

NUKE - multi-modal user interface software components

Citation for published version (APA):
Moll, H. F., Boschman, M. C., de Pijper, J. R., & v.d. Voort, M. (1999). NUKE - multi-modal user interface
software components: combining DirectX and ActiveX in UI components for the rapid construction of multi-modal
interfaces. (IPO-Rapport; Vol. 1201). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 25/02/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/4e067557-af08-4e9c-833c-d7c704623a65

IPO, Center tor Research on User-System lnteraction
PO Box 513, 5600 MB Eindhoven

Rapport no. 1201

25.02.1999

NUKE - Multi-modal user interface
software components

H.F. Mall
M.C. Boschman
J.R. de Pijper
M. v.d. Voort

© Copyright 1999 - Technische Universiteit Eindhoven

NUKE - Multi-modal User Interface Soft
ware components

Combining DirectX and ActiveX in UI components for the rap id construc
tion of multi-modal interfaces

H.F. Moll , M.C. Boschman, J.R. de Pijper, M. v.d. Voort

© Eindhoven University of Technology 1999

This report is released in a slightly different format as Nat.Lab. Technica! Note 067 /99 of
Philips Research.

Authors' address data: H.F. Moll, Philips Natlab, WLp; hfmoll@natlab.research.philips.com

M. C. Boschman, TUE, IPO; m.c.boschman@tue.nl

J .R. de Pijper , TUE , IPO; j.r.d.pijper@tue.nl

M. v.d. Voort, Fontys Hogeschool Eindhoven

ii © Eindhoven University of Technology 1999

Title:

Author(s):

Part of project:

Customer:

Keywords:

Abstract:

Conclusions:

NUKE - Multi-modal User Interface Software components

Combining DirectX and ActiveX in UI components for the rapid
construction of multi-modal interfaces

H.F. Moll, M.C. Boschman, J.R. de Pijper, M. v.d. Voort

User interface Software Exploration (NUKE), UCDl

Philips Research

User interfaces, software components, rapid prototyping , multi
modal interfaces, DirectX, ActiveX, COM

This report describes software components we constructed in the NUKE
project based on Microsoft's DirectX technology. They can be used for
rapid construction of multi-model interfaces.

The report starts with an overview of both COM, the chosen SW compo
nent technology and of DirectX. After this overview the specific compo
nents that we built are described. We conclude with a section describing
the use of these components in various applications.

The NUKE project was a co-operation in 1998 between Philips Research
(USIT group) and the IPO to explore the potential of standerd software
technology for multi-model interfaces. The created software components
are available both at the IPO and the USIT group via their web pages.

• SW components have the future , also for User Interfaces

• "Beyond the GUI" interfaces become reality (3D, speech , sound ,
touch on the PC and at home)

• Packaging DirectX in ActiveX components allows rapid prototyping of
multi-model interfaces.

© Eindhoven University of Technology 1999 111

IV © Eindhoven University of Technology 1999

Contents

1 Introduction

1.1 Relevance

1.2 Standard software platforms

2 COM, ActiveX and other SW Component Technology

2.1 SW component technology

2.2 What is COM?

2.3 ActiveX COMponents

2.4 Other SW Component Technology

3 DirectX

3.1 Introduction - What is DirectX?

3.2 Direct Sound

3.3 DirectDraw & Direct3D

3.4 Directinput

4 DirectX + ActiveX = Multi-modal UI components

4.1 JrSoundControl

4 .2 Direct3D Controls - Scene and Thing

4 .3 ActiveX Controls for Microsoft SideWinder FF Pro Joystick

5 Using NUKE components

5.1 Simple demo applications

5.2 Applications using NUKE components

6 Conclusions and future

6.1 Future work

7 Glossary

8 Ref erences

9 Appendices

9.1 Appendix A - SWFF Properties, methods and events

9.2 Appendix B - jrSoundControl

© Eindhoven University of Technology 1999

1

1

2

3

3

4

8

12

14

14

16

19

21

23

23

24

26

31

31

38

40

40

41

42

43

43

50

V

1 Introduction
This document describes the user interface software components that have been created
in the NUKE project [1], in collaboration between the IPO and Philips Research . In this
project we explored how to use the technical possibilities of Microsoft's DirectX APis to
create a set of easy to use UI components that offer possibilities that go beyond the
standard GUI and allow the rapid construction of multi-modal interfaces. Multi-modal inter
faces are interfaces that communicate with the user using more then one modality at the
same time. An example of a modality is the use of speech for user input, or the use of 2D
graphical images for output to the user. The set of UI SW components we developed sup
ports the modalities from DirextX: sound , 3D animated graphics and touch (force feed
back).

This document gives an overview of the used technologies (Microsoft COM, ActiveX and
DirectX) and a short comparison with other component technologies. After this overview,
the UI SW components we created and their usage in several demonstrators and projects
are covered. Finally some conclusions and expectations of the future are given. The remain
der of this chapter gives the motivations for doing this work.

1.1 Relevance

User interfaces of many (Philips) consumer electronic products are controlled by software.
Examples include televisions or set-top-boxes that offer an electronic program guide (EPG)
that can replace the paper program guide or a GSM mobile phone with a large menu tree of
facilities (see Figure 1 and Figure 2).

Watch

Rem.i nd

1, ~•1'·~,w W,<X <icn ·o f·W ,·.•. · ·• A,:i>·•~<-:-oS

~~ <<<<<

Figure 1 a simple EPG
Figure 2 a GSM phone

Such products are growing in complexity and are getting more diff icult to use. One ap
proach to this problem is to reduce the set of features , but that also might reduce the
competitiveness of the product. Another solution is to make the set of features easy to use
by the same technology that made them possible in the first place: embedded software.
Currently most software development efforts are just aiming at increasing the set of
features . The usability and the user interface of these features are often the last thing
being considered. Supporting more natural ways of interaction by using other I/0 modal i
ties then just displaying graphics for output to the user and using keys to receive input

© Eindhoven University of Technology 1999 1

from the user is one way to improve the usability. In this way the interaction between user

and product becomes more naturel because it is more similor to the ways humans are used
to communicate with each other (using all their senses). See e.g. [2], [3].

1.2 Standerd software platforms

The general goal of the NUKE project was to explore and extend the possibilities of user
interfaces that go beyond the GUI. We aimed at doing this on standerd computer platforms
and within standerd SW architectures.

A secondary goal derived from this was to build up knowledge and experience with state of

the art UI products and tools with a strong focus on SW aspects.

Standerd software platforms of today include:

• a PC with an Intel Pentium processor and Microsoft Windows 9X or NT

• a Web browser supporting HTML, JavaScript and Java

• a RISC workstation running a Unix OS and an X-Windows interface

Standerd SW platforms are also likely to be used more and more for consumer application
(Web Browsing on your TV, Windows CE in your GSM or PDA) and available processing power

and memory is growing according to Moore's law, also for CE products.

In NUKE we focused on the PC platform. The PC platform sets the direction for innovations

and is still gaining market share, both at the high-end (Windows NT as application-server)

and at the low-end (Windows CE in PDAs and cars). We also expect a crossover from PC
platform technologies to consumer products , both for hardware (processors , disks, memory

modules) and software (Microsoft Windows, applications).

Even on the PC platform alone we see a variety of SW tools, methods and standards with

respect to building applications and creating user interfaces. We focused on de-facto stan
derds on this platform:

• COM is the standard SW component technology on the PC

• ActiveX is the standerd for creating interactive components in a networked PC environ
ment (Internet, Client/Server, Desktop applications)

• DirectX is the standard set of multimedia APis on the PC to create high performance

games and is also finding usage for other domains (Web, professional applications)

With these choices made we studied the following aspects:

• SW model, SW architecture, SW components - how can we create well-designed appli
cations using these standards?

• Platform limits - what are the memory requirements of using these standerds and when
do we hit a performance limit?

• Usability in other contexts - what are the options of using these standerds in embedded
products?

• Comparison to alternatives - how do these standerds compare to alternative solutions ,
both within and outside Philips?

2 © Eindhoven University of Technology 1999

2 COM, ActiveX and other SW Component Technology

2.1 SW component technology

In the early days of computers programmers used to write their applications storting from
scratch and they compiled it into one monolithic part of binary code. Applications were
dedicated to the programmer's specific problem and re-use was not invented yet. Clearly
this was labor intensive and inflexible. When computer platform and programming languages
became more and more standardized (Unix, DOS, Moe), programmers begon re-using each
other's code. This led to the use of SW libraries, which saved effort and increased flexi
bility. In fact the use of a standard OS was the first form of re-use. SW libraries solved a
big part of the problem, but they introduced a version and maintenance problem. New ver
sions of libraries made old applications crash and new applications did not work on old li
braries. With the advent of Object Oriented software methods this resulted in using
binary SW components with rigid interfaces as a way to build an application from smaller
parts. Advantages of this method compared to writing monolithic applications are:

• Applications can be updated after shipping
If a component contains a bug, only the component needs to be repaired and replaced.
See component E in Figure 3.

• Applications can be customized
If a user hos a different implementation of a component, offering the same functional
ity in a different way, it can replace the component in the application. An example is a
different editor component. See "vi" and "emoes" in Figure 3.

• Applications can be developed rapidly
Ideally an application can be build rapidly by taking components offering required func
tionality from a component library and gluing them together with a few lines of code and
little effort.

Figure 3 Applications and Components

2.1.1 Requirements on components

In order for software components to really achieve these advantages, we can state the
following requirements on SW components:

© Eindhoven University of Technology 1999 3

1. Software components can dynamically plug into and unplug from an applicat ion. With this
we mean dynamic run-time linking in stead of statie , compile time linking. Without th is

property the users of a component need to recompile and link their applications when a
component is changed, which is clearly undesirable (it releases the source code, asks for

distribution of tools , etc.).

2. A component should hide all implementation details. This property is also called encap

sulat ion. An important aspect of this, is the used programming language. There are many

programming languages and new ones are being developed all the time. We want to use

components from the language we chose for our applicat ions and we want to write com
ponents in any language. This implies a binary format for components.

Another solution is a standerd "header file" format and mapping functions to every pro

gramming language. Corba's IDL is an example of th is. See 2.4.2.

3. Components need to be upgradable without breaking existing applications. A new and

updated version of a component can replace a previous one without requiring action from
the user of the component. This requires downward compatibility of components . Later

we will see what this means for the interfaces of a component.

4. Components need to be relocatable (on a network). This requirement hides a specific

implementation detail and offers an additional advantage. SW applications and their

constituent components can be split in a client and a server part and thus hide their ac

tual location for the user. It also allows components to work across the Internet or a
local network.

5. Components should only have explicit dependencies. Using a component implies using
other software components that implement interfaces it depends on. We want to know
on forehand if a component wi ll work in our context. This programming by contract is
not supported by COM, but is supported by KOALA. See 2.4.3.

2.2 What is COM?

COM stands for Common Object Model. It is a Microsoft standerd for components and how

an application can use them. In more technica! terms COM components are:

• WIN32 DLLs or executables (binaries) and hence programming language independent

• upgradable with backward compatibility, by versioning of interfaces

• relocatable on a network, through a so-called proxy mechanism

COM provides the component management functions to f ind, create and use components and
also provides the network communication code to implement the proxy mechanism. COM is a

way of writing componentised programs.

In the sequel we will cover the most important conceptual aspects of COM and show how
COM meets the requirements we posed on SW components. We will not give a detailed

description of how to bui Id COM components. A good text for learning that is [4].

4 © Eindhoven University of Technology 1999

2.2.1 Encapsulation: COM Interfaces

In COM a component is def ined by its interfaces. An interface is a set of (related) func
tions. These interfaces are the only way to get access to the functionality provided by the
component. The COM notation fora component A with two interfaces is shown in Figure 4.

ComponentA

Figure 4 COMponent notation

Writing the code for such a component in C++ could be done as follows:

#define interface struct

interface IAB {

v irtual void stdcall Fxl () =0;

virtual void stdcall Fx2 () =0;

} ;

interface IAC

virtual void - stdcall Fyl () =0;

virtual void stdcall Fy2 () =0;

} ;

This shows one way to code a COM component in a programming language. However this
coding of components in a programming language is NOT standardized. Only the resulting
binary format is standardized. Later on we will see that this format matches easily with the
code a C++ compiler generates fora "struct" or a "class".

In COM interfaces support in fact both the access to a component and its encapsulation. In
COM interfaces are first class citizens. See Figure 5.

© Eindhoven University of Technology 1999 5

Figure 5 Components and Interfaces

2.2.2 Getting to know COM: IUnknown

In COM one interface is mandatory for every component. This interface is called IUnknown
(see Figure 6) and offers functions to getto the other interfaces of the component and for

lifetime management of the component . The functions of the IUnknown interfaces are:

Queryinterface(IID &iid) - this function is a gateway to get to know (the interfaces

of) the component. Queryinterface asks the component if it supports another in
terface identified by a unique identifier 'iid'. It returns a handle to the wanted in

terface. This handle can be used to call the functions of that interface.

AddRef() , Release() - these functions offer lifetime management of the component .
AddRef keeps track of the users of the component and Release() removes the caller

as a user of the component . With zero users a component can release its resources

(memory, network links, file-locks, etc.).

ComponentA

Figure 6 a COM Component

One other requirement of COM is that each interface implement these functions and hence

offers a gateway to all other interfaces. In C++ this can be achieved by inheriting from

IUnknown.

6 © Eindhoven University of Technology 1999

2.2.3 Under the hood

Implementing the binary format required by COM in C++ is straightforward. We illustrate
this with a usage scenario. The user of a component A (which is called the client in COM)
creates an instance of the interface (IAB). In Figure 7 the client uses a variable pA to
store this instance. This variable in fact points to the class instance data. The class in
stance structure contains a pointer to a virtual function table (vtbl) as it's first member.
This table contains pointers to the functions wherever they are in memory.

Interface AB

Client
------~A ___ ~

\ Component A

&AddRef

&Fx1

&Fx2

&Fx3

Figure 7 Under the hood

In Figure 8 we show how the implementation of the IUnknown functions in an arbitrary
interface can be realized. COM standardizes the way in which the datastructures for an
interface are formatted and how they are stored in memory. Also the way parameters are
passed is standardized by COM.

Client

Interface AB

A~~ C (~--~ \ omponent A

&Querylnt. >----.

1 &AddRef 1--I -•

~
~
~
~

Figure 8 IUnknown implementation

© Eindhoven University of Technology 1999 7

2.2.4 Further decoupling - GUIDs, Idispatch and Type libraries

The next issue we consider is how a client creates a component in a way that fulfills the

requirements of 2.1 .1.

• The first solution that can be considered is to use a Createinstance() function from a
library. This however does imply statie linking in some form and hence is nota good solu
tion with respect to our requirements.

• A second possible solution is to call Createinstance() in a DLL. This is better, but hos
the disadvantage that the name and location of the DLL has to be known in the code,

which hampers customization and upgrading of components and hence is not good

enough.

• The COM solution is to supply a parameterized function in the COM library. This func

tion is CoCreateinstance (prototype: CoCreateinstance (CLSID &clsid , IID &iid)) and
takes a component and an interface identifier as parameters. These identif iers are so

called GUIDs, globally uni que identif iers. GUIDs define interfaces (IIDs) and compo
nents (CLSIDs) uniquely. They are 128 bits long, contain a 60 bit time-stamp, and a 48

bit system identif ication. They are stored in the PCs Registry. The Registry keeps track
of the server (DLL or EXE) that implements the component interface.

• If even more flexibility is needed COM supplies a mechanism to call component inter
faces by name (strings). This is implemented in the IDispatch interface and is the basis
for Automation. Automation supports the use of components in scripting languages (Vis
ual Basic, VB Script, Java Script). Together with IDispatch we mention "type libraries",

a language independent binary equivalent of header files, that allows direct interface

calls in a safe and fast (compared to IDispatch) way. Automation is covered in a bit
more detail in the next chapter.

2.2.5 COM in summary

With this we conclude the overview of COM. Further details can be found in many books and
on- line manuals.

In summary, COM provides a standard way to build binary software components and it
provides the framework and management functions to use them in a way that hides imple

mentation details , upgradability and location transparency.

2.3 ActiveX COMponents

ActiveX is a set of technologies that uses the COM to enable software components to
interact with one another in a networked environment, regardless of the language in which
they were created . ActiveX technologies can be used to create applications to run on the

desktop or the Internet.

ActiveX includes both client and server technologies, including the following :

• ActiveX Controls are interactive objects, which can be used in containers such as a
Web site.

• ActiveX Documents enable users to view documents, such as Microsoft Excel or

8 © Eindhoven University of Technology 1999

Word files, in the entire client area of a Web browser or other ActiveX container.

• Active Scripting controls the integrated behavior of several ActiveX Controls
and/ or J avo programs from a browser or server.

A bit of history:

In the past everything based on COM was called OLE. Now OLE is restricted to technolo
gies (interfaces) that allow users to create and edit documents containing items or "ob
jects" created by multiple applications. OLE was originally an acronym for Object Linking
and Embedding. However, it is now referred to simply as OLE. Parts of the old OLE that are
not uniquely related to linking and embedding are now part of ActiveX. This includes Auto

mation. Automation (formerly known as OLE Automation) makes it possible for one applica
tion to manipulate objects implemented in another application, or to "expose" objects so
they can be manipulated. Automation is used in OLE as well as in ActiveX.

In this part we cover ActiveX Controls and their containers, the part of ActiveX that

covers UI components.

2.3.1 ActiveX Controls Overview

ActiveX controls are COM components that can be used as building blocks for user inter
faces. They can be used with drag and drop in many programming environments for easy,
fast programming or prototyping. They support event driven programming, support script
ing and can be published on the Web. An example of a Button control in the Visual Basic
programming environment is shown in Figure 9.

Private Sub Comma nd l Click()
Labe ll . Ca ptio n • " You pre :!! sed

En d Sub

Figure 9 Button Control

Let's look at ActiveX controls in more detail. ActiveX is a name for a set of technologies
and services, all based on COM. ActiveX controls (formerly called OLE controls) are COM
objects with a set of interfaces that Iets them behave like controls for Windows. They can
be used in visual development environments like Visual Basic and Delphi and can even be
included in HTML pages. From the programmers' point of view an ActiveX control consists
of a visual representation and hos properties, methods and events.

© Eindhoven University of Technology 1999 9

• Properties can be set to certain va lues and/or their va lues can be read.

• Via the methods parts of the actual functionality of the control can be activated.

• The control can send events to the outside world to indicate that certain occurrences

happened.

An application that uses ActiveX controls is called a container. The container application

embeds the visual representation and contains event handlers to properly act upon the

events fired by the control. See Figure 10.

Get or Set Properties
~

r

Control Call Methods ActlveX
Container Control

Fire Events

Figure 10 control container communication

2.3.2 Building ActiveX Components

ActiveX controls can be created with Microsoft Visual C++, with Microsoft Visual Basic, or

with another programming environment . For this project we used Visual Basic and Visual

CIC++. Visual C++ has a ControlWizard that sets up the basic framework for the control by

creating a Control Class. Via the AppWizard properties, events and methods can be added

to the control. It sets up a framework for the getand/or set functions, the event handlers
and the methods that define the behavior of the control. These frameworks just need to

be filled-in by the programmer. In Figure 11 we show how this works. The wizard generates

the skeleton for your control class with the proper calls of the generic COleControl parent
class. COleControl implements all the required COM interfaces for an ActiveX control.

~

r

Calls to OLE Control
Container COleControl member Your Control

Client Site functions Class

1

OLE Interface

Figure 11 MFC Ole Control Framework

Without a wizard a lot of work would have to be done manually, including implementing all

COM interfaces required by a control. The ControlWizard generates code that is based on
MFC, the Microsoft Foundation Classes, a set of C++ classes that implements generic Win

dows programming constructs. Besides MFC Visual CIC++ offers A TL, the Active Template
Library, a set of C++ templates for Windows programming. ATL has a template for building
controls. Other environments that support the construction of controls include Visual Basic,

Borland Delphi, and Borland C Builder. However it is still a far from perfect world . When

10 © Eindhoven University of Technology 1999

the environment does not support something directly still a lot of work needs to be done
manually and the environment is often more a handicap than a help.

2.3.3 Control Containers

The counter part of the control component is the control container. An ActiveX control
container is a container that fully supports ActiveX controls and can incorporate them into
its own windows or dialogs.

The ActiveX control container interacts with the control via exposed methods and proper
ties. The embedded ActiveX control can also interact with the container by firing (sending)
events to notify the container that an action hos occurred. The control container can
choose to act upon these notifications or not.

The control container uses (OLE) Automation to access the objects exposed by the server
(of the control) and their (dispatch) interfaces, see 2.2.4. Examples of control containers
are Internet Explorer (3 .0 and higher) , Visual Basic forms , Microsoft Word, Visual CIC++

dialogues, Visual Studio's test container, Borland Delphi and Builder, etc. These containers
all support the basics of embedding controls. However they differ in the way they invoke
exposed interfaces, both in the order and the exact usage of methods. To make sure that a
component works in alla container, it hos to be tested there.

One of the controls we created, the 3D Scene, is also a container. However , implementing a
control container from scratch is a lot of hard work and we were happy to use the support
offered by the Visual Basic environment, which provides a framework to implement a con
tainer too.

2.3.4 Under the hood of OLE, Automation, Controls and Containers

An ActiveX control is an automation server, a COM component that implements the IDis
patch interface. IDispatch is one COM interface that allows a component to off er many
services. For scripting languages IDispatch offers a way to use COM components without
parsing header files. Functions of the component can be called by name. See the Figure 12.

!Dispatch

Client ~---~A~---~
('

p vtbl
&Querylnt.

&AddRef

&Release

&GetTypelnfoCount 1

&GetTypelnfo 1

&Getl DsOINames

~
Figure 12 IDispatch

IDispatch offers a function GetidsOfNames to translate strings (function names) into

© Eindhoven University of Technology 1999 11

dispatch identifiers (DISPIDS) that can be used to call a generic Invoke funct ions , with a
generic parameter array. This is a very flexible way of offering all functionality via a single
standerd interface, but because of this genericity it is expensive (slow). The modern way of
working is to provide a duel interface, i.e . support for both IDispatch and direct "vtbl"
access of functions. In figure 12 this would mean that &ScaleUp and &ScaleDown are added
to the table.

Besides IDispatch a control hos to support much more. In this section we will give a quick
overview of the most important Automation and OLE interfaces that are relevant for con
trols and containers.

For programmability (automation) of a control we have the already discussed IDispatch
interface. This allows a container to call methods and to get and set properties in a control.
But events go the other way. For this purpose we can use connection points. Connection
points offer a generic mechanism for outgoing interfaces and are implemented in the COM
IConnectionPoint and IConnectionPointContainer interfaces . These interfaces allow a con
tainer to connect event handlers to events fired by the control. In addition to connection
points for events a control can communicate changes of (data) properties to its container
via the IAdviseSink interface.

Handling of keyboard events, ambient properties and coord inate transforms between con
trol and container is done via IOleControl and IOleControlSite functions .

Storage of controls in files is handled via IPersistStreaminit.

Drag and drop is part of OLE and is done via IDropSource and IDropTarget interfaces.

Displaying a control, data transfer for cut and paste, support for storage of a control in a
file is done with IDataObject, IViewObject, and IPers istStorage.

Controls use a lot of the interfaces for compound document management (OLE) , such as
IOleObject , IOleClientSite, IOleinPlaceActiveObject, IOleinPlaceUIWindow , and
IOleinPlaceFrame and IOleinPlaceSite. All these interfaces handle aspects of the interac
tion between a component (document or control) and it's container (document or ActiveX
control container).

Us ing a framework such as that provided by MFC a lot of interfaces need not be imple
mented again for each new control. In MFC a control you create is derived from the COle
Control class which provides a default implementation for all control interfaces.

For more information on controls, COM and OLE we refer to (4] and [5].

2.4 Other SW Component Technology

There are alternatives for COM. However we think that on the PC platform Microsoft's
COM is here to stay and will broeden its scope (COM, DCOM, COM+). Disadvantages of COM
are the fact that it is not an open standerd and only well supported on the Windows PC
platform. Clear advantage is its language independence. Support for COM on other plat
forms is slowly becoming available. See [6]. Below we wil! cover two alternatives superfi
cially.

12 © Eindhoven University of Technology 1999

2.4.1 Java and Java Beans

One important alternative comes from Sun, with the Java programming language. Java
Beans are Java components that are similor to ActiveX controls in many ways. They can also
be distributed over the Web and they run on any Java virtual machine. This makes them
programming language specific, but platform independent. It remains to be seen what tech
nology will win on the Internet. Java still hos a small disadvantage with respect to perform
ance, but offers a cleaner programming model. However to access the specif ic media proc
essing capabilities of a computer platform, so-called native modules have to be written in
another language and be wrapped in a Java class.

2.4.2 CORBA

Another alternative we mention here is CORBA, the Common Object Request Broker Archi
tecture, which is similor to COM in many ways, but intended for networked environments
from the start and more targeted towards business applications. The ORB, Object Request
Broker, takes the place of the COM infrastructure. Main advantages of CORBA are the
fact that it is an open standerd (from OMG, the Object Management Group) and that it is
supported on many platforms for enterprise applications. Various porties have announced
that CORBA will be interoperable with COM in the future. CORBA is language independent
and is in many aspects similor to COM. Interworking between COM and CORBA is possible.
See [7].

2.4.3 KOALA

Koala is a Philips Research method to model SW components. It exceeds COM in the sense
that it models the interfaces provided by a component as well as the interfaces required by
a component . This allows design time determination of what is needed to use a component.

With a requires interface a component can also provide an interface to support diversity.
An example of this is a component that implements the sound features in a TV set with a
requ,res interface that selects the type of sound (stereo, Dolby surround , mono, incredible
surround etc.). This selection determines which internal sub-components of the sound com
ponent will be linked in the resulting executable.

Koala comes with a graphical notation that allows software systems to be constructed from
software components like a 2-dimensional connection puzzle. It gives the user a nice over
view of all components in a family of related software systems.

A difference with COM is that KOALA is aimed at embedded software and that dynamic
linking and upgrading is not required. Also location transparency is not an issue. This allows
the use of a preprocessor (currently for C++) to implement KOALA in a compile-time tool
set . One of the main tasks of this processing is the elimination of all dead code, components
that are not used in a specif ic instance of the system.

A good storting point for KOALA is [8] (intern Philips).

© Eindhoven University of Technology 1999 13

3 DirectX

3.1 Introduction - What is DirectX?

DirectX is a set of APis for high-performance multimedia and game programming. This set

was developed by Microsoft to rival MS-DOS and game-console performance in media pro

gramming. A second goal was to create a HW independent game and multimedia software
platform. Thirdly it helped Microsoft to steer HW development for PCs. It hos been a
success from the start. Already in 1997 9 of 10 PC games were DirectX based (source:

WinHEC'98 conference).

One problem we encountered with DirectX: Microsoft does come with new vers ions regu
larly that extend the functionality and does not come with the newest versions on all plat

forms. E.g. DirectX 5 is not supported on W indows NT 4 .0. Future versions are likely to be
supported on Windows 98 or NT 5.0 only. The latest version of the DirectX SDK (Software
Development Kit) can be obtained from Microsoft for a nominal fee. The device driver

libraries can be downloaded for free. In this project we used DirectX 5.

DirectX is COM based, but in a minimalistic way. In principle a programmer creates a single
COM object for each HW resource you use in your application (display adapter, sound

board, joystick, etc.). After that you call this object's methods to create derived objects
(sound buffers, display surfaces, force effects, etc.). DirectX even comes with a special

implementation of CoCreateinstance to make this easier.

DirectX (version 5) is spl it in two sets of APis : DirectX Foundation and DirectX Media

(Figure 13).

AJ>pllc.ation
St'lrvlces.

Systeni
S(lrvkes

Figure 13 DirectX Overview

DirectX Foundation (Figure 14) gives access to basic media hardware. It includes the fol

lowing interfaces:

• DirectDraw, gives direct access to display devices, offers fast blitting, overlay sur

faces , z-buffer support , stretching, transparency, palette mapping

14 © Eindhoven University of Technology 1999

• DirectSound, supports low-latency mixing of (3D) sounds, hardware acceleration and
direct access to the sound device

• Direct3D (immediate mode), gives access to a complete 3D rendering pipeline

• Directinput, gives fast access to user input devices, including force feedback.

All DirectX Foundation interfaces offer a so-called hardware abstraction later (HAL). This
HAL hides the details of the specific hardware for the user and offers generic standard
ized functionality. If the actual hardware cannot support these functions, they can be
emulated. This emulation is done in a so-called hardware emulation layer (HEL). An example
of this architecture for DirectSound is shown in Figure 16.

Figure 14 DirectX Foundation

DirectX Media (Figure 15) offers high-level services based on DirectX Foundation or other
basic functionality. It covers:

• DirectPlay - a standard way to support multi-player games over a communication infra
structure

• Direct3D Retained Mode - an easy to use 3D drawing operations (model is kept in
buffer)

• DirectAnimation - unified animation API for SW controlled animations on the Internet

• DirectShow - media-streaming architecture for video in windows

• DirectModel - support for large 3D models including level of detail

• VRML - support for VRML on top of DirectX

© Eindhoven University of Technology 1999 15

Figure 15 DirectX Media

In the sequel we cover the DirectX Foundation interfaces in more detail. We did not ex
plore DirectX Media, since we wanted to understand the basis first .

3.2 DirectSound

3.2.1 Introduction

The Microsoft DirectSound application programming interface (API) is the audio component

of DirectX. DirectSound provides low-latency mixing (i .e., very small delay times), hardware

acceleration, and direct access to the sound device. It provides this functionality while
maintaining compatibility with existing device drivers.

Like other components of DirectX, DirectSound allows you to use the hardware in the most

efficient way possible while insulating you from the specific details of that hardware with a
device-independent interface. Applications will work well with the simplest audio hardware
but will also take advantage of the special features of cards and drivers that have been

enhanced for use with DirectSound.

Here are some other things that Direct Sound makes easy:

• Querying hardware capabilities at run time to determine the best solution for any given
personal computer conf iguration

• Using property sets so that new hardware capabilities can be exploited even when they
are not directly supported by DirectSound. Note that this goes against the phi losophy

of using a hardware abstraction layer to use any type of sound hardware. Apparently
programmers did not learn enough from t he DOS past.

• Low-latency mixing of audio streams for rapid response

• Generating 3-D sound

• Capturing sound

Direct Sound implements a new model for playing and capturing digital sound samples and

mixing sample sources. As with other object classes in the DirectX API, DirectSound uses
the hardware to its greatest advantage whenever possible, and it emulates hardware fea

tures in software when the feature is not present in the hardware.

16 © Eindhoven University of Technology 1999

DirectSound accesses the sound hardware through the DirectSound hardware-abstraction
layer (HAL), an interface that is implemented by the audio-device driver.

The DirectSound HAL provides the following functionality:

• Acquires and releases control of the audio hardware

• Describes the capabilities of the audio hardware

• Performs the specified operation when hardware is available

• Causes the operation request to report failure when hardware is unavailable

The device driver does not perform any software emulation; it simply reports the capabili
ties of the hardware to DirectSound and passes requests from DirectSound to the hard
ware. If the hardware cannot perform a requested operation, the device driver reports
failure of the request and DirectSound emulates the operation.

Figure 16: The relationship between DirectSound and Windows sound functions

An application can use DirectSound as long as the DirectX run-time files are present on the
user's system. If the sound hardware does not have an installed DirectSound driver,
DirectSound uses its hardware-emulation layer (HEL), which employs the Windows multime
dia waveform-audio (wavein and waveOut) functions. Most DirectSound features are still

available through the HEL, but of course hardware acceleration is not possible. DirectSound
automatically takes advantage of accelerated sound hardware, including hardware mixing
and hardware sound-buffer memory.

DirectSound playback is built on the IDirectSound component object model (COM) inter
face and on other interfaces for manipulating sound buffers and 3-D effects. These inter
faces are IDirectSoundBuffer, IDirectSound3DBuffer, and IDirectSound3DListener.
DirectSound capture is based on the IDirectSoundCapture and IDirectSoundCaptureBuf
fer COM interfaces.

Another COM interface, IKsPropertySet, provides methods that allow applications to take
advantage of extended capabilities of sound cards.

Finally, the IDirectSoundNotify interface is used to signal events when playback or capture
hos reached a certain point in the buffer.

© Eindhoven University of Technology 1999 17

3.2.2 Playback Overview

The jrSoundControl ActiveX control developed during this project (see 6.1) encapsulates
only components of DirectSound relating to playback. Therefore, this section will go into
DirectSound playback in a little more detail.

lk&iiil

ihiiiiii

secondary buffers
(hw/sw)

lfoii-éii
primary buffer

Figure 17 DirectSound playback overview

To use DirectSound, first a so-called DirectSound object (derived from the IDirectSound
interface) has to be created. This object represents the sound card itself.

Sound samples in the form of pulse code modulation (PCM) data are contained in so-called
sound buffers (objects derived from IDirectSoundBuffer or IDirectSound3DBuffer).
Individual sounds are kept in secondary buffers, which are used to start , stop, and pause
sound playback, as well as to set attributes such as frequency and format. Secondary buff
ers may be either statie or streaming. In the case of statie buffers the entire sound is
kept in memory and this is good for short sounds. With streaming buffers the sound data is
transferred into the buffer a block at a time, a good strategy for longer sounds.

When secondary buffers are played, DirectSound takes the data from each buffer and
mixes it into the primary buffer (of which there is only one in an application). If the sound
format (sampling rate, bits per sample, mono or stereo) of a secondary sound buffer differs
from the format set for the primary buffer, the necessary conversion is performed auto
matically. From the primary buffer, sounds are sent to the output device (sound card) to be
made audible.

DirectSound does not include functions for persing a sound file. It is the programmer's
responsibility to stream data in the correct format into the secondary sound buffers.

Depending on the card type, DirectSound buffers can exist in hardware as on-board RAM,
wave-table memory, a direct memory access (DMA) channel, or a virtual buffer (for an I/O
port based audio card). Where there is no hardware implementation of a DirectSound
buffer, it is emulated in system memory.

Multiple applications can create DirectSound objects for the same sound device. When the
input focus changes between applications, the audio output automatically switches from one
application's streams to another's. As a result, applications do not have to repeatedly play
and stop their buffers when the input focus changes.

Through the IDirectSoundNotify interface, DirectSound provides a mechanism to notify
the client when the play cursor reaches positions within a buffer that have been specified
by the client, or when playback has stopped. This mechanism can be especially useful to

18 © Eindhoven University of Technology 1999

determine when fresh sound data can be saf ely transfer red into a streaming secondary
sound buffer.

3.3 DirectDraw & Direct3D

3.3.1 DirectDraw

Direct draw is the part of DirectX to manage 2D graphics. For this it usually uses two or
more buffers. Buffer one holds the graphics on the screen itself and is called the front
buffer. The second buffer that is used to build up the graphical image is called the back
buffer. When a frame is completely build the front buffer is flipped with the back buffer
to display the new image. You can also have additional buffers with graphics data, if these
are needed. These off screen surfaces can be used for triple buffering, masks, sprites ,
textures etc.

DirectDraw Component

1-+ Primary Surface Palette +-

!
1-+ Back Buffer Surface . Palette I+-

!
'--. Off Screen Surface Palette I+-

Figure 18 Layout of the buffers

DirectDraw is a DirectX component that allows you to directly manipulate display memory,
the hardware blitter, hardware overlay support, and flipping surface support. DirectDraw
provides this functionality while maintaining compatibility with existing Windows-based
applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices while
maintaining compatibility with the Windows graphics device interface (GDI). It is not a
high-level application programming interface (API) for graphics. Because it maintains a
direct contact with the hardware, the user is more responsible for the good execution of a
program.

The interface allows an application to enumerate the capabilities of the underlying hard
ware and then use any supported hardware-accelerated features . Features that are not
implemented in hardware are emulated by DirectX (HEL).

© Eindhoven University of Technology 1999 19

3.3.2 Direct3D

Direct3D is divided into 2 main parts namely:

• Immediate Mode, which gives complete access to the rendering pipeline

• Retained Mode, a high level API on top of immediate mode to make programming easier

Direct3D provides the user with a way to determine the type of 3D hardware that is pres
ent in a system and see what functionality it hos. During the initialization a user must also
create a device so DirectX will know what drivers to use. After this initialization the user

can create 3D objects and add them to the 3D world. These objects are placed in a tree so

each object can have a parent and one or more children.

spot on the Wheel1 Whool2 Whool3 Wheel4
camera lens

Figure 19 The Direct3D object tree

In the case above you can move the eer and it's four wheels forward by simply moving the
chassis. This is because the wheels are children of the chassis.

With Direct3D you can also manage your viewport , this is the visible area in your 3D world.

This way you can also change the depth of your view. Direct3D is closely linked to Direct

Draw, meaning you can use these 2 parts of DirectX together to have 2D and 3D graphics

on one screen.

Direct3D will help you with the construction of a 3D world , by letting you:

• Position objects

• Scale objects

• Rotate objects

• Lood objects from file

• Change the look of your objects (texture and color)

Once you have completely constructed your 3D world Direct3D can render it to the screen
for you so you will see the 3D world on your 2D screen. To make things even more realistic

you can also manipulate the camera in your 3D world so you can view it from all possible

angles. There area lot of effects you can use when rendering your 3D world so your worlds
can range from ugly and fost to very beautiful and slow. Some of the rendering possibilities

are:

• Rendering of the objects, do you only want to place the points or the lines of the ob

jects or do you want to render the object completely solid .

20 © Eindhoven University of Technology 1999

• Effects of lights, do you want to give each polygon in your object a single color or do
you want to calculate a shading and give each pixel a different color.

3.3.3 The Interfaces

DirectDraw is built on the component object model (COM). You create an object that links
to the hardware and then call it's methods to control it. The main object you need to create
is IdirectDraw (you always need this interface). After that you can use the other inter
faces of DirectDraw. The most important interfaces are:

• IDirectDrawClipper. With this interface you can set the visible part of a surface, so
the graphics is automatically clipped when it reaches the edges.

• IDirectDrawSurface. This interface is used to create the different surfaces to blit the
graphics on. The front- and back buffer uses in DirectDraw are both surfaces.

Direct3D is also based on COM (all parts of DirectX are) but has a lot more interfaces to
control it. The main interface you will need to use Direct3D is IDirect3D. When this inter
face is created you can use one of the following interfaces for the different aspects of 3D
(only the most important ones are given):

• IDirect3DRM, the interface for retained mode. This is an extra interface on top of the
standard 3D interface to make the 3D programming less complex.

• IDirect3Ddevice, the interface that holds the information about the driver you want to
use to display the graphics.

• IDirect3Dviewport. This interface controls the dimensions of the visible part of the 3D
world .

• IDirect3Dframe, which is part of the Direct3D tree object structure. This interface is
used to hold information about the 3D objects in your world.

• IDirect3DTexture, the interface to work with texture that can be mapped onto the 3D
objects.

• IDirect3DMaterial, to give the 3D object some kind of material (E.G. a shine)

3.4 Directinput

This part of DirectX (see [9]) provides support for various kinds of input devices, including
mice, keyboards, joysticks, game pads, flight yokes, VR headgear. It also provides support
for force-feedback devices, like the Microsoft SideWinder FF Pro joystick, which actually
are input/output devices.

The main advantage of Directrnput is, like other DirectX components , that it gives faster
access to input data by communicating directly with hardware drivers. By doing so, a lot of
Windows overhead is bypassed.

Like other DirectX components Directinput is COM-based. The Directinput architecture
consists of a Directrnput object and for each input device a DirectinputDevice object.
Each device has its own object instances representing buttons, axes, keys etc .. Force feed
back eff ects are represented by DirectinputEffect objects. The COM objects and their

© Eindhoven University of Technology 1999 21

interfaces are depicted in Figure 20

Djz:ect'.llput

D imcatpu tE f!itc t

Dnknown

D :b:ectllpu t
Obj!ct

Dnknown

Efiect:1

Dnkno wn

D :iz:ect'.llpu to ervi:e

FFJoyst±k

D:izact:21.putoevi:e2

Dnknown

D :il:ecthpu tE fmc t

Efiect2

Figure 20 Directinput COM objects and their interfaces

The Directinput object hos an IDirectinput COM interface that is obtained by calling the
DirectinputCreate function . The input-devices that are available on your system can be
enumerated by the method IDirectinput : :EnumDevices. The wanted DirectinputDevice
objects can be created by IDirectinput: :CreateDevice, which returns a pointer to an
IDirectinputDevice interface. The object instances of the device are enumerated with the
IDirectinputDevice: :EnumObjects method. This method cal Is a callback function from
which a structure is made available for each enumerated object instance.

Directinput supports two ways of getting data from an input device: polling and event noti
fication. The IDirectinputDevice offers a GetDeviceData and a SetEventNotification
function for this.

The force feedback functionality was not supported by the original IDirectinputDevice
interface. A second COM interface to the DirectinputDevice object was added: IDirectin
putDevice2 . A pointer to this interface is obtained via the IDirectinput
Device: :Queryinterface method. The force effect objects for force feedback devices are
created with the IDirectinputDevice2: :CreateEffect method. These effect objects them
selves are also equipped with COM interfaces via which they can be controlled (IDirectin
putEffect: :Start, IDirectinputEffect: :Stop, etc ...).

22 © Eindhoven University of Technology 1999

4 DirectX + ActiveX = Multi-modal UI components

In this chapter we give a description of the functionality of each of the ActiveX controls
we constructed to make use of the media processing functions offered by DirectX. To
gether these components allow the rapid construction of applications with multi-modal user

interfaces.

4.1 JrSoundControl

Figure 21 jrSoundControl icon

The jrSoundControl ActiveX control is designed to make it easy to play wave files in a
Microsoft Windows program, or any environment capable of ActiveX integration. The con
trol gives the programmer all the advantages of DirectSound, but completely shields him

from the complexities of the DirectX architecture. Also , the control takes care of access
ing and loading sound data from wave f i les, a nontrivial affair, which DirectSound provides
no support for .

The advantages of using this control rather than the standerd Windows multimedia func
tions are many. Any number of wave files can be played at the same time. These files may
have completely different sound formats in terms of sampling frequency, bits per sample
and number of channels (mono/stereo): Conversion and mixing is done automatically. Play
back of any of the sounds can be stopped and resumed or restarted at any point , without
any not iceable delays. Various aspects of each sound, notably volume, playback frequency
and left-right balance can be varied at will, even during playback. Each sound can be made to
play only once, or continuously, in a loop, and there is no limit to the lengths of the sounds to
be played. All this is achieved with modest memory needs (longer files are "streamed"
rather than read into memory as a whole) and low-latency playback: typically, playback will
start within 10 ms of the command being given.

Using the control in a program is very simple. The programmer need not know anything about
either wave files (other than that they contain sound) or DirectX, the underlying technol
ogy used. The whole process is completely transparent.

4.1.1 Using jrSoundControl

ActiveX controls can expose methods, properties and events to the programmer using the
control. The jrSoundControl control exposes only methods, eleven to be exact . A complete
list of the available methods, with a short description of each, is given in the Appendix. All
method names start with the characters "jr". This is done so that in programming environ
ments that employ the " intell isense" technique (e.g., Visual Basic and Visual C++ version 6),
the methods are neatly grouped together in the popup box from which a method can be
selected.

© Eindhoven University of Technology 1999 23

In its simplest form, only three statements are needed in a C++ program to play a wav file

using jrSoundControl : one to deciare a variable for the sound , one to initialize the variable

and get the wav file ready for playing , and one to actually play the sound:

CjrSoundControl sndBeep ; Il Declare variable sndBeep

sndBe ep.jrinitSoun d ("beep.wav"); Il Initial i ze

sndBe ep . jrPlaySoundSingle(); I l Play sndBeep once

After the first two statements -declaration and initialization- any of the available methods

can be used. The various "set" methods may also be used during playback and will then take

effect immediately.

When the sound is no longer needed , destroy it:

sndBeep.jrDestroySound(); Il Give back memory

If more than sound is needed, simply deciare CjrSoundControl variables for each sound to
be played. Each sound can then be played , stopped or changed independently of the others.

That's all there is to it .

4.1 .2 Remarks on jrSoundControl

• As explained earlier, statie sound buffers are suitable for short sounds, while streaming
buffers are typically used for longer sounds. jrSoundControl is programmed to create

statie buffers for wav files shorter than 2 seconds and streaming buffers otherwise. A

next version of the control will leave this choice to the user.

• jrSoundControl does not support multiple sound cards: The preferred audio device on

the system is always used for playback. This is the audio device selected by the user

through the Multimedia applet in the Control Panel.

• jrSoundControl always makes the sound format of the primary buffer equal to the

sound format of the last secondary buffer initialized. This format may thus change
during the life of an application. Due toa bug in DirectSound, audible distortion may oc
cur when sound data is converted to another format when it is mixed from its secondary
buffer into the primary buffer. Best results are therefore obtained when all sounds

used in an application have the same sound format to start with , in which case no con

version is necessary at all.

• jrSoundControl does not support 3D sound.

4.2 Direct3D Controls - Scene and Thing

The Direct3D controls consist of 2 parts. The first part is the Direct3D container . This
part renders the 3D world for you, and is usually only needed once. This container can

contain Direct3D things which represents the objects and lights in the world. You can have

a number of these things inside your container. For each thing you can set some information

about what it presents in your 3D world by manipulating the properties of the thing. The
container then evaluates these properties and constructs the 3D world accordingly.

24 © Eindhoven University of Technology 1999

:•:
Figure 22 Scene and Thing icons

Figure 23 Container with things

In the picture above, the grey area represents the container. The 3 icons at the bottom
left represent the things that can be placed inside this container. They all have a picture
that identifies their object. The container reads the properties of these things to con
struct a 3D world , which you can also see displayed inside the container.

li':'1
4.2.1 Direct3D Scene 121

The scene is the container part of the controls. It is responsible for the rendering of the
3D world. Some things you can manage with the scene are:

• The position and angle of the camera

• A fog effect

• A background color or picture

• Dithering effects

• Rendering speed

• Rendering types (Points, wireframe, solid)

• Light types (flat, gouraud, phong)

• Clipping planes

The container hos another added feature, namely it is able to render your 3D world at
design time. What this means is, that if you place a thing inside it a design time you will
immediately see that thing appear inside your 3D world. Also whenever you manipulate a

© Eindhoven University of Technology 1999 25

things properties, you wil! immediately see the changes in your 3D world . With this feature

it is easy to construct simple 3D world because you get immediate feedback. It isn't neces
sary to run you program every time you changed something, to see if you made the correct

changes. This type of interface is a lot more instinctive toa user.

4.2.2 Direct3D Thing _.;

The name thing was give to this component because it can represent 2 things in a 3D world .
First of all you can use a thing to create an object (like a cube or a car) inside your 3D

world and you can also use a thing to represent a light source inside your 3D world . This

light source is represented by a diamond shaped object at design time to give the user an
idea of the place of the light source. At runtime this diamond is not visible.

Things you can manage with the thing controls are:

• Type of the thing (object or light source)

• Type of object, there are some standard objects like a cube, cone, sphere, etc. or you
can lood an object from file

• Type of rendering for the thing (points, wireframe, solid)

• Type of shading for the thing (flat, gouraud, phong)

• Color and texture of an object

• The position of the object

• The rotation angles of the object

• The sealing factor of the object

If you want more information about Direct3D or the scene and thing components, there are

2 manuals available. First of all there is a user manual that explains how to use the scene
and thing components to create 3D worlds with them. And there also is a technica! manual
that explains Direct3D in depth and shows how you can use Direct3D to create a 3D compo
nent. See (10] and [11].

For the standard information about Direct3D you can also check out the documentation

that is delivered with the DirectX SDK.

For more information on Direct3D, you can also read [12].

4.3 ActiveX Controls for Microsoft SideWinder FF Pro Joystick

In order to get fomiliar with the Directinput API we have built some ActiveX controls and

some demo applications for a force feedback input (/output) device. The most generic

control, called SWFFwill be described in this report . The force feedback device we used,
e Microsoft SideWinder Force Feedback Pro Joystick [13], needs Directinput-compliant
device drivers.

4.3.1 The joystick

The Microsoft SideWinder FF Pro device (see Figure 24) is equipped with a stick with two

26 © Eindhoven University of Technology 1999

axes (X, Y) with programmable force feedback facilities and 1 axis - the rudder or Z-axis -
with a passive centering spring. It hos 9 buttons, a throttle potentiometer and a point-of
view switch with 8 possible orientations.

Force Model
/'\

\.,/

Force Model
/ 1--/J

Force Model
r u7

Summing Node

Figure 24 Sidewinder FF Pro Joystick Figure 25 The force synthesizer

The joystick comes with device drivers that are DirectX 5.0 compliant. An application must
create force eff eet objects prior to using them. Various force effects may be combined as
indicated by the force synthesizer scheme in Figure 25. The filter in this picture cuts of
amplitudes that are out of range for the device. There are two basic types of force ef
fects: waveform and behavioral effects. A third type of effect, referred to as device
dependent effect, includes both waveform and behavioral effects. The scheme in Figure 26
gives an overview of this classif ication of effects.

FORCE EFFECT TYPES

Waveform Effects

Synthesized

Periodic

Behavioral Effects

t~~i~~~e t Savvtooth

Non-periodic t Constant force

Ramp

Custom (user-defined)

~
Spring

Damper

Friction
lnertial

Device-Dependent Effects
(SideWinder Force Feedback Pro)

Waveform

LROM
L RawForce

Behavioral

Lwalls

Complex

LvFx

Figure 26 Classification of force effects

Another classification can be made if we distinguish position dependent from position inde
pendent effects (see Figure 27). The software developer kit (SDK) contains the Visual

© Eindhoven University of Technology 1999 27

Force Factory software to create force effect (VFX) files . These files are the equivalent
of audio wave files and are the result of combining the various force effects into a complex
effect .

FORCE EFFECT CLASSES

Periodi c

Posîtion Independent
(Open Loop)

Non-p eriodi c Device Dependent
(Sid eWinder)

LROM

~

Sin e

Squ are

Triangle

Sav,/looth

~ Constant force

tRamp
Custom (user-defined) L RawForce

Posîtion DeJlendent
(Closed Loop)

1

Behavio ral Eft"e cts

Spring

Damper

Fri ction
lnerti al

Wall

Figure 27 Functional classification of force effects

4.3.2 The SWFF control

This section will give a dense description of the SWFF Control , which is an ActiveX compo
nent (OCX) that was developed to gain access to most of the funct ionality of Microsoft' s
SideWinder Force Feedback Pro joystick. A detailed description will be given in a separate
user manual [14].

[!]
Figure 28 The SWFF control icon

4.3 .2.1 How it is built

The SWFF control is created with Visual C++ by making use of the ControlWizard to set up
the basic framework of the Contro/ class and the AppWizard to add a framework for the
properties, methods and events of the control. These frameworks are filled-in later to add
the actual functionality to the control.

4.3.2.2 What's in it?

The control contains a number of properties related to the input part (e.g. the state of the
buttons, throttle, rudder, calibration mode, axis mode, internal timer etc.) and the force
feedback part (e.g. direction and gain of effects) of the joystick.

The methods can be divided into those related to force effects (creation , storting , stop
ping and destroying of effects), methods to create and destroy borders, a method to poll
the XY- position of the stick and the AboutBox method to display version and copyright
information in a messagebox.

28 © Eindhoven University of Technology 1999

A number of eventsare added to the control. After the control is initialized, the Initialized
event is fired. There is an event for each pressed (ButtonO, Buttonl ...) and each released
(RelButtonO, RelButtonl ...) button. Whenever a border is crossed this is notified by sending
events indicate the orientation of the crossing (see below). The control hos its own internal
timer that is used to poll the position of the stick and the state of the buttons. In order to
make this timer available outside the control a Timer event is fired after each internal

timer lapse.

Point-wise descriptions of all its properties, methods and events are listed in the Appendix.

4.3.2.3 What's a border?

Besides the normal polling opt ion (see the GetPosition method below) we devised an event
based concept for the notification of the position of the stick in its XY-system by using
borders. A border is a virtual straight line-piece in the XY-coordinate system of the joy
stick defined by its begin-point and end-point coordinates. Whenever the joystick's XY
position crosses one of these borders, event messages (NS(border _index) ,
SN(border _index), EW(border _index), WE(border _index)) will be fired to the application's
window. The border _index argument identifies which border was crossed.

4.3.3 A demo application for the SWFF Control

BIJ:ton 2 1eleased
bolde, 1 north· >s<Xih
bolde, l west-> east
border 1 ncxth->sOI.Jh
bo1de1 1 east·> wesl
bo,de, 1 swth•>ncwth
bofdei l wesl-> east
border l north•>sQt..(h
border l east->west
border 1 south·>north
border l wMl·>east
border 1 ncxth·>sOU:h
bo,,de, lwesl·> easl
border 1 south•>north

Figure 29 The graphical interface of the SWFF demo application

In order to demonstrate the options of this control we built a Visual Basic application. A
screen dump of the graphical interface is shown in Figure 29. It is provided with a number
of button controls in order to activate certain methods, e.g. pollrudder reads out the rud
der axis and prints it in the scrollable list region right from the buttons. Whenever one or
more buttons are pressed the corresponding square indicators at the lower left are high
lighted. The area at the lower right corresponds with the XY-system of the joystick. The

© Eindhoven University of Technology 1999 29

position of the sliders indicate the actual x,y position of the stick. The square in the center
of this area corresponds with 4 borders that are def ined at the position of the 4 si des of
the square. Whenever the joystick crosses these borders events are created which is
notified in the scrollable list . The value of the rudder (Z) axis is indicated by the scrollbar
at the top right . The Throttle (potentiometer) value is indicated by the other vertical
scrollbar. This value also controls the gain of the force effects. All events that are fired
from the control are notified in the scrollable list .

30 © Eindhoven University of Technology 1999

5 Using NUKE components

Creating components is one thing, using them in applications that make sense is what proves
their usability. To demonstrate the possibilities of our components to create multi-modal
user interfaces we created two simple applications ourselves. These will be illustrated in
the first part of this chapter and aim to indicate that with the right software components
sophisticated interfaces can be build rapidly. Our components were also used in four other
research projects, either to add a new modality or to speed up the implementation. This is
illustrated in the second part of this chapter.

5.1 Simple demo applications

5.1.1 Calendar-Wheels

The f irst demonstrator we created was the so-called Calendar-Wheels demo. This demon
stration program used our DirectSound and Directinput ActiveX controls in conjunction
with a speech synthesis library and a first component used to explore DirectDraw, the
Selection-Wheel. A screenshot is given in Figure 30.

Figure 30 Calendar-Wheels demo

This demonstrator allowed turning the selection wheels for date, month and year by moving
the joystick. Setting a wheel in motion by moving the joystick forward or backward caused
both a sound and a force effect to be played by the application. Pressing the fire button
triggered speech synthesis of the selected date. This demonstrator served the purpose of
demonstrating DirectSound and Directinput possibilities, in conjunction with rapid applica
tion development with ActiveX controls.

© Eindhoven University of Technology 1999 31

5.1.2 Ball-game - demo/tutorial on using the NUKE controls

The ball-game is our second demonstrator. It served the purpose of demonstrating during a

presentation how easy advanced multi-model applications can be made. The sequel of this
part follows the steps taken to bui Id the application yourself.

5.1.2.1 Step 1 - a simple Scene and Thing

The first thing to do is to start up VB. We assume you have installed the Nuke Controls ,
including VBD3D OCX, the Direct3D controls. This means you can select them in VB. You can

do this by selecting the components option from the project menu. Find the VBD3D compo
nent in the list (you can speed this up by pressing the v) and select it .

Now you are ready to use the Scene and Thing components. Add a (one) scene container to

your form, make it fairly big (e.g. almost the size of the form, you can even enlarge the

form to make a really big 3D scene). Next place one thing control inside the scene con
tainer. You will see some things happening now:

• The picture inside the thing control is that of a cube, this means that this thing control

currently represent a cube in your scene.

• A black square appears in your container . This is your thing control (wh ich is now a cube
as that is the standerd form) that is rendered inside the scene container. The scene is

rendered at design time so you can immediately see what you have created.

Your form should now look like this:

ili;. Forml 1!1~13

Figure 31 The first Thing control

While you have the thing control in your container selected browse through the properties

window on the right. Here you can manipulate your thing by changing the properties of it .
You might wonder why the square you see in the scene container is black, since the color
property of the thing control is set to white. This is because there is no light in our scene.
A white object with no light shining on it is displayed as black.

32 © Eindhoven University of Technology 1999

5.1.2.2 Step 2 - then there was light

The next thing to do will be adding a little light. Place another thing control in the scene
container. Since the th,ng control will default toa cube you will not see anything change this
time (except that there are now 2 cube things). Find the ThingType property of this second
th,ng control. With this property you can determine if your th,ng is an object {Thing Type is
set to 0) or a light source {ThingType is set to 1). Set this property to 1 to make your sec
ond th,ng a light source. You will immediately see the square co lor change to light gray, this
is because the light source is set to half intensity on default.

To change the cube into a ball you will need to know a bit more about the objects a th,ng can
represent. A th,ng hos a number of standard objects namely a cube, cone, cylinder, sphere
and torus. By default a th,ng represent the standard cube object. To change the type of
object each th,ng hos a property named ObjectType. This property can have the following
values:

Value of ObjectType Object the Th,ng represents

0 A standard Cube

1 A standard Cone

2 A standard Cylinder

3 A standard Sphere

4 A standard Torus

5 An object loaded from file (DirectX x-file)

Since we want to make a bouncing ball we can use the standard sphere object for this. So
change the Object Type property of the first th,ng in the scene container (the one with the
cube picture on it) to 3. After doing this the picture in the th,ng control will change to that
of a sphere so you can see which object it represents and the container will now render a
sphere. Your form should now look like this:

•
Figure 32 The scene with a light source

© Eindhoven University of Technology 1999 33

5.1.2.3 Step 3 - Enhancing the scene

To make a nice demo we need a few more things. First of all we will need something for the

ball to bounce on. Add another thing to the scene container (that will default to a cube

inside the sphere). Change the PosY property of the cube (thing3) to -5 and you will see the

cube appear beneath the ball. Now we will have to stretch the cube a little. Change the

ScaleX and ScaleZ properties to 5 to create a platform. Also change the ScaleY property
to 0 ,5 so the complete platform wil! be visible.

Another thing that doesn't make the image very clear is that the objects only have 1 color.
This is because we only have an ambient light present . An ambient light doesn't have a
direction or position but simply lights everything in the scene with the same amount of light.

Therefore add a point light source. A point light source hos a position and emits light in all
directions. The light gets less intensive when farther away from the light source. Add

another thing to the container and make a light source of it by setting the ThingType prop
erty to 1. Now you're objects will be completely white. This is because you now have 2 ambi

ent lights present both at half intensity making full intensity together. We need to change

this light source toa point light source. You can do this by changing the LightType property.

The LightType property can have the following values :

Light Type Type of Light Effect

0 Ambient Complete area is lit with the same intensity

1 Point Positional light in all directions (slow)

2 Spot Light with orientation and position (slow)

3 Directional Light that only hos orientation (e.g. the sun) (fast)

4 Parallel Light with orientation determined by position (fast)

Set the LightType property to 1. Now you only see the effect of the point light on the

platform and not on the ball. This is because the point light source is positioned inside the
ball. Change the PosX property to 5, the PosY property to -4 and the PosZ property to 15
(when you move the light you will see a red diamond shaped object at its current position).

Now you will see the light source in effect. This looks much nicer, but it still hos one prob

lem. Unless you are running in True- Color mode you can see color lines on the objects (this

effect is called banding). You can do something about banding by enabl ing dithering (blend
ing the colors) while rendering the scene. Select the scene container and set the Dither

property to True, to make things look nicer. Your form should now look like this :

34 © Eindhoven University of Technology 1999

Figure 33 The finished scene

5.1.2.4 Step 4 - Time for some coding

Now it's time to make the ball bounce. First we need to place the ball a bit higher so it will
bounce a bit longer. Set the PosY property of the ball (thingl) to 5. Add some code to move
the ball. First deciare the following variables:

Dimt As Single ' simulated time
Dim v0 As Single ' simulated speed
Dim h As Single ' simulated height

We are going to use a simple quadratic formule to simulate falling. Select the Initialize
event of the scene container and place the following code inside it:

Private Sub Scene_Initialize()
t = 1. 5: v0 = 15

End Sub

The Initialize event is called when de container is created, this happens when you start your
program. You can use this event to initialize the variables you use in your code. Next is the
PostRender event. This event is called after the scene is rendered to the screen. You can
use this event to manipulate the objects in your 3D world each frame. The code you can
place in the PostRender event is:

Private Sub Scene_PostRender()

t t + 0.1

h = v0 * t - 5 * t * t 'Newton

if h < 0 Then h = 0

Ball.PosY = h

If h < 0.1 Then ' bounce up

t = 0: v0 = v0 * 0.8

End If

End Sub

© Eindhoven University of Technology 1999 35

If you run the program after adding this code the ball will start bouncing. To speed things
up a little bit you can set the frametime (minimum time needed for each frame) property of
the scene container a bit lower (E.g. 10 for 10 milliseconds).

5.1 .2.5 Step 5 - Controlling the platform with the joystick

To control the movement of the base with the joystick, we add the SWFF control to the

set of available components in the same way we added the VBD3D controls. Next we place a
SWFF control on our form and we name it joystick. We also deciare some extra variables:

Dim Effect As Long

Dim EffectOn As Boo l ean

Dim X As Long, Y As Long

Last but not least we add a few lines of to initialize the joystick timing and make pressing
the fire button throwing the ball up:

Private Sub Joystick_Button0()

t = 1 . 5: v0 = 15

End Sub

Private Sub Joystick_ Initialized()

Joyst i ck.Timerinterval = 1 0

Joystick.AutoCenter = Fa l se

Effect= Joystick.CreateConstantForce(-1, 0, 5000, -1)

EffectOn = False

End Sub

We want to start and stop the constant force when the ball lands on or leaves the base to
simulate weight . We also want to connect the position of the joystick to the position of the
base. For this we change the PostRender routine:

Private Sub Scene_PostRender()

t t + 0.1

h v0 * t - 5 * t * t

Call Joystick.GetPosition(X, Y)

Platform . PosX X / 2000

Platform . PosY = -Y / 2000

If h < 0 Then h = 0

Ball . PosY = h + (Platform.PosY + 1 . 75)

If h < 0.1 And Not Effec t On Then

36

t = 0: v0 = v0 * 0 . 8

Joystick.StartEffect Effect

EffectOn = True

End If

If h >= 0 . 1 And EffectOn Then

Joystick.StopEffect Effect

EffectOn = False

© Eindhoven University of Technology 1999

End If

End Sub

After this step we can move the platform up and down with the joystick and we feel the
weight of the ball if it's on the platform. We can also fire the ball up by pressing the f ire
button.

5.1.2.6 Step 6 - Adding sounds on impact

To make things even more natura! we add sound to the demonstrator. Similor to the previ
ous steps, add the control for sound UrSoundControl) to the set of available components
and place one instantiation on our form. Call it "BangSound". We use an audio file called
"bang.wav", with a "bang" sound to simulate an impact of a steel ball and start it with dimin
ishing attenuation when the ball hits the platform. This completes our demonstrator with
the following code:

Dim Att As Single
Dim vin As Single

Const AttMax = 100

Private Sub Scene_Initialize()

t = 1 . 5: v0 = 15: vin= v0

BangSound.jrinitSound ("bang.wav")

End Sub

Private Sub Scene_PostRender()

t = t + 0 . 1

h = v0 * t - 5 * t * t

Call Joystick.GetPosition(X, Y)

Platform . PosX = X / 2000

Platform . PosY = -Y / 2000

If h < 0 Then h = 0

Ball.PosY = h + (Platform.PosY + 1.75)

If h < 0.1 And Not EffectOn Then

t = 0 : v0 = v0 * 0.8

Att = AttMax * (v0 / vin - 1) A 4 'become softer

BangSound.jrSetAttenuation att

BangSound.jrPlaySoundSingle

Joystick.StartEffect Effect

EffectOn = True

End If

If h >= 0.1 And EffectOn Then

·Joystick.StopEffect Effect

EffectOn = False

End If

End Sub

© Eindhoven University of Technology 1999 37

This completes our second demonstrator. A screen shot is also shown on the cover page of

this report . With a few lines of code we can animate a 3D world, we can feel it and we can
hear it.

5.2 Applications using NUKE components

In this section we give a short overview of other applications using NUKE components. For

more details on these applications we refer to the projects in which these applications are

developed.

5.2.1 A20 - Multi-modal TV control prototype

In the Screen Management project an authoring and simulation environment for TV user

interfaces hos been created. This environment is intended to speed up the development
process of families of TV user interfaces. To one of the simulations we added sound ef

fects when moving the "puck" through the menu tree. These effects use the possibilities of
DirectSound: fading left and right , multiple simultaneous sounds, pitch changes.

HAIN HENU

1 TV
► • • • • • • •picture

• install •sound

• setup •features

Figure 34 A20 Main Menu

We also changed the use of remote control cursor keys to use of the joystick with force
effects for the different types of nodes in the menu tree. We made these additions to the
simulation (the menu-interpreter) in a few days. This demonstrator served to show mainly

the use of digital sound in a TV menu. The use of force feedback on a remote control is not

foreseen in the near future (although in Philips Research Aachen can create very small , low

power force feedback devices). For us it was another exercise to find out how useful our

components really are and how easy to use from a programmer's perspective.

38 © Eindhoven University of Technology 1999

5.2.2 MacDice - Multi-Modal Music Browser

The second project that used our work was the MacDice project. This project evaluated
the added value of multi-modal interfaces in a scientif ic way.

The modalities used included graphics and sound output, both speech and non-speech,
speech and remote control input. One of the MacDice demonstrators uses both the Direct
Sound control and the SelectionWheel. A screenshot is given in Figure 35.

Figure 35 MacDice JukeBox

5.2.3 WWICE

The WWICE project prototypes an in-home digital network on which multiple applications
can be active on multiple places. To support multi-stream audio the base class of the
jrSoundControl has been used and put in a Java wrapper for usage by the WWICE applica
tion.

5.2.4 Grapefruit

The Grapefruit project explored the use of advanced graphics in user interfaces for con
sumer electronic products. Advanced includes 3D, animation and translucency. The demon
strators of Grapefruit were build directly in Visual CIC++ on top of DirectX and OpenGL.
We now explore usage of the VBD3D controls (Scene and Thing), that seems to give a eas
ier to use generic framework.

© Eindhoven University of Technology 1999 39

6 Conclusions and future

From our work and from the scientific literature we strongly believe that SW components
have the future. This also holds for UI SW components. We have shown that combining two

Microsoft technologies to create a set of UI components allows the rapid construction of
multi-modo! user interfaces on the PC. For the project team this was a useful learning
expedition, with a set of (re-)usable components as the most tangible result.

We also believe that "beyond the GUI" interfaces are coming. On the PC the game industry
takes the lead, but other consumer devices wil! follow. Our components can be and are used

to develop options in this direction. Packaging DirectX functionality in ActiveX components

allows rapid prototyping of such multi-modal interfaces.

On the PC the development is ongoing. Highly quality animated 3D interfaces with speech

input and output wil! become common and not just for games. Next steps wil! include the use
of computer vision based gesture recognition. We expect Microsoft to integrate DirectX

with the Windows operating system more and more in the near future. In Windows'98

DirectSound is already part of the OS. We also expect Microsoft to put more and more

generic user input- and output functionality in the operating system.

6.1 Future work

We have the following suggestions for continued explorative work in UI SW components :

• Support speech recognition and speech synthesis, using also standardized APis in easy
to use components

• Support gesture and handwriting recognition for touch screens or pen-based interac
tion.

• Explore UI components on the Web - both Java and ActiveX based.

40 © Eindhoven University of Technology 1999

7 Glossary
Application Programmers Interfaces API

ATL

CLSID

DISPID

COM

CORBA

DCOM

DLL

DMA

EPG

EXE

GDI

GUI

GUID

HAL

HEL

HTML

IDL

IID

IPO

MFC

NUKE

ocx

OLE

ORB

PCM

PDA

SDK

USIT

VRML

Active Template Library, a set of C++ templates for Windows programming

Class IDentif ier

DISPatch IDentif ier

Microsofts Common Object Model

Common Object Request Broker Architecture

Distributed COM, COM over a network

Dynamic Link Library

Direct Memory Access

Electronic Program Guide, on-screen alternative for paper TV guide

Executable file

Graphics Device Interface

Graphical User Interface

Globally Unique IDentifier

Hardware Abstraction Layer

Hardware Emulation Layer

Hyper Text Mark-up Language, format of documents on the Web

Interface Definition Language

Interface IDentifier

centre for research on User-System Interaction on the TUE

Microsoft Foundation Classes, a framework for Windows programming

New User Interface Knowledge Exploration, project name

OLE Control eXtension, old name for ActiveX Control

Object Linking and Embedding, now a Microsoft term in itself

Object Request Broker, CORBA equivalent for the component registry

Pulse Code Modulation

Personal Digital Assistent

Software Development Kit

User System Interaction Technology, Nat.lab. research group

Virtual Reality Modeling Language (3D file format)

© Eindhoven University of Technology 1999 41

8 Ref erences

[1] Moll, H.F., NUKE Project Agreements, Nat.Lab. memo, 1998

[2] Reeves, B. and Nass, C., The Media Equation; How People Treat Computers, Television,
and New Media like Real People and Places, Cambridge Univ Pr (Trd); ISBN:
157586052X , 1997

[3] Vet ed., J. de, A Vision of the Future: User Interfaces for Home and Away, Nat.Lab .
memo, 1998

[4] Rogerson, D., Inside COM ,Microsoft Press, ISBN: 1-57231-349-8 , 1997

[5] Denning, A., Ole Controls Inside Out, Microsoft Press, ISBN 1-55615-824-6, 1995

[6] SoftwareAg, EntireX, DCOM implementation for Unix/Linux,
http:/ /www.softwareag.com/ corporat / solutions/ entirex/ entirex.htm

[7] Ronan Geraghty (Editor), COM-CORBA Interoperability (Microsoft Technologies
Series), Prentice Hall Computer Books; ISBN: 0130962775

[8] Pennings, M., KOALA Introduction course, IST/IPA , 1998

[9] Bargen, B. and Donelly, P., Inside DirectX, Redmond, WA, Microsoft Press, 1998

[10] Voort, M. v.d., Nuke Direct3D Components User Manual, IPO Manuel in preparation.
IPO, Center for Research on User-System Interaction, 1999

[11] Voort, M. v.d., Nuke Direct3D Components Reference Manual, IPO Manuel in prepara
tion, 1999

[12] Peter J. Kovach, The Awesome Power of Direct3D/DirectX, 1997, Manning Publica
tions Company, ISBN 1884777473

[13] Microsoft, Sidewinder Force Feedback SDK Programmer's Reference Version 1.2,
Redmond, WA, Microsoft Cooperation, 1997

[14] Bosch man, M.C., SWFF: an ActiveX control for the Microsoft Sidewinder FF Pro
Joystick. IPO Manuel in preparation , 1999

[15] Pijper, J .R. de, Using Direct Sound, IPO Manual in preparation, 1999

42 © Eindhoven University of Technology 1999

9 Appendices

9.1 Appendix A - SWFF Properties, methods and events

9.1.1 SWFF Properties

Property name Type Arguments Values Description

AutoCenter boo- none True=on get/set property indicating
lean

False=off
whether the X& Y axes of the
joystick will be auto-centered by
its motors.

AxisMode long none 0=absolute get/set property indicating

l=relative
whether the axes of the joystick
should be interpreted as absolute
or relative values.

Buffer Si ze long none size of input- get/set property indicating the
buffer size of the joystick's input

buffer.

Buttons short none Bitwise indi- get property indicating which
cation of buttons are pressed at a time.
button status Each button is represented by

one bit in the Buttons f ield. Bit 0
corresponding to button 0 etc.

CalibrationMode long short axis 0: cooked get/set property determines
0=X-axis,

1: raw
whether calibrated (cooked) or

l=Y-axis, uncalibrated (raw) data should be
2=Throttle, retrieved from the axis indicated
3=Rudder by the argument.

DeadZone long short axis [0,10000] get/set property indicates the
size of the dead zone, i.e. a range
around the center of the axis

axis. see where the reported value is as
above being at the center of the range.

Direction long long ef- [0,36000] get/set property indicating the
fect_index direction (in centigrades) of an

effect indexed by the argument.
(the index value is returned when
the eff eet is created).

FFGain long None [0 ,10000] get/set property indicating the
gain to be applied to all joystick
motors.

© Eindhoven University of Technology 1999 43

FFLoad long None [0,100] get property indicating the mem-

ory load in percent points of the
device.

Granularity long short axis (0,10000] get property indicating the size

of the granularity of the axis

indexed by t he argument . Granu-
axis: see larity represents the smal lest
above dist ance an axis will report

movement . Hence, it determines
the possible values of an axis. A

value of 1 means that all values
are possible.

NBorders short None [0 ,99] get property indicating the num-
ber of virtual borders defined in

the XY coordinate system.

NEffects short None (0 ,maxshort] get property indicating the num-

ber of force eff ects created for

the joystick.

POV long None (0, 4500, get proper ty indicating the last
9000, polled value of the POV (point of
13500,18000, view) button. It can be in 9 states
22500, of which 8 express t he angle of
27000, the button position in centigrades
31500): the 8 and one ind icat ing that the POV

angles, or button was in the center-position.

65535: if POV
is in its een-

ter-position.

Rudder long None (0,65535] get propert y indicat ing the polled
value of the Z-ax is (also known as

rudder) of the joystick.

Saturation long short axis (0,10000] get/set property indicates the
saturation level of an axis in-

dexed by the argument . It de-
ax is: see termines t he point at which the
above axis is at its most extreme posi-

t ion.

Thrott le long None [0 ,65535] get property indicating the last

polled value of the joysti ck 's
potentiometer (also known as
thr ottle).

Timer Interval long None [0 ,maxlong] get /set property indicating the

44 © Eindhoven University of Technology 1999

9.1.2 SWFF Methods

Method name Arguments

AboutBox None

CreateBorder long xO,yO,xl,yl

xO,yO,xl,yl: coordinates
of begin and end point of
the border ([-10000,
10000])

CreateCon- long duration, direction,
stantForce magnitude, trig-

ger_button

duratiorr. in miliseconds
of the created effect.

[0,maxlong): the dura-
tion

-1: infinite duration.

directiorr. direction of
the axis of the eff eet in
centigrades [0,36000).

magnitude. strength of
the force [0,10000).

trigger_buttorr. [0,8):
effect starts after
pressing button 0 - 8
-1: effect is not trig-
gered by any button

© Eindhoven University of Technology 1999

Return
value

void

short: index
of the
defined
border

long: index
of the
defined
effect.

interval in microseconds of the
internal timer. After each Timer
Interval the control will poll the
joystick's coordinates and button
states and checks whether bor
ders are crossed. If necessary
event messages will be sent to
the application window.

Descript ion

Method displays a MessageBox
containing general information
about the control : copyright ,
version etc.

Method def ines a border in
the XV-plane by its begin and
ending points. Whenever the
joystick' s XY-position crosses
one of these borders, event
messages will be fired to the
containers window. Up to 100
(index [0,99]) borders can be
defined.

Method def ines a constant
force effect along an axis
defined by the direction
argument.

45

CreateDamper long duration, b_x, b_y, long: index Method defines a damper,
vO_x, vO_y, trig- of the which is a velocity dependent
ger_button defined force effect with the follow-

duratiorr. see above. effect. ing force-velocity relations:
Fx=b_x(v_x - v0_x)

b_x, b_y demping coef- Fy=b_y(v_y - v0_y)
ficients for the X and Y Fx and Fy are the X and Y
axis resp. components of the Force and
[0 ,10000). v_x and v_y are the velocity

vO_x, vO_y velocity components along X and Y. The

off set for both axes [- velocity is determined by the

10000, 10000). change in XY position caused
by movement of the stick.

trigger_button: see
above.

CreateFriction long duration, f_x, f_y, long: index Method def ines friction ef-
trigger_button of the fect, which is a force effect

duration: see above defined which occurs whenever the
effect stick is moved:

f_x,f_y friction farces
v_x != 0 : Fx=f _x

for the X and Y axis
resp .

v_y != 0: Fy=f _y

(-10000, 10000) Fx and Fy are the X and Y

trigger_button: see components of the Force.

above

Createinertia long duration, m_x, m_y, long: index Method defines Inertie, which
aO_x, aO_y, trig- of the is a acceleration dependent
ger_button defined force effect with the follow-

duration: see above. effect ing force-acceleration rele-
tion:

m_x,m_y inertie coeff i- Fx=m_x(a_x - a0_x)
cients (mess) for the Fy=m_y(a_y - a0_y)
two axes

Fx and Fy are the X and Y
[-10000, 10000).

components of the force and
aO_x,aO_y acceleration a_x and a_y are the accelera-
off set for both axes [- tion components along X and Y.
10000, 10000). The acceleration is deter-

trigger _button: see mined by the change in XY

above. position caused by movement
of the stick.

CreatePeriodic short wavef orm, long long: index Method def ines periodic
duration, direct/on, of the waveform effect, which is a
magnitude, offset, defined force eff eet that occurs
phase, period, trig- effect whenever the stick is moved

from its center position. The

46 © Eindhoven University of Technology 1999

ger_button center position for the spring

waveform: indicates is def ined by the correspond-

which wave function is
ing arguments. The force is

used
defined by:

0: Square wave Fx=k_x (x - center _x)
1: Sine wave Fy=k_y (y - center _y)
2: Triangle wave
3: Sawtooth up wave Fx and Fy are the X and Y

4: Sawtooth down components of the Force, x

wave and y are the coordinates of

duration: see above.
the joystick' s position in the
XY system.

magnitude: the ampli-
tude of the wave eff eet
[0,10000].

offset. the off set of
the wave function [-
10000, 10000].

phase: phase of the wave
form. (0,9000 ,18000)
centigrades.

Period. period of the
wave function in ms
[O ,maxlong].

trigger_button: see
above.

CreateRampForce long duration, direction, long: index Method def ines ramp function
start_magnitude, of the effect. The force - time
end_magnitude, trig- defined relation is defined by:
ger_button effect F = start_magnitude +

duration: see above (end_magnitude -

direction: orientation of
start_magnitude) /duration*t

the effect in centi-
grades [0,36000]

start_magnitude,
end_magnitude: the
strengths of the two
extremes of the ramp
function (-10000,10000]

trigger_button: see
above.

CreateROMEff ect short effect, long: index Method creates a predef ined

© Eindhoven University of Technology 1999 47

long duration, direction, of the ROM wave form eff eet identi-

trigger _button defined fied by the effect argument .
effect

effect: indicate which
of the following ROM
effects wil! be created:
0 =RandomNoise
1
=AircraftCarrierTakeOf

f
...
31 = Cannon

duration: see above.

direction: see above.

trigger_button: see
above.

CreateSpring long duration, k_x, k_y, long: index Method def ines spring effect,

center_x, center_y, of the which is a force effect that
trigger _button defined occurs whenever the stick is

duration: see above.
effect moved from its center posi-

tion. The center position for
k_x, k_y friction farces the spring is def ined by the
for bath axes (-10000 corresponding arguments . The
,10000]. force is def ined by:

center_x, center_y Fx=k_x (x - center _x)

offset of spring center Fy=k_y (y - center _y)

position Fx and Fy are the X and Y

[-10000, 10000]. components of the Force, x
and y are the coordinates of

trigger_button: see the joystick' s position in the
above. XY system.

CreateVFXEffect- string fi/ename, long: index Method creates an eff eet
FromFile long trigger _button of the object from a VFX or a FRC

filename: pathname of
defined file that is previously created

the effect file
effect with the Visual Force Factory,

which is included in the Side-
trigger_button: see Winder FF SDK.
above

CreateWall long duration, direction, long: index Method defines a wal! object,
distance, of the which occurs when the joy-
boolean inner, defined stick position is passing the
long coefficient, trig- effect position of the wal! . The wal!
ger_button offers a resistance when the

duration: see above.
joystick' s position is moving
away from its oriqin if the

48 © Eindhoven University of Technology 1999

direction: orientation of inner argument is true. In the

the wall in centigrades. other case (inner=false) the

Only 4 direct ions are wall generates res istance if

possible: the joystick is moving from

0: North outside the wall towards the

9000: East origin.

18000: South Up to 4 wall effects can be
27000: West created at a time.

distance: distance of the
wall from the origin of
the XY-system
[0,10000].

Inner: flag indicating
whether resistance is
directed towards (true)
or away from (false) the
center position.

coefficient. the amount
of resistance off ered by
the wall [-10000,10000].

trigger_button: see
above.

DestroyBorder short border _index void Method destroys a previously

,ndex.indicates the created border object.

border object that
should be destroyed.
This value is previously
returned by the Create-
Border method.

DestroyEff eet long effect_,ndex void Method destroys a previously

effect_index: the ef- created effect object.

fect that should be
destroyed. This value is
previously returned by
one of the Cre-
ate<effect> methods.

GetPosition long x, y void Method reads the last polled

x,y: output arguments, position coordinates of the

the coordinates of the joystick and returns them into

position of the stick in the x and y arguments.

the XY-system during
the last poll.

© Eindhoven University of Technology 1999 49

StartEff ect

StopEffect

long effect_index

effect_index: indicates
the eff eet that should
be started. This value is
returned by one of the
Create<effect> methods.

void

long effect_index void

effect_index. see above

Method starts a previously
created effect object.

Method stops a previously
created and running effect
object.

9.1.3 SWFF Events

Event name Description

ButtonO, Buttonl, , Button8 These events are fired whenever one or more of
the corresponding buttons are being pressed.

Initialized This event is f ired to indicate that the force-
feedback device is initialized and acquired. The
application shell wait until this event occurs be-
fore creating force effect objects.

NS(border _index) , SN(border _index), These events are fired whenever a border is
WE(border _index), EW(border _index) crossed along one of the four directions North-

to-South, South-to-North, West-to-East, or
East-to-West . If the border is oblique then two
events should occur at a time.

RelButtonO, RelButtonl, .. . , Re1Button8 These events are fired whenever one or more of
the corresponding buttons are being released .

Timer This event is f ired af ter elapsing the interval of
the timer that is running inside the control. The
same timer is used to poll the position and check
whether borders are crossed.

9.2 Appendix B - jrSoundControl

The following is a complete list of methods available through jrSoundControl, with a short
description of each. Note that the control does not have properties or events.

9.2.1 jrSoundControl Methods

Method name

jrinitSound

50

Arguments

LPCTSTR
szWaveFile
Name

Return
value

void

Description

Each jrSoundControl variable must be
initialized with this method. It con
structs all the necessary DirectSound

© Eindhoven University of Technology 1999

objects, opens the wave file specified
as a parameter and either transfers
all sound data into memory if the
DirectSound buffer created for the
file is a statie one, or transfers a
small portion of the sound data into
memory if the buffer created is a
dynamic one. In either case, the
buffer is ready for playing after the
call completes.

If the wav file specified is not found
or cannot be opened for any other
reason , a runtime error results and
the application is terminated.

jrDestroySound none void When a jrSoundControl variable is no
longer needed, it should be destroyed
us ing this method.

jrPlaySound none void Call this method to start playback in
looping mode, i.e., when the end of the
sound buffer is reached, it starts
again at the beginning. Playback will
continue until explicitly stopped with a
call to jrStopSound().The call has no
effect if the buffer is already play-
ing.

jrPlaySoundSingle none void Call this method to start playback in
single mode. The sound is played
through to the end of the buffer and
then stops. The call has no effect if
the buffer is already playing.

jrStopSound none void Call this method to stop a sound
during playback. The buffer is reset ,
so that a subsequent call to
jrPlaySound() or jrPlaySoundSingle()
will start at the beginning of the
buffer. The call has no effect if the
buffer is not playing.

JrGetPlaybackFre- none long: cur- The current playback frequency in
quency rent play- Hertz (Hz) that a buffer is set to can

back fre- be obtained with this method. Unless
quencyin it has been changed through a call to
Hz jrSetPlaybackFrequency, it equals the

original sampling frequency of the wav
file.

© Eindhoven University of Technology 1999 51

jrSetPlaybackFre- long: playback void Use this method to set the playback

quency frequency in Hz frequency to a different value in

Hertz. Note that this will affect both
the speed and the frequency of the

sound: a doubling of the playback

frequency makes the sound play back

at twice the original speed and with
double the original frequency.

The playback frequency value must be
between 10 and 100 000 Hz. An at-
tempt to set to a value outside this

range will result in the closest legiti-
mate value.

jrGetAttenuation none long: at- This method returns the attenuation

tenuation to which a buffer is set , in decibels

in decibels (dB). Originally, this value is 0, mean-
(dB) ing that there is no attenuation and

the sound will play back at full volume.

jrSetAttenuation long: current Use this method to set the attenua-

attenuation, in tion of the buffer to a different
decibels (dB) value, expressed in decibels (dB). This

value must be between O (no attenua-

tion, full volume) and 100 (maximum
attenuation, silence). An attempt to

set toa value outside this range will

result in the closest legitimate value.

jrGetPan void long : cur- This method returns the current so-

rent pan called pan setting of the buffer ,
setting better known as the balance. This is a

value expressed in decibels indicating

the degree of attenuation of either
the left (when the value is negative)

or the right channel (when the value is

positive). The pan value ranges from -
100 (the left channel is completely
silent) to +100 (the right channel is
completely silent). Its initia! value is

0.

Note that the attenuation and pan

settings are additive: If attenuation

is set to 5 and pan to -5, the left

channel will be attenuated by 10 dB

and the right channel by 5 dB.

jrSetPan long: pan value void Use this method to change the pan

52 © Eindhoven University of Technology 1999

to be set

© Eindhoven University of Technology 1999

setting. The value must be between -
100 (full attenuation of left channel)
and +100 (full attenuation of right
channel). The neutral setting is 0,
where neither channel is attenuated.
An attempt to set to a value outside
this range will result in the closest
legitimate value.

53

