

A stand-alone Dutch text-to-speech system

Citation for published version (APA):
Deliege, R. J. H. (1991). A stand-alone Dutch text-to-speech system: part 1: description. (IPO rapport; Vol. 775).
Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 17/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d2eb74d8-1241-496c-995b-fb68803afb6e

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 775

A stand-alone Dutch
text-to-speech systern

R.J.H. Deliege

RJHD/rjhd 91/01
17.01.1991

A stand-alone Dutch text-to-speech system
Part 1: Description .

R.J .H . Deliege

Contents

1 Introduction 3

2 Genera} 6
2.1 The board . 6
2.2 Connectors 7
2.3 Jumpers 10

3 Hardware 12
3.1 Introduction . 12
3.2 Page 0 13
3.3 Page 1 13
3.4 Page 2 14
3.5 Page 3 15
3 .6 Page 4 15
3.i Page 5 15
3.8 Page 6 16
3.9 Page 7 16
3.10 Page 8 17

4 Grapheme-to-phoneme conversion 18
4.1 The original system 18
4.2 The modified system 20
4.3 References 28

5 Software 29
5.1 Genera} 29
5.2 Data structures 31

5.2.1 Diphone tables 31
5.2.2 Strings .. 33

5.3 Memory map ... 33
5.4 Uni t descript ions 34

5.4 .1 accent..m.p 34
5.4.2 chip .p 34
5.4.3 dacia.h 36
5.4.4 data.s 36
5.4.5 diagn .p 36
5.4 .6 diphone .s 36
5.4.7 dirjo.s .. 37

1

5.4.8 ds .h . . . 3i
5.4.9 ds.p 38
5.4 .10 duration.p . 39
5.4.11 edit.p 39
5.4.12 end...m.p 39
5.4.13 even.s 39
5.4.14 fd.p . . 40
5.4 .15 fileJo.s . 40
5.4.16 front..m.p 41
5.4 .17 gffon .p . 41
5.4.18 grafon.p 41
5.4.19 hardw .s 41
5.4.20 hash .s 42
5.4 .21 head_em . 42
5.4 .22 hex.p 44
5.4.23 into.p 44
5.4 .24 keyb .s 47
5.4.25 lex .s 48
5.4 .26 lex_edit.p 49
5.4 .27 parse.s . 50
5.4 .28 pcf.s . .. 50
5.4.29 rdstr .p .. 50
5.4.30 rules..m.p 50
5.4 .31 screen.h 51
5.4 .32 screen .p 51
5.4 .33 speech.s 52
5.4 .34 strings .p . 52
5.4.35 termJo.s. 52

A Schematic diagrams 53

2

1 Introduction

This report describes a stand-alone text-to-speech system. This system
is developed at the lnstitute for Perception Research (IPO), Eindhoven.
The project was carried out within the national speech research programme
"Analysis and Synthesis of Speech" (SPIN-ASSP) under the project-name
"STASYS". The goal of this project was to come up with a microproces­
sor system, performing full text-to-speech conversion. For this purpose use
could be made of two available components : grapheme-to-phoneme rules de­
veloped at the lnstitute of Phonetics of Nijmegen University together with a
rule compiler that compiles the rules into a Pascal program and a speech syn­
thesis method based on the concatenation of stored small speech fragments
(diphones) , developed at the Institute for Perception Research together with
a speech synthesizer chip .

The possible applications of this system are manifold . It can be used
everywhet~ where text in ASCII form is available and spoken output is
wanted . The possible kinds of applications are shown in figure 1.

Figure 1: Possible applications .

SPEECH

BOAR D

SPEECH

BO ARD

SPEECH

BOARD

SPEECH

BOARD

The first possibility is human entered text through a terminal. This serves

3

mainly demonstration purposes. lt can also be used as an educational tool,
because in this setup feedback can be given on the various steps involved in
text-to-speech conversion. To make the system real stand-alone, a keyboard
and an LCD display can be connected instead of the terminal. A possible ap­
plication for this complete stand-alone system is as a speech communication
aid for the speech irnpaired.

The second possibility will perhaps be the most aften used one: the input
sterns frorn sorne other device, for instance a computer, a modern or teletext.
The systern is then used as a speech generating back-end.

The third possibility is to place the system within an ex.isting computer­
terminal link to speak texts frorn and to the computer. This creates a
speaking terminal.

The last possibility is to use the system as a speech programming device .
lnstead of analysis and coding of hwnan speech, text can be entered and
the resulting speech codes stored in the final application.

The system converts Dutch orthographic or phonetic input into speech.
The conversion proceeds in a nwnber of steps (figure 2):

• the conversion of conventional spelling into a pronunciation represen­
tation (phonetic alphabet);

• the assignment of word stress and sentence accents ;

• the conversion of phonetic spelling into a sequence of prerecorded ,
LPC-coded speech segments (called "diphones");

• the cornputation of appropriate durations for the concatenated di­
phones ;

• the computation of an appropriate intonation contour for the utter­
ance ;

• speech synthesis by rneans of a hardware formant synthesizer .

4

INPUT A GRAPHEME -> PHONEME

INPUT B PHONEME -> DIPHONE

SPEECH DATA -> SYNTHESIZER OUTPUT A

•
[SPEECH DATA -> INTEL HEX H OUTPUT si

Figure 2: Text-to-speech conversion.

The input can consist of either text or commands. Commands are preceded
by the special symbol "/". The input text can be interpreted in two ways,
viz . as orthographic or as phonetic spelling. This interpretation can be
selected by means of appropriate commands. Thanks to the phonetic-input
option, it is possible to use the system in combination with other letter-to-

5

sound converters than the one incorporated into the system.
The orthographic input can be enriched by user-supplied accentuation

markers, " ' ". In the absence of such markers, the system itself provides
word stress and sentence accents . Sentence melody (intonation) is entirely
computed by rule. A few duration rules are jncluded, e.g. the lengthening of
clause final syl1ables . The system has an exceptions lexicon that can contain
the correct pronunciation of irregular forms, e.g. foreign names .

The following facilities are currently available to the user:

• a memory for the last nine sentences

• a permanent memory for nine sentences

• a screen editor

• an edi tor for the exceptions lexicon

• upload and download facilities for the exceptions lexicon

• a software-adjustable audio volwne

• an adjustable talking speed

• the simulation of a female voice

The hardware of the system consists of a 68000 microprocessor , 512 kbyte
EPROM , 64 kbyte RAM with battery backup , a Philips speech synthesizer
(PCF8200) , a double RS232 interface, all in CMOS, and a simple audio
amplifier (TDA î052) .

2 Genera}

2.1 The board

Figure 3 gives an overview of the board with the location of the various
connectors and jwnpers .

6

!

X6

\7

6 1
[!)•[!)•l!J•[!]•[!]•[!]

Jumpers

Figure 3: The board layout .

2.2 Connectors

Xl Power supply.

Xl

□
Jumper 7 00

+ -

1 2

Figure 4: Pinning of power supply connector .

power supply: 7 - 15 volt unregulated.

X2

□

power consumption: 80 mA (not speaking) to 250 mA (speaking) .

7

X4

X3

X5

When the board is plugged into a PC, power is taken from the PC's
12 volt supply.

X2 On/off switch .

1 2 3 4

Figure 5: Connection of on/off l!lwitch .

The on / off switch does not switch the power line hut resets the system
when toggled . The position of the switch is checked after reset in order
to determine if the system has to be active or has to be powered off.
When this switch is not used a jumper has to be placed on pin 3 and
4 to assure that the active mode is selected after power-on reset.

X3 Terminal.
RS232 interface for use with a terminal or another device delivering
the input texts and commands. For the screen mode of the program
(see software) the terminal should be ANSI (VTlO0) compatible. The
terminal settings should be:

baudrate 1200 or 19200 baud (jumper selectable)

data format 8 data bits , 1 stop bit, no parity

handshaking XON/XOFF

wrap autowrap on

8

The connector is a 9 pin female D connector. The pin assignment is
given in table l.

Table 1: Terminal connector pins.
pin function
2 TxD
3 RxD
5 GND

X4 Host.
This second RS232 interface can be used in conjunction with a host
computer. The possibilities offered, a transparent mode, up- or down­
loading of the exceptions lexicon and speech data output are described
in the software section. Settings should be similar to the terminal
connection . The connector is a 9 pin male D connector . The pin
assignment is given in table 2.

Table 2: Host connector pins.
pin function
2 RxD
3 TxD
5 GND

X 5 Loudspeaker .
An onboard amplifier is present, capable of driving an 8 0 loudspeaker
with 1.5 Watt . The output is short-circuit protected. The connector
is a 3.5 mm stereo jack .

X6 Keyboard .
Connection for a matrix keyboard for innut.

Figure 6: Pinning of keyboard connector .

9

T hl 3 K b d a e ey oar connector pms
pin function pin function
1 INK0 11 OUTK2
2 INKl 12 OUTK3
3 INK2 13 OUTK4
4 INK3 14 OUTK5
5 INK4 15 OUTK6
6 INK5 16 OUTK7
7 INK6 17 OUTK8
8 INK7 18 OUTK9
9 OUTK0 19 NC
10 OUTKl 20 NC

X7 Display.
Connection for a Liquid Crystal Display for feedback .

Figure ï : hnrung ot display connector .

T hl 4 D' 1 a e 1sp a , connector pms .
pm function pin function
1 DO 11 A3
2 Dl 12 A4
3 D2 13 CLOCK
4 D3 14 SELECT
5 D4 15 R/W
6 D5 16 R/W
ï D6 17 NC
8 D7 18 NC
9 Al 19 GND
10 A2 20 Vee

2.3 Jumpers

In the upper-left corner of the board there are six jumpers located to select
various operation modes . These jumpers are described in table 5.

10

a e T bl 5 J umper row .
jumper jumper

jumper function present not present
1 program text-to-speech "Types tem"
2 text-to-speech mode screen application
3 terminal baudrate 1200 19200
4 host baudrate 1200 19200
5 time-out action power-off reset
6 operation test normal

1 In the text-to-speech mode the systems functions as a general text-to­
speech system with two possible userinterfaces, in the "Typestem"
mode it functions as a communication aid for the speech impaired,
with an appropriate userinterface (see IPO report 724).

2 The screen mode is intended for interactive use of the system through a
terminal, the application mode is better suited for the connection of
the system to some kind of equipment other than a terminal.

5 The timer is set at 5 minutes. When the system is powered off, it can be
switched on again by switcrung the on/off switch or by pressing a key
on the keyboard (if connected) .

6 CAUTION: The test mode destroys the whole RAM contents (settings,
stored sentences and the exceptions lexicon). The test mode is not
intended for use by persons unfamiliar with the system in detail.

Next to the processor there is one jumper (jumper 7) located to select the
memory access time. When the lower two pins (towards the PC connector)
are connected, the access time is 360 ns, when the upper two are connected
the access time is 180 ns. Trus jumper can be set according to the access
time of the EPROM 's used.

3 Hardware

3.1 lntroduction

The block diagram of the systern is shown in figure 8.

Memo ry

t1m 1ng

Reset

Keyboard

6B000 µ P

Power o ff
l1me r -----------~

Figure 8: Block diagram.

EPROM

640 k

1/ 0

Pow er
con tro l

The whole hardware is divided into nine pages in the schematic diagrams
(see appendix A). This division will be followed when describing the hard­
ware .

Page 0: processor
Page 1: doek , memory timing, LCD display
Page 2: reset timing , interrupt control, power off timer
Page 3: EPROM
Page 4: RAM
Page 5: serial interface
Page 6: power control, keyboard
Page i : synthesizer, volume control, amplifier
Page 8: power regulation

12

3.2 Page 0

The processor is an 68HC000, the CMOS version of the 68000 . The 68000 is
chosen because of its 16 bit power and its easy and large addressing capacity.
The CMOS version is chosen because of its low power consumption. The
processor is running at 12 MHz, its maximum frequency.

3.3 Page 1

Xl0l together with 1/4 ICl0l forma 24 MHz crystal oscillator. lts output
is divided by 2 by 1/2 IC102, giving a processor doek of 12 MHz, by 4,
giving a 6 MHz doek for the PCF8200, and by 16, giving a display doek of
1.5 MHz . The other half of IC102 is used to genera.te the DT AC K pulse.
This pulse is triggered by the address stro be (AS) . The doek signa} for the
DT AC K timer can be jumper selected from 24 or 12 MHz. This results in
a DT AC K delay of 180 or 360 ns. This selection can be made according to
the type of EPROM's used. Note: an access time of 180 ns is a little bit
to fast for the P CF8200 (200 ns) . In practice this will impose no problems,
hut to be absolutely sure or in case of problems 360 ns should be selected.
The disadvantage, however , is a slower response time.

By asserting the VP A input when AS becomes active the processor is
put into 6800 synchronous mode. This gives a longer access time (666 -
1332 ns) . The only peripheral needing this longer time is the display (min .
350 ns for EPSON displays).

The VP A input is also used to put the processor in autovectoring mode.
During a normal interrupt acknowledge the processor expects an interrupt
vector on the databus. Because most of our interrupting devices (in fact all
except the DA CIA) have no built-in facility to genera te such a vector , addi­
tional hardware would be required. As an alternative the processor can be
put in autovectoring mode by asserting VP A during an interrupt acknowl­
edge cycle. This cycle can be detected from the function code (FC0 .. 2).
When in autovectoring mode the processor uses an internal vector, one for
each interrupt level.

The R/W signa} has to be inverted for the PCF8200.
The connector for the LCD display bas all signals available that could

be needed because the actual display type was not chosen when the board
was realized . All signa! lines to and from the display are buffered in order
to keep the high frequency processor lines as short as possible.

13

3.4 Page 2

IC201 generates the reset pulse for the processor (RESET & HALT) and
for the seriaJ interface (RES). The length of the reset pulse is 500 ms, by
R203 / C203. There are three events possible that trigger the reset pulse:
power-up of the whole system (through R207 / C205), switching the system
on or off (through S201, C206/C207 and D204"207) or pressing any key on
the keyboard when all output lines to the keyboard matrix are high (through
signa! PUK).

So it is obvious that the on/off switch S201 does not switch the actual
power to the system. lnstead, every switch action resets the whole system
and the switch position is available to the processor (signa! SwPoa). So
immediately after a reset the processor should test this line and according
to its level power down the system or start processing . As will become clear
the power can be switched on and off by the processor.

IC203 is the power off timer. It can be run or stopped by the processor
through the signa! Enpot . The period time of the timer is 0.2 seconds, so a
level change will occur after 0.1 second. As the output of the timer is used
as an interrupt, this interrupt will occur 0.1 second after starting the timer
(stopping the timer also resets it).

IC202 codes the interrupts to the three processor interrupt inputs . The
interrupts are :
level 0: keyboard
level 1: speech synthesizer
level 2: serial channel 2 (host)
level 3: serial channel 1 (terminal)
level 4: power off timer
The priority assignment has mainly to do with the fact that when a certain
interrupt level is disabled, also all interrupts below this level are disabled .
The keyboard interrupt has to be disabled whenever a key is pressed on the
keyboard (see the description of keyb.s), so this interrupt got the lowest pri­
ority. Because the speech synthesizer interrupt sometimes has to be disabled
(during the beginning of an utterance) and the serial interrupts always are
enabled, the serial interrupts got the higher priority. The power off timer
got the highest priority because there will never be the need to disable this
interrupt, the timer can be stopped instead.

14

3.5 Page 3

The connection of the five EPROM's is rather straightforward. The used
EPROM's are the 27C1024, each 64k * 16bit, giving 640 kbyte memory.
IC303 is the address decoder, it has room left for three additional EPROM's.
The signals U DS and LDS are not used, at a byte read operation all 16 bits
are presented. This imposes no problem because the processor only reads
the correct byte.

3.6 Page 4

As RAM two chips (Sony CXK58256P, 32k * 8bit) are used, giving 64 kbyte
of RAM space. IC401 is the address decoder, it has room for one additional
RAM pair. The same address decoder dec odes the addresses for the pe­
ripheral chips. The highest. out.put (Y7) of the address decoder is not used
because this signa} is active during an interrupt acknowledge, when the pro­
cessor makes A4 " A23 high. The chip enable signa} for the RAM's is gated
with the U DS and LDS to allow for byte-size memory access .

The RAM's are provided with a backup battery (Bl0l). This is a Varta
ER 1 / 2AASLF, Lithium batt.ery, 3 V, lifetime 10 years, capacity lAh. The
stand by current of one RAM chip is typically 2 µA . So the theoretica} lifetime
of the battery is 106 / 4 = 250,000 hours = 28.5 years. Because of the practical
lifetime of 10 years, this battery has enough capacity. To switch this battery
on , IC402 (Dallas D81210) is used. When Vee drops below 4.75 V, RAM
power is switched to the battery instead to V cc . At the same time the chip
enable for the RAM's is made unconditionally high to prevent access to the
RAM's. Be aware that the gates for U DS and LDS have to be connected
to the RAM power instead of to V cc, because their outputs have to be high
during standby. Because the power supply of these gates during standby
goes down to 3 V, IC405 must be a HC type (instead of HCT) .

3.7 Page 5

IC501 is a double serial interface chip (DACIA: double asynchronous com­
munications interface adapter), type Rockwell 68C552 . The connection to
the processor is rather straightforward, only the two IRQ outputs are open
drain and need a pull-up resistor. The serial interface has its own clockgen­
erator for the receiver and transmitter doek. For this purpose X501 (3.6864
MHz) is present . From the serial connections only TzD and RzD are used
(handshaking is done in software by XON/XOFF).

15

IC502 (Maxim MAX232) converts the levels from 0 and +5 V to -10 and
+ 10 V and vice versa. The -10 and + 10 V supplies are made internally in
IC502.

3.8 Page 6

IC603, 605, 606 and 608 provide the processor with 16 input and 16 output
lines because the processor bas no input/output ports itself. For a matrix
keyboard there are 10 output lines (IC606 and Q6 .. 7 from IC603) and 8 input
lines (IC608). Through eight diodes (D601..608) all input lines are orred to
form the PUK (power up keyboard) and keyboard interrupt signals. When
all ones are written to the output lines these signals (PUK and interrupt)
become active when any key is pressed.

From IC603 three other outputs (Q0 .. 2) are used for internal control:
Q0: Vaudcon : audio amplifier power
Q 1: l ' cc con : V cc on
Q2: Enpot: enable power off timer

From IC605 two inputs (A0 .. 1) are used for internal control :
A0 : BatC on : power level control
Al : SwPos : on/off switch position

The other inputs (A2 .. 7) are equipped with jwnpers .
The address decoder (IC401, page 4) generates one select signal for all in­

put / output ports. 1/2 IC609 generates four select signals from this common
select by using Al and R/W.

IC607 forms the power control circuit.
With 1/ 4 IC604 a power low detection circuit is made. With R611 the

switching point can be adjusted.
Because some of the circuits are involved in the power control, these cir­

cuits have to be active even if the syst.em is powered off. They are therefore
supplied with V per, which is present whenever there is power connected to
the board.

3.9 Page 7

The PCF8200 speech synthesizer (IC701) is rather straightforward con­
nected to the processor . The audio output is filtered by a low pass filter
(R 703 .. 704 / C706 .. 707) and then led to the voltage ru vider R 705 .. 712 . One

16

of the outputs of this divider is selected by the multiplexer IC702. The
DC component in the PCF output signa} is not blocked so the input signa}
for the multiplexer is always positive. The audio signa.} is then a.ga.in low
pa.ss filtered (R 717 / C705) to remove some digita.l noise. The signa.} is then
a.mplified by bridge amplifier IC704, ca.pa.ble of driving a.n 8 n loudspeaker
with 1.5 Wa.tt .

The audio amplifier is only powered when there is speech output. The
power supply is switched by T701..702. C711..712 dela.y the switching off
a.ction.

3.10 Page 8

IC801 a.nd 802 a.re two regulators for the 5 V power supply. IC 801 regula.tes
V per, which is present whenever power is connected to the board. IC802
regula.tes V cc, the nom1a.l power supply for the board, which can be switched
on and off. To allow for a higher ma.ximwn output current T801 is a.dded.
The current limits are 2ï mA for Vper a.nd 215 mA for V cc .

17

4 Grapheme-to-phoneme conversion

For some time research has been going on at various institutes to come up
with (among other things) a grapheme-to-phoneme conversion system for
Dutch. At least one of these systerus ha.s reached the point where its perfor­
mance is good enough for practical use and which can easily be implemented
in a microprocessor system. This system [Kerkhoff, Wester and Boves, 1984]
has been developed at the Institute of Phonetics of the Nijmegen University.
Before we can use this system in our application together with the diphone
concatenation some changes had to be made.

This section describes this grapheme-to-phoneme conversion system as
it became available to us, the changes made to it and some implementation
points .

4.1 The original system

The systern is rule-based, i.e . the grapheme-to-phoneme correspondences are
formulated as a set of linguistic rules. This set of rules can be compiled into
a Pascal program by means of a rule-compiler program that was developed
for this purpose (called FONPARS) . This process is illustrated in figure 9.

RULES FEATURES

FO NPARS

Figure 9: Use of FONPARS.

ORTHOGRAPHI C

TEXT

GRAPHEME-TO­
PHONEME CONVERS!ON

PHONETIC STRING

The format in which the rules are written is analogous to the notation
described in the Sound Pattern ofEnglish (SPE) [Chomsky and Halle, 1968].
The genera} format of a rule is :

F -> C / L --- R

18

where: F = focus , C = change, L = left context , R = right context.
The capita! letters in the rule format can represent so-called "phonolog­

ical features" . Phonological features are characteristics of sound segments,
with which we can adclress groups of sound segments as a set. We can,
for instance, adclress the vowels and consonants as sets via obvious features
like [+voc] and [+cons] respectively. FONPARS needs to have access to a
feature table in which the characteristics of sound segments are presented.

The complete rule format is described in Kerkhoff and Wester (1987) .
It allows among other things for : insertions, deletions, exchanges, feature
specifications, optional elements, or-or statements and negations . Figure 10
gives an example of some rules. The first rule specifies the pronunciation of
the graphemes au when preceded by the graphemes rest or ch and followed
by f or r . The second rule specifi.es a phonetic variant of n when followed
by zero or more symbols with feature [-seg] followed by a r, g or x.

au-> oo / {rest/eb} --- {f/r}
n -> - / --- [-seg]O {r/g/x}

Figure 10: Example rules .

All rules are successively applied to the input string. For each rule the focus
F moves from left to right through the string. Whenever the focus matches ,
the left and right contexts are evaluated. When these also match , the rule
applies and the focus is replaced by the change C .
For grapheme-to-phoneme conversion a complete set of rules bas been devel­
oped [Kerkhoff, Wester and Boves , 1984] . In this rule set we can distinguish
various groups of rules . These groups are shown in Table 6.

19

Table 6: Grapheme-to-phoneme rules .

Function Approx. number
roman numbers 10
arabic numbers 25
abbreviations 5
uppercase words 5
sentence accent 25
grapheme-to-phoneme 100
word accent 50
assimilation 20
syllable boundaries 10

For text-to-speech application this system is followed by a speech synthesis
part . This synthesis part generates allophones by rules. These rules are
written in a format close to that of the grapheme-to-phoneme rules .

4.2 The modifled system

In order to use this grapheme-to-phoneme conversion together with the
diphone-based speech synthesis, some modifications had to be made, for
the following reasons:

1. The phonetic output of this system differs from our phonetic notation,
both in coding and in the allophonic variations used.

2. The phonetic output is meant as input for an allophone synthesizer,
rather than a diphone-ba.sed one . This sometimes results in other
phoneme sequences .

3. The intonation part of the system already selects basic intonation pat­
terns while we have our own selection system that expects the accent
positions and punctuation marks as input .

4. The system, which is rule-ba.sed, does not support an exception lexi­
con . Such a lexicon is necessary, however, in our a.pplication (e.g., for
names).

Ad 1) . The phonetic output ofthis conversion (Table 7) had to be translated
to the notation as used with the diphones (Table 8).

20

Table i : Dutch phonemes (and some of their allophones) and their character
representation for use with the allophone synthesis .

character example character example
representation word representation word

A bad p put
E bed b bad
I bid t tak
0 bod d dak
u put k kat
a baat G goal
e beet f fiets
0 boot V vat
i biet s sap
y boek z zat
u buurt C potje
@ b euk s was;e
E: foir z jaquet
EI bijt X lachen
UI buit g lagen
AU bout m mat
& de n nat
1 anjer 1 lat
N lang r rat
- ingaan j jat

* aanwas w wat
h had

21

Table 8: Dutch phonemes (and some of their allophones) and their character
representation for use with the diphone synthesis.

character example character example
representation word representation word

SI < stilte > EW leeuw
GS < glottalstop > IW kieuw
II liep YW duw
I pit p pas
EE lees T tas
E les K kas
EH mayonaise B bas
AA maat D das
A mat G goal
00 rood s sok
0 rot F fok
OH zone X gok
u roet z zeer
y fout V veer
CC' put M meer
C de N neer
UH freule NN mandje
AU koud Q bang
UI muis L lang
OE keus LL dal
EI reis R rang
AI detail w wang
AJ maait J Jan
01 hoi H hang
OJ hooit PJ boompje
UJ roeit TJ tjolk
ER beer SJ s1aak
OR woord DJ djatiehout
CR keur ZJ journaal
AW kauw DZ manager

Because there is no one-to-one correspondence between these two notations
a simple table conversion is not possible. In addition there are some am-

22

biguities , for instance E , I and EI are all valid phonemes . Therefore some
kind of interface software is necessary. The rule format already used for
the grapheme-to-phoneme conversion is perfectly suited to this task, so this
tra.nslation is written as an add.itional set of rules . These rules are listed in
figure ll .

(• Conversion of KUN phonetic symbols to !PO notation •)
<••>
(• Remove double spaces •)
(• Remove spaces before a comma •)
-> $ / --- {# / ,}

(• Remove space between accent marker
-> $ / + ---

(• Use \ as word separator instead of
-> \
(• Add a space between all phonemes •)
$ -> # / -r
E # I -> EI
u # I -> UI
A # u -> AU
(• Conversion KUN to IPO notation •)
C -> TJ
u -> cc / # --- #

a -> AA
e -> EE
0 -> 00

i -> II
y -> u
u -> y

«l -> OE
E # : -> EH
&: -> C
N -> Q

•! -> NN
- -> N

** -> N

h -> H

p # " # j -> PJ

23

and word •)

space •)

p -> p

b -> B
t # " # j -> TJ
t -> T
d -> D
k -> K
f -> F
V -> V

s -> SJ
s # " # j -> SJ
s -> s
z -> ZJ
z -> z
X -> X
g -> X
m -> M
n -> N
1 -> L
r -> R
j -> J
w -> w
"# -> $

(* Remedy against aankomst-> AAQKOMST etc . *)
Q -> N / [+voc] [+voc] # ---

Figure 11 : Conversion rules from KUN to IPO phoneme notation .

Ad 2). Some rules have to be added after this translation because a number
of phonetic variations used by the diphone synthesis are not covered by the
phonetic output of the original system. These variat.ions are the silence
phoneme, glottal stop , thick L and some diphthongs . These rules are listed
in figure 12 .

(* Allophonic variants *)

AA# {I/J} -> AJ / --- [-ipo_seg]O {[+ipo_cons] / \}
00 # {I/J} ->DJ/ --- [-ipo_seg]O {[+ipo_cons] / \}
0 # {I/J} -> DI / --- [-ipo_seg]O {[+ipo_cons] / \}
U # {I/J} -> UJ / --- [-ipo_seg]O {[+ipo_cons] / \}
A # I ->AI/ --- [-ipo_seg]O {[+ipo_cons] / \}

24

AU# W -> AW /
EE # W -> EW /
II # W -> IW /
Y # W -> YW
D # J -> DJ

[-ipo_seg] 0

[-ipo_seg]O
[-ipo_seg]O

J # -> $ / NN # [-ipo_seg]O ---

{[+ipo_cons]
{ [+ipo_cons]
{[+ipo_cons]

N # -> # NN # / --- [-ipo_seg]O {SJ/TJ}
S -> Z / EH #

(• Thick L rules •)

/ \}

/ \}

/ \}

L # -> # LL # /

L # -> # LL # /

[-ipo_seg]O \ [-ipo_seg]O ·L­
{S/T/D}

L # -> # LL # / [+ipo_seg]

(• Add silence after a comma •)
$ -> # •• # •# f ' ---

[-ipo_seg]O [+ipo_cons]
[-ipo_seg]O [+ipo_voc]

<• Add glottal stop between words •)
-> # GS # / [+ipo_seg] # \ -L- [-ipo_seg]O [+ipo_voc]
(• Add glottal stop in words (geopend, geacht)•)
-> # GS # / C -L- [-ipo_seg]O [+ipo_voc]
(• Allophonic variante•)
00 ->OR/ # [-ipo_seg]O R
EE ->ER/ --- # [-ipo_seg]O R
OE -> CR / --- # [-ipo_seg]O R
(• Translate silence symbol •)
•#->SI

Figure 12: Rules for allophonic variants.

In addition , some rules of the existing set had to be modified. These rules
take care of effects that are already incorporated in the diphones (e.g ., glide
insertion).
Ad 3). The original system comes up with two types of accent information:
the sentence accent (a pattern number before a word to be accented) and
word accent (the accent position within a word) . The software is changed
in such a way that the sentence accents are removed and the word accents
are kept in those words that. had this sentence accent .
Ad 4). The existing system uses no exception lexicon. For practical appli ­
cations this is a serious omission. However good the grapheme-to-phoneme
rules will be, there will always be irregularities not covered by these rules in

25

a practical application (e.g., jargon, proper names). These irregularities can
be covered by putting them together with their correct phonetic translation
in a Jexicon . In order to obtain maximwn benefit from this lexicon , the
user should preferably be able to change it. In this case he can tune the
Jexicon to his own application and vocabulary. Attention has to be paid to
the translation of the input string, because the rules are designed to operate
on the complete sentence, while the lexicon opetates on words .

To incorporate these changes, the rule set (plus the additional self writ­
ten rules) has been divided into four groups as given in Table 9.

Table 9: Grouped grapheme-to-phoneme rules .

Name Rules
Front roman nwnbers

arabic nwnbers
abbreviations
uppercase words

Accent sentence accent
Grafon grapheme-to-phoneme

word accent
assirnilation

End allophonic variations

A new software framework bas been developed using these four groups of
rules as illustrated in figure 13. This translation strategy differs in two
points from the straightforward translation by the rules . These two points
are the possibility to skip the sentence (or sentence and word) accent rules
and the presence of an exception lexicon .

The possibility to skip the accent rules is implemented because the accent
rules often come up with accent positions that are far from ideal. This is
due to the fact that proper intonation is dependent on the meaning of the
sentence , which a machine cannot know without extensive semantic analysis ,
and on the complexity of the other factors that influence intonation, such
as syntax. lt is worth while, therefore, creating a possibility to let the
user provide the accent positions. On the other hand, when the user does
not want or is not able to provide this information, the accent positions
generated by the rules are preswnably better than no accents at all. The
choice whether to use the accent rules has therefore to be made by the user
and is implemented as fellows . If the user supplies accents in the input, these

26

UNIT

SEliTENCE

IORD OR
SENTENCE PART

SESTENCE

INPUT

FROliT RULES

YES

YES

GR.ro~_Ru_L_Es __ ___,

END { UI.ES

(OUTPUT)

PHONETIC NOTATJON

KUN

IPO

Figure 13 : Grapheme-to-phoneme conversion.

accents are used , otherwise the rule-generated accents are used. Because
the word accent rul es (accent position within a word) function considerably
better than the sentence accent rules, these word accent rules can be used
most of the time. When the user places an accent symbol before a word,
he indicates that this word has to be accented and the word accent rules
determine the exact accent position. For cases where this goes wrong , he
can place the accent symbol within the word, ind.icating the syllable to be
stressed. This feature, however, was not foreseen during the development of
the rules and therefore this placement of an additional symbol within a word,
may cause the grapheme-to-phoneme rules to work incorrectly. Because this
feature is only meant to be used in "emergency cases" no better solution is
looked for .

As mentioned before , the exception lexicon operates on words, while
the rules work on complete sentences. The rules are designed to work on
complete sentences because 1) for calculating sentence accent positions the
whole sentence is needed and 2) neighboring graphemes influence each other
in the grapheme-to-phoneme conversion. Therefore the conversion by the

2i

lexicon and by the group of grafon rules is carried out as follows. Each word
in the input string is searched for in the lex.icon, going frorn left to right
through the string . This process continues until a word matches or the end
of the string is reached. At that point the part of the string prececling the
matching word (or the whole string in case the end was reached) is translated
by the rules and the matching word is translated by the lexicon. The sarne
process then starts again with the remaining part of the sentence. In this way
the problems with the lexicon operating on words and the rules operating
on senten ces are minimized. The calculation of the accent positions (1)
is still done on the whole sentence. The grapheme-to-phoneme conversion
rules operate now on sentence parts (2) . The only places where these rules
miss the neighboring graphemes is where the sentence is interrupted by
words present in the lex.icon . In this way this missing information is kept
to a minimwn. The rules in the group of end rules aften work across word
boundaries, so tlns group of rules is processed separately from the grafon
rules . In this way these rules always work on a complete sentence .

4.3 References

Chomsky N. and Halle M. (1968), The sound pattern of English, (Harper &
Row, New York) .

Kerkhoff J. , Wester J. and Boves L. (1984) , "A compiler for implementing
the linguistic phase of a text-to-speech conversion system", Linguistics in
the Netherla.nds, pp . 111-117.

Kerkhoff J. and Wester J. (1987), Fonparsl user manual, Part I: rulc for­
mat , internal publication Institute of Phonetics, Nijmegen University.

28

5 Software

5.1 Genera}

The software is mainly written in Pascal. The use of a. high level progra.m­
rning la.ngua.ge ha.s numerous a.dva.nta.ges a.bove a.ssembly la.nguage. The
software is easier to read and to maintain. The development of the software
is much easier and can be done on another system, in this case a Vax, which
has better debugging facilities and works rnuch faster. The clisadvantage,
however, is that a high level language can result in less efficient code, both
in size and in speed. Size has not to be a. problem if the memory needed
is still within acceptable lirnits. The sa.me holds for the speed: as long as
the system is fast enough (to allow for real-time processing), inefficiency
js no problem. As it turned out during the development that the system
was not fast enough, parts of the software had to be made more efficient.
This was partly clone by rewriting the Pascal code and partly by the use of
assembly language. Assembly language is also used for those parts of the
software that are hardware dependent. For the high level language Pascal
was chosen for two reasons : the compiler for the grapheme-to-phoneme rules
generates Pascal code and much software was already available on the IPO
Vax in Pascal.

In order to maintain a clear overview over the software each functional
part is put into a separate unü. This has the adclitional advantage of speed­
ing up compile time because only the units that are changed have to be
compiled . The Pascal code files have suffix .p, the assembly language files
have suffix .s. The files present are :

accenLm.p accent rules

chip.p speech synthesis

dacia.h DACIA register declarations

data.s cliphone data table

diagn.p cliagnostic module

diphone.s cliphone data table access

dir ..io.s direct 1/ 0 to terminal and host

ds.h common declarations (constants and types) for Pascal unüs

29

ds.p main program

duration.p generation of prepause lengthening

edit.p screen editor

end..m.p end rules

even.s aligrunent of all PROM sections to even addresses

fd.p phoneme-diphone conversion

file.Jo.s dwnmy routines for file 1/0

fronLm.p pre-processing rules

gffon.p phoneme input

grafon.p grapheme-phoneme conversion

hardw .s hardware support

hash.s diphone hash table

head_em assembly body for whole program

hex.p speech data output in lntel Hex

into.p generation of pitch contour

keyb.s keyboard read

lex.s exception lexicon access and update

lex_edit.p maintenance of exception lexicon

parse.s fast assembly routines for grapheme-phoneme conversion

pcf.s PCF8200 control

rdstr.p read string

rules..m.p grapheme-to-phoneme rules

rules..ml.p grapheme-to-phoneme rules

rules..m2.p grapheme-to-phonerne rules

30

screen.h declarations of screen control routines

screen.p screen control

speech.s speech data for diagnostic module

strings.p string handling

term_io.s Pascal I / 0

5.2 Data structures

5.2.1 Diphone tables

For the storage of all diphones a special data-structure bas been chosen that
allows for easy and fast access of each diphone. Just one table containing
all diphones would be a waste of memory, because in this case all entries
should be of equal length to allow addressing . This implies that all entries
should have the length of the longest diphone . Instead a table is used where
all diphones are placed imrnediately bebind each other . To be able to locate
each diphone in this table , a second table is present , giving the address in
the fir st table for each diphone. The entry in this second table is found by
a hash function on the diphone name. This is illustrated in figure 14.

11 am c ötldn:ss
nnn1e ,H.ld ,-e ss

n aine üJd J' (.'::'S

0

J-/a sl1! a lJ/c
Figure 14: Diphone tables.

The construction of the tables goes as follows :

31

di phone 1

1d fr am~

da t a framf'

di p l1011 e n dat a fram ~

data fra me-

Data table

Take the hash function of the diphone name, this gives an entry in the hash
table. If this entry is occupied (name -:/ 0), go to the next entry until a free
place (name = 0) is found. Store the name of the diphone in the name field,
and the address of the first free location in the data table in the address
field . Place the speech data for this cliphone behind the previous one.

The look-up of a diphone goes more or less in the same way. Take the
hash function of the diphone name, this gives an entry in the hash table.
From this entry on, compare the diphone name with the name in the name
field of that entry, until they match or until the name field is zero. In the
first case the address field gives the location of this diphone in the data
table, in the second case this diphone is not present.

For optimal performance the hash table length should be about 1.5 times
the number of diphones (to allow for enough zero en tri es) and should be a
prime number (for an efficient hash function) .

Each diphone in the data table is preceded by an identification frame .
The bytes in this frame have the following meaning:

byte 1 diphone length in frames (excl. id frame)

byte 2 phoneme boundary

byte 3 end of beginsmoothing (0 : no smoothing)

byte 4 begin of endsmoothing (length + 1: no smoothing)

byte 5 frameduration in 0.1 ms

The Pascal declarations and constants are currently:

key_len = 8; { diphone name length in hash-table
hash_len = 7 · { nwnber of characters ,

priem = 3001 ; { size hash table }

priem_l = 3000; { priem -1

The hash function is :

FUNCTION HASH (s: str): integer;
VAR h, i: integer;
BEGIN {hash}

h:= O;

}

32

used in hash

}

function}

for i:z 1 to hash_len do
h:= (ord (s [i]) + h * 31) mod priem;

hash:= h;
END; {hash}

5.2.2 Strings

There area lot of strings declared, most of them as packed array's of char,
but with different lengths . Two string types (sentence and phonstr) are a
record containing a buffer (packed array of char) and a length (integer) .

5.3 Memory map

The division of the memory area is as follows (Table 10):

Table 10: Memory map.

Address Component
00000 EPROM0
20000 EPROMl
40000 EPROM2
60000 EPROM3
80000 EPROM4
A0000 EPROM5
coooo EPROM6
E0000 EPROM7

100000 RAM0
110000 RAMl
120000 Speech synthesizer
130001 Volume
140001 LCD
150001 1/0
150002 Keyboard
160001 Serial interface
170000 Reserved

Note: EPROM5-7 and RAMl are currently not used .
With the current software and exception lexicon (10000 bytes) the RAM

area from 100000 (hex) to 10E490 (hex) is occupied. The stack comes down
to 10E6C0 (hex), leaving about 500 bytes free between memory area and
stack.

33

5.4 Unit descriptions

5.4.1 accenLm.p

The procedure accenLmod, which performs the sentence accent generation.

&.4.l chip.p

The procedure chip starts the speech output, when the speech is running the
interrupt service routine pcf_interrupt calculates and sends the consecutive
frames.

The actions performed in chip are: first it waits until the previous speech
is finished using the global flag speaking. Then it calls the routines duration
and intonatie to fill the arrays with speed and pitch slope turning points.
The diphone array is copied, so a next sentence can already be processed
without disturbing the buffer for the current sentence . Then the PCF8200
interrupt js disabled , because the start-up is all clone in this routine and
not in the interrupt service routine. The interrupt routine is then called to
calculate the first frame . The routine starLpcf sends the DAC factor. Then
the pitch start is sent. After this the PCF8200 interrupt is enabled and this
routine is finished .

The interrupt service routine pcf_interrupt does the following : the time
is checked against the next duration turning point (in durpnt) . The duration
contour is stored as a number of points, each point consisting of a time and
a new duration code . The last point has a time equal to the length of the
utterance . lf a duration turning point is passed, a command is sent to the
PCF8200, incorporating this new duration code. The voice selection in the
command byte is set according to the global variable female . Then it sends
the frame calculated in the previous call and calculates a new frame . In this
way there is more time available for calculation than when a frame is first
calculated when a request occurs . Calculation of a frame is composed of the
following steps : if the current frame is the first one of a diphone a check
is made if smoothing is allowed. Smoothing is allowed when the previous
diphone allows for endsmoothing and the new one allows for beginsmoothing
and if the current frame has not the maximum frame duration. lf smoothing
is allowed the first frame of the new diphone is skipped and the second gets
a Jonger frame duration. This should be the double of the original duration,
hut this is only true for original durations of 12.8 ms, as possible values are :
12 .8, 25.6 , 38.4 and 64 ms. The information about the number of frames
that can be smoothed is not used, it is always one. Then the time sprchip

34

from the beginning of the utterance is checked against the next intonation
turning point (in kntpnt) . The intonation contour is stored as a number of
points, each consisting of a time and a slope . The last point has a time
equal to the length of the utterance . If the time passed a turning point, a
new freqJ (the frequency at the last turning point) is calculated using the
formula:

•lop~•fi,n~

f nttw = fold * 2 12

where time is the time interval between the two turning points. To speed
up this calculation the following approximation is used:

2:r = 1 + ln(2) • z + 1/21n(2)2
• z 2

All times are in 0.1 ms, therefore the 12 in the formula changes to 120,000.
For the actual frequency (freq2) the same formula is used :

.-l o 1•~ •t i t11 c

f req2 = f reql • 2 12011110

where time is the time interval since the last turning point (sprint) . This
calculation is only clone when necessary, i.e. when the frame is a voiced one .
Then the pitch interval (freqdec) between this frequency (freq2) and the fre ­
quency of the chip (freqchip) is calculated (see figure 15) . The calculated
value of freqdec is then compared with the border values in pitableJ. These
values are the borders between the possible pitch increment / decrement val­
ues for the PCF8200 , which are stored in pitable2. So the calculated (exact)
value is rounded of to the nearest value possible with the PCF8200. This
value is then inserted in the frame that will be sent on the next call . The
new frequenc y of the chip (freqchip) is then calculated by using the selected
value from pitabh:2.

35

Pit ch

Figure 15 : Pitch calculation .

5.4.3 dacia.h

Previous
frame

sprint
◄--

Declaration of all DACIA registers.

5.4.4 data.s

The diphone speech data.

5.4.5 diagn.p

Currenl
frame

............. 1
·· ······ ······ •··

freq2

freqdec

freqchip
freq 1

Hardware test module . This software is described in more detail in the
technica! rep ort .

5.4.6 diphone.s

Routine geLframe t o read one frame (5 bytes) from diphone data table . This
could possibly be clone from Pascal also, hut then the length of this table
should be known and stored as a constant in order to be able to declare this
table as a Pascal array.

36

5.4. 7 dir _io.s

A vailable procedures :

d...read read character from terminal (without echo)

d-.h...read read character from host (without echo)

d_write write character to terminal

d_h_write write character to host

spec_write write special character to terminal (ASCII values between 0
and 255)

A vailable functions :

d_test test if a character is available from terminal

d_h_test test if a character is available from host

The l / 0 is synchronized by means of the XON / XOFF protocol. The mean­
ing of the flags used for this purpose are :

waitl output to terminal is stopped (XOFF received)

wait2 output to host is stopped (XOFF received)

wait3 inputbuffer from terminal full, XOFF was sent

wait4 inputbuffer from host full, XOFF was sent

The input is read from a buffer that is filled by the DACIA interrupt service
routine. When one of the d_read routines empties his buffer and the corre­
sponding wait flag was set, an XON is sent to signa! that there is enough
space available now to receive characters.

5.4.8 ds.h

Declaration of common Pascal constants and types .

37

rna.xacc = 50;
max_kntp = 200;
max_dur = 50;
max_char c 256;
maxacc<> = 71;
rnaxfeat = 16;
maxklank = 50;

{ rnax nurnber of accents}
{ 4 turning points per accent}
{ max nurnber of speed changes}
{ max stringlength}
{ constants for grapheme-to-phonerne convertor}

max_phon_char"' 2; { max nwnber of char per phonerne}
maxfon = 750; { length of phonerne string (max_char•(max_phon_char+1))}
LN2 • 0.69315; { ln(2) tor intonation formulas}
LN22 c 0.24023; { 0.5 • sqr(ln(2))}
right_margin= 60;
key_len = 8;
hash_len = 7;
priem
priern_l
rnax_nr

=- 3001;
= 3000;
= 4;

5.4.9 ds.p

{

{

{

{

{

screen width in screen edit mode}
diphone name length in hash-table}
nurnber of characters used in hash function}
size hash table}
priem -1}

{ max nurnber in diphone name}

This is the main program. The main program loop calls the various parts
of the text -to-speech conversion:

kun_grafon grapheme-to-phoneme conversion

gffon phoneme input

fd phoneme-diphone conversion

chip speech synthesis (including duration and intonation)

Except this main program loop this unit takes care of the input , command
parsing , execution of some (simple) commands and the initialization .

The text-to-speech routines are also called from the procedure host , in
which the text going from terminal to host and/or vice versa can be spoken.

A nwnber of variables declared here are global variables : they are also
used in other units. In these other units they appear as argument in the
unit declaration .

The variable ram_check is used to check RAM integrity. After initializa­
tion this variable is set to 123456. As long as it has this value , it is asswned
that the RAM contents are intact.

38

This file contains also the main part of the Typestem software . This
part is only compiled when a version is generated including the Typestem
software.

5.4.10 duration.p

The procedure duration fi.lls the duration points array durpnt. This ar­
ray contains the times where the duration changes and the corresponding
new duration values. At the moment only a prepause lengthening is imple­
mented and there are two duration values possible: one for the prepause
parts (prepause_dur), and one for the remaining parts (mean_dur). The di­
phone string is searched for the occurrence of SI phonemes, they signa! the
end of a prepause part. From such a point the diphone string is searched
back until : the begin of the diphone string is reached, an accent is found,
two vowels are found or a silence is found, whichever comes first.

5.4.11 edit.p

The procedure edit is a screen editor that edits a buffer of type sentence.
The editor creates a window on the screen consisting of 5 lines of width
righLmargin. The use of a right margin less than the screen width bas
the advantage that the editor is not influenced by the terminal 's auto-wrap
setting. The use of the editor is like the Vax editor EDT, but only a limited
number of functions are available:
cntrl H : begin of line
cntrl R : refresh screen
and the keypad functions Help, Next Word, End of Line, Delete Line, Delete
Word and Delete Character .

This unit contains a few basic routines (to_right, to_left, up , down , write_str),
which are used in the routines that perform the actual commands .

5.4.12 end_m,p

The procedure end_mod, part of the grapheme-to-phoneme converter.

5.4.13 even.s

This unit contains four alignment pseudo instructions to make sure that the
length of the sections that are programmed in EPROM is even. This is
necessary because the orientation in memory of two neighboring bytes for

39

the 68000 differs from the output generated by the assembler. Therefore
a postprocessing program is used, swapping the bytes two by two, thus
requiring an even number of bytes .

5.4.14 fd.p

The procedure fd bas as input the array /ons, containing the phonemes and
special symbols for an utterance, and as output the arrays plaats, containing
the diphones, and accent, containing the accent points . Each element of the
array /ons contains a phoneme or special symbol (';,?\.). The task of this
procedure is twofold :
1) finding the corresponding diphones
2) separating the accent information from the phonemes
The first task is performed in two steps: first the names of two neighboring
phonemes are combined to form a diphone name. In the straightforward
cases the result is: <phonemel>l<phoneme2>1. In some cases the second
phoneme is altered because the beginning of that phoneme resembles close
another one (e .g., DlAil would sound the same as DlAl) . In the case of
plosives a silence phoneme is used (e.g., ClKl becomes ClSll). All this is
done in the procedure make_diphone. The second phase is the lookup of the
diphone by zoekdif. This procedure looks for the diphone using its name
as described in the section diphone tables. If it is not found the procedure
noL/ound first tries to locate a diphone with the same name but with the last
digit changed (e.g., DlAl , D1A2, D1A3 etc.) up to the constant max_nr.
If this also results in no diphone found, a silence diphone (S11S11) is used
instead.

The special symbols are distinguished in accent markers ('), comma
markers (,;?) and symbols without accent information (\ .). This infor­
mation is stored in the array accent together with the position (diphone
number) .

lt is also possible to enter numbers in the phoneme string to select di­
phone variants, e.g. A 33 X results in the diphone A3X3 being looked for .

This unit can produce some error messages, these are suppressed in the
application mode .

5.4.15 ftle.Jo.s

This unit contains three dummy file 1/0 routines to satisfy the linker .

40

5.4.16 front..m.p

The procedure fronLmod, which performs the text pre-processing.

5.4.17 gffon.p

The procedure gffon takes care of phoneme input. lts actions are twofold:
1) the addition of a silence phoneme at the begin and end of the utterance
2) the transformation of a string contairung the consecutive phonemes into
an array.

5.4.18 grafon.p

The procedure kun_grafon does the grapheme-to-phoneme conversion. The
actual routines with the rules are not in this file because it would be too big
to compile then .

The irutialization part of this routine, building the feature sets, is only
clone when the RAM was corrupted. This is clone to speed up the conversion .
Af ter application of the text pre-processing rules (fronLmod) the input string
is scanned for accent markers, if not found the accent rules (accenLmod) are
called . Then each word is searched for in the lexicon (by match) and if found
the preceding unprocessed text is processed by the grapheme-to phoneme
rules (rules and rules_mod) and the phonetic transcription of the word found
in the lex.icon copied. At the end of each sentence any remaining unprocessed
text is processed by the rules. Then the combinations of sentence- and wor­
daccents are turned into accents and sole wordaccents are removed . Accent
signs are also moved forward until they are in front of a vowel. Then the
rules in end_mod are applied on the whole string .

5.4.19 hardw.s

This urut contains a number of hardware interface routines :

ds_jumper text-to-speech software ?

scr .jumper screen mode ?

test..jumper test mode ?

set..vol write parameter to volume control

batt..empty power too low?

41

power _off power off signa! to power control

amp_on audio amplifier on

amp_off audio amplifier off

switch_pos test on/off swjtch position

read,iumpers setting jumper 1 to 6

timer _on run power off timer

timer _off stop power off timer

5.4.20 hash.s

The diphone hash table .

5.4.21 head _em

This (assembly; for some dark reason the .s suffix is not used here) unit is
the first file that is read by the linker . It determines therefore to a large
extent the total program layout. It. is also used to map the software to the
hardware .

The first part of this file is the declaration of all sections used . Because
the linker determines the order of all sections when they are fust encoun­
tered , all sections are declared here in the order wanted . The section layout
is (Table 11) :

42

Table 11 : Section layout .

Address Section Function
0 .reset reset vector

64 .levelUnt interrupt autovector 1
68 .level2Jnt interrupt autovector 2
6C .level3Jnt interrupt autovector 3
70 .level4int interrupt autovector 4
74 .level5int interrupt autovector 5

400 .text program code
.roda read only data
.clif.hash cliphone hash table
.cliLdata cliphone data table
.end...rom dummy section

100000 .data read / write data
.bss read/write data
.lex exception lexicon
.end...ram dummy section

The next part is the initialization. This is a mixture of self written code and
code stemming from the original head_em. The latter parts (trap handlers,
program parameters) are not used hut are kept for compatibility reasons.
First of all the output port is initialized, necessary for the power control to
maintain power supply. The status of the output port is also kept in RAM
to allow for bit manipulation operations . This is not possible clirectly on
the output port , because bit manipulations read a byte, change a bit and
write the bit back . The read operation would in this case read the input
port however. Initially all ones are written to the keyboard latch to enable
the keyboard . Then the on/off switch state is checked. Hit is in the off
position, all zeros are written to the keyboard latch to clisable the keyboard
and the power is switched off. Otherwise the initialization continues.

The PCF8200 speech synthesizer is checked if it is not busy which should
be the case. If busy, a stop command is sent in order to try to make it ready.

Then the DACIA is initialized (routine dacia_init) . The baudrate pro­
grammed is jumper selectable. In the same routine the input buffers and
corresponding pointers are initialized.

This unit contains also some interrupt routines (DACIA and timer).
The DA CIA interrupt routines (acia1-int and acia2_int) first check if the
incoming character is an XON or XOFF . These characters are not placed in
the input buffer, hut used to synchronize the output. They reset or set the

43

corresponcting wait flag . All other characters are placed in the input buffer.
When the input buffer becomes full (10 places left) an XOFF is sent to stop
the input . An XON is sent when the input buffer is empty again (by d_read
or d_h_read). The timer interrupt routine (timer _int) counts the number of
interrupts in the varia.bie _time_out. Interrupts occur every 0.1 second. This
va.ria.ble is cleared every time a character is entered from the terminal or
keyboard. After a specified time (currently 5 minutes) an action is taken,
depencting on one of the jumpers a restart or power down.

5.4.22 hex.p

This unit is like chip.p, the ma.in difference is that the speech data is not
send to the speech synthesizer, but to the serial port for the host . The data
is send in Intel Hex format. An Intel Hex record consists of:
a ":" as record start,
the nurnber of data bytes (one byte),
the address (two bytes),
the record type (00 : data, 01 : End Of File),
the data bytes (only for data records),
the checkswn (two 's complement of the sum of all prececting bytes) .
Each speech data frame or command is send as a separate record. The data
is preceded by a header frame and terminated by a stop command . The
header frame consist of (in accordance with the Philips proposal):

byte 1 & 2 length in bytes (incl. this frame)
byte 3 pitch end
byte 4 DAC factor
byte 5 pitch start

The length (in frames) of an utterance cannot be cakulated by ad ding the
individual ctiphones because smoothing will skip some frames . Therefore the
whole utterance is processed twice, once to calculate the number of bytes and
once to send them. The first time the pitch calculation is omitted because
this information is not needed there .

5.4.23 into.p

The procedure intonatie generates an intonation contour in the array kntpnt.
This array contains the times where the slope of the piecewise linear into­
nation contour changes and the new slopes .

44

First the declination is calculated using the formulas :

D - 000-~~o 1a t ~ 4.82 s

D - o.iïtt t > 4.82 "

where D is the declination in semitones/second and t is the sentence length
in seconds. The end.frequency of the declination line is 75 Hz for the male
voice and 180 Hz for the female voice.

Then the times for the accents are calculated from the accent positions
given in diphone positions . Finally the actual patterns are calculated using
the algorithm given in figure 16. The patterns used are showed in figure 17.

45

Pal t crn 3

y

8
Figure 16: lntonation algorithrn.

46

Endpoinl :•
sentence end

Po lt ern 6

8

Pallern 2

30

1 5

i•I i+l
i+l

VAR

VAR

2 100 6

i+l
VAR 3 0

3 7

VAR

4 100

Figure 1 i : Intonation patterns .

5.4.24 keyb.s

This unit contains the read routine for the keyboard. This routine is an
interrupt service routine, called whenever a key is pressed. To prevent this
routine from being called all the time when a key is hold down, it starts
with disabling the keyboard interrupt . Because this is an interrupt routine,
it is of no use to change the status register. The original status register is
namely saved on the stack and restored upon completion of the interrupt
routine . Therefore the saved status register on the stack is modified. The
interrupts are enabled again in the timer interrupt routine, but only when
the PCF interrupts are already enabled (level= 1) . Otherwise enabling the
keyboard interrupt would also enable the PCF interrupt . In this way the

47

keyboard routine is called every 0.1 sec . when a key is hold down . To allow
for debouncing the keyboard is scanned until 500 times the same value is
rea.d . Then the key pressed is searched for by making the latch outputs
high one by one. Th~ position of the pressed key is then translated into an
ASCII code by a table conversion . Th~ charMter thus found is compared
with the previous cha.ra.cter. When they are the sa.me the new cha.racter is
only entered into the input buffer when it is a cursor movement or delete
key and the appropriate delay has passed. When this is true or when the
characters or when the characters are not the same they are entered into
the input buffer . Some characters are not directly copied into the buffer
hut transla.ted in an appropriate escape sequence. This makes the keyboard
input compatible with the terminal input. Some keys act different when
used iu text-to-speech or "Typestem" mode . In text-to-speech mode they
provide some special characters (/ +-* %&), while in "Typestem" mode they
speak a sentence from the direct speech buffer .

5.4.25 lex.s

This unit contains five routines to access and control the exception lexicon.

match searches the lexicon for a given entry and if found (function result
true) returns the phonetic representation for that entry.

next returns the entry that follows the given one. Returns false if the end
of the lexicon is reached .

insert insert s the given entry at the correct place . Returns false if the
lexicon is full or the entry is already present.

delete dele t.es the given entry (if present) .

lex..init clears the lexicon.

Each entry in the lexicon is constructed as follows :
< entry length> <grapheme length> <graphemes> <phoneme length> <phonemes>

The last entry has <entry length> zero.
The entries are ordered alphabetically on their graphemes. This bas the

advantage that a search in the lexicon can be stopped at a certain moment
and not the whole lexicon bas to be sea.rched . An example:

48

looking for lexicon
blik aap

blok
rene

The comparisons made are:
b +-+ a no match, next entry
b +-+ b match, continue with this word
1 +-+ 1 match, continue with this word
1 +-+ o o is greater than i, blik is certainly not present

5,4.26 lex_edit.p

This procedure is partly an adaptation of the lexicon edit program on the
IP O Vax made by J .R. de Pijper. This part is rat her straightforward. Added
are tht> upload and download facilities to and from a Vax host computer.
The way this uploading and downloading is done is :
• connect to the Vax (H command)
· run Vax interface program on Vax
· back to board (cntrl A)
- give retrieve or store cornmand (R or S)
• enter Vax filename
When in progress , the uploading or downloading can be aborted by pressing
any key. The protocol used is the following:
the board starts with an opening message:
!R<filename><CR> (retrieve) or
!S < filename><CR> (store)
The Vax answers with 3<CR> if the file cannot be found (retrieve) or
created (store). Otherwise the lexicon is transferred using the following
loop:
the sender sends l<graphemes>kphonemes>kchecksum><CR> and the
receiver answers
A<CR> acknowledge if correct received
N <CR> nack if something went wrong (incorrect checksum)
When the answer was an acknowledge the next entry is send, otherwise the
previous one is repeated (without limit) . Af ter the whole lexicon is send,
the sender sends 2<CR>.

When a receive is aborted, the board sends a cntrl C to the Vax to stop
the sending process. When a store is aborted, the board sends 2<CR> to

49

the Vax to signa} end of lexicon.

5.4.27 parse.s

Tb.is unit contains the routines corlengt and vgl for the grapheme-to-phoneme
converter. Bec.ause these routines &re very aften used they &re rewritten in
assembly language in order to speed up the grapheme-to-phoneme conver­
sion. In corlengt it is possible to increment eindverw and inplgt. They could
exceed the &rray length, so their new value is checked against the upper
limit before updating these v&riables.

5.4.28 pcf.s

This unit contains the routines to control the PCF8200 speech synthesizer .

to_pcf sends one byte to the PCF

stop_pcf sends stop command to the PCF and waits until it is stopped

starLpcf tests if the PCF is busy (it should not). Hit is busy the function
returns false , otherwise the DAC factor is send and the function returns
true

enable_pcf sets the interrupt mask to 0

disable_pcf sets the interrupt mask to 2 and stops the timer (to prevent
the timer from enabling the interrupt again)

5,4.29 rdstr.p

The procedure rdstr reads a complete line of input (until a CR or LF) with
echo and backspace possibility. lt has three modes:
0 : untranslated input
1 : uppercase translated into lowercase
2 : lowercase translated into uppercase

5.4.30 rules..m.p

The procedure rules_mod, which performs the actual grapheme-to-phoneme
conversion. The rule-procedures are not in this file, because it would be too
big to compile then, but in the files rules_mJ.p and ru/es_m2.p.

50

5.4.31 screen.h

This file contains the external declarations for all screen routines. This file
can be included in units that use screen routines.

5.4.32 screen.p

This unit contains a lot of screen control routines. All routines use escape
sequences according to the ANSI (VTl00) standard.

erase-'creen erase the screen from and including the cursor

appl...keypad put keypad into application mode

num...keypad put keypad into numeric mode

inv _ video display the following characters in inverse video

high_intensity display the following characters in high intensity (VT200
only)

underline display the following characters underlined (VT200 only)

norm_video display the following characters normal

cursor _pos move cursor to given position

cursor _up move cursor up a given number of lines

cursor _down move cursor down a given number of lines

cursor ..right move cursor right a given number of places

cursor -1eft move cursor left a given number of places

save_cursor save the current. cursor position in terminal memory

restore_cursor restore the cursor to the saved position

delete-1ines deletes the given nurnber of lines starting on the line with the
cursor

erase-1ine erase the complete line

scrolling..region set the scrolling region between the given limits

51

big_upper write the top half of one line in double height, double width
characters

big_lower write the bottom half of one line in double height, double width
characters

big write one line in double width characters

seLgraphics put terminal in DEC graphics mode

set..ascii put terminal in text mode

cursor_off suppress the visible cursor (VT200 only)

cursor _on make the cursor visible (VT200 only)

5.4.33 speech.s

Speech data for the test utterance used by diagn .p .

5.4.34 strings.p

This unit contains some string routines . The Pascal used has no string type
available , only a few operations on C-type strings . Therefore packed arrays
of char are used instead , sometimes in a record together with a variable
indicating the current length .

Stoa converts the C-type strings to the record form (phonstr). This allows
for an easy filling of the record form with a constant.

Ktoa converts strings of type key into the record form phonstr.

Concat concatenates two strings of type phonstr.

Compa compares two strings of type phonstr.

5.4.35 term_.io.s

This unit contains the write system call, which is used by the Pascal write(ln) .
Pascal read is not used until now (instead rdstr and d_read are used), so the
read system call is not implemented. In the writeln implementation _wln a
CR is added.

52

A Schematic diagrams

53

'- [1] CLOCK
/

) 111 DTACK
'(f)

) 11) VPA ~
, en

._:i

[2] IPLO) 0
' 0.:::

) [2] IPU
E-

, Z
0

) [2] IPL2 u
'

) (2] RESET
' CLOCK

) [2] HALT
' VMA

DTACK

([1] WA /

VPA

([1] FCO /

r co

((1) FCI /

re i

/ ltl FC2

' ,, r c2

([t ,3,4) AS
' IPI.O

([1 ,3,4,5,6] Rl W
~ -

IPLI

(14] UDS

IPl2
-/ 141 lJ)S

' RESET

HALT

-
AS

'
R/W

UDS

-
"--1..QS

Vee
0

14

Vee Vee

,.____g IJG ACK

22 __
L-.C...: RF.RR

15 CLK

19 -VMA

10--
DTACK

21 -
VPA

28
rco

2
r c t

26 FC2

25-
IP L.O

2 4
IPU

23
IPl2

18
Rr.SET

17
HALT

6-
11S

9 R /w

7 -
· IJDS

8 -
LDS

0
0
0
u
::r:
co
co
u
~

..----<
0
0
u

page

GND GND

DO 5 ___ ~0

lll 4 Dl

D2
3 D2

D3 -
2 D3

D4 I D4

D' ll4 D5 .,
OIJ 6:.1 06

D7 r:._:?. D7

DO IJ l DB (J)

09 60 D9 ~

Dl O 59 D10 en
Dl 1

58 DIi <t:

D12
57 Dl2

E-
<t:

D13
56 Dt3 Cl

0 14
55 Dt 4

Dl 5
54 Dl 5

Al 29 Al

A2 30 A2

A
3

31 AJ

M 32 A4

A5 33 A5

A6 34 AB

A7 35 A7

AO 36 AB

All 37 A9

AJO 38 AIO

All 39 A_II ___ _

AJ
2

40 AJ 2

Al 3 41 AIJ

At • 42 Al 4

Al 5 43 1\1 5

Al6 44 Al6

Al 7 45 Al7

AIO 46 Al_ll _ _ _ _ 1
Al 9 ·!I __ _ A.1_9 _ __ __ 1
A20 4~ _ _ A2_0 _ _ __ 1

", .,

Veel 47 n C102
Vee Cl01 ~1-r1,,

14 7

1 TIMING- CO NTRO L

Vee GNIJ
/

I ICP
(') IQO :J
Ol
(') 4

CLOCK

CLOCK_ 6
~~'

Il E--

2 u r, :r: CLOC K_LCD ' ,
¼HCTOO r -

¼ IC101 7

L.

Rlül IM ~ 13

§~
X10} 1

11
24MHz

-~ -
,□,

IMR IQ3

C\l
0

2C P
u

2Q2 g 2 MR

Vee
1/J IC1 0 3

1!.i IICTI O

--
DTACK

-
VMA

;1\6 t--+------t~L/D-----
'----<1---- - - -~

-
AS

c103-~ 22p C104 I 22p
1/• IICTOO I lf◄ HCTOO

7 7 ¼ IC1 01 ¼IC101
4

6 -
VPA

'
/

'

/

/

/

c03
5 ' '

47n Cl05
Ve e

î '
-
LCD

'

Vee

\. ADDRESSBUS '1!,i ~~i1~3 ~0 -"o-lh_e_r_s l-ow_d_evi

1

_·e-e"----~

~ ~~~~~~ ~ LC FCO

; ~ , 0 ~~ ! ~~ ~ ~ , ~ , ~ -------1--1---l--4--t- - -----,

1

:3 :i;
0 ~ p O O O O O 1---------~

1 : L_ _______ _ LC_D_b_ur ___ d_ir~
1

4 5 6 7 B 9 2 3 4 ~ 16 7 1 IJ 9 1/.J IC 103
16 HCTIO

2 3
R/W

IC104

1

C' O N r n

page 11
[O] VMI\

-
[O] AS

[O] FCO

[O] FCI

[OJ FC2

[O] R/ W

-
[4] LC D

[6] LC Dbu f_ d ir

[7] CLOC K_ fi

[O) CLOC K

- -
[O] DTACK

-
[o] VPA

[6,7]

if)

:::>
en
~

0
~
E--< z
0
u

R/ W

(

(

/

'
(

(

(

/

'
',
/

)

'>

~

' ,
'

CONTROLBUS
IINTERRUP'I1-CONTROL/RESET page

CONTROLBUS
Vper C201

22k

R201
100n

47n

16 F - j1, 2Vpe
r--:--:-Ve.,__e __ O::...G LN D---, 1 O;k

2R/C _7_ R202
41i7

C202lÏ4
_[IC

r--------.1'-.!_P~o~w~er~_~I IA

,.--------__=:_j2
ID

1 OOk ton r----=--13 IR

l'--PU_K _ ___, R203 I C204 9 2A

SwPos

(j)
0
C\1
0::

-::::

Vper

C206 D204

IC203 HEF454 I

Vper

IOk
R208

-::::

6 En_Pol

MR

0 8

(')
N

2c ~rC203

r:
u
::r:

..-<

RST 2Qt-5---~

0
C\1 2Q .._1_2 ---,c--:...:.:

u
RST

.......
DAVIO
0201

DAVIO

D202

, inl_keyb Il AO
inl_pcf 12 -

Al
inl_ser2

inl_serl

13
A2 l'--

I A3
st -!-

inÎo 2 A4
u
::r:

3
A5

4- C\1 A6
5 - 0

A7 C\1

l9 u
A8

Vee

Vee

IOOk
R204

RES

RESET

HALT

100k

R206

Vee

YO
9 IPLO

-
YI

7 IPLI

Y2
6 IPl2

GND

AO PH AR MODE Vee GND Al

1(l Il
--11 - -- 11,

Ve e
47n

C200 12 9 5 10 14

Vee 47n

7 13 f- - j,,
C210

lf]

::J
o:l
......:l
0
~
~ z
0
u

J5) inl _serl (

J5] inl _ser2 (

J6] En_Pol (

' [eJ PUK (

,L6J Power (

inl_keyb (

(

lf]

~ CQ ,~[_7].__in_l-=-:.,_P_cf~------<

......::J
0
~
~ Z ,__,_[___.O),_RE-=----=S--=-E_:_T ---~)

0
U ,~[___.O].____H_AL_T ___ ---4)

,Jo)

,..(o)

JoJ

' [5)

' [6]

' [6]

6

IPLO

IPLI

IPL2

RES

RST

RST

SwPos

)

)

\
/

)

)

)

21

"'
"\J

ADDR.ESSBUS

Al
A2

A3

1, A4

A5
A6

A7
A8

A9

AlO

All
A12

,, A13

Al4
Al5

A16

47n
I

C301 Vee
,,1 ~~
•
1

11 20'301
1

' l4ol 1 139

Vss OE Vss
21 AO
22

23
Al

24
A2

25
A3

26
A4

27
A5

28
A6

29
A7

31
A8

32
A9

33
AIO

34
All

35
Al2

36
A13

37
Al4

Al5

Vee VppPGM

si"
N
0 -u
l'­
(\J

...-1

0
("')

u -
CE

DQO 19 DO
18 Dl "

DQl Ï7 U2'

DQ 2 16 D3
DQ3 1r. U4 '
DQ4• - ...,- ~
DQS 14 D5
DQ6 13 D6

DQ7 12 ~; ,
DQ8 _10_~
DQ9 9 D9

DQto 87 DlO
Dil

DQII 6 Dl2
DQl 2 5 D13
DQ13 4 DH

DQl 4 3 Dl5
DQl51,...:.---=-:...:......

47n I f----C:302 Vee

'' 11ïT20G-;;r - l 4 ol , b9
Vss ÖE Vs s

Al 21 AO

A2 22 Al
A3 2 3 A2
A4 24
A5 2~ A3

'--- - ...,- •A4
" A6 26 AS

A7 27 A
6

A8 20 A?

A9 29 AB
Ato 31
All 32 A

9

Al2 33 AIO
Al3 34 All

Al4 35 Al 2

Vee VppPGM

-j­
(\/
0

u
1~
(\/

N
0
("')

u

DQO 19 DO
10 Dl ' DQI ---------..

DQ2 ! ~
DQ3 IG D3

15 D4
DQ4 -- --~

DQ5!~
DQ6 13 D6
DQ7 12 U7

DQ8 to D~
DQ9 9 D9

DQIO 8 DIO

DQI 1 ~Ji___
6 D12

DQl2 5Dl3'

Al

A2

A3
A4

A5

A6

A7

A8

A9

AIO

All

Al2
A1 3
A14

47n
1 1

C303 Vee ,,1,__ _____ _. 1-----0
1

lll2obof
11

f 4of 1 '39

Vss OE Vss Vee VppPGM
21

AO DQO
19 DO

22 18 Dl
23

Al OQI - ------
A2 DQ2

17 D2

24
A3

si"
DQ3

1G D3

25
(\J

15 D4
A4

0
DQ4

26 -u 1,1 D5
A5 l'- DQS

27 N 13 D6
28

A6 DQ6 ~ 1)7
29

A7 DQ7 to DO

31
A8 DQO

9 D9

32
A9 DQ9

8 DIO

33
AIO Cl") DQIO

7
All 0 DQII Dil

34
A12

("')
DQ12

6 012
35 u 5 DIJ

Al3 - DQl3 ~15 36 Al 3
• '---=-~:...i A 14

Al6 37 Al 5

DQl3 4 Dl4 ,
DQl4 3 015 , UJ

CE DQl51---~, ~

A15 36 4 IJl 4

A16 37
A14 DQl4 -------
AIS DQl5

3 Dl :>

CE

2 lï­
(OMO DATABUS 2 I ROM! CD 2

1 ROM2 .,_ _______ _,. ____ -41~ ______,.. _____ _. <r:
C304 / / ~

Vee <>-H ' 47n i

t61 •
1 Is

110 CONTROLBUS 2
j ROM3 2Î ROM4 23

Al? I AO YO
15 ROMÖ

A18 2
Al YI

14 ROM!
co

Al9 3
A2

M 13 ROM2 r:::: Y2
u 12 ROM3 :r: Y3

A20 4 - -,::t Y4
Il ROM4

El
0
("')

u - 5 °ÄS - E2

E3 6 R/W

CONTROLBUS

) [o] As /

) [O) R/ W /

~ DATABUS
" 'ADDRESSBUS
I

Al 21 AO

/ A2 22 Al
A3 23 A2
A4 24

~ ;; A3
r-c~ A4

A6 26 A''· .,---,.. 727 ...,
, AB 28 A5

A9 29 A
7

'AÏD3i /\8

All 32 A9

Al2 33 AIO
AÏ:33:i All

Al4 35 Al 2

Al5 :lG Al~
Al637 Al
~ -----''-- A 15

si"
(\/
0 -u
l'­
C\J

ID
0
("')

u -

ëE DQO 19 DO Al 21 AO CE

DQI !~ A2 22 Al
DQ

2
17 D2 , A3 23 A2

DQ:1 16 D3 A4 24
15 U4 A5 25 A

3

DQ4 A4
14 D" A6 26 DQ5 ._, , A5
13 D6 A7 27

DQ6 -=-✓ AB 28 A6

DQ7 !~ A9 29 " 7

DQll 10 DO 'AIO 31 AB
DQ9 9 D9 , • ~----tA9

8 D10 All 32 AIO
DQIO•--~ , Al2 33 All
DQII ~JL,
DQl2 ~--JHL - Al3 34 Al2

5 Dl3 A14 35 Al
3

DQ l 3 ~ -;(A15 36 Al4
OQl ,1 3nt~_, , Al6 37 /1.lf>
DQl5 -- - ·- _ _/ •

si"
N
s
u
l'­
N

(0

0
("')

u -

DQO ! 9 DO_.

DQ 1 !ij I__.,
17 D2

DQ2 16 D:J
DQ3 15D-t,
DQ4 -"-~
DQ5 -~D_L,

DQ6 _!.l__Q!L
_ 12 07 .

DQ, - - -- ~
D QO I_Q___!:!'l__,.
DQ

q 9 09
' 8 1)10

DQIO
7 DQII _ _ D!L
G 012 .

DQl2 ~-> - 013
oQi 3 :i -n,x
OQl •I - -- -- -
DQ l5 :_l ll l :l .

Vss öE Vss Vrc Vppiië;M Vss of. Vss Vee Vpp N;ï.i

.,, __ 11l~t ~L, 1--1~~,l~ J1
\

,1711 (::H):) Vee
,,f- ~~l!~L-11 l'10l~J~

-1 7 11 (.".J()(, Vee

lf).

~
co
UJ
UJ
µ]

~
0
Cl
~

- -

ADDRESSBUS RAM e 4
C401 C402

T,~
-

47n 1 ~ - Vee L ,J , Vee d 1 --0 ~~ 1, Al 10 8 16 4 0 AO 28 c: (") AO 28 c: -:::1'

~ND Vee - 15 RAMO GND Veel A2 9 Vee •=- ~ 0 1, A2 9 Vee •-~ o
___L.i

Al Al
El YO TOL A3 0 -~ -:::t- A3 8 - ~ -:::t-

'\
A16 1 I_

A2
~u

A2
~u AO -=- c.2 Vbal2 VeeO M 7 GND

,, A4 7 ,,
PCF 2 A5 6 A3 A3 GND

A17 2 Al Y2
13 ö....C- Vball a. OE A5 6 a. OE , _ __ ,\4 A4 '\ IC402 ~G 5 i\5

CD
1, A6 5 CD

AJB 3 A2
.,.....

Y3 12 Volume l{) 11 DO l{) Il DO
CX) -i N)/0) A5 N 1/0)

0 (")
11 LCD

'\ o::i - DS1210
~ -

4
A6 ~ 1/02

12 Dl " A7 4 12 Dl '
A20 6 E3 tj- - Y4 ' 3

A6 ~ 1/02
f-, AB 3 A7 13 D2 1, AB . '

u u '\ 1/03 9. 1/03
13 D2

:i:: Y5 10 l/0- Kevb r, RAMO 5
A7

15 D:3' ,_.
CE 1, A9 ~ AB 15 D3 "A9 25 AO -- '\ u 1/04 u 1/ 04

Y6 9 serial CEO AIO 24 16 D4 1, AIO 24 1~

' E2
'\ ö All

A9 1/ 05 , 1\9 1/05 , - C105 21 AIO 25 1/06 17 D5 k All 21 AIO~ 1/0G 17 05

l5 ÄS

~~
1, A12 23 All -:::t- 1/07 18 D6 t'--Al2 23 All s::t- 1/07 18 D6

lOOkQ
, A13 2 A12 ~ 1/08 19 D7 k A13 2 A12 ~ 1/08 19 D7

R40L 12 14 ~ 14 26 A13 CE ~ ..__A14 26 A13 CE ~
8

' Al5 1 A14 WE _rr 1§ , Al5 1 A14 - 27 1-i
CONTROLBUS WS 13 11 ~J 0 I / IOOk►Q ê5 ,~ I;§ ~ ,,;,.

CONTROLBUS 'S ~
'--.__ <

R40,f1c405~ f ¼ IC405 ~ 0:: 0::

¼ HC32 , " , l/4 HC32 , , ,

DATABUS 100k

~
R403 DATABUS

'
CONTROLBUS

¼IC405 ¼IC405
1.4 HC32 l/4 HC32

, [O] AS ~ ~ / 101
-
UDS 6
-r oJ LOS

/ rol R/W -
/

/ r 1.61 tëö
) [51 serial

) f 61 I/0-Kevb

) [7] PCF

~ [71
--
Volume

'\

,1 ' ,,
if) lf)

~ ~
o::i co

,, DO 24 if) < DO
if) b h . 01 23

Dl w < 22 "- 02 02 ~ Cl
" 03 21

Cl 03

Cl " 04 19
04

< ,, 05 1B
D5

1, 06 17
D6 C\I

I{)
07 16 I{)

07 u
35 <X) 1, Al

RSO <O

, A2 36 RSI
, A3 37 0

RS2 lO R/ W 38 u R/W
/ RES 1

RES
I/ seril'll 39 es
i , int serl 29

lRQl

/~~ IOOk R501
100k R502

-
IRQ2 1/

inl_ ser2 11

) (o) R/ W /

[2)
- lf)

) RES
/
~

[4) serial
(Il

/::i
0
~
b z

?-. [2] int se rl / 0
' u
L.J:?j inl_se r2

Ve e

-~-

IAC~ 6
IACK2 C504 1 40

Ve e 47n 22/L L -
CJ

- -c503 ~ 3_ Vss 1-
20 4

CTS! 1----
22 µ ~ 31

CTS2 9 _ _ C506 -,.~
-=-

TxDI 26 11

RxDI
28 12

10 14
Tx02

Rx02
12 9

22 p C507 3
l H r• XTALI

__L xio1 j 3,6864 Mllz
4

XTAl2 ll- ~1•

22 p C508

SERIAL

C501 (cc
47n

•
1~r~ 1 r 15 16

GND Vee

Cl + (\) V+ (".)
(\)
X V-..,c

Cl - ::::

C2+ (\}

0
lO

C2 - u ._.

Tlin Ttoul

lll o ul Rlin

T2i n T2oul

R2oul R2 in

J. 22µ

~ C502

6

--22µ

î C505
-=-

14 J_
-

13

7

8
t---

__c-
-=-

·-

,---

_3 -
7 ---
2 --

-

~ --
7 ~•
3 • -

CON.
TERM

CON.
HOST

page 5

.__
•

¼IC6O1
¼ HC02
3

2Q

l,'z HCl07 C:
0

2CP u
½ IC607

0
0

E--

Vper ,, ~

~ 1~ IA, HC04
t/a lC602 ,J;

CONTROLBUS
R/W

>-"--"'--------~✓

R/W
RST
RSf

DATABUS
I/0-KEYB page 6

DO Dl D2 D3 D4 D5 D6 D7

Vpcr

DO Dl D2 D3 D4 D5 D6 D7 C\1
¼IC604 o CGO3 47 n

•I f-- Vper
2 3 4 5 6 7 8 9 .--1

DO Dl D2 D3 D4 05 D6 D7 o Î g
•/4IIC32 18 1716 15 1413 1211Vper8 to 20

Vee GNIJ 2 D
8

p Vee ---'-lu 3 19 _pOUI B283848586B7 20 c:
OE Vee r-- -. 0 ~ ~~1 QO D11t-=-~~

HC574 IC603
-t

HC245 IC605 -~~ -Ql D13 D9

GN
QO QI Q2 Q3 Q4Q5 Q6 Q7

19 18 17 16 15 14 13 12

~ DIR GN
cD

-~~-Q2 0 D2 4 OIO

-~~-Q3 B D35 Dil Vper &......,,.'-"'--!-.:-:..;.z..,,..:.<,-:.:,.:...,._.,._.;.;,<-.,t-;.'--' -=-

0 C:

~
U 0

:, ~
~~

8xl00

R6O1
R6O8

10..
~
0

~CONTROLBUS 8
o D6O9 8

2 o.. BAT85 :>
_.___3...._, Vper Vbal

ÏQ IQ
VeeCon 1 ICP IJl

RST

lt'zHCI07
½ IC607

C608
47n

¼IC6O4
1/• HC32

500k

R611

C607

C609
47n

,,
47n

=-

Vperxl•

14

13 12
Vee <>--.--+---1 ..--...---,

16 15 8
GND IJ

2A1

2AO 14

O'.l o, lAJ 3 Al
Q M

cD ~ u u
- ::z:

-
- 1111 HC04

1/s lC602

1M5

R61O

-~~~ 1Q4 ,_. D4 6 D12

6 X
-~~~•Q5 "'1" 05 7 D13

r--
T T T j~"lfc~r

-~~~• Q6 ~ D6 B D14

-~~-Q~ ::r: D15

CON.
KEYB.

¼ IC6O1
14 HC02

Keyb-Wr 8

VeeCon 9

R612- C606
CON. R619 ,, -l

10
KEYB. 11 8x10k GND

2 AO

.-.-:1,---n-:-:-K:-l ---t-t-:-:-1>--;s3I AI CO

-t:,----:-:-::------t--t-:-::---t---.41 A 2 ~
lnK2 -....,

lnK3 5A3 S::!
lnK4 6 A4 '°

-,-n-K5 ______ ___,7A5 ~

u
8 A6 ::r:

._...----+-'-----+---clA7
9

DIR
8x8AV10 1

D6O1- Vper

608

605
7n

04

4

l/5 IC602

Vee 18 DB Bot-=~"---/
BI 17 D9

BZ 16 DIO

BJ 15 Dil

84 14 Dl2

B5 13 D13 "

B6 12 D14

B7 Il D15

Of,

19

2 PUK , KeybRd 7 -
,___.._~-------✓ • +-=ci-' Y3
([2] inl_keyb , 4x!0Ok ..__t"T"~~---___.
~ 7 VaudCon R62O-623 1
f-(_:-[_8~]:~_P- o~w~e~r~~~~~~~~=·, • _______ ~,_/~o_--_-K_e:y:b _ _,

DATABUS
Vee

47n
•lt-+-----+---1 t-~---+--+---~

4 Vss - d
Vss-a

D6 23 DO

24
Vdd-d I

Vdd-a

Vreft-
2---+---~

D9 22 Dl
D10 21 PCF6200

'------'-~02
D11 20 03
D12 19

04
16 D13

05
17 06

IC701
-=- R703
22k

BAT85

D701
47µ

C704

R704
IOk

ln5 3n3

C702
•I

GND
4

Y7

Y6

Y4

SPEECH page 7- j

47n

16 Vee

Vee

S2 9 17

SI lO 18

so Il 19

C703
47n

•I
20

Vee
,...............__---L..:;:..::_.

Vee GND

Q2

Ql

QO C'1
0 r,
u -
➔
r--
on
E-u

DO 2 DO

D 1 _3_ D__l________,,

D2 .!___PL____,

03 5 03

04 6 04

05 7 05

D6 8 06

ifl
:J
r::o
<r:
E­
<r:
0

D14

D15 16 07

r'i'-"-n"-l ~cfc.__2.:lO~REQ OSCt>-7----
IC706 I C707 ::c D7

9 D7

PCF 13 CE

15 W
6 TEST

R w
CLOCK

osco 8

SËR/PAR 9

R w
14

Vee

-=-

10k

R714 4k7

R715
IOk

CONTROLBUS VaudCon

>-Pl CLOCK
✓

111 R/W
207

(4) PCF R716
(4) Volume BOWJ 47n

(6) VaudCon
-+--

) / C709

(
(2) inLpef

✓ CON. LS

Vba l

~

220
R710

150
R711

150
R712

0C327-40 -=-

î7Ql

C712
22 µ

C705

z E
3 6

6 ~N Z ~C710
:No 1 R7 l 7 16k 220n

NO ----i: 1 k R719
-

TDA70!')2

IC704

Ve e 7

CO NTRO J_.BUS

C OE
Il 1

-=-

Volume

CON
BAT

-=-

SUPPLY page 8

Vb!iall~-------------------1--;=.---=-=-=-=-=-=-~-=l~~F-======J c t BC337-40

Voull
3

TSO l

• _L
-=-

100
µ C801 C805

Voul2 2

ICL7663

IC801

GND SJIDN
4 5

-=- -=-

Vin
100 n

47nf

C803 I Vee

IM6 IOµ 2xl1,

R802IC802 T C805 - OOG

JCL7663

IC80~enseµ__---t--r---,-- -//

180k

R806
10µ t1xl1, - -J_ C80 4 _l_C 807 560k

R803

6 Power

SHDN GND
5 4

4k7

R808

CONTROLBUS

-=-

Vsell,.___ ___ T

62k

R807

-=- ---=- - 810

