

A stand-alone Dutch text-to-speech system

Citation for published version (APA):
Deliege, R. J. H. (1991). A stand-alone Dutch text-to-speech system: part 2: construction. (IPO rapport; Vol.
777). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 28/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/1fcfcce2-0ba6-47e9-af48-a59cc0aa8cbe

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 777

A stand-alone Dutch
text-to-speech system
Part 2: Construction

R.J.H. Deliege

RJHD/rjhd 91/02
28.01.1991

A stand-alone Dutch text-to-speech system
Part 2: Construction.

R.J .H. Deliege

Contents

1 Introduction

2 Hardware
2.1 Introduction .
2.2 Parts list
2.3 Parts count .
2.4 Order information non-standard components

3 Software
3 .1 Introduction
3.2 Program generation on the PMDS
3.3 Program generation on the PC

4 Diagnostic program
4 .1 Introduction . . .
4.2 Connections . ..
4.3 Power-up action
4.4 Interactive mode

4.4.1 EPROM .
4.4.2 RAM
4.4.3 Serial
4.4.4 Audio
4.4 .5 Timer
4.4 .6 Keyboard
4.4.7 Display
4.4.8 Power . .
4.4.9 Jumpers .

5 A uxillary programs
5.1 Dhex
5.2 Pcfdif
5.3 68000lex and Lexcom .
5.4 Update . . .
5.5 Speak (PC)
5.6 Speak (Vax)
5. 7 Rules and Fonpars

1

2

2
2
4

7
8

9
9
9

10

11
11
12
12
12
12
13
13
13
13
13
14
14
14

14
14
16
16
16
17
lî
17

1 lntroduction

This report describes how to build the hard- and software for the stand
alone text-to-speech board. It covers those details that were not mentioned
in part 1 (description). In addition this report explains all the auxillary
software available for building or using the system.

2 Hardware

2.1 Introduction

The schematic diagrams have been redrawn for the generation of the PCB
layout . Unfortunately the numbering of the components has been changed
in this process . The information given in this report refers to the new
diagrams . These diagrams are not included in this report because they
require a larger paper size to be legible. The schematic diagrams and PCB
layout are made using the software package "Cadstar" from Racal Redac .
Further information is available at the Philips Nat . Lab . PCB design center.
The design has Philips number 8222 255 63981. The board layout is given
in figure 1. N ote: R66 (R625 in report 1) was added af ter the design of the
PCB. lt is put directly in series with pin 10 of D18.

2

li3

Il
0

•
DD DD

DD DDD

DO
DO
DO DO
DO 0D
DO 0D
DO DO
DO Do
DO 00
DO Do
DO DO
DO DO
DO DO
DO DO
DO DO

DO DD
DD DDD

DO
DO
DO
DO
DO
DO
DO
DO
0D
00
DO

000000

11~1 _ _:...,

0
0

0
D

Figure 1: Board layout .

00
DO
DO
DO
DO
DO
00
00
DO
00
DO
00
00
00
DO
00
00
00
00

0

•

~oDg
gg fl
DO
00
DO

3

00
00
DO
00
00
00
00
DO
00
00
DO
00
00
00
00
00
DO
00
00
DO

00
00
DO
DO
DO
DO
DO
00
00
00
00
DO
DO
DO
DO
DO
DO
DO
DO
DO

D
D
0
D
D_.

ft gg 1

DO
DO
DO
DO
DO

•

ffl

a
ä

2.2 Parts list

Table 1: Crystals
1 Bl 3.6864 MHz I B3 24 MHz 1

Table 2: Capacitors
Cl 100 µ C26 47 n C51 1 n 5
C2 47 n C27 47 n C52 3 n 3
C3 47 µ C28 47 n C53 47 µ
C4 47 n C29 47 n C54 220 n
C5 47 n C30 47 n C55 10 n
C6 47 n C31 47 n C56 47 n
C7 47 n C32 47 n C57 47 n
C8 47 n C33 47 n C58 22 µ
C9 47 n C34 47 n C59 10 µ
ClO 47 n C35 4 µ 7 C60 22 p
Cll 47 n C36 100 n C61 22 p
C12 47 n C37 ln C62 47 n
C13 47 n C38 1 n C63 47 n
C14 47 n C39 100 n C64 1 µ
C15 47 n C40 3 n 9 C65 1 µ
C16 47 n C41 47 n C66 1 µ
Cl 7 47 n C42 10 n C67 1 µ
C18 47 n C43 22 p C68 1µ
C19 47 n C44 22 p C69 1 µ
C20 47 n C45 22 µ C70 100 n
C21 47 µ C46 22 µ
C22 47 n C47 22 µ
C23 47 n C48 22 µ
C24 47 n C49 47 n
C25 47 n C50 47 n

4

a e tegrate circmts T hl 3 In d .
Dl 68HC000 D16 74HC107 D31 74HCT393
D2 74HCT138 D17 74HC02 D32 74HCT10
D3 74HCT138 D18 74HC04 D33 ICL7663
D4 27C1024 D19 74HC245 D34 ICL7663
D5 27CI024 D20 74HC574 D35 74HC245
D6 27C1024 D21 74HCT123 D36 74HC245
D7 27C1024 D22 HEF4541 D37 27C1024
DB 74HC32 D23 74HCT147
D9 DS1210 D24 R68C552
DlO HM62256 D25 MAX232
Dll HM62256 D26 PCF8200
D12 74HCT139 D27 74HCT574
D13 74HC32 D28 74 HCT4051
D14 74HC245 D29 TDA7052
D15 74HC574 D30 74HCT00

5

Table 4: R PSistnrs
Rl 4 k 7 R26 10 k R51 10 k
R2 100 R27 10 k R52 4k7
R3 2E7 R28 10 k R53 10 k
R4 180 k R29 100 k R54 150
R5 62 k R30 100 k R55 150
R6 18 R31 470 k R56 220
R7 1 M 6 R32 500 k potm R57 330
R8 560 k R33 1 M 5 R58 470
R9 100 k R34 100 k R59 820
Rl0 100 k R35 100 k R60 1 k 2
Rll 100 k R36 4 k 7 R61 1 k 5
R12 100 k R37 22 k R62 2 E 7
R13 100 k R38 10 k R63 100 k
R14 100 k R39 10 k R64 100 k
R15 100 k R40 100 k R65 100 k
R16 100 k R41 220 k R66 470
R17 100 k R42 100 k
R18 100 k R43 100 k
R19 100 k R44 lM
R20 100 k R45 22 k
R21 10 k R46 56 k
R22 10 k R47 10 k
R23 10 k R48 39 k
R24 10 k R49 1 k
R25 10 k R50 18 k

Table 5: SPrniconductors
Vl BC337-40 V8 BAVlO V15 BAVl0
V2 BAVlO V9 BAVl0 V16 BAVl0
V3 BAVl0 VlO BAVl0 V17 BAT85
V4 BAVlO Vll BAVlO V18 BC550C
V5 BAVlO V12 BAVlO V19 BC327-40
V6 BAT85 V13 BAVlO V20 BAT85
V7 BAVlO V14 BAVlO

Xl 2 pin Xl0 3.5 mm stereo jack
X2 20 pin header
X3 4 pin

X4 9 pin female
X5 9 pin male
X6 20 pin header

6

2.3 Parts count

a e apac1 ors T bl 7 C 't

4 22 p 2 10 n 1 4 µ 7 (tant . 6v)
2 1 n 38 47 n 1 10 µ (tant. 16v)
1 1 n 5 3 100 n 5 22 µ (elco 16v)
1 3 n 3 1 220 n 3 47 µ (tant. 6v)
1 3 n 9 6 1 µ (tant. 6v) 1 100 µ (elco 16v)

a e ntegrate c1rcmts T bl 8 I d .
5 27C1024 1 74HCT123 2 ICL7663
1 68HC000 2 74HCT138 1 MAX232
1 74HC02 1 74HCT139 1 PCF8200
1 74HC04 1 74HCT147 1 R68C552
2 74HC32 1 74HCT393 1 TDA7052
1 74HC107 1 74HCT574
4 74HC245 1 74HCT4051
2 74HC574 1 DS1210
1 74HCT00 1 HEF4541
1 74HCT10 2 HM62256

Table 9: Resistors
2 2 E 7 1 1 k 5 1 220 k
1 18 3 4 k 7 1 470 k
1 100 13 10 k 1 500 k (potm)
2 150 1 18 k 1 560 k
1 220 2 22 k 1 lM
1 330 1 39 k 1 1 M 5
2 470 1 56 k 1 1 M 6
1 820 1 62 k
1 1 k 22 100 k
1 1 k 2 1 180 k

3 BAT85 1 BC327-40 1 BC550C
14 BAVl0 1 BC337-40

The given diode types are examples of possible types , for the BAVl0 any
general purpose siliciwn diode will do and for the BAT85 any Schottky diode
(low voltage drop).

7

Table 11: Various components
1 crystal 3.6864 MHz, fundamental mode, small case
1 crystal 24 MHz, fundamental mode, small case
1 battery 3V
1 9 pin D connector, angled, female
1 9 pin D connector, angled, male
2 20 pin he ader, angled
1 3.5 mm stereo jack receptable with switch
6 2 pin jumper
1 3 pin jumper
1 4 pin angled connector
1 2 pin angled connector
1 DIL IC socket 64 pins
6 DIL IC socket 40 pins
2 DIL IC socket 28 pins
1 DIL IC socket 24 pins

2.4 Order information non-standard components

27Cl024 CMOS 1 Mbit (64k * 16) EPROM, 40 pin DIL
Accesstime preferrably below 180 ns, because available memory access
times on the board are 180 and 360 ns. Tested are:
NEC D27C1024D-15 (150 ns) , Intra Electronics BV , Nuenen
AMD AM27C1024-205DC (200 ns), Arcobel, Oss

68HC000 CMOS 68000 microprocessor , 12 MHz, 64 pin DIL
Hitachi HD68HC000P12, Arcobel, Oss

D51210 Non volatile controller, 8 pin DIL
Dallas DS1210, ALCOM Electronics BV, Capelle aan den IJsel

HM62256 CMOS 32k statie RAM, low power , 28 pin DIL
Accesstime preferrably below 180 ns, because available memory access
times on the board are 180 and 360 ns . If available, the low power
version should be used because of the battery backup . Tested are :
Hitachi HM62256LP12 (120 ns, low power), Arcobel , Oss
Sony CXK58256P-10L (100 ns)

ICL7663 Programmable positive voltage regulator , 8 pin DIL
MaximICL7663ACPA, Techmation Manudax Electronics BV, Heeswijk
Dinther

8

MAX232 5V powered dual RS232 transmitter /receiver, 16 pin DIL
Maxim MAX232EPE, Techmation Manudax Electronics BV, Heeswijk
Dinther

PCF8200 Speech synthesizer, 24 pin DIL
PCF8200P, Philips, Eindhoven

R68C552 CMOS Dual Asynchronous Communications Interface Adapter,
40 pin DIL
Rockwell R68C552P, Microtron, 's Graveland

TDA 7052 Bridge load audio amplifier, 8 pin DIL
TDA 7052, Philips, Eindhoven

Battery 3V Lithium battery
Varta ER1/2AA SLF, Varta BV, Utrecht

3 Software

3.1 Introduction

The software is written in Pascal and 68000 assembler. To compile, as
semble and link this software a development environment is needed. The
environment originally used is a Philips PMDS-11 (Philips Microcomputer
Development System) with PCP software (Philips Compiler Package). Later
on this development environment became also available on other hardware
platforms. Because of the advantage of using standard, genera! available
hardware, a Personal Computer is currently used as development environ
ment. Due toa change of supplier, the software is now called TCP (Tasking
Compiler Package). The package used is CP0l0l-01-EF, Pascal 68000 for
DOS. Because MS-DOS has no built-in MAKE facility, the MAKE from
Turbo C or Pascal is used. Due to the file naming restrictions in MS-DOS,
the file names on the PMDS and PC are sometimes different.

3.2 Program generation on the PMDS

To compile and/or link the program, two additional files are important.
Makefile is a description file for the make command. With this command
and the correct M akefile all act.ions to be taken to pro duce a loadfile can be
automated. The description file descr is a steering file for the compiler / linker
software.

9

All software is divided into five directories:

PCF all units for the VME rack with corresponding descr and Makefile .

STASYS those units that are different for the stand-alone board with cor
responding des er and M akefile.

TIEP modified main program and additional units for Typestem program
with corresponding descr and Makefile.

DIAGN stand-alone version of diagnostic program.

LIB changed libraries for EPROM version.

To generate a program, go to the correct directory (PCF, STASYS or
TIEP) and give a make ds command. This produces a Philips type loadfile.
This file is converted to extended lntel hex format for the Data I/O eprom
programmer by the command dhex ds. This command also swaps the bytes
within a word as needed. The number of sections to be programmed is the
section number of section .end.rom. This program produces a number of
output files (prom0.hex, proml.hex .. .), each of which can be programmed
in an EPROM.

There are two tricky points in this business:

1. Not all the files that are linked together are specified in the Makefile.
Some files are specified in the descriptor file descr instead. For the
file head.em this is done to make it the first file that is processed,
the other files contain general routines that are almost always needed .
The presence in the descriptor file makes it unnecessary to specify
them each time.

2. The Philips supplied libraries are not used because they contain ini
tialised constants in section . data that is located in RAM area. There
fore these libraries are copied to the own directory LIB, the sections
named .data changed to .roda and then recompiled (using the script
Makelib) .

3.3 Program generation on the PC

To compile and/or link the program, two additional files are important .
Makefile is a description file for the make conunand. With this command

10

and the correct Makefile all actions to be taken to produce a loadfile can be
automated. The description file descr is a steering file for the compiler /linker
software.

The main directory for the software is TNS. In this directory the output
conversion program dhex is located. In the subdirectory DS the text-to
speech software is located and in subdirectory LIB the changed libraries .
The Tasking supplied libraries are not used because they contain initialised
constants in section . data. that is located in RAM area. Therefore these
libraries are copied to the own directory LIB, the sections named .data
changed to . roda and then recompiled.

A loadfile can be built by the command make <target>, where target is
one of the following :

ds text-to-speech software

typestem text-to-speech software and Typestem user-interface

ds_tst text-to-speech software without grapheme-phoneme conversion and
speech-data for faster turnaround during test of program changes not
involving grapheme-phoneme conversion or speech

ty _tst the same as ds.tst with Types tem user-interface

The name of the loadfile created is the name of the given <target>. This file
is converted to extended Intel hex format for the Data 1/ 0 eprom program
mer by the command \ tns\ dhex < target>. This command also swaps the
bytes within a word as needed. The number of sections to be programmed
is the section number of section . end_rom. This program produces a number
of output files (prom0.hex, proml.hex ...), each of which can be programmed
in an EPROM.

4 Diagnostic program

4.1 Introduction

For testing the hardware of the system a diagnostic program is provided.
With this program the hardware can be tested and / or controlled piece by
piece .

This diagnostic program is available in two versions : stand-alone and
incorporated in the text-to-speech software.

11

4.2 Connections

The minimal connection required is the power supply. For use of the in
teractive mode (see further) a terminal (VT200 compatible) should be con
nected. All other connections have only to be made if their function has to
be tested. The stand-alone diagnostic program is not affected by the setting
of the jumpers 1 - 6, the baudrate for the serial ports is therefore fixed at
19200 baud. The built-in version is activated when jumper 6 is placed and
uses jumper 2 and 3 for selecting the baudrates.

4.3 Power-up action

After power-up (or reset) two actions are automatically performed.
The program starts by executing RESET instructions for about 15 sec

onds. A RESET instruction makes the reset-pin of the processor low for
some time. The purpose of this is to check the functioning of a minimal
system: processor, reset circuitry, doek, memory timing and EPROM. The
function can be tested by connecting a voltmeter or oscilloscope to pin 18
of the processor. The voltmeter should show a value somewhere between 0
and 5 volt, the oscilloscope should show a pulse train.

After this action a RAM test is performed. The results of this test can
be displayed on the terminal in the interactive mode of the program. There
is however one big pittfall in this : if RAM is not working the program will
never reach the interactive mode because for example a working stack is
needed. The RAM test consists of two parts: first all words are filled with
the same, fixed pattern that is then checked for. After this each word is
filled with its own address and checked.

After the RAM test the program displays an opening screen on the ter
minal. When any key is pressed the interactive mode is entered .

4.4 Interactive mode

4.4.1 EPROM

For testing all EPROM sockets four additional EPROM 's are provided. The
program checks only the first word of each EPROM. This test is only avail
able in the stand-alone version.

12

4.4.2 RAM

The results of the power-up RAM test are displayed:
Error code 1 means error during the test with fixed pattern,
Error code 2 means error during the test with the addresses .
If an error is found , its address is also d.isplayed .

In RAM , two words are used as a test pattern for the RAM backup .
This test pattern can be set or cleared , and its presence at power-up time
is d.isplayed . Aft.er setting this pattern , switching off the system (for some
while) and switching it on again should reveal the pattern to be found.

4.4.3 Serial

To test the serial ports a screenfull of characters can be sent to either the
terminal or host connector . The test the input from these ports, the program
waits for a character from the correspond.ing port. The test of the terminal
port is not that usefull because it is already used in the interactive mode.

4.4.4 Audio

This menu controls the speech synthesizer, volume control and amplifier.
The amplifier can be manually switched on and off, it is always switched
on during speak actions . The volume can be adjusted. A test sentence
can be spoken or the synthesizer can produce silence for some time. The
lat ter function can be used in conjunction with the manual switching of the
amplifier to detect any background noise .

Note: the synthesizer interrupt is not used in this test .

4.4.5 Timer

The timer can be started or stopped. When it is running a changing symbol
should be visible on the terminal screen.

4.4.6 Keyboard

This menu shows the row and column number of any key that is pressed on
the separate matrix keyboard .

Note : the keyboard interrupt is not used during this test .

13

4.4. 7 Display

Not yet implemented.

4.4.8 Power

This menu displays the status of the battery control and the on/off switch.
Watch out: toggling the on/ off switch resets the system. The battery con trol
display can be used to adjust the power-low detection. The system can be
powered off by command. Resetting the system or pressing any key on the
separate keyboard should switch it on .

Adjustment procedure for power-low detection:
Feed the board with a normal power supply (9 - 15 volt) . Adjust R32 so
that supply ok is displayed. Feed the board with a supply of 7 .5 volt. Adjust
R32 untill supply low is displayed.

4.4.9 Jumpers

The status of the jumper row (1 - 6) is displayed. Jumpers that are present
are shown in inverse video.

5 Auxillary programs

The following auxillary programs are available:

Name Language System Function

dhex C PMDS, PC load-file conversion
pcfdif Pascal Vax creation diphone tables
68000lex DCL Vax up/download lexicon
lexcom Pascal Vax up/download lexicon
update Pascal Vax lexicon editor
speak C PC speak file
speak DCL Vax speak file
rules DCL Vax grapheme-phoneme rules compiler
fonpars Pascal Vax, PC grapheme-phoneme rules compiler

Note: C and Pascal on the PC are Turbo-C and Turbo-Pascal.

5.1 Dhex

Dhex is a conversion program that converts an a .out type loadfile into ex-

14

tended lntel hex format and swaps the upper and lower byte within each
word . The PCP /TCP supplied conversion utilities cannot be used because
they dont do the byte swap and produce only one output file. In our case,
we should find some way to divide this (very big) file over more than one
EPROM. The conversion takes place in two steps as illustrated in figure 2.

sec l 0

secl 1

secl 2

a.out type
loadfile

Figure 2: Operation of dhex.

hex.tmp prom*.hex

The first step consists of extracting the data frorn the load.file . This data is
then written into a pure binary file (hex.tmp) . This binary file contains the
memory image starting at address zero. The bytes are already swapped in
this file . This conversion step requires the sections in the load.file to be in
ascending order (considering their start addresses). Possible gaps between
sections are filled with FF (hex) .

The second step is the conversion of the binary file into one or more lntel
hex files. Each file has a starting address of zero .

The intermediate file is removed at the end of the program. The program
is available on the PMDS (Unix) and PC (MS-DOS) . These two implemen
tations differ in two points : under Unix, words and longwords cannot be
read as a whole from the load.file because the bytes are in the wrong order.
Therefore they are read byte by byte and then the total value is calculated.
Under MS-DOS (Turbo C), files can be opened in two modes: text or binary,
depending on the variable _fmode. The load.file and the intermediate file are

15

binary files, while the Intel hex files are text files.

5.2 Pcfdif

Pcfdif is a conversion program that quantizes the diphones and builds the
diphone tables for the text-to-speech software. As explained in section 5.2.1
of the other report the diphone storage consists of two tables: a hashtable
and a datatable. Pcfdif builds these two tables in assembly source format
from an indexed diphone file. The hashfunction used in this program should
be the same as the one in the text-to-speech software. The sarne holds for
the hashtable length and the key length that have to be entered and the
constants priem and hash_len in ds.h. Pcfdif asks several parameters, the
current values are:

diphone file
key length
table length
hashfile name
datafile name

dif:zelle..stand.ind
7
3001
hash.s
data.s

5.3 68000lex and Lexcom

68000lex is a DCL cornrnand file for running the lexicon up/download pro
gram lexcom. lts function is to turn input echo off during transfers . The
program lexcom performs the actual transfer and file handling . Lexica are
stored on the Vax as indexed files. These indexed files are organised in the
same way as all other lexica at IPO. Therefore these files differ in two as
pects from the lexicon on the board: a third field is available for word-class
and zero characters are used in stead of spaces because these files are then
automatically condensed.

5.4 Update

Update is an editing program for the lexica on the Vax. lt functions sirnilar
to the lexicon editor on the board with the following exceptions : at the
beginning the file-name of the lexicon is asked for , there are separate update
and insert cornrnands and all changes made are logged in a separate file. lts
implementation is the same as the board version except for the file access .

16

5.5 Speak (PC)

Speak is a program to operate the board via a PC . For interactive use
a VTl00 compatible terminal emulation program (e.g., Kermit) is better
suited, because ~peak does not perform such an emulation. The main appli
cation of speak is to send a file to the board. Speak without any parameter
will enter the interactive mode, while speak followed by a filename will speak
that file.

All sentences (and commands) in the file have to be terminated by a
period (so a sentence can be more than one line).

5.6 Speak (Vax)

Speak is a command file to speak a file from the Vax when connected in
transparant mode . Sentences are ended by a return . To avoid the insertion
of returns after 80 characters, the wrap feature of the Vax is turned off.

5.7 Rules and Fonpars

Rules is a DCL command file to call the rulecompiler Fonpars . Fonpars
was developed by Joop Kerkhoff and Jip Wester of the Institute of Pho
netics of the University of Nijmegen. Fonpars uses two inputs : a file with
phonological features, always called features .dat , and the phonological rules
from the standard input device . The command file rules takes as an ar
gument the name of the file with phonological rules and assigns it to the
standard input. The output is a program called parser.pas. Because we use
a different framework in our software, the eve editor is called after creating
parser.pas. The essential information can then be extracted from parser.pas
and inserted in the corresponding file. As is explained in section 4.2 of the
other report we divided the whole set of rules into four parts: front, accent,
grafon and end. On the Vax these four modules are compiled separately and
linked together. On the PMDS these modules are included in the source file
of the main module at compile time, because the use of global variables is
more difficult with this compiler. On the PC the four modules have to be
compiled separately because of system limitations . The grafon part even
has to be further divided into sub-parts . The file names are :

17

Module Rules
main
front front...rules.dat
accent accent...rules.dat
grafon grafon...rules .dat

end end....rules.dat

Vax file
kun_grafon .pas
front....mod.pas
accent....mod.pas
rules....mod .pas

end....mod.pas

PMDS file
kun_grafon.p
front....mod .p
accent....mod.p
rules....mod.p

end....mod.p

PC file
grafon.p
front....m .p
accent....m.p
rules....m.p
rules....ml.p
rules....m2 .p
end....m.p

The procedure to update a module is as follows :

• update the corresponding rule file.

• compile the rules: @rules < rule-file> .

• in the editor (entered automatically) get the corresponding module
and replace the procedure and execution block (see figure 3) with
those from parser. pas.

program parser;

procedure regel1;

procedure regeln;
] PROCEDURE BLOCK

begin

regel1; regeln; } EXECUTION BLOCK

end.

Figure 3: Structure of parser.pas.

18

