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Preface 

This report is a summary of the work which I performed on cochlear modeling within the frame• 
work of a 2 year cooperation between ESAT-KULeuven and IPO-Eindhoven. This report gives 
a detailed overview of the development of a computational auditory model and of the obstacles 
that one can expect on the road towards it. For the casual reader some of the mathematics in 
it will be painful, but I thought it necessary to include as much detail as possible so that this 
work can serve as a good technical reference for further development. This report should be 
considered as a writeup on work in progress. Nevertheless the chapters on cochlear filterbanks 
and adaptation have reached a more or less finished form, while on the other hand the chapter 
on data representation and post processing leaves many questions unanswered. I hope to be 
able to continue work on this topic and present a more conclusive report at some point in the 
future. 

The topic of cochlear modeling, though closely related to my previous experience, was not 
the core topic of my research at KULeuven during this period nor a mainstream activity at IPO. 
Hence this part-time cooperative research activity was an experiment and challenge both for IPO 
and myself. It was hard to put continuation in this "one-day-a-week" effort, often leading to 
frustration because of the slow progress associated with such a work schedule. Looking back on 
it afterwards and at this report I should conclude, however, that the time was well spent and 
I hope that cooperation between KULeuven and IPO will continue, be it in a more informal 
way. Moreover my stay at IPO had more than enough nice sides to compensate for the hard 
edges. As a researcher I found it refreshing and stimulating to have a "second home". So in this 
introductory note a warm thanks belongs to all members of the group "Horen en Spraak" for 

. the help, talks, discussions, formal or not, which I had with them over the past two of years. 
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Chapter 1 

Introduction 

1. 1 Motivation 

Over the past decade computational models of the peripheral auditory system have gained pop­
ularity as front ends to automatic speech recognition systems [1, 2, 3) or as general analysis tools 
for speech research [4, 5]. These models have shown that in complex speech processing appli­
cations classical spectral analysis can be modified to one's advantage by adding principles from 
auditory processing. The evidence is largely empirical, however, and the precise contribution 
of individual blocks has not been sufficiently analyzed, nor is it clear why certain combinations 
of features don't work. The goal of this work is the development of a complete auditory model 
based on up to data physiological and psychoacoustic data with a special attention to the "why" 
of each processing block. Existing models have such important basic distinctions that it is ob­
vious that in each of them a set of auditory features was selected which happened to perform 
well with a given application in mind. Apart from empirical evidence, the principal motivation 
for use of a cochlear model as a speech analysis tool has been the assumption that a better 
modeling of the human auditory system is by definition a good thing to do. An important 
caveat is required here. Physiological modeling is no guarantee for success in automatic speech 
recognition, and this for two obvious reasons. Mimicking what the ear and brain do might not 
be a good and will most likely not be an efficient way towards implementing artificial speech 
recognizers. Today's computers perform simple arithmetic in a manner quite different than hu­
mans do and do it much better. A second reason is that animals such as the squirrel monkey, 
cat and guinea pig all have peripheral auditory systems which are quite similar to the human 
one but their performance as a speech recognizer is poor and in several applications they will 
be outperformed by existing artificial systems with a poor model of the auditory periphery. 

1.2 Auditory Pathways 

Data fl.ow and the corresponding signal processing role of each.part in the human auditory 
system is schematically shown in Fig. 1. 1. Physiological understanding of processing in outer and 
middle ear is excellent, it is good as far as filtering inside the cochlea is concerned, and gradually 
gets worse as we move higher up the auditory chain. Models of the neural transduction process 
are much more speculative, though lots of data is available from single fiber recordings on the 
auditory nerve. And what happens beyond the first synapses of the auditory nerve is total 
speculation. How the brain interprets the spike trains delivered by 30.000 parallel channels in 
not at all known. 

The model presented in this report contains three sections, two of which are physiologically 
well motivated and one which is required in order to make sense out of the two preceeding ones: 
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Outer Ear Data Capturing 

l 1 
Middle Ear Impedance Matching 

l l 

Basilar Membrane Filterbank 

l ! 

Hair Cell Short-term Adaptation 

l l 
Auditory Nerve Synapse Spike Generation 

l 1 
Higher Pathways Feature Extraction 

l l 
Brainstem Recognition 

Figure 1.1: Auditory Pathways: Physiological and Functional Equivalents 

l. Filterbank ( middle ear + basilar membrane ) 

2. Adaptation ( hair cell + synapse ) 

3. Post Processing : Data Analysis and Representation ( feature extraction in higher path-
ways) 

The output of the second section is a neural spike train which contains much detail and which 
is not suitable for interpretation as such. A high level of abstraction is required to reduce the 
data rate to a manageable level such that data interpretation or use of the data in a speech 
recognizer becomes possible. Controversies about "rate" or "synchrony" are at this level and 
can not be solved by physiological arguing until a much better understanding of high level neural 
processing becomes available. 
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Chapter 2 

A Cochlear Filterbank based on 
simple Multipole Filters 

2.1 Preprocessing by Outer and Middle Ear 

The outer ear is the microphone of the auditory system, its role being the interface between 
the outside and inside worlds, without any signal processing role associated with it. The role of 
the middle ear is impedance matching between the different acoustic impedances of the air and 
the cochlear fluids. For very loud sounds non-linearities provide also a protective function. For 
common sounds signal processing is limited to bandpass filtering in the auditory range (20Hz-
20kHz) with an emphasis on the most important speech range (lkHz-4kHz). The outer and 
middle ear will not be considered explicitly in the rest of this work, as the passive middle ear 
filtering can easily be included as a channel dependent gain in the cochlear filterbank. 

2.2 The Cochlea as a Filterbank · 

The sound pressure wave induced in the cochlea by the stapes at the oval window propagates as a 
traveling wave on the basilar membrane and in the cochlear fluids from apex to helicotrema. The 
motion of the basilar membrane in turn results in the bending of hair cells which are sitting on 

• top of it. These hair cells (there are roughly 30.000 of them) connect to the auditory nerve. The 
most remarkable characteristic of the traveling wave inside the cochlea is its strong frequency 
selectivity, and was first described by Georg von Bekesy[6]. The signal processing function of 
the basilar membrane and the surrounding structures is to filter the incoming broadband sound 
into 30.000 narrowband channels. 

A CONCEPTUAL COMPROMISE Current computer technology does not allow for 
simulation of a 30.000 channel filterbank. In practice 100 seems to be more or less an upper 
limit. Hence an important conceptual decision has to be made right from the start: should a 
single filterbank channel model a single nerve fiber or should it model a local group of fibers 
? A human ear with only lOO surviving fibers can be considered as virtually deaf, hence the 
second option seems to be the appropriate one. Detailed modeling of the filter characteristic of 
a single fiber is interesting from a physiological viewpoint but currently has no place in a "global 
auditory model". In an auditory model, a single channel should model a local group of fibers, 
rather than a single one. One immediate consequence is that the incredible sharpness at the 
tip of a tuning curve of a single auditory nerve fiber will ( and should ) not be reflected in the 
filterbank. In this chapter a class of cost effective and easy to parametrize filters is described 
which are a reasonable match to the auditory filterbank. 
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2.3 Frequency Scales 

Fourier analysis is the most widely used non parametric spectral estimation technique. A trivial 
interpretation is that of a narrowband filterbank analysis, with equally spaced and equally wide 
filters and with a single analysis window. The single channel impulse response in Fourier Analysis 
is the analysis window modulated by a ( co )sine at channel frequency. 

The clearest deviation of auditory frequency analysis from Fourier analysis is its use of a 
non-linear frequency axis and its use of different analysis windows for each channel. Channel 
spacing at low frequencies is dense and near linear while at high frequencies the auditory filters 
are wide and almost logarithmically spaced. Evidence of this auditory frequency scale comes 
from physiological as well as psychoacoustic measurements. Several scales have been proposed 
(mel, bark, ERB) which all are slightly different, depending on the empirical data that they 
were derived from. I have opted for the most recent one, i.e. the ERB (Equivalent Rectangular 
Bandwidth) scale, as used by B. Moore[7]. The ERB scale has a close relationship to the critical 
band concept, as "equivalent rectangular bandwidth" is defined as the width of a rectangular 
filter, which gives the same output power to a white noise input, as a cochlear filter with the 
same response at characteristic frequency( CF). From the consideration that a filterbank channel 
models a group of fibers it is plausible to have the filterbank design guided to a large extenl.'by 
psychoacoustic data and not only by physiological data. Mathematically the ERB scale relates 

35,---..-------.-----.-------r---~---,..---..-----,-----,----, 
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Figure 2.1: Auditory Frequency Scales 

bandwidth with center frequency by following formula: 
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ERB 

ERBR 

= 6.23J2 + 93.39J + 28.52 

= 11.111n1
1
1 + 0·

32 l + 43.0 + 14.675 
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in whlch / is a channel center frequency in kHz and ERB the associated bandwidth in Hz. 
ERB R is the 'ERB-rate', Le. a linear scale in the warped frequency domain. The ERB frequency 

Freq(Hz) ERB(Hz) ERBR Mel Bark 

200 47 5.6 2.1 2.1 
468 74 10.0 2.7 4.7 

1000 128 15.4 8.5 8.7 
1779 214 20.0 12.1 12.3 
3200 391 24.8 16.0 15.9 
6200 847 30.0 20.7 20.0 

Table 2.1: Frequency Scales 

scale is compared with two other commonly used frequency scales, the Mel and Bark scales 
in Fig.2.1 and Table 2.1. All scales are quite similar, however the ERB-scale suggests that 
considerable more channels are required at the low frequency end. The mathematical formulas 
describing these other scales are: 

MEL m = 7arcsinh (fs) 
BARK b = 13atan(0. 76/) + 3.5atan ((/ /7.5) 2

) 

= 8. 7 + 14.2log(f) (f > 0.6kHz) 

2.4 Gammatone Filters 

2.4.1 Impulse and Frequency Response 

Filters with a so called gammatone impulse response will be used for modeling of the cochlear 
filterbank. These filters were first suggested on the basis of reverse correlation modeling[8]. 
These filters were chosen here because they allow for a simple description of a full cochlear 
filterbank with very few parameters. The impulse response of a gammatone filter is given by: 

(2.2) 

In APPENDIX I it is shown that thls is the impulse response of a multipole filter with k identical 
complex pole pairs p = -a:w0 ± jw0 and a number of zeroes whlch contribute very little to the 
overall filter response if a: is small. Omitting scaling factors and the zeroes the transfer function 
reduces to the following simple expression: 

1 
H(s) = k 

((s + a:wo)2 + w5) 

and the corresponding frequency response is: 

IH(w)l2 = 1 
l(iw + a:wo)2 + w5j2k 

20log IH(w)I = -20klog !(jw + a:wo)2 + w5I 

(2.3) 

(2.4.a) 

(2.4.b) 

The above equations describe a class of bandpass filters ( multipole resonators ) with centerfre­
quency wo and hlgh frequency slopes of 12k dB per octave. Sharpness of the filters is largely 
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controlled by the choice of the damping factor a and the sharpness of filters required in cochlear 
modeling results in typical values for a < < 1. Truly precise cochlear modeling would require 
the addition of zeroes slightly above w0 to yield steeper high frequency slopes and thus model 
the asymmetry of the cochlear filters better[5]. For reasons of simplicity in implementation this 
option was not considered. 

2.4.2 Damping Factor and Bandwidths of Gammatone Filters 

In order to design a filterbank specified by centerfrequencies and bandwidths we must find a 
relationship between bandwidth (3-dB or ERB) and the damping factor a. Because of the small 
damping factors it is possible to simplify the frequency response from (2.4) even further. In and 

hn(s) 

p X WO 

••w Re(s) 

P* X -Wo 

Figure 2.2: Pole Location of a Typical Gammatone Cochlear Filter (a= 0.15) 

around the passband of a filter only the contribution of one pole from each complex pair must 
be considered as the contribution of the other one is quite constant1• Hence for small a and 
in the neighbourhood of the complex pole p = -awo + jwo, i.e. small Aw = (w - w0 ) we can 
rewrite (2.4) as: 

IH(w)l2 = 

= 

IH(wo + Aw)l 2 = 

1 
jjw _ pj2kjjw _ p*j2k 

A 

liw - Pl 2k 

A 
lawo + j(w - w0 )1 2k 

A 
l(awo)2 + (Aw)21k 

Peak response is reached at resonance frequency w0 : 

2 A 
IH(wo)I = ( )2k aw0 

(2.5.a) 

(2.5.b) 

(2.5.c) 

(2.5.d) 

The 3-dB or half energy point is now easily found as the frequency for which the frequency 
response reaches half this value. Hence: 

(2.6.a) 
1 This conclusion would equally follow from looking at a pole location plot and applying the so called geometric 

method for the determination of the filter response. 
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(WJdB - wo)2 

BW3dB 

Wo 

= (~ - l)a2w5 

= 2a✓~-1 

(2.6.b) 

(2.6.c) 

The ERB bandwidth of the gammatone filters is found by application of the ERB definition. 
Again the simplified expression (2.5) is used. This simplification is also valid for this derivation 
because the filter output to a white noise input is largely dominated by the contribution around 
the center frequency. Furthermore the power output to a white noise input is symmetric with 
respect to center frequency and is obtained by simple integration: 

PF = 1.00 l 
2 o (a2w5 + (Aw)2)kd(Aw) (2.7.a) 

1.00 
1 1 Aw 

(2.7.b) = 2awo dz a:=-
o (awo)2k (1 + z2)k aw0 

= 2 1.00 
1 

(awo)2k-l o (1 + z2)k 
dz (2.7.c) 

2 2k- 3 2k- 5 3 1 r 
(2. 7.d) = ( aw0 )

2k- 1 2k - 2 · 2k - 4 · · · 4 · 2 · 2 

The power output of a rectangular filter with response at centerfrequency equal to IH(w0)12 and 
bandwidth ERB is given by: 

2 1 ERB 
PR= ERB.IH(wo)I = ERB. ( )21c = ( )21c-i awo awo awo 

(2.8) 

Thus from PF = Pn : 
ERB =

20
2k-3_2k-5 ___ !_!?:. 

w0 2k - 2 2k - 4 4 2 2 
(2.9) 

For the lower orders of 'k' Table 2.2 summarizes the 3-dB and ERB bandwidths as a function of a 
and centerfrequency. 

k 

1 2a 3.14a 
2 1.28a 1.57a 
3 1.02a 1.18a 
4 0.86a 0.98a 
5 0.77a 0.86a 

Table 2.2: Relation between a, filter order and bandwidths 

For orders 2-4 and given centerfrequency a nwnber of a's for the ERB filters are computed in Ta­
ble 2.3. These values clearly illustrate that the asswnption "a small" is quite valid throughout. 

2.4.3 Examples 

In this section filterbank designs for different choices of filter orders are illustrated. The basic 
design is a filterbank in which the channels have minimal overlap and with both spacing and 
bandwidth of each filter equal to 1 ERB. Twenty channels cover the frequency range most 
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Freq(Hz) ERB(Hz) ERBR a(k = 2) a(k = 3) a(k = 4) 

200 47 5.6 0.150 0.199 0.239 
468 74 10.0 0.115 0.154 0.185 

1000 128 15.4 0.081 0.109 0.130 
1779 214 20.0 0.077 0.102 0.122 
3200 391 24.8 0.078 0.104 0.125 
6200 847 30.0 0.087 0.116 0.139 

Table 2.3: ERB Frequency Scale and Filter Design Parameters 

important for speech purposes i.e. from 333 to 4181 Hz ( 8 to 27 ERBR ). For comparison 
from a signal processing viewpoint a Hamming filterbank with linear and ERB spacing is also 
given. Also filters with characteristics used by Flanagan[9] and based on the original Bekesy data 
are shown. These filters also have a gammatone impulse response but much wider bandwidths 
( a = 0.5!!) as it is well known that the Bekesy filter characteristics are much too shallow due 
to the extreme sound pressures used and resulting non-linearities. 

The illustrated designs are: 

(a) Hamming Filterbank: impulse responses are 256 pt. cosine modulated Hamming windows, 
yielding very sharp filters. 

S•~""".-" 
(b) A Bekesy /Flanagan filterbank:"'iecond order gammatone filters with fixed damping factors 

a = 0.5. 

(c) Second order gammatone filters with variable damping: aw0 = ~~~ = 0.637ERB. 

( d) Fourth order gammatone filters with variable damping: awo = ~~f = 1.019ERB. 

( e) This design is for comparison from a signal processing viewpoint only: a linearly spaced 20 
channel Hamming filterbank spanning the 200Hz to 4000Hz range with 200Hz bandwidth 
for each channel. 

Fig. 2.3 illustrates frequency and impulse responses for the channel with centerfrequency 
of 2006Hz for the designs (a-d). In Figs. 2.4(a-e) frequency responses of full filterbank designs 
according to the different methods are shown, while Figs. 2.5(a-e) show the corresponding 
impulse responses. The 4th order gammatone design was in several studies found to be the 
most appropriate one for cochlear modeling and will be used as the reference model throughout 
the rest of this report [10, 11, 12]2. Fig. 2.4.d illustrates a nice side property of the reference 
filterbank design: it has excellent analysis-synthesis properties in a classical signal processing 
sense. The sum of the individual channel filter responses is almost unity. The ripple over most 
of the pass-band is less than 0.1 dB, though considerable higher around the edges (which can 
be reduced by including more channels) . A sum of filter bank outputs will apart from a phase 
shift barely differ from the original input signal. 

2 Exactly the same value 1.019 is used as damping factor in [lOJ; I'm not aware, however, how this value was 
derived. 
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2.5 APPENDICES 

2.5.1 APPENDIX I: Transfer Functions of Gammatone Filters 

The Laplace transform corresponding to an impulse response of the form 

can best be obtained using following differential equations: 

! ( tk sin wt) = ktk- t ainwt + wtk cos wt 

d 
dt ( tk cos wt) = ktk- l cos wt - wtk sin wt 

Taking Laplace transforms of both sides and using the recursion twice we get : 

(s2 + w2 )Sk(s) = skSk-1(s) + wkCk-1 (s) 
(s2 + w2 )Ck(s) = skCk-1 (s) - wkSk-1(s) 

(2.10) 

(2.11.a) 

(2.11.b) 

(2.12.a) 

(2.12.b) 

Starting from the known Laplace transform pairs fork equal to O and 1, it is possible to derive 
the exact Laplace transform pair for any power k. 

f(t) F(s) 

sinw0t a2~0..,2 
0 

cos wot 8 

a2+1,w~ 

t sin wot 2"108 
(82+"'~)2 

tcoswot 82_"'5 
(a:z+..,l>2 

t2 sinwof 2"-'o{3a7 -1,w5) 
(a2 +1,w5)3 

t2 cos wot 2a(s7 -31,w5} 
(s:z+..,E>a 

t 3 sinw0t 24"'011( .,:z _..,5 l 
(a:z+..,E>◄ 

t 3 cos wot 6(a4-6..:ls2 +"-'til 
(s2 +..:g )4 

Table 2.4: Impulse Response and Laplace Transform Pairs for Gamma.tone Filters 

The above table summarizes transform pairs for filters with zero damping. The influence 
of the damping factor a is the addition of e-a..:ot in the impulse response what corresponds to 
replacing a by s + aw0 in the Laplace transforms. From the above table it can be seen that an 
all-pole filter approximation will be excellent as long as a is small, i.e. for sharp filters, which 
is the case for a cochlear filterbank. 

2.5.2 APPENDIX II: Digital Implementation of Gammatone Filters 

A most straightforward digital implementation of the gammatone filters is to use the impulse 
responses directly and implement them as FIR filters. This style of implementation is numerically 
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very stable and precise, but computationaly expensive, especially for the low frequency channels. 
Alternatively, one can apply the 'impulse invariant' mapping from s-domain to z-domain. This 
technique is quite appropriate for the narrow bandpass filters at hand. The impulse invariant 
mapping technique, maps all s-plane poles and zeros to corresponding z-plane poles and zeros, 
using the standard formula: 

in which T is the sampling period. For the above example, this implies a mapping of the 
s-domain poles to: 

Pa= -awo ± iwo -+ Pz = e-cn,ioT(coswoT ± jsinwoT) 

resulting in a second order block per complex pole pair of the form: 

H(z) - ----=---1
-~___,,--..,,,--....,,. 

- 1 - 2e-awoT cosw0Tz- 1 + e-2awoTz-2 

which is implemented in the time domain as: 

y(k) = z(k) + 2e-awoT cosw0Ty(k - 1) - e-2awoT y(k - 2) 
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Chapter 3 

Adaptation in the Inner Hair-Cell -
Auditory Nerve Synapse 

3.1 Introduction 

The mechano-electrical transduction at the inner hair-cell - auditory nerve synapse is an im­
portant element in the peripheral auditory signal processing chain as it is at this level that 
short term adaptation should be situated. Modern understanding of the mechano-electrical 
transduction is based on following principles: 

• The motion of the basilar membrane is passed on to the inner hair cells, the last mechanical 
element in the auditory processing chain. The signal content of hair cell motion is a 
frequency sharpened version of the local basilar membrane motion [5]. This filtering is in 
principle included in the filterbank design of the previous chapter. 

• The permeability of the inner hair cell membrane is a function of the bending of the hair 
cell. Permeability functions of most hair cells, including cochlear inner hair cells, have two 
common characteristics: halfwave rectification and saturation. 

• Chemical transmitters are available inside the hair cell and their release from the hair cell 
into the synaptic deft is controlled by the membrane permeability. 

• Nerve fiber firing probability is, except for refractory properties, proportional to the 
amount of chemical transmitter available in the synaptic deft. 

• Chemical transmitters dissipate quickly from the synaptic deft and find their way back 
into the original pool because of electrical imbalance or other mechanisms. 

Modeling the mechano-electrical transduction process means deriving a mathematical re­
lationship between hair cell motion and concentration of chemical transmitter in the synaptic 
deft, or similarly nerve firing probability. One of the first and most simple models based on 
these principles is the widely used Schroeder-Hall model[13]. Using one non-linear differential 
equation and one static nonlinearity it models fairly well the adaptation behaviour of single burst 
onsets and offsets in silence. Since its introduction in 1974 more physiological measurements 
have become available which show some deficiencies in the SH-model, especially concerning the 
modeling of transients in the presence of a pedestal. 

Many models have built on the SH model, trying to explain equally well the more recent 
physiological data. Some of them require the subdivision of chemical transmitter in global and 
many local pools with different time constants associated with them[14). These models are 
highly complex and computationally very demanding. One of the simpler models, proposed by 
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R.Meddis[15, 16] 1 , uses only 3 first order coupled non-linear differential equations to describe 
the inner hair-cell - auditory nerve synapse. This model was chosen as the base model in this 
work, because the computational load is relative small and because it seemed capable of modeling 
most of the described neural adaptation characteristics. It also has the basic possiblities in it 
to characterize different types of neurons. The model is much more complex, however, than 
one would expect at first glance, because of the presence of multiple non-linearities and is 
therefore very hard to parametrize. R. Meddis followed a trial and error design procedure 
in which he described system characteristics as a function of model parameters, rather than 
setting parameters in function of desired characteristics[l 7]. This way he was able to design a 
class of different fibers each with their own properties. However he did not show how to derive 
parameters from a set of specifications, nor exactly which class of neurons could be covered by 
the model. 

In this chapter we will first review the Schroeder-Hall and Meddis models. Then we will 
take a constructive approach to parametrizing the Meddis model and describe how to design a 
"Meddis synapse" according to specs. A common nomenclature, applicable to both models, is 
used throughout so that names and symbols will slightly deviate from the original papers. Lower 
case symbols are used for system variables and upper case ones for parameters. The overstrike 
is used to indicate "one cycle averages" in steady state analysis. 

3.2 Schroeder-Hall Model 

This section is a short summary of the relevant parts of [13]. 

3.2.1 Model Concept 

The model is defined by four rules: 

• Quanta ( electrochemical agents) are generated in the hair cell at a fixed average rate and 
stored in a temporary pool from where they are lost are can be released in to the synaptic 
cleft. 

• Quanta move into the synaptic cleft at a rate proportional to their number and a perme­
abilitiy function. 

• Nerve firing is proportional to the number of quanta released in to the synaptic cleft. 

• Quanta disappear from the free pool at a rate proportional to their number without having 
any effect on the firing. 

3.2.2 Mathematical Description 

SH-model Variables: 

- a(t): input signal 

- p(t): permeability 

- q(t): free pool concentration 

- c(t): cleft concentration 

- /(t): firing rate 

1 The original paper contains a serious mathematical error. The dB scale is of by a factor of 2, hence 
parametrizations in it are senseless 
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Membrane (p) 

Fixed Generator Free Pool (q) Synaptic Cleft ( c) 

l Loss 

Figure 3.1: Schroeder-Hall Model 

SH paraII1eters: 

- G: generator rate (150sec- 1) 

- L: loss rate ( 33.3sec-1 ) 

- P0 : permeability constant (16.7sec- 1) 

Model Equations: 

p(t) 
1 1 2 ! 

= Po{ 2s(t) + {4s (t) + 1}2} 

q(t) = G - L.q(t) - p(t).q(t) 

c(t) = p(t).q(t) 

f(t) :::::: c(t) 

L q p ( t) 

Figure 3.2: Electrical Equivalent of Schroeder-Hall Model 

3.2.3 Properties 

(3.1.a) 

(3.1.b) 

(3.1.c) 

(3.1.d) 

A closer look at Fig.3.1 and the corresponding equations gives us an understanding of the basic 
principles of this model and all its derivatives. The electrical equivalent from Fig.3.2 can also 
help in understanding. For a steady periodic input following behaviour will emerge: 

• After an initial transient behaviour the whole system will evolve to a periodic behaviour. 
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PARAMETER: STIMU\.US INTEN.SITY 
(dB RE IIEFERENO!:) 

0 25 50 7S 

TIME (MSEC) 

1----TONE IIURST---f 

ENVELOPE OF Firing probablllty for 1-kHz tone burst 

0 

FIRING PROIIASILITY 

(1-f!HZ TONE) 

PARAMETER: STIMULUS INTENSITY 
(dB RE IIEFEREHO!:) 

o.s 
flME(MSEC) 

Firing probabU!ty for one period of a 1-ldu tone 

Figure 3.3: Schroeder-Hall Model Properties 

• The quanta produced by the generator or either lost or dissipated in the deft. The larger 
the average permeability the larger the proportion of quanta that will go into the cleft 
and induce nerve firing. The maximum average nerve firing is limited by the generator, 
the direct cause for rate saturation. Zero input will result in a non-zero spontaneous firing 
due to membrane leakage. Average free pool contents will be smaller with larger average 
firing rate. 

• Onset and offset phenomena are due to the fact that the free pool needs time to settle 
down in its new equilibrium. With a sudden onset of stimulus a high free pool content 
coincides with a high membrane permeability resulting in initial firing rate overshoot, while 
a sudden offset will result in firing rate undershoots. 

• On top of the overall long-term behaviour a "within cycle" behaviour is superimposed. 
The true firing probability is approximately - except for very low frequencies - the average 
firing rate modulated by the half-wave rectified input signal. This is the underlying cause 
for phase locking. 

Average firing rates and within cycle firing rate probabilities are illustrated in Fig.3.3 

3.3 Meddis Model 

3.3.1 Model Concept 

There are a few important differences between the Meddis {Model B in [15)) and Schroeder Hall 
models: 

• Influx of quanta into the free transmitter pool from the factory is not constant but con­
trolled by a gradient mechanism. 

• Diffusion of quanta from .the cleft is not immediate, but the cleft is treated as a pool with 
its own time constants. This results in an upper frequency limit for phase locking. 

• There is immediate recuperation of quanta from the cleft into the hair cell. This phe­
nomenon can be used to obtain a better modeling of dynamic behaviour in the presence 
of a pedestal. 
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Membrane (p) 

Gradient Controlled f----. Free Pool ( q) -- Synaptic Cleft ( c) 
Generator -

Loss 
~ IReprocessing Store ( w) 

Figure 3.4: Meddis Model 

3.3.2 Mathematical Description 

The concentration variables are all rescaled relative to the generator and are therefore all in the 
range [O, 1]. 

Variables: 

q( t): free pool concentration 

c( t): cleft concentration 

w( t ): reprocessing store concentration 

/(t): firing rate 

- p(t): permeability 

- s(t): input signal 

Parameters: Y, X, L, R, H, K, A, B 

K, A, B: parameters controlling the permeability function 

Y: factor controlling gradient flow from generator to free pool 

L: loss time-constant from synaptic cleft 

R: reuptake time-constant from synaptic cleft to reprocessing store 

X: reuptake time-constant from reprocessing store to free pool 

- H: proportionality factor between cleft contents and firing rate 

Other Symbols and Subscripts: 

M-subscript: max values 

0-subscript: 0-input values 

a:: amplitude of input sinusoid 

ilT: sampling period in discrete implementation 

T: period of a sinusoid 

6: firing rate dynamic range 

- : one period averages of a parameter 
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The Meddis model is described by one static input non-linearity and a set of 3 coupled 
(non-linear) first order differential equations. Firing rate is proportional to one of the system 
variables. 

3.3.3 

Continuous Time Model: 

p(t) = K a(t) + A 
a(t) +A+ B 

(3.2.a) 

q(t) = Y.(1 - q(t)) + X.w(t) - p(t).q(t) (3.2.b) 

c(t) = p(t).q(t) - L.c(t) - R.c(t) (3.2.c) 

w(t) = R.c(t) - X.w(t) (3.2.d) 

/(t) = H.c(t) (3.2.e) 

Discrete Time Model: is derived from the continuous one with a simple forward 
Euler approximation. Values for q,c and w at time t + D.T are obtained as: q(t + D.T) = 
q(t) + D.q . ... 

p(t)D.T = 

D.q 

Llc = 
D.w = 
f(t) = 

Input Nonlinearity 

(K D.T) a(t) + A 
s(t) +A+ B 

(Y D.T).(1- q(t)) + (X D.T).w(t) - (p(t)D.T).q(t) 

(p(t)D.T).q(t) - (LLlT).c(t) - (RLlT).c(t) 

(RLlT).c(t) - (X D.T).w(t) 

H.c(t) 

(3.3.a) 

(3.3.b) 

(3.3.c) 

(3.3.d) 

(3.3.e) 

The nonlinearity in the permeability function 

A+ s(t) 
p(t) = K. A+ B + s(t) (3.4) 

will be approximated by a 3-region piecewise linear function for further analysis. The subdivi­
sion is on the basis of the amplitude o: of a sinusoidal input of any frequency and assumes, as in 
normal parametrizations, that A < < B. The three conditions corresponding to each region can 
be described as "sub-threshold", "linear" and "saturation"(Fig.3.5 ). In sub-threshold and satu­
ration regions the one period averages are easily obtained from the instantaneous values In the 
linear region the one period permeability average Pa is computed using following approximation: 

1 KA K 1 ( r t 1 
) 

Pa = 2 A~ B + A+ B 211" lo o: sin tdt + 2 lo a sin tdt 

K.A (! + ~ + ~) 
A + B 2 1r A 21ro: 

::;:; Po(~+ 1- !) 
A1r 11" 

(3.5.a) 

(3.5.b) 

(3.5.c) 

The first two terms come from the positive phase of the input signal while the last ( and smallest) 
term is a slight underestimate for the negative phase in which t1 corresponds to the zerocrossing 
point on the permeability function. In the sub-threshold region average firing rate will not 
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Saturation A+B<<a: p(t) = K (-'(t) > 0) p - ff. max - 2 

Figure 3.5: A 3 condition linear approximation of the input non·linearity 

change with increased input amplitude but the firing will start to synchronize before threshold 
has been reached, what is conform physiological evidence. 

For amplitudes of the order of A + B nor the linear nor the saturation rates are good 
approximations. With some mathematical manipulation it is possible, however, to derive a 
single formula which is consistent with the approximations in both regions and which equals Pu 
for a: = A providing continuity with the sub-threshold region: 

Po. = 
K.(A1r + a) 

(A+ B)1r + 2a: 

KA (l+;j- ~) 
A + B 1 + 1r(.~~B) 

The inverse of the above formula is given by: 

a: 
(A+ B)Pu - K A(l - l/1r) 

1f ~----'------'-----'---...;.. 
K - 2p0 
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3.3.4 Steady State Properties 

The steady state parameters thresholds, dynamic range, average fixing rate, etc. are the easiest 
to analyze. Once transients have died out integration of the differential equations over a single 
period should equal zero. Integrating (3.2) results in a set of time invariant equations with as 
new variables the one period averages of the original variables, such as: 

1 IT 
ij = T lo q(t)dt 

If we further approximate: 
pq ~ p.q 

then we find steady states estimates for free pool and deft contents and fixing rate: 

Y.p 
c = L.p + (L + R).Y 

(L + R).Y 
ii = (L + R).Y + L.p 

R_ 
w = -c 

X 

I = H.c 

yielding following practical relationships: 

I
- H.Y.p 

= L.p + (L + R).Y 

H.Y/L 
= 1 + {L + R).Y/(Lp) 

(L + R).Y 
P = H.:J::._L 

J 

(3.8.a) 

(3.8.b) 

(3.8.c) 

(3.8.d) 

(3.9.a) 

(3.9.b) 

(3.9.c) 

Spontaneous Firing Rate. The spontaneous rate, lo, is derived by setting a(t) to O in the 
permeability equation: 

K.A 
(3.10.a) Po = --

A+B 

lo 
H.Y.po 

(3.10.b) = 
L.po + (L + R).Y 

H.Y/L 
(3.10.c) = 

1 + Y.(L + R)/(L.po) 

Maximum Firing Rate. In saturation L.p is much larger than (L + R).Y for standard 
parametrizations, yielding as maximum average fixing rate: 

lu = H.~/L( )" (3.11.a) 
1 + (L + R .Y/ L.pmax 

Auditory Modeling 

H.Y 

L 

= (1 + L + Ry) lo 
Lpo 
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(3.11.b) 

(3.11.c) 
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Rate Dynamic Range. The Firing Rate Dynamic range ( 6) is easily derived from maximum 
and spontaneous rates: 

D = JM Jo = (L + R) Y 
Jo L Po 

(3.12) 

The introduction of the parameters !At and 6 allows for rewriting the steady state rate equation 
in a more compact form: 

(3.13) 

and taking derivatives of both sides of this equation lets us relate small changes in average input 
permeability to small changes in average firing rate. After some manipulation we can derive: 

AJ 

Ap 

Po 

= 6pobt Ap 
(p+ 6po)2 

(3.14.a) 

= (.E.. + 1)2 AJ 
6p JM 

(3.14.b) 

Input Dynamic Range. The spontaneous and maximum firing rates Jo and !At should 
now be related to threshold and saturation level on the input. The response will in practice 
only reach Jo and h,1 at very small and very large input levels and not deviate much from them 
over a large range. Therefore threshold and saturation are ill defined measures. Here we will 
define them as the levels where a 5% deviation from the minimum and maximum firing rates 
is reached. For relating permeability to input amplitude the global approximation {3.7) can be 
used. 
Threshold: From (3.14) the threshold permeability is found: 

From which, by using (3.5): 

PT = 1 + 0.05(1 + 1/6) 
Po 

°; ;::: 1 + 0.051r(l + 1/6) 

(3.15) 

(3.16) 

. Saturation: The linearization procedure can not be used for estimation of the saturation input 
level. First of all there is a small but relevant overestimate on the peak firing rate in {3.11) and 
the peak average permeability ~ occurs for infinite input amplitudes. Therefore infinitesimal 
approximations can not be valid here. If we assume saturation to occur at a fraction (1 - 1) of 
the true maximum firing rate then for small 1 and from (3.9): 

l + (L + R)Y = (1 + 1)(1 + (~ + R)Y (3.17.a) 
Lps Pmo.~ 

(L+R)l. 

Ps 
L Pm4.x (3.17.b) ( (L+R)l. 

1Pmo.x + 1+1) L 

1 
(3.17.c) = PT1MU.. 1 + (1 + Pme,iL ) 

1 (L+RW 

Now, for large a the input non-linearity can be approximated by: 

Pa= p.,.., (1 + .:~!Bl) 
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From combining the two previous equations we ultimately derive: 

as=~ (L + R)Y 
A 1 PoL 

(3.18) 

As the threshold is very close to A the second hand side of this equation is also a very good 
approximation of the input dynamic range. BUT !! this latter equation has a fixed relation to 
the firing rate dynamic range, which means that input and firing rate dynamic range can NOT 
be set separately in the Meddis model. This is one of the major weaknesses which has been 
discovered in it. 

3.3.5 Linearization of the Meddis Model 

Linearization. The basic strongly non-linear model can be replaced by one of two much 
simpler linear derivatives for most analysis purposes. As with the analysis of the Schroeder-Hall 
model it is convenient to distinguish two greatly different time-scales for the analysis of periodic 
signals. 

Envelope Analysis(SLOW): The differential equations are solved for period averages. 
This way p( t) becomes a constant for steady periodic inputs and the differential equations 
become linear. 

• Within Cycle(FAST): This behaviour must be superimposed on the previous one and 
for a single period q(t) and w(t) will be treated as constants. The dynamics of p(t) are 
therefore directly reflected in c( t). 

"Slow" Analysis Model On this time scale we neglect the very fast variations of all vari­
ables, and do consider their global averages. We also do so with the input p( t) which is replaced 
by its periodic average p, which is a constant during any constant amplitude period input. This 
way we are able to eliminate the nonlinearities in the D.E.'s. 

q(t) = Y.(1 - q(t)) + X.w(t) - p.q(t) (3.19.a) 

c(t) = p.q(t) - (L + R).c(t) (3.19.b) 

w(t) = R.c(t) - X.w(t) (3.19.c) 

After Laplace Transformation we get: 

s.q(s) = Y - (p+ Y)q(s) + X.w(s) (3.20.a) 

s.c( s) = p.q(s) - (L + R).c(s) (3.20.b) 

s.w(s) = R.c(s) - X.w(s) {3.20.c) 

Yielding the closed loop !!ystem: 

q(s) 
1 

(3.21.a) = (Y _) (Y + X.w(s)) s+ +p 

c(,) 1 
s + (L + R)pq(s) (3.21.b) 

w(s) 
R 

(3.21.c) = --:xc(s) 
s+ 
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The time constants considered in this analysis are by definition significantly greater than the 
inverse of the stimulus frequency. In typical parametrizations L + R will be large considered to 
all slow time constants which leads to a fuxther simplification and following expression for the 
cleft contents: 

c 
8 

_ (s + X)p.Y/(L + R) 
( ) - .,2 + (Y + X + p).s + p.L.X/(L + R) 

(3.22) 

From the latter equation the two time constants underlying rapid and short-term adaptation 
can be derived. 

"Fast" Analysis Model For this approximation it is acceptable to consider slow moving 
parameters such as q (and w) as constants, which allows us to rewrite the equations as: 

c(t) = q.p(t) - (L + R).c(t) 

c(s) = s+(1+Rl(s) 

tJ.q ~ {-(p + Y).q + X.w + Y}.tJ.T 

(3.23.a) 

(3.23.b) 

(3.23.c) 

Validity of the above equations requires that the integrated one-cycle depletion of the temporary 
pool Dr.q is small compared to q. Maximum depletion occuxs when the system was initially at 
rest and a maximum stimulus is produced. Under these circumstances q was originally almost 
1.0 and p equals duxing one half period Pmax = K, hence maximum depletion is: 

maztJ.q = (K /2 - Y).tJ.T (3.24) 

From this it is possible to check when slow or fast analysis models will be valid. 

3.3.6 Dynamic Behaviour 

For analysis of the dynamic behavioux ( onset and offset response) we fall back on the slow and 
fast analysis models. Parameters to be derived are adaptation time constants and overshoots. 

The different time constants in the Meddis model can be localized in the system, which was 
also the motivation for the model simplifications: 

• Phase Locking is generated by the halfwave rectification in the permeability function. 
A requirement, however, is that the rate of dissipation in the synaptic cleft is faster than 
stimulus frequency. 

• Short term adaptation is mainly influenced by the dynamics of the free pool, and to 
some extend the reprocessing pool. ff the reservoir is well filled and the permeability 
suddenly puts the exit gate wide open then large instantaneous outputs can be generated. 
Gradually the free pool depletes and steady state behavioux is reached. 

• Rapid Adaption is quite harder to analyse since it isn't built in in any specific way, but 
rather a consequence of the two previous effects combined. 

Phase locking is determined from the fast model. The shortest time co1;t.stant in the system 
is (L + R)- 1

• Some phase locking (synchronization) will occux for frequencies up to (L + R). 
Clearly observable phase locking will stop considerable earlier, with as reasonable estimate: 

L+R 
fsy < -

2
-

Short-term and rapid adaptation time constants are derived from the slow model. It is a 
combined effect of depletion of the free transmitter pool, especially by lower stimulus amplitudes, 
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and by replenishment thru the reprocessing store. Rapid adaptation occurs mainly thru re( de)· 
plenishment of the free transmitter pool with as approximate time constant (Y + p(t))-1• For 
large amplitudes the two time constants will differ considerably and for most parametrizations 
they can easily be found from the closed loop equation {3.22): 

and 

L+R 
T'ST = --

L.X 

1 2 
T'RA = -- = -

Pmax K 
For moderate amplitudes the two time constants are closer together and their computation 
cannot easily be separated. The time constants should be computed as the real poles, in function 
of p, from (3.22). 

Predicting overshoots is one of the thoughest aspects in a formal mathematical analysis. No 
solid derivations were possible, therefore one should rely on empirical evidence. 

3.3. 7 Summary of Design Parameters 

The usefulness of the above design formulas is illustrated at the hand of the baseline model in 
[17}. There is barely a significant difference between the predicted and measured values. 

parameter expression values from [17) predicted values 

Input Dynamic Range 20log 20,r(L+R}l' 25 dB 29dB poL 

Firing Rate Dynamic Range fJ = (L!R) (Aj_B) ~ 0.55 0.56 

Maximum Firing Rate fM = ¥ 99 101 

Synchrony fsr < (L + R)/2 4500 

Time Constants ( +20dB) roots from quad. eq. 75 It 7.7 msec 78 It 5.1 msec 

Time Constants ( +50dB) L.±H d 2 LX an K 57 It 1.2 msec 55 It 1.2 msec 

3.3.8 Adaptation Examples for Sinusoidal Bursts 

The combined behaviour of filterbank and adaptation is illustrated for two test stimuli. · Both 
test stimuli consist of a sequence of 9 sinusoidal bursts (lkHz) of increasing amplitudes (6dB 
steps), with amplitude ranges from 30dB SPL to 86 dB SPL. The onset and offset amplitude 
ramps are always 2msec long. The first stimulus(.A,/K ,J consists of 50 msecs bursts with 50 
msecs silence between each of them, while the second 'one ( S,fl( J has no silence uses l00msec 
bursts with no silences. Firing probability in a few channels with CF around lkHz is shown 
for 1 kHz tone bursts in Fig.3.C for a Schroeder Hall Model and in Fig.3.1 for a Meddis model 
with default parameters. Using the above derived mathematical properties and relationships it 
is possible to change one or several of the parameters in a guided way. 
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Chapter 4 

Post Processing in Auditory Models 

4.1 Introduction 

The output of a physiologically based model is a spike train on the auditory nerve or firing 
probability. However the data rate from such a model is too large for further processing by e.g. 
a speech recognition system. Therefore it is necessary to make some form of abstraction of this 
neural spike train and the most common methods are representations of average firing rates ( 
similar to average firing probability ) or some form of synchrony measure at a low sampling rate. 

It should be stressed that physiological understanding of what happens beyond the first 
synapses of the auditory nerve is limited and that none of the post~processing described in this 
chapter has a sound physiological motivation. Strictly speaking the auditory model stops at the 
nerve spike train, the algorithms developed in this chapter describe ways of looking at the output 
of it. 

4.2 Average Rate 

Average rate is the easiest representation of a neural spike train. In practice it isn't even 
necessary to compute a spike train, as average rate can be determined from firing probability. 
As we early on took the approach that a single channel in the model stands for a local group 

. of fibers, statistical effects, except maybe refractory periods, are averaged out by this grouping 
and average rate is determined directly from firing probability. For the sake of data reduction 
downsampling can be used after this smoothing operation. 

More form.ally average firing probability is computed as 

/(t) = w(t) * f(t) = fo00 

w(T)f(t T)dT ( 4.1) 

in which w(t) is a properly chosen smoothing window. For sake of normalization we will require 
that w(t) has following property: 

fo00 

w(T)dT = 1 

Often used smoothing windows are first and second order leaky integrators. 

w1(t) 
1 _.t = -e T 
T 

t>O 

w2(t) = w1(t) * w1(t) 

( 4.2.a) 

( 4.2.b) 

The first window is a first order leaky integrator with effective window length T. The second one, 
which is obtained by twice applying the first one, is somewhat similar to a Hamming window 
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J. o-s. 
of length 4T [2]. Figs show example,susing a second order leaky integrator with time 
constant T = lmsec. · 

Recursive Implementation The exponential window can very efficiently be implemented 
in discrete arithmetic as a first order recursion using current estimate and the new input sample. 

t:,.T ~ -UT 
/(i) = - L..J e-T-f(i - k) 

T o 

6T ( -AT -2AT ) = T f(i) + e--r f(i - l)e-Y- f(i - 2) + ... 

6T -*T -= Tf(i)+e /(i-1) 

t:,.T . ( t:,.T) - . ~ T f(i) + 1 - T f(i - 1) 

4.3 Synchrony Measures 

(4.3.a) 

( 4.3.b) 

(4.3.c) 

(4.3.d) 

Due to early rate saturation spectral resolution on average rate representations of high intensity 
inputs is very low. Detailed information about the stimulus signal seems to be preserved up to 
much higher intensities by phase locking properties (for nerve fibers with characteristic frequen­
cies below about 2kHz). These phase locking properties have long been understood for pure 
tones [18]. The potential relevance to speech processing was first illustrated by the experiments 
of Sachs and Young[19, 20] in which they showed that the formant structure of medium to high 
intensity vowels is not preserved in average firing rates but in a clearer way in some form of 
synchrony measure applied to auditory nerve spike train. These results, and other similar ones, 
have convinced many researchers that the auditory system must perform some type of synchrony 
analysis. How the system might actually perform such an analysis has not been shown, nor is 
there any real evidence that the auditory. system uses synchrony in one way or another. 

There is also evidence that the audifury system might not need synchrony at all and that 
rate be a sufficient representation. Delgutte[21] showed that formant structure is well preserved 

. in rate patterns at onsets and offsets of vowels. Hence rate would be sufficient if the higher 
pathways cue in on transients and pay.Jittle attention to steady state situations. 

While average firing rate is a simple measure and reasonably well defined, there is no agree­
ment within the scientific community as how synchrony could best be computed. Two approaches 
must be distinguished. In the first one synchrony is computed with respect to a predefined fre­
quency. This implies that some form of physiological clock is involved in the measurement. The 
likelihood of some mechanism existing is up to debate, but synchronization to the characteristic 
frequency of a fiber is plausible because this is anyhow by for the strongest component in the 
typical output signal. In a second approach any fiber can synchronize to almost any frequency, 
hence the strength of a formant in a vowel e.g. will not only be presented by the stength in the 
fiber at CF but also by acth:ity in fibers with CFs around this value. 

4.3.1 Synchrony Measures for known Characteristic Frequencies 

Generalized Synchrony Detector The Generalized Synchrony Detector (GSD) is deter­
mined from following equation[2] : 

y(t) = G~atan (.!:. < u + v > - 210 ) (4.4) 
11" A < u-v > +1: 

in which 
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< > is a smoother, using double leaky integration 

T = 1 /CF, CF is characteristic frequency of a fiber. 

u(t) = f(t) is the instantaneous firing probability 

v(t) = u(t - T) : the signal, delayed by the characteristic period 

/o: the fiber's spontaneous rate. 

e: small number avoiding divide by O overflows. 

A, G are scaling factors 

For steady state analysis this measure reaches its minimum when correlation between u(t) and 
v(t) is zero, i.e. for a white noise input and its maximum when both are identical. It has however 
a most unusual behaviour around tone burst onsets. Depending on the choice of f O and E the 
synchrony measure might take a deep drop. With G = 1, y(t) lies in the range 0-1. 

Modified GSD In order to alleviate the previously mentioned onset problem a slight modi­
fication to the GSD definition leads to a more sensible measure: 

in which: 

u(t) = f(t) 

v(t) = u(t - T) 

v1(t) = u(t - 2T) 

( ) G 2 ( 1 < U + V > -2/o) yt = -~~ ------~ 
1r A < v - v1 > +e 

(4.5) 

The onset problem isn't fully solved but it seems a reasonable 'hack'. One other, possibly 
much more important problem with this style of synchrony determination is its counteraction of 
auditory nerve adaptation. Synchrony during onsets will be represented as "bad" because u(t) 
and u(t - T) differ significantly. Intuitively it is hard to accept that the auditory system would 
first perform adaptation ( to see transients more clearly ? ) and in the next proceHing step 
would eliminate most of what adaptation has done !!?? 

Parameter Settings Both the GSD and MGSD are very sensitive to appropriate parameter 
settings. The a priori knowledge of the spontaneous firing rate is of key importance. An 
underestimate causes the output to be very smooth while an overestimate causes clearly clipping 
problems. A reasonable safe choice for Eis half the spontaneous firing rate. 

4.3.2 Synchronization Index 

A measure which is much less sensitive to adaptation effects is the synchronization index. In a 
first pass period histograms of firing (probabilities) are computed for the known frequency, i.e. 
most often the CF of a fiber. For a completely synchronized fiber all firing occurs during one 
half phase and none during the opposite phase, for a non synchronized fiber a period histogram is 
flat. Synchronization Index is a measure for the strength of synchronization going from 50% (not 
synchronized) till 100% (fully synchronized) [18]. With P(t) representing the period histogram 
and T the histogram period the synchronization index is computed as: 

rT/2 ) 
SI= lOOJo P(t dt 

foT P(t)dt 
(4.6) 
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In the examples here a directly related measure is used spanning the range 0-100: 

SI*= 2 (1001['
2 

P(t)dt - so) 
I[ P(t)dt 

(4.7) 

Synchronization Index has most often been used in the analysis of tone burst, where a single 
measure is obtained over a full signal. In an auditory model the period histograms need to be 
computed with a forgetting factor in order to get a sequence of snapshot pictures. A rather 
small window can be used for this analysis leading to some, but much less obvious and non 
destructive counteracting of adaptation. 

4.3.3 Predictive Synchrony Rate 

Predictive synchrony rate is a novel hybrid rate/synchrony measure. It attempts to combine 
the advantages of synchrony measures and short term rate effects such that both steady state 
and onsets are clearly captured in a single measure. Predictive synchrony rate is defined as the 
average firing rate in which the weighting function is a one period normalized period histogram: 

PSR = foT w(t)f(t)dt (4.8) 

/(t) is the instantaneous firing rate and w(t) the normalized period histogram. Noise robustness 
in synchrony measures relies on the usage of several periods which can easily be included in 
the smoothing of the period histogram, while instantaneous and fast adaption properties is 
maintained by keeping the integration time in (4.8) small, i.e. one period. 

4.3.4 Examples of Noise Robustness of Synchrony Measures 

At the hand of a set of tone bursts imbedded in a 50dB additive white noise disturbance some 
noise analysis of the different schemes is possible. Average rate, generalized synchrony detector 
and predictive synchrony rate are compared in Fig.4. t Following observations are possible: 

• Due to sharpness of the filters pure tone onsets and offsets are visible over a wide frequency 
range. This behaviour is not suppressed by synchrony processing. 

• Due to smoothing average rate is unable to maintain proper rapid adaptation properties. 

• The GSD suppresses the adaptation considerably. 

• Predictive Synchrony Rate has the best overall characteristics. 

4.4 Synchrony Measures with Interval Histograms 

The principal method in defeating a priori knowledge of the synchronization frequency is the 
use of interval histograms. In this approach any channel can represent any frequency, though in 
practice contribution will obviously be most significant in the region around CF. One particular 
way of implementing such a synchrony measures are the level crossing histograms used by O. 
Ghitza[l] . Not neural spike trains but local firing probability is used as input signal. Events are 
then created whenever the firing probability in a channel crosses a number of levels covering the 
whole probability range. For each level interval histograms of events are computed and finally 
the different histograms are summed together. 
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Chapter 5 

Software for Auditory Modeling 

5.1 Introduction 

This chapter gives a global introduction to the software which was developed at IPO that 
implements the algorithms and ideas described in the previous chapters. Apart from the strictly 
algorithmic programs a number of utilities had to be developed which allow for easy manipulation 
of multichannel files, these are also described here. The package as a whole is referenced as 
'AMOD' (Auditory MODeling). 

5.1.1 File Conventions 

File Formats. All data files are conform the LVS/ILS data format. Multichannel files (ILS 
multiplexed files) are used for filter bank outputs and further processing. 

Header Info. Header information is extensively used throughout the package. Using exclu­
sively the package doesn't require understanding of single header entries. Detailed info can be 
obtained thru the help facility. 

Energy Levels. Because neural adaptation is a non-linear process, one must define absolute 
. energy levels. Both Schroeder-Hall and Meddis use the convention that a sinewave at lkHz with 
rms=l corresponds to a signal of 30 dB SPL. Within this software all amplitudes are multiplied 
by 4 with respect to this definition for optimization with respect of quantization errors and use 
of dynamic range. 

5.1.2 VAX/VMS User Interface 

Setup. The user should include following line in his LOGIN.COM file for easy access to 
programs and subroutine libraries. 

$ @akofondisk:[compi.amod)init.com 

Command Interface. By means of previous setup procedure it is possible to access the 
whole package by using a command format which is similar to the generic VAX/VMS system 
commands: i.e. 

% CMD/ql=xxx/q2=yyy pl p2 .. 

Global Variables. One global variable is used in this package: DEBUG. DEBUG takes 
integer values and is by default equal to O (NO DEBUGGING). Progressively higher values will 
print out more detailed intermediate data, the highest value used is 32. 
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Help Facility. Full help facilities are available. Help files are available on all main programs 
by program name, a general introduction and overview of the programs is given in the AMOD 
entry, and the subroutine library is described in DSPLIB 

5.2 Main Programs 

The AMOD package contains of following main programs, a full help is available on line. 

ADDNO: add noise 

ADAPT: Schroeder Hall and Meddis Adaptation 

DSAMPLE: Downsampling without filtering of multichannel file 

ERBTST: prints out values from the ERB-scale 

FDES: FIR Filter design program for auditory filterbanks (Gamm.atone, Flanagan, Ham­
ming) 

FILE: print out general file info on multichannel files or multichannel FIR filters 

FIR: Multichannel FIR Filter 

LCH: Level Crossing Histograms 

MKNOIS: Make noise signal 

PLOTMC: Multichannel Plot (sampled data and waterfall) 

SELCHAN: Select one channel from a multichannel file 

SMOOTH: Smoothing and downsampling 

SUMCHAN: Sum all channels from a multichannel file together 

SYNCD: Synchrony Detector (GSD,MGSD,PSR,SI) 

TESTSIG: Create a testsignal (multilevel tone bursts) 

5.3 Subroutine Library 

A subroutine library with frequently used DSP routines is used and can also be used by new 
program developers. HELP DSPLIB gives more information on the available routines. A logical 
variable lnk$library is defined in the login script and points to the amod subroutine library, 
hence you must not explicitly mention this library when linking. 

5.4 Code and Demos 

5.4.1 The AMOD Directory 

All code for the AMOD package, standard filterbank designs and scripts to generate the demos 
in this report are in subdirectories of akofondisk:[compi.amod]: 

CLD.DIR: command language interface files 

DEMO.DIR: Demonstration Files for combined auditory model 
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FLT.DIR: Filterbank designs and design scripts 

HLP.DIR: help directory 

!NIT.COM: initialization file 

LIB.DIR: subroutine library source and object code 

MAIN.DIR: source and executables of main programs 

5.4.2 Filter Design Illustrations 

Following files extensions are used in the FLT .DIR filter design directory: 

.FLT: filterbank parameters 

.IR: multichannel impulse response 

.CIR: combined impulse response ( sum of channels in previous file ) 

.IR.xx: single channel impulse response for channel x.x 

.SIG: testsignal, typically sampled at 20kHz 

A number of command files are available in this directory that might be useful to illustrate 
other filterbank designs: 

filtname plot 20 channel frequency response 
filtname plot 20 channel frequency response 
filtname 

FRPLOT20 
IRPLOT20 
IRl 
FBKDES Design script for all filterbanks used in this report 

5.4.3 Demo Directory 

Test signals: 

BlK.SIG: 50 msec lkHz bursts with amplitudes from 30-86dB SPL with 50msec silences 

SlK.SIG: 100 msec lkHz bursts with amplitudes from 30-86dB SPL with no silences 

Processed data is available in files with following extensions: 

.BM: filterbank output (basilar membrane motion) 

.SH: instantaneous firing probability according to Schroeder Hall model 

.M2: instantaneous firing probability according to default Meddis model (NEURON=2) 

.SHS,.M2S: smoothed ~d downsampled ( 4kHz) versions of the above, using two lmsec 
leaky integrators 

.GSD: modified synchrony detector on the basis of .M2 file 

.SI: synchrony index on basis of .M2 file 

.PSR: predictive synchrony rate on basis of .M2 file 

.LCH: level crossing histogram output on the basis of .M2 file 
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