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Abstract
Motivated by the application of scheduling a sequence of locks along a waterway, we consider a scheduling problem where
multiple parallel batching machines are arranged in a sequence and process jobs that travel along this sequence.We investigate
the computational complexity of this problem. More specifically, we show that minimizing the sum of completion times is
strongly NP-hard, even for two identical machines and when all jobs travel in the same direction. A second NP-hardness result
is obtained for a different special case where jobs all travel at an identical speed. Additionally, we introduce a class of so-
called synchronized schedules and investigate special cases where the existence of an optimum solution which is synchronized
can be guaranteed. Finally, we reinforce the claim that bidirectional travel contributes fundamentally to the computational
complexity of this problem by describing a polynomial time procedure for a setting with identical machines and where all
jobs travel in the same direction at equal speed.

Keywords Machine scheduling · Complexity · Parallel batching machine · Machine sequence

1 Introduction

Consider the following problem. Given is a set of M ≡
{1, 2, . . . ,m} linearly ordered machines, each machine i ∈
M being located at a given position xi . Distances between
machines follow from their position, e.g. the distance
between machines i, k ∈ M equals |xi − xk |. Each machine
i ∈ M is a parallel batching machine with capacity Bi , i.e.
each machine is capable of processing up to Bi jobs simul-
taneously, processing a set of jobs takes Ti time units. Also
given is a set of jobs J ≡ {1, 2, . . . , n}; each job j ∈ J is
characterized by a release time r j , a travelling speed v j , a
starting machine s j ∈ M , and an ending machine e j ∈ M .

A preliminary version of this work has been published as part of the
first author’s Ph.D. dissertation (Passchyn 2016).
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In addition, if for some job j ∈ J , s j = e j , then a param-
eter called direction is specified, with dir j ∈ {left, right}.
If, for job j ∈ J , s j < e j , job j is called right-travelling.
If, for job j ∈ J , s j > e j , job j is called left-travelling.
For the jobs where s j = e j , the direction ‘left’ or ‘right’
specifies whether the job is left-travelling or right-travelling,
respectively. It follows that the set of jobs can be partitioned
into two subsets R and L containing all right-travelling jobs
and all left-travelling jobs, respectively. Clearly, we have
J = L ∪ R and L ∩ R = ∅. A right-travelling job j
must be processed by machines s j , s j + 1, . . . , e j in that
order, while a left-travelling job j ∈ J must be processed by
machines s j , s j − 1, . . . , e j in that order. Table 1 specifies
the input data for an example instance; the corresponding
layout of machines and the trajectory of the jobs is visual-
ized in Fig. 1. We say that a job j ∈ J is completed when
it has been processed by its ending machine e j ; we refer to
this moment as the completion timeC j of job j . (Clearly,C j

is not a parameter in this problem, instead C j follows from
a solution.) Each job j ∈ J travels with speed v j between
consecutive machines. The travel time required for a job j to
travel between two consecutive machines i and i ′ thus equals
|xi ′−xi |/v j . There is a restriction on the set of jobs that can be
processed simultaneously by any of the machines: no two
jobs of different direction can be in the same batch. In other
words, each batch must consist of only right-travelling jobs,
or only left-travelling jobs; for convenience, we, respectively,
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Table 1 Input data for an example instance

Jobs Machines

j r j s j e j dir j v j i Ti Bi xi

1 0 3 1 Left 12 1 1 1 0

2 1 3 2 Left 24 2 2 2 24

3 2 1 2 Right 4 3 2 2 72

4 3 1 1 Right 12

5 4 3 3 Left 12

6 4 1 3 Right 12

Fig. 1 Visualization of the
machine layout and job
trajectories for the instance
described in Table 1

Machine 1
x1 = 0

Machine 2
x2 = 24

Machine 3
x3 = 72 job 1

job 2

job 3

job 4

job 5

job 6

refer to such batches as right-travelling or left-travelling.
Finally, once a machine has processed a set of jobs, it is
immediately available to process a set of jobs travelling in
the opposite direction. However, two batches containing jobs
of the same direction must be separated by at least Ti time
units. More precisely, for any machine i ∈ M , when consid-
ering two batches processing jobs with the same direction,
their starting times should be at least 2Ti time units apart.
We call this property the separation property; the absence of
this property pertains to the situation where each machine is
directly available to process any batch after a previous batch
has finished processing.

Our goal is to find a feasible schedule that minimizes
total flow time. We say that a job waits, or incurs waiting
time, if it is not being processed by a machine, nor travel-
ling between two machines. Since the values r j , v j , and the
distance between the machines are fixed, it is clear that min-
imizing the total flow time is equivalent to minimizing the
total waiting time and to minimizing the sum of completion
times.

More precisely, we must specify

– for each machine at which moments in time the machine
must start processing a batch, and

– the composition of each batch.

These moments in time, as well as the composition of the
batches, must be such that each job j ∈ J is processed
by machines s j , . . . , e j in that order, and must be consis-
tent with the given speeds and release times of the jobs;
finally,

∑
j∈J (C j − r j ) should be minimum. We will refer

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

Machine 3

Machine 2

Machine 1

t = 0 t = 4 t = 8 t = 12

X X X
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X
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X
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X
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3

3 6 4 1
Fig. 2 Feasible solution and visualization for the instance of Table 1

to this problem as SPBM. The question in the corresponding
decision-variant of SPBM asks whether there exists a solu-
tion with a total waiting time nomore than a predefined value
W ; we refer to this decision problem as dec-SPBM. In case
all jobs travel in the same direction, the resulting special case
is called uni-directional SPBM.

When categorizing the SPBM problem, it becomes clear
that this is not a ‘clean’ flow shop problem. Although there
is quite a bit of structure in the set of machines that a job
must visit, it is not true that each job visits the same set of
machines in the same order. Even in the uni-directional case,
not every job needs to be processed by the same machines;
this remains true in the case of only two machines.

We represent an instance and a solution as illustrated in
Fig. 2, which shows a solution for the instance specified in
Table 1. Such representations, referred to as time-distance
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diagrams, are commonly used in the context of transporta-
tion, for example to track the movement of trains. As will be
discussed in Sect. 1.1, our practicalmotivation underlying the
SPBM problem also stems from transportation scheduling.
In the figure, time passes from left to right and the vertical
axis denotes the progress of a job j along its trajectory from
s j to e j . Note that each machine, although located at a single
coordinate, is represented by two separated horizontal lines,
so that the processing of a batch on a machine i can be visu-
alized as a tilted line where the horizontal component has a
length equal to the processing time Ti . Each release time of
a job is marked with an ‘X’. The dashed lines correspond
to a job travelling in between the machines, whereas solid
lines correspond to the processing on themachines. Note that
the dashed lines may intersect, i.e. jobs may overtake each
other in between machines due to a difference in speed. On
a machine, however, the batches may not overlap, although
a batch may consist of multiple jobs on the condition that
the machine capacity Bi is not exceeded. Further, the dotted
lines correspond to the idle time interval required by the sep-
aration property in the event that a machine processes two
consecutive batches containing jobs that travel in the same
direction.

In Fig. 2, lines are labelled with the job to which they
correspond. Recall that specifying a solution entails specify-
ing the composition of each batch. Indeed, given the starting
times of all batches and their corresponding direction, differ-
ent solutions may still result from different assignments of
jobs to these batches. One straightforward way of obtaining
such an assignment is to consider the jobs in the order of
their release time and to assign each job j , at each machine
m, to the first batch following the time of arrival of job j at
machinem for which the capacity bound Bm is not exceeded.
Clearly, we can restrict ourselves to solutions where each
job, immediately upon being processed by a machine, starts
to travel immediately towards the next machine in its trajec-
tory. In what follows, we will omit the labels whenever this
straightforward assignment is implied. Note, however, that
this assignment need not be optimal in general. Indeed, in
the solution shown in Fig. 2, job 6 is processed on machine
1 before job 4; it can be verified that processing job 4 first,
as would be the case with the straightforward assignment,
yields a solution with a larger total waiting time.

Table 2 summarizes the completion time, flow time, and
waiting time for the solution shown in Fig. 2. Recall that these
three objective functions are equivalent since they differ by
a constant.

1.1 Motivation and related literature

The introduction above phrases, in machine scheduling ter-
minology, the situation that arises when operating a series
of locks along a river or a canal. Figure 3 shows a single

Table 2 Summary of the objective value for the solution of Fig. 2

j Completion time Flow time Waiting time

1 14 14 3

2 7 6 0

3 13 11 2

4 7 4 3

5 7 3 1

6 15 11 0

Total 63 49 9

Fig. 3 Example of a single canal lock, corresponding to a machine in
SPBM. Photograph by A. Fin, Wikimedia Commons. (In the public
domain)

lock on a canal. Indeed, in such a situation, ships (the jobs)
travel in one of two directions while locks (the machines)
are present to control the water level of the waterway. A lock
can transfer a set of ships simultaneously, but only when all
ships in this set travel in the same direction; the time this
operation takes is called the lockage time (Ti ). This situation
may reflect so-called staircase locks, consisting of multiple
locks in immediate succession, i.e. where the travel distance
between adjacent locks is equal to zero. Such a setting occurs,
for example at the Three Gorges Dam in China and at Caen
Hill in the United Kingdom, consisting of, respectively, 5
and 16 successive locks. With nonzero travel distance, how-
ever, the situation may also reflect an entire waterway where
multiple locks are present over a longer distance. Several
waterways of major economical importance in fact feature
a more general setting where, in addition to the properties
of the SPBM problem outlined above, each lock consists of
multiple parallel chambers.Wemention, for example theKiel
Canal and Danube river in Europe and the Panama Canal in
Middle America. The SPBM problem clearly underlies the
more general scheduling problem for these waterways. How-
ever, situations that correspond toSPBM, i.e.where each lock
consists of a single chamber, also occur on several important
rivers and waterways.
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Different methods to solve the scheduling problem for
locks in sequence have been proposed in the literature.
Petersen and Taylor (1988) describe a problem setting for
a sequence of 8 locks on theWelland Canal where batch pro-
cessing is not possible, i.e. where Bi = 1 for all i ∈ M ,
and present a heuristic based on a dynamic programming
algorithm for the single lock setting. Smith et al. (2009) con-
sidered a similar problem setting for a sequence of 29 locks
on the Upper Mississippi River; they introduce a simulation
model in order to evaluate the impact of operating policies
and proposed infrastructural investments. Maximizing the
throughput through a network of waterways is considered
by Righini (2016), who models this setting as a multi-
commodity flow problemwhile enforcing an upper bound on
the throughput of locks, although making abstraction of the
detailed lock operation schedules. Prandtstetter et al. (2015)
give a formal definition for a problem involving the schedul-
ing of a sequence of locks consisting of independent lock
chambers and present a variable neighbourhood search pro-
cedure in order to obtain heuristic solutions.

While exact methods for the scheduling of a single lock
have been proposed, see, e.g. Passchyn et al. (2016b), Ver-
stichel et al. (2013), Smith et al. (2011), literature on exact
methods for the integrated scheduling of a sequence of locks
has remained scarce. Verstichel and Vanden Berghe (2016)
identify this problem setting as an interesting direction for
additional research, and mention the concept of so-called
green waves, which can be seen as similar to the operation of
traffic lights along important highways. In such an approach,
the goal is to synchronize the operation of locks,meaning that
each ship, upon exiting a lock, travels immediately towards
the next lock and reaches it at a time where it is immediately
available to start a lockage. Thus, in such a system, a ship
incurs no waiting time after being served by the first lock it
encounters. In Sect. 3, we give a rigorous treatment of syn-
chronized solutions. Passchyn et al. (2016a) present and com-
pare different mixed integer programming models that allow
to minimize the total flow time for ships passing through
locks while taking ship speed and emissions into account.

A related setting in the context of waterways is the
scheduling of bidirectional traffic along a narrow river or
canal, where a limited number of wider segments is available
for the crossing of ships that travel in opposite directions or
for the overtaking of ships that travel in the same direction.
The complexity of the problem to minimize total waiting
time for this setting is settled by Disser et al. (2015). We
note that the results obtained by Disser et al. (2015) do
not immediately extend to our setting for the scheduling of
locks. One attempt to connect the two problems is to see the
narrow canal sections in their problem setting as machines
and the widened sections as the distance separating adjacent
machines. A notable difference is then that in the SPBM
setting, each machine must return to its initial position in

between the processing of two jobs that travel in the same
direction, i.e. the separation property must be satisfied. A
narrow canal section, in contrast, is immediately available
for jobs travelling in either direction. Another difference is
that, in the SPBM setting, each job is allowed to overtake any
other job, while both jobs are travelling.

A different problem related to SPBM concerns the flow
of communication. Antoniadis et al. (2014) describe a prob-
lem concerning packet forwarding along a line network; in
this setting, batch processing and the separation property are
absent, and all packets travel from left to right. An online
problem setting is considered and, for the objectives of mini-
mizing total flow time andminimizingmaximumflow time, a
competitive analysis indicates bounds on the performance of
different packet forwarding policies, with and without speed
augmentation. Adler et al. (1998) consider the scheduling of
messages to be routed across a line network. They show that
maximizing the number of on-time messages is NP-hard.
We point out that a notable difference with SPBM lies in
the assumption that a machine can, in the network setting,
simultaneously process jobs travelling in opposite directions.
Further, the existenceof deadlinesmay result in packets being
dropped once their deadline is exceeded.

SPBM also resembles the well-known flow shop problem.
A paper that is intimately related to a special case of SPBM
is Brucker et al. (2004). They consider a traditional flow shop
with two machines and arbitrary transportation times for a
job. This situation is quite close to the special case of SPBM
if we take (i) the uni-directional special case, (ii)m = 2, (iii)
B1 = B2 = 1, and (iv) s j = 1, e j = 2 for each j ∈ J .
However, due to the absence of the separation property in
Brucker et al. (2004), it is not clear how the hardness of their
flow shop problem carries over to SPBM. Moreover, we are
interested in machines that are parallel batching machines,
i.e. machines that have capacity Bi > 1.

A largebodyof related literature also exists on the schedul-
ing of a single-track railway line with a limited number of
segments or stations where overtaking is allowed. An early
paper on this topicwas presented byFrank (1966); since then,
many papers have studied integer programming models and
heuristics for this problem setting. While the single-track
railway scheduling problem shows similarities to SPBM, a
number of differences appear. First, a machine may serve
multiple jobs simultaneously. Secondly, in SPBM, travel time
follows from the distance between machines; in the railway
setting, such a section corresponds to a single-track segment,
which requires a train to stand still and incur waiting time in
order to allow overtaking. Gafarov et al. (2015) prove NP-
hardness for such a single-track railway problem. In their
problem setting, each of the trains has a due date, so that the
overtaking of trains may in fact be required, and the hard-
ness result follows in part from the underlying sequencing
problem.
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Results on the generalization of the flow shop problem
to a bidirectional processing order are scarce. One setting
where this variant is considered is presented by Zhao et al.
(2009); they consider a sequence of operations for a con-
tainer loading and unloading problem. A bidirectional flow
shop problem with additional constraints on the processing
order is described, and the authors present integer program-
ming formulations as well as a heuristic procedure based on
a relaxation of the original problem.

1.2 Our results

SPBM is, in its generality, a difficult problem to solve. We
analyse the complexity of SPBM for various special cases.
The following options are considered: an arbitrary number of
machines versus two machines, uni-directional versus bidi-
rectional, and arbitrary speeds versus identical speeds. Our
results are the following:

– Weprove that SPBMisNP-hard even form = 2 and in the
uni-directional case where all jobs are processed by both
machines. This result can be seen as the analogue of the
result by Brucker et al. (2004) with unbounded capacity
and with enforcement of the separation property. Further,
we show that SPBM is NP-hard in the bidirectional set-
ting, even if v j = v for all j ∈ J (Sect. 2).

– We discuss a class of solutions which satisfy particular
properties: so-called synchronized solutions. For a num-
ber of special cases, we investigate whether the existence
of an optimum synchronized solution can be guaranteed.
(Sect. 3)

– Finally, we prove that the uni-directional SPBM with
v j = v for all j ∈ J and with a common machine can be
solved in polynomial time (Sect. 4).

2 Hardness results

We prove that SPBM is strongly NP-hard. In fact, we pro-
vide a reduction that implies strong NP-hardness for a more
restricted uni-directional setting. The precise result is as fol-
lows.

Theorem 1 Problem dec-SPBM is strongly NP-complete,
even for two identical machines, with only right-travelling
jobs, andwhen each jobmust be processed by bothmachines.

The proof consists of a reduction starting from MAX CUT.
For a detailed description of the proof, we refer to ‘Appendix
A’.

A different hardness result can be obtained for a special
case of SPBM where all jobs have the same speed. Note

that, in contrast to the setting covered by Theorem 1, uni-
directional travel is not assumed in this setting. The precise
result is the following.

Theorem 2 Problem dec-SPBM is strongly NP-complete,
even for jobs with equal speed and identical machines with
unbounded capacity.

For the proof, which also consists of a reduction from MAX
CUT but which requires a significantly more involved con-
struction, we refer to ‘Appendix B’.

The results above indicate that finding an optimum solu-
tion for larger instances of the general SPBM problem is
likely unrealistic. This, however, need not prevent the exis-
tence of polynomial time algorithms for special cases of the
general SPBMproblem. In the following section, we identify
schedules with a specific structure that may guide the search
for such algorithms. In Sect. 4, this structure is then used
to present a polynomial time algorithm for a uni-directional
special case.

3 Synchronized solutions

In this section, we introduce a class of solutions that posses a
specific property: so-called synchronized solutions. We dis-
cuss a special case of SPBM involving two machines and
show that in this special case the existence of an optimal solu-
tion which is synchronized is guaranteed. We also show by
means of different examples that the existence of an optimum
solution which is synchronized does not extend to general-
izations of this two-machine setting.

We begin by stating the definition of a synchronized solu-
tion.

Definition 1 A solution to SPBM is synchronized if each job
j ∈ J only incurs waiting time before being processed in a
batch by its arrival machine s j .

Observe that if a solution is synchronized, it follows that
each job j ∈ R (respectively, j ∈ L), after having been
served by a machine m < e j (respectively, m > e j ), travels
tomachinem+1 (respectively,m−1) and immediately enters
a batch starting on machine m + 1 (m − 1) without incurring
anywaiting time. Figure 4 illustrates this definition; the input
data corresponding to the instance shown in the figure are
listed in Table 3.

Note that synchronized solutions correspond to so-called
greenwaves in traffic scheduling; for example,when schedul-
ing a series of traffic lights along an important road, it makes
sense to adjust the timing of the lights so that once a car
meets a first green light, it can keep travelling at the indi-
catedmaximum speed and arrive at all following traffic lights
without encountering any red lights. When considering our
bidirectional setting, a crucial difference with the scheduling
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Fig. 4 A synchronized solution to the instance described in Table 3.
The dotted lines correspond to the separation property

Table 3 Input data for an instance illustrating synchronized solutions

Jobs Machines

j r j dir j s j e j i Ti Bi xi

1 0 Left 3 1 1 2 ∞ 0

2 4 Right 2 3 2 2 ∞ 2

3 12 Left 2 1 3 2 ∞ 3

4 15 Right 1 3

5 15 Left 3 1

of traffic lights appears: a green light simultaneously serves
cars going in either direction, whereas a machine cannot.

3.1 Synchronized solutions for twomachines

We now consider a special case of SPBM featuring two iden-
tical machines with processing time T . The travel distance
between the machines is equal to zero (or, equivalently, the
travel time is considered negligible) and each job must pass
both machines. We consider the bidirectional setting. Fig-
ure 5 shows an instance of this special case, and a feasible
synchronized solution illustrating this special case of SPBM.
The solution shown in Fig. 5, with a total waiting time of 4
time units, is optimum. In fact, we show in this section that,
for this problem setting, there always exists an optimum solu-
tion which is synchronized. Recall that in a synchronized
solution, by definition, a job j ∈ J incurs waiting time only
before entering its arrival machine s j .

Theorem 3 For each instance of SPBM consisting of two
identical machines where the travel distance equals zero and
where all jobs must be served by both machines, there exists
an optimum solution which is synchronized.

Proof We prove the theorem by arguing that an arbitrary
optimum solutionO can be transformed into a synchronized
solution O ′ without increasing the total waiting time. LetI

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

Machine 2

Machine 1

X X X

X X

Fig. 5 An example of a synchronized schedule featuring two identical
machines. The distance between the machines is equal to zero. The
dotted lines correspond to the separation property

be an instance of the stated problem. We call the machines
in this instance machine 1 and machine 2, with machine 2
positioned to the right of machine 1. Further, we index the
batches scheduled on machine 1 by their starting time.

Consider an arbitrary optimum solution O . Clearly, in
an optimum solution, each non-empty right-travelling (left-
travelling) batch is first processed by machine 1 (2), and then
by machine 2 (1). For convenience, we restrict ourselves to
solutions where all odd-numbered batches on machine 1 are
right-travelling, all even-numbered batches on machine 1 are
left-travelling, and where every idle period between consec-
utive batches on machine 1 has a duration strictly smaller
than 2T . Notice that any feasible solution is easily modified
so that it satisfies these requirements, without increasing the
total waiting time. Indeed, empty batches can be scheduled to
startwhere needed since the separation property enforces that
a machine remains idle for at least T time units in between
subsequent batches that process jobs travelling in the same
direction.

Now consider all odd-numbered batches i of machine 1
and their subsequent batch i+1. Let ti and ti+1 be the respec-
tive starting timeof these batches.Clearly, ti+1−(ti+T ) ≥ 0,
since batch i + 1 cannot start earlier than the completion of
batch i . To build the synchronized solution O ′, we specify
the starting times for the corresponding batches on machine
2. We use t ′i (t ′i+1) to denote the starting time of the right-
travelling (left-travelling) batch on machine 2 that processes
the jobs in batch i (i +1). We distinguish the following cases
for the starting times of batches i and i + 1 in solution O .
Recall that the case where ti+1 − (ti + T ) ≥ 2T does not
occur since machine 1 is never idle for a period of 2T time
units.

– Case 1: ti+1 − (ti + T ) = 0. This situation is shown in
Fig. 6. We schedule the following batches in solutionO ′.
On machine 1, we schedule a right-travelling batch start-
ing at time ti and a left-travelling batch starting at time
ti+1, i.e. we copy the batches i and i +1 from solutionO
to O ′. On machine 2, we schedule a left-travelling batch
starting at time ti+1 − T processing all jobs that are pro-
cessed in batch i +1, and a right-travelling batch starting
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Fig. 6 Visualization of Case 1 in proving Theorem 3
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Fig. 7 Visualization of Case 2 in proving Theorem 3

at time ti + T processing all jobs that are processed in
batch i . Notice that this does not occupy either machine
outside of the interval [ti , ti+1 + T ). Also notice that any
job served by batch i in solution O ′ leaves machine 2 no
later than it does in solution O , and that any job served
by batch i + 1 in solution O ′ leaves machine 1 no later
than it does in solution O .

– Case 2: 0 < ti+1 − (ti + T ) < 2T . If either batch i or
batch i + 1 is empty, we may reschedule it so that these
two batches are consecutive without increasing the total
waiting time. We can then schedule batches on machine
2 as described in Case 1 above. Assume, thus, that both i
and i +1 are non-empty. The starting time of the batches
on machine 2 satisfies t ′i+1 + T ≤ ti+1 and t ′i ≥ ti + T .
Now, if t ′i < t ′i+1, it would mean that t ′i ≤ t ′i+1 − T since
machine 2 cannot simultaneously process two batches.
Then, the above inequalities imply that ti+T ≤ ti+1−2T
which signifies the existence of an idle period with a
duration of at least 2T , a contradiction. It follows that
t ′i ≥ t ′i+1, which actually means that t ′i ≥ t ′i+1 + T .
Consider now the moment t = max (ti + T , t ′i+1 + T ).
We claim that we have t ′i = t ′i+1 = t . Indeed, since O
is an optimum solution, it must be the case that the left-
travelling batch i+1 aswell as the right-travelling batch i
start at time t ; this follows from the fact that each of these
batches is non-empty, and that starting later than t only
increases total waiting time. Thus, we have a situation as
depicted in Fig. 7.

To construct solution O ′ we schedule, on machine 1, a
right-travelling batch starting at time t − T and a left-
travelling batch starting at time t . On machine 2, we
schedule batches so that no job incurs waiting time in
between the twomachines, as described in Case 1. Again
notice that each job served in either batch i or batch i +1
leaves its ending machine no later in solution O ′ than it
does in solution O , and that neither machine is occupied
outside of the interval [ti , ti+1 + T ).

For every pair of batches (i, i+1)with i odd, solutionO ′ thus
consists of an interval [ti , ti+1+T ) containing the structure in
Fig. 6. It is easily verified that such a solution is synchronized.
Furthermore, since the intervals containing these structures
do not overlap, solutionO ′ is feasible. Finally, since the total
waiting time in solutionO ′ is not greater than the totalwaiting
time of the solution O by construction, solution O ′ is also
optimum. ��

The proof of Theorem 3 implies that there exists an opti-
mum synchronized solution in which each right-travelling
(left-travelling) batch on machine 1 coincides with a simul-
taneous left-travelling (right-travelling) batch on machine 2.
Recall that, since the solution is synchronized, no job waits
in between the two machines. Informally stated, given the
presence of this structure, the two machines operate as a sin-
gle entity, both starting their batches at the same moments
in time. Thus, when we set the processing time of a sin-
gle machine to 2T , ignore the direction of a job, and keep
all other parameters the same, we have constructed a corre-
sponding single-machine instance. This structure allows us to
map each instance of this special case of SPBM to an instance
of a single-machine scheduling problem that is addressed in
Passchyn et al. (2016b). This discussion allows us to state
the following corollary.

Corollary 1 The special case of SPBM with two identical
machines, a travel distance equalling zero, and each job to
be processed by both machines, can be solved in polynomial
time.

Finally, we note that the proof of Theorem 3 can be seen
to hold in two slightly more general settings. If the setting
from Theorem 3 is modified so that it features non-identical
processing times T1 and T2, the proof remains valid if the
machine for which the schedule is copied from solution O
to solution O ′ is the machine with the largest processing
time. Similarly, if the setting from Theorem 3 is modified
so that it features arbitrary capacity bounds B1 and B2, the
proof remains valid if the chosen machine is the machine
with the smallest capacity. So, the theorem continues to hold
either for arbitrary processing times, or arbitrary capacity
bounds. We note that it does not hold, however, for both of
these extensions at the same time. This will be shown in the
following section.
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Table 4 Instance illustrating Observation 1

Jobs Machines

j r j dir j s j e j i Ti Bi xi

1 0 Left 2 1 1 1 1 0

2 0 Left 2 1 2 2 2 0

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

Machine 2

Machine 1

XX

Fig. 8 Feasible solution for the instance of Table 4

3.2 Synchronized solutions in general

We show that, in general, there may not always exist an opti-
mal solution that is synchronized. There are four conditions
formulated in Theorem 3: (i) the machines are identical, (ii)
there are two machines, (iii) the travel distance is equal to
zero, and (iv) each job is served by each machine, i.e. for all
j ∈ R: s j = 1 and e j = 2, and for all j ∈ L: s j = 2 and
e j = 1. Each of these conditions is necessary, as shown by
the following examples.

3.2.1 Two arbitrary machines

The first generalization we consider is the setting where the
two machines are not identical. Let T1, T2 and B1, B2 denote
the processing time and the capacity of the two machines,
respectively. Consider the instance described in Table 4 and
the solution (which is not synchronized) shown in Fig. 8.
The total waiting time in this solution equals 2 time units.
Observe that in any optimum solution, machine 2 starts a
left-travelling batch at time 0 containing both jobs, otherwise
the total waiting time equals at least 4 time units. Then, since
both jobs cannot be served by machine 1 at time 2, there
exists no feasible synchronized solution with a waiting time
less than 4 time units. We can conclude the following.

Observation 1 In case the two machines are not identical,
there exist instances for which no optimum solution is syn-
chronized.

Recall that if either T1 ≤ T2 and B1 ≥ B2, or T1 ≥ T2
and B1 ≤ B2, i.e. if the ‘fastest’ machine is also the ‘largest’
machine, it is easily argued that we can restrict ourselves
to solutions where the number of jobs in the machine with
the highest capacity never exceeds the capacity of the other
machine. We then obtain the setting with distinct processing

Table 5 Instance illustrating Observation 2

Jobs Machines

j r j dir j s j e j i Ti Bi xi

1, 2, 3 0 Right 1 3 1 3 ∞ 0

4 3 Left 3 1 2 3 ∞ 0

5 7 Right 1 3 3 3 ∞ 0

6, 7, 8 11 Left 3 1

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

Machine 1

Machine 2

Machine 3

X
4

XXX
6,7,8

XXX

1,2,3
X
5

a

Fig. 9 Feasible solution for the instance of Table 5

times and equal capacity, for which an optimum synchro-
nized solution exists, as shown in Sect. 3.1.

3.2.2 Three machines

A different generalization extends the problem setting by
including a third machine. We show that there may not exist
an optimum synchronized solution, even when each jobmust
be served by each of the three machines. Clearly, this result
immediately generalizes to any setting with more than three
machines.

Consider the instance described in Table 5 and the solution
shown in Fig. 9. It is easily verified in Fig. 9 that the shown
solution has a total waiting time of 2 time units. It follows
that jobs 1, 2, 3, 6, 7, and 8 must not incur any waiting time
in any optimum solution since the total waiting time would
be no less than 3 time units otherwise. In order to obtain a
total waiting time of at most 2 time units, it then follows
that job 4 must be processed in a batch (denoted by a in the
figure) starting immediately upon its arrival. Then, in any
synchronized solution,machine 1 starts a left-travelling batch
at time 9, so that job 5 incurs a total waiting time of at least 5
time units. Thus, for this instance, no synchronized solution
with a total waiting time of at most 2 time units exists.

Observation 2 In case there are three machines, there exist
instances for which no optimum solution is synchronized.
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Table 6 Instance illustrating Observation 3

Jobs Machines

j r j dir j s j e j v j i Ti Bi xi

1 0 Right 1 2 1 1 2 ∞ 0

2 2 Left 2 1 1 2 2 ∞ 2

3 5 Right 1 2 1

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

Machine 2

Machine 1

X
1

X
2

X
3

Fig. 10 Feasible solution for the instance of Table 6

3.2.3 Travel time

We now relax the assumption that the travel time in between
the machines is equal to zero. Notice that the speed of jobs
then becomes relevant. We show that there may not exist a
synchronized schedule which is optimum. Perhaps surpris-
ingly, this result also holds when all jobs travel at the same
speed and thus spend the same travel time in between the
machines, regardless of their direction of travel. The exis-
tence of an optimum solution which is synchronized thus
highlights a noteworthy difference between the settings with
and without travel time.

Consider the instance described in Table 6 and the feasible
solution shown in Fig. 10. It is easily verified in Fig. 10 that,
in the shown solution, job 2 incurs a waiting time of 1 time
unit, whereas jobs 1 and 3 incur no waiting time. Also note
that this solution is not synchronized, since the waiting time
for job 2 occurs in between the machines. The total waiting
time in this solution equals 1 time unit. Observe that in any
feasible solution with a total waiting time of at most 1 time
unit, at least two of the jobs incur no waiting time. Since, in
any feasible solution, either job 2 or job 3 has at least one unit
of waiting time, we conclude that there are only two cases to
consider:

1. Jobs 1 and 2 have nowaiting time. It immediately follows
that the earliest time at which machine 1 can serve job 3
is time 8, so that the total waiting time in this solution is
no less than 3 time units.

2. Jobs 1 and 3 have nowaiting time. It is easily verified that,
if job 2 enters a left-travelling batch in the time interval
[2, 6), the batches required to serve job 2 would overlap
with one of the batches serving job 1 or job 3. The earliest
time at which job 2 can enter machine 2 so that it incurs
no waiting time in between the machines is time 6. The
total waiting time of such a solution is then no less than
4 time units.

We conclude that a synchronized schedule for this instance
must have a total waiting time of at least 3 time units, while
a feasible solution exists with a total waiting time of 1 time
unit.

Observation 3 In case the travel time between the two
machines is not equal to zero, there exist instances for which
no optimum solution is synchronized.

3.2.4 Not all jobs pass both machines

Let us now consider the generalized setting where jobs need
not necessarily pass through each of the machines. We again
show that there does not always exist an optimum synchro-
nized solution. In fact, this holds even in a more restrictive
settingwhere there is onemachine thatmust serve all jobs;we
refer to such a setting as a setting with a ‘common machine’.
The uni-directional variant of such a common machine set-
ting is discussed in Sect. 4; in this case, it is shown that an
optimum synchronized solution exists.

Consider the instance described in Table 7 and the feasible
solution shown in Fig. 11. Clearly, the total waiting time in
this solution equals 1 time unit. Observe that in any feasible
solution with a total waiting time of nomore than 1 time unit,
at least two of the jobs have no waiting time. Since, in any
feasible solution, either job 1 or job 3 has at least one unit
of waiting time, we conclude that there are only two cases to
consider:

1. Jobs 1 and 2 have no waiting time. It then immediately
follows that machine 1 starts a left-travelling batch at
time 2, and that job 3 can enter machine 1 no earlier than
time 6. Any solution where this is the case thus has a total
waiting time no less than 3 time units.

2. Jobs 2 and 3 have nowaiting time. It follows thatmachine
1 processes a left-travelling batch starting at time 3, and
machine 2 processes a right-travelling batch starting at
time 2. It follows that the earliest time at which job 1
can enter machine 1 in a feasible synchronized solution
is thus time 7, so that such a solution has a total waiting
time no less than 5 time units.

It follows from the above that any feasible synchronized solu-
tion thus has a total waiting time no less than 3 time units.
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Table 7 Instance illustrating Observation 4

Jobs Machines

j r j dir j s j e j i Ti Bi xi

1 0 Left 2 1 1 2 ∞ 0

2 0 Right 1 2 2 2 ∞ 0

3 3 Left 1 1

Fig. 11 Feasible solution for the
instance of Table 7

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

Machine 2

Machine 1

X

2
X

1

X
3

Thus, there does not exist a synchronized solution which is
optimum for this instance.

Observation 4 In case not all jobs must be served by each
of the machines, there exist instances for which no optimum
solution is synchronized.

4 Uni-directional traffic with a common
machine

We prove that a uni-directional special case of SPBM can
be solved in polynomial time. The problem setting discussed
here considers identical machines with infinite capacity and
jobs travelling in a single direction at identical speeds. We
assume for simplicity that jobs travel at unit speed; it is eas-
ily seen that, by modifying the distance between machines,
any result for unit speed extends immediately to the setting
with arbitrary identical speeds. Jobs may arrive at arbitrary
positions, i.e. a job need not be processed by each of the
machines. A key difference with the uni-directional variant
of the setting from Sect. 2, however, is that we assume the
existence of at least one machine that must serve each of the
jobs.We refer to thismachine as the ‘commonmachine’. That
is, there exists a machine m∗ ∈ M satisfying s j ≤ m∗ ≤ e j
for all jobs j ∈ J . Throughout this section, we assume that
all machines are ordered from left to right and that all jobs
are right-travelling.

The underlying idea of the proposed method for solving
a given instance I of the problem setting stated above is as
follows.

1. Construct a single-machine instanceI ′ that is equivalent
to instance I . A formal definition of this equivalence
relationship will be given below.

2. Solve this single-machine instance to optimality, for
example by using a dynamic programming algorithm
described by Passchyn et al. (2016b).

3. Extend the obtained solution to a synchronized solution
for the original instance I .

We prove that this procedure yields an optimal schedule for
the original instance. In the following,wedescribe these steps
in detail and argue that the obtained solution has minimum
total waiting time.

Theorem 4 Problem SPBM for identical machines with infi-
nite capacity, jobs travelling in the same direction with equal
speed, and a common machine, reduces to solving the uni-
directional case of a single machine with infinite capacity.

Proof Given an instance I , we obtain an equivalent single-
machine instance I ′ as follows. Let the processing time of
the machines in I be equal to T . In instance I ′, we have a
single machine with processing time T and infinite capacity.
Let the set of jobs inI ′ be empty initially. For each job j in
I , we create a right-travelling job arriving at the machine.
The release time r ′

j of this job in the single-machine instance
is equal to r j minus the time needed to travel without any
waiting time from the left-hand side of the first machine in
I to the left-hand side of machine s j :

r ′
j = r j − (s j − 1)T −

s j−1∑

i=1

(xi+1 − xi ).

This defines instanceI ′. Informally, a release time r j is thus
‘traced back’ to the first machine by subtracting a fictitious
travel time assuming that this job j incurs no waiting time.
This is visualized in Fig. 12. Observe that the lines that trace
back these arrivals do not correspond to batches that are actu-
ally scheduled and thus need not be spaced without overlap.
Also note that a job may be traced back along a machine on
which it need not be served in instance I . This completes
the definition of instance I ′.

Next, we describe how to extend a solution for the single-
machine instance I ′ to a solution for the original instance
I . In the solution for I , we schedule batches for the first
machine at the same starting times and in the same direc-
tion as the batches in the solution for I ′. We then extend
this solution to a synchronized solution as if assuming that
each right-travelling batch contains a job travelling to the last
machine. More formally, letT be the set of starting times of
the right-travelling batches of the single machine in the solu-
tion toI ′. We schedule, for each machine i ∈ M in instance
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Machine 5

Machine 4

Machine 3

Machine 2

Machine 1

X X

X X

X X

X

Fig. 12 Release times for instance I ′. The circles mark the times of
arrival inI ′ corresponding to the original arrivals at machines 2, . . . , 5

I and for each t ∈ T , a right-travelling batch starting at
time t ′, with

t ′ = t + (i − 1)T +
i−1∑

�=1

(x�+1 − x�).

Observe that since all machines have identical processing
time, the separation property is satisfied and the constructed
solution is feasible. Further observe that, by construction, the
result is a synchronized schedule.

In the solution to I , we process each job in the first
available right-travelling batch.Notice that a number of right-
travelling batchesmay be empty. Indeed, since not all arrivals
in I occur at the first machine, and since not all jobs in
I travel to the last machine, right-travelling batches on a
machine before a job’s starting machine, or after a job’s
ending machine, may in fact remain empty. Clearly, we can
simply remove these empty batches with no impact on the
obtained solution.

This completes the description of the solution to I
obtained by extending a solution to the single-machine
instance I ′. Clearly, in any feasible solution to the single-
machine instance, all jobs are processed by the machine. The
constructed solution toI is thus feasible.We now argue that
the single-machine instance I ′ is equivalent to the original
instance I :

Lemma 1 A solution with a total waiting time of at most W
for instance I ′ exists if and only if a solution with a total
waiting of at most W exists for the given instance I .

Proof ⇒ Consider a schedule with total waiting time W
for the single-machine instance I ′, and the corresponding

solution for instance I obtained by extending the single-
machine solution as described above. For each job inI ′, the
waiting time incurred at the machine is equal to the waiting
time incurred at the corresponding job’s starting position in
instance I . Indeed, this is trivial for all jobs arriving at the
first machine, since both their time of arrival and the sched-
ule of the first machine are identical in instancesI andI ′.
For all other jobs, it can be seen that the difference between
the release time of a job j ∈ J and the corresponding job
in I ′, is equal to the difference between a right-travelling
batch starting on the first machine and a corresponding right-
travelling batch of machine s j .

Thus, by construction, the total waiting time of a job in
the solution for I ′ is equal to the waiting time of the corre-
sponding job in the solution for I . Since this holds for all
jobs, it follows that the constructed solution forI has a total
waiting time of exactly W .

⇐ Now consider a feasible solution F for instance I
with a total waiting time of at mostW . Let us first argue that
there exists a synchronized schedule with a total waiting time
of at mostW . For each job j ∈ J , let t j be the starting time of
the right-travelling batch of machine m∗ containing j . Next,
we define r∗

j to be the latest possible time at which a job can
enter a batch of machine s j so that it reaches machine m∗ at
time t j , for j ∈ J . Due to the unavoidable total processing
time and the travel time between machines s j and m∗, we
have:

r∗
j = t j − (m∗ − s j )T −

m∗−1∑

i=s j

(xi+1 − xi ).

Clearly, since solution F is feasible, we have r j ≤ r∗
j for

all jobs j ∈ J . Further, we define C∗
j as the earliest possi-

ble time at which a job can leave its ending machine e j if it
enters machine m∗ at time t j . Due to the unavoidable total
processing time and the travel time between machines m∗
and e j , we have:

C∗
j = t j + (e j − m∗ + 1)T +

e j−1∑

i=m∗
(xi+1 − xi ).

Consider the set of starting times of non-empty right-
travelling batches of machine m∗ in solution F , and let us
denote this set by Tm∗ . We thus have Tm∗ = {t j | j ∈ J }.
Based on this set of starting timeswe nowconstruct a solution
F S by extending the batches scheduled on machine m∗ at
times t j to a synchronized schedule for all machines i ∈ M ,
using the same procedure as illustrated in Fig. 13. Notice
that, since it may be the case that m∗ > 1, we extend the
solution to machines on the left of machine m∗ as well as to
the right of machine m∗.
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Machine 3

Machine 2

Machine 1

Fig. 13 Extending a solution for the single-machine instanceI ′ (repre-
sented as thick solid lines) to a synchronized solution for an instanceI
featuring three machines. The dotted lines correspond to the separation
property

More formally, let T S
i represent the starting times of

all right-travelling batches on machine i in solution F S .
We then set the starting times on each machine i ∈ M as
follows:

– For machine m∗, we have T S
m∗ = Tm∗ = {t j | j ∈ J }.

– For all machines i with i < m∗, we have T S
i =

{t j − (m∗ − i)T − ∑m∗−1
�=i (x�+1 − x�) | j ∈ J }.

– For all machines i with i > m∗, we have T S
i =

{t j + (i − m∗)T + ∑i−1
�=m∗(x�+1 − x�) | j ∈ J }.

Clearly, the solution F S that is thus constructed is
synchronized. Furthermore, since the given solution F is
feasible and since all machines are identical, the scheduled
batches inF S do not overlap. Observe that, inF S , each job
j ∈ J that is served bymachinem∗ at time t j , is served by its
arrivalmachine s j at time r∗

j . Since r
∗
j ≥ r j for all jobs j ∈ J ,

the constructed solutionF S is feasible. Finally observe that,
inF S , each job j ∈ J that is served bymachinem∗ at time t j ,
leaves its departure machine at time C∗

j . It follows that each

job j ∈ J leaves its ending machine no later in solutionF S

than it does in solution F . Solution F S is thus a synchro-
nized solution with a total waiting time equal to at most W .

By the construction of instance I ′, the waiting time
incurred by a job j ∈ J in a synchronized solution for
instance I is exactly equal to the waiting time incurred by
the corresponding job in a solution for instance I ′. There
thus exists a solution with a total waiting time of at most W
for I ′. ��

From the lemma establishing the equivalence between an
instance I and the corresponding instance I ′, it imme-
diately follows that minimizing the total waiting time for
instance I ′ yields an optimum solution for the original
instance I , proving the theorem. ��

We note that constructing the instance I ′, as well
as extending the obtained solution for the single-machine
instance to a solution for the original instance, can be

achieved in polynomial time. To solve the single-machine
instance, aO(n2)dynamicprogrammingalgorithmdescribed
by Passchyn et al. (2016b) can be used. In fact, since the
single-machine instances in the setting above are restricted
to the uni-directional setting, a more efficient algorithm
may also exist. Note that, since the only instance that
must be solved throughout this procedure features only
a single machine, the computational complexity of the
proposed algorithm does not depend on the number of
machines.

5 Conclusion

In this work, we investigated the complexity of optimally
scheduling a sequence of parallel batching machines with
respect to the total waiting time. We showed that this prob-
lem is strongly NP-hard, both in the special case with two
identical machines in the uni-directional setting, as well as in
the special case with identical machines, identical job speed,
in the bidirectional setting. Additionally, we introduced the
notion of a synchronized solution, we identified two spe-
cial cases for which every instance has an optimum solution
which is synchronized, and we showed how to find these
solutions in polynomial time.

We observe that the complexity of scheduling parallel
batching machines in sequence is not fully characterized for
all special cases. In order to close the gap between computa-
tionally easy and computationally hard problems, it may be
interesting to investigate the complexity of the setting with
identical machines, identical job speed, and uni-directional
travel. Note that this case, where jobs may arrive and depart
at arbitrary positions, separates the settings for which we
obtained results in Sects. 2 and 4. Another problem set-
ting that remains open is whether the bidirectional setting
with identical machines, identical job speed, and a com-
mon machine, can be solved in polynomial time. Further,
it may also be interesting to investigate whether SPBM with
identical job speed can be solved in polynomial time for a
fixed number of machines, for example bymeans of dynamic
programming. Finally, motivated by the application in lock
scheduling, it is interesting to consider a more sophisti-
cated way of dealing with the capacity of the machines. It
is conceivable to consider a problem where the jobs are par-
titioned into different (size-)classes and where the capacity
of a machine is described in terms of numbers of jobs of each
class that can jointly be processed.

Acknowledgements This research has been partially funded by the
Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office. This work was carried out when both authors
were affiliated with KU Leuven. We thank the associate editor and the
referees for their careful reading of the manuscript.

123



Journal of Scheduling (2019) 22:335–357 347

A Uni-directional traffic: proof of Theorem 1

Here, we provide a proof of Theorem 1, i.e. we show
that problem SPBM is strongly NP-hard, even in the uni-
directional setting with two identical machines and where
each job must be processed by both machines. The proof is
inspired by a hardness proof by Disser et al. (2015) for a
problem featuring bidirectional traffic along a path where a
limited number of spots are available to allow overtaking and
crossing of traffic.

We start our reduction from MAX CUT, which con-
sists of answering the following question: given a graph
G = (V , E), does there exist a cut consisting of at least
K edges? This problem is shown to be NP-hard, see Garey
et al. (1976). Notice that we consider the unweighted case,
sometimes referred to as SIMPLE MAX CUT.

For a given instance of MAX CUT, we describe a corre-
sponding instance of the decision version of SPBM. We will
then argue that solving dec-SPBM for this instance corre-
sponds to deciding the question of MAX CUT. We first turn
G into a directed graph by choosing some ordering of the
vertices in V , and next orienting every edge from the vertex
with smaller index to the vertex with larger index.

The instanceI of dec-SPBM is as follows. There are two
identical machines, called machine 1 and machine 2 from
left to right. Both machines have unit processing times (i.e.
T1 = T2 = 1), the capacity of each machine is infinite (i.e.
B1 = B2 = ∞), and the distance between the two machines
is equal to 1 (i.e. x1 = 0 and x2 = 1). The set of jobs
J consists of a total of n = 2|V ||E | + 2|V | + 2|E | jobs.
All jobs are right-travelling and must be processed by both
machines, i.e. s j = 1 and e j = 2 for all j ∈ J . For ease
of exposition, we distinguish two types of jobs: vertex jobs
and edge jobs. Note that the speed of the jobs need not be
identical, as will be described in what follows.

We now specify the release times r j for each job j ∈ J .
Recall that we have imposed an arbitrary order on V : let
V = {1, . . . , |V |}. For each vertex v ∈ V , we have |E | + 1
vertex jobs arriving at time 5(v − 1) and |E | + 1 vertex
jobs arriving at time 5(v − 1) + 1. We thus have a total of
2|V |(|E | + 1) vertex jobs. For each vertex v ∈ V , we say
that the time interval [5(v − 1), 5v) on the first machine is
the period corresponding to vertex v on the first machine, and
the time interval [5|V |+5(v −1), 5|V |+5|V |) is the period
corresponding to vertex v on the second machine. The speed
of each vertex job equals 1/(5|V |−1), i.e. each vertex job needs
5|V | − 1 time units to travel the distance between the two
machines.

In addition, there are two edge jobs for each (vi , v j ) ∈ E :
one job arriving at time 5(vi −1), and one job arriving at time
5(vi − 1) + 1. We will refer to these arrivals as the first job
and second job corresponding to edge (vi , v j ), respectively.
Clearly, we have 2|E | edge jobs in total. The speed of the
first job corresponding to edge (vi , v j ) equals 1/(5(|V |+v j−vi )),
while the speed of the second job equals 1/(5(|V |+v j−vi )−2).

The question is: does there exist a solution with total wait-
ing time of at most W ≡ |V ||E | + |V | + 3|E | − 2K ? This
completes the description of the instance of dec-SPBM. An
overview of the constructed instance of dec-SLS is shown in
Fig. 14. A detailed illustration of the vertex jobs and edge
jobs follows in the remainder of this section.

Before we argue the equivalence between a yes-instance
of MAX CUT and a yes-instance of dec-SPBM, let us first
explicitly describe two particular ways of serving the jobs
arriving in a given period. Figure 15 illustrates two possible
ways of serving the jobs arriving in a period corresponding
to some vertex v on the first machine.

In the first option, all jobs arriving at time 5(v−1) consti-
tute a batch, and start being processed immediately. At time
5(v − 1) + 1, machine 1 has finished processing these jobs,

v1 v2 v3 v4

v1 v2 v3 v4

Machine 1
(left)

Machine 2
(right)

Fig. 14 Overview of a constructed instance of dec-SPBM. The blocks represent periods corresponding to the vertices in G. Dashed lines represent
vertex jobs, while waved lines represent edge jobs
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Fig. 15 Illustration of option 1 (solid lines) and option 2 (dashed lines)
to serve the jobs arriving in a period on the first machine

which then travel to machine 2. Due to the separation prop-
erty, machine 1 can start processing a new right-travelling
batch not before 5(v − 1) + 2. This batch contains all jobs
that arrived at time 5(v − 1) + 1. Notice that the latter jobs
incur 1 unit of waiting time. We refer to this way of serving
the jobs in this period as option 1. A second way to serve the
jobs corresponding to vertex v on the first machine is for all
of these jobs to constitute a single batch, and start processing
at time 5(v −1)+1. In this case, notice that the jobs arriving
at time 5(v − 1) incur 1 unit of waiting time. We refer to this
way of serving the jobs that arrive in this period as option 2.

Given these two options for serving the arrivals atmachine
1, we can define two similar options for each period on
machine 2. Let option 1 on the second machine consist of
right-travelling batches starting at times 5|V |+5(v −1) and
5|V |+5(v−1)+2; let option 2 on the secondmachine consist
of right-travelling batches starting at times 5|V |+5(v−1)+1
and 5|V | + 5(v − 1) + 3.

Notice that, on eithermachine, options in different periods
are independent of each other since there is enough time to
ensure that the separation property is satisfied across periods,
regardless of which option is chosen for the different periods.
For example, selecting option 1 in the period [5, 10) does not
prevent us from selecting either option 1 or option 2 in the
periods [0, 5) or [10, 15).

We now argue the equivalence between a yes-instance of
MAX CUT, and a yes-instance of dec-SPBM. Suppose that
there exists a cut in the graph G with at least K edges; let
the corresponding partition of the node-set V be indicated by
V1 and V2. We build the following solution for the instance
of dec-SPBM. If vertex v ∈ V1, we use option 1 for the
two periods corresponding to vertex v; if vertex v ∈ V2, we
use option 2 for the two periods corresponding to vertex v.
We claim that a solution with total waiting time bounded by
W then arises by (i) scheduling each job arriving at the first
machine in the first possible batch; next, (ii) having each job
immediately travel to the second machine after leaving the
first machine; and finally (iii) scheduling in the first possible
batch of the second machine.

We first revisit the vertex jobs. Observe that in each period
on machine 1, no matter whether option 1 or option 2 is
used, one half of the arriving vertex jobs in that period has no

waiting time and the other half incurs a waiting time of 1 time
unit. This accounts for a total waiting time of |V |(|E | + 1)
for the vertex jobs at the first machine. Recall that these jobs
require a travel time of 5|V |−1 in between the twomachines.
Suppose that option 1 is selected for the period corresponding
to v on machine 1. This means that at time 5(v − 1) + 1 and
at time 5(v − 1) + 3, there are |E | + 1 vertex jobs leaving
machine 1 and travelling towards machine 2. It follows that
these jobs are available for processing on machine 2 at times
5|V |+5(v−1) and 5|V |+5(v−1)+2, respectively. Observe
that this period onmachine 2 also corresponds to vertex v and
hence uses option 1. Thus, these jobs do not incur anywaiting
time at machine 2. In the case that v ∈ V1, we thus have a
waiting time of |E | + 1 for the vertex jobs corresponding to
v. In the case that v ∈ V2, a similar argument can be made.
Indeed, the |E | + 1 jobs arriving at time 5(v − 1) then each
incur a waiting time of 1 time unit at the first machine; all
vertex jobs arriving in the period corresponding to v leave
the first machine at time 5(v − 1) + 2 and are available for
processing on the secondmachine at time 5|V |+5(v−1)+1.
Since option 2 was selected for this period, these jobs do not
incur any additional waiting time atmachine 2. It follows that
the total waiting time due to vertex jobs equals |V |(|E |+ 1).
An illustration of this construction is provided in Fig. 16.

We now look at the edge jobs. Consider an edge (vi , v j ) ∈
E (with vi < v j ). Recall that the first job corresponding to
this edge requires a travel time of 5(|V | + v j − vi ), and
the second job requires a travel time of 5(|V | + v j − vi ) −
2. For convenience, let ti = 5(vi − 1) and t j = 5|V | +
5(v j − 1), so that ti and t j are the starting time of the period
corresponding to vi on machine 1 and the starting time of
the period corresponding to v j on machine 2, respectively.
We now have the following four cases to consider, illustrated
graphically in Fig. 17.

– Case 1: option 1 is used for the period corresponding
to vi on machine 1 and option 1 is used for the period
corresponding to v j on machine 2. Then, the first job
is processed by machine 1 at its release time ti , leaves
machine 1 at ti+1, and due to its speed, arrives atmachine
2 at time t j + 1, where it has to wait 1 time unit in order
to be processed. The second job waits 1 time unit in front
of machine 1, leaves machine 1 at ti + 3, and arrives at
machine 2 at time t j + 1. Hence, the second job also has
towait 1 time unit in front ofmachine 2. The total waiting
time for these two jobs in this case equals 3 time units.

– Case 2: option 1 is used for period vi on machine 1 and
option 2 is used for period v j on machine 2. Then, the
first job leaves machine 1 at ti +1 and arrives at machine
2 at time t j +1. The second job incurs one unit of waiting
time at machine 1, leaves machine 1 at time ti + 3, and
arrives at machine 2 also at time t j + 1. Hence, neither
job incurs any additional waiting time at machine 2; the
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Fig. 16 Illustration of the vertex jobs in a period corresponding to a vertex v. Each ‘X’ marks the arrival of |E | + 1 vertex jobs

Fig. 17 Illustration of the edge
jobs in a period corresponding
to an edge (vi , v j ). Each circle
marks the arrival of a single
edge job
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total waiting time for these two jobs in this case equals 1
time unit.

– Case 3: option 2 is used for period vi on machine 1, and
option 1 is used for period v j on machine 2. Then, both
the first and second job are processed by machine 1 at
time ti + 1 and leave machine 1 at ti + 2. Due to their
speeds, the first job arrives at machine 2 at time t j + 2,
while the second job arrives at machine 2 at time t j . It
follows that neither job incurs any additionalwaiting time
at machine 2; the total waiting time for these two jobs in
this case equals 1 time unit.

– Case 4: option 2 is used for period vi on machine 1, and
option 2 is used for period v j on machine 2. Then, both
the first and second job are processed by machine 1 at

time ti + 1 and leave machine 1 at ti + 2. Due to their
speeds, the first job arrives at machine 2 at time t j + 2,
while the second job arrives at machine 2 at time t j . Both
jobs incur an additional waiting time of 1 time unit. The
total waiting time for these two jobs in this case equals 3
time units.

We conclude this case analysis by observing that if the
same option is selected for a period vi on machine 1 and a
period v j on machine 2 that correspond to an edge (vi , v j ) ∈
E , there is a waiting time of 3 time units corresponding to
this edge. If the two selected options for the periods corre-
sponding to this edge differ, there is a waiting time of 1 time
unit.
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Since the cut inG contains K edges, we infer that the edge
jobs have a totalwaiting timeof K+3(|E |−K ) = 3|E |−2K .
Indeed, observe that if edge (vi , v j ) is in the cut, i.e. if vi ∈ V1
and v j ∈ V2, the two options used for periods vi and v j

differ, resulting in a waiting time of 1 corresponding to this
edge; otherwise, there is a waiting time of 3. Hence, the total
waiting time for all jobs equals |V |(|E |+1)+3|E |−2K =
W . A yes-instance of MAX CUT thus gives rise to a yes-
instance of dec-SPBM.

Consider now a solution to the instance of SPBM with a
total waiting time of at most W . First, we argue that we can
assume that such a solution is so-called sensible. We say that
a solution to dec-SPBM is sensible if

– Condition 1: each job enters thefirst right-travelling batch
that occurs at or after its arrival at a machine,

– Condition 2: in each period onmachine 1 and onmachine
2, either option 1 or option 2 is used.

We argue that we can restrict ourselves to sensible solutions
only.

Lemma 2 For any feasible solution to SLS with total waiting
time W ′, there exists a sensible solution to SLS with total
waiting time at most W ′.

Proof It is easily argued that Condition 1 can be enforced
without increasing the total waiting time. Indeed, given any
solution that does not satisfy Condition 1, it is obvious that
each job for which an earlier batch assignment is available
can be immediately reassigned to that earlier batch; this does
not increase the total waiting time.We note that an equivalent
statement also holds when the capacity of each machine is
bounded: each job then enters the first non-full batch starting
at or after its arrival at a machine.

To see that Condition 2 can be guaranteed, observe that
there exists an optimal solution where each batch of a
machine either (i) starts at a moment in time where some
job that is served by the batch arrives at this machine, or (ii)
starts immediately upon the completion time of a preced-
ing batch of this machine. If neither is the case, it is easily
seen that such a batch can start earlier in time, which can-
not increase the total waiting time. Consider now a period
on the first machine, corresponding to some vertex v. It fol-
lows that we can restrict ourselves to solutions where the
first right-travelling batch starts at time 5(v − 1) or at time
5(v − 1) + 1. This corresponds to either option 1 or option
2.

As a result, on the second machine, jobs arrive only at
times t , t + 1, or t + 2, where t denotes the starting time of a
period corresponding to some vertex v ∈ V . Thus, the same
argument can be repeated to see that selecting either option 1
or option 2 yieldsminimumwaiting time for any given period

on the second machine. Since this holds independently for
each period on each machine, the claim follows. ��

Wemaynowassume that the given solution for dec-SPBM
is a sensible solution with a total waiting time bounded by
W . Let us argue that the instance of MAX CUT is then a
yes-instance. Since our solution for dec-SPBM is a sensible
solution, it follows that in each period either option 1 or
option2 is used.Weagain consider thewaiting timeof the two
types of jobs. For each vertex v ∈ V , observe that there are
2(|E |+1) vertex jobs arriving in the period corresponding to
v on the first machine. These jobs incur a total waiting time of
|E |+1 if both periods corresponding to v use the sameoption,
and a total waiting time of 3(|E | + 1) if the two periods use
different options. For the edge jobs, recall that the two jobs
corresponding to an edge (vi , v j ) incur a total waiting time
of 1 if different options are used for the period corresponding
to vi on the first machine and the period corresponding to v j

on the second machine; if the same option is used for these
periods, the total waiting time equals 3 time units. Observe
that, since there are |E | edges and |V | periods where vertex
jobs arrive, a total waiting time of |V |(|E |+ 1)+|E | cannot
be avoided.

We claim that the two periods corresponding to any given
vertex v ∈ V must use the same option. We argue by contra-
diction. Recall that the total waiting time must equal at least
|V |(|E | + 1) + |E | and that an additional waiting time of
2(|E | + 1) is incurred for every vertex v for which the two
corresponding periods are scheduled with different options.
Assume that there is a single vertex for which this is the
case. It follows that the total waiting time is then at least
|V |(|E |+1)+|E |+(2|E |+1) > |V ||E |+|V |+3|E |−2K =
W . This contradicts that our solution for dec-SPBM has a
waiting time of at most W . It follows that for each vertex
v ∈ V , the two corresponding periods are scheduled using
the same option. We can conclude that in any sensible sched-
ule with a total waiting time no greater than W , the total
waiting time equals |V |(|E | + 1) + |E | plus an additional
waiting time of 2 time units for every edge (vi , v j ) ∈ E
(with vi < v j ) where the periods corresponding to vi are
scheduled in the same state as the periods corresponding to
v j .

Finally, we construct a solution to MAX CUT by assign-
ing a vertex v to V1 (V2) if option 1 (option 2) is used for the
two periods corresponding to vertex v. Then, since the solu-
tion to dec-SPBM has a total waiting time no greater than
W = |V ||E | + |V | + |E | + 2(|E | − K ), it follows that there
are at least K pairs of vertices (vi , v j ) such that the period
corresponding to vi on machine 1 is scheduled with a differ-
ent option than the period corresponding to v j on machine
2. Indeed, if only K − 1 pairs use different options, the total
waiting time equals at least |V ||E |+|V |+(K −1)+3(|E |−
(K − 1)) = |V ||E | + |V | + 3|E | − 2K + 2. By construc-
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tion, there are thus at least K pairs of vertices vi and v j with
(vi , v j ) ∈ E such that exactly one of these vertices is in V1
and the other is in V2. Thus, there are at least K edges in the
resulting cut in G. A yes-instance of dec-SPBM thus gives
rise to a yes-instance of MAX CUT, which completes our
reduction.

As a remark,we note that the construction of this reduction
can be modified so that each machine has unit capacity and
all arrivals occur at distinct times. This can be achieved by
extending the length of each period corresponding to a vertex
and spreading all simultaneous arrivals out over time. Notice
that Lemma 2 also holds in this more general setting. We
omit a formal description of this proof. As a corollary, it then
follows that SPBM is strongly NP-hard for each fixed Bi .

B Jobs with equal speed: proof of Theorem 2

Weprovide a proof for Theorem 2, i.e. we show that SPBM is
strongly NP-hard even in the setting with identical machines
and where the speed of all jobs is the same. Note that in the
reduction outlined below, jobs travel in both directions. A
crucial difference with the reduction provided in ‘Appendix
A’ is that, here, the number of machines is not bounded by
a constant. Furthermore, jobs need not be served by each of
themachines: we specify a startingmachine s j and an ending
machine e j for all jobs j ∈ J .

The general outline of the reduction is inspired by a reduc-
tion for a problem involving bidirectional traffic on a path,
described by Disser et al. (2015). This setting, however, does
not correspond exactly to the machine scheduling setting, as
mentioned in Sect. 1.1. The wording and presentation of the
proof in this section also resemble the proof of Theorem 1.

We again start our reduction from MAX CUT; recall that
an instanceofMAXCUTconsists of a graphG = (V , E) and
a non-negative integer K . To aid the exposition of the reduc-
tion, we first provide a general overview of the reduction
before describing all details. The total number ofmachines in
the instance of SPBM is not bounded by a constant, although
we argue below that this number is bounded by O(|E |). On
the machines, we describe periods that correspond to the
vertices in the instance of MAX CUT. A crucial part of the
construction is that, on eachmachine that contains these peri-
ods, the order of the vertices corresponding to the periods is
permuted. Similar to the argument in ‘Appendix A’, we first
show that there are only two sensible scheduling options for
each period; the option that is chosen in a given period reflects
the assigned partition in the corresponding instance of MAX
CUT.

Figure 18 illustrates a simplified overview of the funda-
mental part of the construction: a set of periods on a sequence
of machines that represents the existence of an edge. In the
figure, this is shown for an edge (v1, v4). Each square in

v1 v2 v3 v4

v2 v1 v3 v4

v2 v3 v1 v4

v2 v3 v1 v4

Machine 1
(left)

Machine 2

Machine 3

Machine 4
(right)

Fig. 18 Illustration of the construction for an edge (v1, v4). Only the
odd-numbered machines are shown. Each box represents a period cor-
responding to a vertex. Dashed lines connect periods corresponding to
the same vertex on the same time interval; waved lines connect adjacent
periods for which the corresponding vertex is interchanged; dotted line
models the existence of an edge between diagonally adjacent periods

the figure represents a period on one of the machines; each
period corresponds to a vertex. We say that two periods
are adjacent if they occupy consecutive time intervals on
the same machine. We say that two periods are diagonally
adjacent if they occupy consecutive time intervals on two
consecutive odd-numbered machines. Note that in Fig. 18,
only the odd-numbered machines are shown. The role of the
even-numbered machines will be specified in the detailed
description of the construction. The main components of the
construction are (1) sets of jobs, represented in the figure
by dashed lines, which ensure that two periods occupying
the same time interval on different machines correspond to
the same vertex, (2) sets of jobs, represented in the figure by
waved lines, which ensure that the vertices towhich two adja-
cent periods correspond are interchanged from one machine
to the next, and (3) sets of jobs, represented in the figure by
dotted lines, which correspond to the existence of an edge
between the vertices corresponding to two diagonally adja-
cent periods. In what follows we argue that the constructed
instance of SPBM corresponds to a given instance of MAX
CUT and provide a detailed description of these three com-
ponents.
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To define the set of jobs in the SPBM instance, we distin-
guish jobs of different types. All jobs travel at unit speed, i.e.
each job traverses one unit of distance per unit of time. The
two types of jobs are:

1. jobs of type 1, arriving on the left side of a specified
machine i and travelling towards the right side of this
machine i . Each type 1 job thus only requires processing
on a single machine. We have s j = e j = i and j ∈ R for
all jobs j of type 1.

2. jobs of type 2, arriving at a specified machine i ; each job
of this type may be right-travelling or left-travelling, and
requires processing by threemachines. For a job j ∈ J of
type 2, we thus have either s j = i , e j = i +2 and j ∈ R,
or s j = i , e j = i − 2 and j ∈ L . In what follows, the
travel direction and characteristics will be distinguished
as needed.

To construct an instance of dec-SPBM, we use an algo-
rithmic description. This algorithm runs a procedure for each
edge (vi , v j ) ∈ E where vi < v j . We initialize by specifying
the first machine and next we use the procedure described
below. Each odd-numbered machine in the instance has n
periods, each corresponding to a vertex in V . A period con-
sists of a time interval on a machine i ; the p’th period spans
a time interval [24(p−1), 24p). For convenience, we define
tp = 24(p − 1), which equals the starting time of the p’th
period on each of the machines. Note that, as illustrated in
Fig. 18, the p’th period on a machine i does not neces-
sarily correspond to the vertex vp, and the order in which
periods correspond to vertices need not be the same on dif-
ferent machines. The processing time equals Ti = 2 and
the distances between machines satisfy xi+1 − xi = 6 for
all machines i in the instance. The machines in M remain
ordered from left to right, i.e. as new machines are added to
M throughout the procedure, they are added to the right of
the existing machines.

Initialization

We start with a single machine: M = {1}. At this machine 1
we have, for each vertex v ∈ V , |E | + 1 arrivals of type 1 at
each of the times 24(v−1), 24(v−1)+2,…, 24(v−1)+18.

We define the p’th period on machine 1, i.e. the period on
the interval [24(p−1), 24p), to be the period corresponding
to vertex p, for all p ∈ {1, . . . , |V |}. For convenience, we
also define the value m∗ = 1, representing the last machine
in M at each step in the construction procedure where new
machines are added to M . Figure 19 illustrates the arrivals
of type 1 in such a period.

As in ‘Appendix A’, we first highlight two possible ways
to schedule a machine to serve the arrivals that arrive within
a period on some machine. Let t be the starting time of the
period. Option 1 consists of scheduling a series of consecu-
tive batch operations starting with a right-travelling batch at
time t and ending with a right-travelling batch that starts at
time t+20; option 2 consists of scheduling a series of consec-
utive batch operations starting with a right-travelling batch at
time t + 2 and ending with a right-travelling batch that starts
at time t + 18. Observe that if either of these options is used,
the jobs of type 1 incur a total waiting time of 10(|E | + 1).
Also notice that options in different periods are independent
of each other since there is enough time to ensure that the
separation property is satisfied across periods, regardless of
which option is chosen for the different periods. For exam-
ple, selecting option 1 in the period [24, 48) does not prevent
us from selecting either option 1 or option 2 in the periods
[0, 24) or [48, 72).

For each edge (vi , v j ) ∈ E , we now describe a proce-
dure that specifies a set of machines, and arrivals at these
machines, to be added to the partial instance. This procedure
is run for each edge once, and after the final edge the instance
is complete.

Procedure repeated for each edge

Consider some edge (vi , v j ) ∈ E with vi < v j . Let i and j
be the periods corresponding to vi and v j on machine m∗,
respectively. We assume that ti < t j ; if this does not hold,
we simply swap i and j below. The procedure is as follows.

1. While the periods corresponding to vertices vi and v j on
machine m∗ are not adjacent, repeat

(a) We add two new machines: let M ← M ∪ {m∗ +
1,m∗ + 2}.

Fig. 19 Illustration of a period
on some machine,
corresponding to a vertex. Each
‘X’ marks the arrival of |E | + 1
type 1 jobs. Solid lines
correspond to option 1; dashed
lines correspond to option 2
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(b) On machine m∗ + 2, we have periods corresponding
to vertices: for each p ∈ {1, . . . , n}, we add |E | + 1
arrivals of type 1 at each of the times tp, tp + 2, …,
tp + 18.

(c) Let vk be the vertex to which the period [ti + 24, ti +
48) on machine m∗ corresponds; note that this is the
period following the period corresponding to vertex
vi on machine m∗. Clearly, vk �= vi and vk �= v j . We
say that, on machine m∗ + 2, vertex vk corresponds
to period [ti , ti + 24), and vertex vi corresponds to
period [ti + 24, ti + 48). Notice that, compared to
machine m∗, the vertices corresponding to these two
periods are interchanged onmachinem∗+2.All other
vertex-period correspondences remain equal to those
on machine m∗.

(d) On machine m∗, we add |E | + 1 arrivals of type 2
at each of the times ti + 16 and ti + 18. These jobs
are right-travelling and are thus served by machines
m∗, m∗ + 1, and m∗ + 2. Additionally, on machine
m∗ + 2, we add |E | + 1 arrivals of type 2 at each
of the times ti + 10 and ti + 12. These jobs are left-
travelling and are thus served by machines m∗ + 2,
m∗ + 1, and m∗. For convenience, we will refer to
the jobs added in this step as jobs of type 2a. Notice
that these jobs are added in the periods for which the
vertex-period correspondence changes frommachine
m∗ to machine m∗ + 2.

(e) On all remaining periods on machinem∗, i.e. all peri-
ods [tk, tk+24) for which tk �= ti and tk �= ti +24, we
add |E |+1 arrivals of type 2 at both time tk and time
tk+2. For convenience,wewill refer to the jobs added
in this step as jobs of type 2b. Notice that these jobs
are added in the periods for which the vertex-period
correspondence remains the same from machine m∗
to machine m∗ + 2.

(f) We updatem∗ so that it again refers to the latest added
machine in the instance. That is, we setm∗ ← m∗+2.
Further, we redefine i and j to be the periods corre-
sponding to vi and v j on the new last machine m∗;
we adjust ti and t j accordingly.

2. Observe that the periods corresponding to vi and v j are
now adjacent on machine m∗. We add two additional
machines: let M = M ∪ {m∗ + 1,m∗ + 2}. On machine
m∗ +2, we again have periods corresponding to vertices:
for each p ∈ {1, . . . , n}, we add |E | + 1 arrivals of type
1 at each of the times tp, tp + 2, …, tp + 18. The vertex-
period correspondence on machine m∗ + 2 is the same
as the vertex-period correspondence on machine m∗.

3. For each p ∈ {1, . . . , n}, we add |E | + 1 right-travelling
jobs of type 2 at each of the times tp and tp+2 onmachine
m∗. We refer to the jobs added in this steps as jobs of type
2b.

4. Finally, we add arrivals corresponding to the edge
(vi , v j ). We add a single right-travelling job of type 2
on machine m∗ at each of the times ti + 12 and ti + 14.
We refer to these arrivals as jobs of type 2c. Additionally,
we add |E | + 1 arrivals of type 1 on machine m∗ + 1 at
each of the times ti + 21 and time ti + 23.

This concludes the formal description of an instance of
SPBM corresponding to a given instance of MAXCUT. Fig-
ure 18 shows the structure of an examplewhere the procedure
is applied for an edge (v1, v4). In the figure, release times of
jobs and the even-numbered machines are not shown. Upon
completing the construction of this instance, let N1, N2a , and
N2b equal the total number of jobs of type 1, type 2a, and
type 2b, respectively. Note that both the total number of jobs
and the number of machines are polynomial in the size of
the original instance G. Indeed, for each edge in E , at most
|V | interchange operations are performed: we extend the
construction with O(|V |) machines for each edge. On each
machine, atmostO(|V ||E |) jobs are added. The total number
of machines is thus bounded by O(|V ||E |); the total number
of jobs is bounded by O(|V |2|E |2). The decision question to
be answered in the corresponding instance of dec-SPBM is
the following. ‘Does there exist a solutionwith a total waiting
time of at most W ≡ N1 + N2a + N2b + 10|E | − 4K ?’

Correspondence of MAX CUT to dec-SPBM

We first state the foundations of the argument which shows
the correspondence between the given instance ofMAXCUT
and the constructed instance of dec-SPBM. Notice that, on
each odd-numbered machine, we have a period correspond-
ing to each vertex.Wewill argue thatwe can restrict ourselves
to solutions of SPBM where all periods are scheduled using
either option 1 or option 2 and, moreover, all periods cor-
responding to the same vertex are scheduled using the same
option. The selected option then indicates one of two possible
partitions of V to which a vertex is assigned, thus defining
a cut in the given graph G. We now proceed by providing
a detailed overview of the different arrivals added through-
out the construction, and the waiting time incurred by these
arrivals depending on the chosen option for the different peri-
ods.

Figure 19 gives a detailed representation of a period
[24(v − 1), 24v) on some machine, corresponding to some
vertex. Recall that, in each such period, we have 10(|E |+ 1)
arrivals of type 1 and that, if either option 1 or option 2 is
used in this period, the total waiting time incurred by these
jobs equals 10(|E | + 1).

Step 1(d) adds jobs of type 2a, corresponding to the
waved lines in Fig. 18; these arrivals are added where the
vertex-period correspondence of two adjacent periods is
interchanged from some machine m∗ to machine m∗ + 2.
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Fig. 20 Construction corresponding to the interchange of two adjacent periods. Each ‘X’ marks the arrival of |E | + 1 jobs of type 1. Each circle
marks the arrival of |E | + 1 jobs of type 2a

Fig. 21 Construction
corresponding to two periods
that occupy the same time
interval and correspond to the
same vertex. Each ‘X’ marks the
arrival of |E | + 1 type 1 jobs.
Each circle marks the arrival of
|E | + 1 type 2b jobs
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A detailed representation depicting all arrivals in the corre-
sponding periods is shown in Fig. 20. Observe that if either
option 1 or option 2 is chosen for each period, although jobs
travelling in opposite direction cross in between machines
m∗ and m∗ + 1, no batches overlap regardless of the chosen
option for the periods. Further observe that, if the sameoption
is chosen for the two periods corresponding to vi , a total wait-
ing time of 2(|E |+1) is incurred by the 2(|E |+1) jobs of type
2a arriving on machine m∗; similarly, if the same option is
chosen for the two periods corresponding to vk , a total wait-
ing time of 2(|E |+1) is incurred by the 2(|E |+1) jobs of type
2a arriving on machine m∗ + 2. If different options are used
for either the two periods corresponding to vi (respectively,
vk), the total waiting time for the jobs of type 2a arriving on
machinem∗ (respectively,m∗ +2) equals at least 6(|E |+1).

Step 1(e) and step 3 add jobs of type 2b, corresponding
to the dashed lines in Fig. 18; these jobs travel between a
period on a machinem∗ and a period on machinem∗ +2 that
occupy the same time interval and correspond to the same
vertex. Figure 21 shows a detailed representation depicting
all arrivals in the corresponding periods. Observe that if the
same option is chosen for the two periods corresponding to

vk , a total waiting time of 2(|E | + 1) is incurred by the jobs
of type 2b; if different options are used for the two periods,
the waiting time equals at least 6(|E | + 1).

Step 4 adds jobs of type 2c, corresponding to the dotted
lines in Fig. 18. A detailed representation of this construction
is shown in Fig. 22. Observe that if two different options are
used for the periods corresponding to vi and v j on machine
m∗ and m∗ + 2, the jobs of type 2c incur a total waiting
time of at least 6 time units. In contrast, if the same option
is used for both periods, the total waiting time for the jobs
of type 2c equals at least 10 time units. Also notice that
on the even-numbered machine m∗ + 1, in order to achieve
this waiting time, a right-travelling batch must be scheduled
at times ti + 21 and ti + 25 if option 1 is selected for the
period corresponding to vi , and a right-travelling batch must
be scheduled at time ti + 23 if option 2 is selected for the
period corresponding to vi . The arrivals of type 1 on the inter-
mediatemachine then incur a total waiting time of 2(|E |+1).
Note that whenever these arrivals of type 2c are added to a
period, this period also has arrivals of type 2b as described
by step 5 of the construction. There is, however, no overlap
in the trajectory of the jobs of types 2b and 2c, nor is there
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Fig. 22 Construction corresponding to an edge (vi , v j ). Each ‘X’ marks the arrival of |E | + 1 type 1 jobs. Each circle marks the arrival of a single
type 2c job

an overlap between the batches serving these jobs in Figs. 21
and 22.

We are now ready to argue that a cut in graphG containing
at least K edges exists if and only if a solution exists for the
instance of dec-SPBM with a waiting time of at most W .

⇒Assume that there exists a cut inG that contains at least
K edges; the corresponding partition of the vertices is indi-
cated by V1 and V2. We build the following solution for the
instance of dec-SPBM. If vertex v ∈ V1, then we use option
1 for all periods corresponding to vertex v; if vertex v ∈ V2,
then we use option 2 for all periods corresponding to vertex
v; each job enters the first available batch corresponding to
its direction of travel, and the batches for all even-numbered
machines are scheduled such that jobs of type 2c incur a
waiting time of 1 time unit at these machines, as illustrated
in Fig. 22.We claim that the resulting waiting time of all jobs
is bounded by W .

We first identify the total waiting time for the jobs of types
1, 2a, and 2b. Recall that either option 1 or option 2 is chosen
for each period in the instance.

– The total waiting time for jobs of type 1 equals the total
number of type 1 arrivals. Indeed, arrivals of type 1 arrive
either (i) in a period corresponding to a vertex (Fig. 19),
or (ii) on an even-numbered machine where two adjacent
periods are connected to model an edge in E (Fig. 22).
In both of these cases, the total waiting time incurred by
type 1 jobs equals the number of type 1 arrivals.

– The total waiting time for jobs of type 2a equals the total
number of type 2a arrivals. Indeed, arrivals of type 2a
are added only where two periods occupy the same time
interval and correspond to the same vertex (Fig. 21). As
a result, the same option is chosen for these two periods,
and the total waiting time incurred by type 2a jobs equals
the number of type 2a arrivals.

– The total waiting time for jobs of type 2b equals the total
number of type 2b arrivals. Indeed, arrivals of type 2b

are added only where the vertices to which two periods
correspondonamachinem∗ are interchangedonmachine
m∗ + 2 (Fig. 20). As a result, the same option is chosen
for each pair of periods corresponding to the same vertex,
and the total waiting time incurred by type 2b jobs equals
the number of type 2b arrivals.

For these jobs, this yields a total waiting time of N1 + N2a +
N2b.

Now consider the jobs of type 2c. Observe that for each
edge (vi , v j ) ∈ E , there are exactly two jobs of type 2c. If
edge (vi , v j ) is in the cut, i.e. if vi ∈ V1 and v j ∈ V2 or vice
versa, the options used for periods vi and v j differ on the
machines traversed by these jobs. This results in a waiting
time of 6 corresponding to this edge; otherwise, there is a
waiting time of 10. Since there exists a cut of K edges, we
thus obtain a total waiting time of 6K + 10(|E | − K ) =
10|E | − 4K for the jobs of type 2c. The total waiting time
for the corresponding solution of SLS equals N1 + N2a +
N2b + 10|E | − 4K = W . A yes-instance of MAX CUT thus
gives rise to a yes-instance of dec-SPBM.

⇐ Consider now a solution to an instance of SLS with a
total waiting time of at most W . First, we argue that we can
assume that such a solution is so-called sensible. We say that
a solution is sensible if:

– Condition 1: after arriving at a machine, each job enters
the first available batch corresponding to its direction of
travel,

– Condition 2: in each period corresponding to a vertex,
either option 1 or option 2 is used,

– Condition 3: each even-numbered machine is scheduled
such that jobs of type 2c traversing that machine incur a
waiting time of 1.

We argue that we can restrict ourselves to considering
sensible solutions only.
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Lemma 3 For any feasible solution to SPBM with waiting
timeW ′, there exists a sensible solution to SPBMwithwaiting
time at most W ′.

Proof Notice that Conditions 1 and 2 are identical to the def-
inition a sensible solution used in Lemma 2 in the context of
jobs with arbitrary speed. The argument that these conditions
can be guaranteed, without increasing the total waiting time
of a solution, can be repeated from the proof of Lemma 2.

To see that Condition 3 can be enforcedwithout increasing
the total waiting time, we again make use of the fact that
there is an optimum solution where, for each machine m∗,
each batch operation starts at a point in time where a job
arrives at m∗ or follows immediately upon the completion
of an earlier batch operation of that machine m∗. It is then
clear that for the corresponding time ti in the step in the
construction where jobs of type 2c are added, visualized in
Fig. 22, the type 1 jobs that arrive at the even-numbered
machine m∗ + 1 can be served either by (i) a right-travelling
batch starting at time ti + 20 and a right-travelling batch
starting at time ti + 24, (ii) a right-travelling batch starting
at time ti + 21 and a right-travelling batch starting at time
ti + 25, (iii) a single right-travelling batch starting at time
ti + 22, or (iv) a single right-travelling batch starting at time
ti + 23. Observe that the schedule of the even-numbered
machine only determines the total waiting time of jobs of
type 1 arriving on the machine and the total waiting time of
jobs of type 2c. It can be seen that if option 1 is selected for
the period corresponding to vi , case (i) or (ii) must hold in
any optimum solution; if option 2 is selected, case (iii) or (iv)
must hold in any optimum solution. If case (i) or (iii) holds,
it is not difficult to see that, by selecting option (ii) or (iv),
respectively, the total waiting time for jobs of type 1 reduces
by 2(|E | + 1) time units, whereas it increases for the jobs
of type 2c by at most 6 time units. Clearly we may assume
|E | ≥ 2 since instances with |E | = 1 are trivial to solve.
Case (ii) or case (iv) above must then hold in any optimum
schedule; it follows that all jobs of type 2c then incur a single
unit of waiting time at an even-numbered machine. ��

We may thus assume that the given solution for SPBM
is a sensible solution with a total waiting time bounded by
W . We argue that the instance of MAX CUT is then a yes-
instance. We first claim that all periods corresponding to any
given vertex v ∈ V must use the same option. We argue
by contradiction. Recall that the total waiting time in any
sensible schedule equals at least N1 + N2a + N2b + 6|E |
and that an additional waiting time of 4(|E | + 1) is incurred
for every vertex v for which two corresponding periods are
scheduledwith different options.Assume that there is a single
vertex for which this is the case. It follows that the total
waiting time must be equal to at least N1 + N2a + N2b +
10|E | + 4 > N1 + N2a + N2b + 10|E | − 4K = W . This
contradicts the fact that our solution for dec-SPBM has a

waiting time of at most W . Thus, all periods corresponding
to some vertex v ∈ V are scheduled using the same option.
For any sensible schedule with a total waiting time no greater
thanW , it then follows that we have a solutionwhere the total
waiting time consists of:

1. N1 + N2a + N2b, incurred by jobs of type 1, type 2a, and
type 2b,

2. a waiting time of 6 time units for every edge (vi , v j ) ∈ E
where different options are chosen for the periods corre-
sponding to vi and v j , incurred by jobs of type 2c,

3. awaiting timeof 10 timeunits for every edge (vi , v j ) ∈ E
where the same option is chosen for the periods corre-
sponding to vi and v j , incurred by the remaining jobs of
type 2c.

Given a solution to SPBM with a total waiting time of
at most W = N1 + N2a + N2b + 10|E | − 4K , we con-
struct a solution to MAX CUT by assigning a vertex v to
V1 (respectively, V2) if option 1 (option 2) is used for the
periods corresponding to vertex v. It follows that there are at
least K pairs of vertices (vi , v j ) such that the periods corre-
sponding to vi are scheduled with a different option than the
periods corresponding to v j . Indeed, if at most K − 1 pairs
use different options, the total waiting time must equal at
least N1+N2a +N2b +6(K −1)+10(|E |− (K −1)) > W .
By construction, there are thus at least K pairs of vertices vi
and v j with vi < v j and (vi , v j ) ∈ E such that exactly one
of these vertices is in V1 and the other is in V2. Thus, there
are at least K edges in the resulting cut in G. A yes-instance
of dec-SPBM thus gives rise to a yes-instance of MAXCUT,
which completes our reduction.

We again remark that this construction, like the proof
described in ‘Appendix A’, can be modified so that each
machine has unit capacity and arrivals occur at distinct times.
We omit a formal description for this modified setting.
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