Y = y}
for x ∈ X and x ∈ Y.
Note that p(y) =

∑
x∈X p(x , y) and p(x |y) = p(x , y)/p(y).

Definition

The conditional entropy H(X |Y ) of discrete random variable X given Y is
defined as

H(X |Y ) =
∑
y∈Y

p(y)
∑
x∈X

p(x |y) log2

1

p(x |y)
[bit].

Think of H(X |Y ) as the uncertainty in X when Y is given.

It can be shown that 0 ≤ H(X |Y ) ≤ H(X ). Conditioning can only reduce
entropy.

Note also that
H(X |Y ) =

∑
y∈Y

p(y)H(X |Y = y),

where

H(X |Y = y) =
∑
x∈X

p(x |y) log2

1

p(x |y)
.

Conditional entropy H(X |Y ) is the expected value of entropies
H(X |Y = y) w.r.t. p(y).
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Example: Binary Symmetric Channel (BSC)

Example

Transition probabilities p(Y = 1|X = 0) = p(Y = 0|X = 1) = p.

X = 0 Y = 0
1− p

X = 1 Y = 1
1− p

p

p

For uniform p(X = 0) = p(X = 1) = 1/2 we obtain that the entropy

H(X ) = h(1/2) = 1.

Moreover:

p(Y = 1) = p(X = 0) · p + p(X = 1) · (1− p) = 1/2,

p(X = 1|Y = 0) =
p(X = 1,Y = 0)

p(Y = 0)
=

p(X = 1) · p
p(Y = 0)

= p,

p(X = 1|Y = 1) =
p(X = 1,Y = 1)

p(Y = 1)
=

p(X = 1) · (1− p)

p(Y = 1)
= 1− p,

and the conditional entropy

H(X |Y ) = p(Y = 0)h(p) + p(Y = 1)h(1− p) = h(p).
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Mutual Information

Definition

The mutual information I (X ;Y ) between the discrete random variable X and
Y is defined as

I (X ;Y ) = H(X )− H(X |Y ) [bit].

Think of I (X ;Y ) as the decrease in uncertainty about X when Y is
released. Equivalently it is the information that Y contains about X .
It can be shown that always 0 ≤ I (X ;Y ) ≤ H(X ).
I (X ;Y ) is also the decrease in uncertainty about Y when X is released.

Example

Binary symmetric channel (BSC) with transition probability p:

X = 0 Y = 0
1− p

X = 1 Y = 1
1− p

p

p

For uniform p(X = 0) = p(X = 1) = 1/2, we obtain that

I (X ;Y ) = H(X )− H(X |Y ) = 1− h(p).

For p = 0.1 we obtain I (X ;Y ) = 1− 0.4690 = 0.5310 bit.
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Discrete Memoryless Channel

Definition

Channel input alphabet X , channel output alphabet Y.
For each x ∈ X the transition probabilities Pr{Y = y |X = x} for y ∈ Y are
denoted by p(y |x), where

∑
y∈Y p(y |x) = 1.

Example

1 1

2 2

|X | |Y|

...
...

p(y |x)

Here X ∆
= {1, 2, · · · , |X |} and Y ∆

=
{1, 2, · · · , |Y|}.
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Channel Capacity, Definition

Observe that:

the channel input distribution {p(x), x ∈ X} determines the joint
distribution

p(x , y) = p(x)p(y |x), for all x ∈ X , y ∈ Y,

and therefore the mutual information

I (X ;Y ) = H(X )− H(X |Y ).

The maximum value of I (X ;Y ) is called the channel capacity C . Hence

Definition

CDMC = max
p(x)

I (X ;Y ) [bit/channel use].

Example

For a BSC with crossover probability p a uniform input
p(X = 0) = p(X = 1) = 1/2 achieves maximum mutual information 1− h(p).
The channel capacity of the BSC is therefore

CBSC(p) = 1− h(p).
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Capacity of the BSC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
B

S
C

  
(b

it
/c

h
a

n
n

e
l 
u

s
e

)



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

Shannon

Entropy, Conditional
Entropy, Mutual
Information

Capacity Discrete
Memoryless Channel

Capacity Gaussian
Channel

WAVEFORM
CHANNELS

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

REMARKS

Channel Capacity, Operational Meaning

m
Transm.

x1x2 · · · xN
DMC

Y1Y2 · · ·YN
Receiv.

m̂

Message index m assumes values in {1, 2, · · · , |M|}, uniformly.

There is a codeword x1x2 · · · xN of length X for each message index w .

The codeword is transmitted over the DMC with transition probabilities
{p(y |x), x ∈ X , y ∈ Y}.
The receiver makes an estimate m̂ of the transmitted index m from the
channel output y1y2, · · · yN .

Transmission rate
1

N
log2 |M|.

Error probability
Pe = Pr{M̂ 6= M}.

Theorem (Shannon, 1948)

Rate R is said to be achievable if, for any ε > 0, for all large enough N,
there exist codes with operational rate 1

N
log2 |M| ≥ R − ε and error

probability Pe ≤ ε.
Rates R not exceeding C are achievable. Rates R larger than C are not
achievable.
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Channel Capacity, Proof

1 RANDOM CODING ARGUMENT
Shannon showed that if the |M| codewords are generated at random
according to the capacity-achieving input distribution {p(x), x ∈ X} the
error probability averaged over the ensemble of codes

Pe =
∑

all codes

P(code)Pe(code)

can be made arbitrarily small for 1
N

log2 |M| = C − ε and N →∞, for
any ε > 0.
There exist codes with arbitrarily small Pe therefore.

2 CONVERSE
Using Fano’s inequality1 it can be shown that for 1

N
log2 |M| > C + δ the

error probability Pe can not be made arbitrarily small for large N, for any
δ > 0.

3 LINEAR CODES Hamming introduced Hamming codes. Elias [1955]
demonstrated that for the BSC also parity check codes achieve capacity.

1H(W |Ŵ ) ≤ h(Pe ) + Pe log2(|M| − 1)
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Linear Error-Correcting Code, Syndrome

A linear code is defined by its generator-matrix G or by the corresponding
parity-check matrix H.
Codewords are linear combinations of the rows of generator matrix G . There
are 2K codewords. With the parity-check matrix H it can be checked whether
x = (x1, x2, · · · , xN) is a codeword or not.
N is the length of the codewords and K the number of rows in G . Now N −K
is the number of rows in H, which is the number of parity-check equations.

Example

Hamming code, N = 7, K = 4, can correct a single error.

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 ,H =

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 .

If xHT = 0 then x must be a codeword in our code. For non-codewords the
so-called syndrome of x

s = xHT 6= 0.

This syndrome s = (s1, s2, s3) can assume eight different values, (0, 0, 0) when
x is a codeword, (1, 1, 1), when there is an error at position 1, (1, 1, 0), when
there is an error at position 2, etc.
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Additive Gaussian Noise (AGN) Channel, Definition, Capacity

Definition (AGN channel)

X
+

Y

N

Input variable X satisfies E [X 2] ≤ Ex .
Here Ex is input symbol enery.

Noise variable N is zero-mean Gaussian,
variance σ2, hence

p(n) =
1

√
2πσ2

exp(−
n2

2σ2
)

Output Y = X + N.

MODEL for transmission links where thermal noise is dominant.

For the capacity of the AGN channel we find that

CAGN =
1

2
log2(1 +

Ex

σ2
) [bit/channel use].
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AGN Channel, Capacity Derivation

Derivation

CAGN
(a)
= max

X :E [X 2]≤Ex
I (X ;Y )

(b)
= max

X :E [X 2]≤Ex
h(Y )− h(Y |X )

= max
X :E [X 2]≤Ex

h(Y )− h(N)

(c)

≤ max
X :E [X 2]≤Ex

1

2
log2 2πe(Ex + σ2)−

1

2
log2 2πeσ2

=
1

2
log2(1 +

Ex

σ2
).

Note that (a) is power constrained optimization, (b) splits I (X ;Y ) into
differential entropies, (c) is based on upper bound on entropy given
variance.

Observe that equality (capacity)is obtained only if X is Gaussian.

Signal-to-noise ratio definition:

SNR
∆
=

Ex

σ2
.
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AGN Channel, Capacity Plot
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AGN Channel, Questions

Q1: What is the minimal signal-to-noise ratio Ex/σ2 for rate R? From

R ≤ CAGN =
1

2
log2(1 +

Ex

σ2
)

we obtain that

(
Ex

σ2
)min = 22R − 1,

This is called Shannon limit.

Q2: What is the minimal transmit energy per transmitted bit?

(
Ex

R
)min = σ2 ·

22R − 1

R
.

Since

lim
R↓0

22R − 1

R
= lim

R↓0

exp(2R ln 2)− 1

R
= 2 ln 2.

the minimal energy per bit is equal to 2σ2 ln 2, achieved only if R ↓ 0.
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Waveform Channel Model

m
Transm.

sm(t)
+

nw (t)

r(t) = sm(t) + nw (t)
Receiv.

m̂

Message index m assumes values in {1, 2, · · · , |M|}, uniformly.

There is a waveform sm(t) for each message index m.

The waveform is transmitted over the channel that adds white noise
nw (t) to it. The channel output-waveform is

r(t) = sm(t) + nw (t).

The Gaussian stationary noise process Nw (t) is zero-mean, hence
E [Nw (t)] = 0 for all t, and its autocorrelation function

E [Nw (t)Nw (s)] =
N0

2
δ(t − s).

Transmission rate
1

N
log2 |M|.

Error probability

Pe = Pr{Ŵ 6= W }.
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Transmit Power and Bandwidth Constraint

If the (effective) time-duration of the signals is ∆ then the energy of
signal sm(t),m ∈ {1, 2, · · · , |M|} should satisfy

Esm =

∫ ∞
−∞

s2
m(t)dt ≤ P∆.

This inequality is called the power constraint, power is P.

Moreover the signals sm(t),m ∈ {1, 2, · · · , |M|}, should satisfy the
bandwidth constraint

Sm(f ) =

∫ ∞
−∞

sm(t) exp(−j2πft)dt = 0 for |f | >W ,

where W is the bandwidth.
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The Sinc-Pulse

The sinc-pulse

p(t) =
1
√
T

sin(πt/T )

πt/T

has Fourier spectrum

P(f ) =

{ √
T for |f | < 1/(2T )

0 for |f | > 1/(2T ).

Therefore this sinc-pulse satisfies the bandwidth constraint for T = 1
2W

.

Example

The pulse p(t) and its spectrum P(f ) for T = 1.
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Pulse-Amplitude Modulation (PAM)

We can now transmit a sinc-pulse every T seconds. If we give the pulse
p(t − kT ) amplitude xk ∈ X , and add these scaled pulses, we get the
waveform

s(t) =
∑

k=0,K−1

xkp(t − kT ).

Example

Let X = {−3,−1,+1,+3} and take K = 8. Now let
x1, · · · , x8 = (−3,+3,+3,+1,−3,−1,+3,−1) then the scaled pulses (T = 1)
and their sum are:
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Orthonormality of the Pulses

Definition

The sinc-pulses p(t − kT ) for k = 0, 1, · · · ,K − 1 are orthonormal, i.e.∫ ∞
−∞

p(t − kT )p(t − k ′T )dt =

{
1 for k ′ = k,
0 for k ′ 6= k.

For the correlation yk of the output waveform r(t) with the pulse p(t − kT )
for k = 0, 1, · · · ,K − 1 we can write

yk =

∫ ∞
−∞

r(t)p(t − kT )dt

=

∫ ∞
−∞

(∑
k′

xk′p(t − k ′T ) + nw (t)

)
p(t − kT )dt = xk + nk

with

nk =

∫ ∞
−∞

nw (t)p(t − kT )dt.

Note that this correlation yields the desired signal amplitude xk to which
noise term nk is added.
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Statistic of the Noise Variables

The noise variables Nk for k = 0, 1, · · · ,K − 1 are jointly Gaussian.

For their expectation we get

E [Nk ] = E

[∫ ∞
−∞

Nw (t)p(t − kT )dt

]
=

∫ ∞
−∞

E [Nw (t)]p(t − kT )dt = 0.

Moreover their correlation

E [NkNk′ ] = E

[∫ ∫
Nw (t)p(t − kT )Nw (t′)p(t′ − k ′T )dtdt′

]
=

∫ ∫
E [Nw (t)Nw (t′)]p(t − kT )p(t′ − k ′T )dtdt′

=

∫ ∫
N0

2
δ(t − t′)p(t − kT )p(t′ − k ′T )dtdt′

=

∫
N0

2
p(t − kT )p(t − k ′T )dt =

{
N0
2

for k ′ = k,
0 for k ′ 6= k.

Hence the noise variables (a) are Gaussian, (b) have zero mean, (c) are

independent of each other, and (d) have variance N0
2

.
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Transmit Power Constraint

The effective time-duration of the signals

sm(t) =
∑

k=0,K−1

xmkp(t − kT ) for m ∈ {1, 2, · · · , |M|},

is KT .

The energy of the signal sm(t),m ∈ {1, 2, · · · , |M|}, should therefore
satisfy

Esm =

∫ ∞
−∞

s2
m(t)dt =

∫ ∞
−∞

∑
k

∑
k′

xmkp(t − kT )xmk′p(t − k ′T )dt

=
∑
k

∑
k′

xmkxmk′

∫ ∞
−∞

p(t − kT )p(t − k ′T )dt

=
∑

k=0,K−1

x2
mk

≤ PKT .
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Vector Channel

We have transformed the W -bandlimited waveform channel into a vector
channel, i.e. 

y0

y1

...
yK−1

 =


xm,0

xm,1

...
xm,K−1

+


n0

n1

...
nK−1

 ,

where transmission of each component (dimension) requires T = 1
2W

seconds.

The noise vector consists of K independent Gaussian zero-mean
components, each having variance N0

2
.

The code vectors (xm,0, · · · , xm,K−1) should satisfy the power constraint

1

K

∑
k=0,K−1

x2
mk ≤ TP =

P

2W
for all m ∈ {1, 2, · · · , |M|}.

Moreover the actually transmitted waveforms sm(t) satisfy the
bandwidth constraint

Sm(f ) = 0 for |f | >W for all m ∈ {1, 2, · · · , |M|}.



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

WAVEFORM
CHANNELS

Waveform Channel
Model

Pulse-Amplitude
Modulation

Waveform to AGN

Capacity Waveform
Channel

Bandpass Channel

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

REMARKS

Bandwidth Optimality

The W -bandwidth constraint imposes a restriction on the number of
vector components (dimensions) that are available per second2. It can
be shown that this number is at most 2W .

Our signaling method achieves the optimum since 1/T = 2W .

2Wozencraft and Jacobs [1965], Dimensionality Theorem.
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Waveform Channel, Capacity per Second

We have seen before that the capacity of the AGN channel is

CAGN =
1

2
log2(1 +

Ex

σ2
) [bits/channel use].

Note that there are 2W channel uses (dimensions) per second.
Moreover the energy per channel use Ex = PT = P

2W
.

Noise variance σ2 = N0
2

.
Therefore:

Theorem (Shannon, 1948)

The capacity (in bits per second) of the W -bandlimited waveform channel
when the transmit power is P, is

CW -bandlim.ch. = W log2(1 +
P

N0W
) [bits/second].



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

WAVEFORM
CHANNELS

Waveform Channel
Model

Pulse-Amplitude
Modulation

Waveform to AGN

Capacity Waveform
Channel

Bandpass Channel

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

REMARKS

Bandpass Channel, Model

Bandpass constraint. For all signals

Sm(f ) =

∫ ∞
−∞

sm(t) exp(−j2πft)dt = 0 except for |f ± f0| <W ,

where W is the bandwidth, and f0 the center frequency.

−f0
−f0 −W −f0 + W

f0

f0 −W f0 + W

Power constraint. If the (effective) time-duration of the signals is ∆ then
the energy of all the signal sm(t) should satisfy

Esm =

∫ ∞
−∞

s2
m(t)dt ≤ P∆.
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Bandpass Channel, Quadrature Amplitude Modulation

Carrier transmission, use frequency f0.

Take T = 1
2W

, let ak ∈ X , bk ∈ X for k = 0, 1, · · · ,K − 1, then let

s(t) =
∑

k=0,1,··· ,K−1

akp(t−kT )
√

2 cos(2πf0t)+bkp(t−kT )
√

2 sin(2πf0t).

This leads to 2 · 2W = 4W orthonormal components per second.
Observe that the total bandwidth is now 4W however.

Schematic:

∑
k akp(t − kT )

×

√
2 cos(2πf0t)

∑
k bkp(t − kT )

×

√
2 sin(2πf0t)

+
s(t)
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Bandpass Channel, Capacity

Again note that the capacity of the AGN channel is

CAGN =
1

2
log2(1 +

Ex

σ2
) [bits/channel use].

Now there are 4W channel uses (dimensions) per second.

Therefore the energy per channel use Ex = PT = P
4W

.

Noise variance σ2 = N0
2

.

Therefore:

Theorem

The capacity (in bits per second) of the W -bandpass waveform channel
when the transmit power is P, is

CW -bandpass.ch. = 2W log2(1 +
P

2N0W
) [bits/second].

Spectral Efficiency (capacity per Hz):

log2(1 +
Ec

N0
) [bit/second/Hz],

where Ec is the energy per (a, b) pair.
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AGN Capacity at Low SNR

For signal-to-noise ratio SNR = P/σ2 horizontally in dB the AGN capacity
CAGN in bits/chan use is depicted in BLACK in the figure below.
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Binary Signalling, Soft or Hard Decision

Instead of using a Gaussian inputs we can use equally likely binary inputs
−
√

SNR and +
√

SNR, assuming that σ2 = 1.

−
√

SNR +
√

SNR

The capacity of such a binary-in, soft-out channel is

C2,soft =
SNR− E [ln(cosh(SNR +

√
SNRN)]

ln(2)
.

This capacity is depicted in the plot in BLUE. Note that for SNR ↓ 0 this
capacity approaches CAGN.

The receiver can make a hard-decision based on the channel output,
with a threshold at 0. The resulting channel is a BSC with cross-over
probability

p = Q(
√

SNR) =

∫ ∞
√

SNR

1
√

2π
exp(−

α2

2
)dα.

The capacity
C2,hard = 1− h(p)

of this binary-in, hard-out channel is depicted in RED in the figure.
For SNR ↓ 0 hard decision results in an SNR-loss of roughly 2 dB.
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Signalling at Larger SNR’s

For larger SNR’s we need more signal points. Assume that we use equidistant
and equiprobable points. This leads to the following constellations:

M = 2 (2-PAM):

−1

1/2

+1

1/2

M = 4 (4-PAM):

−3

1/4

−1

1/4

+1

1/4

+3

1/4

M + 8 (8-PAM):

−7

1/8

−5

1/8

−3

1/8

−1

1/8

+1

1/8

+3

1/8

+5

1/8

+7

1/8

Note that the average energy of a signal set is

EPAM =
M2 − 1

3
.
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Large SNR Capacity and PAM-Capacities

For signal-to-noise ratio SNR = EPAM/σ
2 horizontally in dB the PAM

“capacities” in blue and the AGN capacity CAGN in black in bits/channel
use are depicted in the figure below.
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Observe that for 2K -PAM can at most reach a capacity of K bit.
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A Convolutional Code (NASA Code)

Elias [1955]

Binary input digits b1, b2, · · · , bK are independent and uniform.

Digits are encoded using a 64-state convolutional encoder. Schematic:

⊕

⊕

c1

c2

b

Description:

c1(k) = b(k)⊕ b(k − 2)⊕ b(k − 3)⊕ b(k − 4)⊕ b(k − 6),

c2(k) = b(k)⊕ b(k − 1)⊕ b(k − 2)⊕ b(k − 3)⊕ b(k − 6).

One input digit produces two output digits, code rate is 1/2.

Free Hamming distance dH = 10 of the code is 10, hence up to 4 errors
can be corrected, and 5 detected.

When used e.g. for the AGN channel, soft-decision decoding can be
realized by the Viterbi algorithm [1967].

NASA code (WiFi).
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NASA Code, Performance

Our R = 1/2 code has constraint length ν = 7. Coding gain at bit-error
probability 10−5 is roughly 6 dB. Gap to the Shannon bound is 3.8 dB.
(Clark and Cain [1981])
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Turbo Codes

Turbo Codes (Berrou, Glavieux, and Thitimajhshima [1993])

Based on systematic recursive convolutional codes connected by an
interleaver.
Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm [1974] used for iterative
decoding.

Near-Shannon-limit performance (with a dB).
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LDPC Codes

Low Density Parity Check (LDPC)-codes (Gallager [1963], rediscovered
in 1993):

Code is specified by its parity-check matrix. The symbol nodes on the
left are checked by equation nodes on the right. Low density of the
matrix makes message-passing algorithms possible.

Near-Shannon-limit performance (within tenths of a dB).
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Polar Codes

Polar codes Arikan [2006], Arikan and Telatar [2007].

IDEA (Polarization): Two identical channels can be transformed into a
channel that is better and a channel that is worse than the original ones.
The sum of the capacities remains constant however.

Shannon-limit performance. Decoding complexity |M| log2 |M|.
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Coding and Modulation

Modulation maps binary digits onto signals for the AGN channel, e.g.
three binary digits map onto an 8-PAM signal.

Coding is used to map message (data) sequences onto a set of binary
codewords. These codewords are input to the modulator. The codewords
are chosen such that the corresponding signal sequences are e.g. far apart
(large Euclidean distance), or e.g. maximize mutual information between
AGN channel input and output.

Block diagram:
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Trellis Coded Modulation

COMBINE CODING and MODULATION, Ungerboeck [1982]

BASELINE: Uncoded 4-PAM. Now average energy EPAM(unc) = 5 and
squared Euclidean distance d2

E (unc) = 4.

−3 −1 +1 +3

Coding starts by expanding the signal constellation to 8-PAM. Now
EPAM(cod) = 21.

−7 −5 −3 −1 +1 +3 +5 +7

Partition the 8-PAM signal set into 4 subsets A00, A01, A11, and A10,
each containing 2 signals for which the distance is 8.

−7

A00(0)

+1

A00(1)

−5

A01(0)

+3

A01(1)

−3

A11(0)

+5

A11(1)

−1

A10(0)

+7

A10(1)

The distance between signals in different subsets can be as small as 2.

Points in subsets with complementary labels have a distance 4 or more.
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Trellis Coded Modulation

Use the NASA code. For each channel use let the coded binary digits c1

and c2 determine the subset Ac1c2 and the uncoded bit b2 determine the
symbol within this subset. Hence the mapper realizes

x = Ac1c2 (b2).

⊕

⊕

c1

c2

b1

b2

mapper
x

Decoding done with Viterbi algorithm. Trellis structure:
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Trellis Coded Modulation

Distance analysis: An error event starts and ends with c1 = c2. This
leads to a starting and an ending subset with complementary labels and
squared distance 42.
For the Euclidean distance between the 8-PAM sequeces we obtain, using
dH = 10 of the NASA code that

d2
E (cod) = min(82, (dH − 4)22 + 2 · 42) = 56.

What we have gained is now

G =
d2
E (cod)/Eav (cod)

d2
E (unc)/Eav (unc)

=
56/21

4/5
= 10/3 = 5.2 dB.

The gain G is asymptotic coding gain. This implies that at large SNR
TCM achieves the same error probability as uncoded transmission with
5.2 dB less SNR.

We followed here the Pragmatic approach to trellis coded modulation
(Viterbi, Wolf, Zehavi, and Padovani [1989]).

Ungerboeck received the Shannon Award recently from the IEEE
Information Theory Society.
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Multi-Level Coded Modulation, Set Partition Mapping

Consider a one-to-one mapping from three binary digits to an 8-PAM
symbol. We consider here a set partition mapping.

b1 b2 b3 x
0 0 0 −7
1 0 0 −5
0 1 0 −3
1 1 0 −1
0 0 1 +1
1 0 1 +3
0 1 1 +5
1 1 1 +7

Another representation of this mapping

−7

000

−5

100

−3

010

−1

110

+1

001

+3

101

+5

011

+7

111

Note that the distance increases by a factor of 2 after b1 is exposed. If
in adittion b2 is exposed the distance is again increased by a factor of 2.

Ungerboeck.
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Multi-Level Coding: Use Binary Code for Every Label

Use a first (strong) code for bit labels b1, a second code for bit labels b2,
and a third code for bit labels b3. All codewords have length N.

b3(1)b3(2) · · · b3(N)
code 3

b2(1)b2(2) · · · b2(N)
code 2

b1(1)b1(2) · · · b1(N)
code 1

mapper x(1)x(2) · · · x(N)

Bit labels B1, B2, and B3 are uniform and independent of each other.

The mapper combines the three codewords into a 8-PAM sequence of
length N that is transmitted.
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Decoding the Binary Codes for All Labels Sequentially Using
Already Decoded Results

The first decoder decodes the first bit-label sequence
̂b1(1)b1(2) · · · b1(N).

Then the second decoder decodes the second bit-label sequence
̂b2(1)b2(2) · · · b2(N), using the decoded first bit-label sequence.

Finally the third decoder decodes the third bit-label sequence
̂b3(1)b3(2) · · · b3(N), using the decoded first bit-label sequence and the

decoded second bit-label sequence.

Block diagram:

decoder 1

̂b1(1)b1(2) · · · b1(N)

decoder 2

̂b2(1)b2(2) · · · b2(N)

decoder 3

̂b3(1)b3(2) · · · b3(N)

y(1)y(2) · · · y(N)

Decoding must be performed sequentially.
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Multi-Level Capacity Analysis

The first bit channel has as input B1 and as output Y .

The second bit channel has as input B2 and as output (YB1).

The third bit channel has as input B3 and the output is (YB1B2).

Therefore the mutual information (MI) is:

I (B1;Y ) + I (B2;YB1) + I (B3;YB1B2)

= I (B1;Y ) + I (B1;B2) + I (B2;Y |B1) + I (B3;B1B2) + I (B3;Y |B1B2)

= I (B1;Y ) + I (B2;Y |B1) + I (B3;Y |B1B2)

= I (B1B2B3;Y )

= I (X ;Y )

This implies that there is no loss!

Imai and Hirakawa [1977].
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Decoding Not Using Already Decoded Results

Bit-Interleaved Coded Modulation (Zehavi [1991], also Caire, Taricco, and
Biglieri [1998]):

The first decoder decodes the first bit-label sequence
̂b1(1)b1(2) · · · b1(N).

The second decoder decodes the second bit-label sequence
̂b2(1)b2(2) · · · b2(N).

The third decoder decodes the third bit-label sequence
̂b3(1)b3(2) · · · b3(N).

Block diagram:

decoder 1

̂b1(1)b1(2) · · · b1(N)

decoder 2

̂b2(1)b2(2) · · · b2(N)

decoder 3

̂b3(1)b3(2) · · · b3(N)

y(1)y(2) · · · y(N)

Decoding can be performed in parallel.
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Bit-Interleaved Capacity Analysis

The first bit channel has as input B1 and as output Y .

The second bit channel has as input B2 and as output Y .

The third bit channel has as input B3 and the output is Y .

Therefore now the generalised mutual information (GMI) is:

I (B1;Y ) + I (B2;Y ) + I (B3;Y )

≤ I (B1;Y ) + I (B2;Y ,B1) + I (B3;Y ,B1,B2)

= I (B1;Y ) + I (B2;Y |B1) + I (B3;Y |B1,B2)

= I (B1,B2,B3;Y )

= I (X ;Y )

This implies that now there could be loss!
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Bit-Interleaved Coded Modulation, Gray Mapping

Consider a one-to-one mapping from three binary digits to an 8-PAM
symbol. We consider now a Gray mapping3.

b1 b2 b3 x
0 0 0 −7
0 0 1 −5
0 1 1 −3
0 1 0 −1
1 1 0 +1
1 1 1 +3
1 0 1 +5
1 0 0 +7

Another representation of this mapping

−7

000

−5

001

−3

011

−1

010

+1

110

+3

111

+5

101

+7

100

Note that only one digit changes if we go from a signal point to its
neighbour.

3Binary Reflected Gray Mapping.
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Bit-Interleaved Coded Modulation, Capacity Plot

The figure contains the capacities of the sub-channels and the total
bit-interleaved capacity for Gray coding.
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Loss is acceptable for the Gray mapping!
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Bit-Interleaved Coded Modulation, Use a SINGLE Binary Code

Transmitter:

b3(1)b3(2) · · · b3(N)
(length 3N)

b2(1)b2(2) · · · b2(N)
single code

b1(1)b1(2) · · · b1(N)

mapper x(1)x(2) · · · x(N)
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Bit-Interleaved Coded Modulaton: Use a SINGLE Binary Code

Receiver:

̂b1(1)b1(2) · · · b1(N)

single decoder
̂b2(1)b2(2) · · · b2(N)

(length 3N) ̂b3(1)b3(2) · · · b3(N)

y(1)y(2) · · · y(N)

Log-Likelihood Ratio calculation:

LLRi =

∑
b1b2b3:bi=0 p(y |x(b1, b2, b3))∑
b1b2b3:bi=1 p(y |x(b1, b2, b3))

≈
maxb1b2b3:bi=0 p(y |x(b1, b2, b3))

maxb1b2b3:bi=1 p(y |x(b1, b2, b3))
.

Used everywhere.
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Remarks

Trellis Coded Modulation (Ungerboeck) focussed on obtaining distance
gain.

Multi-Level Coding and Bit-Interleaved Coded Modulation is based on
mutual information considerations.
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Gap to Channel Capacity

For signal-to-noise ratio SNR horizontally in dB the AGN capacity CAGN in
bits/channel use is depicted in black in the figure below.
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The curves for uniform 2-PAM, 4-PAM, 8-PAM, 16-PAM and 32-PAM are
depicted in blue. A gap to AGN-capacity appears since the PAM inputs are
not Gaussian, but Uniform.
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Gap in bit and in SNR loss

Assumptions: (a) M-PAM where M →∞ and
(b) SNR→∞ or equivalently that σ2

n → 0.
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Consider difference of the capacity I (Xg ;Yg ), where Xg is the Gaussian
channel input and Yg the corresponding output, and the mutual
information I (Xu ;Yu), where Xu is a uniform channel input and Yu the
corresponding output:

I (Xg ;Yg )− I (Xu ;Yu)

= h(Yg )− h(Yg |Xg )− h(Yu) + h(Yu |Xu)

= h(Yg )− h(Yu)

=
1

2
log2(2πeσ2

x )− log2 12σ2
x =

1

2
log2

πe

6
= 0.2546 bit,

or equivalently 1.53 dB in SNR.
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Probabilistic Shaping: Equidistant Signal Points

Eight equidistant signals x ∈ {−7γ,−5γ, · · · ,+7γ} for γ = 1.089.
Non-uniform probability distribution P(x): {0.0521, 0.0989, 0.1562, 0.1927,
0.1927, 0.1562, 0.0989, 0.0521}.
In the plot:

p(x , y) = P(x)p(y |x) for x ∈ {−7γ,−5γ, · · · ,+7γ}

p(y) =
∑
x

P(x)p(y |x) where p(y |x) =
1
√

2π
exp(−

(y − x)2

2
).

Moreover I (X ;Y ) = 2.001 bit at SNR = 11.96 dB.
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Geometric Shaping: Equiprobable Signals

Uniform probability distribution P(x) : {1/8, 1/8, · · · , 1/8} for all possible x .
Eight non-equidistant signals: x ∈ {−6.86,−3.98,−2.10,−0.56,+0.56,
+2.10,+3.98,+6.86}.
In the plot

p(x , y) = P(x)p(y |x) for x ∈ {−6.86,−3.98, · · · ,+6.86}

p(y) =
∑
x

P(x)p(y |x) where p(y |x) =
1
√

2π
exp(−

(y − x)2

2
).

Moreover I (X ;Y ) = 2.001 bit at SNR = 12.28 dB.
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Probabilistic Shaping and Geometric Shaping
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In the plot the output densities p(y). Blue: Probabilistic Shaping
(SNR = 11.96 dB). Red: Geometric Shaping (SNR = 12.28 dB).
I (X ;Y ) = 2.001 bit in both cases.
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Probabilistic Shaping, Distribution Matching

Q: How can we generate sequences with a given composition?

We can use Distribution Matching (Boecherer [2014], Schulte and Boecherer
[2016]).

Distribution matching is inspired by arithmetic data compression techniques
(e.g. Langdon and Rissanen [1979], Witten, Neal, and Cleary [1987]). In their
methods sequences are represented by intervals.
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Sequences and Intervals, Example

We want to generate binary sequences of length 5 containing 2 ones. There
are

(5
2

)
= 10 such sequences.

Each of these sequences corresponds to a subinterval of length 1/10 of the
[0, 1) interval.
This interval can be computed sequentially from the sequence. The first digit
of the sequence splits the interval in fractions 3/5 and 2/5. After a first 0 the
interval [0, 3/5) is split according to 2/4 and 2/4, etc.
Note that the sequences and their intervals are now in a lexicographical order.
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Constant Composition Sequence Intervals, Indices

Consider 3-digit indices 000, 001, · · · , 111. Index b1b2b3 connects to a
constant composition sequence if b12−1 + b22−2 + b32−3 is in the interval
corresponding to the constant composition sequence.

0.0

1.0

0

1

0.6

0

1

0

1

0.3

0.9

0

1

0

1

0

1

0

0.1

0.5

0.8

1

0

1

0

1

0

0

1

0

0

0.2

0.4

0.7

1

1

0

1

0

0

1

0

0

0

0.000(000)

0.500(100)

0.250(010)

0.750(110)

0.125(001)

0.375(011)

0.625(101)

0.875(111)

(a) Only one index can connect to a sequence since 2−3 ≥ 1/10.
(b) Observe that for not all constant composition sequences there is an index.
(c) For all indices there is a sequence however.
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From an index to a const. comp. sequence and back

Using this method (distribution matching) we find a constant
composition sequence a for all indices i , and from such a constant
composition sequence a the original index i can be recovered (inverse
distribution matching).

i distribution

matcher

a inverse

distr. matcher

i

Use as index the message m that is to be transmitted. The resulting
const. comp. sequence a can be used as amplitude sequence.

Now take a short block length N = 96. The amplitude level composition
is

96 ∗ (0.1927, 0.1562, 0.0989, 0.0521) ∗ 2 ≈ (37, 30, 19, 10).

This leads to

96!

37!30!19!10!
= 2168.72 const. comp. sequences.

Rate is 168
96

= 1.75 [bit/symbol], and the sequence energy

37 ∗ 1 + 30 ∗ 9 + 19 ∗ 25 + 10 ∗ 49 = 1272.
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Combining Shaping with Coding

Schematic:

m distrib.

matcher

a Gray

demapper
b3

b2
systematic

rate 2
3

coder
b3

b2

b1

Gray

mapper

x

The distribution matcher converts message m into amplitude sequence a
of the desired composition.

The Gray demapper (sign bit missing!) converts the amplitude sequence
a into the two amplitude bitstreams b2 and b3 both of length N.

a b2 b3

1 1 0
3 1 1
5 0 1
7 0 0

Now parity is generated from b2 and b3, using a systematic code of rate
2/3. This parity is used as bitstream b1. This bitstream represents the
sign bits.
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Combining Shaping with Coding

The three bitstreams are combined into an 8-PAM symbol x stream,
using Gray mapping.

b1 b2 b3 x
0 0 0 −7
0 0 1 −5
0 1 1 −3
0 1 0 −1
1 1 0 +1
1 1 1 +3
1 0 1 +5
1 0 0 +7

We have described a Bit-Interleaved Coded Modulation construction,
where only sequences with constant amplitude composition are
generated.

Log-Likelihood Ratio calculation now includes a priori symbol
information.

LLRi =

∑
b1b2b3:bi=0 p(b1b2b3)p(y |x(b1, b2, b3))∑
b1b2b3:bi=1 p(b1b2b3)p(y |x(b1, b2, b3))
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Boecherer Simulations

FER (frame error rate) = 10−3, LDPC codes from DVB-S2. Boecherer,
Schulte, and Steiner [2016].
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Enumerative Shap., from a Partially-Filled Surface to a Sphere

Consider composition (37, 30, 19, 10) that leads to 2168.72 sequences and
sequence energy 1272.

QUESTION: Can we obtain more sequences such that the average sequence
energy does not exceed 1272?

Note first that there are
more compositions with
energy equal to 1272. Add
the corresponding
sequences. This leads to
2172.75 sequences.

Add all the sequences with
an energy smaller than
1272. Now we obtain 2175.04

sequences. Moreover the
average energy drops to
1242.4.

√
1272

If we are interested in rate 1.75 we can decrease the radius to
√

1120.
Now we find 2168.03 sequences with average sequence energy 1096.9.
Gain = 1272

1096.9
= 0.6431 dB.

Analysis by Y. Gultekin [2017, TU/e].



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

WAVEFORM
CHANNELS

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

Gap to Capacity

Comparison p(y) for
Probabilistic vs.
Geometric Shaping

Probablistic Shaping

Enumerative Shaping

Geometric Shaping

References

REMARKS

Enumerative Shap., from a Partially-Filled Surface to a Sphere

Consider composition (37, 30, 19, 10) that leads to 2168.72 sequences and
sequence energy 1272.

QUESTION: Can we obtain more sequences such that the average sequence
energy does not exceed 1272?

Note first that there are
more compositions with
energy equal to 1272. Add
the corresponding
sequences. This leads to
2172.75 sequences.

Add all the sequences with
an energy smaller than
1272. Now we obtain 2175.04

sequences. Moreover the
average energy drops to
1242.4.

√
1272

If we are interested in rate 1.75 we can decrease the radius to
√

1120.
Now we find 2168.03 sequences with average sequence energy 1096.9.
Gain = 1272

1096.9
= 0.6431 dB.

Analysis by Y. Gultekin [2017, TU/e].



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

WAVEFORM
CHANNELS

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

Gap to Capacity

Comparison p(y) for
Probabilistic vs.
Geometric Shaping

Probablistic Shaping

Enumerative Shaping

Geometric Shaping

References

REMARKS

Enumerative Shap., from a Partially-Filled Surface to a Sphere

Consider composition (37, 30, 19, 10) that leads to 2168.72 sequences and
sequence energy 1272.

QUESTION: Can we obtain more sequences such that the average sequence
energy does not exceed 1272?

Note first that there are
more compositions with
energy equal to 1272. Add
the corresponding
sequences. This leads to
2172.75 sequences.

Add all the sequences with
an energy smaller than
1272. Now we obtain 2175.04

sequences. Moreover the
average energy drops to
1242.4.

√
1272

If we are interested in rate 1.75 we can decrease the radius to
√

1120.
Now we find 2168.03 sequences with average sequence energy 1096.9.
Gain = 1272

1096.9
= 0.6431 dB.

Analysis by Y. Gultekin [2017, TU/e].



Information Theory
and its Application to

Optical
Communication

FMJ Willems

INTRODUCTION

INFORMATION
THEORY

WAVEFORM
CHANNELS

AGN CAPACITY

SOME CODES

CODED
MODULATION

SHAPING CODES

Gap to Capacity

Comparison p(y) for
Probabilistic vs.
Geometric Shaping

Probablistic Shaping

Enumerative Shaping

Geometric Shaping

References

REMARKS

Enumerative Shaping: Bounded Energy Trellis

Wuijts [1991, TU/e], W. and Wuijts [1993]

N = 4, amplitude alphabet is {1, 3, 5, · · · }, Emax = 28 i.e. sphere radius
√

28.

0/19 1/11

9/7

17

25/1

2/6

10/4

18/3

26/1

3/3

11/2

19/2

27/1

4/1

12/1

20/1

28/1

1 1 1 1

3 3 3 3

5 5 5 5

1 1 1

3 3 3

1 1

3 3

1 1 1
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Lexicographical Ordering. Index of sequence 3131 is 13.

19 11

7

1

6

4

3

1

3

2

2

1

1

1

1

1

1 1 1 1

3 3 3 3

5 5 5 5

1 1 1

3 3 3

1 1

3 3

1 1 1
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Lexicographical ordering. Sequence with index 8 is 1331.

19 11

7

1

6

4

3

1

3

2

2

1

1

1

1

1

1 1 1 1

3 3 3 3

5 5 5 5

1 1 1

3 3 3

1 1

3 3

1 1 1
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Enumerative Shaping, Analysis

Maximum energy level Emax = 28.

Adding signs leads to 16 · 19 = 304 sequences.

Total rate

Rtot =
log2 304

4
= 2.062 bits/symbol.

Average energy per symbol Eav/N = 5.211.

Gain

G =
22R−1

3

Eav/N
= 0.218 dB.

More results for rate R ≈ 2, where N is sequence-length.

N Emax Eav/N Rtot G
8 48 5.169 2.102 0.509

16 80 4.638 2.064 0.734
32 136 4.100 2.006 0.901
64 264 4.051 2.019 1.039
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Combining Shaping with Coding

Schematic:

m enumer.

shaper

a Gray

demapper
b3

b2
systematic

rate 2
3

coder
b3

b2

b1

Gray

mapper

x

The enumerative shaper converts a message m into a bounded energy
amplitude sequence a.

No difference with Boecherer’s approach.
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Probabilistic Shaping versus Enumerative Shaping

Consider a hypersphere in N (even) dimensions with radius ρ, then

h(X ) =
h(X1) + h(X2) + · · ·+ h(XN)

N
≥

h(X1,X2, · · · ,XN)

N

=
1

N
log

πN/2

(N/2)!
ρN

≥
1

N
log

πN/2

( N
2e

)N/2
√

e2N
2

ρN

=
1

2
log 2πe

ρ2

N
−

1

2N
log

e2N

2
.

h(X ) =
h(X1) + h(X2) + · · ·+ h(XN)

N

≤
log 2πeE [X 2

1 ] + log 2πeE [X 2
2 ] + · · ·+ log 2πeE [X 2

N ]

2N

≤
1

2
log 2πe

E [X 2
1 ] + E [X 2

2 ] + · · ·+ E [X 2
N ]

N
=

1

2
log 2πe

ρ2

N
.

HENCE enumerative shaping for large N results in Gaussians components!
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Probabilistic Shaping versus Enumerative Shaping

Both probabilistic shaping and enumerative shaping lead to Gaussian
input distributions, which is required to achieve capacity.

In a coding environment the bounded energy constraint could be more
elementary than the Gaussian input constraint.

For short blocklengths there is something to gain with enumerative
shaping.

For large blocklengths the gain is negligible (sphere hardening argument).

Both probabilistic shaping and enumerative shaping are lexicographical
indexing methods.

Complexity of enumerative shaping is larger than that of probabilistic
shaping.
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Geometric Shaping

Advantage:

No probabilistic shaper required.

Disadvantages:

Mapping from symbols to bits causes problems (dependent bits).

Performance (Steiner and Boecherer [2016]):

Smart ideas needed!
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Shaping References

Forney, Gallager, Lang, Longstaff, and Qureshi [1984]: constellation
shaping, coding and shaping can be separated.

Kschischang and Pasupathy [1990]: variable-rate shaping, geometric
shaping.

Calderbank and Ozarow [1991]: shaping on regions.

Forney [1992]: trellis shaping (more codewords for same data, choose
lowest energy codeword), sign-bit shaping, constellation expansion,
peak-to-average power ratio expansion.

Sun and van Tilborg [1993]: geometrical shaping.

Laroia, Farvardin, and Tretter [1994]: enumerative shaping (two
schemes).

V34 Modem standard [1994]: shell mapping, enumerative shaping.

Fischer [2002]: overview.
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Final Remarks

Information Theory and Coding Theory is useful in understanding,
analysing, and improving communication systems, also optical
communication systems.

Performance indicators as e.g. capacities and mutual informations are
very powerful, and well studied (see e.g. work of Szczecinski and
Alvarado [2015], Guillen i Fabregas, Martinez, and Caire [2008]).

Next step. Non-linearities ...
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